xref: /openbmc/qemu/target/arm/helper.c (revision 8cf108c5)
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "qemu/qemu-print.h"
14 #include "exec/exec-all.h"
15 #include "exec/cpu_ldst.h"
16 #include "arm_ldst.h"
17 #include <zlib.h> /* For crc32 */
18 #include "exec/semihost.h"
19 #include "sysemu/cpus.h"
20 #include "sysemu/kvm.h"
21 #include "fpu/softfloat.h"
22 #include "qemu/range.h"
23 #include "qapi/qapi-commands-target.h"
24 
25 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
26 
27 #ifndef CONFIG_USER_ONLY
28 /* Cacheability and shareability attributes for a memory access */
29 typedef struct ARMCacheAttrs {
30     unsigned int attrs:8; /* as in the MAIR register encoding */
31     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
32 } ARMCacheAttrs;
33 
34 static bool get_phys_addr(CPUARMState *env, target_ulong address,
35                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
36                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
37                           target_ulong *page_size,
38                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
39 
40 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
41                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
42                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
43                                target_ulong *page_size_ptr,
44                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
45 
46 /* Security attributes for an address, as returned by v8m_security_lookup. */
47 typedef struct V8M_SAttributes {
48     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
49     bool ns;
50     bool nsc;
51     uint8_t sregion;
52     bool srvalid;
53     uint8_t iregion;
54     bool irvalid;
55 } V8M_SAttributes;
56 
57 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
58                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
59                                 V8M_SAttributes *sattrs);
60 #endif
61 
62 static void switch_mode(CPUARMState *env, int mode);
63 
64 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
65 {
66     int nregs;
67 
68     /* VFP data registers are always little-endian.  */
69     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
70     if (reg < nregs) {
71         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
72         return 8;
73     }
74     if (arm_feature(env, ARM_FEATURE_NEON)) {
75         /* Aliases for Q regs.  */
76         nregs += 16;
77         if (reg < nregs) {
78             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
79             stq_le_p(buf, q[0]);
80             stq_le_p(buf + 8, q[1]);
81             return 16;
82         }
83     }
84     switch (reg - nregs) {
85     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
86     case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
87     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
88     }
89     return 0;
90 }
91 
92 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
93 {
94     int nregs;
95 
96     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
97     if (reg < nregs) {
98         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
99         return 8;
100     }
101     if (arm_feature(env, ARM_FEATURE_NEON)) {
102         nregs += 16;
103         if (reg < nregs) {
104             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
105             q[0] = ldq_le_p(buf);
106             q[1] = ldq_le_p(buf + 8);
107             return 16;
108         }
109     }
110     switch (reg - nregs) {
111     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
112     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
113     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
114     }
115     return 0;
116 }
117 
118 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
119 {
120     switch (reg) {
121     case 0 ... 31:
122         /* 128 bit FP register */
123         {
124             uint64_t *q = aa64_vfp_qreg(env, reg);
125             stq_le_p(buf, q[0]);
126             stq_le_p(buf + 8, q[1]);
127             return 16;
128         }
129     case 32:
130         /* FPSR */
131         stl_p(buf, vfp_get_fpsr(env));
132         return 4;
133     case 33:
134         /* FPCR */
135         stl_p(buf, vfp_get_fpcr(env));
136         return 4;
137     default:
138         return 0;
139     }
140 }
141 
142 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
143 {
144     switch (reg) {
145     case 0 ... 31:
146         /* 128 bit FP register */
147         {
148             uint64_t *q = aa64_vfp_qreg(env, reg);
149             q[0] = ldq_le_p(buf);
150             q[1] = ldq_le_p(buf + 8);
151             return 16;
152         }
153     case 32:
154         /* FPSR */
155         vfp_set_fpsr(env, ldl_p(buf));
156         return 4;
157     case 33:
158         /* FPCR */
159         vfp_set_fpcr(env, ldl_p(buf));
160         return 4;
161     default:
162         return 0;
163     }
164 }
165 
166 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
167 {
168     assert(ri->fieldoffset);
169     if (cpreg_field_is_64bit(ri)) {
170         return CPREG_FIELD64(env, ri);
171     } else {
172         return CPREG_FIELD32(env, ri);
173     }
174 }
175 
176 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
177                       uint64_t value)
178 {
179     assert(ri->fieldoffset);
180     if (cpreg_field_is_64bit(ri)) {
181         CPREG_FIELD64(env, ri) = value;
182     } else {
183         CPREG_FIELD32(env, ri) = value;
184     }
185 }
186 
187 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
188 {
189     return (char *)env + ri->fieldoffset;
190 }
191 
192 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
193 {
194     /* Raw read of a coprocessor register (as needed for migration, etc). */
195     if (ri->type & ARM_CP_CONST) {
196         return ri->resetvalue;
197     } else if (ri->raw_readfn) {
198         return ri->raw_readfn(env, ri);
199     } else if (ri->readfn) {
200         return ri->readfn(env, ri);
201     } else {
202         return raw_read(env, ri);
203     }
204 }
205 
206 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
207                              uint64_t v)
208 {
209     /* Raw write of a coprocessor register (as needed for migration, etc).
210      * Note that constant registers are treated as write-ignored; the
211      * caller should check for success by whether a readback gives the
212      * value written.
213      */
214     if (ri->type & ARM_CP_CONST) {
215         return;
216     } else if (ri->raw_writefn) {
217         ri->raw_writefn(env, ri, v);
218     } else if (ri->writefn) {
219         ri->writefn(env, ri, v);
220     } else {
221         raw_write(env, ri, v);
222     }
223 }
224 
225 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
226 {
227     ARMCPU *cpu = arm_env_get_cpu(env);
228     const ARMCPRegInfo *ri;
229     uint32_t key;
230 
231     key = cpu->dyn_xml.cpregs_keys[reg];
232     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
233     if (ri) {
234         if (cpreg_field_is_64bit(ri)) {
235             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
236         } else {
237             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
238         }
239     }
240     return 0;
241 }
242 
243 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
244 {
245     return 0;
246 }
247 
248 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
249 {
250    /* Return true if the regdef would cause an assertion if you called
251     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
252     * program bug for it not to have the NO_RAW flag).
253     * NB that returning false here doesn't necessarily mean that calling
254     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
255     * read/write access functions which are safe for raw use" from "has
256     * read/write access functions which have side effects but has forgotten
257     * to provide raw access functions".
258     * The tests here line up with the conditions in read/write_raw_cp_reg()
259     * and assertions in raw_read()/raw_write().
260     */
261     if ((ri->type & ARM_CP_CONST) ||
262         ri->fieldoffset ||
263         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
264         return false;
265     }
266     return true;
267 }
268 
269 bool write_cpustate_to_list(ARMCPU *cpu)
270 {
271     /* Write the coprocessor state from cpu->env to the (index,value) list. */
272     int i;
273     bool ok = true;
274 
275     for (i = 0; i < cpu->cpreg_array_len; i++) {
276         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
277         const ARMCPRegInfo *ri;
278 
279         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
280         if (!ri) {
281             ok = false;
282             continue;
283         }
284         if (ri->type & ARM_CP_NO_RAW) {
285             continue;
286         }
287         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
288     }
289     return ok;
290 }
291 
292 bool write_list_to_cpustate(ARMCPU *cpu)
293 {
294     int i;
295     bool ok = true;
296 
297     for (i = 0; i < cpu->cpreg_array_len; i++) {
298         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
299         uint64_t v = cpu->cpreg_values[i];
300         const ARMCPRegInfo *ri;
301 
302         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
303         if (!ri) {
304             ok = false;
305             continue;
306         }
307         if (ri->type & ARM_CP_NO_RAW) {
308             continue;
309         }
310         /* Write value and confirm it reads back as written
311          * (to catch read-only registers and partially read-only
312          * registers where the incoming migration value doesn't match)
313          */
314         write_raw_cp_reg(&cpu->env, ri, v);
315         if (read_raw_cp_reg(&cpu->env, ri) != v) {
316             ok = false;
317         }
318     }
319     return ok;
320 }
321 
322 static void add_cpreg_to_list(gpointer key, gpointer opaque)
323 {
324     ARMCPU *cpu = opaque;
325     uint64_t regidx;
326     const ARMCPRegInfo *ri;
327 
328     regidx = *(uint32_t *)key;
329     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
330 
331     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
332         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
333         /* The value array need not be initialized at this point */
334         cpu->cpreg_array_len++;
335     }
336 }
337 
338 static void count_cpreg(gpointer key, gpointer opaque)
339 {
340     ARMCPU *cpu = opaque;
341     uint64_t regidx;
342     const ARMCPRegInfo *ri;
343 
344     regidx = *(uint32_t *)key;
345     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
346 
347     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
348         cpu->cpreg_array_len++;
349     }
350 }
351 
352 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
353 {
354     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
355     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
356 
357     if (aidx > bidx) {
358         return 1;
359     }
360     if (aidx < bidx) {
361         return -1;
362     }
363     return 0;
364 }
365 
366 void init_cpreg_list(ARMCPU *cpu)
367 {
368     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
369      * Note that we require cpreg_tuples[] to be sorted by key ID.
370      */
371     GList *keys;
372     int arraylen;
373 
374     keys = g_hash_table_get_keys(cpu->cp_regs);
375     keys = g_list_sort(keys, cpreg_key_compare);
376 
377     cpu->cpreg_array_len = 0;
378 
379     g_list_foreach(keys, count_cpreg, cpu);
380 
381     arraylen = cpu->cpreg_array_len;
382     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
383     cpu->cpreg_values = g_new(uint64_t, arraylen);
384     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
385     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
386     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
387     cpu->cpreg_array_len = 0;
388 
389     g_list_foreach(keys, add_cpreg_to_list, cpu);
390 
391     assert(cpu->cpreg_array_len == arraylen);
392 
393     g_list_free(keys);
394 }
395 
396 /*
397  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
398  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
399  *
400  * access_el3_aa32ns: Used to check AArch32 register views.
401  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
402  */
403 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
404                                         const ARMCPRegInfo *ri,
405                                         bool isread)
406 {
407     bool secure = arm_is_secure_below_el3(env);
408 
409     assert(!arm_el_is_aa64(env, 3));
410     if (secure) {
411         return CP_ACCESS_TRAP_UNCATEGORIZED;
412     }
413     return CP_ACCESS_OK;
414 }
415 
416 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
417                                                 const ARMCPRegInfo *ri,
418                                                 bool isread)
419 {
420     if (!arm_el_is_aa64(env, 3)) {
421         return access_el3_aa32ns(env, ri, isread);
422     }
423     return CP_ACCESS_OK;
424 }
425 
426 /* Some secure-only AArch32 registers trap to EL3 if used from
427  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
428  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
429  * We assume that the .access field is set to PL1_RW.
430  */
431 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
432                                             const ARMCPRegInfo *ri,
433                                             bool isread)
434 {
435     if (arm_current_el(env) == 3) {
436         return CP_ACCESS_OK;
437     }
438     if (arm_is_secure_below_el3(env)) {
439         return CP_ACCESS_TRAP_EL3;
440     }
441     /* This will be EL1 NS and EL2 NS, which just UNDEF */
442     return CP_ACCESS_TRAP_UNCATEGORIZED;
443 }
444 
445 /* Check for traps to "powerdown debug" registers, which are controlled
446  * by MDCR.TDOSA
447  */
448 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
449                                    bool isread)
450 {
451     int el = arm_current_el(env);
452     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
453         (env->cp15.mdcr_el2 & MDCR_TDE) ||
454         (arm_hcr_el2_eff(env) & HCR_TGE);
455 
456     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
457         return CP_ACCESS_TRAP_EL2;
458     }
459     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
460         return CP_ACCESS_TRAP_EL3;
461     }
462     return CP_ACCESS_OK;
463 }
464 
465 /* Check for traps to "debug ROM" registers, which are controlled
466  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
467  */
468 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
469                                   bool isread)
470 {
471     int el = arm_current_el(env);
472     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
473         (env->cp15.mdcr_el2 & MDCR_TDE) ||
474         (arm_hcr_el2_eff(env) & HCR_TGE);
475 
476     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
477         return CP_ACCESS_TRAP_EL2;
478     }
479     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
480         return CP_ACCESS_TRAP_EL3;
481     }
482     return CP_ACCESS_OK;
483 }
484 
485 /* Check for traps to general debug registers, which are controlled
486  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
487  */
488 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
489                                   bool isread)
490 {
491     int el = arm_current_el(env);
492     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
493         (env->cp15.mdcr_el2 & MDCR_TDE) ||
494         (arm_hcr_el2_eff(env) & HCR_TGE);
495 
496     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
497         return CP_ACCESS_TRAP_EL2;
498     }
499     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
500         return CP_ACCESS_TRAP_EL3;
501     }
502     return CP_ACCESS_OK;
503 }
504 
505 /* Check for traps to performance monitor registers, which are controlled
506  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
507  */
508 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
509                                  bool isread)
510 {
511     int el = arm_current_el(env);
512 
513     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
514         && !arm_is_secure_below_el3(env)) {
515         return CP_ACCESS_TRAP_EL2;
516     }
517     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
518         return CP_ACCESS_TRAP_EL3;
519     }
520     return CP_ACCESS_OK;
521 }
522 
523 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
524 {
525     ARMCPU *cpu = arm_env_get_cpu(env);
526 
527     raw_write(env, ri, value);
528     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
529 }
530 
531 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
532 {
533     ARMCPU *cpu = arm_env_get_cpu(env);
534 
535     if (raw_read(env, ri) != value) {
536         /* Unlike real hardware the qemu TLB uses virtual addresses,
537          * not modified virtual addresses, so this causes a TLB flush.
538          */
539         tlb_flush(CPU(cpu));
540         raw_write(env, ri, value);
541     }
542 }
543 
544 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
545                              uint64_t value)
546 {
547     ARMCPU *cpu = arm_env_get_cpu(env);
548 
549     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
550         && !extended_addresses_enabled(env)) {
551         /* For VMSA (when not using the LPAE long descriptor page table
552          * format) this register includes the ASID, so do a TLB flush.
553          * For PMSA it is purely a process ID and no action is needed.
554          */
555         tlb_flush(CPU(cpu));
556     }
557     raw_write(env, ri, value);
558 }
559 
560 /* IS variants of TLB operations must affect all cores */
561 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
562                              uint64_t value)
563 {
564     CPUState *cs = ENV_GET_CPU(env);
565 
566     tlb_flush_all_cpus_synced(cs);
567 }
568 
569 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
570                              uint64_t value)
571 {
572     CPUState *cs = ENV_GET_CPU(env);
573 
574     tlb_flush_all_cpus_synced(cs);
575 }
576 
577 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
578                              uint64_t value)
579 {
580     CPUState *cs = ENV_GET_CPU(env);
581 
582     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
583 }
584 
585 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
586                              uint64_t value)
587 {
588     CPUState *cs = ENV_GET_CPU(env);
589 
590     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
591 }
592 
593 /*
594  * Non-IS variants of TLB operations are upgraded to
595  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
596  * force broadcast of these operations.
597  */
598 static bool tlb_force_broadcast(CPUARMState *env)
599 {
600     return (env->cp15.hcr_el2 & HCR_FB) &&
601         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
602 }
603 
604 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
605                           uint64_t value)
606 {
607     /* Invalidate all (TLBIALL) */
608     ARMCPU *cpu = arm_env_get_cpu(env);
609 
610     if (tlb_force_broadcast(env)) {
611         tlbiall_is_write(env, NULL, value);
612         return;
613     }
614 
615     tlb_flush(CPU(cpu));
616 }
617 
618 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
619                           uint64_t value)
620 {
621     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
622     ARMCPU *cpu = arm_env_get_cpu(env);
623 
624     if (tlb_force_broadcast(env)) {
625         tlbimva_is_write(env, NULL, value);
626         return;
627     }
628 
629     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
630 }
631 
632 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
633                            uint64_t value)
634 {
635     /* Invalidate by ASID (TLBIASID) */
636     ARMCPU *cpu = arm_env_get_cpu(env);
637 
638     if (tlb_force_broadcast(env)) {
639         tlbiasid_is_write(env, NULL, value);
640         return;
641     }
642 
643     tlb_flush(CPU(cpu));
644 }
645 
646 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
647                            uint64_t value)
648 {
649     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
650     ARMCPU *cpu = arm_env_get_cpu(env);
651 
652     if (tlb_force_broadcast(env)) {
653         tlbimvaa_is_write(env, NULL, value);
654         return;
655     }
656 
657     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
658 }
659 
660 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
661                                uint64_t value)
662 {
663     CPUState *cs = ENV_GET_CPU(env);
664 
665     tlb_flush_by_mmuidx(cs,
666                         ARMMMUIdxBit_S12NSE1 |
667                         ARMMMUIdxBit_S12NSE0 |
668                         ARMMMUIdxBit_S2NS);
669 }
670 
671 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
672                                   uint64_t value)
673 {
674     CPUState *cs = ENV_GET_CPU(env);
675 
676     tlb_flush_by_mmuidx_all_cpus_synced(cs,
677                                         ARMMMUIdxBit_S12NSE1 |
678                                         ARMMMUIdxBit_S12NSE0 |
679                                         ARMMMUIdxBit_S2NS);
680 }
681 
682 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
683                             uint64_t value)
684 {
685     /* Invalidate by IPA. This has to invalidate any structures that
686      * contain only stage 2 translation information, but does not need
687      * to apply to structures that contain combined stage 1 and stage 2
688      * translation information.
689      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
690      */
691     CPUState *cs = ENV_GET_CPU(env);
692     uint64_t pageaddr;
693 
694     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
695         return;
696     }
697 
698     pageaddr = sextract64(value << 12, 0, 40);
699 
700     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
701 }
702 
703 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
704                                uint64_t value)
705 {
706     CPUState *cs = ENV_GET_CPU(env);
707     uint64_t pageaddr;
708 
709     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
710         return;
711     }
712 
713     pageaddr = sextract64(value << 12, 0, 40);
714 
715     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
716                                              ARMMMUIdxBit_S2NS);
717 }
718 
719 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
720                               uint64_t value)
721 {
722     CPUState *cs = ENV_GET_CPU(env);
723 
724     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
725 }
726 
727 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
728                                  uint64_t value)
729 {
730     CPUState *cs = ENV_GET_CPU(env);
731 
732     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
733 }
734 
735 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
736                               uint64_t value)
737 {
738     CPUState *cs = ENV_GET_CPU(env);
739     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
740 
741     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
742 }
743 
744 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
745                                  uint64_t value)
746 {
747     CPUState *cs = ENV_GET_CPU(env);
748     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
749 
750     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
751                                              ARMMMUIdxBit_S1E2);
752 }
753 
754 static const ARMCPRegInfo cp_reginfo[] = {
755     /* Define the secure and non-secure FCSE identifier CP registers
756      * separately because there is no secure bank in V8 (no _EL3).  This allows
757      * the secure register to be properly reset and migrated. There is also no
758      * v8 EL1 version of the register so the non-secure instance stands alone.
759      */
760     { .name = "FCSEIDR",
761       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
762       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
763       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
764       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
765     { .name = "FCSEIDR_S",
766       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
767       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
768       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
769       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
770     /* Define the secure and non-secure context identifier CP registers
771      * separately because there is no secure bank in V8 (no _EL3).  This allows
772      * the secure register to be properly reset and migrated.  In the
773      * non-secure case, the 32-bit register will have reset and migration
774      * disabled during registration as it is handled by the 64-bit instance.
775      */
776     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
777       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
778       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
779       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
780       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
781     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
782       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
783       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
784       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
785       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
786     REGINFO_SENTINEL
787 };
788 
789 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
790     /* NB: Some of these registers exist in v8 but with more precise
791      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
792      */
793     /* MMU Domain access control / MPU write buffer control */
794     { .name = "DACR",
795       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
796       .access = PL1_RW, .resetvalue = 0,
797       .writefn = dacr_write, .raw_writefn = raw_write,
798       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
799                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
800     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
801      * For v6 and v5, these mappings are overly broad.
802      */
803     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
804       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
805     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
806       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
807     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
808       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
809     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
810       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
811     /* Cache maintenance ops; some of this space may be overridden later. */
812     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
813       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
814       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
815     REGINFO_SENTINEL
816 };
817 
818 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
819     /* Not all pre-v6 cores implemented this WFI, so this is slightly
820      * over-broad.
821      */
822     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
823       .access = PL1_W, .type = ARM_CP_WFI },
824     REGINFO_SENTINEL
825 };
826 
827 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
828     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
829      * is UNPREDICTABLE; we choose to NOP as most implementations do).
830      */
831     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
832       .access = PL1_W, .type = ARM_CP_WFI },
833     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
834      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
835      * OMAPCP will override this space.
836      */
837     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
838       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
839       .resetvalue = 0 },
840     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
841       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
842       .resetvalue = 0 },
843     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
844     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
845       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
846       .resetvalue = 0 },
847     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
848      * implementing it as RAZ means the "debug architecture version" bits
849      * will read as a reserved value, which should cause Linux to not try
850      * to use the debug hardware.
851      */
852     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
853       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
854     /* MMU TLB control. Note that the wildcarding means we cover not just
855      * the unified TLB ops but also the dside/iside/inner-shareable variants.
856      */
857     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
858       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
859       .type = ARM_CP_NO_RAW },
860     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
861       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
862       .type = ARM_CP_NO_RAW },
863     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
864       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
865       .type = ARM_CP_NO_RAW },
866     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
867       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
868       .type = ARM_CP_NO_RAW },
869     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
870       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
871     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
872       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
873     REGINFO_SENTINEL
874 };
875 
876 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
877                         uint64_t value)
878 {
879     uint32_t mask = 0;
880 
881     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
882     if (!arm_feature(env, ARM_FEATURE_V8)) {
883         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
884          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
885          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
886          */
887         if (arm_feature(env, ARM_FEATURE_VFP)) {
888             /* VFP coprocessor: cp10 & cp11 [23:20] */
889             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
890 
891             if (!arm_feature(env, ARM_FEATURE_NEON)) {
892                 /* ASEDIS [31] bit is RAO/WI */
893                 value |= (1 << 31);
894             }
895 
896             /* VFPv3 and upwards with NEON implement 32 double precision
897              * registers (D0-D31).
898              */
899             if (!arm_feature(env, ARM_FEATURE_NEON) ||
900                     !arm_feature(env, ARM_FEATURE_VFP3)) {
901                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
902                 value |= (1 << 30);
903             }
904         }
905         value &= mask;
906     }
907     env->cp15.cpacr_el1 = value;
908 }
909 
910 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
911 {
912     /* Call cpacr_write() so that we reset with the correct RAO bits set
913      * for our CPU features.
914      */
915     cpacr_write(env, ri, 0);
916 }
917 
918 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
919                                    bool isread)
920 {
921     if (arm_feature(env, ARM_FEATURE_V8)) {
922         /* Check if CPACR accesses are to be trapped to EL2 */
923         if (arm_current_el(env) == 1 &&
924             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
925             return CP_ACCESS_TRAP_EL2;
926         /* Check if CPACR accesses are to be trapped to EL3 */
927         } else if (arm_current_el(env) < 3 &&
928                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
929             return CP_ACCESS_TRAP_EL3;
930         }
931     }
932 
933     return CP_ACCESS_OK;
934 }
935 
936 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
937                                   bool isread)
938 {
939     /* Check if CPTR accesses are set to trap to EL3 */
940     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
941         return CP_ACCESS_TRAP_EL3;
942     }
943 
944     return CP_ACCESS_OK;
945 }
946 
947 static const ARMCPRegInfo v6_cp_reginfo[] = {
948     /* prefetch by MVA in v6, NOP in v7 */
949     { .name = "MVA_prefetch",
950       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
951       .access = PL1_W, .type = ARM_CP_NOP },
952     /* We need to break the TB after ISB to execute self-modifying code
953      * correctly and also to take any pending interrupts immediately.
954      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
955      */
956     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
957       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
958     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
959       .access = PL0_W, .type = ARM_CP_NOP },
960     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
961       .access = PL0_W, .type = ARM_CP_NOP },
962     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
963       .access = PL1_RW,
964       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
965                              offsetof(CPUARMState, cp15.ifar_ns) },
966       .resetvalue = 0, },
967     /* Watchpoint Fault Address Register : should actually only be present
968      * for 1136, 1176, 11MPCore.
969      */
970     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
971       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
972     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
973       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
974       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
975       .resetfn = cpacr_reset, .writefn = cpacr_write },
976     REGINFO_SENTINEL
977 };
978 
979 /* Definitions for the PMU registers */
980 #define PMCRN_MASK  0xf800
981 #define PMCRN_SHIFT 11
982 #define PMCRLC  0x40
983 #define PMCRDP  0x10
984 #define PMCRD   0x8
985 #define PMCRC   0x4
986 #define PMCRP   0x2
987 #define PMCRE   0x1
988 
989 #define PMXEVTYPER_P          0x80000000
990 #define PMXEVTYPER_U          0x40000000
991 #define PMXEVTYPER_NSK        0x20000000
992 #define PMXEVTYPER_NSU        0x10000000
993 #define PMXEVTYPER_NSH        0x08000000
994 #define PMXEVTYPER_M          0x04000000
995 #define PMXEVTYPER_MT         0x02000000
996 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
997 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
998                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
999                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1000                                PMXEVTYPER_EVTCOUNT)
1001 
1002 #define PMCCFILTR             0xf8000000
1003 #define PMCCFILTR_M           PMXEVTYPER_M
1004 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1005 
1006 static inline uint32_t pmu_num_counters(CPUARMState *env)
1007 {
1008   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1009 }
1010 
1011 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1012 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1013 {
1014   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1015 }
1016 
1017 typedef struct pm_event {
1018     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1019     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1020     bool (*supported)(CPUARMState *);
1021     /*
1022      * Retrieve the current count of the underlying event. The programmed
1023      * counters hold a difference from the return value from this function
1024      */
1025     uint64_t (*get_count)(CPUARMState *);
1026     /*
1027      * Return how many nanoseconds it will take (at a minimum) for count events
1028      * to occur. A negative value indicates the counter will never overflow, or
1029      * that the counter has otherwise arranged for the overflow bit to be set
1030      * and the PMU interrupt to be raised on overflow.
1031      */
1032     int64_t (*ns_per_count)(uint64_t);
1033 } pm_event;
1034 
1035 static bool event_always_supported(CPUARMState *env)
1036 {
1037     return true;
1038 }
1039 
1040 static uint64_t swinc_get_count(CPUARMState *env)
1041 {
1042     /*
1043      * SW_INCR events are written directly to the pmevcntr's by writes to
1044      * PMSWINC, so there is no underlying count maintained by the PMU itself
1045      */
1046     return 0;
1047 }
1048 
1049 static int64_t swinc_ns_per(uint64_t ignored)
1050 {
1051     return -1;
1052 }
1053 
1054 /*
1055  * Return the underlying cycle count for the PMU cycle counters. If we're in
1056  * usermode, simply return 0.
1057  */
1058 static uint64_t cycles_get_count(CPUARMState *env)
1059 {
1060 #ifndef CONFIG_USER_ONLY
1061     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1062                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1063 #else
1064     return cpu_get_host_ticks();
1065 #endif
1066 }
1067 
1068 #ifndef CONFIG_USER_ONLY
1069 static int64_t cycles_ns_per(uint64_t cycles)
1070 {
1071     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1072 }
1073 
1074 static bool instructions_supported(CPUARMState *env)
1075 {
1076     return use_icount == 1 /* Precise instruction counting */;
1077 }
1078 
1079 static uint64_t instructions_get_count(CPUARMState *env)
1080 {
1081     return (uint64_t)cpu_get_icount_raw();
1082 }
1083 
1084 static int64_t instructions_ns_per(uint64_t icount)
1085 {
1086     return cpu_icount_to_ns((int64_t)icount);
1087 }
1088 #endif
1089 
1090 static const pm_event pm_events[] = {
1091     { .number = 0x000, /* SW_INCR */
1092       .supported = event_always_supported,
1093       .get_count = swinc_get_count,
1094       .ns_per_count = swinc_ns_per,
1095     },
1096 #ifndef CONFIG_USER_ONLY
1097     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1098       .supported = instructions_supported,
1099       .get_count = instructions_get_count,
1100       .ns_per_count = instructions_ns_per,
1101     },
1102     { .number = 0x011, /* CPU_CYCLES, Cycle */
1103       .supported = event_always_supported,
1104       .get_count = cycles_get_count,
1105       .ns_per_count = cycles_ns_per,
1106     }
1107 #endif
1108 };
1109 
1110 /*
1111  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1112  * events (i.e. the statistical profiling extension), this implementation
1113  * should first be updated to something sparse instead of the current
1114  * supported_event_map[] array.
1115  */
1116 #define MAX_EVENT_ID 0x11
1117 #define UNSUPPORTED_EVENT UINT16_MAX
1118 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1119 
1120 /*
1121  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1122  * of ARM event numbers to indices in our pm_events array.
1123  *
1124  * Note: Events in the 0x40XX range are not currently supported.
1125  */
1126 void pmu_init(ARMCPU *cpu)
1127 {
1128     unsigned int i;
1129 
1130     /*
1131      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1132      * events to them
1133      */
1134     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1135         supported_event_map[i] = UNSUPPORTED_EVENT;
1136     }
1137     cpu->pmceid0 = 0;
1138     cpu->pmceid1 = 0;
1139 
1140     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1141         const pm_event *cnt = &pm_events[i];
1142         assert(cnt->number <= MAX_EVENT_ID);
1143         /* We do not currently support events in the 0x40xx range */
1144         assert(cnt->number <= 0x3f);
1145 
1146         if (cnt->supported(&cpu->env)) {
1147             supported_event_map[cnt->number] = i;
1148             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1149             if (cnt->number & 0x20) {
1150                 cpu->pmceid1 |= event_mask;
1151             } else {
1152                 cpu->pmceid0 |= event_mask;
1153             }
1154         }
1155     }
1156 }
1157 
1158 /*
1159  * Check at runtime whether a PMU event is supported for the current machine
1160  */
1161 static bool event_supported(uint16_t number)
1162 {
1163     if (number > MAX_EVENT_ID) {
1164         return false;
1165     }
1166     return supported_event_map[number] != UNSUPPORTED_EVENT;
1167 }
1168 
1169 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1170                                    bool isread)
1171 {
1172     /* Performance monitor registers user accessibility is controlled
1173      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1174      * trapping to EL2 or EL3 for other accesses.
1175      */
1176     int el = arm_current_el(env);
1177 
1178     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1179         return CP_ACCESS_TRAP;
1180     }
1181     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1182         && !arm_is_secure_below_el3(env)) {
1183         return CP_ACCESS_TRAP_EL2;
1184     }
1185     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1186         return CP_ACCESS_TRAP_EL3;
1187     }
1188 
1189     return CP_ACCESS_OK;
1190 }
1191 
1192 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1193                                            const ARMCPRegInfo *ri,
1194                                            bool isread)
1195 {
1196     /* ER: event counter read trap control */
1197     if (arm_feature(env, ARM_FEATURE_V8)
1198         && arm_current_el(env) == 0
1199         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1200         && isread) {
1201         return CP_ACCESS_OK;
1202     }
1203 
1204     return pmreg_access(env, ri, isread);
1205 }
1206 
1207 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1208                                          const ARMCPRegInfo *ri,
1209                                          bool isread)
1210 {
1211     /* SW: software increment write trap control */
1212     if (arm_feature(env, ARM_FEATURE_V8)
1213         && arm_current_el(env) == 0
1214         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1215         && !isread) {
1216         return CP_ACCESS_OK;
1217     }
1218 
1219     return pmreg_access(env, ri, isread);
1220 }
1221 
1222 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1223                                         const ARMCPRegInfo *ri,
1224                                         bool isread)
1225 {
1226     /* ER: event counter read trap control */
1227     if (arm_feature(env, ARM_FEATURE_V8)
1228         && arm_current_el(env) == 0
1229         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1230         return CP_ACCESS_OK;
1231     }
1232 
1233     return pmreg_access(env, ri, isread);
1234 }
1235 
1236 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1237                                          const ARMCPRegInfo *ri,
1238                                          bool isread)
1239 {
1240     /* CR: cycle counter read trap control */
1241     if (arm_feature(env, ARM_FEATURE_V8)
1242         && arm_current_el(env) == 0
1243         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1244         && isread) {
1245         return CP_ACCESS_OK;
1246     }
1247 
1248     return pmreg_access(env, ri, isread);
1249 }
1250 
1251 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1252  * the current EL, security state, and register configuration.
1253  */
1254 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1255 {
1256     uint64_t filter;
1257     bool e, p, u, nsk, nsu, nsh, m;
1258     bool enabled, prohibited, filtered;
1259     bool secure = arm_is_secure(env);
1260     int el = arm_current_el(env);
1261     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1262 
1263     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1264         return false;
1265     }
1266 
1267     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1268             (counter < hpmn || counter == 31)) {
1269         e = env->cp15.c9_pmcr & PMCRE;
1270     } else {
1271         e = env->cp15.mdcr_el2 & MDCR_HPME;
1272     }
1273     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1274 
1275     if (!secure) {
1276         if (el == 2 && (counter < hpmn || counter == 31)) {
1277             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1278         } else {
1279             prohibited = false;
1280         }
1281     } else {
1282         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1283            (env->cp15.mdcr_el3 & MDCR_SPME);
1284     }
1285 
1286     if (prohibited && counter == 31) {
1287         prohibited = env->cp15.c9_pmcr & PMCRDP;
1288     }
1289 
1290     if (counter == 31) {
1291         filter = env->cp15.pmccfiltr_el0;
1292     } else {
1293         filter = env->cp15.c14_pmevtyper[counter];
1294     }
1295 
1296     p   = filter & PMXEVTYPER_P;
1297     u   = filter & PMXEVTYPER_U;
1298     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1299     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1300     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1301     m   = arm_el_is_aa64(env, 1) &&
1302               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1303 
1304     if (el == 0) {
1305         filtered = secure ? u : u != nsu;
1306     } else if (el == 1) {
1307         filtered = secure ? p : p != nsk;
1308     } else if (el == 2) {
1309         filtered = !nsh;
1310     } else { /* EL3 */
1311         filtered = m != p;
1312     }
1313 
1314     if (counter != 31) {
1315         /*
1316          * If not checking PMCCNTR, ensure the counter is setup to an event we
1317          * support
1318          */
1319         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1320         if (!event_supported(event)) {
1321             return false;
1322         }
1323     }
1324 
1325     return enabled && !prohibited && !filtered;
1326 }
1327 
1328 static void pmu_update_irq(CPUARMState *env)
1329 {
1330     ARMCPU *cpu = arm_env_get_cpu(env);
1331     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1332             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1333 }
1334 
1335 /*
1336  * Ensure c15_ccnt is the guest-visible count so that operations such as
1337  * enabling/disabling the counter or filtering, modifying the count itself,
1338  * etc. can be done logically. This is essentially a no-op if the counter is
1339  * not enabled at the time of the call.
1340  */
1341 static void pmccntr_op_start(CPUARMState *env)
1342 {
1343     uint64_t cycles = cycles_get_count(env);
1344 
1345     if (pmu_counter_enabled(env, 31)) {
1346         uint64_t eff_cycles = cycles;
1347         if (env->cp15.c9_pmcr & PMCRD) {
1348             /* Increment once every 64 processor clock cycles */
1349             eff_cycles /= 64;
1350         }
1351 
1352         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1353 
1354         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1355                                  1ull << 63 : 1ull << 31;
1356         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1357             env->cp15.c9_pmovsr |= (1 << 31);
1358             pmu_update_irq(env);
1359         }
1360 
1361         env->cp15.c15_ccnt = new_pmccntr;
1362     }
1363     env->cp15.c15_ccnt_delta = cycles;
1364 }
1365 
1366 /*
1367  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1368  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1369  * pmccntr_op_start.
1370  */
1371 static void pmccntr_op_finish(CPUARMState *env)
1372 {
1373     if (pmu_counter_enabled(env, 31)) {
1374 #ifndef CONFIG_USER_ONLY
1375         /* Calculate when the counter will next overflow */
1376         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1377         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1378             remaining_cycles = (uint32_t)remaining_cycles;
1379         }
1380         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1381 
1382         if (overflow_in > 0) {
1383             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1384                 overflow_in;
1385             ARMCPU *cpu = arm_env_get_cpu(env);
1386             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1387         }
1388 #endif
1389 
1390         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1391         if (env->cp15.c9_pmcr & PMCRD) {
1392             /* Increment once every 64 processor clock cycles */
1393             prev_cycles /= 64;
1394         }
1395         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1396     }
1397 }
1398 
1399 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1400 {
1401 
1402     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1403     uint64_t count = 0;
1404     if (event_supported(event)) {
1405         uint16_t event_idx = supported_event_map[event];
1406         count = pm_events[event_idx].get_count(env);
1407     }
1408 
1409     if (pmu_counter_enabled(env, counter)) {
1410         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1411 
1412         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1413             env->cp15.c9_pmovsr |= (1 << counter);
1414             pmu_update_irq(env);
1415         }
1416         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1417     }
1418     env->cp15.c14_pmevcntr_delta[counter] = count;
1419 }
1420 
1421 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1422 {
1423     if (pmu_counter_enabled(env, counter)) {
1424 #ifndef CONFIG_USER_ONLY
1425         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1426         uint16_t event_idx = supported_event_map[event];
1427         uint64_t delta = UINT32_MAX -
1428             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1429         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1430 
1431         if (overflow_in > 0) {
1432             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1433                 overflow_in;
1434             ARMCPU *cpu = arm_env_get_cpu(env);
1435             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1436         }
1437 #endif
1438 
1439         env->cp15.c14_pmevcntr_delta[counter] -=
1440             env->cp15.c14_pmevcntr[counter];
1441     }
1442 }
1443 
1444 void pmu_op_start(CPUARMState *env)
1445 {
1446     unsigned int i;
1447     pmccntr_op_start(env);
1448     for (i = 0; i < pmu_num_counters(env); i++) {
1449         pmevcntr_op_start(env, i);
1450     }
1451 }
1452 
1453 void pmu_op_finish(CPUARMState *env)
1454 {
1455     unsigned int i;
1456     pmccntr_op_finish(env);
1457     for (i = 0; i < pmu_num_counters(env); i++) {
1458         pmevcntr_op_finish(env, i);
1459     }
1460 }
1461 
1462 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1463 {
1464     pmu_op_start(&cpu->env);
1465 }
1466 
1467 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1468 {
1469     pmu_op_finish(&cpu->env);
1470 }
1471 
1472 void arm_pmu_timer_cb(void *opaque)
1473 {
1474     ARMCPU *cpu = opaque;
1475 
1476     /*
1477      * Update all the counter values based on the current underlying counts,
1478      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1479      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1480      * counter may expire.
1481      */
1482     pmu_op_start(&cpu->env);
1483     pmu_op_finish(&cpu->env);
1484 }
1485 
1486 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1487                        uint64_t value)
1488 {
1489     pmu_op_start(env);
1490 
1491     if (value & PMCRC) {
1492         /* The counter has been reset */
1493         env->cp15.c15_ccnt = 0;
1494     }
1495 
1496     if (value & PMCRP) {
1497         unsigned int i;
1498         for (i = 0; i < pmu_num_counters(env); i++) {
1499             env->cp15.c14_pmevcntr[i] = 0;
1500         }
1501     }
1502 
1503     /* only the DP, X, D and E bits are writable */
1504     env->cp15.c9_pmcr &= ~0x39;
1505     env->cp15.c9_pmcr |= (value & 0x39);
1506 
1507     pmu_op_finish(env);
1508 }
1509 
1510 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1511                           uint64_t value)
1512 {
1513     unsigned int i;
1514     for (i = 0; i < pmu_num_counters(env); i++) {
1515         /* Increment a counter's count iff: */
1516         if ((value & (1 << i)) && /* counter's bit is set */
1517                 /* counter is enabled and not filtered */
1518                 pmu_counter_enabled(env, i) &&
1519                 /* counter is SW_INCR */
1520                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1521             pmevcntr_op_start(env, i);
1522 
1523             /*
1524              * Detect if this write causes an overflow since we can't predict
1525              * PMSWINC overflows like we can for other events
1526              */
1527             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1528 
1529             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1530                 env->cp15.c9_pmovsr |= (1 << i);
1531                 pmu_update_irq(env);
1532             }
1533 
1534             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1535 
1536             pmevcntr_op_finish(env, i);
1537         }
1538     }
1539 }
1540 
1541 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1542 {
1543     uint64_t ret;
1544     pmccntr_op_start(env);
1545     ret = env->cp15.c15_ccnt;
1546     pmccntr_op_finish(env);
1547     return ret;
1548 }
1549 
1550 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551                          uint64_t value)
1552 {
1553     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1554      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1555      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1556      * accessed.
1557      */
1558     env->cp15.c9_pmselr = value & 0x1f;
1559 }
1560 
1561 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1562                         uint64_t value)
1563 {
1564     pmccntr_op_start(env);
1565     env->cp15.c15_ccnt = value;
1566     pmccntr_op_finish(env);
1567 }
1568 
1569 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1570                             uint64_t value)
1571 {
1572     uint64_t cur_val = pmccntr_read(env, NULL);
1573 
1574     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1575 }
1576 
1577 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1578                             uint64_t value)
1579 {
1580     pmccntr_op_start(env);
1581     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1582     pmccntr_op_finish(env);
1583 }
1584 
1585 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1586                             uint64_t value)
1587 {
1588     pmccntr_op_start(env);
1589     /* M is not accessible from AArch32 */
1590     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1591         (value & PMCCFILTR);
1592     pmccntr_op_finish(env);
1593 }
1594 
1595 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1596 {
1597     /* M is not visible in AArch32 */
1598     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1599 }
1600 
1601 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1602                             uint64_t value)
1603 {
1604     value &= pmu_counter_mask(env);
1605     env->cp15.c9_pmcnten |= value;
1606 }
1607 
1608 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609                              uint64_t value)
1610 {
1611     value &= pmu_counter_mask(env);
1612     env->cp15.c9_pmcnten &= ~value;
1613 }
1614 
1615 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1616                          uint64_t value)
1617 {
1618     value &= pmu_counter_mask(env);
1619     env->cp15.c9_pmovsr &= ~value;
1620     pmu_update_irq(env);
1621 }
1622 
1623 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1624                          uint64_t value)
1625 {
1626     value &= pmu_counter_mask(env);
1627     env->cp15.c9_pmovsr |= value;
1628     pmu_update_irq(env);
1629 }
1630 
1631 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1632                              uint64_t value, const uint8_t counter)
1633 {
1634     if (counter == 31) {
1635         pmccfiltr_write(env, ri, value);
1636     } else if (counter < pmu_num_counters(env)) {
1637         pmevcntr_op_start(env, counter);
1638 
1639         /*
1640          * If this counter's event type is changing, store the current
1641          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1642          * pmevcntr_op_finish has the correct baseline when it converts back to
1643          * a delta.
1644          */
1645         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1646             PMXEVTYPER_EVTCOUNT;
1647         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1648         if (old_event != new_event) {
1649             uint64_t count = 0;
1650             if (event_supported(new_event)) {
1651                 uint16_t event_idx = supported_event_map[new_event];
1652                 count = pm_events[event_idx].get_count(env);
1653             }
1654             env->cp15.c14_pmevcntr_delta[counter] = count;
1655         }
1656 
1657         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1658         pmevcntr_op_finish(env, counter);
1659     }
1660     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1661      * PMSELR value is equal to or greater than the number of implemented
1662      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1663      */
1664 }
1665 
1666 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1667                                const uint8_t counter)
1668 {
1669     if (counter == 31) {
1670         return env->cp15.pmccfiltr_el0;
1671     } else if (counter < pmu_num_counters(env)) {
1672         return env->cp15.c14_pmevtyper[counter];
1673     } else {
1674       /*
1675        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1676        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1677        */
1678         return 0;
1679     }
1680 }
1681 
1682 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1683                               uint64_t value)
1684 {
1685     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1686     pmevtyper_write(env, ri, value, counter);
1687 }
1688 
1689 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1690                                uint64_t value)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     env->cp15.c14_pmevtyper[counter] = value;
1694 
1695     /*
1696      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1697      * pmu_op_finish calls when loading saved state for a migration. Because
1698      * we're potentially updating the type of event here, the value written to
1699      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1700      * different counter type. Therefore, we need to set this value to the
1701      * current count for the counter type we're writing so that pmu_op_finish
1702      * has the correct count for its calculation.
1703      */
1704     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1705     if (event_supported(event)) {
1706         uint16_t event_idx = supported_event_map[event];
1707         env->cp15.c14_pmevcntr_delta[counter] =
1708             pm_events[event_idx].get_count(env);
1709     }
1710 }
1711 
1712 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1713 {
1714     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1715     return pmevtyper_read(env, ri, counter);
1716 }
1717 
1718 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1719                              uint64_t value)
1720 {
1721     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1722 }
1723 
1724 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1725 {
1726     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1727 }
1728 
1729 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1730                              uint64_t value, uint8_t counter)
1731 {
1732     if (counter < pmu_num_counters(env)) {
1733         pmevcntr_op_start(env, counter);
1734         env->cp15.c14_pmevcntr[counter] = value;
1735         pmevcntr_op_finish(env, counter);
1736     }
1737     /*
1738      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1739      * are CONSTRAINED UNPREDICTABLE.
1740      */
1741 }
1742 
1743 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1744                               uint8_t counter)
1745 {
1746     if (counter < pmu_num_counters(env)) {
1747         uint64_t ret;
1748         pmevcntr_op_start(env, counter);
1749         ret = env->cp15.c14_pmevcntr[counter];
1750         pmevcntr_op_finish(env, counter);
1751         return ret;
1752     } else {
1753       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1754        * are CONSTRAINED UNPREDICTABLE. */
1755         return 0;
1756     }
1757 }
1758 
1759 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1760                              uint64_t value)
1761 {
1762     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1763     pmevcntr_write(env, ri, value, counter);
1764 }
1765 
1766 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1767 {
1768     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1769     return pmevcntr_read(env, ri, counter);
1770 }
1771 
1772 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1773                              uint64_t value)
1774 {
1775     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1776     assert(counter < pmu_num_counters(env));
1777     env->cp15.c14_pmevcntr[counter] = value;
1778     pmevcntr_write(env, ri, value, counter);
1779 }
1780 
1781 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1782 {
1783     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1784     assert(counter < pmu_num_counters(env));
1785     return env->cp15.c14_pmevcntr[counter];
1786 }
1787 
1788 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789                              uint64_t value)
1790 {
1791     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1792 }
1793 
1794 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1795 {
1796     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1797 }
1798 
1799 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1800                             uint64_t value)
1801 {
1802     if (arm_feature(env, ARM_FEATURE_V8)) {
1803         env->cp15.c9_pmuserenr = value & 0xf;
1804     } else {
1805         env->cp15.c9_pmuserenr = value & 1;
1806     }
1807 }
1808 
1809 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1810                              uint64_t value)
1811 {
1812     /* We have no event counters so only the C bit can be changed */
1813     value &= pmu_counter_mask(env);
1814     env->cp15.c9_pminten |= value;
1815     pmu_update_irq(env);
1816 }
1817 
1818 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1819                              uint64_t value)
1820 {
1821     value &= pmu_counter_mask(env);
1822     env->cp15.c9_pminten &= ~value;
1823     pmu_update_irq(env);
1824 }
1825 
1826 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1827                        uint64_t value)
1828 {
1829     /* Note that even though the AArch64 view of this register has bits
1830      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1831      * architectural requirements for bits which are RES0 only in some
1832      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1833      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1834      */
1835     raw_write(env, ri, value & ~0x1FULL);
1836 }
1837 
1838 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1839 {
1840     /* Begin with base v8.0 state.  */
1841     uint32_t valid_mask = 0x3fff;
1842     ARMCPU *cpu = arm_env_get_cpu(env);
1843 
1844     if (arm_el_is_aa64(env, 3)) {
1845         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1846         valid_mask &= ~SCR_NET;
1847     } else {
1848         valid_mask &= ~(SCR_RW | SCR_ST);
1849     }
1850 
1851     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1852         valid_mask &= ~SCR_HCE;
1853 
1854         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1855          * supported if EL2 exists. The bit is UNK/SBZP when
1856          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1857          * when EL2 is unavailable.
1858          * On ARMv8, this bit is always available.
1859          */
1860         if (arm_feature(env, ARM_FEATURE_V7) &&
1861             !arm_feature(env, ARM_FEATURE_V8)) {
1862             valid_mask &= ~SCR_SMD;
1863         }
1864     }
1865     if (cpu_isar_feature(aa64_lor, cpu)) {
1866         valid_mask |= SCR_TLOR;
1867     }
1868     if (cpu_isar_feature(aa64_pauth, cpu)) {
1869         valid_mask |= SCR_API | SCR_APK;
1870     }
1871 
1872     /* Clear all-context RES0 bits.  */
1873     value &= valid_mask;
1874     raw_write(env, ri, value);
1875 }
1876 
1877 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1878 {
1879     ARMCPU *cpu = arm_env_get_cpu(env);
1880 
1881     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1882      * bank
1883      */
1884     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1885                                         ri->secure & ARM_CP_SECSTATE_S);
1886 
1887     return cpu->ccsidr[index];
1888 }
1889 
1890 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1891                          uint64_t value)
1892 {
1893     raw_write(env, ri, value & 0xf);
1894 }
1895 
1896 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1897 {
1898     CPUState *cs = ENV_GET_CPU(env);
1899     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1900     uint64_t ret = 0;
1901 
1902     if (hcr_el2 & HCR_IMO) {
1903         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1904             ret |= CPSR_I;
1905         }
1906     } else {
1907         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1908             ret |= CPSR_I;
1909         }
1910     }
1911 
1912     if (hcr_el2 & HCR_FMO) {
1913         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1914             ret |= CPSR_F;
1915         }
1916     } else {
1917         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1918             ret |= CPSR_F;
1919         }
1920     }
1921 
1922     /* External aborts are not possible in QEMU so A bit is always clear */
1923     return ret;
1924 }
1925 
1926 static const ARMCPRegInfo v7_cp_reginfo[] = {
1927     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1928     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1929       .access = PL1_W, .type = ARM_CP_NOP },
1930     /* Performance monitors are implementation defined in v7,
1931      * but with an ARM recommended set of registers, which we
1932      * follow.
1933      *
1934      * Performance registers fall into three categories:
1935      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1936      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1937      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1938      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1939      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1940      */
1941     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1942       .access = PL0_RW, .type = ARM_CP_ALIAS,
1943       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1944       .writefn = pmcntenset_write,
1945       .accessfn = pmreg_access,
1946       .raw_writefn = raw_write },
1947     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1948       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1949       .access = PL0_RW, .accessfn = pmreg_access,
1950       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1951       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1952     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1953       .access = PL0_RW,
1954       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1955       .accessfn = pmreg_access,
1956       .writefn = pmcntenclr_write,
1957       .type = ARM_CP_ALIAS },
1958     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1959       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1960       .access = PL0_RW, .accessfn = pmreg_access,
1961       .type = ARM_CP_ALIAS,
1962       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1963       .writefn = pmcntenclr_write },
1964     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1965       .access = PL0_RW, .type = ARM_CP_IO,
1966       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1967       .accessfn = pmreg_access,
1968       .writefn = pmovsr_write,
1969       .raw_writefn = raw_write },
1970     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1971       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1972       .access = PL0_RW, .accessfn = pmreg_access,
1973       .type = ARM_CP_ALIAS | ARM_CP_IO,
1974       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1975       .writefn = pmovsr_write,
1976       .raw_writefn = raw_write },
1977     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1978       .access = PL0_W, .accessfn = pmreg_access_swinc,
1979       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1980       .writefn = pmswinc_write },
1981     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1982       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1983       .access = PL0_W, .accessfn = pmreg_access_swinc,
1984       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1985       .writefn = pmswinc_write },
1986     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1987       .access = PL0_RW, .type = ARM_CP_ALIAS,
1988       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1989       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1990       .raw_writefn = raw_write},
1991     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1992       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1993       .access = PL0_RW, .accessfn = pmreg_access_selr,
1994       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1995       .writefn = pmselr_write, .raw_writefn = raw_write, },
1996     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1997       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1998       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1999       .accessfn = pmreg_access_ccntr },
2000     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2001       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2002       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2003       .type = ARM_CP_IO,
2004       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2005       .readfn = pmccntr_read, .writefn = pmccntr_write,
2006       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2007     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2008       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2009       .access = PL0_RW, .accessfn = pmreg_access,
2010       .type = ARM_CP_ALIAS | ARM_CP_IO,
2011       .resetvalue = 0, },
2012     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2013       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2014       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2015       .access = PL0_RW, .accessfn = pmreg_access,
2016       .type = ARM_CP_IO,
2017       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2018       .resetvalue = 0, },
2019     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2020       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2021       .accessfn = pmreg_access,
2022       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2023     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2024       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2025       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2026       .accessfn = pmreg_access,
2027       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2028     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2029       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2030       .accessfn = pmreg_access_xevcntr,
2031       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2032     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2033       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2034       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2035       .accessfn = pmreg_access_xevcntr,
2036       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2037     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2038       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2039       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2040       .resetvalue = 0,
2041       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2042     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2043       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2044       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2045       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2046       .resetvalue = 0,
2047       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2048     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2049       .access = PL1_RW, .accessfn = access_tpm,
2050       .type = ARM_CP_ALIAS | ARM_CP_IO,
2051       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2052       .resetvalue = 0,
2053       .writefn = pmintenset_write, .raw_writefn = raw_write },
2054     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2055       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2056       .access = PL1_RW, .accessfn = access_tpm,
2057       .type = ARM_CP_IO,
2058       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2059       .writefn = pmintenset_write, .raw_writefn = raw_write,
2060       .resetvalue = 0x0 },
2061     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2062       .access = PL1_RW, .accessfn = access_tpm,
2063       .type = ARM_CP_ALIAS | ARM_CP_IO,
2064       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2065       .writefn = pmintenclr_write, },
2066     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2067       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2068       .access = PL1_RW, .accessfn = access_tpm,
2069       .type = ARM_CP_ALIAS | ARM_CP_IO,
2070       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2071       .writefn = pmintenclr_write },
2072     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2073       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2074       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2075     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2076       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2077       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2078       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2079                              offsetof(CPUARMState, cp15.csselr_ns) } },
2080     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2081      * just RAZ for all cores:
2082      */
2083     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2084       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2085       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2086     /* Auxiliary fault status registers: these also are IMPDEF, and we
2087      * choose to RAZ/WI for all cores.
2088      */
2089     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2090       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2091       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2092     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2093       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2094       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2095     /* MAIR can just read-as-written because we don't implement caches
2096      * and so don't need to care about memory attributes.
2097      */
2098     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2099       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2100       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2101       .resetvalue = 0 },
2102     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2103       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2104       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2105       .resetvalue = 0 },
2106     /* For non-long-descriptor page tables these are PRRR and NMRR;
2107      * regardless they still act as reads-as-written for QEMU.
2108      */
2109      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2110       * allows them to assign the correct fieldoffset based on the endianness
2111       * handled in the field definitions.
2112       */
2113     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2114       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2115       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2116                              offsetof(CPUARMState, cp15.mair0_ns) },
2117       .resetfn = arm_cp_reset_ignore },
2118     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2119       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2120       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2121                              offsetof(CPUARMState, cp15.mair1_ns) },
2122       .resetfn = arm_cp_reset_ignore },
2123     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2124       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2125       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2126     /* 32 bit ITLB invalidates */
2127     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2128       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2129     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2130       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2131     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2132       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2133     /* 32 bit DTLB invalidates */
2134     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2135       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2136     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2137       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2138     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2139       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2140     /* 32 bit TLB invalidates */
2141     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2142       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2143     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2144       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2145     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2146       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2147     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2148       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2149     REGINFO_SENTINEL
2150 };
2151 
2152 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2153     /* 32 bit TLB invalidates, Inner Shareable */
2154     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2155       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2156     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2157       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2158     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2159       .type = ARM_CP_NO_RAW, .access = PL1_W,
2160       .writefn = tlbiasid_is_write },
2161     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2162       .type = ARM_CP_NO_RAW, .access = PL1_W,
2163       .writefn = tlbimvaa_is_write },
2164     REGINFO_SENTINEL
2165 };
2166 
2167 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2168     /* PMOVSSET is not implemented in v7 before v7ve */
2169     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2170       .access = PL0_RW, .accessfn = pmreg_access,
2171       .type = ARM_CP_ALIAS | ARM_CP_IO,
2172       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2173       .writefn = pmovsset_write,
2174       .raw_writefn = raw_write },
2175     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2176       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2177       .access = PL0_RW, .accessfn = pmreg_access,
2178       .type = ARM_CP_ALIAS | ARM_CP_IO,
2179       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2180       .writefn = pmovsset_write,
2181       .raw_writefn = raw_write },
2182     REGINFO_SENTINEL
2183 };
2184 
2185 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2186                         uint64_t value)
2187 {
2188     value &= 1;
2189     env->teecr = value;
2190 }
2191 
2192 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2193                                     bool isread)
2194 {
2195     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2196         return CP_ACCESS_TRAP;
2197     }
2198     return CP_ACCESS_OK;
2199 }
2200 
2201 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2202     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2203       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2204       .resetvalue = 0,
2205       .writefn = teecr_write },
2206     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2207       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2208       .accessfn = teehbr_access, .resetvalue = 0 },
2209     REGINFO_SENTINEL
2210 };
2211 
2212 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2213     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2214       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2215       .access = PL0_RW,
2216       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2217     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2218       .access = PL0_RW,
2219       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2220                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2221       .resetfn = arm_cp_reset_ignore },
2222     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2223       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2224       .access = PL0_R|PL1_W,
2225       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2226       .resetvalue = 0},
2227     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2228       .access = PL0_R|PL1_W,
2229       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2230                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2231       .resetfn = arm_cp_reset_ignore },
2232     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2233       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2234       .access = PL1_RW,
2235       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2236     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2237       .access = PL1_RW,
2238       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2239                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2240       .resetvalue = 0 },
2241     REGINFO_SENTINEL
2242 };
2243 
2244 #ifndef CONFIG_USER_ONLY
2245 
2246 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2247                                        bool isread)
2248 {
2249     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2250      * Writable only at the highest implemented exception level.
2251      */
2252     int el = arm_current_el(env);
2253 
2254     switch (el) {
2255     case 0:
2256         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2257             return CP_ACCESS_TRAP;
2258         }
2259         break;
2260     case 1:
2261         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2262             arm_is_secure_below_el3(env)) {
2263             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2264             return CP_ACCESS_TRAP_UNCATEGORIZED;
2265         }
2266         break;
2267     case 2:
2268     case 3:
2269         break;
2270     }
2271 
2272     if (!isread && el < arm_highest_el(env)) {
2273         return CP_ACCESS_TRAP_UNCATEGORIZED;
2274     }
2275 
2276     return CP_ACCESS_OK;
2277 }
2278 
2279 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2280                                         bool isread)
2281 {
2282     unsigned int cur_el = arm_current_el(env);
2283     bool secure = arm_is_secure(env);
2284 
2285     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2286     if (cur_el == 0 &&
2287         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2288         return CP_ACCESS_TRAP;
2289     }
2290 
2291     if (arm_feature(env, ARM_FEATURE_EL2) &&
2292         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2293         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2294         return CP_ACCESS_TRAP_EL2;
2295     }
2296     return CP_ACCESS_OK;
2297 }
2298 
2299 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2300                                       bool isread)
2301 {
2302     unsigned int cur_el = arm_current_el(env);
2303     bool secure = arm_is_secure(env);
2304 
2305     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2306      * EL0[PV]TEN is zero.
2307      */
2308     if (cur_el == 0 &&
2309         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2310         return CP_ACCESS_TRAP;
2311     }
2312 
2313     if (arm_feature(env, ARM_FEATURE_EL2) &&
2314         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2315         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2316         return CP_ACCESS_TRAP_EL2;
2317     }
2318     return CP_ACCESS_OK;
2319 }
2320 
2321 static CPAccessResult gt_pct_access(CPUARMState *env,
2322                                     const ARMCPRegInfo *ri,
2323                                     bool isread)
2324 {
2325     return gt_counter_access(env, GTIMER_PHYS, isread);
2326 }
2327 
2328 static CPAccessResult gt_vct_access(CPUARMState *env,
2329                                     const ARMCPRegInfo *ri,
2330                                     bool isread)
2331 {
2332     return gt_counter_access(env, GTIMER_VIRT, isread);
2333 }
2334 
2335 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2336                                        bool isread)
2337 {
2338     return gt_timer_access(env, GTIMER_PHYS, isread);
2339 }
2340 
2341 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2342                                        bool isread)
2343 {
2344     return gt_timer_access(env, GTIMER_VIRT, isread);
2345 }
2346 
2347 static CPAccessResult gt_stimer_access(CPUARMState *env,
2348                                        const ARMCPRegInfo *ri,
2349                                        bool isread)
2350 {
2351     /* The AArch64 register view of the secure physical timer is
2352      * always accessible from EL3, and configurably accessible from
2353      * Secure EL1.
2354      */
2355     switch (arm_current_el(env)) {
2356     case 1:
2357         if (!arm_is_secure(env)) {
2358             return CP_ACCESS_TRAP;
2359         }
2360         if (!(env->cp15.scr_el3 & SCR_ST)) {
2361             return CP_ACCESS_TRAP_EL3;
2362         }
2363         return CP_ACCESS_OK;
2364     case 0:
2365     case 2:
2366         return CP_ACCESS_TRAP;
2367     case 3:
2368         return CP_ACCESS_OK;
2369     default:
2370         g_assert_not_reached();
2371     }
2372 }
2373 
2374 static uint64_t gt_get_countervalue(CPUARMState *env)
2375 {
2376     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2377 }
2378 
2379 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2380 {
2381     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2382 
2383     if (gt->ctl & 1) {
2384         /* Timer enabled: calculate and set current ISTATUS, irq, and
2385          * reset timer to when ISTATUS next has to change
2386          */
2387         uint64_t offset = timeridx == GTIMER_VIRT ?
2388                                       cpu->env.cp15.cntvoff_el2 : 0;
2389         uint64_t count = gt_get_countervalue(&cpu->env);
2390         /* Note that this must be unsigned 64 bit arithmetic: */
2391         int istatus = count - offset >= gt->cval;
2392         uint64_t nexttick;
2393         int irqstate;
2394 
2395         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2396 
2397         irqstate = (istatus && !(gt->ctl & 2));
2398         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2399 
2400         if (istatus) {
2401             /* Next transition is when count rolls back over to zero */
2402             nexttick = UINT64_MAX;
2403         } else {
2404             /* Next transition is when we hit cval */
2405             nexttick = gt->cval + offset;
2406         }
2407         /* Note that the desired next expiry time might be beyond the
2408          * signed-64-bit range of a QEMUTimer -- in this case we just
2409          * set the timer for as far in the future as possible. When the
2410          * timer expires we will reset the timer for any remaining period.
2411          */
2412         if (nexttick > INT64_MAX / GTIMER_SCALE) {
2413             nexttick = INT64_MAX / GTIMER_SCALE;
2414         }
2415         timer_mod(cpu->gt_timer[timeridx], nexttick);
2416         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2417     } else {
2418         /* Timer disabled: ISTATUS and timer output always clear */
2419         gt->ctl &= ~4;
2420         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2421         timer_del(cpu->gt_timer[timeridx]);
2422         trace_arm_gt_recalc_disabled(timeridx);
2423     }
2424 }
2425 
2426 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2427                            int timeridx)
2428 {
2429     ARMCPU *cpu = arm_env_get_cpu(env);
2430 
2431     timer_del(cpu->gt_timer[timeridx]);
2432 }
2433 
2434 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2435 {
2436     return gt_get_countervalue(env);
2437 }
2438 
2439 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2440 {
2441     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2442 }
2443 
2444 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2445                           int timeridx,
2446                           uint64_t value)
2447 {
2448     trace_arm_gt_cval_write(timeridx, value);
2449     env->cp15.c14_timer[timeridx].cval = value;
2450     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2451 }
2452 
2453 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2454                              int timeridx)
2455 {
2456     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2457 
2458     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2459                       (gt_get_countervalue(env) - offset));
2460 }
2461 
2462 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2463                           int timeridx,
2464                           uint64_t value)
2465 {
2466     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2467 
2468     trace_arm_gt_tval_write(timeridx, value);
2469     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2470                                          sextract64(value, 0, 32);
2471     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2472 }
2473 
2474 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2475                          int timeridx,
2476                          uint64_t value)
2477 {
2478     ARMCPU *cpu = arm_env_get_cpu(env);
2479     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2480 
2481     trace_arm_gt_ctl_write(timeridx, value);
2482     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2483     if ((oldval ^ value) & 1) {
2484         /* Enable toggled */
2485         gt_recalc_timer(cpu, timeridx);
2486     } else if ((oldval ^ value) & 2) {
2487         /* IMASK toggled: don't need to recalculate,
2488          * just set the interrupt line based on ISTATUS
2489          */
2490         int irqstate = (oldval & 4) && !(value & 2);
2491 
2492         trace_arm_gt_imask_toggle(timeridx, irqstate);
2493         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2494     }
2495 }
2496 
2497 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2498 {
2499     gt_timer_reset(env, ri, GTIMER_PHYS);
2500 }
2501 
2502 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503                                uint64_t value)
2504 {
2505     gt_cval_write(env, ri, GTIMER_PHYS, value);
2506 }
2507 
2508 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2509 {
2510     return gt_tval_read(env, ri, GTIMER_PHYS);
2511 }
2512 
2513 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2514                                uint64_t value)
2515 {
2516     gt_tval_write(env, ri, GTIMER_PHYS, value);
2517 }
2518 
2519 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2520                               uint64_t value)
2521 {
2522     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2523 }
2524 
2525 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2526 {
2527     gt_timer_reset(env, ri, GTIMER_VIRT);
2528 }
2529 
2530 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2531                                uint64_t value)
2532 {
2533     gt_cval_write(env, ri, GTIMER_VIRT, value);
2534 }
2535 
2536 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2537 {
2538     return gt_tval_read(env, ri, GTIMER_VIRT);
2539 }
2540 
2541 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542                                uint64_t value)
2543 {
2544     gt_tval_write(env, ri, GTIMER_VIRT, value);
2545 }
2546 
2547 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2548                               uint64_t value)
2549 {
2550     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2551 }
2552 
2553 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2554                               uint64_t value)
2555 {
2556     ARMCPU *cpu = arm_env_get_cpu(env);
2557 
2558     trace_arm_gt_cntvoff_write(value);
2559     raw_write(env, ri, value);
2560     gt_recalc_timer(cpu, GTIMER_VIRT);
2561 }
2562 
2563 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2564 {
2565     gt_timer_reset(env, ri, GTIMER_HYP);
2566 }
2567 
2568 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2569                               uint64_t value)
2570 {
2571     gt_cval_write(env, ri, GTIMER_HYP, value);
2572 }
2573 
2574 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2575 {
2576     return gt_tval_read(env, ri, GTIMER_HYP);
2577 }
2578 
2579 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2580                               uint64_t value)
2581 {
2582     gt_tval_write(env, ri, GTIMER_HYP, value);
2583 }
2584 
2585 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2586                               uint64_t value)
2587 {
2588     gt_ctl_write(env, ri, GTIMER_HYP, value);
2589 }
2590 
2591 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2592 {
2593     gt_timer_reset(env, ri, GTIMER_SEC);
2594 }
2595 
2596 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2597                               uint64_t value)
2598 {
2599     gt_cval_write(env, ri, GTIMER_SEC, value);
2600 }
2601 
2602 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2603 {
2604     return gt_tval_read(env, ri, GTIMER_SEC);
2605 }
2606 
2607 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2608                               uint64_t value)
2609 {
2610     gt_tval_write(env, ri, GTIMER_SEC, value);
2611 }
2612 
2613 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2614                               uint64_t value)
2615 {
2616     gt_ctl_write(env, ri, GTIMER_SEC, value);
2617 }
2618 
2619 void arm_gt_ptimer_cb(void *opaque)
2620 {
2621     ARMCPU *cpu = opaque;
2622 
2623     gt_recalc_timer(cpu, GTIMER_PHYS);
2624 }
2625 
2626 void arm_gt_vtimer_cb(void *opaque)
2627 {
2628     ARMCPU *cpu = opaque;
2629 
2630     gt_recalc_timer(cpu, GTIMER_VIRT);
2631 }
2632 
2633 void arm_gt_htimer_cb(void *opaque)
2634 {
2635     ARMCPU *cpu = opaque;
2636 
2637     gt_recalc_timer(cpu, GTIMER_HYP);
2638 }
2639 
2640 void arm_gt_stimer_cb(void *opaque)
2641 {
2642     ARMCPU *cpu = opaque;
2643 
2644     gt_recalc_timer(cpu, GTIMER_SEC);
2645 }
2646 
2647 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2648     /* Note that CNTFRQ is purely reads-as-written for the benefit
2649      * of software; writing it doesn't actually change the timer frequency.
2650      * Our reset value matches the fixed frequency we implement the timer at.
2651      */
2652     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2653       .type = ARM_CP_ALIAS,
2654       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2655       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2656     },
2657     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2658       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2659       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2660       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2661       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2662     },
2663     /* overall control: mostly access permissions */
2664     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2665       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2666       .access = PL1_RW,
2667       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2668       .resetvalue = 0,
2669     },
2670     /* per-timer control */
2671     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2672       .secure = ARM_CP_SECSTATE_NS,
2673       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2674       .accessfn = gt_ptimer_access,
2675       .fieldoffset = offsetoflow32(CPUARMState,
2676                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2677       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2678     },
2679     { .name = "CNTP_CTL_S",
2680       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2681       .secure = ARM_CP_SECSTATE_S,
2682       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2683       .accessfn = gt_ptimer_access,
2684       .fieldoffset = offsetoflow32(CPUARMState,
2685                                    cp15.c14_timer[GTIMER_SEC].ctl),
2686       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2687     },
2688     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2689       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2690       .type = ARM_CP_IO, .access = PL0_RW,
2691       .accessfn = gt_ptimer_access,
2692       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2693       .resetvalue = 0,
2694       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2695     },
2696     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2697       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2698       .accessfn = gt_vtimer_access,
2699       .fieldoffset = offsetoflow32(CPUARMState,
2700                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2701       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2702     },
2703     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2704       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2705       .type = ARM_CP_IO, .access = PL0_RW,
2706       .accessfn = gt_vtimer_access,
2707       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2708       .resetvalue = 0,
2709       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2710     },
2711     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2712     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2713       .secure = ARM_CP_SECSTATE_NS,
2714       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2715       .accessfn = gt_ptimer_access,
2716       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2717     },
2718     { .name = "CNTP_TVAL_S",
2719       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2720       .secure = ARM_CP_SECSTATE_S,
2721       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2722       .accessfn = gt_ptimer_access,
2723       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2724     },
2725     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2726       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2727       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2728       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2729       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2730     },
2731     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2732       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2733       .accessfn = gt_vtimer_access,
2734       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2735     },
2736     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2737       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2738       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2739       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2740       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2741     },
2742     /* The counter itself */
2743     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2744       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2745       .accessfn = gt_pct_access,
2746       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2747     },
2748     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2749       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2750       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2751       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2752     },
2753     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2754       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2755       .accessfn = gt_vct_access,
2756       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2757     },
2758     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2759       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2760       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2761       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2762     },
2763     /* Comparison value, indicating when the timer goes off */
2764     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2765       .secure = ARM_CP_SECSTATE_NS,
2766       .access = PL0_RW,
2767       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2768       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2769       .accessfn = gt_ptimer_access,
2770       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2771     },
2772     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2773       .secure = ARM_CP_SECSTATE_S,
2774       .access = PL0_RW,
2775       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2776       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2777       .accessfn = gt_ptimer_access,
2778       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2779     },
2780     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2781       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2782       .access = PL0_RW,
2783       .type = ARM_CP_IO,
2784       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2785       .resetvalue = 0, .accessfn = gt_ptimer_access,
2786       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2787     },
2788     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2789       .access = PL0_RW,
2790       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2791       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2792       .accessfn = gt_vtimer_access,
2793       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2794     },
2795     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2796       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2797       .access = PL0_RW,
2798       .type = ARM_CP_IO,
2799       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2800       .resetvalue = 0, .accessfn = gt_vtimer_access,
2801       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2802     },
2803     /* Secure timer -- this is actually restricted to only EL3
2804      * and configurably Secure-EL1 via the accessfn.
2805      */
2806     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2807       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2808       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2809       .accessfn = gt_stimer_access,
2810       .readfn = gt_sec_tval_read,
2811       .writefn = gt_sec_tval_write,
2812       .resetfn = gt_sec_timer_reset,
2813     },
2814     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2815       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2816       .type = ARM_CP_IO, .access = PL1_RW,
2817       .accessfn = gt_stimer_access,
2818       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2819       .resetvalue = 0,
2820       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2821     },
2822     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2823       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2824       .type = ARM_CP_IO, .access = PL1_RW,
2825       .accessfn = gt_stimer_access,
2826       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2827       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2828     },
2829     REGINFO_SENTINEL
2830 };
2831 
2832 #else
2833 
2834 /* In user-mode most of the generic timer registers are inaccessible
2835  * however modern kernels (4.12+) allow access to cntvct_el0
2836  */
2837 
2838 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2839 {
2840     /* Currently we have no support for QEMUTimer in linux-user so we
2841      * can't call gt_get_countervalue(env), instead we directly
2842      * call the lower level functions.
2843      */
2844     return cpu_get_clock() / GTIMER_SCALE;
2845 }
2846 
2847 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2848     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2849       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2850       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2851       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2852       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2853     },
2854     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2855       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2856       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2857       .readfn = gt_virt_cnt_read,
2858     },
2859     REGINFO_SENTINEL
2860 };
2861 
2862 #endif
2863 
2864 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2865 {
2866     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2867         raw_write(env, ri, value);
2868     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2869         raw_write(env, ri, value & 0xfffff6ff);
2870     } else {
2871         raw_write(env, ri, value & 0xfffff1ff);
2872     }
2873 }
2874 
2875 #ifndef CONFIG_USER_ONLY
2876 /* get_phys_addr() isn't present for user-mode-only targets */
2877 
2878 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2879                                  bool isread)
2880 {
2881     if (ri->opc2 & 4) {
2882         /* The ATS12NSO* operations must trap to EL3 if executed in
2883          * Secure EL1 (which can only happen if EL3 is AArch64).
2884          * They are simply UNDEF if executed from NS EL1.
2885          * They function normally from EL2 or EL3.
2886          */
2887         if (arm_current_el(env) == 1) {
2888             if (arm_is_secure_below_el3(env)) {
2889                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2890             }
2891             return CP_ACCESS_TRAP_UNCATEGORIZED;
2892         }
2893     }
2894     return CP_ACCESS_OK;
2895 }
2896 
2897 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2898                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2899 {
2900     hwaddr phys_addr;
2901     target_ulong page_size;
2902     int prot;
2903     bool ret;
2904     uint64_t par64;
2905     bool format64 = false;
2906     MemTxAttrs attrs = {};
2907     ARMMMUFaultInfo fi = {};
2908     ARMCacheAttrs cacheattrs = {};
2909 
2910     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2911                         &prot, &page_size, &fi, &cacheattrs);
2912 
2913     if (is_a64(env)) {
2914         format64 = true;
2915     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2916         /*
2917          * ATS1Cxx:
2918          * * TTBCR.EAE determines whether the result is returned using the
2919          *   32-bit or the 64-bit PAR format
2920          * * Instructions executed in Hyp mode always use the 64bit format
2921          *
2922          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2923          * * The Non-secure TTBCR.EAE bit is set to 1
2924          * * The implementation includes EL2, and the value of HCR.VM is 1
2925          *
2926          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2927          *
2928          * ATS1Hx always uses the 64bit format.
2929          */
2930         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2931 
2932         if (arm_feature(env, ARM_FEATURE_EL2)) {
2933             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2934                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2935             } else {
2936                 format64 |= arm_current_el(env) == 2;
2937             }
2938         }
2939     }
2940 
2941     if (format64) {
2942         /* Create a 64-bit PAR */
2943         par64 = (1 << 11); /* LPAE bit always set */
2944         if (!ret) {
2945             par64 |= phys_addr & ~0xfffULL;
2946             if (!attrs.secure) {
2947                 par64 |= (1 << 9); /* NS */
2948             }
2949             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2950             par64 |= cacheattrs.shareability << 7; /* SH */
2951         } else {
2952             uint32_t fsr = arm_fi_to_lfsc(&fi);
2953 
2954             par64 |= 1; /* F */
2955             par64 |= (fsr & 0x3f) << 1; /* FS */
2956             if (fi.stage2) {
2957                 par64 |= (1 << 9); /* S */
2958             }
2959             if (fi.s1ptw) {
2960                 par64 |= (1 << 8); /* PTW */
2961             }
2962         }
2963     } else {
2964         /* fsr is a DFSR/IFSR value for the short descriptor
2965          * translation table format (with WnR always clear).
2966          * Convert it to a 32-bit PAR.
2967          */
2968         if (!ret) {
2969             /* We do not set any attribute bits in the PAR */
2970             if (page_size == (1 << 24)
2971                 && arm_feature(env, ARM_FEATURE_V7)) {
2972                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2973             } else {
2974                 par64 = phys_addr & 0xfffff000;
2975             }
2976             if (!attrs.secure) {
2977                 par64 |= (1 << 9); /* NS */
2978             }
2979         } else {
2980             uint32_t fsr = arm_fi_to_sfsc(&fi);
2981 
2982             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2983                     ((fsr & 0xf) << 1) | 1;
2984         }
2985     }
2986     return par64;
2987 }
2988 
2989 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2990 {
2991     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2992     uint64_t par64;
2993     ARMMMUIdx mmu_idx;
2994     int el = arm_current_el(env);
2995     bool secure = arm_is_secure_below_el3(env);
2996 
2997     switch (ri->opc2 & 6) {
2998     case 0:
2999         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3000         switch (el) {
3001         case 3:
3002             mmu_idx = ARMMMUIdx_S1E3;
3003             break;
3004         case 2:
3005             mmu_idx = ARMMMUIdx_S1NSE1;
3006             break;
3007         case 1:
3008             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3009             break;
3010         default:
3011             g_assert_not_reached();
3012         }
3013         break;
3014     case 2:
3015         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3016         switch (el) {
3017         case 3:
3018             mmu_idx = ARMMMUIdx_S1SE0;
3019             break;
3020         case 2:
3021             mmu_idx = ARMMMUIdx_S1NSE0;
3022             break;
3023         case 1:
3024             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3025             break;
3026         default:
3027             g_assert_not_reached();
3028         }
3029         break;
3030     case 4:
3031         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3032         mmu_idx = ARMMMUIdx_S12NSE1;
3033         break;
3034     case 6:
3035         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3036         mmu_idx = ARMMMUIdx_S12NSE0;
3037         break;
3038     default:
3039         g_assert_not_reached();
3040     }
3041 
3042     par64 = do_ats_write(env, value, access_type, mmu_idx);
3043 
3044     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3045 }
3046 
3047 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3048                         uint64_t value)
3049 {
3050     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3051     uint64_t par64;
3052 
3053     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3054 
3055     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3056 }
3057 
3058 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3059                                      bool isread)
3060 {
3061     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3062         return CP_ACCESS_TRAP;
3063     }
3064     return CP_ACCESS_OK;
3065 }
3066 
3067 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3068                         uint64_t value)
3069 {
3070     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3071     ARMMMUIdx mmu_idx;
3072     int secure = arm_is_secure_below_el3(env);
3073 
3074     switch (ri->opc2 & 6) {
3075     case 0:
3076         switch (ri->opc1) {
3077         case 0: /* AT S1E1R, AT S1E1W */
3078             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3079             break;
3080         case 4: /* AT S1E2R, AT S1E2W */
3081             mmu_idx = ARMMMUIdx_S1E2;
3082             break;
3083         case 6: /* AT S1E3R, AT S1E3W */
3084             mmu_idx = ARMMMUIdx_S1E3;
3085             break;
3086         default:
3087             g_assert_not_reached();
3088         }
3089         break;
3090     case 2: /* AT S1E0R, AT S1E0W */
3091         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3092         break;
3093     case 4: /* AT S12E1R, AT S12E1W */
3094         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3095         break;
3096     case 6: /* AT S12E0R, AT S12E0W */
3097         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3098         break;
3099     default:
3100         g_assert_not_reached();
3101     }
3102 
3103     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3104 }
3105 #endif
3106 
3107 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3108     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3109       .access = PL1_RW, .resetvalue = 0,
3110       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3111                              offsetoflow32(CPUARMState, cp15.par_ns) },
3112       .writefn = par_write },
3113 #ifndef CONFIG_USER_ONLY
3114     /* This underdecoding is safe because the reginfo is NO_RAW. */
3115     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3116       .access = PL1_W, .accessfn = ats_access,
3117       .writefn = ats_write, .type = ARM_CP_NO_RAW },
3118 #endif
3119     REGINFO_SENTINEL
3120 };
3121 
3122 /* Return basic MPU access permission bits.  */
3123 static uint32_t simple_mpu_ap_bits(uint32_t val)
3124 {
3125     uint32_t ret;
3126     uint32_t mask;
3127     int i;
3128     ret = 0;
3129     mask = 3;
3130     for (i = 0; i < 16; i += 2) {
3131         ret |= (val >> i) & mask;
3132         mask <<= 2;
3133     }
3134     return ret;
3135 }
3136 
3137 /* Pad basic MPU access permission bits to extended format.  */
3138 static uint32_t extended_mpu_ap_bits(uint32_t val)
3139 {
3140     uint32_t ret;
3141     uint32_t mask;
3142     int i;
3143     ret = 0;
3144     mask = 3;
3145     for (i = 0; i < 16; i += 2) {
3146         ret |= (val & mask) << i;
3147         mask <<= 2;
3148     }
3149     return ret;
3150 }
3151 
3152 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3153                                  uint64_t value)
3154 {
3155     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3156 }
3157 
3158 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3159 {
3160     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3161 }
3162 
3163 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3164                                  uint64_t value)
3165 {
3166     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3167 }
3168 
3169 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3170 {
3171     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3172 }
3173 
3174 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3175 {
3176     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3177 
3178     if (!u32p) {
3179         return 0;
3180     }
3181 
3182     u32p += env->pmsav7.rnr[M_REG_NS];
3183     return *u32p;
3184 }
3185 
3186 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3187                          uint64_t value)
3188 {
3189     ARMCPU *cpu = arm_env_get_cpu(env);
3190     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3191 
3192     if (!u32p) {
3193         return;
3194     }
3195 
3196     u32p += env->pmsav7.rnr[M_REG_NS];
3197     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3198     *u32p = value;
3199 }
3200 
3201 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3202                               uint64_t value)
3203 {
3204     ARMCPU *cpu = arm_env_get_cpu(env);
3205     uint32_t nrgs = cpu->pmsav7_dregion;
3206 
3207     if (value >= nrgs) {
3208         qemu_log_mask(LOG_GUEST_ERROR,
3209                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3210                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3211         return;
3212     }
3213 
3214     raw_write(env, ri, value);
3215 }
3216 
3217 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3218     /* Reset for all these registers is handled in arm_cpu_reset(),
3219      * because the PMSAv7 is also used by M-profile CPUs, which do
3220      * not register cpregs but still need the state to be reset.
3221      */
3222     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3223       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3224       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3225       .readfn = pmsav7_read, .writefn = pmsav7_write,
3226       .resetfn = arm_cp_reset_ignore },
3227     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3228       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3229       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3230       .readfn = pmsav7_read, .writefn = pmsav7_write,
3231       .resetfn = arm_cp_reset_ignore },
3232     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3233       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3234       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3235       .readfn = pmsav7_read, .writefn = pmsav7_write,
3236       .resetfn = arm_cp_reset_ignore },
3237     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3238       .access = PL1_RW,
3239       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3240       .writefn = pmsav7_rgnr_write,
3241       .resetfn = arm_cp_reset_ignore },
3242     REGINFO_SENTINEL
3243 };
3244 
3245 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3246     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3247       .access = PL1_RW, .type = ARM_CP_ALIAS,
3248       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3249       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3250     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3251       .access = PL1_RW, .type = ARM_CP_ALIAS,
3252       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3253       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3254     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3255       .access = PL1_RW,
3256       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3257       .resetvalue = 0, },
3258     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3259       .access = PL1_RW,
3260       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3261       .resetvalue = 0, },
3262     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3263       .access = PL1_RW,
3264       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3265     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3266       .access = PL1_RW,
3267       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3268     /* Protection region base and size registers */
3269     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3270       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3271       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3272     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3273       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3274       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3275     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3276       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3277       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3278     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3279       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3280       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3281     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3282       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3283       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3284     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3285       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3286       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3287     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3288       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3289       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3290     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3291       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3292       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3293     REGINFO_SENTINEL
3294 };
3295 
3296 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3297                                  uint64_t value)
3298 {
3299     TCR *tcr = raw_ptr(env, ri);
3300     int maskshift = extract32(value, 0, 3);
3301 
3302     if (!arm_feature(env, ARM_FEATURE_V8)) {
3303         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3304             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3305              * using Long-desciptor translation table format */
3306             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3307         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3308             /* In an implementation that includes the Security Extensions
3309              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3310              * Short-descriptor translation table format.
3311              */
3312             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3313         } else {
3314             value &= TTBCR_N;
3315         }
3316     }
3317 
3318     /* Update the masks corresponding to the TCR bank being written
3319      * Note that we always calculate mask and base_mask, but
3320      * they are only used for short-descriptor tables (ie if EAE is 0);
3321      * for long-descriptor tables the TCR fields are used differently
3322      * and the mask and base_mask values are meaningless.
3323      */
3324     tcr->raw_tcr = value;
3325     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3326     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3327 }
3328 
3329 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3330                              uint64_t value)
3331 {
3332     ARMCPU *cpu = arm_env_get_cpu(env);
3333     TCR *tcr = raw_ptr(env, ri);
3334 
3335     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3336         /* With LPAE the TTBCR could result in a change of ASID
3337          * via the TTBCR.A1 bit, so do a TLB flush.
3338          */
3339         tlb_flush(CPU(cpu));
3340     }
3341     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3342     value = deposit64(tcr->raw_tcr, 0, 32, value);
3343     vmsa_ttbcr_raw_write(env, ri, value);
3344 }
3345 
3346 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3347 {
3348     TCR *tcr = raw_ptr(env, ri);
3349 
3350     /* Reset both the TCR as well as the masks corresponding to the bank of
3351      * the TCR being reset.
3352      */
3353     tcr->raw_tcr = 0;
3354     tcr->mask = 0;
3355     tcr->base_mask = 0xffffc000u;
3356 }
3357 
3358 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3359                                uint64_t value)
3360 {
3361     ARMCPU *cpu = arm_env_get_cpu(env);
3362     TCR *tcr = raw_ptr(env, ri);
3363 
3364     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3365     tlb_flush(CPU(cpu));
3366     tcr->raw_tcr = value;
3367 }
3368 
3369 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3370                             uint64_t value)
3371 {
3372     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3373     if (cpreg_field_is_64bit(ri) &&
3374         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3375         ARMCPU *cpu = arm_env_get_cpu(env);
3376         tlb_flush(CPU(cpu));
3377     }
3378     raw_write(env, ri, value);
3379 }
3380 
3381 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3382                         uint64_t value)
3383 {
3384     ARMCPU *cpu = arm_env_get_cpu(env);
3385     CPUState *cs = CPU(cpu);
3386 
3387     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
3388     if (raw_read(env, ri) != value) {
3389         tlb_flush_by_mmuidx(cs,
3390                             ARMMMUIdxBit_S12NSE1 |
3391                             ARMMMUIdxBit_S12NSE0 |
3392                             ARMMMUIdxBit_S2NS);
3393         raw_write(env, ri, value);
3394     }
3395 }
3396 
3397 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3398     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3399       .access = PL1_RW, .type = ARM_CP_ALIAS,
3400       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3401                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3402     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3403       .access = PL1_RW, .resetvalue = 0,
3404       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3405                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3406     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3407       .access = PL1_RW, .resetvalue = 0,
3408       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3409                              offsetof(CPUARMState, cp15.dfar_ns) } },
3410     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3411       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3412       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3413       .resetvalue = 0, },
3414     REGINFO_SENTINEL
3415 };
3416 
3417 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3418     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3419       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3420       .access = PL1_RW,
3421       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3422     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3423       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3424       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3425       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3426                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3427     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3428       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3429       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3430       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3431                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3432     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3433       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3434       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3435       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3436       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3437     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3438       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3439       .raw_writefn = vmsa_ttbcr_raw_write,
3440       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3441                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3442     REGINFO_SENTINEL
3443 };
3444 
3445 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3446  * qemu tlbs nor adjusting cached masks.
3447  */
3448 static const ARMCPRegInfo ttbcr2_reginfo = {
3449     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3450     .access = PL1_RW, .type = ARM_CP_ALIAS,
3451     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3452                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3453 };
3454 
3455 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3456                                 uint64_t value)
3457 {
3458     env->cp15.c15_ticonfig = value & 0xe7;
3459     /* The OS_TYPE bit in this register changes the reported CPUID! */
3460     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3461         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3462 }
3463 
3464 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3465                                 uint64_t value)
3466 {
3467     env->cp15.c15_threadid = value & 0xffff;
3468 }
3469 
3470 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3471                            uint64_t value)
3472 {
3473     /* Wait-for-interrupt (deprecated) */
3474     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
3475 }
3476 
3477 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3478                                   uint64_t value)
3479 {
3480     /* On OMAP there are registers indicating the max/min index of dcache lines
3481      * containing a dirty line; cache flush operations have to reset these.
3482      */
3483     env->cp15.c15_i_max = 0x000;
3484     env->cp15.c15_i_min = 0xff0;
3485 }
3486 
3487 static const ARMCPRegInfo omap_cp_reginfo[] = {
3488     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3489       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3490       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3491       .resetvalue = 0, },
3492     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3493       .access = PL1_RW, .type = ARM_CP_NOP },
3494     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3495       .access = PL1_RW,
3496       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3497       .writefn = omap_ticonfig_write },
3498     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3499       .access = PL1_RW,
3500       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3501     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3502       .access = PL1_RW, .resetvalue = 0xff0,
3503       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3504     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3505       .access = PL1_RW,
3506       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3507       .writefn = omap_threadid_write },
3508     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3509       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3510       .type = ARM_CP_NO_RAW,
3511       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3512     /* TODO: Peripheral port remap register:
3513      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3514      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3515      * when MMU is off.
3516      */
3517     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3518       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3519       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3520       .writefn = omap_cachemaint_write },
3521     { .name = "C9", .cp = 15, .crn = 9,
3522       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3523       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3524     REGINFO_SENTINEL
3525 };
3526 
3527 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3528                               uint64_t value)
3529 {
3530     env->cp15.c15_cpar = value & 0x3fff;
3531 }
3532 
3533 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3534     { .name = "XSCALE_CPAR",
3535       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3536       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3537       .writefn = xscale_cpar_write, },
3538     { .name = "XSCALE_AUXCR",
3539       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3540       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3541       .resetvalue = 0, },
3542     /* XScale specific cache-lockdown: since we have no cache we NOP these
3543      * and hope the guest does not really rely on cache behaviour.
3544      */
3545     { .name = "XSCALE_LOCK_ICACHE_LINE",
3546       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3547       .access = PL1_W, .type = ARM_CP_NOP },
3548     { .name = "XSCALE_UNLOCK_ICACHE",
3549       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3550       .access = PL1_W, .type = ARM_CP_NOP },
3551     { .name = "XSCALE_DCACHE_LOCK",
3552       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3553       .access = PL1_RW, .type = ARM_CP_NOP },
3554     { .name = "XSCALE_UNLOCK_DCACHE",
3555       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3556       .access = PL1_W, .type = ARM_CP_NOP },
3557     REGINFO_SENTINEL
3558 };
3559 
3560 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3561     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3562      * implementation of this implementation-defined space.
3563      * Ideally this should eventually disappear in favour of actually
3564      * implementing the correct behaviour for all cores.
3565      */
3566     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3567       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3568       .access = PL1_RW,
3569       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3570       .resetvalue = 0 },
3571     REGINFO_SENTINEL
3572 };
3573 
3574 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3575     /* Cache status: RAZ because we have no cache so it's always clean */
3576     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3577       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3578       .resetvalue = 0 },
3579     REGINFO_SENTINEL
3580 };
3581 
3582 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3583     /* We never have a a block transfer operation in progress */
3584     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3585       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3586       .resetvalue = 0 },
3587     /* The cache ops themselves: these all NOP for QEMU */
3588     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3589       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3590     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3591       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3592     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3593       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3594     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3595       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3596     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3597       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3598     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3599       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3600     REGINFO_SENTINEL
3601 };
3602 
3603 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3604     /* The cache test-and-clean instructions always return (1 << 30)
3605      * to indicate that there are no dirty cache lines.
3606      */
3607     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3608       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3609       .resetvalue = (1 << 30) },
3610     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3611       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3612       .resetvalue = (1 << 30) },
3613     REGINFO_SENTINEL
3614 };
3615 
3616 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3617     /* Ignore ReadBuffer accesses */
3618     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3619       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3620       .access = PL1_RW, .resetvalue = 0,
3621       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3622     REGINFO_SENTINEL
3623 };
3624 
3625 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3626 {
3627     ARMCPU *cpu = arm_env_get_cpu(env);
3628     unsigned int cur_el = arm_current_el(env);
3629     bool secure = arm_is_secure(env);
3630 
3631     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3632         return env->cp15.vpidr_el2;
3633     }
3634     return raw_read(env, ri);
3635 }
3636 
3637 static uint64_t mpidr_read_val(CPUARMState *env)
3638 {
3639     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3640     uint64_t mpidr = cpu->mp_affinity;
3641 
3642     if (arm_feature(env, ARM_FEATURE_V7MP)) {
3643         mpidr |= (1U << 31);
3644         /* Cores which are uniprocessor (non-coherent)
3645          * but still implement the MP extensions set
3646          * bit 30. (For instance, Cortex-R5).
3647          */
3648         if (cpu->mp_is_up) {
3649             mpidr |= (1u << 30);
3650         }
3651     }
3652     return mpidr;
3653 }
3654 
3655 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3656 {
3657     unsigned int cur_el = arm_current_el(env);
3658     bool secure = arm_is_secure(env);
3659 
3660     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3661         return env->cp15.vmpidr_el2;
3662     }
3663     return mpidr_read_val(env);
3664 }
3665 
3666 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3667     /* NOP AMAIR0/1 */
3668     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3669       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3670       .access = PL1_RW, .type = ARM_CP_CONST,
3671       .resetvalue = 0 },
3672     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3673     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3674       .access = PL1_RW, .type = ARM_CP_CONST,
3675       .resetvalue = 0 },
3676     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3677       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3678       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3679                              offsetof(CPUARMState, cp15.par_ns)} },
3680     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3681       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3682       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3683                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3684       .writefn = vmsa_ttbr_write, },
3685     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3686       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3687       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3688                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3689       .writefn = vmsa_ttbr_write, },
3690     REGINFO_SENTINEL
3691 };
3692 
3693 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3694 {
3695     return vfp_get_fpcr(env);
3696 }
3697 
3698 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3699                             uint64_t value)
3700 {
3701     vfp_set_fpcr(env, value);
3702 }
3703 
3704 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3705 {
3706     return vfp_get_fpsr(env);
3707 }
3708 
3709 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3710                             uint64_t value)
3711 {
3712     vfp_set_fpsr(env, value);
3713 }
3714 
3715 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3716                                        bool isread)
3717 {
3718     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3719         return CP_ACCESS_TRAP;
3720     }
3721     return CP_ACCESS_OK;
3722 }
3723 
3724 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3725                             uint64_t value)
3726 {
3727     env->daif = value & PSTATE_DAIF;
3728 }
3729 
3730 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3731                                           const ARMCPRegInfo *ri,
3732                                           bool isread)
3733 {
3734     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3735      * SCTLR_EL1.UCI is set.
3736      */
3737     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3738         return CP_ACCESS_TRAP;
3739     }
3740     return CP_ACCESS_OK;
3741 }
3742 
3743 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3744  * Page D4-1736 (DDI0487A.b)
3745  */
3746 
3747 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3748                                       uint64_t value)
3749 {
3750     CPUState *cs = ENV_GET_CPU(env);
3751     bool sec = arm_is_secure_below_el3(env);
3752 
3753     if (sec) {
3754         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3755                                             ARMMMUIdxBit_S1SE1 |
3756                                             ARMMMUIdxBit_S1SE0);
3757     } else {
3758         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3759                                             ARMMMUIdxBit_S12NSE1 |
3760                                             ARMMMUIdxBit_S12NSE0);
3761     }
3762 }
3763 
3764 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3765                                     uint64_t value)
3766 {
3767     CPUState *cs = ENV_GET_CPU(env);
3768 
3769     if (tlb_force_broadcast(env)) {
3770         tlbi_aa64_vmalle1is_write(env, NULL, value);
3771         return;
3772     }
3773 
3774     if (arm_is_secure_below_el3(env)) {
3775         tlb_flush_by_mmuidx(cs,
3776                             ARMMMUIdxBit_S1SE1 |
3777                             ARMMMUIdxBit_S1SE0);
3778     } else {
3779         tlb_flush_by_mmuidx(cs,
3780                             ARMMMUIdxBit_S12NSE1 |
3781                             ARMMMUIdxBit_S12NSE0);
3782     }
3783 }
3784 
3785 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3786                                   uint64_t value)
3787 {
3788     /* Note that the 'ALL' scope must invalidate both stage 1 and
3789      * stage 2 translations, whereas most other scopes only invalidate
3790      * stage 1 translations.
3791      */
3792     ARMCPU *cpu = arm_env_get_cpu(env);
3793     CPUState *cs = CPU(cpu);
3794 
3795     if (arm_is_secure_below_el3(env)) {
3796         tlb_flush_by_mmuidx(cs,
3797                             ARMMMUIdxBit_S1SE1 |
3798                             ARMMMUIdxBit_S1SE0);
3799     } else {
3800         if (arm_feature(env, ARM_FEATURE_EL2)) {
3801             tlb_flush_by_mmuidx(cs,
3802                                 ARMMMUIdxBit_S12NSE1 |
3803                                 ARMMMUIdxBit_S12NSE0 |
3804                                 ARMMMUIdxBit_S2NS);
3805         } else {
3806             tlb_flush_by_mmuidx(cs,
3807                                 ARMMMUIdxBit_S12NSE1 |
3808                                 ARMMMUIdxBit_S12NSE0);
3809         }
3810     }
3811 }
3812 
3813 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3814                                   uint64_t value)
3815 {
3816     ARMCPU *cpu = arm_env_get_cpu(env);
3817     CPUState *cs = CPU(cpu);
3818 
3819     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3820 }
3821 
3822 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3823                                   uint64_t value)
3824 {
3825     ARMCPU *cpu = arm_env_get_cpu(env);
3826     CPUState *cs = CPU(cpu);
3827 
3828     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3829 }
3830 
3831 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3832                                     uint64_t value)
3833 {
3834     /* Note that the 'ALL' scope must invalidate both stage 1 and
3835      * stage 2 translations, whereas most other scopes only invalidate
3836      * stage 1 translations.
3837      */
3838     CPUState *cs = ENV_GET_CPU(env);
3839     bool sec = arm_is_secure_below_el3(env);
3840     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3841 
3842     if (sec) {
3843         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3844                                             ARMMMUIdxBit_S1SE1 |
3845                                             ARMMMUIdxBit_S1SE0);
3846     } else if (has_el2) {
3847         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3848                                             ARMMMUIdxBit_S12NSE1 |
3849                                             ARMMMUIdxBit_S12NSE0 |
3850                                             ARMMMUIdxBit_S2NS);
3851     } else {
3852           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3853                                               ARMMMUIdxBit_S12NSE1 |
3854                                               ARMMMUIdxBit_S12NSE0);
3855     }
3856 }
3857 
3858 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3859                                     uint64_t value)
3860 {
3861     CPUState *cs = ENV_GET_CPU(env);
3862 
3863     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3864 }
3865 
3866 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3867                                     uint64_t value)
3868 {
3869     CPUState *cs = ENV_GET_CPU(env);
3870 
3871     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3872 }
3873 
3874 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3875                                  uint64_t value)
3876 {
3877     /* Invalidate by VA, EL2
3878      * Currently handles both VAE2 and VALE2, since we don't support
3879      * flush-last-level-only.
3880      */
3881     ARMCPU *cpu = arm_env_get_cpu(env);
3882     CPUState *cs = CPU(cpu);
3883     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3884 
3885     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3886 }
3887 
3888 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3889                                  uint64_t value)
3890 {
3891     /* Invalidate by VA, EL3
3892      * Currently handles both VAE3 and VALE3, since we don't support
3893      * flush-last-level-only.
3894      */
3895     ARMCPU *cpu = arm_env_get_cpu(env);
3896     CPUState *cs = CPU(cpu);
3897     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3898 
3899     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3900 }
3901 
3902 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3903                                    uint64_t value)
3904 {
3905     ARMCPU *cpu = arm_env_get_cpu(env);
3906     CPUState *cs = CPU(cpu);
3907     bool sec = arm_is_secure_below_el3(env);
3908     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3909 
3910     if (sec) {
3911         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3912                                                  ARMMMUIdxBit_S1SE1 |
3913                                                  ARMMMUIdxBit_S1SE0);
3914     } else {
3915         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3916                                                  ARMMMUIdxBit_S12NSE1 |
3917                                                  ARMMMUIdxBit_S12NSE0);
3918     }
3919 }
3920 
3921 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3922                                  uint64_t value)
3923 {
3924     /* Invalidate by VA, EL1&0 (AArch64 version).
3925      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3926      * since we don't support flush-for-specific-ASID-only or
3927      * flush-last-level-only.
3928      */
3929     ARMCPU *cpu = arm_env_get_cpu(env);
3930     CPUState *cs = CPU(cpu);
3931     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3932 
3933     if (tlb_force_broadcast(env)) {
3934         tlbi_aa64_vae1is_write(env, NULL, value);
3935         return;
3936     }
3937 
3938     if (arm_is_secure_below_el3(env)) {
3939         tlb_flush_page_by_mmuidx(cs, pageaddr,
3940                                  ARMMMUIdxBit_S1SE1 |
3941                                  ARMMMUIdxBit_S1SE0);
3942     } else {
3943         tlb_flush_page_by_mmuidx(cs, pageaddr,
3944                                  ARMMMUIdxBit_S12NSE1 |
3945                                  ARMMMUIdxBit_S12NSE0);
3946     }
3947 }
3948 
3949 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3950                                    uint64_t value)
3951 {
3952     CPUState *cs = ENV_GET_CPU(env);
3953     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3954 
3955     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3956                                              ARMMMUIdxBit_S1E2);
3957 }
3958 
3959 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3960                                    uint64_t value)
3961 {
3962     CPUState *cs = ENV_GET_CPU(env);
3963     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3964 
3965     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3966                                              ARMMMUIdxBit_S1E3);
3967 }
3968 
3969 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3970                                     uint64_t value)
3971 {
3972     /* Invalidate by IPA. This has to invalidate any structures that
3973      * contain only stage 2 translation information, but does not need
3974      * to apply to structures that contain combined stage 1 and stage 2
3975      * translation information.
3976      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3977      */
3978     ARMCPU *cpu = arm_env_get_cpu(env);
3979     CPUState *cs = CPU(cpu);
3980     uint64_t pageaddr;
3981 
3982     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3983         return;
3984     }
3985 
3986     pageaddr = sextract64(value << 12, 0, 48);
3987 
3988     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3989 }
3990 
3991 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3992                                       uint64_t value)
3993 {
3994     CPUState *cs = ENV_GET_CPU(env);
3995     uint64_t pageaddr;
3996 
3997     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3998         return;
3999     }
4000 
4001     pageaddr = sextract64(value << 12, 0, 48);
4002 
4003     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4004                                              ARMMMUIdxBit_S2NS);
4005 }
4006 
4007 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4008                                       bool isread)
4009 {
4010     /* We don't implement EL2, so the only control on DC ZVA is the
4011      * bit in the SCTLR which can prohibit access for EL0.
4012      */
4013     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4014         return CP_ACCESS_TRAP;
4015     }
4016     return CP_ACCESS_OK;
4017 }
4018 
4019 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4020 {
4021     ARMCPU *cpu = arm_env_get_cpu(env);
4022     int dzp_bit = 1 << 4;
4023 
4024     /* DZP indicates whether DC ZVA access is allowed */
4025     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4026         dzp_bit = 0;
4027     }
4028     return cpu->dcz_blocksize | dzp_bit;
4029 }
4030 
4031 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4032                                     bool isread)
4033 {
4034     if (!(env->pstate & PSTATE_SP)) {
4035         /* Access to SP_EL0 is undefined if it's being used as
4036          * the stack pointer.
4037          */
4038         return CP_ACCESS_TRAP_UNCATEGORIZED;
4039     }
4040     return CP_ACCESS_OK;
4041 }
4042 
4043 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4044 {
4045     return env->pstate & PSTATE_SP;
4046 }
4047 
4048 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4049 {
4050     update_spsel(env, val);
4051 }
4052 
4053 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4054                         uint64_t value)
4055 {
4056     ARMCPU *cpu = arm_env_get_cpu(env);
4057 
4058     if (raw_read(env, ri) == value) {
4059         /* Skip the TLB flush if nothing actually changed; Linux likes
4060          * to do a lot of pointless SCTLR writes.
4061          */
4062         return;
4063     }
4064 
4065     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4066         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4067         value &= ~SCTLR_M;
4068     }
4069 
4070     raw_write(env, ri, value);
4071     /* ??? Lots of these bits are not implemented.  */
4072     /* This may enable/disable the MMU, so do a TLB flush.  */
4073     tlb_flush(CPU(cpu));
4074 }
4075 
4076 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4077                                      bool isread)
4078 {
4079     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4080         return CP_ACCESS_TRAP_FP_EL2;
4081     }
4082     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4083         return CP_ACCESS_TRAP_FP_EL3;
4084     }
4085     return CP_ACCESS_OK;
4086 }
4087 
4088 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4089                        uint64_t value)
4090 {
4091     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4092 }
4093 
4094 static const ARMCPRegInfo v8_cp_reginfo[] = {
4095     /* Minimal set of EL0-visible registers. This will need to be expanded
4096      * significantly for system emulation of AArch64 CPUs.
4097      */
4098     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4099       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4100       .access = PL0_RW, .type = ARM_CP_NZCV },
4101     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4102       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4103       .type = ARM_CP_NO_RAW,
4104       .access = PL0_RW, .accessfn = aa64_daif_access,
4105       .fieldoffset = offsetof(CPUARMState, daif),
4106       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4107     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4108       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4109       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4110       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4111     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4112       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4113       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4114       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4115     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4116       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4117       .access = PL0_R, .type = ARM_CP_NO_RAW,
4118       .readfn = aa64_dczid_read },
4119     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4120       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4121       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4122 #ifndef CONFIG_USER_ONLY
4123       /* Avoid overhead of an access check that always passes in user-mode */
4124       .accessfn = aa64_zva_access,
4125 #endif
4126     },
4127     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4128       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4129       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4130     /* Cache ops: all NOPs since we don't emulate caches */
4131     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4132       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4133       .access = PL1_W, .type = ARM_CP_NOP },
4134     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4135       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4136       .access = PL1_W, .type = ARM_CP_NOP },
4137     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4138       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4139       .access = PL0_W, .type = ARM_CP_NOP,
4140       .accessfn = aa64_cacheop_access },
4141     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4142       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4143       .access = PL1_W, .type = ARM_CP_NOP },
4144     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4145       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4146       .access = PL1_W, .type = ARM_CP_NOP },
4147     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4148       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4149       .access = PL0_W, .type = ARM_CP_NOP,
4150       .accessfn = aa64_cacheop_access },
4151     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4152       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4153       .access = PL1_W, .type = ARM_CP_NOP },
4154     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4155       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4156       .access = PL0_W, .type = ARM_CP_NOP,
4157       .accessfn = aa64_cacheop_access },
4158     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4159       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4160       .access = PL0_W, .type = ARM_CP_NOP,
4161       .accessfn = aa64_cacheop_access },
4162     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4163       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4164       .access = PL1_W, .type = ARM_CP_NOP },
4165     /* TLBI operations */
4166     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4167       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4168       .access = PL1_W, .type = ARM_CP_NO_RAW,
4169       .writefn = tlbi_aa64_vmalle1is_write },
4170     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4171       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4172       .access = PL1_W, .type = ARM_CP_NO_RAW,
4173       .writefn = tlbi_aa64_vae1is_write },
4174     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4175       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4176       .access = PL1_W, .type = ARM_CP_NO_RAW,
4177       .writefn = tlbi_aa64_vmalle1is_write },
4178     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4179       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4180       .access = PL1_W, .type = ARM_CP_NO_RAW,
4181       .writefn = tlbi_aa64_vae1is_write },
4182     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4183       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4184       .access = PL1_W, .type = ARM_CP_NO_RAW,
4185       .writefn = tlbi_aa64_vae1is_write },
4186     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4187       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4188       .access = PL1_W, .type = ARM_CP_NO_RAW,
4189       .writefn = tlbi_aa64_vae1is_write },
4190     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4191       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4192       .access = PL1_W, .type = ARM_CP_NO_RAW,
4193       .writefn = tlbi_aa64_vmalle1_write },
4194     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4195       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4196       .access = PL1_W, .type = ARM_CP_NO_RAW,
4197       .writefn = tlbi_aa64_vae1_write },
4198     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4199       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4200       .access = PL1_W, .type = ARM_CP_NO_RAW,
4201       .writefn = tlbi_aa64_vmalle1_write },
4202     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4203       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4204       .access = PL1_W, .type = ARM_CP_NO_RAW,
4205       .writefn = tlbi_aa64_vae1_write },
4206     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4207       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4208       .access = PL1_W, .type = ARM_CP_NO_RAW,
4209       .writefn = tlbi_aa64_vae1_write },
4210     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4211       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4212       .access = PL1_W, .type = ARM_CP_NO_RAW,
4213       .writefn = tlbi_aa64_vae1_write },
4214     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4215       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4216       .access = PL2_W, .type = ARM_CP_NO_RAW,
4217       .writefn = tlbi_aa64_ipas2e1is_write },
4218     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4219       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4220       .access = PL2_W, .type = ARM_CP_NO_RAW,
4221       .writefn = tlbi_aa64_ipas2e1is_write },
4222     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4223       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4224       .access = PL2_W, .type = ARM_CP_NO_RAW,
4225       .writefn = tlbi_aa64_alle1is_write },
4226     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4227       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4228       .access = PL2_W, .type = ARM_CP_NO_RAW,
4229       .writefn = tlbi_aa64_alle1is_write },
4230     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4231       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4232       .access = PL2_W, .type = ARM_CP_NO_RAW,
4233       .writefn = tlbi_aa64_ipas2e1_write },
4234     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4235       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4236       .access = PL2_W, .type = ARM_CP_NO_RAW,
4237       .writefn = tlbi_aa64_ipas2e1_write },
4238     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4239       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4240       .access = PL2_W, .type = ARM_CP_NO_RAW,
4241       .writefn = tlbi_aa64_alle1_write },
4242     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4243       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4244       .access = PL2_W, .type = ARM_CP_NO_RAW,
4245       .writefn = tlbi_aa64_alle1is_write },
4246 #ifndef CONFIG_USER_ONLY
4247     /* 64 bit address translation operations */
4248     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4249       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4250       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4251     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4252       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4253       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4254     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4255       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4256       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4257     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4258       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4259       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4260     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4261       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4262       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4263     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4264       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4265       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4266     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4267       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4268       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4269     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4270       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4271       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4272     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4273     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4274       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4275       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4276     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4277       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4278       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4279     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4280       .type = ARM_CP_ALIAS,
4281       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4282       .access = PL1_RW, .resetvalue = 0,
4283       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4284       .writefn = par_write },
4285 #endif
4286     /* TLB invalidate last level of translation table walk */
4287     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4288       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4289     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4290       .type = ARM_CP_NO_RAW, .access = PL1_W,
4291       .writefn = tlbimvaa_is_write },
4292     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4293       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4294     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4295       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4296     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4297       .type = ARM_CP_NO_RAW, .access = PL2_W,
4298       .writefn = tlbimva_hyp_write },
4299     { .name = "TLBIMVALHIS",
4300       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4301       .type = ARM_CP_NO_RAW, .access = PL2_W,
4302       .writefn = tlbimva_hyp_is_write },
4303     { .name = "TLBIIPAS2",
4304       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4305       .type = ARM_CP_NO_RAW, .access = PL2_W,
4306       .writefn = tlbiipas2_write },
4307     { .name = "TLBIIPAS2IS",
4308       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4309       .type = ARM_CP_NO_RAW, .access = PL2_W,
4310       .writefn = tlbiipas2_is_write },
4311     { .name = "TLBIIPAS2L",
4312       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4313       .type = ARM_CP_NO_RAW, .access = PL2_W,
4314       .writefn = tlbiipas2_write },
4315     { .name = "TLBIIPAS2LIS",
4316       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4317       .type = ARM_CP_NO_RAW, .access = PL2_W,
4318       .writefn = tlbiipas2_is_write },
4319     /* 32 bit cache operations */
4320     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4321       .type = ARM_CP_NOP, .access = PL1_W },
4322     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4323       .type = ARM_CP_NOP, .access = PL1_W },
4324     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4325       .type = ARM_CP_NOP, .access = PL1_W },
4326     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4327       .type = ARM_CP_NOP, .access = PL1_W },
4328     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4329       .type = ARM_CP_NOP, .access = PL1_W },
4330     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4331       .type = ARM_CP_NOP, .access = PL1_W },
4332     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4333       .type = ARM_CP_NOP, .access = PL1_W },
4334     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4335       .type = ARM_CP_NOP, .access = PL1_W },
4336     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4337       .type = ARM_CP_NOP, .access = PL1_W },
4338     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4339       .type = ARM_CP_NOP, .access = PL1_W },
4340     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4341       .type = ARM_CP_NOP, .access = PL1_W },
4342     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4343       .type = ARM_CP_NOP, .access = PL1_W },
4344     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4345       .type = ARM_CP_NOP, .access = PL1_W },
4346     /* MMU Domain access control / MPU write buffer control */
4347     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4348       .access = PL1_RW, .resetvalue = 0,
4349       .writefn = dacr_write, .raw_writefn = raw_write,
4350       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4351                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4352     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4353       .type = ARM_CP_ALIAS,
4354       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4355       .access = PL1_RW,
4356       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4357     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4358       .type = ARM_CP_ALIAS,
4359       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4360       .access = PL1_RW,
4361       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4362     /* We rely on the access checks not allowing the guest to write to the
4363      * state field when SPSel indicates that it's being used as the stack
4364      * pointer.
4365      */
4366     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4367       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4368       .access = PL1_RW, .accessfn = sp_el0_access,
4369       .type = ARM_CP_ALIAS,
4370       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4371     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4372       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4373       .access = PL2_RW, .type = ARM_CP_ALIAS,
4374       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4375     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4376       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4377       .type = ARM_CP_NO_RAW,
4378       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4379     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4380       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4381       .type = ARM_CP_ALIAS,
4382       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4383       .access = PL2_RW, .accessfn = fpexc32_access },
4384     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4385       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4386       .access = PL2_RW, .resetvalue = 0,
4387       .writefn = dacr_write, .raw_writefn = raw_write,
4388       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4389     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4390       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4391       .access = PL2_RW, .resetvalue = 0,
4392       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4393     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4394       .type = ARM_CP_ALIAS,
4395       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4396       .access = PL2_RW,
4397       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4398     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4399       .type = ARM_CP_ALIAS,
4400       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4401       .access = PL2_RW,
4402       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4403     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4404       .type = ARM_CP_ALIAS,
4405       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4406       .access = PL2_RW,
4407       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4408     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4409       .type = ARM_CP_ALIAS,
4410       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4411       .access = PL2_RW,
4412       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4413     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4414       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4415       .resetvalue = 0,
4416       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4417     { .name = "SDCR", .type = ARM_CP_ALIAS,
4418       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4419       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4420       .writefn = sdcr_write,
4421       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4422     REGINFO_SENTINEL
4423 };
4424 
4425 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
4426 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4427     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4428       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4429       .access = PL2_RW,
4430       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4431     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4432       .type = ARM_CP_NO_RAW,
4433       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4434       .access = PL2_RW,
4435       .type = ARM_CP_CONST, .resetvalue = 0 },
4436     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4437       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4438       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4439     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4440       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4441       .access = PL2_RW,
4442       .type = ARM_CP_CONST, .resetvalue = 0 },
4443     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4444       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4445       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4446     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4447       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4448       .access = PL2_RW, .type = ARM_CP_CONST,
4449       .resetvalue = 0 },
4450     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4451       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4452       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4453     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4454       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4455       .access = PL2_RW, .type = ARM_CP_CONST,
4456       .resetvalue = 0 },
4457     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4458       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4459       .access = PL2_RW, .type = ARM_CP_CONST,
4460       .resetvalue = 0 },
4461     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4462       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4463       .access = PL2_RW, .type = ARM_CP_CONST,
4464       .resetvalue = 0 },
4465     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4466       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4467       .access = PL2_RW, .type = ARM_CP_CONST,
4468       .resetvalue = 0 },
4469     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4470       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4471       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4472     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4473       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4474       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4475       .type = ARM_CP_CONST, .resetvalue = 0 },
4476     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4477       .cp = 15, .opc1 = 6, .crm = 2,
4478       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4479       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4480     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4481       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4482       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4483     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4484       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4485       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4486     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4487       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4488       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4489     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4490       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4491       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4492     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4493       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4494       .resetvalue = 0 },
4495     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4496       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4497       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4498     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4499       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4500       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4501     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4502       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4503       .resetvalue = 0 },
4504     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4505       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4506       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4507     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4508       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4509       .resetvalue = 0 },
4510     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4511       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4512       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4513     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4514       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4515       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4516     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4517       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4518       .access = PL2_RW, .accessfn = access_tda,
4519       .type = ARM_CP_CONST, .resetvalue = 0 },
4520     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4521       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4522       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4523       .type = ARM_CP_CONST, .resetvalue = 0 },
4524     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4525       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4526       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4527     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4528       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4529       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4530     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4531       .type = ARM_CP_CONST,
4532       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4533       .access = PL2_RW, .resetvalue = 0 },
4534     REGINFO_SENTINEL
4535 };
4536 
4537 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4538 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4539     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4540       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4541       .access = PL2_RW,
4542       .type = ARM_CP_CONST, .resetvalue = 0 },
4543     REGINFO_SENTINEL
4544 };
4545 
4546 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4547 {
4548     ARMCPU *cpu = arm_env_get_cpu(env);
4549     uint64_t valid_mask = HCR_MASK;
4550 
4551     if (arm_feature(env, ARM_FEATURE_EL3)) {
4552         valid_mask &= ~HCR_HCD;
4553     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4554         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4555          * However, if we're using the SMC PSCI conduit then QEMU is
4556          * effectively acting like EL3 firmware and so the guest at
4557          * EL2 should retain the ability to prevent EL1 from being
4558          * able to make SMC calls into the ersatz firmware, so in
4559          * that case HCR.TSC should be read/write.
4560          */
4561         valid_mask &= ~HCR_TSC;
4562     }
4563     if (cpu_isar_feature(aa64_lor, cpu)) {
4564         valid_mask |= HCR_TLOR;
4565     }
4566     if (cpu_isar_feature(aa64_pauth, cpu)) {
4567         valid_mask |= HCR_API | HCR_APK;
4568     }
4569 
4570     /* Clear RES0 bits.  */
4571     value &= valid_mask;
4572 
4573     /* These bits change the MMU setup:
4574      * HCR_VM enables stage 2 translation
4575      * HCR_PTW forbids certain page-table setups
4576      * HCR_DC Disables stage1 and enables stage2 translation
4577      */
4578     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4579         tlb_flush(CPU(cpu));
4580     }
4581     env->cp15.hcr_el2 = value;
4582 
4583     /*
4584      * Updates to VI and VF require us to update the status of
4585      * virtual interrupts, which are the logical OR of these bits
4586      * and the state of the input lines from the GIC. (This requires
4587      * that we have the iothread lock, which is done by marking the
4588      * reginfo structs as ARM_CP_IO.)
4589      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4590      * possible for it to be taken immediately, because VIRQ and
4591      * VFIQ are masked unless running at EL0 or EL1, and HCR
4592      * can only be written at EL2.
4593      */
4594     g_assert(qemu_mutex_iothread_locked());
4595     arm_cpu_update_virq(cpu);
4596     arm_cpu_update_vfiq(cpu);
4597 }
4598 
4599 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4600                           uint64_t value)
4601 {
4602     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4603     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4604     hcr_write(env, NULL, value);
4605 }
4606 
4607 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4608                          uint64_t value)
4609 {
4610     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4611     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4612     hcr_write(env, NULL, value);
4613 }
4614 
4615 /*
4616  * Return the effective value of HCR_EL2.
4617  * Bits that are not included here:
4618  * RW       (read from SCR_EL3.RW as needed)
4619  */
4620 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4621 {
4622     uint64_t ret = env->cp15.hcr_el2;
4623 
4624     if (arm_is_secure_below_el3(env)) {
4625         /*
4626          * "This register has no effect if EL2 is not enabled in the
4627          * current Security state".  This is ARMv8.4-SecEL2 speak for
4628          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4629          *
4630          * Prior to that, the language was "In an implementation that
4631          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4632          * as if this field is 0 for all purposes other than a direct
4633          * read or write access of HCR_EL2".  With lots of enumeration
4634          * on a per-field basis.  In current QEMU, this is condition
4635          * is arm_is_secure_below_el3.
4636          *
4637          * Since the v8.4 language applies to the entire register, and
4638          * appears to be backward compatible, use that.
4639          */
4640         ret = 0;
4641     } else if (ret & HCR_TGE) {
4642         /* These bits are up-to-date as of ARMv8.4.  */
4643         if (ret & HCR_E2H) {
4644             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4645                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4646                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4647                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4648         } else {
4649             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4650         }
4651         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4652                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4653                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4654                  HCR_TLOR);
4655     }
4656 
4657     return ret;
4658 }
4659 
4660 static const ARMCPRegInfo el2_cp_reginfo[] = {
4661     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4662       .type = ARM_CP_IO,
4663       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4664       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4665       .writefn = hcr_write },
4666     { .name = "HCR", .state = ARM_CP_STATE_AA32,
4667       .type = ARM_CP_ALIAS | ARM_CP_IO,
4668       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4669       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4670       .writefn = hcr_writelow },
4671     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4672       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4673       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4674     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4675       .type = ARM_CP_ALIAS,
4676       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4677       .access = PL2_RW,
4678       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4679     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4680       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4681       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4682     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4683       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4684       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4685     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4686       .type = ARM_CP_ALIAS,
4687       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4688       .access = PL2_RW,
4689       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4690     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4691       .type = ARM_CP_ALIAS,
4692       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4693       .access = PL2_RW,
4694       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4695     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4696       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4697       .access = PL2_RW, .writefn = vbar_write,
4698       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4699       .resetvalue = 0 },
4700     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4701       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4702       .access = PL3_RW, .type = ARM_CP_ALIAS,
4703       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4704     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4705       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4706       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4707       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4708     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4709       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4710       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4711       .resetvalue = 0 },
4712     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4713       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4714       .access = PL2_RW, .type = ARM_CP_ALIAS,
4715       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4716     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4717       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4718       .access = PL2_RW, .type = ARM_CP_CONST,
4719       .resetvalue = 0 },
4720     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4721     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4722       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4723       .access = PL2_RW, .type = ARM_CP_CONST,
4724       .resetvalue = 0 },
4725     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4726       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4727       .access = PL2_RW, .type = ARM_CP_CONST,
4728       .resetvalue = 0 },
4729     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4730       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4731       .access = PL2_RW, .type = ARM_CP_CONST,
4732       .resetvalue = 0 },
4733     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4734       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4735       .access = PL2_RW,
4736       /* no .writefn needed as this can't cause an ASID change;
4737        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4738        */
4739       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4740     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4741       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4742       .type = ARM_CP_ALIAS,
4743       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4744       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4745     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4746       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4747       .access = PL2_RW,
4748       /* no .writefn needed as this can't cause an ASID change;
4749        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4750        */
4751       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4752     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4753       .cp = 15, .opc1 = 6, .crm = 2,
4754       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4755       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4756       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4757       .writefn = vttbr_write },
4758     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4759       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4760       .access = PL2_RW, .writefn = vttbr_write,
4761       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4762     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4763       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4764       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4765       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4766     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4767       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4768       .access = PL2_RW, .resetvalue = 0,
4769       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4770     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4771       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4772       .access = PL2_RW, .resetvalue = 0,
4773       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4774     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4775       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4776       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4777     { .name = "TLBIALLNSNH",
4778       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4779       .type = ARM_CP_NO_RAW, .access = PL2_W,
4780       .writefn = tlbiall_nsnh_write },
4781     { .name = "TLBIALLNSNHIS",
4782       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4783       .type = ARM_CP_NO_RAW, .access = PL2_W,
4784       .writefn = tlbiall_nsnh_is_write },
4785     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4786       .type = ARM_CP_NO_RAW, .access = PL2_W,
4787       .writefn = tlbiall_hyp_write },
4788     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4789       .type = ARM_CP_NO_RAW, .access = PL2_W,
4790       .writefn = tlbiall_hyp_is_write },
4791     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4792       .type = ARM_CP_NO_RAW, .access = PL2_W,
4793       .writefn = tlbimva_hyp_write },
4794     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4795       .type = ARM_CP_NO_RAW, .access = PL2_W,
4796       .writefn = tlbimva_hyp_is_write },
4797     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4798       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4799       .type = ARM_CP_NO_RAW, .access = PL2_W,
4800       .writefn = tlbi_aa64_alle2_write },
4801     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4802       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4803       .type = ARM_CP_NO_RAW, .access = PL2_W,
4804       .writefn = tlbi_aa64_vae2_write },
4805     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4806       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4807       .access = PL2_W, .type = ARM_CP_NO_RAW,
4808       .writefn = tlbi_aa64_vae2_write },
4809     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4810       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4811       .access = PL2_W, .type = ARM_CP_NO_RAW,
4812       .writefn = tlbi_aa64_alle2is_write },
4813     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4814       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4815       .type = ARM_CP_NO_RAW, .access = PL2_W,
4816       .writefn = tlbi_aa64_vae2is_write },
4817     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4818       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4819       .access = PL2_W, .type = ARM_CP_NO_RAW,
4820       .writefn = tlbi_aa64_vae2is_write },
4821 #ifndef CONFIG_USER_ONLY
4822     /* Unlike the other EL2-related AT operations, these must
4823      * UNDEF from EL3 if EL2 is not implemented, which is why we
4824      * define them here rather than with the rest of the AT ops.
4825      */
4826     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4827       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4828       .access = PL2_W, .accessfn = at_s1e2_access,
4829       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4830     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4831       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4832       .access = PL2_W, .accessfn = at_s1e2_access,
4833       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4834     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4835      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4836      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4837      * to behave as if SCR.NS was 1.
4838      */
4839     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4840       .access = PL2_W,
4841       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4842     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4843       .access = PL2_W,
4844       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4845     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4846       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4847       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4848        * reset values as IMPDEF. We choose to reset to 3 to comply with
4849        * both ARMv7 and ARMv8.
4850        */
4851       .access = PL2_RW, .resetvalue = 3,
4852       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4853     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4854       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4855       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4856       .writefn = gt_cntvoff_write,
4857       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4858     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4859       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4860       .writefn = gt_cntvoff_write,
4861       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4862     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4863       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4864       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4865       .type = ARM_CP_IO, .access = PL2_RW,
4866       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4867     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4868       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4869       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4870       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4871     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4872       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4873       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4874       .resetfn = gt_hyp_timer_reset,
4875       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4876     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4877       .type = ARM_CP_IO,
4878       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4879       .access = PL2_RW,
4880       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4881       .resetvalue = 0,
4882       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4883 #endif
4884     /* The only field of MDCR_EL2 that has a defined architectural reset value
4885      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4886      * don't implement any PMU event counters, so using zero as a reset
4887      * value for MDCR_EL2 is okay
4888      */
4889     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4890       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4891       .access = PL2_RW, .resetvalue = 0,
4892       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4893     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4894       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4895       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4896       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4897     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4898       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4899       .access = PL2_RW,
4900       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4901     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4902       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4903       .access = PL2_RW,
4904       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4905     REGINFO_SENTINEL
4906 };
4907 
4908 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4909     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4910       .type = ARM_CP_ALIAS | ARM_CP_IO,
4911       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4912       .access = PL2_RW,
4913       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4914       .writefn = hcr_writehigh },
4915     REGINFO_SENTINEL
4916 };
4917 
4918 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4919                                    bool isread)
4920 {
4921     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4922      * At Secure EL1 it traps to EL3.
4923      */
4924     if (arm_current_el(env) == 3) {
4925         return CP_ACCESS_OK;
4926     }
4927     if (arm_is_secure_below_el3(env)) {
4928         return CP_ACCESS_TRAP_EL3;
4929     }
4930     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4931     if (isread) {
4932         return CP_ACCESS_OK;
4933     }
4934     return CP_ACCESS_TRAP_UNCATEGORIZED;
4935 }
4936 
4937 static const ARMCPRegInfo el3_cp_reginfo[] = {
4938     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4939       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4940       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4941       .resetvalue = 0, .writefn = scr_write },
4942     { .name = "SCR",  .type = ARM_CP_ALIAS,
4943       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4944       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4945       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4946       .writefn = scr_write },
4947     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4948       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4949       .access = PL3_RW, .resetvalue = 0,
4950       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4951     { .name = "SDER",
4952       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4953       .access = PL3_RW, .resetvalue = 0,
4954       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4955     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4956       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4957       .writefn = vbar_write, .resetvalue = 0,
4958       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4959     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4960       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4961       .access = PL3_RW, .resetvalue = 0,
4962       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4963     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4964       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4965       .access = PL3_RW,
4966       /* no .writefn needed as this can't cause an ASID change;
4967        * we must provide a .raw_writefn and .resetfn because we handle
4968        * reset and migration for the AArch32 TTBCR(S), which might be
4969        * using mask and base_mask.
4970        */
4971       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4972       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4973     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4974       .type = ARM_CP_ALIAS,
4975       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4976       .access = PL3_RW,
4977       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4978     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4979       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4980       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4981     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4982       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4983       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4984     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4985       .type = ARM_CP_ALIAS,
4986       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4987       .access = PL3_RW,
4988       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4989     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4990       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4991       .access = PL3_RW, .writefn = vbar_write,
4992       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4993       .resetvalue = 0 },
4994     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4995       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4996       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4997       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4998     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4999       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5000       .access = PL3_RW, .resetvalue = 0,
5001       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5002     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5003       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5004       .access = PL3_RW, .type = ARM_CP_CONST,
5005       .resetvalue = 0 },
5006     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5007       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5008       .access = PL3_RW, .type = ARM_CP_CONST,
5009       .resetvalue = 0 },
5010     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5011       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5012       .access = PL3_RW, .type = ARM_CP_CONST,
5013       .resetvalue = 0 },
5014     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5015       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5016       .access = PL3_W, .type = ARM_CP_NO_RAW,
5017       .writefn = tlbi_aa64_alle3is_write },
5018     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5019       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5020       .access = PL3_W, .type = ARM_CP_NO_RAW,
5021       .writefn = tlbi_aa64_vae3is_write },
5022     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5023       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5024       .access = PL3_W, .type = ARM_CP_NO_RAW,
5025       .writefn = tlbi_aa64_vae3is_write },
5026     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5027       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5028       .access = PL3_W, .type = ARM_CP_NO_RAW,
5029       .writefn = tlbi_aa64_alle3_write },
5030     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5031       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5032       .access = PL3_W, .type = ARM_CP_NO_RAW,
5033       .writefn = tlbi_aa64_vae3_write },
5034     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5035       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5036       .access = PL3_W, .type = ARM_CP_NO_RAW,
5037       .writefn = tlbi_aa64_vae3_write },
5038     REGINFO_SENTINEL
5039 };
5040 
5041 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5042                                      bool isread)
5043 {
5044     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5045      * but the AArch32 CTR has its own reginfo struct)
5046      */
5047     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5048         return CP_ACCESS_TRAP;
5049     }
5050     return CP_ACCESS_OK;
5051 }
5052 
5053 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5054                         uint64_t value)
5055 {
5056     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5057      * read via a bit in OSLSR_EL1.
5058      */
5059     int oslock;
5060 
5061     if (ri->state == ARM_CP_STATE_AA32) {
5062         oslock = (value == 0xC5ACCE55);
5063     } else {
5064         oslock = value & 1;
5065     }
5066 
5067     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5068 }
5069 
5070 static const ARMCPRegInfo debug_cp_reginfo[] = {
5071     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5072      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5073      * unlike DBGDRAR it is never accessible from EL0.
5074      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5075      * accessor.
5076      */
5077     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5078       .access = PL0_R, .accessfn = access_tdra,
5079       .type = ARM_CP_CONST, .resetvalue = 0 },
5080     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5081       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5082       .access = PL1_R, .accessfn = access_tdra,
5083       .type = ARM_CP_CONST, .resetvalue = 0 },
5084     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5085       .access = PL0_R, .accessfn = access_tdra,
5086       .type = ARM_CP_CONST, .resetvalue = 0 },
5087     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5088     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5089       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5090       .access = PL1_RW, .accessfn = access_tda,
5091       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5092       .resetvalue = 0 },
5093     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5094      * We don't implement the configurable EL0 access.
5095      */
5096     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5097       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5098       .type = ARM_CP_ALIAS,
5099       .access = PL1_R, .accessfn = access_tda,
5100       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5101     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5102       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5103       .access = PL1_W, .type = ARM_CP_NO_RAW,
5104       .accessfn = access_tdosa,
5105       .writefn = oslar_write },
5106     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5107       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5108       .access = PL1_R, .resetvalue = 10,
5109       .accessfn = access_tdosa,
5110       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5111     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5112     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5113       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5114       .access = PL1_RW, .accessfn = access_tdosa,
5115       .type = ARM_CP_NOP },
5116     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5117      * implement vector catch debug events yet.
5118      */
5119     { .name = "DBGVCR",
5120       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5121       .access = PL1_RW, .accessfn = access_tda,
5122       .type = ARM_CP_NOP },
5123     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5124      * to save and restore a 32-bit guest's DBGVCR)
5125      */
5126     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5127       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5128       .access = PL2_RW, .accessfn = access_tda,
5129       .type = ARM_CP_NOP },
5130     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5131      * Channel but Linux may try to access this register. The 32-bit
5132      * alias is DBGDCCINT.
5133      */
5134     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5135       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5136       .access = PL1_RW, .accessfn = access_tda,
5137       .type = ARM_CP_NOP },
5138     REGINFO_SENTINEL
5139 };
5140 
5141 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5142     /* 64 bit access versions of the (dummy) debug registers */
5143     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5144       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5145     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5146       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5147     REGINFO_SENTINEL
5148 };
5149 
5150 /* Return the exception level to which exceptions should be taken
5151  * via SVEAccessTrap.  If an exception should be routed through
5152  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5153  * take care of raising that exception.
5154  * C.f. the ARM pseudocode function CheckSVEEnabled.
5155  */
5156 int sve_exception_el(CPUARMState *env, int el)
5157 {
5158 #ifndef CONFIG_USER_ONLY
5159     if (el <= 1) {
5160         bool disabled = false;
5161 
5162         /* The CPACR.ZEN controls traps to EL1:
5163          * 0, 2 : trap EL0 and EL1 accesses
5164          * 1    : trap only EL0 accesses
5165          * 3    : trap no accesses
5166          */
5167         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5168             disabled = true;
5169         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5170             disabled = el == 0;
5171         }
5172         if (disabled) {
5173             /* route_to_el2 */
5174             return (arm_feature(env, ARM_FEATURE_EL2)
5175                     && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5176         }
5177 
5178         /* Check CPACR.FPEN.  */
5179         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5180             disabled = true;
5181         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5182             disabled = el == 0;
5183         }
5184         if (disabled) {
5185             return 0;
5186         }
5187     }
5188 
5189     /* CPTR_EL2.  Since TZ and TFP are positive,
5190      * they will be zero when EL2 is not present.
5191      */
5192     if (el <= 2 && !arm_is_secure_below_el3(env)) {
5193         if (env->cp15.cptr_el[2] & CPTR_TZ) {
5194             return 2;
5195         }
5196         if (env->cp15.cptr_el[2] & CPTR_TFP) {
5197             return 0;
5198         }
5199     }
5200 
5201     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
5202     if (arm_feature(env, ARM_FEATURE_EL3)
5203         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5204         return 3;
5205     }
5206 #endif
5207     return 0;
5208 }
5209 
5210 /*
5211  * Given that SVE is enabled, return the vector length for EL.
5212  */
5213 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5214 {
5215     ARMCPU *cpu = arm_env_get_cpu(env);
5216     uint32_t zcr_len = cpu->sve_max_vq - 1;
5217 
5218     if (el <= 1) {
5219         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5220     }
5221     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5222         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5223     }
5224     if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5225         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5226     }
5227     return zcr_len;
5228 }
5229 
5230 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5231                       uint64_t value)
5232 {
5233     int cur_el = arm_current_el(env);
5234     int old_len = sve_zcr_len_for_el(env, cur_el);
5235     int new_len;
5236 
5237     /* Bits other than [3:0] are RAZ/WI.  */
5238     raw_write(env, ri, value & 0xf);
5239 
5240     /*
5241      * Because we arrived here, we know both FP and SVE are enabled;
5242      * otherwise we would have trapped access to the ZCR_ELn register.
5243      */
5244     new_len = sve_zcr_len_for_el(env, cur_el);
5245     if (new_len < old_len) {
5246         aarch64_sve_narrow_vq(env, new_len + 1);
5247     }
5248 }
5249 
5250 static const ARMCPRegInfo zcr_el1_reginfo = {
5251     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5252     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5253     .access = PL1_RW, .type = ARM_CP_SVE,
5254     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5255     .writefn = zcr_write, .raw_writefn = raw_write
5256 };
5257 
5258 static const ARMCPRegInfo zcr_el2_reginfo = {
5259     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5260     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5261     .access = PL2_RW, .type = ARM_CP_SVE,
5262     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5263     .writefn = zcr_write, .raw_writefn = raw_write
5264 };
5265 
5266 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5267     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5268     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5269     .access = PL2_RW, .type = ARM_CP_SVE,
5270     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5271 };
5272 
5273 static const ARMCPRegInfo zcr_el3_reginfo = {
5274     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5275     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5276     .access = PL3_RW, .type = ARM_CP_SVE,
5277     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5278     .writefn = zcr_write, .raw_writefn = raw_write
5279 };
5280 
5281 void hw_watchpoint_update(ARMCPU *cpu, int n)
5282 {
5283     CPUARMState *env = &cpu->env;
5284     vaddr len = 0;
5285     vaddr wvr = env->cp15.dbgwvr[n];
5286     uint64_t wcr = env->cp15.dbgwcr[n];
5287     int mask;
5288     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5289 
5290     if (env->cpu_watchpoint[n]) {
5291         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5292         env->cpu_watchpoint[n] = NULL;
5293     }
5294 
5295     if (!extract64(wcr, 0, 1)) {
5296         /* E bit clear : watchpoint disabled */
5297         return;
5298     }
5299 
5300     switch (extract64(wcr, 3, 2)) {
5301     case 0:
5302         /* LSC 00 is reserved and must behave as if the wp is disabled */
5303         return;
5304     case 1:
5305         flags |= BP_MEM_READ;
5306         break;
5307     case 2:
5308         flags |= BP_MEM_WRITE;
5309         break;
5310     case 3:
5311         flags |= BP_MEM_ACCESS;
5312         break;
5313     }
5314 
5315     /* Attempts to use both MASK and BAS fields simultaneously are
5316      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5317      * thus generating a watchpoint for every byte in the masked region.
5318      */
5319     mask = extract64(wcr, 24, 4);
5320     if (mask == 1 || mask == 2) {
5321         /* Reserved values of MASK; we must act as if the mask value was
5322          * some non-reserved value, or as if the watchpoint were disabled.
5323          * We choose the latter.
5324          */
5325         return;
5326     } else if (mask) {
5327         /* Watchpoint covers an aligned area up to 2GB in size */
5328         len = 1ULL << mask;
5329         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5330          * whether the watchpoint fires when the unmasked bits match; we opt
5331          * to generate the exceptions.
5332          */
5333         wvr &= ~(len - 1);
5334     } else {
5335         /* Watchpoint covers bytes defined by the byte address select bits */
5336         int bas = extract64(wcr, 5, 8);
5337         int basstart;
5338 
5339         if (bas == 0) {
5340             /* This must act as if the watchpoint is disabled */
5341             return;
5342         }
5343 
5344         if (extract64(wvr, 2, 1)) {
5345             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5346              * ignored, and BAS[3:0] define which bytes to watch.
5347              */
5348             bas &= 0xf;
5349         }
5350         /* The BAS bits are supposed to be programmed to indicate a contiguous
5351          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5352          * we fire for each byte in the word/doubleword addressed by the WVR.
5353          * We choose to ignore any non-zero bits after the first range of 1s.
5354          */
5355         basstart = ctz32(bas);
5356         len = cto32(bas >> basstart);
5357         wvr += basstart;
5358     }
5359 
5360     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5361                           &env->cpu_watchpoint[n]);
5362 }
5363 
5364 void hw_watchpoint_update_all(ARMCPU *cpu)
5365 {
5366     int i;
5367     CPUARMState *env = &cpu->env;
5368 
5369     /* Completely clear out existing QEMU watchpoints and our array, to
5370      * avoid possible stale entries following migration load.
5371      */
5372     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5373     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5374 
5375     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5376         hw_watchpoint_update(cpu, i);
5377     }
5378 }
5379 
5380 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5381                          uint64_t value)
5382 {
5383     ARMCPU *cpu = arm_env_get_cpu(env);
5384     int i = ri->crm;
5385 
5386     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5387      * register reads and behaves as if values written are sign extended.
5388      * Bits [1:0] are RES0.
5389      */
5390     value = sextract64(value, 0, 49) & ~3ULL;
5391 
5392     raw_write(env, ri, value);
5393     hw_watchpoint_update(cpu, i);
5394 }
5395 
5396 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5397                          uint64_t value)
5398 {
5399     ARMCPU *cpu = arm_env_get_cpu(env);
5400     int i = ri->crm;
5401 
5402     raw_write(env, ri, value);
5403     hw_watchpoint_update(cpu, i);
5404 }
5405 
5406 void hw_breakpoint_update(ARMCPU *cpu, int n)
5407 {
5408     CPUARMState *env = &cpu->env;
5409     uint64_t bvr = env->cp15.dbgbvr[n];
5410     uint64_t bcr = env->cp15.dbgbcr[n];
5411     vaddr addr;
5412     int bt;
5413     int flags = BP_CPU;
5414 
5415     if (env->cpu_breakpoint[n]) {
5416         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5417         env->cpu_breakpoint[n] = NULL;
5418     }
5419 
5420     if (!extract64(bcr, 0, 1)) {
5421         /* E bit clear : watchpoint disabled */
5422         return;
5423     }
5424 
5425     bt = extract64(bcr, 20, 4);
5426 
5427     switch (bt) {
5428     case 4: /* unlinked address mismatch (reserved if AArch64) */
5429     case 5: /* linked address mismatch (reserved if AArch64) */
5430         qemu_log_mask(LOG_UNIMP,
5431                       "arm: address mismatch breakpoint types not implemented\n");
5432         return;
5433     case 0: /* unlinked address match */
5434     case 1: /* linked address match */
5435     {
5436         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5437          * we behave as if the register was sign extended. Bits [1:0] are
5438          * RES0. The BAS field is used to allow setting breakpoints on 16
5439          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5440          * a bp will fire if the addresses covered by the bp and the addresses
5441          * covered by the insn overlap but the insn doesn't start at the
5442          * start of the bp address range. We choose to require the insn and
5443          * the bp to have the same address. The constraints on writing to
5444          * BAS enforced in dbgbcr_write mean we have only four cases:
5445          *  0b0000  => no breakpoint
5446          *  0b0011  => breakpoint on addr
5447          *  0b1100  => breakpoint on addr + 2
5448          *  0b1111  => breakpoint on addr
5449          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5450          */
5451         int bas = extract64(bcr, 5, 4);
5452         addr = sextract64(bvr, 0, 49) & ~3ULL;
5453         if (bas == 0) {
5454             return;
5455         }
5456         if (bas == 0xc) {
5457             addr += 2;
5458         }
5459         break;
5460     }
5461     case 2: /* unlinked context ID match */
5462     case 8: /* unlinked VMID match (reserved if no EL2) */
5463     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5464         qemu_log_mask(LOG_UNIMP,
5465                       "arm: unlinked context breakpoint types not implemented\n");
5466         return;
5467     case 9: /* linked VMID match (reserved if no EL2) */
5468     case 11: /* linked context ID and VMID match (reserved if no EL2) */
5469     case 3: /* linked context ID match */
5470     default:
5471         /* We must generate no events for Linked context matches (unless
5472          * they are linked to by some other bp/wp, which is handled in
5473          * updates for the linking bp/wp). We choose to also generate no events
5474          * for reserved values.
5475          */
5476         return;
5477     }
5478 
5479     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5480 }
5481 
5482 void hw_breakpoint_update_all(ARMCPU *cpu)
5483 {
5484     int i;
5485     CPUARMState *env = &cpu->env;
5486 
5487     /* Completely clear out existing QEMU breakpoints and our array, to
5488      * avoid possible stale entries following migration load.
5489      */
5490     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5491     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5492 
5493     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5494         hw_breakpoint_update(cpu, i);
5495     }
5496 }
5497 
5498 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5499                          uint64_t value)
5500 {
5501     ARMCPU *cpu = arm_env_get_cpu(env);
5502     int i = ri->crm;
5503 
5504     raw_write(env, ri, value);
5505     hw_breakpoint_update(cpu, i);
5506 }
5507 
5508 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5509                          uint64_t value)
5510 {
5511     ARMCPU *cpu = arm_env_get_cpu(env);
5512     int i = ri->crm;
5513 
5514     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5515      * copy of BAS[0].
5516      */
5517     value = deposit64(value, 6, 1, extract64(value, 5, 1));
5518     value = deposit64(value, 8, 1, extract64(value, 7, 1));
5519 
5520     raw_write(env, ri, value);
5521     hw_breakpoint_update(cpu, i);
5522 }
5523 
5524 static void define_debug_regs(ARMCPU *cpu)
5525 {
5526     /* Define v7 and v8 architectural debug registers.
5527      * These are just dummy implementations for now.
5528      */
5529     int i;
5530     int wrps, brps, ctx_cmps;
5531     ARMCPRegInfo dbgdidr = {
5532         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5533         .access = PL0_R, .accessfn = access_tda,
5534         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5535     };
5536 
5537     /* Note that all these register fields hold "number of Xs minus 1". */
5538     brps = extract32(cpu->dbgdidr, 24, 4);
5539     wrps = extract32(cpu->dbgdidr, 28, 4);
5540     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5541 
5542     assert(ctx_cmps <= brps);
5543 
5544     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5545      * of the debug registers such as number of breakpoints;
5546      * check that if they both exist then they agree.
5547      */
5548     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5549         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5550         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5551         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5552     }
5553 
5554     define_one_arm_cp_reg(cpu, &dbgdidr);
5555     define_arm_cp_regs(cpu, debug_cp_reginfo);
5556 
5557     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5558         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5559     }
5560 
5561     for (i = 0; i < brps + 1; i++) {
5562         ARMCPRegInfo dbgregs[] = {
5563             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5564               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5565               .access = PL1_RW, .accessfn = access_tda,
5566               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5567               .writefn = dbgbvr_write, .raw_writefn = raw_write
5568             },
5569             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5570               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5571               .access = PL1_RW, .accessfn = access_tda,
5572               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5573               .writefn = dbgbcr_write, .raw_writefn = raw_write
5574             },
5575             REGINFO_SENTINEL
5576         };
5577         define_arm_cp_regs(cpu, dbgregs);
5578     }
5579 
5580     for (i = 0; i < wrps + 1; i++) {
5581         ARMCPRegInfo dbgregs[] = {
5582             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5583               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5584               .access = PL1_RW, .accessfn = access_tda,
5585               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5586               .writefn = dbgwvr_write, .raw_writefn = raw_write
5587             },
5588             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5589               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5590               .access = PL1_RW, .accessfn = access_tda,
5591               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5592               .writefn = dbgwcr_write, .raw_writefn = raw_write
5593             },
5594             REGINFO_SENTINEL
5595         };
5596         define_arm_cp_regs(cpu, dbgregs);
5597     }
5598 }
5599 
5600 /* We don't know until after realize whether there's a GICv3
5601  * attached, and that is what registers the gicv3 sysregs.
5602  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5603  * at runtime.
5604  */
5605 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5606 {
5607     ARMCPU *cpu = arm_env_get_cpu(env);
5608     uint64_t pfr1 = cpu->id_pfr1;
5609 
5610     if (env->gicv3state) {
5611         pfr1 |= 1 << 28;
5612     }
5613     return pfr1;
5614 }
5615 
5616 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5617 {
5618     ARMCPU *cpu = arm_env_get_cpu(env);
5619     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5620 
5621     if (env->gicv3state) {
5622         pfr0 |= 1 << 24;
5623     }
5624     return pfr0;
5625 }
5626 
5627 /* Shared logic between LORID and the rest of the LOR* registers.
5628  * Secure state has already been delt with.
5629  */
5630 static CPAccessResult access_lor_ns(CPUARMState *env)
5631 {
5632     int el = arm_current_el(env);
5633 
5634     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5635         return CP_ACCESS_TRAP_EL2;
5636     }
5637     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5638         return CP_ACCESS_TRAP_EL3;
5639     }
5640     return CP_ACCESS_OK;
5641 }
5642 
5643 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5644                                    bool isread)
5645 {
5646     if (arm_is_secure_below_el3(env)) {
5647         /* Access ok in secure mode.  */
5648         return CP_ACCESS_OK;
5649     }
5650     return access_lor_ns(env);
5651 }
5652 
5653 static CPAccessResult access_lor_other(CPUARMState *env,
5654                                        const ARMCPRegInfo *ri, bool isread)
5655 {
5656     if (arm_is_secure_below_el3(env)) {
5657         /* Access denied in secure mode.  */
5658         return CP_ACCESS_TRAP;
5659     }
5660     return access_lor_ns(env);
5661 }
5662 
5663 #ifdef TARGET_AARCH64
5664 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5665                                    bool isread)
5666 {
5667     int el = arm_current_el(env);
5668 
5669     if (el < 2 &&
5670         arm_feature(env, ARM_FEATURE_EL2) &&
5671         !(arm_hcr_el2_eff(env) & HCR_APK)) {
5672         return CP_ACCESS_TRAP_EL2;
5673     }
5674     if (el < 3 &&
5675         arm_feature(env, ARM_FEATURE_EL3) &&
5676         !(env->cp15.scr_el3 & SCR_APK)) {
5677         return CP_ACCESS_TRAP_EL3;
5678     }
5679     return CP_ACCESS_OK;
5680 }
5681 
5682 static const ARMCPRegInfo pauth_reginfo[] = {
5683     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5684       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5685       .access = PL1_RW, .accessfn = access_pauth,
5686       .fieldoffset = offsetof(CPUARMState, apda_key.lo) },
5687     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5688       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5689       .access = PL1_RW, .accessfn = access_pauth,
5690       .fieldoffset = offsetof(CPUARMState, apda_key.hi) },
5691     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5692       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5693       .access = PL1_RW, .accessfn = access_pauth,
5694       .fieldoffset = offsetof(CPUARMState, apdb_key.lo) },
5695     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5696       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5697       .access = PL1_RW, .accessfn = access_pauth,
5698       .fieldoffset = offsetof(CPUARMState, apdb_key.hi) },
5699     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5700       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5701       .access = PL1_RW, .accessfn = access_pauth,
5702       .fieldoffset = offsetof(CPUARMState, apga_key.lo) },
5703     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5704       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5705       .access = PL1_RW, .accessfn = access_pauth,
5706       .fieldoffset = offsetof(CPUARMState, apga_key.hi) },
5707     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5708       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5709       .access = PL1_RW, .accessfn = access_pauth,
5710       .fieldoffset = offsetof(CPUARMState, apia_key.lo) },
5711     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5712       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5713       .access = PL1_RW, .accessfn = access_pauth,
5714       .fieldoffset = offsetof(CPUARMState, apia_key.hi) },
5715     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5716       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5717       .access = PL1_RW, .accessfn = access_pauth,
5718       .fieldoffset = offsetof(CPUARMState, apib_key.lo) },
5719     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5720       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5721       .access = PL1_RW, .accessfn = access_pauth,
5722       .fieldoffset = offsetof(CPUARMState, apib_key.hi) },
5723     REGINFO_SENTINEL
5724 };
5725 #endif
5726 
5727 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5728                                      bool isread)
5729 {
5730     int el = arm_current_el(env);
5731 
5732     if (el == 0) {
5733         uint64_t sctlr = arm_sctlr(env, el);
5734         if (!(sctlr & SCTLR_EnRCTX)) {
5735             return CP_ACCESS_TRAP;
5736         }
5737     } else if (el == 1) {
5738         uint64_t hcr = arm_hcr_el2_eff(env);
5739         if (hcr & HCR_NV) {
5740             return CP_ACCESS_TRAP_EL2;
5741         }
5742     }
5743     return CP_ACCESS_OK;
5744 }
5745 
5746 static const ARMCPRegInfo predinv_reginfo[] = {
5747     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5748       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5749       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5750     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5751       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5752       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5753     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5754       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5755       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5756     /*
5757      * Note the AArch32 opcodes have a different OPC1.
5758      */
5759     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5760       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5761       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5762     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5763       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5764       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5765     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5766       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5767       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5768     REGINFO_SENTINEL
5769 };
5770 
5771 void register_cp_regs_for_features(ARMCPU *cpu)
5772 {
5773     /* Register all the coprocessor registers based on feature bits */
5774     CPUARMState *env = &cpu->env;
5775     if (arm_feature(env, ARM_FEATURE_M)) {
5776         /* M profile has no coprocessor registers */
5777         return;
5778     }
5779 
5780     define_arm_cp_regs(cpu, cp_reginfo);
5781     if (!arm_feature(env, ARM_FEATURE_V8)) {
5782         /* Must go early as it is full of wildcards that may be
5783          * overridden by later definitions.
5784          */
5785         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5786     }
5787 
5788     if (arm_feature(env, ARM_FEATURE_V6)) {
5789         /* The ID registers all have impdef reset values */
5790         ARMCPRegInfo v6_idregs[] = {
5791             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5793               .access = PL1_R, .type = ARM_CP_CONST,
5794               .resetvalue = cpu->id_pfr0 },
5795             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5796              * the value of the GIC field until after we define these regs.
5797              */
5798             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5799               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5800               .access = PL1_R, .type = ARM_CP_NO_RAW,
5801               .readfn = id_pfr1_read,
5802               .writefn = arm_cp_write_ignore },
5803             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5804               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5805               .access = PL1_R, .type = ARM_CP_CONST,
5806               .resetvalue = cpu->id_dfr0 },
5807             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5808               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5809               .access = PL1_R, .type = ARM_CP_CONST,
5810               .resetvalue = cpu->id_afr0 },
5811             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5812               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5813               .access = PL1_R, .type = ARM_CP_CONST,
5814               .resetvalue = cpu->id_mmfr0 },
5815             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5816               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5817               .access = PL1_R, .type = ARM_CP_CONST,
5818               .resetvalue = cpu->id_mmfr1 },
5819             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5820               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5821               .access = PL1_R, .type = ARM_CP_CONST,
5822               .resetvalue = cpu->id_mmfr2 },
5823             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5824               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5825               .access = PL1_R, .type = ARM_CP_CONST,
5826               .resetvalue = cpu->id_mmfr3 },
5827             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5828               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5829               .access = PL1_R, .type = ARM_CP_CONST,
5830               .resetvalue = cpu->isar.id_isar0 },
5831             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5832               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5833               .access = PL1_R, .type = ARM_CP_CONST,
5834               .resetvalue = cpu->isar.id_isar1 },
5835             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5836               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5837               .access = PL1_R, .type = ARM_CP_CONST,
5838               .resetvalue = cpu->isar.id_isar2 },
5839             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5840               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5841               .access = PL1_R, .type = ARM_CP_CONST,
5842               .resetvalue = cpu->isar.id_isar3 },
5843             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5844               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5845               .access = PL1_R, .type = ARM_CP_CONST,
5846               .resetvalue = cpu->isar.id_isar4 },
5847             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5848               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5849               .access = PL1_R, .type = ARM_CP_CONST,
5850               .resetvalue = cpu->isar.id_isar5 },
5851             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5852               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5853               .access = PL1_R, .type = ARM_CP_CONST,
5854               .resetvalue = cpu->id_mmfr4 },
5855             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5856               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5857               .access = PL1_R, .type = ARM_CP_CONST,
5858               .resetvalue = cpu->isar.id_isar6 },
5859             REGINFO_SENTINEL
5860         };
5861         define_arm_cp_regs(cpu, v6_idregs);
5862         define_arm_cp_regs(cpu, v6_cp_reginfo);
5863     } else {
5864         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5865     }
5866     if (arm_feature(env, ARM_FEATURE_V6K)) {
5867         define_arm_cp_regs(cpu, v6k_cp_reginfo);
5868     }
5869     if (arm_feature(env, ARM_FEATURE_V7MP) &&
5870         !arm_feature(env, ARM_FEATURE_PMSA)) {
5871         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5872     }
5873     if (arm_feature(env, ARM_FEATURE_V7VE)) {
5874         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5875     }
5876     if (arm_feature(env, ARM_FEATURE_V7)) {
5877         /* v7 performance monitor control register: same implementor
5878          * field as main ID register, and we implement four counters in
5879          * addition to the cycle count register.
5880          */
5881         unsigned int i, pmcrn = 4;
5882         ARMCPRegInfo pmcr = {
5883             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5884             .access = PL0_RW,
5885             .type = ARM_CP_IO | ARM_CP_ALIAS,
5886             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5887             .accessfn = pmreg_access, .writefn = pmcr_write,
5888             .raw_writefn = raw_write,
5889         };
5890         ARMCPRegInfo pmcr64 = {
5891             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5892             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5893             .access = PL0_RW, .accessfn = pmreg_access,
5894             .type = ARM_CP_IO,
5895             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5896             .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
5897             .writefn = pmcr_write, .raw_writefn = raw_write,
5898         };
5899         define_one_arm_cp_reg(cpu, &pmcr);
5900         define_one_arm_cp_reg(cpu, &pmcr64);
5901         for (i = 0; i < pmcrn; i++) {
5902             char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5903             char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5904             char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5905             char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5906             ARMCPRegInfo pmev_regs[] = {
5907                 { .name = pmevcntr_name, .cp = 15, .crn = 14,
5908                   .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5909                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5910                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5911                   .accessfn = pmreg_access },
5912                 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
5913                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
5914                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5915                   .type = ARM_CP_IO,
5916                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5917                   .raw_readfn = pmevcntr_rawread,
5918                   .raw_writefn = pmevcntr_rawwrite },
5919                 { .name = pmevtyper_name, .cp = 15, .crn = 14,
5920                   .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5921                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5922                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5923                   .accessfn = pmreg_access },
5924                 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
5925                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
5926                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5927                   .type = ARM_CP_IO,
5928                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5929                   .raw_writefn = pmevtyper_rawwrite },
5930                 REGINFO_SENTINEL
5931             };
5932             define_arm_cp_regs(cpu, pmev_regs);
5933             g_free(pmevcntr_name);
5934             g_free(pmevcntr_el0_name);
5935             g_free(pmevtyper_name);
5936             g_free(pmevtyper_el0_name);
5937         }
5938         ARMCPRegInfo clidr = {
5939             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5940             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5941             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5942         };
5943         define_one_arm_cp_reg(cpu, &clidr);
5944         define_arm_cp_regs(cpu, v7_cp_reginfo);
5945         define_debug_regs(cpu);
5946     } else {
5947         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5948     }
5949     if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
5950             FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
5951         ARMCPRegInfo v81_pmu_regs[] = {
5952             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
5953               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
5954               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5955               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
5956             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
5957               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
5958               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5959               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
5960             REGINFO_SENTINEL
5961         };
5962         define_arm_cp_regs(cpu, v81_pmu_regs);
5963     }
5964     if (arm_feature(env, ARM_FEATURE_V8)) {
5965         /* AArch64 ID registers, which all have impdef reset values.
5966          * Note that within the ID register ranges the unused slots
5967          * must all RAZ, not UNDEF; future architecture versions may
5968          * define new registers here.
5969          */
5970         ARMCPRegInfo v8_idregs[] = {
5971             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5972              * know the right value for the GIC field until after we
5973              * define these regs.
5974              */
5975             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5976               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5977               .access = PL1_R, .type = ARM_CP_NO_RAW,
5978               .readfn = id_aa64pfr0_read,
5979               .writefn = arm_cp_write_ignore },
5980             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5981               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5982               .access = PL1_R, .type = ARM_CP_CONST,
5983               .resetvalue = cpu->isar.id_aa64pfr1},
5984             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5985               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5986               .access = PL1_R, .type = ARM_CP_CONST,
5987               .resetvalue = 0 },
5988             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5989               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5990               .access = PL1_R, .type = ARM_CP_CONST,
5991               .resetvalue = 0 },
5992             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5993               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5994               .access = PL1_R, .type = ARM_CP_CONST,
5995               /* At present, only SVEver == 0 is defined anyway.  */
5996               .resetvalue = 0 },
5997             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5998               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5999               .access = PL1_R, .type = ARM_CP_CONST,
6000               .resetvalue = 0 },
6001             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6002               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6003               .access = PL1_R, .type = ARM_CP_CONST,
6004               .resetvalue = 0 },
6005             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6006               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6007               .access = PL1_R, .type = ARM_CP_CONST,
6008               .resetvalue = 0 },
6009             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6010               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6011               .access = PL1_R, .type = ARM_CP_CONST,
6012               .resetvalue = cpu->id_aa64dfr0 },
6013             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6014               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6015               .access = PL1_R, .type = ARM_CP_CONST,
6016               .resetvalue = cpu->id_aa64dfr1 },
6017             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6018               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6019               .access = PL1_R, .type = ARM_CP_CONST,
6020               .resetvalue = 0 },
6021             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6022               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6023               .access = PL1_R, .type = ARM_CP_CONST,
6024               .resetvalue = 0 },
6025             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6026               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6027               .access = PL1_R, .type = ARM_CP_CONST,
6028               .resetvalue = cpu->id_aa64afr0 },
6029             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6030               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6031               .access = PL1_R, .type = ARM_CP_CONST,
6032               .resetvalue = cpu->id_aa64afr1 },
6033             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6034               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6035               .access = PL1_R, .type = ARM_CP_CONST,
6036               .resetvalue = 0 },
6037             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6038               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6039               .access = PL1_R, .type = ARM_CP_CONST,
6040               .resetvalue = 0 },
6041             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6042               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6043               .access = PL1_R, .type = ARM_CP_CONST,
6044               .resetvalue = cpu->isar.id_aa64isar0 },
6045             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6046               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6047               .access = PL1_R, .type = ARM_CP_CONST,
6048               .resetvalue = cpu->isar.id_aa64isar1 },
6049             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6050               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6051               .access = PL1_R, .type = ARM_CP_CONST,
6052               .resetvalue = 0 },
6053             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6054               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6055               .access = PL1_R, .type = ARM_CP_CONST,
6056               .resetvalue = 0 },
6057             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6058               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6059               .access = PL1_R, .type = ARM_CP_CONST,
6060               .resetvalue = 0 },
6061             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6062               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6063               .access = PL1_R, .type = ARM_CP_CONST,
6064               .resetvalue = 0 },
6065             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6066               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6067               .access = PL1_R, .type = ARM_CP_CONST,
6068               .resetvalue = 0 },
6069             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6070               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6071               .access = PL1_R, .type = ARM_CP_CONST,
6072               .resetvalue = 0 },
6073             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6074               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6075               .access = PL1_R, .type = ARM_CP_CONST,
6076               .resetvalue = cpu->isar.id_aa64mmfr0 },
6077             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6078               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6079               .access = PL1_R, .type = ARM_CP_CONST,
6080               .resetvalue = cpu->isar.id_aa64mmfr1 },
6081             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6082               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6083               .access = PL1_R, .type = ARM_CP_CONST,
6084               .resetvalue = 0 },
6085             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6086               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6087               .access = PL1_R, .type = ARM_CP_CONST,
6088               .resetvalue = 0 },
6089             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6090               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6091               .access = PL1_R, .type = ARM_CP_CONST,
6092               .resetvalue = 0 },
6093             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6094               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6095               .access = PL1_R, .type = ARM_CP_CONST,
6096               .resetvalue = 0 },
6097             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6098               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6099               .access = PL1_R, .type = ARM_CP_CONST,
6100               .resetvalue = 0 },
6101             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6102               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6103               .access = PL1_R, .type = ARM_CP_CONST,
6104               .resetvalue = 0 },
6105             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6106               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6107               .access = PL1_R, .type = ARM_CP_CONST,
6108               .resetvalue = cpu->isar.mvfr0 },
6109             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6110               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6111               .access = PL1_R, .type = ARM_CP_CONST,
6112               .resetvalue = cpu->isar.mvfr1 },
6113             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6114               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6115               .access = PL1_R, .type = ARM_CP_CONST,
6116               .resetvalue = cpu->isar.mvfr2 },
6117             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6118               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6119               .access = PL1_R, .type = ARM_CP_CONST,
6120               .resetvalue = 0 },
6121             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6122               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6123               .access = PL1_R, .type = ARM_CP_CONST,
6124               .resetvalue = 0 },
6125             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6126               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6127               .access = PL1_R, .type = ARM_CP_CONST,
6128               .resetvalue = 0 },
6129             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6130               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6131               .access = PL1_R, .type = ARM_CP_CONST,
6132               .resetvalue = 0 },
6133             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6134               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6135               .access = PL1_R, .type = ARM_CP_CONST,
6136               .resetvalue = 0 },
6137             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6138               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6139               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6140               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6141             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6142               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6143               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6144               .resetvalue = cpu->pmceid0 },
6145             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6146               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6147               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6148               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6149             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6150               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6151               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6152               .resetvalue = cpu->pmceid1 },
6153             REGINFO_SENTINEL
6154         };
6155 #ifdef CONFIG_USER_ONLY
6156         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6157             { .name = "ID_AA64PFR0_EL1",
6158               .exported_bits = 0x000f000f00ff0000,
6159               .fixed_bits    = 0x0000000000000011 },
6160             { .name = "ID_AA64PFR1_EL1",
6161               .exported_bits = 0x00000000000000f0 },
6162             { .name = "ID_AA64PFR*_EL1_RESERVED",
6163               .is_glob = true                     },
6164             { .name = "ID_AA64ZFR0_EL1"           },
6165             { .name = "ID_AA64MMFR0_EL1",
6166               .fixed_bits    = 0x00000000ff000000 },
6167             { .name = "ID_AA64MMFR1_EL1"          },
6168             { .name = "ID_AA64MMFR*_EL1_RESERVED",
6169               .is_glob = true                     },
6170             { .name = "ID_AA64DFR0_EL1",
6171               .fixed_bits    = 0x0000000000000006 },
6172             { .name = "ID_AA64DFR1_EL1"           },
6173             { .name = "ID_AA64DFR*_EL1_RESERVED",
6174               .is_glob = true                     },
6175             { .name = "ID_AA64AFR*",
6176               .is_glob = true                     },
6177             { .name = "ID_AA64ISAR0_EL1",
6178               .exported_bits = 0x00fffffff0fffff0 },
6179             { .name = "ID_AA64ISAR1_EL1",
6180               .exported_bits = 0x000000f0ffffffff },
6181             { .name = "ID_AA64ISAR*_EL1_RESERVED",
6182               .is_glob = true                     },
6183             REGUSERINFO_SENTINEL
6184         };
6185         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6186 #endif
6187         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6188         if (!arm_feature(env, ARM_FEATURE_EL3) &&
6189             !arm_feature(env, ARM_FEATURE_EL2)) {
6190             ARMCPRegInfo rvbar = {
6191                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6192                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6193                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6194             };
6195             define_one_arm_cp_reg(cpu, &rvbar);
6196         }
6197         define_arm_cp_regs(cpu, v8_idregs);
6198         define_arm_cp_regs(cpu, v8_cp_reginfo);
6199     }
6200     if (arm_feature(env, ARM_FEATURE_EL2)) {
6201         uint64_t vmpidr_def = mpidr_read_val(env);
6202         ARMCPRegInfo vpidr_regs[] = {
6203             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6204               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6205               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6206               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6207               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6208             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6209               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6210               .access = PL2_RW, .resetvalue = cpu->midr,
6211               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6212             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6213               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6214               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6215               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6216               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6217             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6218               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6219               .access = PL2_RW,
6220               .resetvalue = vmpidr_def,
6221               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6222             REGINFO_SENTINEL
6223         };
6224         define_arm_cp_regs(cpu, vpidr_regs);
6225         define_arm_cp_regs(cpu, el2_cp_reginfo);
6226         if (arm_feature(env, ARM_FEATURE_V8)) {
6227             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6228         }
6229         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6230         if (!arm_feature(env, ARM_FEATURE_EL3)) {
6231             ARMCPRegInfo rvbar = {
6232                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6233                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6234                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6235             };
6236             define_one_arm_cp_reg(cpu, &rvbar);
6237         }
6238     } else {
6239         /* If EL2 is missing but higher ELs are enabled, we need to
6240          * register the no_el2 reginfos.
6241          */
6242         if (arm_feature(env, ARM_FEATURE_EL3)) {
6243             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6244              * of MIDR_EL1 and MPIDR_EL1.
6245              */
6246             ARMCPRegInfo vpidr_regs[] = {
6247                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6248                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6249                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6250                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6251                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6252                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6253                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6254                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6255                   .type = ARM_CP_NO_RAW,
6256                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6257                 REGINFO_SENTINEL
6258             };
6259             define_arm_cp_regs(cpu, vpidr_regs);
6260             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6261             if (arm_feature(env, ARM_FEATURE_V8)) {
6262                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6263             }
6264         }
6265     }
6266     if (arm_feature(env, ARM_FEATURE_EL3)) {
6267         define_arm_cp_regs(cpu, el3_cp_reginfo);
6268         ARMCPRegInfo el3_regs[] = {
6269             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6270               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6271               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6272             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6273               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6274               .access = PL3_RW,
6275               .raw_writefn = raw_write, .writefn = sctlr_write,
6276               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6277               .resetvalue = cpu->reset_sctlr },
6278             REGINFO_SENTINEL
6279         };
6280 
6281         define_arm_cp_regs(cpu, el3_regs);
6282     }
6283     /* The behaviour of NSACR is sufficiently various that we don't
6284      * try to describe it in a single reginfo:
6285      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
6286      *     reads as constant 0xc00 from NS EL1 and NS EL2
6287      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6288      *  if v7 without EL3, register doesn't exist
6289      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6290      */
6291     if (arm_feature(env, ARM_FEATURE_EL3)) {
6292         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6293             ARMCPRegInfo nsacr = {
6294                 .name = "NSACR", .type = ARM_CP_CONST,
6295                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6296                 .access = PL1_RW, .accessfn = nsacr_access,
6297                 .resetvalue = 0xc00
6298             };
6299             define_one_arm_cp_reg(cpu, &nsacr);
6300         } else {
6301             ARMCPRegInfo nsacr = {
6302                 .name = "NSACR",
6303                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6304                 .access = PL3_RW | PL1_R,
6305                 .resetvalue = 0,
6306                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6307             };
6308             define_one_arm_cp_reg(cpu, &nsacr);
6309         }
6310     } else {
6311         if (arm_feature(env, ARM_FEATURE_V8)) {
6312             ARMCPRegInfo nsacr = {
6313                 .name = "NSACR", .type = ARM_CP_CONST,
6314                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6315                 .access = PL1_R,
6316                 .resetvalue = 0xc00
6317             };
6318             define_one_arm_cp_reg(cpu, &nsacr);
6319         }
6320     }
6321 
6322     if (arm_feature(env, ARM_FEATURE_PMSA)) {
6323         if (arm_feature(env, ARM_FEATURE_V6)) {
6324             /* PMSAv6 not implemented */
6325             assert(arm_feature(env, ARM_FEATURE_V7));
6326             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6327             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6328         } else {
6329             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6330         }
6331     } else {
6332         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6333         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6334         /* TTCBR2 is introduced with ARMv8.2-A32HPD.  */
6335         if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6336             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6337         }
6338     }
6339     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6340         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6341     }
6342     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6343         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6344     }
6345     if (arm_feature(env, ARM_FEATURE_VAPA)) {
6346         define_arm_cp_regs(cpu, vapa_cp_reginfo);
6347     }
6348     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6349         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6350     }
6351     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6352         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6353     }
6354     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6355         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6356     }
6357     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6358         define_arm_cp_regs(cpu, omap_cp_reginfo);
6359     }
6360     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6361         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6362     }
6363     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6364         define_arm_cp_regs(cpu, xscale_cp_reginfo);
6365     }
6366     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6367         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6368     }
6369     if (arm_feature(env, ARM_FEATURE_LPAE)) {
6370         define_arm_cp_regs(cpu, lpae_cp_reginfo);
6371     }
6372     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6373      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6374      * be read-only (ie write causes UNDEF exception).
6375      */
6376     {
6377         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6378             /* Pre-v8 MIDR space.
6379              * Note that the MIDR isn't a simple constant register because
6380              * of the TI925 behaviour where writes to another register can
6381              * cause the MIDR value to change.
6382              *
6383              * Unimplemented registers in the c15 0 0 0 space default to
6384              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6385              * and friends override accordingly.
6386              */
6387             { .name = "MIDR",
6388               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6389               .access = PL1_R, .resetvalue = cpu->midr,
6390               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6391               .readfn = midr_read,
6392               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6393               .type = ARM_CP_OVERRIDE },
6394             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6395             { .name = "DUMMY",
6396               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6397               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6398             { .name = "DUMMY",
6399               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6400               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6401             { .name = "DUMMY",
6402               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6403               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6404             { .name = "DUMMY",
6405               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6406               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6407             { .name = "DUMMY",
6408               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6409               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6410             REGINFO_SENTINEL
6411         };
6412         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6413             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6414               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6415               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6416               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6417               .readfn = midr_read },
6418             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6419             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6420               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6421               .access = PL1_R, .resetvalue = cpu->midr },
6422             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6423               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6424               .access = PL1_R, .resetvalue = cpu->midr },
6425             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6426               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6427               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6428             REGINFO_SENTINEL
6429         };
6430         ARMCPRegInfo id_cp_reginfo[] = {
6431             /* These are common to v8 and pre-v8 */
6432             { .name = "CTR",
6433               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6434               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6435             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6436               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6437               .access = PL0_R, .accessfn = ctr_el0_access,
6438               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6439             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6440             { .name = "TCMTR",
6441               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6442               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6443             REGINFO_SENTINEL
6444         };
6445         /* TLBTR is specific to VMSA */
6446         ARMCPRegInfo id_tlbtr_reginfo = {
6447               .name = "TLBTR",
6448               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6449               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6450         };
6451         /* MPUIR is specific to PMSA V6+ */
6452         ARMCPRegInfo id_mpuir_reginfo = {
6453               .name = "MPUIR",
6454               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6455               .access = PL1_R, .type = ARM_CP_CONST,
6456               .resetvalue = cpu->pmsav7_dregion << 8
6457         };
6458         ARMCPRegInfo crn0_wi_reginfo = {
6459             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6460             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6461             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6462         };
6463 #ifdef CONFIG_USER_ONLY
6464         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6465             { .name = "MIDR_EL1",
6466               .exported_bits = 0x00000000ffffffff },
6467             { .name = "REVIDR_EL1"                },
6468             REGUSERINFO_SENTINEL
6469         };
6470         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6471 #endif
6472         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6473             arm_feature(env, ARM_FEATURE_STRONGARM)) {
6474             ARMCPRegInfo *r;
6475             /* Register the blanket "writes ignored" value first to cover the
6476              * whole space. Then update the specific ID registers to allow write
6477              * access, so that they ignore writes rather than causing them to
6478              * UNDEF.
6479              */
6480             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6481             for (r = id_pre_v8_midr_cp_reginfo;
6482                  r->type != ARM_CP_SENTINEL; r++) {
6483                 r->access = PL1_RW;
6484             }
6485             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6486                 r->access = PL1_RW;
6487             }
6488             id_mpuir_reginfo.access = PL1_RW;
6489             id_tlbtr_reginfo.access = PL1_RW;
6490         }
6491         if (arm_feature(env, ARM_FEATURE_V8)) {
6492             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6493         } else {
6494             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6495         }
6496         define_arm_cp_regs(cpu, id_cp_reginfo);
6497         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6498             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6499         } else if (arm_feature(env, ARM_FEATURE_V7)) {
6500             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6501         }
6502     }
6503 
6504     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6505         ARMCPRegInfo mpidr_cp_reginfo[] = {
6506             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6507               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6508               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6509             REGINFO_SENTINEL
6510         };
6511 #ifdef CONFIG_USER_ONLY
6512         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6513             { .name = "MPIDR_EL1",
6514               .fixed_bits = 0x0000000080000000 },
6515             REGUSERINFO_SENTINEL
6516         };
6517         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6518 #endif
6519         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6520     }
6521 
6522     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6523         ARMCPRegInfo auxcr_reginfo[] = {
6524             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6525               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6526               .access = PL1_RW, .type = ARM_CP_CONST,
6527               .resetvalue = cpu->reset_auxcr },
6528             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6529               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6530               .access = PL2_RW, .type = ARM_CP_CONST,
6531               .resetvalue = 0 },
6532             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6533               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6534               .access = PL3_RW, .type = ARM_CP_CONST,
6535               .resetvalue = 0 },
6536             REGINFO_SENTINEL
6537         };
6538         define_arm_cp_regs(cpu, auxcr_reginfo);
6539         if (arm_feature(env, ARM_FEATURE_V8)) {
6540             /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6541             ARMCPRegInfo hactlr2_reginfo = {
6542                 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6543                 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6544                 .access = PL2_RW, .type = ARM_CP_CONST,
6545                 .resetvalue = 0
6546             };
6547             define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6548         }
6549     }
6550 
6551     if (arm_feature(env, ARM_FEATURE_CBAR)) {
6552         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6553             /* 32 bit view is [31:18] 0...0 [43:32]. */
6554             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6555                 | extract64(cpu->reset_cbar, 32, 12);
6556             ARMCPRegInfo cbar_reginfo[] = {
6557                 { .name = "CBAR",
6558                   .type = ARM_CP_CONST,
6559                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6560                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
6561                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6562                   .type = ARM_CP_CONST,
6563                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6564                   .access = PL1_R, .resetvalue = cbar32 },
6565                 REGINFO_SENTINEL
6566             };
6567             /* We don't implement a r/w 64 bit CBAR currently */
6568             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6569             define_arm_cp_regs(cpu, cbar_reginfo);
6570         } else {
6571             ARMCPRegInfo cbar = {
6572                 .name = "CBAR",
6573                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6574                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6575                 .fieldoffset = offsetof(CPUARMState,
6576                                         cp15.c15_config_base_address)
6577             };
6578             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6579                 cbar.access = PL1_R;
6580                 cbar.fieldoffset = 0;
6581                 cbar.type = ARM_CP_CONST;
6582             }
6583             define_one_arm_cp_reg(cpu, &cbar);
6584         }
6585     }
6586 
6587     if (arm_feature(env, ARM_FEATURE_VBAR)) {
6588         ARMCPRegInfo vbar_cp_reginfo[] = {
6589             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6590               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6591               .access = PL1_RW, .writefn = vbar_write,
6592               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6593                                      offsetof(CPUARMState, cp15.vbar_ns) },
6594               .resetvalue = 0 },
6595             REGINFO_SENTINEL
6596         };
6597         define_arm_cp_regs(cpu, vbar_cp_reginfo);
6598     }
6599 
6600     /* Generic registers whose values depend on the implementation */
6601     {
6602         ARMCPRegInfo sctlr = {
6603             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6604             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6605             .access = PL1_RW,
6606             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6607                                    offsetof(CPUARMState, cp15.sctlr_ns) },
6608             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6609             .raw_writefn = raw_write,
6610         };
6611         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6612             /* Normally we would always end the TB on an SCTLR write, but Linux
6613              * arch/arm/mach-pxa/sleep.S expects two instructions following
6614              * an MMU enable to execute from cache.  Imitate this behaviour.
6615              */
6616             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6617         }
6618         define_one_arm_cp_reg(cpu, &sctlr);
6619     }
6620 
6621     if (cpu_isar_feature(aa64_lor, cpu)) {
6622         /*
6623          * A trivial implementation of ARMv8.1-LOR leaves all of these
6624          * registers fixed at 0, which indicates that there are zero
6625          * supported Limited Ordering regions.
6626          */
6627         static const ARMCPRegInfo lor_reginfo[] = {
6628             { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6629               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6630               .access = PL1_RW, .accessfn = access_lor_other,
6631               .type = ARM_CP_CONST, .resetvalue = 0 },
6632             { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6633               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6634               .access = PL1_RW, .accessfn = access_lor_other,
6635               .type = ARM_CP_CONST, .resetvalue = 0 },
6636             { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6637               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6638               .access = PL1_RW, .accessfn = access_lor_other,
6639               .type = ARM_CP_CONST, .resetvalue = 0 },
6640             { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6641               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6642               .access = PL1_RW, .accessfn = access_lor_other,
6643               .type = ARM_CP_CONST, .resetvalue = 0 },
6644             { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6645               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6646               .access = PL1_R, .accessfn = access_lorid,
6647               .type = ARM_CP_CONST, .resetvalue = 0 },
6648             REGINFO_SENTINEL
6649         };
6650         define_arm_cp_regs(cpu, lor_reginfo);
6651     }
6652 
6653     if (cpu_isar_feature(aa64_sve, cpu)) {
6654         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6655         if (arm_feature(env, ARM_FEATURE_EL2)) {
6656             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6657         } else {
6658             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6659         }
6660         if (arm_feature(env, ARM_FEATURE_EL3)) {
6661             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6662         }
6663     }
6664 
6665 #ifdef TARGET_AARCH64
6666     if (cpu_isar_feature(aa64_pauth, cpu)) {
6667         define_arm_cp_regs(cpu, pauth_reginfo);
6668     }
6669 #endif
6670 
6671     /*
6672      * While all v8.0 cpus support aarch64, QEMU does have configurations
6673      * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6674      * which will set ID_ISAR6.
6675      */
6676     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6677         ? cpu_isar_feature(aa64_predinv, cpu)
6678         : cpu_isar_feature(aa32_predinv, cpu)) {
6679         define_arm_cp_regs(cpu, predinv_reginfo);
6680     }
6681 }
6682 
6683 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6684 {
6685     CPUState *cs = CPU(cpu);
6686     CPUARMState *env = &cpu->env;
6687 
6688     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6689         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6690                                  aarch64_fpu_gdb_set_reg,
6691                                  34, "aarch64-fpu.xml", 0);
6692     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6693         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6694                                  51, "arm-neon.xml", 0);
6695     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6696         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6697                                  35, "arm-vfp3.xml", 0);
6698     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6699         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6700                                  19, "arm-vfp.xml", 0);
6701     }
6702     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6703                              arm_gen_dynamic_xml(cs),
6704                              "system-registers.xml", 0);
6705 }
6706 
6707 /* Sort alphabetically by type name, except for "any". */
6708 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6709 {
6710     ObjectClass *class_a = (ObjectClass *)a;
6711     ObjectClass *class_b = (ObjectClass *)b;
6712     const char *name_a, *name_b;
6713 
6714     name_a = object_class_get_name(class_a);
6715     name_b = object_class_get_name(class_b);
6716     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6717         return 1;
6718     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6719         return -1;
6720     } else {
6721         return strcmp(name_a, name_b);
6722     }
6723 }
6724 
6725 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6726 {
6727     ObjectClass *oc = data;
6728     const char *typename;
6729     char *name;
6730 
6731     typename = object_class_get_name(oc);
6732     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6733     qemu_printf("  %s\n", name);
6734     g_free(name);
6735 }
6736 
6737 void arm_cpu_list(void)
6738 {
6739     GSList *list;
6740 
6741     list = object_class_get_list(TYPE_ARM_CPU, false);
6742     list = g_slist_sort(list, arm_cpu_list_compare);
6743     qemu_printf("Available CPUs:\n");
6744     g_slist_foreach(list, arm_cpu_list_entry, NULL);
6745     g_slist_free(list);
6746 }
6747 
6748 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6749 {
6750     ObjectClass *oc = data;
6751     CpuDefinitionInfoList **cpu_list = user_data;
6752     CpuDefinitionInfoList *entry;
6753     CpuDefinitionInfo *info;
6754     const char *typename;
6755 
6756     typename = object_class_get_name(oc);
6757     info = g_malloc0(sizeof(*info));
6758     info->name = g_strndup(typename,
6759                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
6760     info->q_typename = g_strdup(typename);
6761 
6762     entry = g_malloc0(sizeof(*entry));
6763     entry->value = info;
6764     entry->next = *cpu_list;
6765     *cpu_list = entry;
6766 }
6767 
6768 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6769 {
6770     CpuDefinitionInfoList *cpu_list = NULL;
6771     GSList *list;
6772 
6773     list = object_class_get_list(TYPE_ARM_CPU, false);
6774     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6775     g_slist_free(list);
6776 
6777     return cpu_list;
6778 }
6779 
6780 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6781                                    void *opaque, int state, int secstate,
6782                                    int crm, int opc1, int opc2,
6783                                    const char *name)
6784 {
6785     /* Private utility function for define_one_arm_cp_reg_with_opaque():
6786      * add a single reginfo struct to the hash table.
6787      */
6788     uint32_t *key = g_new(uint32_t, 1);
6789     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6790     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6791     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6792 
6793     r2->name = g_strdup(name);
6794     /* Reset the secure state to the specific incoming state.  This is
6795      * necessary as the register may have been defined with both states.
6796      */
6797     r2->secure = secstate;
6798 
6799     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6800         /* Register is banked (using both entries in array).
6801          * Overwriting fieldoffset as the array is only used to define
6802          * banked registers but later only fieldoffset is used.
6803          */
6804         r2->fieldoffset = r->bank_fieldoffsets[ns];
6805     }
6806 
6807     if (state == ARM_CP_STATE_AA32) {
6808         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6809             /* If the register is banked then we don't need to migrate or
6810              * reset the 32-bit instance in certain cases:
6811              *
6812              * 1) If the register has both 32-bit and 64-bit instances then we
6813              *    can count on the 64-bit instance taking care of the
6814              *    non-secure bank.
6815              * 2) If ARMv8 is enabled then we can count on a 64-bit version
6816              *    taking care of the secure bank.  This requires that separate
6817              *    32 and 64-bit definitions are provided.
6818              */
6819             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6820                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6821                 r2->type |= ARM_CP_ALIAS;
6822             }
6823         } else if ((secstate != r->secure) && !ns) {
6824             /* The register is not banked so we only want to allow migration of
6825              * the non-secure instance.
6826              */
6827             r2->type |= ARM_CP_ALIAS;
6828         }
6829 
6830         if (r->state == ARM_CP_STATE_BOTH) {
6831             /* We assume it is a cp15 register if the .cp field is left unset.
6832              */
6833             if (r2->cp == 0) {
6834                 r2->cp = 15;
6835             }
6836 
6837 #ifdef HOST_WORDS_BIGENDIAN
6838             if (r2->fieldoffset) {
6839                 r2->fieldoffset += sizeof(uint32_t);
6840             }
6841 #endif
6842         }
6843     }
6844     if (state == ARM_CP_STATE_AA64) {
6845         /* To allow abbreviation of ARMCPRegInfo
6846          * definitions, we treat cp == 0 as equivalent to
6847          * the value for "standard guest-visible sysreg".
6848          * STATE_BOTH definitions are also always "standard
6849          * sysreg" in their AArch64 view (the .cp value may
6850          * be non-zero for the benefit of the AArch32 view).
6851          */
6852         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6853             r2->cp = CP_REG_ARM64_SYSREG_CP;
6854         }
6855         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6856                                   r2->opc0, opc1, opc2);
6857     } else {
6858         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6859     }
6860     if (opaque) {
6861         r2->opaque = opaque;
6862     }
6863     /* reginfo passed to helpers is correct for the actual access,
6864      * and is never ARM_CP_STATE_BOTH:
6865      */
6866     r2->state = state;
6867     /* Make sure reginfo passed to helpers for wildcarded regs
6868      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6869      */
6870     r2->crm = crm;
6871     r2->opc1 = opc1;
6872     r2->opc2 = opc2;
6873     /* By convention, for wildcarded registers only the first
6874      * entry is used for migration; the others are marked as
6875      * ALIAS so we don't try to transfer the register
6876      * multiple times. Special registers (ie NOP/WFI) are
6877      * never migratable and not even raw-accessible.
6878      */
6879     if ((r->type & ARM_CP_SPECIAL)) {
6880         r2->type |= ARM_CP_NO_RAW;
6881     }
6882     if (((r->crm == CP_ANY) && crm != 0) ||
6883         ((r->opc1 == CP_ANY) && opc1 != 0) ||
6884         ((r->opc2 == CP_ANY) && opc2 != 0)) {
6885         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6886     }
6887 
6888     /* Check that raw accesses are either forbidden or handled. Note that
6889      * we can't assert this earlier because the setup of fieldoffset for
6890      * banked registers has to be done first.
6891      */
6892     if (!(r2->type & ARM_CP_NO_RAW)) {
6893         assert(!raw_accessors_invalid(r2));
6894     }
6895 
6896     /* Overriding of an existing definition must be explicitly
6897      * requested.
6898      */
6899     if (!(r->type & ARM_CP_OVERRIDE)) {
6900         ARMCPRegInfo *oldreg;
6901         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6902         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6903             fprintf(stderr, "Register redefined: cp=%d %d bit "
6904                     "crn=%d crm=%d opc1=%d opc2=%d, "
6905                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6906                     r2->crn, r2->crm, r2->opc1, r2->opc2,
6907                     oldreg->name, r2->name);
6908             g_assert_not_reached();
6909         }
6910     }
6911     g_hash_table_insert(cpu->cp_regs, key, r2);
6912 }
6913 
6914 
6915 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6916                                        const ARMCPRegInfo *r, void *opaque)
6917 {
6918     /* Define implementations of coprocessor registers.
6919      * We store these in a hashtable because typically
6920      * there are less than 150 registers in a space which
6921      * is 16*16*16*8*8 = 262144 in size.
6922      * Wildcarding is supported for the crm, opc1 and opc2 fields.
6923      * If a register is defined twice then the second definition is
6924      * used, so this can be used to define some generic registers and
6925      * then override them with implementation specific variations.
6926      * At least one of the original and the second definition should
6927      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6928      * against accidental use.
6929      *
6930      * The state field defines whether the register is to be
6931      * visible in the AArch32 or AArch64 execution state. If the
6932      * state is set to ARM_CP_STATE_BOTH then we synthesise a
6933      * reginfo structure for the AArch32 view, which sees the lower
6934      * 32 bits of the 64 bit register.
6935      *
6936      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6937      * be wildcarded. AArch64 registers are always considered to be 64
6938      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6939      * the register, if any.
6940      */
6941     int crm, opc1, opc2, state;
6942     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
6943     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
6944     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
6945     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
6946     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6947     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6948     /* 64 bit registers have only CRm and Opc1 fields */
6949     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
6950     /* op0 only exists in the AArch64 encodings */
6951     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6952     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6953     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6954     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6955      * encodes a minimum access level for the register. We roll this
6956      * runtime check into our general permission check code, so check
6957      * here that the reginfo's specified permissions are strict enough
6958      * to encompass the generic architectural permission check.
6959      */
6960     if (r->state != ARM_CP_STATE_AA32) {
6961         int mask = 0;
6962         switch (r->opc1) {
6963         case 0:
6964             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
6965             mask = PL0U_R | PL1_RW;
6966             break;
6967         case 1: case 2:
6968             /* min_EL EL1 */
6969             mask = PL1_RW;
6970             break;
6971         case 3:
6972             /* min_EL EL0 */
6973             mask = PL0_RW;
6974             break;
6975         case 4:
6976             /* min_EL EL2 */
6977             mask = PL2_RW;
6978             break;
6979         case 5:
6980             /* unallocated encoding, so not possible */
6981             assert(false);
6982             break;
6983         case 6:
6984             /* min_EL EL3 */
6985             mask = PL3_RW;
6986             break;
6987         case 7:
6988             /* min_EL EL1, secure mode only (we don't check the latter) */
6989             mask = PL1_RW;
6990             break;
6991         default:
6992             /* broken reginfo with out-of-range opc1 */
6993             assert(false);
6994             break;
6995         }
6996         /* assert our permissions are not too lax (stricter is fine) */
6997         assert((r->access & ~mask) == 0);
6998     }
6999 
7000     /* Check that the register definition has enough info to handle
7001      * reads and writes if they are permitted.
7002      */
7003     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7004         if (r->access & PL3_R) {
7005             assert((r->fieldoffset ||
7006                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7007                    r->readfn);
7008         }
7009         if (r->access & PL3_W) {
7010             assert((r->fieldoffset ||
7011                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7012                    r->writefn);
7013         }
7014     }
7015     /* Bad type field probably means missing sentinel at end of reg list */
7016     assert(cptype_valid(r->type));
7017     for (crm = crmmin; crm <= crmmax; crm++) {
7018         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7019             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7020                 for (state = ARM_CP_STATE_AA32;
7021                      state <= ARM_CP_STATE_AA64; state++) {
7022                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7023                         continue;
7024                     }
7025                     if (state == ARM_CP_STATE_AA32) {
7026                         /* Under AArch32 CP registers can be common
7027                          * (same for secure and non-secure world) or banked.
7028                          */
7029                         char *name;
7030 
7031                         switch (r->secure) {
7032                         case ARM_CP_SECSTATE_S:
7033                         case ARM_CP_SECSTATE_NS:
7034                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7035                                                    r->secure, crm, opc1, opc2,
7036                                                    r->name);
7037                             break;
7038                         default:
7039                             name = g_strdup_printf("%s_S", r->name);
7040                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7041                                                    ARM_CP_SECSTATE_S,
7042                                                    crm, opc1, opc2, name);
7043                             g_free(name);
7044                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7045                                                    ARM_CP_SECSTATE_NS,
7046                                                    crm, opc1, opc2, r->name);
7047                             break;
7048                         }
7049                     } else {
7050                         /* AArch64 registers get mapped to non-secure instance
7051                          * of AArch32 */
7052                         add_cpreg_to_hashtable(cpu, r, opaque, state,
7053                                                ARM_CP_SECSTATE_NS,
7054                                                crm, opc1, opc2, r->name);
7055                     }
7056                 }
7057             }
7058         }
7059     }
7060 }
7061 
7062 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7063                                     const ARMCPRegInfo *regs, void *opaque)
7064 {
7065     /* Define a whole list of registers */
7066     const ARMCPRegInfo *r;
7067     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7068         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7069     }
7070 }
7071 
7072 /*
7073  * Modify ARMCPRegInfo for access from userspace.
7074  *
7075  * This is a data driven modification directed by
7076  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7077  * user-space cannot alter any values and dynamic values pertaining to
7078  * execution state are hidden from user space view anyway.
7079  */
7080 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7081 {
7082     const ARMCPRegUserSpaceInfo *m;
7083     ARMCPRegInfo *r;
7084 
7085     for (m = mods; m->name; m++) {
7086         GPatternSpec *pat = NULL;
7087         if (m->is_glob) {
7088             pat = g_pattern_spec_new(m->name);
7089         }
7090         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7091             if (pat && g_pattern_match_string(pat, r->name)) {
7092                 r->type = ARM_CP_CONST;
7093                 r->access = PL0U_R;
7094                 r->resetvalue = 0;
7095                 /* continue */
7096             } else if (strcmp(r->name, m->name) == 0) {
7097                 r->type = ARM_CP_CONST;
7098                 r->access = PL0U_R;
7099                 r->resetvalue &= m->exported_bits;
7100                 r->resetvalue |= m->fixed_bits;
7101                 break;
7102             }
7103         }
7104         if (pat) {
7105             g_pattern_spec_free(pat);
7106         }
7107     }
7108 }
7109 
7110 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7111 {
7112     return g_hash_table_lookup(cpregs, &encoded_cp);
7113 }
7114 
7115 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7116                          uint64_t value)
7117 {
7118     /* Helper coprocessor write function for write-ignore registers */
7119 }
7120 
7121 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7122 {
7123     /* Helper coprocessor write function for read-as-zero registers */
7124     return 0;
7125 }
7126 
7127 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7128 {
7129     /* Helper coprocessor reset function for do-nothing-on-reset registers */
7130 }
7131 
7132 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7133 {
7134     /* Return true if it is not valid for us to switch to
7135      * this CPU mode (ie all the UNPREDICTABLE cases in
7136      * the ARM ARM CPSRWriteByInstr pseudocode).
7137      */
7138 
7139     /* Changes to or from Hyp via MSR and CPS are illegal. */
7140     if (write_type == CPSRWriteByInstr &&
7141         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7142          mode == ARM_CPU_MODE_HYP)) {
7143         return 1;
7144     }
7145 
7146     switch (mode) {
7147     case ARM_CPU_MODE_USR:
7148         return 0;
7149     case ARM_CPU_MODE_SYS:
7150     case ARM_CPU_MODE_SVC:
7151     case ARM_CPU_MODE_ABT:
7152     case ARM_CPU_MODE_UND:
7153     case ARM_CPU_MODE_IRQ:
7154     case ARM_CPU_MODE_FIQ:
7155         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7156          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7157          */
7158         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7159          * and CPS are treated as illegal mode changes.
7160          */
7161         if (write_type == CPSRWriteByInstr &&
7162             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7163             (arm_hcr_el2_eff(env) & HCR_TGE)) {
7164             return 1;
7165         }
7166         return 0;
7167     case ARM_CPU_MODE_HYP:
7168         return !arm_feature(env, ARM_FEATURE_EL2)
7169             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7170     case ARM_CPU_MODE_MON:
7171         return arm_current_el(env) < 3;
7172     default:
7173         return 1;
7174     }
7175 }
7176 
7177 uint32_t cpsr_read(CPUARMState *env)
7178 {
7179     int ZF;
7180     ZF = (env->ZF == 0);
7181     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7182         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7183         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7184         | ((env->condexec_bits & 0xfc) << 8)
7185         | (env->GE << 16) | (env->daif & CPSR_AIF);
7186 }
7187 
7188 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7189                 CPSRWriteType write_type)
7190 {
7191     uint32_t changed_daif;
7192 
7193     if (mask & CPSR_NZCV) {
7194         env->ZF = (~val) & CPSR_Z;
7195         env->NF = val;
7196         env->CF = (val >> 29) & 1;
7197         env->VF = (val << 3) & 0x80000000;
7198     }
7199     if (mask & CPSR_Q)
7200         env->QF = ((val & CPSR_Q) != 0);
7201     if (mask & CPSR_T)
7202         env->thumb = ((val & CPSR_T) != 0);
7203     if (mask & CPSR_IT_0_1) {
7204         env->condexec_bits &= ~3;
7205         env->condexec_bits |= (val >> 25) & 3;
7206     }
7207     if (mask & CPSR_IT_2_7) {
7208         env->condexec_bits &= 3;
7209         env->condexec_bits |= (val >> 8) & 0xfc;
7210     }
7211     if (mask & CPSR_GE) {
7212         env->GE = (val >> 16) & 0xf;
7213     }
7214 
7215     /* In a V7 implementation that includes the security extensions but does
7216      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7217      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7218      * bits respectively.
7219      *
7220      * In a V8 implementation, it is permitted for privileged software to
7221      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7222      */
7223     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7224         arm_feature(env, ARM_FEATURE_EL3) &&
7225         !arm_feature(env, ARM_FEATURE_EL2) &&
7226         !arm_is_secure(env)) {
7227 
7228         changed_daif = (env->daif ^ val) & mask;
7229 
7230         if (changed_daif & CPSR_A) {
7231             /* Check to see if we are allowed to change the masking of async
7232              * abort exceptions from a non-secure state.
7233              */
7234             if (!(env->cp15.scr_el3 & SCR_AW)) {
7235                 qemu_log_mask(LOG_GUEST_ERROR,
7236                               "Ignoring attempt to switch CPSR_A flag from "
7237                               "non-secure world with SCR.AW bit clear\n");
7238                 mask &= ~CPSR_A;
7239             }
7240         }
7241 
7242         if (changed_daif & CPSR_F) {
7243             /* Check to see if we are allowed to change the masking of FIQ
7244              * exceptions from a non-secure state.
7245              */
7246             if (!(env->cp15.scr_el3 & SCR_FW)) {
7247                 qemu_log_mask(LOG_GUEST_ERROR,
7248                               "Ignoring attempt to switch CPSR_F flag from "
7249                               "non-secure world with SCR.FW bit clear\n");
7250                 mask &= ~CPSR_F;
7251             }
7252 
7253             /* Check whether non-maskable FIQ (NMFI) support is enabled.
7254              * If this bit is set software is not allowed to mask
7255              * FIQs, but is allowed to set CPSR_F to 0.
7256              */
7257             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7258                 (val & CPSR_F)) {
7259                 qemu_log_mask(LOG_GUEST_ERROR,
7260                               "Ignoring attempt to enable CPSR_F flag "
7261                               "(non-maskable FIQ [NMFI] support enabled)\n");
7262                 mask &= ~CPSR_F;
7263             }
7264         }
7265     }
7266 
7267     env->daif &= ~(CPSR_AIF & mask);
7268     env->daif |= val & CPSR_AIF & mask;
7269 
7270     if (write_type != CPSRWriteRaw &&
7271         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7272         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7273             /* Note that we can only get here in USR mode if this is a
7274              * gdb stub write; for this case we follow the architectural
7275              * behaviour for guest writes in USR mode of ignoring an attempt
7276              * to switch mode. (Those are caught by translate.c for writes
7277              * triggered by guest instructions.)
7278              */
7279             mask &= ~CPSR_M;
7280         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7281             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7282              * v7, and has defined behaviour in v8:
7283              *  + leave CPSR.M untouched
7284              *  + allow changes to the other CPSR fields
7285              *  + set PSTATE.IL
7286              * For user changes via the GDB stub, we don't set PSTATE.IL,
7287              * as this would be unnecessarily harsh for a user error.
7288              */
7289             mask &= ~CPSR_M;
7290             if (write_type != CPSRWriteByGDBStub &&
7291                 arm_feature(env, ARM_FEATURE_V8)) {
7292                 mask |= CPSR_IL;
7293                 val |= CPSR_IL;
7294             }
7295             qemu_log_mask(LOG_GUEST_ERROR,
7296                           "Illegal AArch32 mode switch attempt from %s to %s\n",
7297                           aarch32_mode_name(env->uncached_cpsr),
7298                           aarch32_mode_name(val));
7299         } else {
7300             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7301                           write_type == CPSRWriteExceptionReturn ?
7302                           "Exception return from AArch32" :
7303                           "AArch32 mode switch from",
7304                           aarch32_mode_name(env->uncached_cpsr),
7305                           aarch32_mode_name(val), env->regs[15]);
7306             switch_mode(env, val & CPSR_M);
7307         }
7308     }
7309     mask &= ~CACHED_CPSR_BITS;
7310     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7311 }
7312 
7313 /* Sign/zero extend */
7314 uint32_t HELPER(sxtb16)(uint32_t x)
7315 {
7316     uint32_t res;
7317     res = (uint16_t)(int8_t)x;
7318     res |= (uint32_t)(int8_t)(x >> 16) << 16;
7319     return res;
7320 }
7321 
7322 uint32_t HELPER(uxtb16)(uint32_t x)
7323 {
7324     uint32_t res;
7325     res = (uint16_t)(uint8_t)x;
7326     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7327     return res;
7328 }
7329 
7330 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7331 {
7332     if (den == 0)
7333       return 0;
7334     if (num == INT_MIN && den == -1)
7335       return INT_MIN;
7336     return num / den;
7337 }
7338 
7339 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7340 {
7341     if (den == 0)
7342       return 0;
7343     return num / den;
7344 }
7345 
7346 uint32_t HELPER(rbit)(uint32_t x)
7347 {
7348     return revbit32(x);
7349 }
7350 
7351 #ifdef CONFIG_USER_ONLY
7352 
7353 /* These should probably raise undefined insn exceptions.  */
7354 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7355 {
7356     ARMCPU *cpu = arm_env_get_cpu(env);
7357 
7358     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7359 }
7360 
7361 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7362 {
7363     ARMCPU *cpu = arm_env_get_cpu(env);
7364 
7365     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7366     return 0;
7367 }
7368 
7369 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7370 {
7371     /* translate.c should never generate calls here in user-only mode */
7372     g_assert_not_reached();
7373 }
7374 
7375 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7376 {
7377     /* translate.c should never generate calls here in user-only mode */
7378     g_assert_not_reached();
7379 }
7380 
7381 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7382 {
7383     /* The TT instructions can be used by unprivileged code, but in
7384      * user-only emulation we don't have the MPU.
7385      * Luckily since we know we are NonSecure unprivileged (and that in
7386      * turn means that the A flag wasn't specified), all the bits in the
7387      * register must be zero:
7388      *  IREGION: 0 because IRVALID is 0
7389      *  IRVALID: 0 because NS
7390      *  S: 0 because NS
7391      *  NSRW: 0 because NS
7392      *  NSR: 0 because NS
7393      *  RW: 0 because unpriv and A flag not set
7394      *  R: 0 because unpriv and A flag not set
7395      *  SRVALID: 0 because NS
7396      *  MRVALID: 0 because unpriv and A flag not set
7397      *  SREGION: 0 becaus SRVALID is 0
7398      *  MREGION: 0 because MRVALID is 0
7399      */
7400     return 0;
7401 }
7402 
7403 static void switch_mode(CPUARMState *env, int mode)
7404 {
7405     ARMCPU *cpu = arm_env_get_cpu(env);
7406 
7407     if (mode != ARM_CPU_MODE_USR) {
7408         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7409     }
7410 }
7411 
7412 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7413                                  uint32_t cur_el, bool secure)
7414 {
7415     return 1;
7416 }
7417 
7418 void aarch64_sync_64_to_32(CPUARMState *env)
7419 {
7420     g_assert_not_reached();
7421 }
7422 
7423 #else
7424 
7425 static void switch_mode(CPUARMState *env, int mode)
7426 {
7427     int old_mode;
7428     int i;
7429 
7430     old_mode = env->uncached_cpsr & CPSR_M;
7431     if (mode == old_mode)
7432         return;
7433 
7434     if (old_mode == ARM_CPU_MODE_FIQ) {
7435         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7436         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7437     } else if (mode == ARM_CPU_MODE_FIQ) {
7438         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7439         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7440     }
7441 
7442     i = bank_number(old_mode);
7443     env->banked_r13[i] = env->regs[13];
7444     env->banked_spsr[i] = env->spsr;
7445 
7446     i = bank_number(mode);
7447     env->regs[13] = env->banked_r13[i];
7448     env->spsr = env->banked_spsr[i];
7449 
7450     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7451     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7452 }
7453 
7454 /* Physical Interrupt Target EL Lookup Table
7455  *
7456  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7457  *
7458  * The below multi-dimensional table is used for looking up the target
7459  * exception level given numerous condition criteria.  Specifically, the
7460  * target EL is based on SCR and HCR routing controls as well as the
7461  * currently executing EL and secure state.
7462  *
7463  *    Dimensions:
7464  *    target_el_table[2][2][2][2][2][4]
7465  *                    |  |  |  |  |  +--- Current EL
7466  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
7467  *                    |  |  |  +--------- HCR mask override
7468  *                    |  |  +------------ SCR exec state control
7469  *                    |  +--------------- SCR mask override
7470  *                    +------------------ 32-bit(0)/64-bit(1) EL3
7471  *
7472  *    The table values are as such:
7473  *    0-3 = EL0-EL3
7474  *     -1 = Cannot occur
7475  *
7476  * The ARM ARM target EL table includes entries indicating that an "exception
7477  * is not taken".  The two cases where this is applicable are:
7478  *    1) An exception is taken from EL3 but the SCR does not have the exception
7479  *    routed to EL3.
7480  *    2) An exception is taken from EL2 but the HCR does not have the exception
7481  *    routed to EL2.
7482  * In these two cases, the below table contain a target of EL1.  This value is
7483  * returned as it is expected that the consumer of the table data will check
7484  * for "target EL >= current EL" to ensure the exception is not taken.
7485  *
7486  *            SCR     HCR
7487  *         64  EA     AMO                 From
7488  *        BIT IRQ     IMO      Non-secure         Secure
7489  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
7490  */
7491 static const int8_t target_el_table[2][2][2][2][2][4] = {
7492     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7493        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
7494       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7495        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
7496      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7497        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
7498       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7499        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
7500     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
7501        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
7502       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
7503        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
7504      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7505        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
7506       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7507        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
7508 };
7509 
7510 /*
7511  * Determine the target EL for physical exceptions
7512  */
7513 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7514                                  uint32_t cur_el, bool secure)
7515 {
7516     CPUARMState *env = cs->env_ptr;
7517     bool rw;
7518     bool scr;
7519     bool hcr;
7520     int target_el;
7521     /* Is the highest EL AArch64? */
7522     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7523     uint64_t hcr_el2;
7524 
7525     if (arm_feature(env, ARM_FEATURE_EL3)) {
7526         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7527     } else {
7528         /* Either EL2 is the highest EL (and so the EL2 register width
7529          * is given by is64); or there is no EL2 or EL3, in which case
7530          * the value of 'rw' does not affect the table lookup anyway.
7531          */
7532         rw = is64;
7533     }
7534 
7535     hcr_el2 = arm_hcr_el2_eff(env);
7536     switch (excp_idx) {
7537     case EXCP_IRQ:
7538         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7539         hcr = hcr_el2 & HCR_IMO;
7540         break;
7541     case EXCP_FIQ:
7542         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7543         hcr = hcr_el2 & HCR_FMO;
7544         break;
7545     default:
7546         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7547         hcr = hcr_el2 & HCR_AMO;
7548         break;
7549     };
7550 
7551     /* Perform a table-lookup for the target EL given the current state */
7552     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7553 
7554     assert(target_el > 0);
7555 
7556     return target_el;
7557 }
7558 
7559 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7560                             ARMMMUIdx mmu_idx, bool ignfault)
7561 {
7562     CPUState *cs = CPU(cpu);
7563     CPUARMState *env = &cpu->env;
7564     MemTxAttrs attrs = {};
7565     MemTxResult txres;
7566     target_ulong page_size;
7567     hwaddr physaddr;
7568     int prot;
7569     ARMMMUFaultInfo fi = {};
7570     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7571     int exc;
7572     bool exc_secure;
7573 
7574     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7575                       &attrs, &prot, &page_size, &fi, NULL)) {
7576         /* MPU/SAU lookup failed */
7577         if (fi.type == ARMFault_QEMU_SFault) {
7578             qemu_log_mask(CPU_LOG_INT,
7579                           "...SecureFault with SFSR.AUVIOL during stacking\n");
7580             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7581             env->v7m.sfar = addr;
7582             exc = ARMV7M_EXCP_SECURE;
7583             exc_secure = false;
7584         } else {
7585             qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
7586             env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7587             exc = ARMV7M_EXCP_MEM;
7588             exc_secure = secure;
7589         }
7590         goto pend_fault;
7591     }
7592     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7593                          attrs, &txres);
7594     if (txres != MEMTX_OK) {
7595         /* BusFault trying to write the data */
7596         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7597         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7598         exc = ARMV7M_EXCP_BUS;
7599         exc_secure = false;
7600         goto pend_fault;
7601     }
7602     return true;
7603 
7604 pend_fault:
7605     /* By pending the exception at this point we are making
7606      * the IMPDEF choice "overridden exceptions pended" (see the
7607      * MergeExcInfo() pseudocode). The other choice would be to not
7608      * pend them now and then make a choice about which to throw away
7609      * later if we have two derived exceptions.
7610      * The only case when we must not pend the exception but instead
7611      * throw it away is if we are doing the push of the callee registers
7612      * and we've already generated a derived exception. Even in this
7613      * case we will still update the fault status registers.
7614      */
7615     if (!ignfault) {
7616         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7617     }
7618     return false;
7619 }
7620 
7621 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7622                            ARMMMUIdx mmu_idx)
7623 {
7624     CPUState *cs = CPU(cpu);
7625     CPUARMState *env = &cpu->env;
7626     MemTxAttrs attrs = {};
7627     MemTxResult txres;
7628     target_ulong page_size;
7629     hwaddr physaddr;
7630     int prot;
7631     ARMMMUFaultInfo fi = {};
7632     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7633     int exc;
7634     bool exc_secure;
7635     uint32_t value;
7636 
7637     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7638                       &attrs, &prot, &page_size, &fi, NULL)) {
7639         /* MPU/SAU lookup failed */
7640         if (fi.type == ARMFault_QEMU_SFault) {
7641             qemu_log_mask(CPU_LOG_INT,
7642                           "...SecureFault with SFSR.AUVIOL during unstack\n");
7643             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7644             env->v7m.sfar = addr;
7645             exc = ARMV7M_EXCP_SECURE;
7646             exc_secure = false;
7647         } else {
7648             qemu_log_mask(CPU_LOG_INT,
7649                           "...MemManageFault with CFSR.MUNSTKERR\n");
7650             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7651             exc = ARMV7M_EXCP_MEM;
7652             exc_secure = secure;
7653         }
7654         goto pend_fault;
7655     }
7656 
7657     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7658                               attrs, &txres);
7659     if (txres != MEMTX_OK) {
7660         /* BusFault trying to read the data */
7661         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7662         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7663         exc = ARMV7M_EXCP_BUS;
7664         exc_secure = false;
7665         goto pend_fault;
7666     }
7667 
7668     *dest = value;
7669     return true;
7670 
7671 pend_fault:
7672     /* By pending the exception at this point we are making
7673      * the IMPDEF choice "overridden exceptions pended" (see the
7674      * MergeExcInfo() pseudocode). The other choice would be to not
7675      * pend them now and then make a choice about which to throw away
7676      * later if we have two derived exceptions.
7677      */
7678     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7679     return false;
7680 }
7681 
7682 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7683  * This may change the current stack pointer between Main and Process
7684  * stack pointers if it is done for the CONTROL register for the current
7685  * security state.
7686  */
7687 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7688                                                  bool new_spsel,
7689                                                  bool secstate)
7690 {
7691     bool old_is_psp = v7m_using_psp(env);
7692 
7693     env->v7m.control[secstate] =
7694         deposit32(env->v7m.control[secstate],
7695                   R_V7M_CONTROL_SPSEL_SHIFT,
7696                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7697 
7698     if (secstate == env->v7m.secure) {
7699         bool new_is_psp = v7m_using_psp(env);
7700         uint32_t tmp;
7701 
7702         if (old_is_psp != new_is_psp) {
7703             tmp = env->v7m.other_sp;
7704             env->v7m.other_sp = env->regs[13];
7705             env->regs[13] = tmp;
7706         }
7707     }
7708 }
7709 
7710 /* Write to v7M CONTROL.SPSEL bit. This may change the current
7711  * stack pointer between Main and Process stack pointers.
7712  */
7713 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7714 {
7715     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7716 }
7717 
7718 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7719 {
7720     /* Write a new value to v7m.exception, thus transitioning into or out
7721      * of Handler mode; this may result in a change of active stack pointer.
7722      */
7723     bool new_is_psp, old_is_psp = v7m_using_psp(env);
7724     uint32_t tmp;
7725 
7726     env->v7m.exception = new_exc;
7727 
7728     new_is_psp = v7m_using_psp(env);
7729 
7730     if (old_is_psp != new_is_psp) {
7731         tmp = env->v7m.other_sp;
7732         env->v7m.other_sp = env->regs[13];
7733         env->regs[13] = tmp;
7734     }
7735 }
7736 
7737 /* Switch M profile security state between NS and S */
7738 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7739 {
7740     uint32_t new_ss_msp, new_ss_psp;
7741 
7742     if (env->v7m.secure == new_secstate) {
7743         return;
7744     }
7745 
7746     /* All the banked state is accessed by looking at env->v7m.secure
7747      * except for the stack pointer; rearrange the SP appropriately.
7748      */
7749     new_ss_msp = env->v7m.other_ss_msp;
7750     new_ss_psp = env->v7m.other_ss_psp;
7751 
7752     if (v7m_using_psp(env)) {
7753         env->v7m.other_ss_psp = env->regs[13];
7754         env->v7m.other_ss_msp = env->v7m.other_sp;
7755     } else {
7756         env->v7m.other_ss_msp = env->regs[13];
7757         env->v7m.other_ss_psp = env->v7m.other_sp;
7758     }
7759 
7760     env->v7m.secure = new_secstate;
7761 
7762     if (v7m_using_psp(env)) {
7763         env->regs[13] = new_ss_psp;
7764         env->v7m.other_sp = new_ss_msp;
7765     } else {
7766         env->regs[13] = new_ss_msp;
7767         env->v7m.other_sp = new_ss_psp;
7768     }
7769 }
7770 
7771 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7772 {
7773     /* Handle v7M BXNS:
7774      *  - if the return value is a magic value, do exception return (like BX)
7775      *  - otherwise bit 0 of the return value is the target security state
7776      */
7777     uint32_t min_magic;
7778 
7779     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7780         /* Covers FNC_RETURN and EXC_RETURN magic */
7781         min_magic = FNC_RETURN_MIN_MAGIC;
7782     } else {
7783         /* EXC_RETURN magic only */
7784         min_magic = EXC_RETURN_MIN_MAGIC;
7785     }
7786 
7787     if (dest >= min_magic) {
7788         /* This is an exception return magic value; put it where
7789          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
7790          * Note that if we ever add gen_ss_advance() singlestep support to
7791          * M profile this should count as an "instruction execution complete"
7792          * event (compare gen_bx_excret_final_code()).
7793          */
7794         env->regs[15] = dest & ~1;
7795         env->thumb = dest & 1;
7796         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
7797         /* notreached */
7798     }
7799 
7800     /* translate.c should have made BXNS UNDEF unless we're secure */
7801     assert(env->v7m.secure);
7802 
7803     switch_v7m_security_state(env, dest & 1);
7804     env->thumb = 1;
7805     env->regs[15] = dest & ~1;
7806 }
7807 
7808 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7809 {
7810     /* Handle v7M BLXNS:
7811      *  - bit 0 of the destination address is the target security state
7812      */
7813 
7814     /* At this point regs[15] is the address just after the BLXNS */
7815     uint32_t nextinst = env->regs[15] | 1;
7816     uint32_t sp = env->regs[13] - 8;
7817     uint32_t saved_psr;
7818 
7819     /* translate.c will have made BLXNS UNDEF unless we're secure */
7820     assert(env->v7m.secure);
7821 
7822     if (dest & 1) {
7823         /* target is Secure, so this is just a normal BLX,
7824          * except that the low bit doesn't indicate Thumb/not.
7825          */
7826         env->regs[14] = nextinst;
7827         env->thumb = 1;
7828         env->regs[15] = dest & ~1;
7829         return;
7830     }
7831 
7832     /* Target is non-secure: first push a stack frame */
7833     if (!QEMU_IS_ALIGNED(sp, 8)) {
7834         qemu_log_mask(LOG_GUEST_ERROR,
7835                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
7836     }
7837 
7838     if (sp < v7m_sp_limit(env)) {
7839         raise_exception(env, EXCP_STKOF, 0, 1);
7840     }
7841 
7842     saved_psr = env->v7m.exception;
7843     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
7844         saved_psr |= XPSR_SFPA;
7845     }
7846 
7847     /* Note that these stores can throw exceptions on MPU faults */
7848     cpu_stl_data(env, sp, nextinst);
7849     cpu_stl_data(env, sp + 4, saved_psr);
7850 
7851     env->regs[13] = sp;
7852     env->regs[14] = 0xfeffffff;
7853     if (arm_v7m_is_handler_mode(env)) {
7854         /* Write a dummy value to IPSR, to avoid leaking the current secure
7855          * exception number to non-secure code. This is guaranteed not
7856          * to cause write_v7m_exception() to actually change stacks.
7857          */
7858         write_v7m_exception(env, 1);
7859     }
7860     switch_v7m_security_state(env, 0);
7861     env->thumb = 1;
7862     env->regs[15] = dest;
7863 }
7864 
7865 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
7866                                 bool spsel)
7867 {
7868     /* Return a pointer to the location where we currently store the
7869      * stack pointer for the requested security state and thread mode.
7870      * This pointer will become invalid if the CPU state is updated
7871      * such that the stack pointers are switched around (eg changing
7872      * the SPSEL control bit).
7873      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7874      * Unlike that pseudocode, we require the caller to pass us in the
7875      * SPSEL control bit value; this is because we also use this
7876      * function in handling of pushing of the callee-saves registers
7877      * part of the v8M stack frame (pseudocode PushCalleeStack()),
7878      * and in the tailchain codepath the SPSEL bit comes from the exception
7879      * return magic LR value from the previous exception. The pseudocode
7880      * opencodes the stack-selection in PushCalleeStack(), but we prefer
7881      * to make this utility function generic enough to do the job.
7882      */
7883     bool want_psp = threadmode && spsel;
7884 
7885     if (secure == env->v7m.secure) {
7886         if (want_psp == v7m_using_psp(env)) {
7887             return &env->regs[13];
7888         } else {
7889             return &env->v7m.other_sp;
7890         }
7891     } else {
7892         if (want_psp) {
7893             return &env->v7m.other_ss_psp;
7894         } else {
7895             return &env->v7m.other_ss_msp;
7896         }
7897     }
7898 }
7899 
7900 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
7901                                 uint32_t *pvec)
7902 {
7903     CPUState *cs = CPU(cpu);
7904     CPUARMState *env = &cpu->env;
7905     MemTxResult result;
7906     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
7907     uint32_t vector_entry;
7908     MemTxAttrs attrs = {};
7909     ARMMMUIdx mmu_idx;
7910     bool exc_secure;
7911 
7912     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
7913 
7914     /* We don't do a get_phys_addr() here because the rules for vector
7915      * loads are special: they always use the default memory map, and
7916      * the default memory map permits reads from all addresses.
7917      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7918      * that we want this special case which would always say "yes",
7919      * we just do the SAU lookup here followed by a direct physical load.
7920      */
7921     attrs.secure = targets_secure;
7922     attrs.user = false;
7923 
7924     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7925         V8M_SAttributes sattrs = {};
7926 
7927         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
7928         if (sattrs.ns) {
7929             attrs.secure = false;
7930         } else if (!targets_secure) {
7931             /* NS access to S memory */
7932             goto load_fail;
7933         }
7934     }
7935 
7936     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
7937                                      attrs, &result);
7938     if (result != MEMTX_OK) {
7939         goto load_fail;
7940     }
7941     *pvec = vector_entry;
7942     return true;
7943 
7944 load_fail:
7945     /* All vector table fetch fails are reported as HardFault, with
7946      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7947      * technically the underlying exception is a MemManage or BusFault
7948      * that is escalated to HardFault.) This is a terminal exception,
7949      * so we will either take the HardFault immediately or else enter
7950      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7951      */
7952     exc_secure = targets_secure ||
7953         !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
7954     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
7955     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
7956     return false;
7957 }
7958 
7959 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7960                                   bool ignore_faults)
7961 {
7962     /* For v8M, push the callee-saves register part of the stack frame.
7963      * Compare the v8M pseudocode PushCalleeStack().
7964      * In the tailchaining case this may not be the current stack.
7965      */
7966     CPUARMState *env = &cpu->env;
7967     uint32_t *frame_sp_p;
7968     uint32_t frameptr;
7969     ARMMMUIdx mmu_idx;
7970     bool stacked_ok;
7971     uint32_t limit;
7972     bool want_psp;
7973 
7974     if (dotailchain) {
7975         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
7976         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
7977             !mode;
7978 
7979         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
7980         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
7981                                     lr & R_V7M_EXCRET_SPSEL_MASK);
7982         want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
7983         if (want_psp) {
7984             limit = env->v7m.psplim[M_REG_S];
7985         } else {
7986             limit = env->v7m.msplim[M_REG_S];
7987         }
7988     } else {
7989         mmu_idx = arm_mmu_idx(env);
7990         frame_sp_p = &env->regs[13];
7991         limit = v7m_sp_limit(env);
7992     }
7993 
7994     frameptr = *frame_sp_p - 0x28;
7995     if (frameptr < limit) {
7996         /*
7997          * Stack limit failure: set SP to the limit value, and generate
7998          * STKOF UsageFault. Stack pushes below the limit must not be
7999          * performed. It is IMPDEF whether pushes above the limit are
8000          * performed; we choose not to.
8001          */
8002         qemu_log_mask(CPU_LOG_INT,
8003                       "...STKOF during callee-saves register stacking\n");
8004         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8005         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8006                                 env->v7m.secure);
8007         *frame_sp_p = limit;
8008         return true;
8009     }
8010 
8011     /* Write as much of the stack frame as we can. A write failure may
8012      * cause us to pend a derived exception.
8013      */
8014     stacked_ok =
8015         v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
8016         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
8017                         ignore_faults) &&
8018         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
8019                         ignore_faults) &&
8020         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
8021                         ignore_faults) &&
8022         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
8023                         ignore_faults) &&
8024         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
8025                         ignore_faults) &&
8026         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
8027                         ignore_faults) &&
8028         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
8029                         ignore_faults) &&
8030         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
8031                         ignore_faults);
8032 
8033     /* Update SP regardless of whether any of the stack accesses failed. */
8034     *frame_sp_p = frameptr;
8035 
8036     return !stacked_ok;
8037 }
8038 
8039 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8040                                 bool ignore_stackfaults)
8041 {
8042     /* Do the "take the exception" parts of exception entry,
8043      * but not the pushing of state to the stack. This is
8044      * similar to the pseudocode ExceptionTaken() function.
8045      */
8046     CPUARMState *env = &cpu->env;
8047     uint32_t addr;
8048     bool targets_secure;
8049     int exc;
8050     bool push_failed = false;
8051 
8052     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
8053     qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8054                   targets_secure ? "secure" : "nonsecure", exc);
8055 
8056     if (arm_feature(env, ARM_FEATURE_V8)) {
8057         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8058             (lr & R_V7M_EXCRET_S_MASK)) {
8059             /* The background code (the owner of the registers in the
8060              * exception frame) is Secure. This means it may either already
8061              * have or now needs to push callee-saves registers.
8062              */
8063             if (targets_secure) {
8064                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8065                     /* We took an exception from Secure to NonSecure
8066                      * (which means the callee-saved registers got stacked)
8067                      * and are now tailchaining to a Secure exception.
8068                      * Clear DCRS so eventual return from this Secure
8069                      * exception unstacks the callee-saved registers.
8070                      */
8071                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
8072                 }
8073             } else {
8074                 /* We're going to a non-secure exception; push the
8075                  * callee-saves registers to the stack now, if they're
8076                  * not already saved.
8077                  */
8078                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
8079                     !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
8080                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8081                                                         ignore_stackfaults);
8082                 }
8083                 lr |= R_V7M_EXCRET_DCRS_MASK;
8084             }
8085         }
8086 
8087         lr &= ~R_V7M_EXCRET_ES_MASK;
8088         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8089             lr |= R_V7M_EXCRET_ES_MASK;
8090         }
8091         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8092         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8093             lr |= R_V7M_EXCRET_SPSEL_MASK;
8094         }
8095 
8096         /* Clear registers if necessary to prevent non-secure exception
8097          * code being able to see register values from secure code.
8098          * Where register values become architecturally UNKNOWN we leave
8099          * them with their previous values.
8100          */
8101         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8102             if (!targets_secure) {
8103                 /* Always clear the caller-saved registers (they have been
8104                  * pushed to the stack earlier in v7m_push_stack()).
8105                  * Clear callee-saved registers if the background code is
8106                  * Secure (in which case these regs were saved in
8107                  * v7m_push_callee_stack()).
8108                  */
8109                 int i;
8110 
8111                 for (i = 0; i < 13; i++) {
8112                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8113                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8114                         env->regs[i] = 0;
8115                     }
8116                 }
8117                 /* Clear EAPSR */
8118                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8119             }
8120         }
8121     }
8122 
8123     if (push_failed && !ignore_stackfaults) {
8124         /* Derived exception on callee-saves register stacking:
8125          * we might now want to take a different exception which
8126          * targets a different security state, so try again from the top.
8127          */
8128         qemu_log_mask(CPU_LOG_INT,
8129                       "...derived exception on callee-saves register stacking");
8130         v7m_exception_taken(cpu, lr, true, true);
8131         return;
8132     }
8133 
8134     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8135         /* Vector load failed: derived exception */
8136         qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
8137         v7m_exception_taken(cpu, lr, true, true);
8138         return;
8139     }
8140 
8141     /* Now we've done everything that might cause a derived exception
8142      * we can go ahead and activate whichever exception we're going to
8143      * take (which might now be the derived exception).
8144      */
8145     armv7m_nvic_acknowledge_irq(env->nvic);
8146 
8147     /* Switch to target security state -- must do this before writing SPSEL */
8148     switch_v7m_security_state(env, targets_secure);
8149     write_v7m_control_spsel(env, 0);
8150     arm_clear_exclusive(env);
8151     /* Clear IT bits */
8152     env->condexec_bits = 0;
8153     env->regs[14] = lr;
8154     env->regs[15] = addr & 0xfffffffe;
8155     env->thumb = addr & 1;
8156 }
8157 
8158 static bool v7m_push_stack(ARMCPU *cpu)
8159 {
8160     /* Do the "set up stack frame" part of exception entry,
8161      * similar to pseudocode PushStack().
8162      * Return true if we generate a derived exception (and so
8163      * should ignore further stack faults trying to process
8164      * that derived exception.)
8165      */
8166     bool stacked_ok;
8167     CPUARMState *env = &cpu->env;
8168     uint32_t xpsr = xpsr_read(env);
8169     uint32_t frameptr = env->regs[13];
8170     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8171 
8172     /* Align stack pointer if the guest wants that */
8173     if ((frameptr & 4) &&
8174         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8175         frameptr -= 4;
8176         xpsr |= XPSR_SPREALIGN;
8177     }
8178 
8179     frameptr -= 0x20;
8180 
8181     if (arm_feature(env, ARM_FEATURE_V8)) {
8182         uint32_t limit = v7m_sp_limit(env);
8183 
8184         if (frameptr < limit) {
8185             /*
8186              * Stack limit failure: set SP to the limit value, and generate
8187              * STKOF UsageFault. Stack pushes below the limit must not be
8188              * performed. It is IMPDEF whether pushes above the limit are
8189              * performed; we choose not to.
8190              */
8191             qemu_log_mask(CPU_LOG_INT,
8192                           "...STKOF during stacking\n");
8193             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8194             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8195                                     env->v7m.secure);
8196             env->regs[13] = limit;
8197             return true;
8198         }
8199     }
8200 
8201     /* Write as much of the stack frame as we can. If we fail a stack
8202      * write this will result in a derived exception being pended
8203      * (which may be taken in preference to the one we started with
8204      * if it has higher priority).
8205      */
8206     stacked_ok =
8207         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
8208         v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
8209         v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
8210         v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
8211         v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
8212         v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
8213         v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
8214         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
8215 
8216     /* Update SP regardless of whether any of the stack accesses failed. */
8217     env->regs[13] = frameptr;
8218 
8219     return !stacked_ok;
8220 }
8221 
8222 static void do_v7m_exception_exit(ARMCPU *cpu)
8223 {
8224     CPUARMState *env = &cpu->env;
8225     uint32_t excret;
8226     uint32_t xpsr;
8227     bool ufault = false;
8228     bool sfault = false;
8229     bool return_to_sp_process;
8230     bool return_to_handler;
8231     bool rettobase = false;
8232     bool exc_secure = false;
8233     bool return_to_secure;
8234 
8235     /* If we're not in Handler mode then jumps to magic exception-exit
8236      * addresses don't have magic behaviour. However for the v8M
8237      * security extensions the magic secure-function-return has to
8238      * work in thread mode too, so to avoid doing an extra check in
8239      * the generated code we allow exception-exit magic to also cause the
8240      * internal exception and bring us here in thread mode. Correct code
8241      * will never try to do this (the following insn fetch will always
8242      * fault) so we the overhead of having taken an unnecessary exception
8243      * doesn't matter.
8244      */
8245     if (!arm_v7m_is_handler_mode(env)) {
8246         return;
8247     }
8248 
8249     /* In the spec pseudocode ExceptionReturn() is called directly
8250      * from BXWritePC() and gets the full target PC value including
8251      * bit zero. In QEMU's implementation we treat it as a normal
8252      * jump-to-register (which is then caught later on), and so split
8253      * the target value up between env->regs[15] and env->thumb in
8254      * gen_bx(). Reconstitute it.
8255      */
8256     excret = env->regs[15];
8257     if (env->thumb) {
8258         excret |= 1;
8259     }
8260 
8261     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8262                   " previous exception %d\n",
8263                   excret, env->v7m.exception);
8264 
8265     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8266         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8267                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8268                       excret);
8269     }
8270 
8271     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8272         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8273          * we pick which FAULTMASK to clear.
8274          */
8275         if (!env->v7m.secure &&
8276             ((excret & R_V7M_EXCRET_ES_MASK) ||
8277              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8278             sfault = 1;
8279             /* For all other purposes, treat ES as 0 (R_HXSR) */
8280             excret &= ~R_V7M_EXCRET_ES_MASK;
8281         }
8282         exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8283     }
8284 
8285     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8286         /* Auto-clear FAULTMASK on return from other than NMI.
8287          * If the security extension is implemented then this only
8288          * happens if the raw execution priority is >= 0; the
8289          * value of the ES bit in the exception return value indicates
8290          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8291          */
8292         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8293             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8294                 env->v7m.faultmask[exc_secure] = 0;
8295             }
8296         } else {
8297             env->v7m.faultmask[M_REG_NS] = 0;
8298         }
8299     }
8300 
8301     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8302                                      exc_secure)) {
8303     case -1:
8304         /* attempt to exit an exception that isn't active */
8305         ufault = true;
8306         break;
8307     case 0:
8308         /* still an irq active now */
8309         break;
8310     case 1:
8311         /* we returned to base exception level, no nesting.
8312          * (In the pseudocode this is written using "NestedActivation != 1"
8313          * where we have 'rettobase == false'.)
8314          */
8315         rettobase = true;
8316         break;
8317     default:
8318         g_assert_not_reached();
8319     }
8320 
8321     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8322     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8323     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8324         (excret & R_V7M_EXCRET_S_MASK);
8325 
8326     if (arm_feature(env, ARM_FEATURE_V8)) {
8327         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8328             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8329              * we choose to take the UsageFault.
8330              */
8331             if ((excret & R_V7M_EXCRET_S_MASK) ||
8332                 (excret & R_V7M_EXCRET_ES_MASK) ||
8333                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8334                 ufault = true;
8335             }
8336         }
8337         if (excret & R_V7M_EXCRET_RES0_MASK) {
8338             ufault = true;
8339         }
8340     } else {
8341         /* For v7M we only recognize certain combinations of the low bits */
8342         switch (excret & 0xf) {
8343         case 1: /* Return to Handler */
8344             break;
8345         case 13: /* Return to Thread using Process stack */
8346         case 9: /* Return to Thread using Main stack */
8347             /* We only need to check NONBASETHRDENA for v7M, because in
8348              * v8M this bit does not exist (it is RES1).
8349              */
8350             if (!rettobase &&
8351                 !(env->v7m.ccr[env->v7m.secure] &
8352                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
8353                 ufault = true;
8354             }
8355             break;
8356         default:
8357             ufault = true;
8358         }
8359     }
8360 
8361     /*
8362      * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8363      * Handler mode (and will be until we write the new XPSR.Interrupt
8364      * field) this does not switch around the current stack pointer.
8365      * We must do this before we do any kind of tailchaining, including
8366      * for the derived exceptions on integrity check failures, or we will
8367      * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8368      */
8369     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8370 
8371     if (sfault) {
8372         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8373         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8374         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8375                       "stackframe: failed EXC_RETURN.ES validity check\n");
8376         v7m_exception_taken(cpu, excret, true, false);
8377         return;
8378     }
8379 
8380     if (ufault) {
8381         /* Bad exception return: instead of popping the exception
8382          * stack, directly take a usage fault on the current stack.
8383          */
8384         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8385         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8386         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8387                       "stackframe: failed exception return integrity check\n");
8388         v7m_exception_taken(cpu, excret, true, false);
8389         return;
8390     }
8391 
8392     /*
8393      * Tailchaining: if there is currently a pending exception that
8394      * is high enough priority to preempt execution at the level we're
8395      * about to return to, then just directly take that exception now,
8396      * avoiding an unstack-and-then-stack. Note that now we have
8397      * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8398      * our current execution priority is already the execution priority we are
8399      * returning to -- none of the state we would unstack or set based on
8400      * the EXCRET value affects it.
8401      */
8402     if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8403         qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8404         v7m_exception_taken(cpu, excret, true, false);
8405         return;
8406     }
8407 
8408     switch_v7m_security_state(env, return_to_secure);
8409 
8410     {
8411         /* The stack pointer we should be reading the exception frame from
8412          * depends on bits in the magic exception return type value (and
8413          * for v8M isn't necessarily the stack pointer we will eventually
8414          * end up resuming execution with). Get a pointer to the location
8415          * in the CPU state struct where the SP we need is currently being
8416          * stored; we will use and modify it in place.
8417          * We use this limited C variable scope so we don't accidentally
8418          * use 'frame_sp_p' after we do something that makes it invalid.
8419          */
8420         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
8421                                               return_to_secure,
8422                                               !return_to_handler,
8423                                               return_to_sp_process);
8424         uint32_t frameptr = *frame_sp_p;
8425         bool pop_ok = true;
8426         ARMMMUIdx mmu_idx;
8427         bool return_to_priv = return_to_handler ||
8428             !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
8429 
8430         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
8431                                                         return_to_priv);
8432 
8433         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
8434             arm_feature(env, ARM_FEATURE_V8)) {
8435             qemu_log_mask(LOG_GUEST_ERROR,
8436                           "M profile exception return with non-8-aligned SP "
8437                           "for destination state is UNPREDICTABLE\n");
8438         }
8439 
8440         /* Do we need to pop callee-saved registers? */
8441         if (return_to_secure &&
8442             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
8443              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
8444             uint32_t expected_sig = 0xfefa125b;
8445             uint32_t actual_sig;
8446 
8447             pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
8448 
8449             if (pop_ok && expected_sig != actual_sig) {
8450                 /* Take a SecureFault on the current stack */
8451                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
8452                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8453                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8454                               "stackframe: failed exception return integrity "
8455                               "signature check\n");
8456                 v7m_exception_taken(cpu, excret, true, false);
8457                 return;
8458             }
8459 
8460             pop_ok = pop_ok &&
8461                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
8462                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
8463                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
8464                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
8465                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
8466                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
8467                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
8468                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
8469 
8470             frameptr += 0x28;
8471         }
8472 
8473         /* Pop registers */
8474         pop_ok = pop_ok &&
8475             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
8476             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
8477             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
8478             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
8479             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
8480             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
8481             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
8482             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
8483 
8484         if (!pop_ok) {
8485             /* v7m_stack_read() pended a fault, so take it (as a tail
8486              * chained exception on the same stack frame)
8487              */
8488             qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
8489             v7m_exception_taken(cpu, excret, true, false);
8490             return;
8491         }
8492 
8493         /* Returning from an exception with a PC with bit 0 set is defined
8494          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
8495          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
8496          * the lsbit, and there are several RTOSes out there which incorrectly
8497          * assume the r15 in the stack frame should be a Thumb-style "lsbit
8498          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
8499          * complain about the badly behaved guest.
8500          */
8501         if (env->regs[15] & 1) {
8502             env->regs[15] &= ~1U;
8503             if (!arm_feature(env, ARM_FEATURE_V8)) {
8504                 qemu_log_mask(LOG_GUEST_ERROR,
8505                               "M profile return from interrupt with misaligned "
8506                               "PC is UNPREDICTABLE on v7M\n");
8507             }
8508         }
8509 
8510         if (arm_feature(env, ARM_FEATURE_V8)) {
8511             /* For v8M we have to check whether the xPSR exception field
8512              * matches the EXCRET value for return to handler/thread
8513              * before we commit to changing the SP and xPSR.
8514              */
8515             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
8516             if (return_to_handler != will_be_handler) {
8517                 /* Take an INVPC UsageFault on the current stack.
8518                  * By this point we will have switched to the security state
8519                  * for the background state, so this UsageFault will target
8520                  * that state.
8521                  */
8522                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8523                                         env->v7m.secure);
8524                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8525                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8526                               "stackframe: failed exception return integrity "
8527                               "check\n");
8528                 v7m_exception_taken(cpu, excret, true, false);
8529                 return;
8530             }
8531         }
8532 
8533         /* Commit to consuming the stack frame */
8534         frameptr += 0x20;
8535         /* Undo stack alignment (the SPREALIGN bit indicates that the original
8536          * pre-exception SP was not 8-aligned and we added a padding word to
8537          * align it, so we undo this by ORing in the bit that increases it
8538          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
8539          * would work too but a logical OR is how the pseudocode specifies it.)
8540          */
8541         if (xpsr & XPSR_SPREALIGN) {
8542             frameptr |= 4;
8543         }
8544         *frame_sp_p = frameptr;
8545     }
8546     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
8547     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
8548 
8549     /* The restored xPSR exception field will be zero if we're
8550      * resuming in Thread mode. If that doesn't match what the
8551      * exception return excret specified then this is a UsageFault.
8552      * v7M requires we make this check here; v8M did it earlier.
8553      */
8554     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
8555         /* Take an INVPC UsageFault by pushing the stack again;
8556          * we know we're v7M so this is never a Secure UsageFault.
8557          */
8558         bool ignore_stackfaults;
8559 
8560         assert(!arm_feature(env, ARM_FEATURE_V8));
8561         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
8562         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8563         ignore_stackfaults = v7m_push_stack(cpu);
8564         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
8565                       "failed exception return integrity check\n");
8566         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
8567         return;
8568     }
8569 
8570     /* Otherwise, we have a successful exception exit. */
8571     arm_clear_exclusive(env);
8572     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
8573 }
8574 
8575 static bool do_v7m_function_return(ARMCPU *cpu)
8576 {
8577     /* v8M security extensions magic function return.
8578      * We may either:
8579      *  (1) throw an exception (longjump)
8580      *  (2) return true if we successfully handled the function return
8581      *  (3) return false if we failed a consistency check and have
8582      *      pended a UsageFault that needs to be taken now
8583      *
8584      * At this point the magic return value is split between env->regs[15]
8585      * and env->thumb. We don't bother to reconstitute it because we don't
8586      * need it (all values are handled the same way).
8587      */
8588     CPUARMState *env = &cpu->env;
8589     uint32_t newpc, newpsr, newpsr_exc;
8590 
8591     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
8592 
8593     {
8594         bool threadmode, spsel;
8595         TCGMemOpIdx oi;
8596         ARMMMUIdx mmu_idx;
8597         uint32_t *frame_sp_p;
8598         uint32_t frameptr;
8599 
8600         /* Pull the return address and IPSR from the Secure stack */
8601         threadmode = !arm_v7m_is_handler_mode(env);
8602         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
8603 
8604         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
8605         frameptr = *frame_sp_p;
8606 
8607         /* These loads may throw an exception (for MPU faults). We want to
8608          * do them as secure, so work out what MMU index that is.
8609          */
8610         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8611         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
8612         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
8613         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
8614 
8615         /* Consistency checks on new IPSR */
8616         newpsr_exc = newpsr & XPSR_EXCP;
8617         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
8618               (env->v7m.exception == 1 && newpsr_exc != 0))) {
8619             /* Pend the fault and tell our caller to take it */
8620             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8621             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8622                                     env->v7m.secure);
8623             qemu_log_mask(CPU_LOG_INT,
8624                           "...taking INVPC UsageFault: "
8625                           "IPSR consistency check failed\n");
8626             return false;
8627         }
8628 
8629         *frame_sp_p = frameptr + 8;
8630     }
8631 
8632     /* This invalidates frame_sp_p */
8633     switch_v7m_security_state(env, true);
8634     env->v7m.exception = newpsr_exc;
8635     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8636     if (newpsr & XPSR_SFPA) {
8637         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
8638     }
8639     xpsr_write(env, 0, XPSR_IT);
8640     env->thumb = newpc & 1;
8641     env->regs[15] = newpc & ~1;
8642 
8643     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
8644     return true;
8645 }
8646 
8647 static void arm_log_exception(int idx)
8648 {
8649     if (qemu_loglevel_mask(CPU_LOG_INT)) {
8650         const char *exc = NULL;
8651         static const char * const excnames[] = {
8652             [EXCP_UDEF] = "Undefined Instruction",
8653             [EXCP_SWI] = "SVC",
8654             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8655             [EXCP_DATA_ABORT] = "Data Abort",
8656             [EXCP_IRQ] = "IRQ",
8657             [EXCP_FIQ] = "FIQ",
8658             [EXCP_BKPT] = "Breakpoint",
8659             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8660             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8661             [EXCP_HVC] = "Hypervisor Call",
8662             [EXCP_HYP_TRAP] = "Hypervisor Trap",
8663             [EXCP_SMC] = "Secure Monitor Call",
8664             [EXCP_VIRQ] = "Virtual IRQ",
8665             [EXCP_VFIQ] = "Virtual FIQ",
8666             [EXCP_SEMIHOST] = "Semihosting call",
8667             [EXCP_NOCP] = "v7M NOCP UsageFault",
8668             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8669             [EXCP_STKOF] = "v8M STKOF UsageFault",
8670         };
8671 
8672         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8673             exc = excnames[idx];
8674         }
8675         if (!exc) {
8676             exc = "unknown";
8677         }
8678         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8679     }
8680 }
8681 
8682 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
8683                                uint32_t addr, uint16_t *insn)
8684 {
8685     /* Load a 16-bit portion of a v7M instruction, returning true on success,
8686      * or false on failure (in which case we will have pended the appropriate
8687      * exception).
8688      * We need to do the instruction fetch's MPU and SAU checks
8689      * like this because there is no MMU index that would allow
8690      * doing the load with a single function call. Instead we must
8691      * first check that the security attributes permit the load
8692      * and that they don't mismatch on the two halves of the instruction,
8693      * and then we do the load as a secure load (ie using the security
8694      * attributes of the address, not the CPU, as architecturally required).
8695      */
8696     CPUState *cs = CPU(cpu);
8697     CPUARMState *env = &cpu->env;
8698     V8M_SAttributes sattrs = {};
8699     MemTxAttrs attrs = {};
8700     ARMMMUFaultInfo fi = {};
8701     MemTxResult txres;
8702     target_ulong page_size;
8703     hwaddr physaddr;
8704     int prot;
8705 
8706     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
8707     if (!sattrs.nsc || sattrs.ns) {
8708         /* This must be the second half of the insn, and it straddles a
8709          * region boundary with the second half not being S&NSC.
8710          */
8711         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8712         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8713         qemu_log_mask(CPU_LOG_INT,
8714                       "...really SecureFault with SFSR.INVEP\n");
8715         return false;
8716     }
8717     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
8718                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
8719         /* the MPU lookup failed */
8720         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8721         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
8722         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
8723         return false;
8724     }
8725     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
8726                                  attrs, &txres);
8727     if (txres != MEMTX_OK) {
8728         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8729         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8730         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
8731         return false;
8732     }
8733     return true;
8734 }
8735 
8736 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
8737 {
8738     /* Check whether this attempt to execute code in a Secure & NS-Callable
8739      * memory region is for an SG instruction; if so, then emulate the
8740      * effect of the SG instruction and return true. Otherwise pend
8741      * the correct kind of exception and return false.
8742      */
8743     CPUARMState *env = &cpu->env;
8744     ARMMMUIdx mmu_idx;
8745     uint16_t insn;
8746 
8747     /* We should never get here unless get_phys_addr_pmsav8() caused
8748      * an exception for NS executing in S&NSC memory.
8749      */
8750     assert(!env->v7m.secure);
8751     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8752 
8753     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
8754     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8755 
8756     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
8757         return false;
8758     }
8759 
8760     if (!env->thumb) {
8761         goto gen_invep;
8762     }
8763 
8764     if (insn != 0xe97f) {
8765         /* Not an SG instruction first half (we choose the IMPDEF
8766          * early-SG-check option).
8767          */
8768         goto gen_invep;
8769     }
8770 
8771     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
8772         return false;
8773     }
8774 
8775     if (insn != 0xe97f) {
8776         /* Not an SG instruction second half (yes, both halves of the SG
8777          * insn have the same hex value)
8778          */
8779         goto gen_invep;
8780     }
8781 
8782     /* OK, we have confirmed that we really have an SG instruction.
8783      * We know we're NS in S memory so don't need to repeat those checks.
8784      */
8785     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
8786                   ", executing it\n", env->regs[15]);
8787     env->regs[14] &= ~1;
8788     switch_v7m_security_state(env, true);
8789     xpsr_write(env, 0, XPSR_IT);
8790     env->regs[15] += 4;
8791     return true;
8792 
8793 gen_invep:
8794     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8795     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8796     qemu_log_mask(CPU_LOG_INT,
8797                   "...really SecureFault with SFSR.INVEP\n");
8798     return false;
8799 }
8800 
8801 void arm_v7m_cpu_do_interrupt(CPUState *cs)
8802 {
8803     ARMCPU *cpu = ARM_CPU(cs);
8804     CPUARMState *env = &cpu->env;
8805     uint32_t lr;
8806     bool ignore_stackfaults;
8807 
8808     arm_log_exception(cs->exception_index);
8809 
8810     /* For exceptions we just mark as pending on the NVIC, and let that
8811        handle it.  */
8812     switch (cs->exception_index) {
8813     case EXCP_UDEF:
8814         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8815         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
8816         break;
8817     case EXCP_NOCP:
8818         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8819         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8820         break;
8821     case EXCP_INVSTATE:
8822         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8823         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
8824         break;
8825     case EXCP_STKOF:
8826         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8827         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8828         break;
8829     case EXCP_SWI:
8830         /* The PC already points to the next instruction.  */
8831         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
8832         break;
8833     case EXCP_PREFETCH_ABORT:
8834     case EXCP_DATA_ABORT:
8835         /* Note that for M profile we don't have a guest facing FSR, but
8836          * the env->exception.fsr will be populated by the code that
8837          * raises the fault, in the A profile short-descriptor format.
8838          */
8839         switch (env->exception.fsr & 0xf) {
8840         case M_FAKE_FSR_NSC_EXEC:
8841             /* Exception generated when we try to execute code at an address
8842              * which is marked as Secure & Non-Secure Callable and the CPU
8843              * is in the Non-Secure state. The only instruction which can
8844              * be executed like this is SG (and that only if both halves of
8845              * the SG instruction have the same security attributes.)
8846              * Everything else must generate an INVEP SecureFault, so we
8847              * emulate the SG instruction here.
8848              */
8849             if (v7m_handle_execute_nsc(cpu)) {
8850                 return;
8851             }
8852             break;
8853         case M_FAKE_FSR_SFAULT:
8854             /* Various flavours of SecureFault for attempts to execute or
8855              * access data in the wrong security state.
8856              */
8857             switch (cs->exception_index) {
8858             case EXCP_PREFETCH_ABORT:
8859                 if (env->v7m.secure) {
8860                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
8861                     qemu_log_mask(CPU_LOG_INT,
8862                                   "...really SecureFault with SFSR.INVTRAN\n");
8863                 } else {
8864                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8865                     qemu_log_mask(CPU_LOG_INT,
8866                                   "...really SecureFault with SFSR.INVEP\n");
8867                 }
8868                 break;
8869             case EXCP_DATA_ABORT:
8870                 /* This must be an NS access to S memory */
8871                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
8872                 qemu_log_mask(CPU_LOG_INT,
8873                               "...really SecureFault with SFSR.AUVIOL\n");
8874                 break;
8875             }
8876             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8877             break;
8878         case 0x8: /* External Abort */
8879             switch (cs->exception_index) {
8880             case EXCP_PREFETCH_ABORT:
8881                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8882                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
8883                 break;
8884             case EXCP_DATA_ABORT:
8885                 env->v7m.cfsr[M_REG_NS] |=
8886                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
8887                 env->v7m.bfar = env->exception.vaddress;
8888                 qemu_log_mask(CPU_LOG_INT,
8889                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
8890                               env->v7m.bfar);
8891                 break;
8892             }
8893             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8894             break;
8895         default:
8896             /* All other FSR values are either MPU faults or "can't happen
8897              * for M profile" cases.
8898              */
8899             switch (cs->exception_index) {
8900             case EXCP_PREFETCH_ABORT:
8901                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8902                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
8903                 break;
8904             case EXCP_DATA_ABORT:
8905                 env->v7m.cfsr[env->v7m.secure] |=
8906                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
8907                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
8908                 qemu_log_mask(CPU_LOG_INT,
8909                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
8910                               env->v7m.mmfar[env->v7m.secure]);
8911                 break;
8912             }
8913             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
8914                                     env->v7m.secure);
8915             break;
8916         }
8917         break;
8918     case EXCP_BKPT:
8919         if (semihosting_enabled()) {
8920             int nr;
8921             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
8922             if (nr == 0xab) {
8923                 env->regs[15] += 2;
8924                 qemu_log_mask(CPU_LOG_INT,
8925                               "...handling as semihosting call 0x%x\n",
8926                               env->regs[0]);
8927                 env->regs[0] = do_arm_semihosting(env);
8928                 return;
8929             }
8930         }
8931         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
8932         break;
8933     case EXCP_IRQ:
8934         break;
8935     case EXCP_EXCEPTION_EXIT:
8936         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
8937             /* Must be v8M security extension function return */
8938             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
8939             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8940             if (do_v7m_function_return(cpu)) {
8941                 return;
8942             }
8943         } else {
8944             do_v7m_exception_exit(cpu);
8945             return;
8946         }
8947         break;
8948     default:
8949         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8950         return; /* Never happens.  Keep compiler happy.  */
8951     }
8952 
8953     if (arm_feature(env, ARM_FEATURE_V8)) {
8954         lr = R_V7M_EXCRET_RES1_MASK |
8955             R_V7M_EXCRET_DCRS_MASK |
8956             R_V7M_EXCRET_FTYPE_MASK;
8957         /* The S bit indicates whether we should return to Secure
8958          * or NonSecure (ie our current state).
8959          * The ES bit indicates whether we're taking this exception
8960          * to Secure or NonSecure (ie our target state). We set it
8961          * later, in v7m_exception_taken().
8962          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
8963          * This corresponds to the ARM ARM pseudocode for v8M setting
8964          * some LR bits in PushStack() and some in ExceptionTaken();
8965          * the distinction matters for the tailchain cases where we
8966          * can take an exception without pushing the stack.
8967          */
8968         if (env->v7m.secure) {
8969             lr |= R_V7M_EXCRET_S_MASK;
8970         }
8971     } else {
8972         lr = R_V7M_EXCRET_RES1_MASK |
8973             R_V7M_EXCRET_S_MASK |
8974             R_V7M_EXCRET_DCRS_MASK |
8975             R_V7M_EXCRET_FTYPE_MASK |
8976             R_V7M_EXCRET_ES_MASK;
8977         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
8978             lr |= R_V7M_EXCRET_SPSEL_MASK;
8979         }
8980     }
8981     if (!arm_v7m_is_handler_mode(env)) {
8982         lr |= R_V7M_EXCRET_MODE_MASK;
8983     }
8984 
8985     ignore_stackfaults = v7m_push_stack(cpu);
8986     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
8987 }
8988 
8989 /* Function used to synchronize QEMU's AArch64 register set with AArch32
8990  * register set.  This is necessary when switching between AArch32 and AArch64
8991  * execution state.
8992  */
8993 void aarch64_sync_32_to_64(CPUARMState *env)
8994 {
8995     int i;
8996     uint32_t mode = env->uncached_cpsr & CPSR_M;
8997 
8998     /* We can blanket copy R[0:7] to X[0:7] */
8999     for (i = 0; i < 8; i++) {
9000         env->xregs[i] = env->regs[i];
9001     }
9002 
9003     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9004      * Otherwise, they come from the banked user regs.
9005      */
9006     if (mode == ARM_CPU_MODE_FIQ) {
9007         for (i = 8; i < 13; i++) {
9008             env->xregs[i] = env->usr_regs[i - 8];
9009         }
9010     } else {
9011         for (i = 8; i < 13; i++) {
9012             env->xregs[i] = env->regs[i];
9013         }
9014     }
9015 
9016     /* Registers x13-x23 are the various mode SP and FP registers. Registers
9017      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9018      * from the mode banked register.
9019      */
9020     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9021         env->xregs[13] = env->regs[13];
9022         env->xregs[14] = env->regs[14];
9023     } else {
9024         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9025         /* HYP is an exception in that it is copied from r14 */
9026         if (mode == ARM_CPU_MODE_HYP) {
9027             env->xregs[14] = env->regs[14];
9028         } else {
9029             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9030         }
9031     }
9032 
9033     if (mode == ARM_CPU_MODE_HYP) {
9034         env->xregs[15] = env->regs[13];
9035     } else {
9036         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9037     }
9038 
9039     if (mode == ARM_CPU_MODE_IRQ) {
9040         env->xregs[16] = env->regs[14];
9041         env->xregs[17] = env->regs[13];
9042     } else {
9043         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9044         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9045     }
9046 
9047     if (mode == ARM_CPU_MODE_SVC) {
9048         env->xregs[18] = env->regs[14];
9049         env->xregs[19] = env->regs[13];
9050     } else {
9051         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9052         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9053     }
9054 
9055     if (mode == ARM_CPU_MODE_ABT) {
9056         env->xregs[20] = env->regs[14];
9057         env->xregs[21] = env->regs[13];
9058     } else {
9059         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9060         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9061     }
9062 
9063     if (mode == ARM_CPU_MODE_UND) {
9064         env->xregs[22] = env->regs[14];
9065         env->xregs[23] = env->regs[13];
9066     } else {
9067         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9068         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9069     }
9070 
9071     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9072      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9073      * FIQ bank for r8-r14.
9074      */
9075     if (mode == ARM_CPU_MODE_FIQ) {
9076         for (i = 24; i < 31; i++) {
9077             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9078         }
9079     } else {
9080         for (i = 24; i < 29; i++) {
9081             env->xregs[i] = env->fiq_regs[i - 24];
9082         }
9083         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9084         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9085     }
9086 
9087     env->pc = env->regs[15];
9088 }
9089 
9090 /* Function used to synchronize QEMU's AArch32 register set with AArch64
9091  * register set.  This is necessary when switching between AArch32 and AArch64
9092  * execution state.
9093  */
9094 void aarch64_sync_64_to_32(CPUARMState *env)
9095 {
9096     int i;
9097     uint32_t mode = env->uncached_cpsr & CPSR_M;
9098 
9099     /* We can blanket copy X[0:7] to R[0:7] */
9100     for (i = 0; i < 8; i++) {
9101         env->regs[i] = env->xregs[i];
9102     }
9103 
9104     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9105      * Otherwise, we copy x8-x12 into the banked user regs.
9106      */
9107     if (mode == ARM_CPU_MODE_FIQ) {
9108         for (i = 8; i < 13; i++) {
9109             env->usr_regs[i - 8] = env->xregs[i];
9110         }
9111     } else {
9112         for (i = 8; i < 13; i++) {
9113             env->regs[i] = env->xregs[i];
9114         }
9115     }
9116 
9117     /* Registers r13 & r14 depend on the current mode.
9118      * If we are in a given mode, we copy the corresponding x registers to r13
9119      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9120      * for the mode.
9121      */
9122     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9123         env->regs[13] = env->xregs[13];
9124         env->regs[14] = env->xregs[14];
9125     } else {
9126         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9127 
9128         /* HYP is an exception in that it does not have its own banked r14 but
9129          * shares the USR r14
9130          */
9131         if (mode == ARM_CPU_MODE_HYP) {
9132             env->regs[14] = env->xregs[14];
9133         } else {
9134             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9135         }
9136     }
9137 
9138     if (mode == ARM_CPU_MODE_HYP) {
9139         env->regs[13] = env->xregs[15];
9140     } else {
9141         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9142     }
9143 
9144     if (mode == ARM_CPU_MODE_IRQ) {
9145         env->regs[14] = env->xregs[16];
9146         env->regs[13] = env->xregs[17];
9147     } else {
9148         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9149         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9150     }
9151 
9152     if (mode == ARM_CPU_MODE_SVC) {
9153         env->regs[14] = env->xregs[18];
9154         env->regs[13] = env->xregs[19];
9155     } else {
9156         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9157         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9158     }
9159 
9160     if (mode == ARM_CPU_MODE_ABT) {
9161         env->regs[14] = env->xregs[20];
9162         env->regs[13] = env->xregs[21];
9163     } else {
9164         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9165         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9166     }
9167 
9168     if (mode == ARM_CPU_MODE_UND) {
9169         env->regs[14] = env->xregs[22];
9170         env->regs[13] = env->xregs[23];
9171     } else {
9172         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9173         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9174     }
9175 
9176     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9177      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9178      * FIQ bank for r8-r14.
9179      */
9180     if (mode == ARM_CPU_MODE_FIQ) {
9181         for (i = 24; i < 31; i++) {
9182             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9183         }
9184     } else {
9185         for (i = 24; i < 29; i++) {
9186             env->fiq_regs[i - 24] = env->xregs[i];
9187         }
9188         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9189         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9190     }
9191 
9192     env->regs[15] = env->pc;
9193 }
9194 
9195 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9196                                    uint32_t mask, uint32_t offset,
9197                                    uint32_t newpc)
9198 {
9199     /* Change the CPU state so as to actually take the exception. */
9200     switch_mode(env, new_mode);
9201     /*
9202      * For exceptions taken to AArch32 we must clear the SS bit in both
9203      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9204      */
9205     env->uncached_cpsr &= ~PSTATE_SS;
9206     env->spsr = cpsr_read(env);
9207     /* Clear IT bits.  */
9208     env->condexec_bits = 0;
9209     /* Switch to the new mode, and to the correct instruction set.  */
9210     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9211     /* Set new mode endianness */
9212     env->uncached_cpsr &= ~CPSR_E;
9213     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
9214         env->uncached_cpsr |= CPSR_E;
9215     }
9216     /* J and IL must always be cleared for exception entry */
9217     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9218     env->daif |= mask;
9219 
9220     if (new_mode == ARM_CPU_MODE_HYP) {
9221         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9222         env->elr_el[2] = env->regs[15];
9223     } else {
9224         /*
9225          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9226          * and we should just guard the thumb mode on V4
9227          */
9228         if (arm_feature(env, ARM_FEATURE_V4T)) {
9229             env->thumb =
9230                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9231         }
9232         env->regs[14] = env->regs[15] + offset;
9233     }
9234     env->regs[15] = newpc;
9235 }
9236 
9237 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9238 {
9239     /*
9240      * Handle exception entry to Hyp mode; this is sufficiently
9241      * different to entry to other AArch32 modes that we handle it
9242      * separately here.
9243      *
9244      * The vector table entry used is always the 0x14 Hyp mode entry point,
9245      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9246      * The offset applied to the preferred return address is always zero
9247      * (see DDI0487C.a section G1.12.3).
9248      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9249      */
9250     uint32_t addr, mask;
9251     ARMCPU *cpu = ARM_CPU(cs);
9252     CPUARMState *env = &cpu->env;
9253 
9254     switch (cs->exception_index) {
9255     case EXCP_UDEF:
9256         addr = 0x04;
9257         break;
9258     case EXCP_SWI:
9259         addr = 0x14;
9260         break;
9261     case EXCP_BKPT:
9262         /* Fall through to prefetch abort.  */
9263     case EXCP_PREFETCH_ABORT:
9264         env->cp15.ifar_s = env->exception.vaddress;
9265         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9266                       (uint32_t)env->exception.vaddress);
9267         addr = 0x0c;
9268         break;
9269     case EXCP_DATA_ABORT:
9270         env->cp15.dfar_s = env->exception.vaddress;
9271         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9272                       (uint32_t)env->exception.vaddress);
9273         addr = 0x10;
9274         break;
9275     case EXCP_IRQ:
9276         addr = 0x18;
9277         break;
9278     case EXCP_FIQ:
9279         addr = 0x1c;
9280         break;
9281     case EXCP_HVC:
9282         addr = 0x08;
9283         break;
9284     case EXCP_HYP_TRAP:
9285         addr = 0x14;
9286     default:
9287         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9288     }
9289 
9290     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9291         if (!arm_feature(env, ARM_FEATURE_V8)) {
9292             /*
9293              * QEMU syndrome values are v8-style. v7 has the IL bit
9294              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9295              * If this is a v7 CPU, squash the IL bit in those cases.
9296              */
9297             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9298                 (cs->exception_index == EXCP_DATA_ABORT &&
9299                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9300                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9301                 env->exception.syndrome &= ~ARM_EL_IL;
9302             }
9303         }
9304         env->cp15.esr_el[2] = env->exception.syndrome;
9305     }
9306 
9307     if (arm_current_el(env) != 2 && addr < 0x14) {
9308         addr = 0x14;
9309     }
9310 
9311     mask = 0;
9312     if (!(env->cp15.scr_el3 & SCR_EA)) {
9313         mask |= CPSR_A;
9314     }
9315     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9316         mask |= CPSR_I;
9317     }
9318     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9319         mask |= CPSR_F;
9320     }
9321 
9322     addr += env->cp15.hvbar;
9323 
9324     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9325 }
9326 
9327 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9328 {
9329     ARMCPU *cpu = ARM_CPU(cs);
9330     CPUARMState *env = &cpu->env;
9331     uint32_t addr;
9332     uint32_t mask;
9333     int new_mode;
9334     uint32_t offset;
9335     uint32_t moe;
9336 
9337     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9338     switch (syn_get_ec(env->exception.syndrome)) {
9339     case EC_BREAKPOINT:
9340     case EC_BREAKPOINT_SAME_EL:
9341         moe = 1;
9342         break;
9343     case EC_WATCHPOINT:
9344     case EC_WATCHPOINT_SAME_EL:
9345         moe = 10;
9346         break;
9347     case EC_AA32_BKPT:
9348         moe = 3;
9349         break;
9350     case EC_VECTORCATCH:
9351         moe = 5;
9352         break;
9353     default:
9354         moe = 0;
9355         break;
9356     }
9357 
9358     if (moe) {
9359         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9360     }
9361 
9362     if (env->exception.target_el == 2) {
9363         arm_cpu_do_interrupt_aarch32_hyp(cs);
9364         return;
9365     }
9366 
9367     switch (cs->exception_index) {
9368     case EXCP_UDEF:
9369         new_mode = ARM_CPU_MODE_UND;
9370         addr = 0x04;
9371         mask = CPSR_I;
9372         if (env->thumb)
9373             offset = 2;
9374         else
9375             offset = 4;
9376         break;
9377     case EXCP_SWI:
9378         new_mode = ARM_CPU_MODE_SVC;
9379         addr = 0x08;
9380         mask = CPSR_I;
9381         /* The PC already points to the next instruction.  */
9382         offset = 0;
9383         break;
9384     case EXCP_BKPT:
9385         /* Fall through to prefetch abort.  */
9386     case EXCP_PREFETCH_ABORT:
9387         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9388         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9389         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9390                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9391         new_mode = ARM_CPU_MODE_ABT;
9392         addr = 0x0c;
9393         mask = CPSR_A | CPSR_I;
9394         offset = 4;
9395         break;
9396     case EXCP_DATA_ABORT:
9397         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9398         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9399         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9400                       env->exception.fsr,
9401                       (uint32_t)env->exception.vaddress);
9402         new_mode = ARM_CPU_MODE_ABT;
9403         addr = 0x10;
9404         mask = CPSR_A | CPSR_I;
9405         offset = 8;
9406         break;
9407     case EXCP_IRQ:
9408         new_mode = ARM_CPU_MODE_IRQ;
9409         addr = 0x18;
9410         /* Disable IRQ and imprecise data aborts.  */
9411         mask = CPSR_A | CPSR_I;
9412         offset = 4;
9413         if (env->cp15.scr_el3 & SCR_IRQ) {
9414             /* IRQ routed to monitor mode */
9415             new_mode = ARM_CPU_MODE_MON;
9416             mask |= CPSR_F;
9417         }
9418         break;
9419     case EXCP_FIQ:
9420         new_mode = ARM_CPU_MODE_FIQ;
9421         addr = 0x1c;
9422         /* Disable FIQ, IRQ and imprecise data aborts.  */
9423         mask = CPSR_A | CPSR_I | CPSR_F;
9424         if (env->cp15.scr_el3 & SCR_FIQ) {
9425             /* FIQ routed to monitor mode */
9426             new_mode = ARM_CPU_MODE_MON;
9427         }
9428         offset = 4;
9429         break;
9430     case EXCP_VIRQ:
9431         new_mode = ARM_CPU_MODE_IRQ;
9432         addr = 0x18;
9433         /* Disable IRQ and imprecise data aborts.  */
9434         mask = CPSR_A | CPSR_I;
9435         offset = 4;
9436         break;
9437     case EXCP_VFIQ:
9438         new_mode = ARM_CPU_MODE_FIQ;
9439         addr = 0x1c;
9440         /* Disable FIQ, IRQ and imprecise data aborts.  */
9441         mask = CPSR_A | CPSR_I | CPSR_F;
9442         offset = 4;
9443         break;
9444     case EXCP_SMC:
9445         new_mode = ARM_CPU_MODE_MON;
9446         addr = 0x08;
9447         mask = CPSR_A | CPSR_I | CPSR_F;
9448         offset = 0;
9449         break;
9450     default:
9451         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9452         return; /* Never happens.  Keep compiler happy.  */
9453     }
9454 
9455     if (new_mode == ARM_CPU_MODE_MON) {
9456         addr += env->cp15.mvbar;
9457     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9458         /* High vectors. When enabled, base address cannot be remapped. */
9459         addr += 0xffff0000;
9460     } else {
9461         /* ARM v7 architectures provide a vector base address register to remap
9462          * the interrupt vector table.
9463          * This register is only followed in non-monitor mode, and is banked.
9464          * Note: only bits 31:5 are valid.
9465          */
9466         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9467     }
9468 
9469     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9470         env->cp15.scr_el3 &= ~SCR_NS;
9471     }
9472 
9473     take_aarch32_exception(env, new_mode, mask, offset, addr);
9474 }
9475 
9476 /* Handle exception entry to a target EL which is using AArch64 */
9477 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9478 {
9479     ARMCPU *cpu = ARM_CPU(cs);
9480     CPUARMState *env = &cpu->env;
9481     unsigned int new_el = env->exception.target_el;
9482     target_ulong addr = env->cp15.vbar_el[new_el];
9483     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9484     unsigned int cur_el = arm_current_el(env);
9485 
9486     /*
9487      * Note that new_el can never be 0.  If cur_el is 0, then
9488      * el0_a64 is is_a64(), else el0_a64 is ignored.
9489      */
9490     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9491 
9492     if (cur_el < new_el) {
9493         /* Entry vector offset depends on whether the implemented EL
9494          * immediately lower than the target level is using AArch32 or AArch64
9495          */
9496         bool is_aa64;
9497 
9498         switch (new_el) {
9499         case 3:
9500             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9501             break;
9502         case 2:
9503             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
9504             break;
9505         case 1:
9506             is_aa64 = is_a64(env);
9507             break;
9508         default:
9509             g_assert_not_reached();
9510         }
9511 
9512         if (is_aa64) {
9513             addr += 0x400;
9514         } else {
9515             addr += 0x600;
9516         }
9517     } else if (pstate_read(env) & PSTATE_SP) {
9518         addr += 0x200;
9519     }
9520 
9521     switch (cs->exception_index) {
9522     case EXCP_PREFETCH_ABORT:
9523     case EXCP_DATA_ABORT:
9524         env->cp15.far_el[new_el] = env->exception.vaddress;
9525         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9526                       env->cp15.far_el[new_el]);
9527         /* fall through */
9528     case EXCP_BKPT:
9529     case EXCP_UDEF:
9530     case EXCP_SWI:
9531     case EXCP_HVC:
9532     case EXCP_HYP_TRAP:
9533     case EXCP_SMC:
9534         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9535             /*
9536              * QEMU internal FP/SIMD syndromes from AArch32 include the
9537              * TA and coproc fields which are only exposed if the exception
9538              * is taken to AArch32 Hyp mode. Mask them out to get a valid
9539              * AArch64 format syndrome.
9540              */
9541             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9542         }
9543         env->cp15.esr_el[new_el] = env->exception.syndrome;
9544         break;
9545     case EXCP_IRQ:
9546     case EXCP_VIRQ:
9547         addr += 0x80;
9548         break;
9549     case EXCP_FIQ:
9550     case EXCP_VFIQ:
9551         addr += 0x100;
9552         break;
9553     case EXCP_SEMIHOST:
9554         qemu_log_mask(CPU_LOG_INT,
9555                       "...handling as semihosting call 0x%" PRIx64 "\n",
9556                       env->xregs[0]);
9557         env->xregs[0] = do_arm_semihosting(env);
9558         return;
9559     default:
9560         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9561     }
9562 
9563     if (is_a64(env)) {
9564         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
9565         aarch64_save_sp(env, arm_current_el(env));
9566         env->elr_el[new_el] = env->pc;
9567     } else {
9568         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
9569         env->elr_el[new_el] = env->regs[15];
9570 
9571         aarch64_sync_32_to_64(env);
9572 
9573         env->condexec_bits = 0;
9574     }
9575     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9576                   env->elr_el[new_el]);
9577 
9578     pstate_write(env, PSTATE_DAIF | new_mode);
9579     env->aarch64 = 1;
9580     aarch64_restore_sp(env, new_el);
9581 
9582     env->pc = addr;
9583 
9584     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9585                   new_el, env->pc, pstate_read(env));
9586 }
9587 
9588 static inline bool check_for_semihosting(CPUState *cs)
9589 {
9590     /* Check whether this exception is a semihosting call; if so
9591      * then handle it and return true; otherwise return false.
9592      */
9593     ARMCPU *cpu = ARM_CPU(cs);
9594     CPUARMState *env = &cpu->env;
9595 
9596     if (is_a64(env)) {
9597         if (cs->exception_index == EXCP_SEMIHOST) {
9598             /* This is always the 64-bit semihosting exception.
9599              * The "is this usermode" and "is semihosting enabled"
9600              * checks have been done at translate time.
9601              */
9602             qemu_log_mask(CPU_LOG_INT,
9603                           "...handling as semihosting call 0x%" PRIx64 "\n",
9604                           env->xregs[0]);
9605             env->xregs[0] = do_arm_semihosting(env);
9606             return true;
9607         }
9608         return false;
9609     } else {
9610         uint32_t imm;
9611 
9612         /* Only intercept calls from privileged modes, to provide some
9613          * semblance of security.
9614          */
9615         if (cs->exception_index != EXCP_SEMIHOST &&
9616             (!semihosting_enabled() ||
9617              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
9618             return false;
9619         }
9620 
9621         switch (cs->exception_index) {
9622         case EXCP_SEMIHOST:
9623             /* This is always a semihosting call; the "is this usermode"
9624              * and "is semihosting enabled" checks have been done at
9625              * translate time.
9626              */
9627             break;
9628         case EXCP_SWI:
9629             /* Check for semihosting interrupt.  */
9630             if (env->thumb) {
9631                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
9632                     & 0xff;
9633                 if (imm == 0xab) {
9634                     break;
9635                 }
9636             } else {
9637                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
9638                     & 0xffffff;
9639                 if (imm == 0x123456) {
9640                     break;
9641                 }
9642             }
9643             return false;
9644         case EXCP_BKPT:
9645             /* See if this is a semihosting syscall.  */
9646             if (env->thumb) {
9647                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
9648                     & 0xff;
9649                 if (imm == 0xab) {
9650                     env->regs[15] += 2;
9651                     break;
9652                 }
9653             }
9654             return false;
9655         default:
9656             return false;
9657         }
9658 
9659         qemu_log_mask(CPU_LOG_INT,
9660                       "...handling as semihosting call 0x%x\n",
9661                       env->regs[0]);
9662         env->regs[0] = do_arm_semihosting(env);
9663         return true;
9664     }
9665 }
9666 
9667 /* Handle a CPU exception for A and R profile CPUs.
9668  * Do any appropriate logging, handle PSCI calls, and then hand off
9669  * to the AArch64-entry or AArch32-entry function depending on the
9670  * target exception level's register width.
9671  */
9672 void arm_cpu_do_interrupt(CPUState *cs)
9673 {
9674     ARMCPU *cpu = ARM_CPU(cs);
9675     CPUARMState *env = &cpu->env;
9676     unsigned int new_el = env->exception.target_el;
9677 
9678     assert(!arm_feature(env, ARM_FEATURE_M));
9679 
9680     arm_log_exception(cs->exception_index);
9681     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9682                   new_el);
9683     if (qemu_loglevel_mask(CPU_LOG_INT)
9684         && !excp_is_internal(cs->exception_index)) {
9685         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9686                       syn_get_ec(env->exception.syndrome),
9687                       env->exception.syndrome);
9688     }
9689 
9690     if (arm_is_psci_call(cpu, cs->exception_index)) {
9691         arm_handle_psci_call(cpu);
9692         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9693         return;
9694     }
9695 
9696     /* Semihosting semantics depend on the register width of the
9697      * code that caused the exception, not the target exception level,
9698      * so must be handled here.
9699      */
9700     if (check_for_semihosting(cs)) {
9701         return;
9702     }
9703 
9704     /* Hooks may change global state so BQL should be held, also the
9705      * BQL needs to be held for any modification of
9706      * cs->interrupt_request.
9707      */
9708     g_assert(qemu_mutex_iothread_locked());
9709 
9710     arm_call_pre_el_change_hook(cpu);
9711 
9712     assert(!excp_is_internal(cs->exception_index));
9713     if (arm_el_is_aa64(env, new_el)) {
9714         arm_cpu_do_interrupt_aarch64(cs);
9715     } else {
9716         arm_cpu_do_interrupt_aarch32(cs);
9717     }
9718 
9719     arm_call_el_change_hook(cpu);
9720 
9721     if (!kvm_enabled()) {
9722         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9723     }
9724 }
9725 #endif /* !CONFIG_USER_ONLY */
9726 
9727 /* Return the exception level which controls this address translation regime */
9728 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9729 {
9730     switch (mmu_idx) {
9731     case ARMMMUIdx_S2NS:
9732     case ARMMMUIdx_S1E2:
9733         return 2;
9734     case ARMMMUIdx_S1E3:
9735         return 3;
9736     case ARMMMUIdx_S1SE0:
9737         return arm_el_is_aa64(env, 3) ? 1 : 3;
9738     case ARMMMUIdx_S1SE1:
9739     case ARMMMUIdx_S1NSE0:
9740     case ARMMMUIdx_S1NSE1:
9741     case ARMMMUIdx_MPrivNegPri:
9742     case ARMMMUIdx_MUserNegPri:
9743     case ARMMMUIdx_MPriv:
9744     case ARMMMUIdx_MUser:
9745     case ARMMMUIdx_MSPrivNegPri:
9746     case ARMMMUIdx_MSUserNegPri:
9747     case ARMMMUIdx_MSPriv:
9748     case ARMMMUIdx_MSUser:
9749         return 1;
9750     default:
9751         g_assert_not_reached();
9752     }
9753 }
9754 
9755 #ifndef CONFIG_USER_ONLY
9756 
9757 /* Return the SCTLR value which controls this address translation regime */
9758 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9759 {
9760     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9761 }
9762 
9763 /* Return true if the specified stage of address translation is disabled */
9764 static inline bool regime_translation_disabled(CPUARMState *env,
9765                                                ARMMMUIdx mmu_idx)
9766 {
9767     if (arm_feature(env, ARM_FEATURE_M)) {
9768         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9769                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9770         case R_V7M_MPU_CTRL_ENABLE_MASK:
9771             /* Enabled, but not for HardFault and NMI */
9772             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9773         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9774             /* Enabled for all cases */
9775             return false;
9776         case 0:
9777         default:
9778             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9779              * we warned about that in armv7m_nvic.c when the guest set it.
9780              */
9781             return true;
9782         }
9783     }
9784 
9785     if (mmu_idx == ARMMMUIdx_S2NS) {
9786         /* HCR.DC means HCR.VM behaves as 1 */
9787         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9788     }
9789 
9790     if (env->cp15.hcr_el2 & HCR_TGE) {
9791         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9792         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9793             return true;
9794         }
9795     }
9796 
9797     if ((env->cp15.hcr_el2 & HCR_DC) &&
9798         (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
9799         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9800         return true;
9801     }
9802 
9803     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9804 }
9805 
9806 static inline bool regime_translation_big_endian(CPUARMState *env,
9807                                                  ARMMMUIdx mmu_idx)
9808 {
9809     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9810 }
9811 
9812 /* Return the TTBR associated with this translation regime */
9813 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9814                                    int ttbrn)
9815 {
9816     if (mmu_idx == ARMMMUIdx_S2NS) {
9817         return env->cp15.vttbr_el2;
9818     }
9819     if (ttbrn == 0) {
9820         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9821     } else {
9822         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9823     }
9824 }
9825 
9826 #endif /* !CONFIG_USER_ONLY */
9827 
9828 /* Return the TCR controlling this translation regime */
9829 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9830 {
9831     if (mmu_idx == ARMMMUIdx_S2NS) {
9832         return &env->cp15.vtcr_el2;
9833     }
9834     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9835 }
9836 
9837 /* Convert a possible stage1+2 MMU index into the appropriate
9838  * stage 1 MMU index
9839  */
9840 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9841 {
9842     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9843         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
9844     }
9845     return mmu_idx;
9846 }
9847 
9848 /* Return true if the translation regime is using LPAE format page tables */
9849 static inline bool regime_using_lpae_format(CPUARMState *env,
9850                                             ARMMMUIdx mmu_idx)
9851 {
9852     int el = regime_el(env, mmu_idx);
9853     if (el == 2 || arm_el_is_aa64(env, el)) {
9854         return true;
9855     }
9856     if (arm_feature(env, ARM_FEATURE_LPAE)
9857         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9858         return true;
9859     }
9860     return false;
9861 }
9862 
9863 /* Returns true if the stage 1 translation regime is using LPAE format page
9864  * tables. Used when raising alignment exceptions, whose FSR changes depending
9865  * on whether the long or short descriptor format is in use. */
9866 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9867 {
9868     mmu_idx = stage_1_mmu_idx(mmu_idx);
9869 
9870     return regime_using_lpae_format(env, mmu_idx);
9871 }
9872 
9873 #ifndef CONFIG_USER_ONLY
9874 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9875 {
9876     switch (mmu_idx) {
9877     case ARMMMUIdx_S1SE0:
9878     case ARMMMUIdx_S1NSE0:
9879     case ARMMMUIdx_MUser:
9880     case ARMMMUIdx_MSUser:
9881     case ARMMMUIdx_MUserNegPri:
9882     case ARMMMUIdx_MSUserNegPri:
9883         return true;
9884     default:
9885         return false;
9886     case ARMMMUIdx_S12NSE0:
9887     case ARMMMUIdx_S12NSE1:
9888         g_assert_not_reached();
9889     }
9890 }
9891 
9892 /* Translate section/page access permissions to page
9893  * R/W protection flags
9894  *
9895  * @env:         CPUARMState
9896  * @mmu_idx:     MMU index indicating required translation regime
9897  * @ap:          The 3-bit access permissions (AP[2:0])
9898  * @domain_prot: The 2-bit domain access permissions
9899  */
9900 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9901                                 int ap, int domain_prot)
9902 {
9903     bool is_user = regime_is_user(env, mmu_idx);
9904 
9905     if (domain_prot == 3) {
9906         return PAGE_READ | PAGE_WRITE;
9907     }
9908 
9909     switch (ap) {
9910     case 0:
9911         if (arm_feature(env, ARM_FEATURE_V7)) {
9912             return 0;
9913         }
9914         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9915         case SCTLR_S:
9916             return is_user ? 0 : PAGE_READ;
9917         case SCTLR_R:
9918             return PAGE_READ;
9919         default:
9920             return 0;
9921         }
9922     case 1:
9923         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9924     case 2:
9925         if (is_user) {
9926             return PAGE_READ;
9927         } else {
9928             return PAGE_READ | PAGE_WRITE;
9929         }
9930     case 3:
9931         return PAGE_READ | PAGE_WRITE;
9932     case 4: /* Reserved.  */
9933         return 0;
9934     case 5:
9935         return is_user ? 0 : PAGE_READ;
9936     case 6:
9937         return PAGE_READ;
9938     case 7:
9939         if (!arm_feature(env, ARM_FEATURE_V6K)) {
9940             return 0;
9941         }
9942         return PAGE_READ;
9943     default:
9944         g_assert_not_reached();
9945     }
9946 }
9947 
9948 /* Translate section/page access permissions to page
9949  * R/W protection flags.
9950  *
9951  * @ap:      The 2-bit simple AP (AP[2:1])
9952  * @is_user: TRUE if accessing from PL0
9953  */
9954 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9955 {
9956     switch (ap) {
9957     case 0:
9958         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9959     case 1:
9960         return PAGE_READ | PAGE_WRITE;
9961     case 2:
9962         return is_user ? 0 : PAGE_READ;
9963     case 3:
9964         return PAGE_READ;
9965     default:
9966         g_assert_not_reached();
9967     }
9968 }
9969 
9970 static inline int
9971 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9972 {
9973     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9974 }
9975 
9976 /* Translate S2 section/page access permissions to protection flags
9977  *
9978  * @env:     CPUARMState
9979  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
9980  * @xn:      XN (execute-never) bit
9981  */
9982 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9983 {
9984     int prot = 0;
9985 
9986     if (s2ap & 1) {
9987         prot |= PAGE_READ;
9988     }
9989     if (s2ap & 2) {
9990         prot |= PAGE_WRITE;
9991     }
9992     if (!xn) {
9993         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9994             prot |= PAGE_EXEC;
9995         }
9996     }
9997     return prot;
9998 }
9999 
10000 /* Translate section/page access permissions to protection flags
10001  *
10002  * @env:     CPUARMState
10003  * @mmu_idx: MMU index indicating required translation regime
10004  * @is_aa64: TRUE if AArch64
10005  * @ap:      The 2-bit simple AP (AP[2:1])
10006  * @ns:      NS (non-secure) bit
10007  * @xn:      XN (execute-never) bit
10008  * @pxn:     PXN (privileged execute-never) bit
10009  */
10010 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10011                       int ap, int ns, int xn, int pxn)
10012 {
10013     bool is_user = regime_is_user(env, mmu_idx);
10014     int prot_rw, user_rw;
10015     bool have_wxn;
10016     int wxn = 0;
10017 
10018     assert(mmu_idx != ARMMMUIdx_S2NS);
10019 
10020     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10021     if (is_user) {
10022         prot_rw = user_rw;
10023     } else {
10024         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10025     }
10026 
10027     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10028         return prot_rw;
10029     }
10030 
10031     /* TODO have_wxn should be replaced with
10032      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10033      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10034      * compatible processors have EL2, which is required for [U]WXN.
10035      */
10036     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10037 
10038     if (have_wxn) {
10039         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10040     }
10041 
10042     if (is_aa64) {
10043         switch (regime_el(env, mmu_idx)) {
10044         case 1:
10045             if (!is_user) {
10046                 xn = pxn || (user_rw & PAGE_WRITE);
10047             }
10048             break;
10049         case 2:
10050         case 3:
10051             break;
10052         }
10053     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10054         switch (regime_el(env, mmu_idx)) {
10055         case 1:
10056         case 3:
10057             if (is_user) {
10058                 xn = xn || !(user_rw & PAGE_READ);
10059             } else {
10060                 int uwxn = 0;
10061                 if (have_wxn) {
10062                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10063                 }
10064                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10065                      (uwxn && (user_rw & PAGE_WRITE));
10066             }
10067             break;
10068         case 2:
10069             break;
10070         }
10071     } else {
10072         xn = wxn = 0;
10073     }
10074 
10075     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10076         return prot_rw;
10077     }
10078     return prot_rw | PAGE_EXEC;
10079 }
10080 
10081 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10082                                      uint32_t *table, uint32_t address)
10083 {
10084     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10085     TCR *tcr = regime_tcr(env, mmu_idx);
10086 
10087     if (address & tcr->mask) {
10088         if (tcr->raw_tcr & TTBCR_PD1) {
10089             /* Translation table walk disabled for TTBR1 */
10090             return false;
10091         }
10092         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10093     } else {
10094         if (tcr->raw_tcr & TTBCR_PD0) {
10095             /* Translation table walk disabled for TTBR0 */
10096             return false;
10097         }
10098         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10099     }
10100     *table |= (address >> 18) & 0x3ffc;
10101     return true;
10102 }
10103 
10104 /* Translate a S1 pagetable walk through S2 if needed.  */
10105 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10106                                hwaddr addr, MemTxAttrs txattrs,
10107                                ARMMMUFaultInfo *fi)
10108 {
10109     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10110         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10111         target_ulong s2size;
10112         hwaddr s2pa;
10113         int s2prot;
10114         int ret;
10115         ARMCacheAttrs cacheattrs = {};
10116         ARMCacheAttrs *pcacheattrs = NULL;
10117 
10118         if (env->cp15.hcr_el2 & HCR_PTW) {
10119             /*
10120              * PTW means we must fault if this S1 walk touches S2 Device
10121              * memory; otherwise we don't care about the attributes and can
10122              * save the S2 translation the effort of computing them.
10123              */
10124             pcacheattrs = &cacheattrs;
10125         }
10126 
10127         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
10128                                  &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10129         if (ret) {
10130             assert(fi->type != ARMFault_None);
10131             fi->s2addr = addr;
10132             fi->stage2 = true;
10133             fi->s1ptw = true;
10134             return ~0;
10135         }
10136         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10137             /* Access was to Device memory: generate Permission fault */
10138             fi->type = ARMFault_Permission;
10139             fi->s2addr = addr;
10140             fi->stage2 = true;
10141             fi->s1ptw = true;
10142             return ~0;
10143         }
10144         addr = s2pa;
10145     }
10146     return addr;
10147 }
10148 
10149 /* All loads done in the course of a page table walk go through here. */
10150 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10151                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10152 {
10153     ARMCPU *cpu = ARM_CPU(cs);
10154     CPUARMState *env = &cpu->env;
10155     MemTxAttrs attrs = {};
10156     MemTxResult result = MEMTX_OK;
10157     AddressSpace *as;
10158     uint32_t data;
10159 
10160     attrs.secure = is_secure;
10161     as = arm_addressspace(cs, attrs);
10162     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10163     if (fi->s1ptw) {
10164         return 0;
10165     }
10166     if (regime_translation_big_endian(env, mmu_idx)) {
10167         data = address_space_ldl_be(as, addr, attrs, &result);
10168     } else {
10169         data = address_space_ldl_le(as, addr, attrs, &result);
10170     }
10171     if (result == MEMTX_OK) {
10172         return data;
10173     }
10174     fi->type = ARMFault_SyncExternalOnWalk;
10175     fi->ea = arm_extabort_type(result);
10176     return 0;
10177 }
10178 
10179 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10180                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10181 {
10182     ARMCPU *cpu = ARM_CPU(cs);
10183     CPUARMState *env = &cpu->env;
10184     MemTxAttrs attrs = {};
10185     MemTxResult result = MEMTX_OK;
10186     AddressSpace *as;
10187     uint64_t data;
10188 
10189     attrs.secure = is_secure;
10190     as = arm_addressspace(cs, attrs);
10191     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10192     if (fi->s1ptw) {
10193         return 0;
10194     }
10195     if (regime_translation_big_endian(env, mmu_idx)) {
10196         data = address_space_ldq_be(as, addr, attrs, &result);
10197     } else {
10198         data = address_space_ldq_le(as, addr, attrs, &result);
10199     }
10200     if (result == MEMTX_OK) {
10201         return data;
10202     }
10203     fi->type = ARMFault_SyncExternalOnWalk;
10204     fi->ea = arm_extabort_type(result);
10205     return 0;
10206 }
10207 
10208 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10209                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10210                              hwaddr *phys_ptr, int *prot,
10211                              target_ulong *page_size,
10212                              ARMMMUFaultInfo *fi)
10213 {
10214     CPUState *cs = CPU(arm_env_get_cpu(env));
10215     int level = 1;
10216     uint32_t table;
10217     uint32_t desc;
10218     int type;
10219     int ap;
10220     int domain = 0;
10221     int domain_prot;
10222     hwaddr phys_addr;
10223     uint32_t dacr;
10224 
10225     /* Pagetable walk.  */
10226     /* Lookup l1 descriptor.  */
10227     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10228         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10229         fi->type = ARMFault_Translation;
10230         goto do_fault;
10231     }
10232     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10233                        mmu_idx, fi);
10234     if (fi->type != ARMFault_None) {
10235         goto do_fault;
10236     }
10237     type = (desc & 3);
10238     domain = (desc >> 5) & 0x0f;
10239     if (regime_el(env, mmu_idx) == 1) {
10240         dacr = env->cp15.dacr_ns;
10241     } else {
10242         dacr = env->cp15.dacr_s;
10243     }
10244     domain_prot = (dacr >> (domain * 2)) & 3;
10245     if (type == 0) {
10246         /* Section translation fault.  */
10247         fi->type = ARMFault_Translation;
10248         goto do_fault;
10249     }
10250     if (type != 2) {
10251         level = 2;
10252     }
10253     if (domain_prot == 0 || domain_prot == 2) {
10254         fi->type = ARMFault_Domain;
10255         goto do_fault;
10256     }
10257     if (type == 2) {
10258         /* 1Mb section.  */
10259         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10260         ap = (desc >> 10) & 3;
10261         *page_size = 1024 * 1024;
10262     } else {
10263         /* Lookup l2 entry.  */
10264         if (type == 1) {
10265             /* Coarse pagetable.  */
10266             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10267         } else {
10268             /* Fine pagetable.  */
10269             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10270         }
10271         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10272                            mmu_idx, fi);
10273         if (fi->type != ARMFault_None) {
10274             goto do_fault;
10275         }
10276         switch (desc & 3) {
10277         case 0: /* Page translation fault.  */
10278             fi->type = ARMFault_Translation;
10279             goto do_fault;
10280         case 1: /* 64k page.  */
10281             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10282             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10283             *page_size = 0x10000;
10284             break;
10285         case 2: /* 4k page.  */
10286             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10287             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10288             *page_size = 0x1000;
10289             break;
10290         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10291             if (type == 1) {
10292                 /* ARMv6/XScale extended small page format */
10293                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10294                     || arm_feature(env, ARM_FEATURE_V6)) {
10295                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10296                     *page_size = 0x1000;
10297                 } else {
10298                     /* UNPREDICTABLE in ARMv5; we choose to take a
10299                      * page translation fault.
10300                      */
10301                     fi->type = ARMFault_Translation;
10302                     goto do_fault;
10303                 }
10304             } else {
10305                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10306                 *page_size = 0x400;
10307             }
10308             ap = (desc >> 4) & 3;
10309             break;
10310         default:
10311             /* Never happens, but compiler isn't smart enough to tell.  */
10312             abort();
10313         }
10314     }
10315     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10316     *prot |= *prot ? PAGE_EXEC : 0;
10317     if (!(*prot & (1 << access_type))) {
10318         /* Access permission fault.  */
10319         fi->type = ARMFault_Permission;
10320         goto do_fault;
10321     }
10322     *phys_ptr = phys_addr;
10323     return false;
10324 do_fault:
10325     fi->domain = domain;
10326     fi->level = level;
10327     return true;
10328 }
10329 
10330 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10331                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10332                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10333                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10334 {
10335     CPUState *cs = CPU(arm_env_get_cpu(env));
10336     int level = 1;
10337     uint32_t table;
10338     uint32_t desc;
10339     uint32_t xn;
10340     uint32_t pxn = 0;
10341     int type;
10342     int ap;
10343     int domain = 0;
10344     int domain_prot;
10345     hwaddr phys_addr;
10346     uint32_t dacr;
10347     bool ns;
10348 
10349     /* Pagetable walk.  */
10350     /* Lookup l1 descriptor.  */
10351     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10352         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10353         fi->type = ARMFault_Translation;
10354         goto do_fault;
10355     }
10356     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10357                        mmu_idx, fi);
10358     if (fi->type != ARMFault_None) {
10359         goto do_fault;
10360     }
10361     type = (desc & 3);
10362     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10363         /* Section translation fault, or attempt to use the encoding
10364          * which is Reserved on implementations without PXN.
10365          */
10366         fi->type = ARMFault_Translation;
10367         goto do_fault;
10368     }
10369     if ((type == 1) || !(desc & (1 << 18))) {
10370         /* Page or Section.  */
10371         domain = (desc >> 5) & 0x0f;
10372     }
10373     if (regime_el(env, mmu_idx) == 1) {
10374         dacr = env->cp15.dacr_ns;
10375     } else {
10376         dacr = env->cp15.dacr_s;
10377     }
10378     if (type == 1) {
10379         level = 2;
10380     }
10381     domain_prot = (dacr >> (domain * 2)) & 3;
10382     if (domain_prot == 0 || domain_prot == 2) {
10383         /* Section or Page domain fault */
10384         fi->type = ARMFault_Domain;
10385         goto do_fault;
10386     }
10387     if (type != 1) {
10388         if (desc & (1 << 18)) {
10389             /* Supersection.  */
10390             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10391             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10392             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10393             *page_size = 0x1000000;
10394         } else {
10395             /* Section.  */
10396             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10397             *page_size = 0x100000;
10398         }
10399         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10400         xn = desc & (1 << 4);
10401         pxn = desc & 1;
10402         ns = extract32(desc, 19, 1);
10403     } else {
10404         if (arm_feature(env, ARM_FEATURE_PXN)) {
10405             pxn = (desc >> 2) & 1;
10406         }
10407         ns = extract32(desc, 3, 1);
10408         /* Lookup l2 entry.  */
10409         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10410         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10411                            mmu_idx, fi);
10412         if (fi->type != ARMFault_None) {
10413             goto do_fault;
10414         }
10415         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10416         switch (desc & 3) {
10417         case 0: /* Page translation fault.  */
10418             fi->type = ARMFault_Translation;
10419             goto do_fault;
10420         case 1: /* 64k page.  */
10421             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10422             xn = desc & (1 << 15);
10423             *page_size = 0x10000;
10424             break;
10425         case 2: case 3: /* 4k page.  */
10426             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10427             xn = desc & 1;
10428             *page_size = 0x1000;
10429             break;
10430         default:
10431             /* Never happens, but compiler isn't smart enough to tell.  */
10432             abort();
10433         }
10434     }
10435     if (domain_prot == 3) {
10436         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10437     } else {
10438         if (pxn && !regime_is_user(env, mmu_idx)) {
10439             xn = 1;
10440         }
10441         if (xn && access_type == MMU_INST_FETCH) {
10442             fi->type = ARMFault_Permission;
10443             goto do_fault;
10444         }
10445 
10446         if (arm_feature(env, ARM_FEATURE_V6K) &&
10447                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10448             /* The simplified model uses AP[0] as an access control bit.  */
10449             if ((ap & 1) == 0) {
10450                 /* Access flag fault.  */
10451                 fi->type = ARMFault_AccessFlag;
10452                 goto do_fault;
10453             }
10454             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10455         } else {
10456             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10457         }
10458         if (*prot && !xn) {
10459             *prot |= PAGE_EXEC;
10460         }
10461         if (!(*prot & (1 << access_type))) {
10462             /* Access permission fault.  */
10463             fi->type = ARMFault_Permission;
10464             goto do_fault;
10465         }
10466     }
10467     if (ns) {
10468         /* The NS bit will (as required by the architecture) have no effect if
10469          * the CPU doesn't support TZ or this is a non-secure translation
10470          * regime, because the attribute will already be non-secure.
10471          */
10472         attrs->secure = false;
10473     }
10474     *phys_ptr = phys_addr;
10475     return false;
10476 do_fault:
10477     fi->domain = domain;
10478     fi->level = level;
10479     return true;
10480 }
10481 
10482 /*
10483  * check_s2_mmu_setup
10484  * @cpu:        ARMCPU
10485  * @is_aa64:    True if the translation regime is in AArch64 state
10486  * @startlevel: Suggested starting level
10487  * @inputsize:  Bitsize of IPAs
10488  * @stride:     Page-table stride (See the ARM ARM)
10489  *
10490  * Returns true if the suggested S2 translation parameters are OK and
10491  * false otherwise.
10492  */
10493 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10494                                int inputsize, int stride)
10495 {
10496     const int grainsize = stride + 3;
10497     int startsizecheck;
10498 
10499     /* Negative levels are never allowed.  */
10500     if (level < 0) {
10501         return false;
10502     }
10503 
10504     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10505     if (startsizecheck < 1 || startsizecheck > stride + 4) {
10506         return false;
10507     }
10508 
10509     if (is_aa64) {
10510         CPUARMState *env = &cpu->env;
10511         unsigned int pamax = arm_pamax(cpu);
10512 
10513         switch (stride) {
10514         case 13: /* 64KB Pages.  */
10515             if (level == 0 || (level == 1 && pamax <= 42)) {
10516                 return false;
10517             }
10518             break;
10519         case 11: /* 16KB Pages.  */
10520             if (level == 0 || (level == 1 && pamax <= 40)) {
10521                 return false;
10522             }
10523             break;
10524         case 9: /* 4KB Pages.  */
10525             if (level == 0 && pamax <= 42) {
10526                 return false;
10527             }
10528             break;
10529         default:
10530             g_assert_not_reached();
10531         }
10532 
10533         /* Inputsize checks.  */
10534         if (inputsize > pamax &&
10535             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10536             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
10537             return false;
10538         }
10539     } else {
10540         /* AArch32 only supports 4KB pages. Assert on that.  */
10541         assert(stride == 9);
10542 
10543         if (level == 0) {
10544             return false;
10545         }
10546     }
10547     return true;
10548 }
10549 
10550 /* Translate from the 4-bit stage 2 representation of
10551  * memory attributes (without cache-allocation hints) to
10552  * the 8-bit representation of the stage 1 MAIR registers
10553  * (which includes allocation hints).
10554  *
10555  * ref: shared/translation/attrs/S2AttrDecode()
10556  *      .../S2ConvertAttrsHints()
10557  */
10558 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10559 {
10560     uint8_t hiattr = extract32(s2attrs, 2, 2);
10561     uint8_t loattr = extract32(s2attrs, 0, 2);
10562     uint8_t hihint = 0, lohint = 0;
10563 
10564     if (hiattr != 0) { /* normal memory */
10565         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10566             hiattr = loattr = 1; /* non-cacheable */
10567         } else {
10568             if (hiattr != 1) { /* Write-through or write-back */
10569                 hihint = 3; /* RW allocate */
10570             }
10571             if (loattr != 1) { /* Write-through or write-back */
10572                 lohint = 3; /* RW allocate */
10573             }
10574         }
10575     }
10576 
10577     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10578 }
10579 #endif /* !CONFIG_USER_ONLY */
10580 
10581 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
10582                                         ARMMMUIdx mmu_idx)
10583 {
10584     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10585     uint32_t el = regime_el(env, mmu_idx);
10586     bool tbi, tbid, epd, hpd, using16k, using64k;
10587     int select, tsz;
10588 
10589     /*
10590      * Bit 55 is always between the two regions, and is canonical for
10591      * determining if address tagging is enabled.
10592      */
10593     select = extract64(va, 55, 1);
10594 
10595     if (el > 1) {
10596         tsz = extract32(tcr, 0, 6);
10597         using64k = extract32(tcr, 14, 1);
10598         using16k = extract32(tcr, 15, 1);
10599         if (mmu_idx == ARMMMUIdx_S2NS) {
10600             /* VTCR_EL2 */
10601             tbi = tbid = hpd = false;
10602         } else {
10603             tbi = extract32(tcr, 20, 1);
10604             hpd = extract32(tcr, 24, 1);
10605             tbid = extract32(tcr, 29, 1);
10606         }
10607         epd = false;
10608     } else if (!select) {
10609         tsz = extract32(tcr, 0, 6);
10610         epd = extract32(tcr, 7, 1);
10611         using64k = extract32(tcr, 14, 1);
10612         using16k = extract32(tcr, 15, 1);
10613         tbi = extract64(tcr, 37, 1);
10614         hpd = extract64(tcr, 41, 1);
10615         tbid = extract64(tcr, 51, 1);
10616     } else {
10617         int tg = extract32(tcr, 30, 2);
10618         using16k = tg == 1;
10619         using64k = tg == 3;
10620         tsz = extract32(tcr, 16, 6);
10621         epd = extract32(tcr, 23, 1);
10622         tbi = extract64(tcr, 38, 1);
10623         hpd = extract64(tcr, 42, 1);
10624         tbid = extract64(tcr, 52, 1);
10625     }
10626     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
10627     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
10628 
10629     return (ARMVAParameters) {
10630         .tsz = tsz,
10631         .select = select,
10632         .tbi = tbi,
10633         .tbid = tbid,
10634         .epd = epd,
10635         .hpd = hpd,
10636         .using16k = using16k,
10637         .using64k = using64k,
10638     };
10639 }
10640 
10641 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10642                                    ARMMMUIdx mmu_idx, bool data)
10643 {
10644     ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
10645 
10646     /* Present TBI as a composite with TBID.  */
10647     ret.tbi &= (data || !ret.tbid);
10648     return ret;
10649 }
10650 
10651 #ifndef CONFIG_USER_ONLY
10652 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10653                                           ARMMMUIdx mmu_idx)
10654 {
10655     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10656     uint32_t el = regime_el(env, mmu_idx);
10657     int select, tsz;
10658     bool epd, hpd;
10659 
10660     if (mmu_idx == ARMMMUIdx_S2NS) {
10661         /* VTCR */
10662         bool sext = extract32(tcr, 4, 1);
10663         bool sign = extract32(tcr, 3, 1);
10664 
10665         /*
10666          * If the sign-extend bit is not the same as t0sz[3], the result
10667          * is unpredictable. Flag this as a guest error.
10668          */
10669         if (sign != sext) {
10670             qemu_log_mask(LOG_GUEST_ERROR,
10671                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10672         }
10673         tsz = sextract32(tcr, 0, 4) + 8;
10674         select = 0;
10675         hpd = false;
10676         epd = false;
10677     } else if (el == 2) {
10678         /* HTCR */
10679         tsz = extract32(tcr, 0, 3);
10680         select = 0;
10681         hpd = extract64(tcr, 24, 1);
10682         epd = false;
10683     } else {
10684         int t0sz = extract32(tcr, 0, 3);
10685         int t1sz = extract32(tcr, 16, 3);
10686 
10687         if (t1sz == 0) {
10688             select = va > (0xffffffffu >> t0sz);
10689         } else {
10690             /* Note that we will detect errors later.  */
10691             select = va >= ~(0xffffffffu >> t1sz);
10692         }
10693         if (!select) {
10694             tsz = t0sz;
10695             epd = extract32(tcr, 7, 1);
10696             hpd = extract64(tcr, 41, 1);
10697         } else {
10698             tsz = t1sz;
10699             epd = extract32(tcr, 23, 1);
10700             hpd = extract64(tcr, 42, 1);
10701         }
10702         /* For aarch32, hpd0 is not enabled without t2e as well.  */
10703         hpd &= extract32(tcr, 6, 1);
10704     }
10705 
10706     return (ARMVAParameters) {
10707         .tsz = tsz,
10708         .select = select,
10709         .epd = epd,
10710         .hpd = hpd,
10711     };
10712 }
10713 
10714 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10715                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
10716                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10717                                target_ulong *page_size_ptr,
10718                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10719 {
10720     ARMCPU *cpu = arm_env_get_cpu(env);
10721     CPUState *cs = CPU(cpu);
10722     /* Read an LPAE long-descriptor translation table. */
10723     ARMFaultType fault_type = ARMFault_Translation;
10724     uint32_t level;
10725     ARMVAParameters param;
10726     uint64_t ttbr;
10727     hwaddr descaddr, indexmask, indexmask_grainsize;
10728     uint32_t tableattrs;
10729     target_ulong page_size;
10730     uint32_t attrs;
10731     int32_t stride;
10732     int addrsize, inputsize;
10733     TCR *tcr = regime_tcr(env, mmu_idx);
10734     int ap, ns, xn, pxn;
10735     uint32_t el = regime_el(env, mmu_idx);
10736     bool ttbr1_valid;
10737     uint64_t descaddrmask;
10738     bool aarch64 = arm_el_is_aa64(env, el);
10739     bool guarded = false;
10740 
10741     /* TODO:
10742      * This code does not handle the different format TCR for VTCR_EL2.
10743      * This code also does not support shareability levels.
10744      * Attribute and permission bit handling should also be checked when adding
10745      * support for those page table walks.
10746      */
10747     if (aarch64) {
10748         param = aa64_va_parameters(env, address, mmu_idx,
10749                                    access_type != MMU_INST_FETCH);
10750         level = 0;
10751         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
10752          * invalid.
10753          */
10754         ttbr1_valid = (el < 2);
10755         addrsize = 64 - 8 * param.tbi;
10756         inputsize = 64 - param.tsz;
10757     } else {
10758         param = aa32_va_parameters(env, address, mmu_idx);
10759         level = 1;
10760         /* There is no TTBR1 for EL2 */
10761         ttbr1_valid = (el != 2);
10762         addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
10763         inputsize = addrsize - param.tsz;
10764     }
10765 
10766     /*
10767      * We determined the region when collecting the parameters, but we
10768      * have not yet validated that the address is valid for the region.
10769      * Extract the top bits and verify that they all match select.
10770      *
10771      * For aa32, if inputsize == addrsize, then we have selected the
10772      * region by exclusion in aa32_va_parameters and there is no more
10773      * validation to do here.
10774      */
10775     if (inputsize < addrsize) {
10776         target_ulong top_bits = sextract64(address, inputsize,
10777                                            addrsize - inputsize);
10778         if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
10779             /* The gap between the two regions is a Translation fault */
10780             fault_type = ARMFault_Translation;
10781             goto do_fault;
10782         }
10783     }
10784 
10785     if (param.using64k) {
10786         stride = 13;
10787     } else if (param.using16k) {
10788         stride = 11;
10789     } else {
10790         stride = 9;
10791     }
10792 
10793     /* Note that QEMU ignores shareability and cacheability attributes,
10794      * so we don't need to do anything with the SH, ORGN, IRGN fields
10795      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
10796      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10797      * implement any ASID-like capability so we can ignore it (instead
10798      * we will always flush the TLB any time the ASID is changed).
10799      */
10800     ttbr = regime_ttbr(env, mmu_idx, param.select);
10801 
10802     /* Here we should have set up all the parameters for the translation:
10803      * inputsize, ttbr, epd, stride, tbi
10804      */
10805 
10806     if (param.epd) {
10807         /* Translation table walk disabled => Translation fault on TLB miss
10808          * Note: This is always 0 on 64-bit EL2 and EL3.
10809          */
10810         goto do_fault;
10811     }
10812 
10813     if (mmu_idx != ARMMMUIdx_S2NS) {
10814         /* The starting level depends on the virtual address size (which can
10815          * be up to 48 bits) and the translation granule size. It indicates
10816          * the number of strides (stride bits at a time) needed to
10817          * consume the bits of the input address. In the pseudocode this is:
10818          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
10819          * where their 'inputsize' is our 'inputsize', 'grainsize' is
10820          * our 'stride + 3' and 'stride' is our 'stride'.
10821          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10822          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10823          * = 4 - (inputsize - 4) / stride;
10824          */
10825         level = 4 - (inputsize - 4) / stride;
10826     } else {
10827         /* For stage 2 translations the starting level is specified by the
10828          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10829          */
10830         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10831         uint32_t startlevel;
10832         bool ok;
10833 
10834         if (!aarch64 || stride == 9) {
10835             /* AArch32 or 4KB pages */
10836             startlevel = 2 - sl0;
10837         } else {
10838             /* 16KB or 64KB pages */
10839             startlevel = 3 - sl0;
10840         }
10841 
10842         /* Check that the starting level is valid. */
10843         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10844                                 inputsize, stride);
10845         if (!ok) {
10846             fault_type = ARMFault_Translation;
10847             goto do_fault;
10848         }
10849         level = startlevel;
10850     }
10851 
10852     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10853     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10854 
10855     /* Now we can extract the actual base address from the TTBR */
10856     descaddr = extract64(ttbr, 0, 48);
10857     descaddr &= ~indexmask;
10858 
10859     /* The address field in the descriptor goes up to bit 39 for ARMv7
10860      * but up to bit 47 for ARMv8, but we use the descaddrmask
10861      * up to bit 39 for AArch32, because we don't need other bits in that case
10862      * to construct next descriptor address (anyway they should be all zeroes).
10863      */
10864     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10865                    ~indexmask_grainsize;
10866 
10867     /* Secure accesses start with the page table in secure memory and
10868      * can be downgraded to non-secure at any step. Non-secure accesses
10869      * remain non-secure. We implement this by just ORing in the NSTable/NS
10870      * bits at each step.
10871      */
10872     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10873     for (;;) {
10874         uint64_t descriptor;
10875         bool nstable;
10876 
10877         descaddr |= (address >> (stride * (4 - level))) & indexmask;
10878         descaddr &= ~7ULL;
10879         nstable = extract32(tableattrs, 4, 1);
10880         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10881         if (fi->type != ARMFault_None) {
10882             goto do_fault;
10883         }
10884 
10885         if (!(descriptor & 1) ||
10886             (!(descriptor & 2) && (level == 3))) {
10887             /* Invalid, or the Reserved level 3 encoding */
10888             goto do_fault;
10889         }
10890         descaddr = descriptor & descaddrmask;
10891 
10892         if ((descriptor & 2) && (level < 3)) {
10893             /* Table entry. The top five bits are attributes which may
10894              * propagate down through lower levels of the table (and
10895              * which are all arranged so that 0 means "no effect", so
10896              * we can gather them up by ORing in the bits at each level).
10897              */
10898             tableattrs |= extract64(descriptor, 59, 5);
10899             level++;
10900             indexmask = indexmask_grainsize;
10901             continue;
10902         }
10903         /* Block entry at level 1 or 2, or page entry at level 3.
10904          * These are basically the same thing, although the number
10905          * of bits we pull in from the vaddr varies.
10906          */
10907         page_size = (1ULL << ((stride * (4 - level)) + 3));
10908         descaddr |= (address & (page_size - 1));
10909         /* Extract attributes from the descriptor */
10910         attrs = extract64(descriptor, 2, 10)
10911             | (extract64(descriptor, 52, 12) << 10);
10912 
10913         if (mmu_idx == ARMMMUIdx_S2NS) {
10914             /* Stage 2 table descriptors do not include any attribute fields */
10915             break;
10916         }
10917         /* Merge in attributes from table descriptors */
10918         attrs |= nstable << 3; /* NS */
10919         guarded = extract64(descriptor, 50, 1);  /* GP */
10920         if (param.hpd) {
10921             /* HPD disables all the table attributes except NSTable.  */
10922             break;
10923         }
10924         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
10925         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10926          * means "force PL1 access only", which means forcing AP[1] to 0.
10927          */
10928         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
10929         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
10930         break;
10931     }
10932     /* Here descaddr is the final physical address, and attributes
10933      * are all in attrs.
10934      */
10935     fault_type = ARMFault_AccessFlag;
10936     if ((attrs & (1 << 8)) == 0) {
10937         /* Access flag */
10938         goto do_fault;
10939     }
10940 
10941     ap = extract32(attrs, 4, 2);
10942     xn = extract32(attrs, 12, 1);
10943 
10944     if (mmu_idx == ARMMMUIdx_S2NS) {
10945         ns = true;
10946         *prot = get_S2prot(env, ap, xn);
10947     } else {
10948         ns = extract32(attrs, 3, 1);
10949         pxn = extract32(attrs, 11, 1);
10950         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10951     }
10952 
10953     fault_type = ARMFault_Permission;
10954     if (!(*prot & (1 << access_type))) {
10955         goto do_fault;
10956     }
10957 
10958     if (ns) {
10959         /* The NS bit will (as required by the architecture) have no effect if
10960          * the CPU doesn't support TZ or this is a non-secure translation
10961          * regime, because the attribute will already be non-secure.
10962          */
10963         txattrs->secure = false;
10964     }
10965     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
10966     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10967         txattrs->target_tlb_bit0 = true;
10968     }
10969 
10970     if (cacheattrs != NULL) {
10971         if (mmu_idx == ARMMMUIdx_S2NS) {
10972             cacheattrs->attrs = convert_stage2_attrs(env,
10973                                                      extract32(attrs, 0, 4));
10974         } else {
10975             /* Index into MAIR registers for cache attributes */
10976             uint8_t attrindx = extract32(attrs, 0, 3);
10977             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10978             assert(attrindx <= 7);
10979             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10980         }
10981         cacheattrs->shareability = extract32(attrs, 6, 2);
10982     }
10983 
10984     *phys_ptr = descaddr;
10985     *page_size_ptr = page_size;
10986     return false;
10987 
10988 do_fault:
10989     fi->type = fault_type;
10990     fi->level = level;
10991     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
10992     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
10993     return true;
10994 }
10995 
10996 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10997                                                 ARMMMUIdx mmu_idx,
10998                                                 int32_t address, int *prot)
10999 {
11000     if (!arm_feature(env, ARM_FEATURE_M)) {
11001         *prot = PAGE_READ | PAGE_WRITE;
11002         switch (address) {
11003         case 0xF0000000 ... 0xFFFFFFFF:
11004             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11005                 /* hivecs execing is ok */
11006                 *prot |= PAGE_EXEC;
11007             }
11008             break;
11009         case 0x00000000 ... 0x7FFFFFFF:
11010             *prot |= PAGE_EXEC;
11011             break;
11012         }
11013     } else {
11014         /* Default system address map for M profile cores.
11015          * The architecture specifies which regions are execute-never;
11016          * at the MPU level no other checks are defined.
11017          */
11018         switch (address) {
11019         case 0x00000000 ... 0x1fffffff: /* ROM */
11020         case 0x20000000 ... 0x3fffffff: /* SRAM */
11021         case 0x60000000 ... 0x7fffffff: /* RAM */
11022         case 0x80000000 ... 0x9fffffff: /* RAM */
11023             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11024             break;
11025         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11026         case 0xa0000000 ... 0xbfffffff: /* Device */
11027         case 0xc0000000 ... 0xdfffffff: /* Device */
11028         case 0xe0000000 ... 0xffffffff: /* System */
11029             *prot = PAGE_READ | PAGE_WRITE;
11030             break;
11031         default:
11032             g_assert_not_reached();
11033         }
11034     }
11035 }
11036 
11037 static bool pmsav7_use_background_region(ARMCPU *cpu,
11038                                          ARMMMUIdx mmu_idx, bool is_user)
11039 {
11040     /* Return true if we should use the default memory map as a
11041      * "background" region if there are no hits against any MPU regions.
11042      */
11043     CPUARMState *env = &cpu->env;
11044 
11045     if (is_user) {
11046         return false;
11047     }
11048 
11049     if (arm_feature(env, ARM_FEATURE_M)) {
11050         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11051             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11052     } else {
11053         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11054     }
11055 }
11056 
11057 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11058 {
11059     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11060     return arm_feature(env, ARM_FEATURE_M) &&
11061         extract32(address, 20, 12) == 0xe00;
11062 }
11063 
11064 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11065 {
11066     /* True if address is in the M profile system region
11067      * 0xe0000000 - 0xffffffff
11068      */
11069     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11070 }
11071 
11072 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11073                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11074                                  hwaddr *phys_ptr, int *prot,
11075                                  target_ulong *page_size,
11076                                  ARMMMUFaultInfo *fi)
11077 {
11078     ARMCPU *cpu = arm_env_get_cpu(env);
11079     int n;
11080     bool is_user = regime_is_user(env, mmu_idx);
11081 
11082     *phys_ptr = address;
11083     *page_size = TARGET_PAGE_SIZE;
11084     *prot = 0;
11085 
11086     if (regime_translation_disabled(env, mmu_idx) ||
11087         m_is_ppb_region(env, address)) {
11088         /* MPU disabled or M profile PPB access: use default memory map.
11089          * The other case which uses the default memory map in the
11090          * v7M ARM ARM pseudocode is exception vector reads from the vector
11091          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11092          * which always does a direct read using address_space_ldl(), rather
11093          * than going via this function, so we don't need to check that here.
11094          */
11095         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11096     } else { /* MPU enabled */
11097         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11098             /* region search */
11099             uint32_t base = env->pmsav7.drbar[n];
11100             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11101             uint32_t rmask;
11102             bool srdis = false;
11103 
11104             if (!(env->pmsav7.drsr[n] & 0x1)) {
11105                 continue;
11106             }
11107 
11108             if (!rsize) {
11109                 qemu_log_mask(LOG_GUEST_ERROR,
11110                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11111                 continue;
11112             }
11113             rsize++;
11114             rmask = (1ull << rsize) - 1;
11115 
11116             if (base & rmask) {
11117                 qemu_log_mask(LOG_GUEST_ERROR,
11118                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11119                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11120                               n, base, rmask);
11121                 continue;
11122             }
11123 
11124             if (address < base || address > base + rmask) {
11125                 /*
11126                  * Address not in this region. We must check whether the
11127                  * region covers addresses in the same page as our address.
11128                  * In that case we must not report a size that covers the
11129                  * whole page for a subsequent hit against a different MPU
11130                  * region or the background region, because it would result in
11131                  * incorrect TLB hits for subsequent accesses to addresses that
11132                  * are in this MPU region.
11133                  */
11134                 if (ranges_overlap(base, rmask,
11135                                    address & TARGET_PAGE_MASK,
11136                                    TARGET_PAGE_SIZE)) {
11137                     *page_size = 1;
11138                 }
11139                 continue;
11140             }
11141 
11142             /* Region matched */
11143 
11144             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11145                 int i, snd;
11146                 uint32_t srdis_mask;
11147 
11148                 rsize -= 3; /* sub region size (power of 2) */
11149                 snd = ((address - base) >> rsize) & 0x7;
11150                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11151 
11152                 srdis_mask = srdis ? 0x3 : 0x0;
11153                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11154                     /* This will check in groups of 2, 4 and then 8, whether
11155                      * the subregion bits are consistent. rsize is incremented
11156                      * back up to give the region size, considering consistent
11157                      * adjacent subregions as one region. Stop testing if rsize
11158                      * is already big enough for an entire QEMU page.
11159                      */
11160                     int snd_rounded = snd & ~(i - 1);
11161                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11162                                                      snd_rounded + 8, i);
11163                     if (srdis_mask ^ srdis_multi) {
11164                         break;
11165                     }
11166                     srdis_mask = (srdis_mask << i) | srdis_mask;
11167                     rsize++;
11168                 }
11169             }
11170             if (srdis) {
11171                 continue;
11172             }
11173             if (rsize < TARGET_PAGE_BITS) {
11174                 *page_size = 1 << rsize;
11175             }
11176             break;
11177         }
11178 
11179         if (n == -1) { /* no hits */
11180             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11181                 /* background fault */
11182                 fi->type = ARMFault_Background;
11183                 return true;
11184             }
11185             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11186         } else { /* a MPU hit! */
11187             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11188             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11189 
11190             if (m_is_system_region(env, address)) {
11191                 /* System space is always execute never */
11192                 xn = 1;
11193             }
11194 
11195             if (is_user) { /* User mode AP bit decoding */
11196                 switch (ap) {
11197                 case 0:
11198                 case 1:
11199                 case 5:
11200                     break; /* no access */
11201                 case 3:
11202                     *prot |= PAGE_WRITE;
11203                     /* fall through */
11204                 case 2:
11205                 case 6:
11206                     *prot |= PAGE_READ | PAGE_EXEC;
11207                     break;
11208                 case 7:
11209                     /* for v7M, same as 6; for R profile a reserved value */
11210                     if (arm_feature(env, ARM_FEATURE_M)) {
11211                         *prot |= PAGE_READ | PAGE_EXEC;
11212                         break;
11213                     }
11214                     /* fall through */
11215                 default:
11216                     qemu_log_mask(LOG_GUEST_ERROR,
11217                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11218                                   PRIx32 "\n", n, ap);
11219                 }
11220             } else { /* Priv. mode AP bits decoding */
11221                 switch (ap) {
11222                 case 0:
11223                     break; /* no access */
11224                 case 1:
11225                 case 2:
11226                 case 3:
11227                     *prot |= PAGE_WRITE;
11228                     /* fall through */
11229                 case 5:
11230                 case 6:
11231                     *prot |= PAGE_READ | PAGE_EXEC;
11232                     break;
11233                 case 7:
11234                     /* for v7M, same as 6; for R profile a reserved value */
11235                     if (arm_feature(env, ARM_FEATURE_M)) {
11236                         *prot |= PAGE_READ | PAGE_EXEC;
11237                         break;
11238                     }
11239                     /* fall through */
11240                 default:
11241                     qemu_log_mask(LOG_GUEST_ERROR,
11242                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11243                                   PRIx32 "\n", n, ap);
11244                 }
11245             }
11246 
11247             /* execute never */
11248             if (xn) {
11249                 *prot &= ~PAGE_EXEC;
11250             }
11251         }
11252     }
11253 
11254     fi->type = ARMFault_Permission;
11255     fi->level = 1;
11256     return !(*prot & (1 << access_type));
11257 }
11258 
11259 static bool v8m_is_sau_exempt(CPUARMState *env,
11260                               uint32_t address, MMUAccessType access_type)
11261 {
11262     /* The architecture specifies that certain address ranges are
11263      * exempt from v8M SAU/IDAU checks.
11264      */
11265     return
11266         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11267         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11268         (address >= 0xe000e000 && address <= 0xe000efff) ||
11269         (address >= 0xe002e000 && address <= 0xe002efff) ||
11270         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11271         (address >= 0xe00ff000 && address <= 0xe00fffff);
11272 }
11273 
11274 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
11275                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11276                                 V8M_SAttributes *sattrs)
11277 {
11278     /* Look up the security attributes for this address. Compare the
11279      * pseudocode SecurityCheck() function.
11280      * We assume the caller has zero-initialized *sattrs.
11281      */
11282     ARMCPU *cpu = arm_env_get_cpu(env);
11283     int r;
11284     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11285     int idau_region = IREGION_NOTVALID;
11286     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11287     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11288 
11289     if (cpu->idau) {
11290         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11291         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11292 
11293         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11294                    &idau_nsc);
11295     }
11296 
11297     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11298         /* 0xf0000000..0xffffffff is always S for insn fetches */
11299         return;
11300     }
11301 
11302     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11303         sattrs->ns = !regime_is_secure(env, mmu_idx);
11304         return;
11305     }
11306 
11307     if (idau_region != IREGION_NOTVALID) {
11308         sattrs->irvalid = true;
11309         sattrs->iregion = idau_region;
11310     }
11311 
11312     switch (env->sau.ctrl & 3) {
11313     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11314         break;
11315     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11316         sattrs->ns = true;
11317         break;
11318     default: /* SAU.ENABLE == 1 */
11319         for (r = 0; r < cpu->sau_sregion; r++) {
11320             if (env->sau.rlar[r] & 1) {
11321                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11322                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11323 
11324                 if (base <= address && limit >= address) {
11325                     if (base > addr_page_base || limit < addr_page_limit) {
11326                         sattrs->subpage = true;
11327                     }
11328                     if (sattrs->srvalid) {
11329                         /* If we hit in more than one region then we must report
11330                          * as Secure, not NS-Callable, with no valid region
11331                          * number info.
11332                          */
11333                         sattrs->ns = false;
11334                         sattrs->nsc = false;
11335                         sattrs->sregion = 0;
11336                         sattrs->srvalid = false;
11337                         break;
11338                     } else {
11339                         if (env->sau.rlar[r] & 2) {
11340                             sattrs->nsc = true;
11341                         } else {
11342                             sattrs->ns = true;
11343                         }
11344                         sattrs->srvalid = true;
11345                         sattrs->sregion = r;
11346                     }
11347                 } else {
11348                     /*
11349                      * Address not in this region. We must check whether the
11350                      * region covers addresses in the same page as our address.
11351                      * In that case we must not report a size that covers the
11352                      * whole page for a subsequent hit against a different MPU
11353                      * region or the background region, because it would result
11354                      * in incorrect TLB hits for subsequent accesses to
11355                      * addresses that are in this MPU region.
11356                      */
11357                     if (limit >= base &&
11358                         ranges_overlap(base, limit - base + 1,
11359                                        addr_page_base,
11360                                        TARGET_PAGE_SIZE)) {
11361                         sattrs->subpage = true;
11362                     }
11363                 }
11364             }
11365         }
11366         break;
11367     }
11368 
11369     /*
11370      * The IDAU will override the SAU lookup results if it specifies
11371      * higher security than the SAU does.
11372      */
11373     if (!idau_ns) {
11374         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11375             sattrs->ns = false;
11376             sattrs->nsc = idau_nsc;
11377         }
11378     }
11379 }
11380 
11381 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11382                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11383                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
11384                               int *prot, bool *is_subpage,
11385                               ARMMMUFaultInfo *fi, uint32_t *mregion)
11386 {
11387     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11388      * that a full phys-to-virt translation does).
11389      * mregion is (if not NULL) set to the region number which matched,
11390      * or -1 if no region number is returned (MPU off, address did not
11391      * hit a region, address hit in multiple regions).
11392      * We set is_subpage to true if the region hit doesn't cover the
11393      * entire TARGET_PAGE the address is within.
11394      */
11395     ARMCPU *cpu = arm_env_get_cpu(env);
11396     bool is_user = regime_is_user(env, mmu_idx);
11397     uint32_t secure = regime_is_secure(env, mmu_idx);
11398     int n;
11399     int matchregion = -1;
11400     bool hit = false;
11401     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11402     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11403 
11404     *is_subpage = false;
11405     *phys_ptr = address;
11406     *prot = 0;
11407     if (mregion) {
11408         *mregion = -1;
11409     }
11410 
11411     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11412      * was an exception vector read from the vector table (which is always
11413      * done using the default system address map), because those accesses
11414      * are done in arm_v7m_load_vector(), which always does a direct
11415      * read using address_space_ldl(), rather than going via this function.
11416      */
11417     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11418         hit = true;
11419     } else if (m_is_ppb_region(env, address)) {
11420         hit = true;
11421     } else {
11422         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11423             hit = true;
11424         }
11425 
11426         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11427             /* region search */
11428             /* Note that the base address is bits [31:5] from the register
11429              * with bits [4:0] all zeroes, but the limit address is bits
11430              * [31:5] from the register with bits [4:0] all ones.
11431              */
11432             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11433             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11434 
11435             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11436                 /* Region disabled */
11437                 continue;
11438             }
11439 
11440             if (address < base || address > limit) {
11441                 /*
11442                  * Address not in this region. We must check whether the
11443                  * region covers addresses in the same page as our address.
11444                  * In that case we must not report a size that covers the
11445                  * whole page for a subsequent hit against a different MPU
11446                  * region or the background region, because it would result in
11447                  * incorrect TLB hits for subsequent accesses to addresses that
11448                  * are in this MPU region.
11449                  */
11450                 if (limit >= base &&
11451                     ranges_overlap(base, limit - base + 1,
11452                                    addr_page_base,
11453                                    TARGET_PAGE_SIZE)) {
11454                     *is_subpage = true;
11455                 }
11456                 continue;
11457             }
11458 
11459             if (base > addr_page_base || limit < addr_page_limit) {
11460                 *is_subpage = true;
11461             }
11462 
11463             if (matchregion != -1) {
11464                 /* Multiple regions match -- always a failure (unlike
11465                  * PMSAv7 where highest-numbered-region wins)
11466                  */
11467                 fi->type = ARMFault_Permission;
11468                 fi->level = 1;
11469                 return true;
11470             }
11471 
11472             matchregion = n;
11473             hit = true;
11474         }
11475     }
11476 
11477     if (!hit) {
11478         /* background fault */
11479         fi->type = ARMFault_Background;
11480         return true;
11481     }
11482 
11483     if (matchregion == -1) {
11484         /* hit using the background region */
11485         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11486     } else {
11487         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11488         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11489 
11490         if (m_is_system_region(env, address)) {
11491             /* System space is always execute never */
11492             xn = 1;
11493         }
11494 
11495         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11496         if (*prot && !xn) {
11497             *prot |= PAGE_EXEC;
11498         }
11499         /* We don't need to look the attribute up in the MAIR0/MAIR1
11500          * registers because that only tells us about cacheability.
11501          */
11502         if (mregion) {
11503             *mregion = matchregion;
11504         }
11505     }
11506 
11507     fi->type = ARMFault_Permission;
11508     fi->level = 1;
11509     return !(*prot & (1 << access_type));
11510 }
11511 
11512 
11513 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11514                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11515                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
11516                                  int *prot, target_ulong *page_size,
11517                                  ARMMMUFaultInfo *fi)
11518 {
11519     uint32_t secure = regime_is_secure(env, mmu_idx);
11520     V8M_SAttributes sattrs = {};
11521     bool ret;
11522     bool mpu_is_subpage;
11523 
11524     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11525         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11526         if (access_type == MMU_INST_FETCH) {
11527             /* Instruction fetches always use the MMU bank and the
11528              * transaction attribute determined by the fetch address,
11529              * regardless of CPU state. This is painful for QEMU
11530              * to handle, because it would mean we need to encode
11531              * into the mmu_idx not just the (user, negpri) information
11532              * for the current security state but also that for the
11533              * other security state, which would balloon the number
11534              * of mmu_idx values needed alarmingly.
11535              * Fortunately we can avoid this because it's not actually
11536              * possible to arbitrarily execute code from memory with
11537              * the wrong security attribute: it will always generate
11538              * an exception of some kind or another, apart from the
11539              * special case of an NS CPU executing an SG instruction
11540              * in S&NSC memory. So we always just fail the translation
11541              * here and sort things out in the exception handler
11542              * (including possibly emulating an SG instruction).
11543              */
11544             if (sattrs.ns != !secure) {
11545                 if (sattrs.nsc) {
11546                     fi->type = ARMFault_QEMU_NSCExec;
11547                 } else {
11548                     fi->type = ARMFault_QEMU_SFault;
11549                 }
11550                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11551                 *phys_ptr = address;
11552                 *prot = 0;
11553                 return true;
11554             }
11555         } else {
11556             /* For data accesses we always use the MMU bank indicated
11557              * by the current CPU state, but the security attributes
11558              * might downgrade a secure access to nonsecure.
11559              */
11560             if (sattrs.ns) {
11561                 txattrs->secure = false;
11562             } else if (!secure) {
11563                 /* NS access to S memory must fault.
11564                  * Architecturally we should first check whether the
11565                  * MPU information for this address indicates that we
11566                  * are doing an unaligned access to Device memory, which
11567                  * should generate a UsageFault instead. QEMU does not
11568                  * currently check for that kind of unaligned access though.
11569                  * If we added it we would need to do so as a special case
11570                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11571                  */
11572                 fi->type = ARMFault_QEMU_SFault;
11573                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11574                 *phys_ptr = address;
11575                 *prot = 0;
11576                 return true;
11577             }
11578         }
11579     }
11580 
11581     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11582                             txattrs, prot, &mpu_is_subpage, fi, NULL);
11583     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11584     return ret;
11585 }
11586 
11587 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11588                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11589                                  hwaddr *phys_ptr, int *prot,
11590                                  ARMMMUFaultInfo *fi)
11591 {
11592     int n;
11593     uint32_t mask;
11594     uint32_t base;
11595     bool is_user = regime_is_user(env, mmu_idx);
11596 
11597     if (regime_translation_disabled(env, mmu_idx)) {
11598         /* MPU disabled.  */
11599         *phys_ptr = address;
11600         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11601         return false;
11602     }
11603 
11604     *phys_ptr = address;
11605     for (n = 7; n >= 0; n--) {
11606         base = env->cp15.c6_region[n];
11607         if ((base & 1) == 0) {
11608             continue;
11609         }
11610         mask = 1 << ((base >> 1) & 0x1f);
11611         /* Keep this shift separate from the above to avoid an
11612            (undefined) << 32.  */
11613         mask = (mask << 1) - 1;
11614         if (((base ^ address) & ~mask) == 0) {
11615             break;
11616         }
11617     }
11618     if (n < 0) {
11619         fi->type = ARMFault_Background;
11620         return true;
11621     }
11622 
11623     if (access_type == MMU_INST_FETCH) {
11624         mask = env->cp15.pmsav5_insn_ap;
11625     } else {
11626         mask = env->cp15.pmsav5_data_ap;
11627     }
11628     mask = (mask >> (n * 4)) & 0xf;
11629     switch (mask) {
11630     case 0:
11631         fi->type = ARMFault_Permission;
11632         fi->level = 1;
11633         return true;
11634     case 1:
11635         if (is_user) {
11636             fi->type = ARMFault_Permission;
11637             fi->level = 1;
11638             return true;
11639         }
11640         *prot = PAGE_READ | PAGE_WRITE;
11641         break;
11642     case 2:
11643         *prot = PAGE_READ;
11644         if (!is_user) {
11645             *prot |= PAGE_WRITE;
11646         }
11647         break;
11648     case 3:
11649         *prot = PAGE_READ | PAGE_WRITE;
11650         break;
11651     case 5:
11652         if (is_user) {
11653             fi->type = ARMFault_Permission;
11654             fi->level = 1;
11655             return true;
11656         }
11657         *prot = PAGE_READ;
11658         break;
11659     case 6:
11660         *prot = PAGE_READ;
11661         break;
11662     default:
11663         /* Bad permission.  */
11664         fi->type = ARMFault_Permission;
11665         fi->level = 1;
11666         return true;
11667     }
11668     *prot |= PAGE_EXEC;
11669     return false;
11670 }
11671 
11672 /* Combine either inner or outer cacheability attributes for normal
11673  * memory, according to table D4-42 and pseudocode procedure
11674  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11675  *
11676  * NB: only stage 1 includes allocation hints (RW bits), leading to
11677  * some asymmetry.
11678  */
11679 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11680 {
11681     if (s1 == 4 || s2 == 4) {
11682         /* non-cacheable has precedence */
11683         return 4;
11684     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11685         /* stage 1 write-through takes precedence */
11686         return s1;
11687     } else if (extract32(s2, 2, 2) == 2) {
11688         /* stage 2 write-through takes precedence, but the allocation hint
11689          * is still taken from stage 1
11690          */
11691         return (2 << 2) | extract32(s1, 0, 2);
11692     } else { /* write-back */
11693         return s1;
11694     }
11695 }
11696 
11697 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11698  * and CombineS1S2Desc()
11699  *
11700  * @s1:      Attributes from stage 1 walk
11701  * @s2:      Attributes from stage 2 walk
11702  */
11703 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11704 {
11705     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11706     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11707     ARMCacheAttrs ret;
11708 
11709     /* Combine shareability attributes (table D4-43) */
11710     if (s1.shareability == 2 || s2.shareability == 2) {
11711         /* if either are outer-shareable, the result is outer-shareable */
11712         ret.shareability = 2;
11713     } else if (s1.shareability == 3 || s2.shareability == 3) {
11714         /* if either are inner-shareable, the result is inner-shareable */
11715         ret.shareability = 3;
11716     } else {
11717         /* both non-shareable */
11718         ret.shareability = 0;
11719     }
11720 
11721     /* Combine memory type and cacheability attributes */
11722     if (s1hi == 0 || s2hi == 0) {
11723         /* Device has precedence over normal */
11724         if (s1lo == 0 || s2lo == 0) {
11725             /* nGnRnE has precedence over anything */
11726             ret.attrs = 0;
11727         } else if (s1lo == 4 || s2lo == 4) {
11728             /* non-Reordering has precedence over Reordering */
11729             ret.attrs = 4;  /* nGnRE */
11730         } else if (s1lo == 8 || s2lo == 8) {
11731             /* non-Gathering has precedence over Gathering */
11732             ret.attrs = 8;  /* nGRE */
11733         } else {
11734             ret.attrs = 0xc; /* GRE */
11735         }
11736 
11737         /* Any location for which the resultant memory type is any
11738          * type of Device memory is always treated as Outer Shareable.
11739          */
11740         ret.shareability = 2;
11741     } else { /* Normal memory */
11742         /* Outer/inner cacheability combine independently */
11743         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11744                   | combine_cacheattr_nibble(s1lo, s2lo);
11745 
11746         if (ret.attrs == 0x44) {
11747             /* Any location for which the resultant memory type is Normal
11748              * Inner Non-cacheable, Outer Non-cacheable is always treated
11749              * as Outer Shareable.
11750              */
11751             ret.shareability = 2;
11752         }
11753     }
11754 
11755     return ret;
11756 }
11757 
11758 
11759 /* get_phys_addr - get the physical address for this virtual address
11760  *
11761  * Find the physical address corresponding to the given virtual address,
11762  * by doing a translation table walk on MMU based systems or using the
11763  * MPU state on MPU based systems.
11764  *
11765  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11766  * prot and page_size may not be filled in, and the populated fsr value provides
11767  * information on why the translation aborted, in the format of a
11768  * DFSR/IFSR fault register, with the following caveats:
11769  *  * we honour the short vs long DFSR format differences.
11770  *  * the WnR bit is never set (the caller must do this).
11771  *  * for PSMAv5 based systems we don't bother to return a full FSR format
11772  *    value.
11773  *
11774  * @env: CPUARMState
11775  * @address: virtual address to get physical address for
11776  * @access_type: 0 for read, 1 for write, 2 for execute
11777  * @mmu_idx: MMU index indicating required translation regime
11778  * @phys_ptr: set to the physical address corresponding to the virtual address
11779  * @attrs: set to the memory transaction attributes to use
11780  * @prot: set to the permissions for the page containing phys_ptr
11781  * @page_size: set to the size of the page containing phys_ptr
11782  * @fi: set to fault info if the translation fails
11783  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11784  */
11785 static bool get_phys_addr(CPUARMState *env, target_ulong address,
11786                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
11787                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11788                           target_ulong *page_size,
11789                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11790 {
11791     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
11792         /* Call ourselves recursively to do the stage 1 and then stage 2
11793          * translations.
11794          */
11795         if (arm_feature(env, ARM_FEATURE_EL2)) {
11796             hwaddr ipa;
11797             int s2_prot;
11798             int ret;
11799             ARMCacheAttrs cacheattrs2 = {};
11800 
11801             ret = get_phys_addr(env, address, access_type,
11802                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11803                                 prot, page_size, fi, cacheattrs);
11804 
11805             /* If S1 fails or S2 is disabled, return early.  */
11806             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
11807                 *phys_ptr = ipa;
11808                 return ret;
11809             }
11810 
11811             /* S1 is done. Now do S2 translation.  */
11812             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
11813                                      phys_ptr, attrs, &s2_prot,
11814                                      page_size, fi,
11815                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
11816             fi->s2addr = ipa;
11817             /* Combine the S1 and S2 perms.  */
11818             *prot &= s2_prot;
11819 
11820             /* Combine the S1 and S2 cache attributes, if needed */
11821             if (!ret && cacheattrs != NULL) {
11822                 if (env->cp15.hcr_el2 & HCR_DC) {
11823                     /*
11824                      * HCR.DC forces the first stage attributes to
11825                      *  Normal Non-Shareable,
11826                      *  Inner Write-Back Read-Allocate Write-Allocate,
11827                      *  Outer Write-Back Read-Allocate Write-Allocate.
11828                      */
11829                     cacheattrs->attrs = 0xff;
11830                     cacheattrs->shareability = 0;
11831                 }
11832                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11833             }
11834 
11835             return ret;
11836         } else {
11837             /*
11838              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11839              */
11840             mmu_idx = stage_1_mmu_idx(mmu_idx);
11841         }
11842     }
11843 
11844     /* The page table entries may downgrade secure to non-secure, but
11845      * cannot upgrade an non-secure translation regime's attributes
11846      * to secure.
11847      */
11848     attrs->secure = regime_is_secure(env, mmu_idx);
11849     attrs->user = regime_is_user(env, mmu_idx);
11850 
11851     /* Fast Context Switch Extension. This doesn't exist at all in v8.
11852      * In v7 and earlier it affects all stage 1 translations.
11853      */
11854     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
11855         && !arm_feature(env, ARM_FEATURE_V8)) {
11856         if (regime_el(env, mmu_idx) == 3) {
11857             address += env->cp15.fcseidr_s;
11858         } else {
11859             address += env->cp15.fcseidr_ns;
11860         }
11861     }
11862 
11863     if (arm_feature(env, ARM_FEATURE_PMSA)) {
11864         bool ret;
11865         *page_size = TARGET_PAGE_SIZE;
11866 
11867         if (arm_feature(env, ARM_FEATURE_V8)) {
11868             /* PMSAv8 */
11869             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11870                                        phys_ptr, attrs, prot, page_size, fi);
11871         } else if (arm_feature(env, ARM_FEATURE_V7)) {
11872             /* PMSAv7 */
11873             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11874                                        phys_ptr, prot, page_size, fi);
11875         } else {
11876             /* Pre-v7 MPU */
11877             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11878                                        phys_ptr, prot, fi);
11879         }
11880         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11881                       " mmu_idx %u -> %s (prot %c%c%c)\n",
11882                       access_type == MMU_DATA_LOAD ? "reading" :
11883                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11884                       (uint32_t)address, mmu_idx,
11885                       ret ? "Miss" : "Hit",
11886                       *prot & PAGE_READ ? 'r' : '-',
11887                       *prot & PAGE_WRITE ? 'w' : '-',
11888                       *prot & PAGE_EXEC ? 'x' : '-');
11889 
11890         return ret;
11891     }
11892 
11893     /* Definitely a real MMU, not an MPU */
11894 
11895     if (regime_translation_disabled(env, mmu_idx)) {
11896         /* MMU disabled. */
11897         *phys_ptr = address;
11898         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11899         *page_size = TARGET_PAGE_SIZE;
11900         return 0;
11901     }
11902 
11903     if (regime_using_lpae_format(env, mmu_idx)) {
11904         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11905                                   phys_ptr, attrs, prot, page_size,
11906                                   fi, cacheattrs);
11907     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11908         return get_phys_addr_v6(env, address, access_type, mmu_idx,
11909                                 phys_ptr, attrs, prot, page_size, fi);
11910     } else {
11911         return get_phys_addr_v5(env, address, access_type, mmu_idx,
11912                                     phys_ptr, prot, page_size, fi);
11913     }
11914 }
11915 
11916 /* Walk the page table and (if the mapping exists) add the page
11917  * to the TLB. Return false on success, or true on failure. Populate
11918  * fsr with ARM DFSR/IFSR fault register format value on failure.
11919  */
11920 bool arm_tlb_fill(CPUState *cs, vaddr address,
11921                   MMUAccessType access_type, int mmu_idx,
11922                   ARMMMUFaultInfo *fi)
11923 {
11924     ARMCPU *cpu = ARM_CPU(cs);
11925     CPUARMState *env = &cpu->env;
11926     hwaddr phys_addr;
11927     target_ulong page_size;
11928     int prot;
11929     int ret;
11930     MemTxAttrs attrs = {};
11931 
11932     ret = get_phys_addr(env, address, access_type,
11933                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
11934                         &attrs, &prot, &page_size, fi, NULL);
11935     if (!ret) {
11936         /*
11937          * Map a single [sub]page. Regions smaller than our declared
11938          * target page size are handled specially, so for those we
11939          * pass in the exact addresses.
11940          */
11941         if (page_size >= TARGET_PAGE_SIZE) {
11942             phys_addr &= TARGET_PAGE_MASK;
11943             address &= TARGET_PAGE_MASK;
11944         }
11945         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
11946                                 prot, mmu_idx, page_size);
11947         return 0;
11948     }
11949 
11950     return ret;
11951 }
11952 
11953 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11954                                          MemTxAttrs *attrs)
11955 {
11956     ARMCPU *cpu = ARM_CPU(cs);
11957     CPUARMState *env = &cpu->env;
11958     hwaddr phys_addr;
11959     target_ulong page_size;
11960     int prot;
11961     bool ret;
11962     ARMMMUFaultInfo fi = {};
11963     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11964 
11965     *attrs = (MemTxAttrs) {};
11966 
11967     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11968                         attrs, &prot, &page_size, &fi, NULL);
11969 
11970     if (ret) {
11971         return -1;
11972     }
11973     return phys_addr;
11974 }
11975 
11976 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
11977 {
11978     uint32_t mask;
11979     unsigned el = arm_current_el(env);
11980 
11981     /* First handle registers which unprivileged can read */
11982 
11983     switch (reg) {
11984     case 0 ... 7: /* xPSR sub-fields */
11985         mask = 0;
11986         if ((reg & 1) && el) {
11987             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
11988         }
11989         if (!(reg & 4)) {
11990             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
11991         }
11992         /* EPSR reads as zero */
11993         return xpsr_read(env) & mask;
11994         break;
11995     case 20: /* CONTROL */
11996         return env->v7m.control[env->v7m.secure];
11997     case 0x94: /* CONTROL_NS */
11998         /* We have to handle this here because unprivileged Secure code
11999          * can read the NS CONTROL register.
12000          */
12001         if (!env->v7m.secure) {
12002             return 0;
12003         }
12004         return env->v7m.control[M_REG_NS];
12005     }
12006 
12007     if (el == 0) {
12008         return 0; /* unprivileged reads others as zero */
12009     }
12010 
12011     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12012         switch (reg) {
12013         case 0x88: /* MSP_NS */
12014             if (!env->v7m.secure) {
12015                 return 0;
12016             }
12017             return env->v7m.other_ss_msp;
12018         case 0x89: /* PSP_NS */
12019             if (!env->v7m.secure) {
12020                 return 0;
12021             }
12022             return env->v7m.other_ss_psp;
12023         case 0x8a: /* MSPLIM_NS */
12024             if (!env->v7m.secure) {
12025                 return 0;
12026             }
12027             return env->v7m.msplim[M_REG_NS];
12028         case 0x8b: /* PSPLIM_NS */
12029             if (!env->v7m.secure) {
12030                 return 0;
12031             }
12032             return env->v7m.psplim[M_REG_NS];
12033         case 0x90: /* PRIMASK_NS */
12034             if (!env->v7m.secure) {
12035                 return 0;
12036             }
12037             return env->v7m.primask[M_REG_NS];
12038         case 0x91: /* BASEPRI_NS */
12039             if (!env->v7m.secure) {
12040                 return 0;
12041             }
12042             return env->v7m.basepri[M_REG_NS];
12043         case 0x93: /* FAULTMASK_NS */
12044             if (!env->v7m.secure) {
12045                 return 0;
12046             }
12047             return env->v7m.faultmask[M_REG_NS];
12048         case 0x98: /* SP_NS */
12049         {
12050             /* This gives the non-secure SP selected based on whether we're
12051              * currently in handler mode or not, using the NS CONTROL.SPSEL.
12052              */
12053             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12054 
12055             if (!env->v7m.secure) {
12056                 return 0;
12057             }
12058             if (!arm_v7m_is_handler_mode(env) && spsel) {
12059                 return env->v7m.other_ss_psp;
12060             } else {
12061                 return env->v7m.other_ss_msp;
12062             }
12063         }
12064         default:
12065             break;
12066         }
12067     }
12068 
12069     switch (reg) {
12070     case 8: /* MSP */
12071         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
12072     case 9: /* PSP */
12073         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
12074     case 10: /* MSPLIM */
12075         if (!arm_feature(env, ARM_FEATURE_V8)) {
12076             goto bad_reg;
12077         }
12078         return env->v7m.msplim[env->v7m.secure];
12079     case 11: /* PSPLIM */
12080         if (!arm_feature(env, ARM_FEATURE_V8)) {
12081             goto bad_reg;
12082         }
12083         return env->v7m.psplim[env->v7m.secure];
12084     case 16: /* PRIMASK */
12085         return env->v7m.primask[env->v7m.secure];
12086     case 17: /* BASEPRI */
12087     case 18: /* BASEPRI_MAX */
12088         return env->v7m.basepri[env->v7m.secure];
12089     case 19: /* FAULTMASK */
12090         return env->v7m.faultmask[env->v7m.secure];
12091     default:
12092     bad_reg:
12093         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12094                                        " register %d\n", reg);
12095         return 0;
12096     }
12097 }
12098 
12099 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12100 {
12101     /* We're passed bits [11..0] of the instruction; extract
12102      * SYSm and the mask bits.
12103      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12104      * we choose to treat them as if the mask bits were valid.
12105      * NB that the pseudocode 'mask' variable is bits [11..10],
12106      * whereas ours is [11..8].
12107      */
12108     uint32_t mask = extract32(maskreg, 8, 4);
12109     uint32_t reg = extract32(maskreg, 0, 8);
12110 
12111     if (arm_current_el(env) == 0 && reg > 7) {
12112         /* only xPSR sub-fields may be written by unprivileged */
12113         return;
12114     }
12115 
12116     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12117         switch (reg) {
12118         case 0x88: /* MSP_NS */
12119             if (!env->v7m.secure) {
12120                 return;
12121             }
12122             env->v7m.other_ss_msp = val;
12123             return;
12124         case 0x89: /* PSP_NS */
12125             if (!env->v7m.secure) {
12126                 return;
12127             }
12128             env->v7m.other_ss_psp = val;
12129             return;
12130         case 0x8a: /* MSPLIM_NS */
12131             if (!env->v7m.secure) {
12132                 return;
12133             }
12134             env->v7m.msplim[M_REG_NS] = val & ~7;
12135             return;
12136         case 0x8b: /* PSPLIM_NS */
12137             if (!env->v7m.secure) {
12138                 return;
12139             }
12140             env->v7m.psplim[M_REG_NS] = val & ~7;
12141             return;
12142         case 0x90: /* PRIMASK_NS */
12143             if (!env->v7m.secure) {
12144                 return;
12145             }
12146             env->v7m.primask[M_REG_NS] = val & 1;
12147             return;
12148         case 0x91: /* BASEPRI_NS */
12149             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12150                 return;
12151             }
12152             env->v7m.basepri[M_REG_NS] = val & 0xff;
12153             return;
12154         case 0x93: /* FAULTMASK_NS */
12155             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12156                 return;
12157             }
12158             env->v7m.faultmask[M_REG_NS] = val & 1;
12159             return;
12160         case 0x94: /* CONTROL_NS */
12161             if (!env->v7m.secure) {
12162                 return;
12163             }
12164             write_v7m_control_spsel_for_secstate(env,
12165                                                  val & R_V7M_CONTROL_SPSEL_MASK,
12166                                                  M_REG_NS);
12167             if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12168                 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12169                 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12170             }
12171             return;
12172         case 0x98: /* SP_NS */
12173         {
12174             /* This gives the non-secure SP selected based on whether we're
12175              * currently in handler mode or not, using the NS CONTROL.SPSEL.
12176              */
12177             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12178             bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12179             uint32_t limit;
12180 
12181             if (!env->v7m.secure) {
12182                 return;
12183             }
12184 
12185             limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12186 
12187             if (val < limit) {
12188                 CPUState *cs = CPU(arm_env_get_cpu(env));
12189 
12190                 cpu_restore_state(cs, GETPC(), true);
12191                 raise_exception(env, EXCP_STKOF, 0, 1);
12192             }
12193 
12194             if (is_psp) {
12195                 env->v7m.other_ss_psp = val;
12196             } else {
12197                 env->v7m.other_ss_msp = val;
12198             }
12199             return;
12200         }
12201         default:
12202             break;
12203         }
12204     }
12205 
12206     switch (reg) {
12207     case 0 ... 7: /* xPSR sub-fields */
12208         /* only APSR is actually writable */
12209         if (!(reg & 4)) {
12210             uint32_t apsrmask = 0;
12211 
12212             if (mask & 8) {
12213                 apsrmask |= XPSR_NZCV | XPSR_Q;
12214             }
12215             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12216                 apsrmask |= XPSR_GE;
12217             }
12218             xpsr_write(env, val, apsrmask);
12219         }
12220         break;
12221     case 8: /* MSP */
12222         if (v7m_using_psp(env)) {
12223             env->v7m.other_sp = val;
12224         } else {
12225             env->regs[13] = val;
12226         }
12227         break;
12228     case 9: /* PSP */
12229         if (v7m_using_psp(env)) {
12230             env->regs[13] = val;
12231         } else {
12232             env->v7m.other_sp = val;
12233         }
12234         break;
12235     case 10: /* MSPLIM */
12236         if (!arm_feature(env, ARM_FEATURE_V8)) {
12237             goto bad_reg;
12238         }
12239         env->v7m.msplim[env->v7m.secure] = val & ~7;
12240         break;
12241     case 11: /* PSPLIM */
12242         if (!arm_feature(env, ARM_FEATURE_V8)) {
12243             goto bad_reg;
12244         }
12245         env->v7m.psplim[env->v7m.secure] = val & ~7;
12246         break;
12247     case 16: /* PRIMASK */
12248         env->v7m.primask[env->v7m.secure] = val & 1;
12249         break;
12250     case 17: /* BASEPRI */
12251         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12252             goto bad_reg;
12253         }
12254         env->v7m.basepri[env->v7m.secure] = val & 0xff;
12255         break;
12256     case 18: /* BASEPRI_MAX */
12257         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12258             goto bad_reg;
12259         }
12260         val &= 0xff;
12261         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
12262                          || env->v7m.basepri[env->v7m.secure] == 0)) {
12263             env->v7m.basepri[env->v7m.secure] = val;
12264         }
12265         break;
12266     case 19: /* FAULTMASK */
12267         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12268             goto bad_reg;
12269         }
12270         env->v7m.faultmask[env->v7m.secure] = val & 1;
12271         break;
12272     case 20: /* CONTROL */
12273         /* Writing to the SPSEL bit only has an effect if we are in
12274          * thread mode; other bits can be updated by any privileged code.
12275          * write_v7m_control_spsel() deals with updating the SPSEL bit in
12276          * env->v7m.control, so we only need update the others.
12277          * For v7M, we must just ignore explicit writes to SPSEL in handler
12278          * mode; for v8M the write is permitted but will have no effect.
12279          */
12280         if (arm_feature(env, ARM_FEATURE_V8) ||
12281             !arm_v7m_is_handler_mode(env)) {
12282             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
12283         }
12284         if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12285             env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
12286             env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
12287         }
12288         break;
12289     default:
12290     bad_reg:
12291         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
12292                                        " register %d\n", reg);
12293         return;
12294     }
12295 }
12296 
12297 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
12298 {
12299     /* Implement the TT instruction. op is bits [7:6] of the insn. */
12300     bool forceunpriv = op & 1;
12301     bool alt = op & 2;
12302     V8M_SAttributes sattrs = {};
12303     uint32_t tt_resp;
12304     bool r, rw, nsr, nsrw, mrvalid;
12305     int prot;
12306     ARMMMUFaultInfo fi = {};
12307     MemTxAttrs attrs = {};
12308     hwaddr phys_addr;
12309     ARMMMUIdx mmu_idx;
12310     uint32_t mregion;
12311     bool targetpriv;
12312     bool targetsec = env->v7m.secure;
12313     bool is_subpage;
12314 
12315     /* Work out what the security state and privilege level we're
12316      * interested in is...
12317      */
12318     if (alt) {
12319         targetsec = !targetsec;
12320     }
12321 
12322     if (forceunpriv) {
12323         targetpriv = false;
12324     } else {
12325         targetpriv = arm_v7m_is_handler_mode(env) ||
12326             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
12327     }
12328 
12329     /* ...and then figure out which MMU index this is */
12330     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
12331 
12332     /* We know that the MPU and SAU don't care about the access type
12333      * for our purposes beyond that we don't want to claim to be
12334      * an insn fetch, so we arbitrarily call this a read.
12335      */
12336 
12337     /* MPU region info only available for privileged or if
12338      * inspecting the other MPU state.
12339      */
12340     if (arm_current_el(env) != 0 || alt) {
12341         /* We can ignore the return value as prot is always set */
12342         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
12343                           &phys_addr, &attrs, &prot, &is_subpage,
12344                           &fi, &mregion);
12345         if (mregion == -1) {
12346             mrvalid = false;
12347             mregion = 0;
12348         } else {
12349             mrvalid = true;
12350         }
12351         r = prot & PAGE_READ;
12352         rw = prot & PAGE_WRITE;
12353     } else {
12354         r = false;
12355         rw = false;
12356         mrvalid = false;
12357         mregion = 0;
12358     }
12359 
12360     if (env->v7m.secure) {
12361         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
12362         nsr = sattrs.ns && r;
12363         nsrw = sattrs.ns && rw;
12364     } else {
12365         sattrs.ns = true;
12366         nsr = false;
12367         nsrw = false;
12368     }
12369 
12370     tt_resp = (sattrs.iregion << 24) |
12371         (sattrs.irvalid << 23) |
12372         ((!sattrs.ns) << 22) |
12373         (nsrw << 21) |
12374         (nsr << 20) |
12375         (rw << 19) |
12376         (r << 18) |
12377         (sattrs.srvalid << 17) |
12378         (mrvalid << 16) |
12379         (sattrs.sregion << 8) |
12380         mregion;
12381 
12382     return tt_resp;
12383 }
12384 
12385 #endif
12386 
12387 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
12388 {
12389     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
12390      * Note that we do not implement the (architecturally mandated)
12391      * alignment fault for attempts to use this on Device memory
12392      * (which matches the usual QEMU behaviour of not implementing either
12393      * alignment faults or any memory attribute handling).
12394      */
12395 
12396     ARMCPU *cpu = arm_env_get_cpu(env);
12397     uint64_t blocklen = 4 << cpu->dcz_blocksize;
12398     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
12399 
12400 #ifndef CONFIG_USER_ONLY
12401     {
12402         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
12403          * the block size so we might have to do more than one TLB lookup.
12404          * We know that in fact for any v8 CPU the page size is at least 4K
12405          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
12406          * 1K as an artefact of legacy v5 subpage support being present in the
12407          * same QEMU executable.
12408          */
12409         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
12410         void *hostaddr[maxidx];
12411         int try, i;
12412         unsigned mmu_idx = cpu_mmu_index(env, false);
12413         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
12414 
12415         for (try = 0; try < 2; try++) {
12416 
12417             for (i = 0; i < maxidx; i++) {
12418                 hostaddr[i] = tlb_vaddr_to_host(env,
12419                                                 vaddr + TARGET_PAGE_SIZE * i,
12420                                                 1, mmu_idx);
12421                 if (!hostaddr[i]) {
12422                     break;
12423                 }
12424             }
12425             if (i == maxidx) {
12426                 /* If it's all in the TLB it's fair game for just writing to;
12427                  * we know we don't need to update dirty status, etc.
12428                  */
12429                 for (i = 0; i < maxidx - 1; i++) {
12430                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
12431                 }
12432                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
12433                 return;
12434             }
12435             /* OK, try a store and see if we can populate the tlb. This
12436              * might cause an exception if the memory isn't writable,
12437              * in which case we will longjmp out of here. We must for
12438              * this purpose use the actual register value passed to us
12439              * so that we get the fault address right.
12440              */
12441             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
12442             /* Now we can populate the other TLB entries, if any */
12443             for (i = 0; i < maxidx; i++) {
12444                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
12445                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
12446                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
12447                 }
12448             }
12449         }
12450 
12451         /* Slow path (probably attempt to do this to an I/O device or
12452          * similar, or clearing of a block of code we have translations
12453          * cached for). Just do a series of byte writes as the architecture
12454          * demands. It's not worth trying to use a cpu_physical_memory_map(),
12455          * memset(), unmap() sequence here because:
12456          *  + we'd need to account for the blocksize being larger than a page
12457          *  + the direct-RAM access case is almost always going to be dealt
12458          *    with in the fastpath code above, so there's no speed benefit
12459          *  + we would have to deal with the map returning NULL because the
12460          *    bounce buffer was in use
12461          */
12462         for (i = 0; i < blocklen; i++) {
12463             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
12464         }
12465     }
12466 #else
12467     memset(g2h(vaddr), 0, blocklen);
12468 #endif
12469 }
12470 
12471 /* Note that signed overflow is undefined in C.  The following routines are
12472    careful to use unsigned types where modulo arithmetic is required.
12473    Failure to do so _will_ break on newer gcc.  */
12474 
12475 /* Signed saturating arithmetic.  */
12476 
12477 /* Perform 16-bit signed saturating addition.  */
12478 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12479 {
12480     uint16_t res;
12481 
12482     res = a + b;
12483     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12484         if (a & 0x8000)
12485             res = 0x8000;
12486         else
12487             res = 0x7fff;
12488     }
12489     return res;
12490 }
12491 
12492 /* Perform 8-bit signed saturating addition.  */
12493 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12494 {
12495     uint8_t res;
12496 
12497     res = a + b;
12498     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12499         if (a & 0x80)
12500             res = 0x80;
12501         else
12502             res = 0x7f;
12503     }
12504     return res;
12505 }
12506 
12507 /* Perform 16-bit signed saturating subtraction.  */
12508 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12509 {
12510     uint16_t res;
12511 
12512     res = a - b;
12513     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12514         if (a & 0x8000)
12515             res = 0x8000;
12516         else
12517             res = 0x7fff;
12518     }
12519     return res;
12520 }
12521 
12522 /* Perform 8-bit signed saturating subtraction.  */
12523 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12524 {
12525     uint8_t res;
12526 
12527     res = a - b;
12528     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12529         if (a & 0x80)
12530             res = 0x80;
12531         else
12532             res = 0x7f;
12533     }
12534     return res;
12535 }
12536 
12537 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12538 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12539 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12540 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12541 #define PFX q
12542 
12543 #include "op_addsub.h"
12544 
12545 /* Unsigned saturating arithmetic.  */
12546 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12547 {
12548     uint16_t res;
12549     res = a + b;
12550     if (res < a)
12551         res = 0xffff;
12552     return res;
12553 }
12554 
12555 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12556 {
12557     if (a > b)
12558         return a - b;
12559     else
12560         return 0;
12561 }
12562 
12563 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12564 {
12565     uint8_t res;
12566     res = a + b;
12567     if (res < a)
12568         res = 0xff;
12569     return res;
12570 }
12571 
12572 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12573 {
12574     if (a > b)
12575         return a - b;
12576     else
12577         return 0;
12578 }
12579 
12580 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12581 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12582 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12583 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12584 #define PFX uq
12585 
12586 #include "op_addsub.h"
12587 
12588 /* Signed modulo arithmetic.  */
12589 #define SARITH16(a, b, n, op) do { \
12590     int32_t sum; \
12591     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12592     RESULT(sum, n, 16); \
12593     if (sum >= 0) \
12594         ge |= 3 << (n * 2); \
12595     } while(0)
12596 
12597 #define SARITH8(a, b, n, op) do { \
12598     int32_t sum; \
12599     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12600     RESULT(sum, n, 8); \
12601     if (sum >= 0) \
12602         ge |= 1 << n; \
12603     } while(0)
12604 
12605 
12606 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12607 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12608 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12609 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12610 #define PFX s
12611 #define ARITH_GE
12612 
12613 #include "op_addsub.h"
12614 
12615 /* Unsigned modulo arithmetic.  */
12616 #define ADD16(a, b, n) do { \
12617     uint32_t sum; \
12618     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12619     RESULT(sum, n, 16); \
12620     if ((sum >> 16) == 1) \
12621         ge |= 3 << (n * 2); \
12622     } while(0)
12623 
12624 #define ADD8(a, b, n) do { \
12625     uint32_t sum; \
12626     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12627     RESULT(sum, n, 8); \
12628     if ((sum >> 8) == 1) \
12629         ge |= 1 << n; \
12630     } while(0)
12631 
12632 #define SUB16(a, b, n) do { \
12633     uint32_t sum; \
12634     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12635     RESULT(sum, n, 16); \
12636     if ((sum >> 16) == 0) \
12637         ge |= 3 << (n * 2); \
12638     } while(0)
12639 
12640 #define SUB8(a, b, n) do { \
12641     uint32_t sum; \
12642     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12643     RESULT(sum, n, 8); \
12644     if ((sum >> 8) == 0) \
12645         ge |= 1 << n; \
12646     } while(0)
12647 
12648 #define PFX u
12649 #define ARITH_GE
12650 
12651 #include "op_addsub.h"
12652 
12653 /* Halved signed arithmetic.  */
12654 #define ADD16(a, b, n) \
12655   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12656 #define SUB16(a, b, n) \
12657   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12658 #define ADD8(a, b, n) \
12659   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12660 #define SUB8(a, b, n) \
12661   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12662 #define PFX sh
12663 
12664 #include "op_addsub.h"
12665 
12666 /* Halved unsigned arithmetic.  */
12667 #define ADD16(a, b, n) \
12668   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12669 #define SUB16(a, b, n) \
12670   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12671 #define ADD8(a, b, n) \
12672   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12673 #define SUB8(a, b, n) \
12674   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12675 #define PFX uh
12676 
12677 #include "op_addsub.h"
12678 
12679 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12680 {
12681     if (a > b)
12682         return a - b;
12683     else
12684         return b - a;
12685 }
12686 
12687 /* Unsigned sum of absolute byte differences.  */
12688 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12689 {
12690     uint32_t sum;
12691     sum = do_usad(a, b);
12692     sum += do_usad(a >> 8, b >> 8);
12693     sum += do_usad(a >> 16, b >>16);
12694     sum += do_usad(a >> 24, b >> 24);
12695     return sum;
12696 }
12697 
12698 /* For ARMv6 SEL instruction.  */
12699 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12700 {
12701     uint32_t mask;
12702 
12703     mask = 0;
12704     if (flags & 1)
12705         mask |= 0xff;
12706     if (flags & 2)
12707         mask |= 0xff00;
12708     if (flags & 4)
12709         mask |= 0xff0000;
12710     if (flags & 8)
12711         mask |= 0xff000000;
12712     return (a & mask) | (b & ~mask);
12713 }
12714 
12715 /* CRC helpers.
12716  * The upper bytes of val (above the number specified by 'bytes') must have
12717  * been zeroed out by the caller.
12718  */
12719 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12720 {
12721     uint8_t buf[4];
12722 
12723     stl_le_p(buf, val);
12724 
12725     /* zlib crc32 converts the accumulator and output to one's complement.  */
12726     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12727 }
12728 
12729 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12730 {
12731     uint8_t buf[4];
12732 
12733     stl_le_p(buf, val);
12734 
12735     /* Linux crc32c converts the output to one's complement.  */
12736     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12737 }
12738 
12739 /* Return the exception level to which FP-disabled exceptions should
12740  * be taken, or 0 if FP is enabled.
12741  */
12742 int fp_exception_el(CPUARMState *env, int cur_el)
12743 {
12744 #ifndef CONFIG_USER_ONLY
12745     int fpen;
12746 
12747     /* CPACR and the CPTR registers don't exist before v6, so FP is
12748      * always accessible
12749      */
12750     if (!arm_feature(env, ARM_FEATURE_V6)) {
12751         return 0;
12752     }
12753 
12754     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12755      * 0, 2 : trap EL0 and EL1/PL1 accesses
12756      * 1    : trap only EL0 accesses
12757      * 3    : trap no accesses
12758      */
12759     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12760     switch (fpen) {
12761     case 0:
12762     case 2:
12763         if (cur_el == 0 || cur_el == 1) {
12764             /* Trap to PL1, which might be EL1 or EL3 */
12765             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12766                 return 3;
12767             }
12768             return 1;
12769         }
12770         if (cur_el == 3 && !is_a64(env)) {
12771             /* Secure PL1 running at EL3 */
12772             return 3;
12773         }
12774         break;
12775     case 1:
12776         if (cur_el == 0) {
12777             return 1;
12778         }
12779         break;
12780     case 3:
12781         break;
12782     }
12783 
12784     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12785      * check because zero bits in the registers mean "don't trap".
12786      */
12787 
12788     /* CPTR_EL2 : present in v7VE or v8 */
12789     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12790         && !arm_is_secure_below_el3(env)) {
12791         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12792         return 2;
12793     }
12794 
12795     /* CPTR_EL3 : present in v8 */
12796     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12797         /* Trap all FP ops to EL3 */
12798         return 3;
12799     }
12800 #endif
12801     return 0;
12802 }
12803 
12804 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
12805                                                 bool secstate, bool priv)
12806 {
12807     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
12808 
12809     if (priv) {
12810         mmu_idx |= ARM_MMU_IDX_M_PRIV;
12811     }
12812 
12813     if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
12814         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
12815     }
12816 
12817     if (secstate) {
12818         mmu_idx |= ARM_MMU_IDX_M_S;
12819     }
12820 
12821     return mmu_idx;
12822 }
12823 
12824 /* Return the MMU index for a v7M CPU in the specified security state */
12825 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12826 {
12827     bool priv = arm_current_el(env) != 0;
12828 
12829     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
12830 }
12831 
12832 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12833 {
12834     int el;
12835 
12836     if (arm_feature(env, ARM_FEATURE_M)) {
12837         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12838     }
12839 
12840     el = arm_current_el(env);
12841     if (el < 2 && arm_is_secure_below_el3(env)) {
12842         return ARMMMUIdx_S1SE0 + el;
12843     } else {
12844         return ARMMMUIdx_S12NSE0 + el;
12845     }
12846 }
12847 
12848 int cpu_mmu_index(CPUARMState *env, bool ifetch)
12849 {
12850     return arm_to_core_mmu_idx(arm_mmu_idx(env));
12851 }
12852 
12853 #ifndef CONFIG_USER_ONLY
12854 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12855 {
12856     return stage_1_mmu_idx(arm_mmu_idx(env));
12857 }
12858 #endif
12859 
12860 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12861                           target_ulong *cs_base, uint32_t *pflags)
12862 {
12863     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12864     int current_el = arm_current_el(env);
12865     int fp_el = fp_exception_el(env, current_el);
12866     uint32_t flags = 0;
12867 
12868     if (is_a64(env)) {
12869         ARMCPU *cpu = arm_env_get_cpu(env);
12870         uint64_t sctlr;
12871 
12872         *pc = env->pc;
12873         flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12874 
12875         /* Get control bits for tagged addresses.  */
12876         {
12877             ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12878             ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
12879             int tbii, tbid;
12880 
12881             /* FIXME: ARMv8.1-VHE S2 translation regime.  */
12882             if (regime_el(env, stage1) < 2) {
12883                 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
12884                 tbid = (p1.tbi << 1) | p0.tbi;
12885                 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
12886             } else {
12887                 tbid = p0.tbi;
12888                 tbii = tbid & !p0.tbid;
12889             }
12890 
12891             flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12892             flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12893         }
12894 
12895         if (cpu_isar_feature(aa64_sve, cpu)) {
12896             int sve_el = sve_exception_el(env, current_el);
12897             uint32_t zcr_len;
12898 
12899             /* If SVE is disabled, but FP is enabled,
12900              * then the effective len is 0.
12901              */
12902             if (sve_el != 0 && fp_el == 0) {
12903                 zcr_len = 0;
12904             } else {
12905                 zcr_len = sve_zcr_len_for_el(env, current_el);
12906             }
12907             flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12908             flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12909         }
12910 
12911         sctlr = arm_sctlr(env, current_el);
12912 
12913         if (cpu_isar_feature(aa64_pauth, cpu)) {
12914             /*
12915              * In order to save space in flags, we record only whether
12916              * pauth is "inactive", meaning all insns are implemented as
12917              * a nop, or "active" when some action must be performed.
12918              * The decision of which action to take is left to a helper.
12919              */
12920             if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12921                 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12922             }
12923         }
12924 
12925         if (cpu_isar_feature(aa64_bti, cpu)) {
12926             /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
12927             if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12928                 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12929             }
12930             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
12931         }
12932     } else {
12933         *pc = env->regs[15];
12934         flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
12935         flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
12936         flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
12937         flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
12938         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
12939         flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12940         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12941             || arm_el_is_aa64(env, 1)) {
12942             flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12943         }
12944         flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar);
12945     }
12946 
12947     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
12948 
12949     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12950      * states defined in the ARM ARM for software singlestep:
12951      *  SS_ACTIVE   PSTATE.SS   State
12952      *     0            x       Inactive (the TB flag for SS is always 0)
12953      *     1            0       Active-pending
12954      *     1            1       Active-not-pending
12955      */
12956     if (arm_singlestep_active(env)) {
12957         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12958         if (is_a64(env)) {
12959             if (env->pstate & PSTATE_SS) {
12960                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12961             }
12962         } else {
12963             if (env->uncached_cpsr & PSTATE_SS) {
12964                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12965             }
12966         }
12967     }
12968     if (arm_cpu_data_is_big_endian(env)) {
12969         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12970     }
12971     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12972 
12973     if (arm_v7m_is_handler_mode(env)) {
12974         flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
12975     }
12976 
12977     /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
12978      * suppressing them because the requested execution priority is less than 0.
12979      */
12980     if (arm_feature(env, ARM_FEATURE_V8) &&
12981         arm_feature(env, ARM_FEATURE_M) &&
12982         !((mmu_idx  & ARM_MMU_IDX_M_NEGPRI) &&
12983           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12984         flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
12985     }
12986 
12987     *pflags = flags;
12988     *cs_base = 0;
12989 }
12990 
12991 #ifdef TARGET_AARCH64
12992 /*
12993  * The manual says that when SVE is enabled and VQ is widened the
12994  * implementation is allowed to zero the previously inaccessible
12995  * portion of the registers.  The corollary to that is that when
12996  * SVE is enabled and VQ is narrowed we are also allowed to zero
12997  * the now inaccessible portion of the registers.
12998  *
12999  * The intent of this is that no predicate bit beyond VQ is ever set.
13000  * Which means that some operations on predicate registers themselves
13001  * may operate on full uint64_t or even unrolled across the maximum
13002  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13003  * may well be cheaper than conditionals to restrict the operation
13004  * to the relevant portion of a uint16_t[16].
13005  */
13006 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13007 {
13008     int i, j;
13009     uint64_t pmask;
13010 
13011     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13012     assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
13013 
13014     /* Zap the high bits of the zregs.  */
13015     for (i = 0; i < 32; i++) {
13016         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13017     }
13018 
13019     /* Zap the high bits of the pregs and ffr.  */
13020     pmask = 0;
13021     if (vq & 3) {
13022         pmask = ~(-1ULL << (16 * (vq & 3)));
13023     }
13024     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13025         for (i = 0; i < 17; ++i) {
13026             env->vfp.pregs[i].p[j] &= pmask;
13027         }
13028         pmask = 0;
13029     }
13030 }
13031 
13032 /*
13033  * Notice a change in SVE vector size when changing EL.
13034  */
13035 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13036                            int new_el, bool el0_a64)
13037 {
13038     ARMCPU *cpu = arm_env_get_cpu(env);
13039     int old_len, new_len;
13040     bool old_a64, new_a64;
13041 
13042     /* Nothing to do if no SVE.  */
13043     if (!cpu_isar_feature(aa64_sve, cpu)) {
13044         return;
13045     }
13046 
13047     /* Nothing to do if FP is disabled in either EL.  */
13048     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13049         return;
13050     }
13051 
13052     /*
13053      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13054      * at ELx, or not available because the EL is in AArch32 state, then
13055      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13056      * has an effective value of 0".
13057      *
13058      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13059      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13060      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13061      * we already have the correct register contents when encountering the
13062      * vq0->vq0 transition between EL0->EL1.
13063      */
13064     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13065     old_len = (old_a64 && !sve_exception_el(env, old_el)
13066                ? sve_zcr_len_for_el(env, old_el) : 0);
13067     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13068     new_len = (new_a64 && !sve_exception_el(env, new_el)
13069                ? sve_zcr_len_for_el(env, new_el) : 0);
13070 
13071     /* When changing vector length, clear inaccessible state.  */
13072     if (new_len < old_len) {
13073         aarch64_sve_narrow_vq(env, new_len + 1);
13074     }
13075 }
13076 #endif
13077