xref: /openbmc/qemu/target/arm/helper.c (revision 8bb49995)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "qemu/log.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/host-utils.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/timer.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #include "semihosting/common-semi.h"
37 #endif
38 #include "cpregs.h"
39 
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 
42 static void switch_mode(CPUARMState *env, int mode);
43 
44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
45 {
46     assert(ri->fieldoffset);
47     if (cpreg_field_is_64bit(ri)) {
48         return CPREG_FIELD64(env, ri);
49     } else {
50         return CPREG_FIELD32(env, ri);
51     }
52 }
53 
54 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
55 {
56     assert(ri->fieldoffset);
57     if (cpreg_field_is_64bit(ri)) {
58         CPREG_FIELD64(env, ri) = value;
59     } else {
60         CPREG_FIELD32(env, ri) = value;
61     }
62 }
63 
64 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
65 {
66     return (char *)env + ri->fieldoffset;
67 }
68 
69 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
70 {
71     /* Raw read of a coprocessor register (as needed for migration, etc). */
72     if (ri->type & ARM_CP_CONST) {
73         return ri->resetvalue;
74     } else if (ri->raw_readfn) {
75         return ri->raw_readfn(env, ri);
76     } else if (ri->readfn) {
77         return ri->readfn(env, ri);
78     } else {
79         return raw_read(env, ri);
80     }
81 }
82 
83 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
84                              uint64_t v)
85 {
86     /* Raw write of a coprocessor register (as needed for migration, etc).
87      * Note that constant registers are treated as write-ignored; the
88      * caller should check for success by whether a readback gives the
89      * value written.
90      */
91     if (ri->type & ARM_CP_CONST) {
92         return;
93     } else if (ri->raw_writefn) {
94         ri->raw_writefn(env, ri, v);
95     } else if (ri->writefn) {
96         ri->writefn(env, ri, v);
97     } else {
98         raw_write(env, ri, v);
99     }
100 }
101 
102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
103 {
104    /* Return true if the regdef would cause an assertion if you called
105     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
106     * program bug for it not to have the NO_RAW flag).
107     * NB that returning false here doesn't necessarily mean that calling
108     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
109     * read/write access functions which are safe for raw use" from "has
110     * read/write access functions which have side effects but has forgotten
111     * to provide raw access functions".
112     * The tests here line up with the conditions in read/write_raw_cp_reg()
113     * and assertions in raw_read()/raw_write().
114     */
115     if ((ri->type & ARM_CP_CONST) ||
116         ri->fieldoffset ||
117         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
118         return false;
119     }
120     return true;
121 }
122 
123 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
124 {
125     /* Write the coprocessor state from cpu->env to the (index,value) list. */
126     int i;
127     bool ok = true;
128 
129     for (i = 0; i < cpu->cpreg_array_len; i++) {
130         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
131         const ARMCPRegInfo *ri;
132         uint64_t newval;
133 
134         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
135         if (!ri) {
136             ok = false;
137             continue;
138         }
139         if (ri->type & ARM_CP_NO_RAW) {
140             continue;
141         }
142 
143         newval = read_raw_cp_reg(&cpu->env, ri);
144         if (kvm_sync) {
145             /*
146              * Only sync if the previous list->cpustate sync succeeded.
147              * Rather than tracking the success/failure state for every
148              * item in the list, we just recheck "does the raw write we must
149              * have made in write_list_to_cpustate() read back OK" here.
150              */
151             uint64_t oldval = cpu->cpreg_values[i];
152 
153             if (oldval == newval) {
154                 continue;
155             }
156 
157             write_raw_cp_reg(&cpu->env, ri, oldval);
158             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
159                 continue;
160             }
161 
162             write_raw_cp_reg(&cpu->env, ri, newval);
163         }
164         cpu->cpreg_values[i] = newval;
165     }
166     return ok;
167 }
168 
169 bool write_list_to_cpustate(ARMCPU *cpu)
170 {
171     int i;
172     bool ok = true;
173 
174     for (i = 0; i < cpu->cpreg_array_len; i++) {
175         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
176         uint64_t v = cpu->cpreg_values[i];
177         const ARMCPRegInfo *ri;
178 
179         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
180         if (!ri) {
181             ok = false;
182             continue;
183         }
184         if (ri->type & ARM_CP_NO_RAW) {
185             continue;
186         }
187         /* Write value and confirm it reads back as written
188          * (to catch read-only registers and partially read-only
189          * registers where the incoming migration value doesn't match)
190          */
191         write_raw_cp_reg(&cpu->env, ri, v);
192         if (read_raw_cp_reg(&cpu->env, ri) != v) {
193             ok = false;
194         }
195     }
196     return ok;
197 }
198 
199 static void add_cpreg_to_list(gpointer key, gpointer opaque)
200 {
201     ARMCPU *cpu = opaque;
202     uint32_t regidx = (uintptr_t)key;
203     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
204 
205     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
206         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
207         /* The value array need not be initialized at this point */
208         cpu->cpreg_array_len++;
209     }
210 }
211 
212 static void count_cpreg(gpointer key, gpointer opaque)
213 {
214     ARMCPU *cpu = opaque;
215     const ARMCPRegInfo *ri;
216 
217     ri = g_hash_table_lookup(cpu->cp_regs, key);
218 
219     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
220         cpu->cpreg_array_len++;
221     }
222 }
223 
224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
225 {
226     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
227     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
228 
229     if (aidx > bidx) {
230         return 1;
231     }
232     if (aidx < bidx) {
233         return -1;
234     }
235     return 0;
236 }
237 
238 void init_cpreg_list(ARMCPU *cpu)
239 {
240     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
241      * Note that we require cpreg_tuples[] to be sorted by key ID.
242      */
243     GList *keys;
244     int arraylen;
245 
246     keys = g_hash_table_get_keys(cpu->cp_regs);
247     keys = g_list_sort(keys, cpreg_key_compare);
248 
249     cpu->cpreg_array_len = 0;
250 
251     g_list_foreach(keys, count_cpreg, cpu);
252 
253     arraylen = cpu->cpreg_array_len;
254     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
255     cpu->cpreg_values = g_new(uint64_t, arraylen);
256     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
257     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
258     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
259     cpu->cpreg_array_len = 0;
260 
261     g_list_foreach(keys, add_cpreg_to_list, cpu);
262 
263     assert(cpu->cpreg_array_len == arraylen);
264 
265     g_list_free(keys);
266 }
267 
268 /*
269  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
270  */
271 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
272                                         const ARMCPRegInfo *ri,
273                                         bool isread)
274 {
275     if (!is_a64(env) && arm_current_el(env) == 3 &&
276         arm_is_secure_below_el3(env)) {
277         return CP_ACCESS_TRAP_UNCATEGORIZED;
278     }
279     return CP_ACCESS_OK;
280 }
281 
282 /* Some secure-only AArch32 registers trap to EL3 if used from
283  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
284  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
285  * We assume that the .access field is set to PL1_RW.
286  */
287 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
288                                             const ARMCPRegInfo *ri,
289                                             bool isread)
290 {
291     if (arm_current_el(env) == 3) {
292         return CP_ACCESS_OK;
293     }
294     if (arm_is_secure_below_el3(env)) {
295         if (env->cp15.scr_el3 & SCR_EEL2) {
296             return CP_ACCESS_TRAP_EL2;
297         }
298         return CP_ACCESS_TRAP_EL3;
299     }
300     /* This will be EL1 NS and EL2 NS, which just UNDEF */
301     return CP_ACCESS_TRAP_UNCATEGORIZED;
302 }
303 
304 /* Check for traps to performance monitor registers, which are controlled
305  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
306  */
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308                                  bool isread)
309 {
310     int el = arm_current_el(env);
311     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
312 
313     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314         return CP_ACCESS_TRAP_EL2;
315     }
316     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317         return CP_ACCESS_TRAP_EL3;
318     }
319     return CP_ACCESS_OK;
320 }
321 
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324                                       bool isread)
325 {
326     if (arm_current_el(env) == 1) {
327         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328         if (arm_hcr_el2_eff(env) & trap) {
329             return CP_ACCESS_TRAP_EL2;
330         }
331     }
332     return CP_ACCESS_OK;
333 }
334 
335 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337                                  bool isread)
338 {
339     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340         return CP_ACCESS_TRAP_EL2;
341     }
342     return CP_ACCESS_OK;
343 }
344 
345 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347                                   bool isread)
348 {
349     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350         return CP_ACCESS_TRAP_EL2;
351     }
352     return CP_ACCESS_OK;
353 }
354 
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357                                   bool isread)
358 {
359     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360         return CP_ACCESS_TRAP_EL2;
361     }
362     return CP_ACCESS_OK;
363 }
364 
365 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
366 {
367     ARMCPU *cpu = env_archcpu(env);
368 
369     raw_write(env, ri, value);
370     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
371 }
372 
373 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
374 {
375     ARMCPU *cpu = env_archcpu(env);
376 
377     if (raw_read(env, ri) != value) {
378         /* Unlike real hardware the qemu TLB uses virtual addresses,
379          * not modified virtual addresses, so this causes a TLB flush.
380          */
381         tlb_flush(CPU(cpu));
382         raw_write(env, ri, value);
383     }
384 }
385 
386 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
387                              uint64_t value)
388 {
389     ARMCPU *cpu = env_archcpu(env);
390 
391     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
392         && !extended_addresses_enabled(env)) {
393         /* For VMSA (when not using the LPAE long descriptor page table
394          * format) this register includes the ASID, so do a TLB flush.
395          * For PMSA it is purely a process ID and no action is needed.
396          */
397         tlb_flush(CPU(cpu));
398     }
399     raw_write(env, ri, value);
400 }
401 
402 /* IS variants of TLB operations must affect all cores */
403 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
404                              uint64_t value)
405 {
406     CPUState *cs = env_cpu(env);
407 
408     tlb_flush_all_cpus_synced(cs);
409 }
410 
411 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
412                              uint64_t value)
413 {
414     CPUState *cs = env_cpu(env);
415 
416     tlb_flush_all_cpus_synced(cs);
417 }
418 
419 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
420                              uint64_t value)
421 {
422     CPUState *cs = env_cpu(env);
423 
424     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
425 }
426 
427 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
428                              uint64_t value)
429 {
430     CPUState *cs = env_cpu(env);
431 
432     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
433 }
434 
435 /*
436  * Non-IS variants of TLB operations are upgraded to
437  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
438  * force broadcast of these operations.
439  */
440 static bool tlb_force_broadcast(CPUARMState *env)
441 {
442     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
443 }
444 
445 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
446                           uint64_t value)
447 {
448     /* Invalidate all (TLBIALL) */
449     CPUState *cs = env_cpu(env);
450 
451     if (tlb_force_broadcast(env)) {
452         tlb_flush_all_cpus_synced(cs);
453     } else {
454         tlb_flush(cs);
455     }
456 }
457 
458 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
459                           uint64_t value)
460 {
461     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
462     CPUState *cs = env_cpu(env);
463 
464     value &= TARGET_PAGE_MASK;
465     if (tlb_force_broadcast(env)) {
466         tlb_flush_page_all_cpus_synced(cs, value);
467     } else {
468         tlb_flush_page(cs, value);
469     }
470 }
471 
472 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
473                            uint64_t value)
474 {
475     /* Invalidate by ASID (TLBIASID) */
476     CPUState *cs = env_cpu(env);
477 
478     if (tlb_force_broadcast(env)) {
479         tlb_flush_all_cpus_synced(cs);
480     } else {
481         tlb_flush(cs);
482     }
483 }
484 
485 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
486                            uint64_t value)
487 {
488     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
489     CPUState *cs = env_cpu(env);
490 
491     value &= TARGET_PAGE_MASK;
492     if (tlb_force_broadcast(env)) {
493         tlb_flush_page_all_cpus_synced(cs, value);
494     } else {
495         tlb_flush_page(cs, value);
496     }
497 }
498 
499 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
500                                uint64_t value)
501 {
502     CPUState *cs = env_cpu(env);
503 
504     tlb_flush_by_mmuidx(cs,
505                         ARMMMUIdxBit_E10_1 |
506                         ARMMMUIdxBit_E10_1_PAN |
507                         ARMMMUIdxBit_E10_0);
508 }
509 
510 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
511                                   uint64_t value)
512 {
513     CPUState *cs = env_cpu(env);
514 
515     tlb_flush_by_mmuidx_all_cpus_synced(cs,
516                                         ARMMMUIdxBit_E10_1 |
517                                         ARMMMUIdxBit_E10_1_PAN |
518                                         ARMMMUIdxBit_E10_0);
519 }
520 
521 
522 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
523                               uint64_t value)
524 {
525     CPUState *cs = env_cpu(env);
526 
527     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
528 }
529 
530 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
531                                  uint64_t value)
532 {
533     CPUState *cs = env_cpu(env);
534 
535     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
536 }
537 
538 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
539                               uint64_t value)
540 {
541     CPUState *cs = env_cpu(env);
542     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
543 
544     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
545 }
546 
547 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548                                  uint64_t value)
549 {
550     CPUState *cs = env_cpu(env);
551     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
552 
553     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
554                                              ARMMMUIdxBit_E2);
555 }
556 
557 static const ARMCPRegInfo cp_reginfo[] = {
558     /* Define the secure and non-secure FCSE identifier CP registers
559      * separately because there is no secure bank in V8 (no _EL3).  This allows
560      * the secure register to be properly reset and migrated. There is also no
561      * v8 EL1 version of the register so the non-secure instance stands alone.
562      */
563     { .name = "FCSEIDR",
564       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
565       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
566       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
567       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
568     { .name = "FCSEIDR_S",
569       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
570       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
571       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
572       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
573     /* Define the secure and non-secure context identifier CP registers
574      * separately because there is no secure bank in V8 (no _EL3).  This allows
575      * the secure register to be properly reset and migrated.  In the
576      * non-secure case, the 32-bit register will have reset and migration
577      * disabled during registration as it is handled by the 64-bit instance.
578      */
579     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
580       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
581       .access = PL1_RW, .accessfn = access_tvm_trvm,
582       .secure = ARM_CP_SECSTATE_NS,
583       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
584       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
585     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
586       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
587       .access = PL1_RW, .accessfn = access_tvm_trvm,
588       .secure = ARM_CP_SECSTATE_S,
589       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
590       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
591 };
592 
593 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
594     /* NB: Some of these registers exist in v8 but with more precise
595      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
596      */
597     /* MMU Domain access control / MPU write buffer control */
598     { .name = "DACR",
599       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
600       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
601       .writefn = dacr_write, .raw_writefn = raw_write,
602       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
603                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
604     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
605      * For v6 and v5, these mappings are overly broad.
606      */
607     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
608       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
609     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
610       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
611     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
612       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
613     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
614       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
615     /* Cache maintenance ops; some of this space may be overridden later. */
616     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
617       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
618       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
619 };
620 
621 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
622     /* Not all pre-v6 cores implemented this WFI, so this is slightly
623      * over-broad.
624      */
625     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
626       .access = PL1_W, .type = ARM_CP_WFI },
627 };
628 
629 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
630     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
631      * is UNPREDICTABLE; we choose to NOP as most implementations do).
632      */
633     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
634       .access = PL1_W, .type = ARM_CP_WFI },
635     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
636      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
637      * OMAPCP will override this space.
638      */
639     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
640       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
641       .resetvalue = 0 },
642     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
643       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
644       .resetvalue = 0 },
645     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
646     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
647       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
648       .resetvalue = 0 },
649     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
650      * implementing it as RAZ means the "debug architecture version" bits
651      * will read as a reserved value, which should cause Linux to not try
652      * to use the debug hardware.
653      */
654     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
655       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
656     /* MMU TLB control. Note that the wildcarding means we cover not just
657      * the unified TLB ops but also the dside/iside/inner-shareable variants.
658      */
659     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
660       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
661       .type = ARM_CP_NO_RAW },
662     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
663       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
664       .type = ARM_CP_NO_RAW },
665     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
666       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
667       .type = ARM_CP_NO_RAW },
668     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
669       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
670       .type = ARM_CP_NO_RAW },
671     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
672       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
673     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
674       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
675 };
676 
677 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
678                         uint64_t value)
679 {
680     uint32_t mask = 0;
681 
682     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
683     if (!arm_feature(env, ARM_FEATURE_V8)) {
684         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
685          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
686          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
687          */
688         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
689             /* VFP coprocessor: cp10 & cp11 [23:20] */
690             mask |= R_CPACR_ASEDIS_MASK |
691                     R_CPACR_D32DIS_MASK |
692                     R_CPACR_CP11_MASK |
693                     R_CPACR_CP10_MASK;
694 
695             if (!arm_feature(env, ARM_FEATURE_NEON)) {
696                 /* ASEDIS [31] bit is RAO/WI */
697                 value |= R_CPACR_ASEDIS_MASK;
698             }
699 
700             /* VFPv3 and upwards with NEON implement 32 double precision
701              * registers (D0-D31).
702              */
703             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
704                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
705                 value |= R_CPACR_D32DIS_MASK;
706             }
707         }
708         value &= mask;
709     }
710 
711     /*
712      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
713      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
714      */
715     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
716         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
717         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
718         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
719     }
720 
721     env->cp15.cpacr_el1 = value;
722 }
723 
724 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
725 {
726     /*
727      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
728      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
729      */
730     uint64_t value = env->cp15.cpacr_el1;
731 
732     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
733         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
734         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
735     }
736     return value;
737 }
738 
739 
740 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
741 {
742     /* Call cpacr_write() so that we reset with the correct RAO bits set
743      * for our CPU features.
744      */
745     cpacr_write(env, ri, 0);
746 }
747 
748 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
749                                    bool isread)
750 {
751     if (arm_feature(env, ARM_FEATURE_V8)) {
752         /* Check if CPACR accesses are to be trapped to EL2 */
753         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
754             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
755             return CP_ACCESS_TRAP_EL2;
756         /* Check if CPACR accesses are to be trapped to EL3 */
757         } else if (arm_current_el(env) < 3 &&
758                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
759             return CP_ACCESS_TRAP_EL3;
760         }
761     }
762 
763     return CP_ACCESS_OK;
764 }
765 
766 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
767                                   bool isread)
768 {
769     /* Check if CPTR accesses are set to trap to EL3 */
770     if (arm_current_el(env) == 2 &&
771         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
772         return CP_ACCESS_TRAP_EL3;
773     }
774 
775     return CP_ACCESS_OK;
776 }
777 
778 static const ARMCPRegInfo v6_cp_reginfo[] = {
779     /* prefetch by MVA in v6, NOP in v7 */
780     { .name = "MVA_prefetch",
781       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
782       .access = PL1_W, .type = ARM_CP_NOP },
783     /* We need to break the TB after ISB to execute self-modifying code
784      * correctly and also to take any pending interrupts immediately.
785      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
786      */
787     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
788       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
789     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
790       .access = PL0_W, .type = ARM_CP_NOP },
791     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
792       .access = PL0_W, .type = ARM_CP_NOP },
793     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
794       .access = PL1_RW, .accessfn = access_tvm_trvm,
795       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
796                              offsetof(CPUARMState, cp15.ifar_ns) },
797       .resetvalue = 0, },
798     /* Watchpoint Fault Address Register : should actually only be present
799      * for 1136, 1176, 11MPCore.
800      */
801     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
802       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
803     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
804       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
805       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
806       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
807 };
808 
809 typedef struct pm_event {
810     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
811     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
812     bool (*supported)(CPUARMState *);
813     /*
814      * Retrieve the current count of the underlying event. The programmed
815      * counters hold a difference from the return value from this function
816      */
817     uint64_t (*get_count)(CPUARMState *);
818     /*
819      * Return how many nanoseconds it will take (at a minimum) for count events
820      * to occur. A negative value indicates the counter will never overflow, or
821      * that the counter has otherwise arranged for the overflow bit to be set
822      * and the PMU interrupt to be raised on overflow.
823      */
824     int64_t (*ns_per_count)(uint64_t);
825 } pm_event;
826 
827 static bool event_always_supported(CPUARMState *env)
828 {
829     return true;
830 }
831 
832 static uint64_t swinc_get_count(CPUARMState *env)
833 {
834     /*
835      * SW_INCR events are written directly to the pmevcntr's by writes to
836      * PMSWINC, so there is no underlying count maintained by the PMU itself
837      */
838     return 0;
839 }
840 
841 static int64_t swinc_ns_per(uint64_t ignored)
842 {
843     return -1;
844 }
845 
846 /*
847  * Return the underlying cycle count for the PMU cycle counters. If we're in
848  * usermode, simply return 0.
849  */
850 static uint64_t cycles_get_count(CPUARMState *env)
851 {
852 #ifndef CONFIG_USER_ONLY
853     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
854                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
855 #else
856     return cpu_get_host_ticks();
857 #endif
858 }
859 
860 #ifndef CONFIG_USER_ONLY
861 static int64_t cycles_ns_per(uint64_t cycles)
862 {
863     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
864 }
865 
866 static bool instructions_supported(CPUARMState *env)
867 {
868     return icount_enabled() == 1; /* Precise instruction counting */
869 }
870 
871 static uint64_t instructions_get_count(CPUARMState *env)
872 {
873     return (uint64_t)icount_get_raw();
874 }
875 
876 static int64_t instructions_ns_per(uint64_t icount)
877 {
878     return icount_to_ns((int64_t)icount);
879 }
880 #endif
881 
882 static bool pmuv3p1_events_supported(CPUARMState *env)
883 {
884     /* For events which are supported in any v8.1 PMU */
885     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
886 }
887 
888 static bool pmuv3p4_events_supported(CPUARMState *env)
889 {
890     /* For events which are supported in any v8.1 PMU */
891     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
892 }
893 
894 static uint64_t zero_event_get_count(CPUARMState *env)
895 {
896     /* For events which on QEMU never fire, so their count is always zero */
897     return 0;
898 }
899 
900 static int64_t zero_event_ns_per(uint64_t cycles)
901 {
902     /* An event which never fires can never overflow */
903     return -1;
904 }
905 
906 static const pm_event pm_events[] = {
907     { .number = 0x000, /* SW_INCR */
908       .supported = event_always_supported,
909       .get_count = swinc_get_count,
910       .ns_per_count = swinc_ns_per,
911     },
912 #ifndef CONFIG_USER_ONLY
913     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
914       .supported = instructions_supported,
915       .get_count = instructions_get_count,
916       .ns_per_count = instructions_ns_per,
917     },
918     { .number = 0x011, /* CPU_CYCLES, Cycle */
919       .supported = event_always_supported,
920       .get_count = cycles_get_count,
921       .ns_per_count = cycles_ns_per,
922     },
923 #endif
924     { .number = 0x023, /* STALL_FRONTEND */
925       .supported = pmuv3p1_events_supported,
926       .get_count = zero_event_get_count,
927       .ns_per_count = zero_event_ns_per,
928     },
929     { .number = 0x024, /* STALL_BACKEND */
930       .supported = pmuv3p1_events_supported,
931       .get_count = zero_event_get_count,
932       .ns_per_count = zero_event_ns_per,
933     },
934     { .number = 0x03c, /* STALL */
935       .supported = pmuv3p4_events_supported,
936       .get_count = zero_event_get_count,
937       .ns_per_count = zero_event_ns_per,
938     },
939 };
940 
941 /*
942  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
943  * events (i.e. the statistical profiling extension), this implementation
944  * should first be updated to something sparse instead of the current
945  * supported_event_map[] array.
946  */
947 #define MAX_EVENT_ID 0x3c
948 #define UNSUPPORTED_EVENT UINT16_MAX
949 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
950 
951 /*
952  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
953  * of ARM event numbers to indices in our pm_events array.
954  *
955  * Note: Events in the 0x40XX range are not currently supported.
956  */
957 void pmu_init(ARMCPU *cpu)
958 {
959     unsigned int i;
960 
961     /*
962      * Empty supported_event_map and cpu->pmceid[01] before adding supported
963      * events to them
964      */
965     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
966         supported_event_map[i] = UNSUPPORTED_EVENT;
967     }
968     cpu->pmceid0 = 0;
969     cpu->pmceid1 = 0;
970 
971     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
972         const pm_event *cnt = &pm_events[i];
973         assert(cnt->number <= MAX_EVENT_ID);
974         /* We do not currently support events in the 0x40xx range */
975         assert(cnt->number <= 0x3f);
976 
977         if (cnt->supported(&cpu->env)) {
978             supported_event_map[cnt->number] = i;
979             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
980             if (cnt->number & 0x20) {
981                 cpu->pmceid1 |= event_mask;
982             } else {
983                 cpu->pmceid0 |= event_mask;
984             }
985         }
986     }
987 }
988 
989 /*
990  * Check at runtime whether a PMU event is supported for the current machine
991  */
992 static bool event_supported(uint16_t number)
993 {
994     if (number > MAX_EVENT_ID) {
995         return false;
996     }
997     return supported_event_map[number] != UNSUPPORTED_EVENT;
998 }
999 
1000 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1001                                    bool isread)
1002 {
1003     /* Performance monitor registers user accessibility is controlled
1004      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1005      * trapping to EL2 or EL3 for other accesses.
1006      */
1007     int el = arm_current_el(env);
1008     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1009 
1010     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1011         return CP_ACCESS_TRAP;
1012     }
1013     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1014         return CP_ACCESS_TRAP_EL2;
1015     }
1016     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1017         return CP_ACCESS_TRAP_EL3;
1018     }
1019 
1020     return CP_ACCESS_OK;
1021 }
1022 
1023 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1024                                            const ARMCPRegInfo *ri,
1025                                            bool isread)
1026 {
1027     /* ER: event counter read trap control */
1028     if (arm_feature(env, ARM_FEATURE_V8)
1029         && arm_current_el(env) == 0
1030         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1031         && isread) {
1032         return CP_ACCESS_OK;
1033     }
1034 
1035     return pmreg_access(env, ri, isread);
1036 }
1037 
1038 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1039                                          const ARMCPRegInfo *ri,
1040                                          bool isread)
1041 {
1042     /* SW: software increment write trap control */
1043     if (arm_feature(env, ARM_FEATURE_V8)
1044         && arm_current_el(env) == 0
1045         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1046         && !isread) {
1047         return CP_ACCESS_OK;
1048     }
1049 
1050     return pmreg_access(env, ri, isread);
1051 }
1052 
1053 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1054                                         const ARMCPRegInfo *ri,
1055                                         bool isread)
1056 {
1057     /* ER: event counter read trap control */
1058     if (arm_feature(env, ARM_FEATURE_V8)
1059         && arm_current_el(env) == 0
1060         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1061         return CP_ACCESS_OK;
1062     }
1063 
1064     return pmreg_access(env, ri, isread);
1065 }
1066 
1067 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1068                                          const ARMCPRegInfo *ri,
1069                                          bool isread)
1070 {
1071     /* CR: cycle counter read trap control */
1072     if (arm_feature(env, ARM_FEATURE_V8)
1073         && arm_current_el(env) == 0
1074         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1075         && isread) {
1076         return CP_ACCESS_OK;
1077     }
1078 
1079     return pmreg_access(env, ri, isread);
1080 }
1081 
1082 /*
1083  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1084  * We use these to decide whether we need to wrap a write to MDCR_EL2
1085  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1086  */
1087 #define MDCR_EL2_PMU_ENABLE_BITS \
1088     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1089 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1090 
1091 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1092  * the current EL, security state, and register configuration.
1093  */
1094 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1095 {
1096     uint64_t filter;
1097     bool e, p, u, nsk, nsu, nsh, m;
1098     bool enabled, prohibited = false, filtered;
1099     bool secure = arm_is_secure(env);
1100     int el = arm_current_el(env);
1101     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1102     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1103 
1104     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1105         return false;
1106     }
1107 
1108     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1109             (counter < hpmn || counter == 31)) {
1110         e = env->cp15.c9_pmcr & PMCRE;
1111     } else {
1112         e = mdcr_el2 & MDCR_HPME;
1113     }
1114     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1115 
1116     /* Is event counting prohibited? */
1117     if (el == 2 && (counter < hpmn || counter == 31)) {
1118         prohibited = mdcr_el2 & MDCR_HPMD;
1119     }
1120     if (secure) {
1121         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1122     }
1123 
1124     if (counter == 31) {
1125         /*
1126          * The cycle counter defaults to running. PMCR.DP says "disable
1127          * the cycle counter when event counting is prohibited".
1128          * Some MDCR bits disable the cycle counter specifically.
1129          */
1130         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1131         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1132             if (secure) {
1133                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1134             }
1135             if (el == 2) {
1136                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1137             }
1138         }
1139     }
1140 
1141     if (counter == 31) {
1142         filter = env->cp15.pmccfiltr_el0;
1143     } else {
1144         filter = env->cp15.c14_pmevtyper[counter];
1145     }
1146 
1147     p   = filter & PMXEVTYPER_P;
1148     u   = filter & PMXEVTYPER_U;
1149     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1150     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1151     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1152     m   = arm_el_is_aa64(env, 1) &&
1153               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1154 
1155     if (el == 0) {
1156         filtered = secure ? u : u != nsu;
1157     } else if (el == 1) {
1158         filtered = secure ? p : p != nsk;
1159     } else if (el == 2) {
1160         filtered = !nsh;
1161     } else { /* EL3 */
1162         filtered = m != p;
1163     }
1164 
1165     if (counter != 31) {
1166         /*
1167          * If not checking PMCCNTR, ensure the counter is setup to an event we
1168          * support
1169          */
1170         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1171         if (!event_supported(event)) {
1172             return false;
1173         }
1174     }
1175 
1176     return enabled && !prohibited && !filtered;
1177 }
1178 
1179 static void pmu_update_irq(CPUARMState *env)
1180 {
1181     ARMCPU *cpu = env_archcpu(env);
1182     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1183             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1184 }
1185 
1186 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1187 {
1188     /*
1189      * Return true if the clock divider is enabled and the cycle counter
1190      * is supposed to tick only once every 64 clock cycles. This is
1191      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1192      * (64-bit) cycle counter PMCR.D has no effect.
1193      */
1194     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1195 }
1196 
1197 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1198 {
1199     /* Return true if the specified event counter is configured to be 64 bit */
1200 
1201     /* This isn't intended to be used with the cycle counter */
1202     assert(counter < 31);
1203 
1204     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1205         return false;
1206     }
1207 
1208     if (arm_feature(env, ARM_FEATURE_EL2)) {
1209         /*
1210          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1211          * current security state, so we don't use arm_mdcr_el2_eff() here.
1212          */
1213         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1214         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1215 
1216         if (hpmn != 0 && counter >= hpmn) {
1217             return hlp;
1218         }
1219     }
1220     return env->cp15.c9_pmcr & PMCRLP;
1221 }
1222 
1223 /*
1224  * Ensure c15_ccnt is the guest-visible count so that operations such as
1225  * enabling/disabling the counter or filtering, modifying the count itself,
1226  * etc. can be done logically. This is essentially a no-op if the counter is
1227  * not enabled at the time of the call.
1228  */
1229 static void pmccntr_op_start(CPUARMState *env)
1230 {
1231     uint64_t cycles = cycles_get_count(env);
1232 
1233     if (pmu_counter_enabled(env, 31)) {
1234         uint64_t eff_cycles = cycles;
1235         if (pmccntr_clockdiv_enabled(env)) {
1236             eff_cycles /= 64;
1237         }
1238 
1239         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1240 
1241         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1242                                  1ull << 63 : 1ull << 31;
1243         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1244             env->cp15.c9_pmovsr |= (1ULL << 31);
1245             pmu_update_irq(env);
1246         }
1247 
1248         env->cp15.c15_ccnt = new_pmccntr;
1249     }
1250     env->cp15.c15_ccnt_delta = cycles;
1251 }
1252 
1253 /*
1254  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1255  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1256  * pmccntr_op_start.
1257  */
1258 static void pmccntr_op_finish(CPUARMState *env)
1259 {
1260     if (pmu_counter_enabled(env, 31)) {
1261 #ifndef CONFIG_USER_ONLY
1262         /* Calculate when the counter will next overflow */
1263         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1264         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1265             remaining_cycles = (uint32_t)remaining_cycles;
1266         }
1267         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1268 
1269         if (overflow_in > 0) {
1270             int64_t overflow_at;
1271 
1272             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1273                                  overflow_in, &overflow_at)) {
1274                 ARMCPU *cpu = env_archcpu(env);
1275                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1276             }
1277         }
1278 #endif
1279 
1280         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1281         if (pmccntr_clockdiv_enabled(env)) {
1282             prev_cycles /= 64;
1283         }
1284         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1285     }
1286 }
1287 
1288 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1289 {
1290 
1291     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1292     uint64_t count = 0;
1293     if (event_supported(event)) {
1294         uint16_t event_idx = supported_event_map[event];
1295         count = pm_events[event_idx].get_count(env);
1296     }
1297 
1298     if (pmu_counter_enabled(env, counter)) {
1299         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1300         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1301             1ULL << 63 : 1ULL << 31;
1302 
1303         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1304             env->cp15.c9_pmovsr |= (1 << counter);
1305             pmu_update_irq(env);
1306         }
1307         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1308     }
1309     env->cp15.c14_pmevcntr_delta[counter] = count;
1310 }
1311 
1312 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1313 {
1314     if (pmu_counter_enabled(env, counter)) {
1315 #ifndef CONFIG_USER_ONLY
1316         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1317         uint16_t event_idx = supported_event_map[event];
1318         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1319         int64_t overflow_in;
1320 
1321         if (!pmevcntr_is_64_bit(env, counter)) {
1322             delta = (uint32_t)delta;
1323         }
1324         overflow_in = pm_events[event_idx].ns_per_count(delta);
1325 
1326         if (overflow_in > 0) {
1327             int64_t overflow_at;
1328 
1329             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1330                                  overflow_in, &overflow_at)) {
1331                 ARMCPU *cpu = env_archcpu(env);
1332                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1333             }
1334         }
1335 #endif
1336 
1337         env->cp15.c14_pmevcntr_delta[counter] -=
1338             env->cp15.c14_pmevcntr[counter];
1339     }
1340 }
1341 
1342 void pmu_op_start(CPUARMState *env)
1343 {
1344     unsigned int i;
1345     pmccntr_op_start(env);
1346     for (i = 0; i < pmu_num_counters(env); i++) {
1347         pmevcntr_op_start(env, i);
1348     }
1349 }
1350 
1351 void pmu_op_finish(CPUARMState *env)
1352 {
1353     unsigned int i;
1354     pmccntr_op_finish(env);
1355     for (i = 0; i < pmu_num_counters(env); i++) {
1356         pmevcntr_op_finish(env, i);
1357     }
1358 }
1359 
1360 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1361 {
1362     pmu_op_start(&cpu->env);
1363 }
1364 
1365 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1366 {
1367     pmu_op_finish(&cpu->env);
1368 }
1369 
1370 void arm_pmu_timer_cb(void *opaque)
1371 {
1372     ARMCPU *cpu = opaque;
1373 
1374     /*
1375      * Update all the counter values based on the current underlying counts,
1376      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1377      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1378      * counter may expire.
1379      */
1380     pmu_op_start(&cpu->env);
1381     pmu_op_finish(&cpu->env);
1382 }
1383 
1384 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1385                        uint64_t value)
1386 {
1387     pmu_op_start(env);
1388 
1389     if (value & PMCRC) {
1390         /* The counter has been reset */
1391         env->cp15.c15_ccnt = 0;
1392     }
1393 
1394     if (value & PMCRP) {
1395         unsigned int i;
1396         for (i = 0; i < pmu_num_counters(env); i++) {
1397             env->cp15.c14_pmevcntr[i] = 0;
1398         }
1399     }
1400 
1401     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1402     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1403 
1404     pmu_op_finish(env);
1405 }
1406 
1407 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1408                           uint64_t value)
1409 {
1410     unsigned int i;
1411     uint64_t overflow_mask, new_pmswinc;
1412 
1413     for (i = 0; i < pmu_num_counters(env); i++) {
1414         /* Increment a counter's count iff: */
1415         if ((value & (1 << i)) && /* counter's bit is set */
1416                 /* counter is enabled and not filtered */
1417                 pmu_counter_enabled(env, i) &&
1418                 /* counter is SW_INCR */
1419                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1420             pmevcntr_op_start(env, i);
1421 
1422             /*
1423              * Detect if this write causes an overflow since we can't predict
1424              * PMSWINC overflows like we can for other events
1425              */
1426             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1427 
1428             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1429                 1ULL << 63 : 1ULL << 31;
1430 
1431             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1432                 env->cp15.c9_pmovsr |= (1 << i);
1433                 pmu_update_irq(env);
1434             }
1435 
1436             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1437 
1438             pmevcntr_op_finish(env, i);
1439         }
1440     }
1441 }
1442 
1443 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1444 {
1445     uint64_t ret;
1446     pmccntr_op_start(env);
1447     ret = env->cp15.c15_ccnt;
1448     pmccntr_op_finish(env);
1449     return ret;
1450 }
1451 
1452 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1453                          uint64_t value)
1454 {
1455     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1456      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1457      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1458      * accessed.
1459      */
1460     env->cp15.c9_pmselr = value & 0x1f;
1461 }
1462 
1463 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1464                         uint64_t value)
1465 {
1466     pmccntr_op_start(env);
1467     env->cp15.c15_ccnt = value;
1468     pmccntr_op_finish(env);
1469 }
1470 
1471 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1472                             uint64_t value)
1473 {
1474     uint64_t cur_val = pmccntr_read(env, NULL);
1475 
1476     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1477 }
1478 
1479 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1480                             uint64_t value)
1481 {
1482     pmccntr_op_start(env);
1483     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1484     pmccntr_op_finish(env);
1485 }
1486 
1487 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1488                             uint64_t value)
1489 {
1490     pmccntr_op_start(env);
1491     /* M is not accessible from AArch32 */
1492     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1493         (value & PMCCFILTR);
1494     pmccntr_op_finish(env);
1495 }
1496 
1497 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1498 {
1499     /* M is not visible in AArch32 */
1500     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1501 }
1502 
1503 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1504                             uint64_t value)
1505 {
1506     pmu_op_start(env);
1507     value &= pmu_counter_mask(env);
1508     env->cp15.c9_pmcnten |= value;
1509     pmu_op_finish(env);
1510 }
1511 
1512 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1513                              uint64_t value)
1514 {
1515     pmu_op_start(env);
1516     value &= pmu_counter_mask(env);
1517     env->cp15.c9_pmcnten &= ~value;
1518     pmu_op_finish(env);
1519 }
1520 
1521 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1522                          uint64_t value)
1523 {
1524     value &= pmu_counter_mask(env);
1525     env->cp15.c9_pmovsr &= ~value;
1526     pmu_update_irq(env);
1527 }
1528 
1529 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1530                          uint64_t value)
1531 {
1532     value &= pmu_counter_mask(env);
1533     env->cp15.c9_pmovsr |= value;
1534     pmu_update_irq(env);
1535 }
1536 
1537 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1538                              uint64_t value, const uint8_t counter)
1539 {
1540     if (counter == 31) {
1541         pmccfiltr_write(env, ri, value);
1542     } else if (counter < pmu_num_counters(env)) {
1543         pmevcntr_op_start(env, counter);
1544 
1545         /*
1546          * If this counter's event type is changing, store the current
1547          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1548          * pmevcntr_op_finish has the correct baseline when it converts back to
1549          * a delta.
1550          */
1551         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1552             PMXEVTYPER_EVTCOUNT;
1553         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1554         if (old_event != new_event) {
1555             uint64_t count = 0;
1556             if (event_supported(new_event)) {
1557                 uint16_t event_idx = supported_event_map[new_event];
1558                 count = pm_events[event_idx].get_count(env);
1559             }
1560             env->cp15.c14_pmevcntr_delta[counter] = count;
1561         }
1562 
1563         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1564         pmevcntr_op_finish(env, counter);
1565     }
1566     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1567      * PMSELR value is equal to or greater than the number of implemented
1568      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1569      */
1570 }
1571 
1572 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1573                                const uint8_t counter)
1574 {
1575     if (counter == 31) {
1576         return env->cp15.pmccfiltr_el0;
1577     } else if (counter < pmu_num_counters(env)) {
1578         return env->cp15.c14_pmevtyper[counter];
1579     } else {
1580       /*
1581        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1582        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1583        */
1584         return 0;
1585     }
1586 }
1587 
1588 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1589                               uint64_t value)
1590 {
1591     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1592     pmevtyper_write(env, ri, value, counter);
1593 }
1594 
1595 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1596                                uint64_t value)
1597 {
1598     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1599     env->cp15.c14_pmevtyper[counter] = value;
1600 
1601     /*
1602      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1603      * pmu_op_finish calls when loading saved state for a migration. Because
1604      * we're potentially updating the type of event here, the value written to
1605      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1606      * different counter type. Therefore, we need to set this value to the
1607      * current count for the counter type we're writing so that pmu_op_finish
1608      * has the correct count for its calculation.
1609      */
1610     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1611     if (event_supported(event)) {
1612         uint16_t event_idx = supported_event_map[event];
1613         env->cp15.c14_pmevcntr_delta[counter] =
1614             pm_events[event_idx].get_count(env);
1615     }
1616 }
1617 
1618 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1619 {
1620     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1621     return pmevtyper_read(env, ri, counter);
1622 }
1623 
1624 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1625                              uint64_t value)
1626 {
1627     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1628 }
1629 
1630 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1631 {
1632     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1633 }
1634 
1635 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636                              uint64_t value, uint8_t counter)
1637 {
1638     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1639         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1640         value &= MAKE_64BIT_MASK(0, 32);
1641     }
1642     if (counter < pmu_num_counters(env)) {
1643         pmevcntr_op_start(env, counter);
1644         env->cp15.c14_pmevcntr[counter] = value;
1645         pmevcntr_op_finish(env, counter);
1646     }
1647     /*
1648      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1649      * are CONSTRAINED UNPREDICTABLE.
1650      */
1651 }
1652 
1653 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1654                               uint8_t counter)
1655 {
1656     if (counter < pmu_num_counters(env)) {
1657         uint64_t ret;
1658         pmevcntr_op_start(env, counter);
1659         ret = env->cp15.c14_pmevcntr[counter];
1660         pmevcntr_op_finish(env, counter);
1661         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1662             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1663             ret &= MAKE_64BIT_MASK(0, 32);
1664         }
1665         return ret;
1666     } else {
1667       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1668        * are CONSTRAINED UNPREDICTABLE. */
1669         return 0;
1670     }
1671 }
1672 
1673 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1674                              uint64_t value)
1675 {
1676     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1677     pmevcntr_write(env, ri, value, counter);
1678 }
1679 
1680 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1681 {
1682     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1683     return pmevcntr_read(env, ri, counter);
1684 }
1685 
1686 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1687                              uint64_t value)
1688 {
1689     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1690     assert(counter < pmu_num_counters(env));
1691     env->cp15.c14_pmevcntr[counter] = value;
1692     pmevcntr_write(env, ri, value, counter);
1693 }
1694 
1695 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1696 {
1697     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1698     assert(counter < pmu_num_counters(env));
1699     return env->cp15.c14_pmevcntr[counter];
1700 }
1701 
1702 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1703                              uint64_t value)
1704 {
1705     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1706 }
1707 
1708 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1709 {
1710     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1711 }
1712 
1713 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1714                             uint64_t value)
1715 {
1716     if (arm_feature(env, ARM_FEATURE_V8)) {
1717         env->cp15.c9_pmuserenr = value & 0xf;
1718     } else {
1719         env->cp15.c9_pmuserenr = value & 1;
1720     }
1721 }
1722 
1723 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724                              uint64_t value)
1725 {
1726     /* We have no event counters so only the C bit can be changed */
1727     value &= pmu_counter_mask(env);
1728     env->cp15.c9_pminten |= value;
1729     pmu_update_irq(env);
1730 }
1731 
1732 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1733                              uint64_t value)
1734 {
1735     value &= pmu_counter_mask(env);
1736     env->cp15.c9_pminten &= ~value;
1737     pmu_update_irq(env);
1738 }
1739 
1740 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1741                        uint64_t value)
1742 {
1743     /* Note that even though the AArch64 view of this register has bits
1744      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1745      * architectural requirements for bits which are RES0 only in some
1746      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1747      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1748      */
1749     raw_write(env, ri, value & ~0x1FULL);
1750 }
1751 
1752 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1753 {
1754     /* Begin with base v8.0 state.  */
1755     uint32_t valid_mask = 0x3fff;
1756     ARMCPU *cpu = env_archcpu(env);
1757 
1758     /*
1759      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1760      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1761      * Instead, choose the format based on the mode of EL3.
1762      */
1763     if (arm_el_is_aa64(env, 3)) {
1764         value |= SCR_FW | SCR_AW;      /* RES1 */
1765         valid_mask &= ~SCR_NET;        /* RES0 */
1766 
1767         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1768             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1769             value |= SCR_RW;           /* RAO/WI */
1770         }
1771         if (cpu_isar_feature(aa64_ras, cpu)) {
1772             valid_mask |= SCR_TERR;
1773         }
1774         if (cpu_isar_feature(aa64_lor, cpu)) {
1775             valid_mask |= SCR_TLOR;
1776         }
1777         if (cpu_isar_feature(aa64_pauth, cpu)) {
1778             valid_mask |= SCR_API | SCR_APK;
1779         }
1780         if (cpu_isar_feature(aa64_sel2, cpu)) {
1781             valid_mask |= SCR_EEL2;
1782         }
1783         if (cpu_isar_feature(aa64_mte, cpu)) {
1784             valid_mask |= SCR_ATA;
1785         }
1786         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1787             valid_mask |= SCR_ENSCXT;
1788         }
1789         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1790             valid_mask |= SCR_EASE | SCR_NMEA;
1791         }
1792     } else {
1793         valid_mask &= ~(SCR_RW | SCR_ST);
1794         if (cpu_isar_feature(aa32_ras, cpu)) {
1795             valid_mask |= SCR_TERR;
1796         }
1797     }
1798 
1799     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1800         valid_mask &= ~SCR_HCE;
1801 
1802         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1803          * supported if EL2 exists. The bit is UNK/SBZP when
1804          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1805          * when EL2 is unavailable.
1806          * On ARMv8, this bit is always available.
1807          */
1808         if (arm_feature(env, ARM_FEATURE_V7) &&
1809             !arm_feature(env, ARM_FEATURE_V8)) {
1810             valid_mask &= ~SCR_SMD;
1811         }
1812     }
1813 
1814     /* Clear all-context RES0 bits.  */
1815     value &= valid_mask;
1816     raw_write(env, ri, value);
1817 }
1818 
1819 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1820 {
1821     /*
1822      * scr_write will set the RES1 bits on an AArch64-only CPU.
1823      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1824      */
1825     scr_write(env, ri, 0);
1826 }
1827 
1828 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1829                                        const ARMCPRegInfo *ri,
1830                                        bool isread)
1831 {
1832     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1833         return CP_ACCESS_TRAP_EL2;
1834     }
1835 
1836     return CP_ACCESS_OK;
1837 }
1838 
1839 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1840 {
1841     ARMCPU *cpu = env_archcpu(env);
1842 
1843     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1844      * bank
1845      */
1846     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1847                                         ri->secure & ARM_CP_SECSTATE_S);
1848 
1849     return cpu->ccsidr[index];
1850 }
1851 
1852 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853                          uint64_t value)
1854 {
1855     raw_write(env, ri, value & 0xf);
1856 }
1857 
1858 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1859 {
1860     CPUState *cs = env_cpu(env);
1861     bool el1 = arm_current_el(env) == 1;
1862     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1863     uint64_t ret = 0;
1864 
1865     if (hcr_el2 & HCR_IMO) {
1866         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1867             ret |= CPSR_I;
1868         }
1869     } else {
1870         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1871             ret |= CPSR_I;
1872         }
1873     }
1874 
1875     if (hcr_el2 & HCR_FMO) {
1876         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1877             ret |= CPSR_F;
1878         }
1879     } else {
1880         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1881             ret |= CPSR_F;
1882         }
1883     }
1884 
1885     if (hcr_el2 & HCR_AMO) {
1886         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1887             ret |= CPSR_A;
1888         }
1889     }
1890 
1891     return ret;
1892 }
1893 
1894 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1895                                        bool isread)
1896 {
1897     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1898         return CP_ACCESS_TRAP_EL2;
1899     }
1900 
1901     return CP_ACCESS_OK;
1902 }
1903 
1904 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1905                                        bool isread)
1906 {
1907     if (arm_feature(env, ARM_FEATURE_V8)) {
1908         return access_aa64_tid1(env, ri, isread);
1909     }
1910 
1911     return CP_ACCESS_OK;
1912 }
1913 
1914 static const ARMCPRegInfo v7_cp_reginfo[] = {
1915     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1916     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1917       .access = PL1_W, .type = ARM_CP_NOP },
1918     /* Performance monitors are implementation defined in v7,
1919      * but with an ARM recommended set of registers, which we
1920      * follow.
1921      *
1922      * Performance registers fall into three categories:
1923      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1924      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1925      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1926      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1927      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1928      */
1929     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1930       .access = PL0_RW, .type = ARM_CP_ALIAS,
1931       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1932       .writefn = pmcntenset_write,
1933       .accessfn = pmreg_access,
1934       .raw_writefn = raw_write },
1935     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1936       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1937       .access = PL0_RW, .accessfn = pmreg_access,
1938       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1939       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1940     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1941       .access = PL0_RW,
1942       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1943       .accessfn = pmreg_access,
1944       .writefn = pmcntenclr_write,
1945       .type = ARM_CP_ALIAS },
1946     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1947       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1948       .access = PL0_RW, .accessfn = pmreg_access,
1949       .type = ARM_CP_ALIAS,
1950       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1951       .writefn = pmcntenclr_write },
1952     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1953       .access = PL0_RW, .type = ARM_CP_IO,
1954       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1955       .accessfn = pmreg_access,
1956       .writefn = pmovsr_write,
1957       .raw_writefn = raw_write },
1958     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1959       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1960       .access = PL0_RW, .accessfn = pmreg_access,
1961       .type = ARM_CP_ALIAS | ARM_CP_IO,
1962       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1963       .writefn = pmovsr_write,
1964       .raw_writefn = raw_write },
1965     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1966       .access = PL0_W, .accessfn = pmreg_access_swinc,
1967       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1968       .writefn = pmswinc_write },
1969     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1970       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1971       .access = PL0_W, .accessfn = pmreg_access_swinc,
1972       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1973       .writefn = pmswinc_write },
1974     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1975       .access = PL0_RW, .type = ARM_CP_ALIAS,
1976       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1977       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1978       .raw_writefn = raw_write},
1979     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1980       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1981       .access = PL0_RW, .accessfn = pmreg_access_selr,
1982       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1983       .writefn = pmselr_write, .raw_writefn = raw_write, },
1984     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1985       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1986       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1987       .accessfn = pmreg_access_ccntr },
1988     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1989       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1990       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1991       .type = ARM_CP_IO,
1992       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1993       .readfn = pmccntr_read, .writefn = pmccntr_write,
1994       .raw_readfn = raw_read, .raw_writefn = raw_write, },
1995     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1996       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1997       .access = PL0_RW, .accessfn = pmreg_access,
1998       .type = ARM_CP_ALIAS | ARM_CP_IO,
1999       .resetvalue = 0, },
2000     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2001       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2002       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2003       .access = PL0_RW, .accessfn = pmreg_access,
2004       .type = ARM_CP_IO,
2005       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2006       .resetvalue = 0, },
2007     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2008       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2009       .accessfn = pmreg_access,
2010       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2011     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2012       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2013       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2014       .accessfn = pmreg_access,
2015       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2016     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2017       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2018       .accessfn = pmreg_access_xevcntr,
2019       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2020     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2021       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2022       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2023       .accessfn = pmreg_access_xevcntr,
2024       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2025     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2026       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2027       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2028       .resetvalue = 0,
2029       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2030     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2031       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2032       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2033       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2034       .resetvalue = 0,
2035       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2036     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2037       .access = PL1_RW, .accessfn = access_tpm,
2038       .type = ARM_CP_ALIAS | ARM_CP_IO,
2039       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2040       .resetvalue = 0,
2041       .writefn = pmintenset_write, .raw_writefn = raw_write },
2042     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2043       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2044       .access = PL1_RW, .accessfn = access_tpm,
2045       .type = ARM_CP_IO,
2046       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2047       .writefn = pmintenset_write, .raw_writefn = raw_write,
2048       .resetvalue = 0x0 },
2049     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2050       .access = PL1_RW, .accessfn = access_tpm,
2051       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2052       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2053       .writefn = pmintenclr_write, },
2054     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2055       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2056       .access = PL1_RW, .accessfn = access_tpm,
2057       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2058       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2059       .writefn = pmintenclr_write },
2060     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2061       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2062       .access = PL1_R,
2063       .accessfn = access_aa64_tid2,
2064       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2065     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2066       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2067       .access = PL1_RW,
2068       .accessfn = access_aa64_tid2,
2069       .writefn = csselr_write, .resetvalue = 0,
2070       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2071                              offsetof(CPUARMState, cp15.csselr_ns) } },
2072     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2073      * just RAZ for all cores:
2074      */
2075     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2076       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2077       .access = PL1_R, .type = ARM_CP_CONST,
2078       .accessfn = access_aa64_tid1,
2079       .resetvalue = 0 },
2080     /* Auxiliary fault status registers: these also are IMPDEF, and we
2081      * choose to RAZ/WI for all cores.
2082      */
2083     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2084       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2085       .access = PL1_RW, .accessfn = access_tvm_trvm,
2086       .type = ARM_CP_CONST, .resetvalue = 0 },
2087     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2088       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2089       .access = PL1_RW, .accessfn = access_tvm_trvm,
2090       .type = ARM_CP_CONST, .resetvalue = 0 },
2091     /* MAIR can just read-as-written because we don't implement caches
2092      * and so don't need to care about memory attributes.
2093      */
2094     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2095       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2096       .access = PL1_RW, .accessfn = access_tvm_trvm,
2097       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2098       .resetvalue = 0 },
2099     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2100       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2101       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2102       .resetvalue = 0 },
2103     /* For non-long-descriptor page tables these are PRRR and NMRR;
2104      * regardless they still act as reads-as-written for QEMU.
2105      */
2106      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2107       * allows them to assign the correct fieldoffset based on the endianness
2108       * handled in the field definitions.
2109       */
2110     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2111       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2112       .access = PL1_RW, .accessfn = access_tvm_trvm,
2113       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2114                              offsetof(CPUARMState, cp15.mair0_ns) },
2115       .resetfn = arm_cp_reset_ignore },
2116     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2117       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2118       .access = PL1_RW, .accessfn = access_tvm_trvm,
2119       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2120                              offsetof(CPUARMState, cp15.mair1_ns) },
2121       .resetfn = arm_cp_reset_ignore },
2122     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2123       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2124       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2125     /* 32 bit ITLB invalidates */
2126     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2127       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2128       .writefn = tlbiall_write },
2129     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2130       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2131       .writefn = tlbimva_write },
2132     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2133       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2134       .writefn = tlbiasid_write },
2135     /* 32 bit DTLB invalidates */
2136     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2137       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2138       .writefn = tlbiall_write },
2139     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2140       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2141       .writefn = tlbimva_write },
2142     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2143       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2144       .writefn = tlbiasid_write },
2145     /* 32 bit TLB invalidates */
2146     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2147       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2148       .writefn = tlbiall_write },
2149     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2150       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2151       .writefn = tlbimva_write },
2152     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2153       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2154       .writefn = tlbiasid_write },
2155     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2156       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2157       .writefn = tlbimvaa_write },
2158 };
2159 
2160 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2161     /* 32 bit TLB invalidates, Inner Shareable */
2162     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2163       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2164       .writefn = tlbiall_is_write },
2165     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2166       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2167       .writefn = tlbimva_is_write },
2168     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2169       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2170       .writefn = tlbiasid_is_write },
2171     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2172       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2173       .writefn = tlbimvaa_is_write },
2174 };
2175 
2176 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2177     /* PMOVSSET is not implemented in v7 before v7ve */
2178     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2179       .access = PL0_RW, .accessfn = pmreg_access,
2180       .type = ARM_CP_ALIAS | ARM_CP_IO,
2181       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2182       .writefn = pmovsset_write,
2183       .raw_writefn = raw_write },
2184     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2185       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2186       .access = PL0_RW, .accessfn = pmreg_access,
2187       .type = ARM_CP_ALIAS | ARM_CP_IO,
2188       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2189       .writefn = pmovsset_write,
2190       .raw_writefn = raw_write },
2191 };
2192 
2193 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2194                         uint64_t value)
2195 {
2196     value &= 1;
2197     env->teecr = value;
2198 }
2199 
2200 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2201                                    bool isread)
2202 {
2203     /*
2204      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2205      * at all, so we don't need to check whether we're v8A.
2206      */
2207     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2208         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2209         return CP_ACCESS_TRAP_EL2;
2210     }
2211     return CP_ACCESS_OK;
2212 }
2213 
2214 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2215                                     bool isread)
2216 {
2217     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2218         return CP_ACCESS_TRAP;
2219     }
2220     return teecr_access(env, ri, isread);
2221 }
2222 
2223 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2224     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2225       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2226       .resetvalue = 0,
2227       .writefn = teecr_write, .accessfn = teecr_access },
2228     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2229       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2230       .accessfn = teehbr_access, .resetvalue = 0 },
2231 };
2232 
2233 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2234     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2236       .access = PL0_RW,
2237       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2238     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2239       .access = PL0_RW,
2240       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2241                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2242       .resetfn = arm_cp_reset_ignore },
2243     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2244       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2245       .access = PL0_R|PL1_W,
2246       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2247       .resetvalue = 0},
2248     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2249       .access = PL0_R|PL1_W,
2250       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2251                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2252       .resetfn = arm_cp_reset_ignore },
2253     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2254       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2255       .access = PL1_RW,
2256       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2257     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2258       .access = PL1_RW,
2259       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2260                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2261       .resetvalue = 0 },
2262 };
2263 
2264 #ifndef CONFIG_USER_ONLY
2265 
2266 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2267                                        bool isread)
2268 {
2269     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2270      * Writable only at the highest implemented exception level.
2271      */
2272     int el = arm_current_el(env);
2273     uint64_t hcr;
2274     uint32_t cntkctl;
2275 
2276     switch (el) {
2277     case 0:
2278         hcr = arm_hcr_el2_eff(env);
2279         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2280             cntkctl = env->cp15.cnthctl_el2;
2281         } else {
2282             cntkctl = env->cp15.c14_cntkctl;
2283         }
2284         if (!extract32(cntkctl, 0, 2)) {
2285             return CP_ACCESS_TRAP;
2286         }
2287         break;
2288     case 1:
2289         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2290             arm_is_secure_below_el3(env)) {
2291             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2292             return CP_ACCESS_TRAP_UNCATEGORIZED;
2293         }
2294         break;
2295     case 2:
2296     case 3:
2297         break;
2298     }
2299 
2300     if (!isread && el < arm_highest_el(env)) {
2301         return CP_ACCESS_TRAP_UNCATEGORIZED;
2302     }
2303 
2304     return CP_ACCESS_OK;
2305 }
2306 
2307 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2308                                         bool isread)
2309 {
2310     unsigned int cur_el = arm_current_el(env);
2311     bool has_el2 = arm_is_el2_enabled(env);
2312     uint64_t hcr = arm_hcr_el2_eff(env);
2313 
2314     switch (cur_el) {
2315     case 0:
2316         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2317         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2318             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2319                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2320         }
2321 
2322         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2323         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2324             return CP_ACCESS_TRAP;
2325         }
2326 
2327         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2328         if (hcr & HCR_E2H) {
2329             if (timeridx == GTIMER_PHYS &&
2330                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2331                 return CP_ACCESS_TRAP_EL2;
2332             }
2333         } else {
2334             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2335             if (has_el2 && timeridx == GTIMER_PHYS &&
2336                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2337                 return CP_ACCESS_TRAP_EL2;
2338             }
2339         }
2340         break;
2341 
2342     case 1:
2343         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2344         if (has_el2 && timeridx == GTIMER_PHYS &&
2345             (hcr & HCR_E2H
2346              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2347              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2348             return CP_ACCESS_TRAP_EL2;
2349         }
2350         break;
2351     }
2352     return CP_ACCESS_OK;
2353 }
2354 
2355 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2356                                       bool isread)
2357 {
2358     unsigned int cur_el = arm_current_el(env);
2359     bool has_el2 = arm_is_el2_enabled(env);
2360     uint64_t hcr = arm_hcr_el2_eff(env);
2361 
2362     switch (cur_el) {
2363     case 0:
2364         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2365             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2366             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2367                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2368         }
2369 
2370         /*
2371          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2372          * EL0 if EL0[PV]TEN is zero.
2373          */
2374         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2375             return CP_ACCESS_TRAP;
2376         }
2377         /* fall through */
2378 
2379     case 1:
2380         if (has_el2 && timeridx == GTIMER_PHYS) {
2381             if (hcr & HCR_E2H) {
2382                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2383                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2384                     return CP_ACCESS_TRAP_EL2;
2385                 }
2386             } else {
2387                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2388                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2389                     return CP_ACCESS_TRAP_EL2;
2390                 }
2391             }
2392         }
2393         break;
2394     }
2395     return CP_ACCESS_OK;
2396 }
2397 
2398 static CPAccessResult gt_pct_access(CPUARMState *env,
2399                                     const ARMCPRegInfo *ri,
2400                                     bool isread)
2401 {
2402     return gt_counter_access(env, GTIMER_PHYS, isread);
2403 }
2404 
2405 static CPAccessResult gt_vct_access(CPUARMState *env,
2406                                     const ARMCPRegInfo *ri,
2407                                     bool isread)
2408 {
2409     return gt_counter_access(env, GTIMER_VIRT, isread);
2410 }
2411 
2412 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2413                                        bool isread)
2414 {
2415     return gt_timer_access(env, GTIMER_PHYS, isread);
2416 }
2417 
2418 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2419                                        bool isread)
2420 {
2421     return gt_timer_access(env, GTIMER_VIRT, isread);
2422 }
2423 
2424 static CPAccessResult gt_stimer_access(CPUARMState *env,
2425                                        const ARMCPRegInfo *ri,
2426                                        bool isread)
2427 {
2428     /* The AArch64 register view of the secure physical timer is
2429      * always accessible from EL3, and configurably accessible from
2430      * Secure EL1.
2431      */
2432     switch (arm_current_el(env)) {
2433     case 1:
2434         if (!arm_is_secure(env)) {
2435             return CP_ACCESS_TRAP;
2436         }
2437         if (!(env->cp15.scr_el3 & SCR_ST)) {
2438             return CP_ACCESS_TRAP_EL3;
2439         }
2440         return CP_ACCESS_OK;
2441     case 0:
2442     case 2:
2443         return CP_ACCESS_TRAP;
2444     case 3:
2445         return CP_ACCESS_OK;
2446     default:
2447         g_assert_not_reached();
2448     }
2449 }
2450 
2451 static uint64_t gt_get_countervalue(CPUARMState *env)
2452 {
2453     ARMCPU *cpu = env_archcpu(env);
2454 
2455     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2456 }
2457 
2458 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2459 {
2460     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2461 
2462     if (gt->ctl & 1) {
2463         /* Timer enabled: calculate and set current ISTATUS, irq, and
2464          * reset timer to when ISTATUS next has to change
2465          */
2466         uint64_t offset = timeridx == GTIMER_VIRT ?
2467                                       cpu->env.cp15.cntvoff_el2 : 0;
2468         uint64_t count = gt_get_countervalue(&cpu->env);
2469         /* Note that this must be unsigned 64 bit arithmetic: */
2470         int istatus = count - offset >= gt->cval;
2471         uint64_t nexttick;
2472         int irqstate;
2473 
2474         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2475 
2476         irqstate = (istatus && !(gt->ctl & 2));
2477         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2478 
2479         if (istatus) {
2480             /* Next transition is when count rolls back over to zero */
2481             nexttick = UINT64_MAX;
2482         } else {
2483             /* Next transition is when we hit cval */
2484             nexttick = gt->cval + offset;
2485         }
2486         /* Note that the desired next expiry time might be beyond the
2487          * signed-64-bit range of a QEMUTimer -- in this case we just
2488          * set the timer for as far in the future as possible. When the
2489          * timer expires we will reset the timer for any remaining period.
2490          */
2491         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2492             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2493         } else {
2494             timer_mod(cpu->gt_timer[timeridx], nexttick);
2495         }
2496         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2497     } else {
2498         /* Timer disabled: ISTATUS and timer output always clear */
2499         gt->ctl &= ~4;
2500         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2501         timer_del(cpu->gt_timer[timeridx]);
2502         trace_arm_gt_recalc_disabled(timeridx);
2503     }
2504 }
2505 
2506 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2507                            int timeridx)
2508 {
2509     ARMCPU *cpu = env_archcpu(env);
2510 
2511     timer_del(cpu->gt_timer[timeridx]);
2512 }
2513 
2514 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2515 {
2516     return gt_get_countervalue(env);
2517 }
2518 
2519 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2520 {
2521     uint64_t hcr;
2522 
2523     switch (arm_current_el(env)) {
2524     case 2:
2525         hcr = arm_hcr_el2_eff(env);
2526         if (hcr & HCR_E2H) {
2527             return 0;
2528         }
2529         break;
2530     case 0:
2531         hcr = arm_hcr_el2_eff(env);
2532         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2533             return 0;
2534         }
2535         break;
2536     }
2537 
2538     return env->cp15.cntvoff_el2;
2539 }
2540 
2541 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2542 {
2543     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2544 }
2545 
2546 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2547                           int timeridx,
2548                           uint64_t value)
2549 {
2550     trace_arm_gt_cval_write(timeridx, value);
2551     env->cp15.c14_timer[timeridx].cval = value;
2552     gt_recalc_timer(env_archcpu(env), timeridx);
2553 }
2554 
2555 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2556                              int timeridx)
2557 {
2558     uint64_t offset = 0;
2559 
2560     switch (timeridx) {
2561     case GTIMER_VIRT:
2562     case GTIMER_HYPVIRT:
2563         offset = gt_virt_cnt_offset(env);
2564         break;
2565     }
2566 
2567     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2568                       (gt_get_countervalue(env) - offset));
2569 }
2570 
2571 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2572                           int timeridx,
2573                           uint64_t value)
2574 {
2575     uint64_t offset = 0;
2576 
2577     switch (timeridx) {
2578     case GTIMER_VIRT:
2579     case GTIMER_HYPVIRT:
2580         offset = gt_virt_cnt_offset(env);
2581         break;
2582     }
2583 
2584     trace_arm_gt_tval_write(timeridx, value);
2585     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2586                                          sextract64(value, 0, 32);
2587     gt_recalc_timer(env_archcpu(env), timeridx);
2588 }
2589 
2590 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2591                          int timeridx,
2592                          uint64_t value)
2593 {
2594     ARMCPU *cpu = env_archcpu(env);
2595     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2596 
2597     trace_arm_gt_ctl_write(timeridx, value);
2598     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2599     if ((oldval ^ value) & 1) {
2600         /* Enable toggled */
2601         gt_recalc_timer(cpu, timeridx);
2602     } else if ((oldval ^ value) & 2) {
2603         /* IMASK toggled: don't need to recalculate,
2604          * just set the interrupt line based on ISTATUS
2605          */
2606         int irqstate = (oldval & 4) && !(value & 2);
2607 
2608         trace_arm_gt_imask_toggle(timeridx, irqstate);
2609         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2610     }
2611 }
2612 
2613 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2614 {
2615     gt_timer_reset(env, ri, GTIMER_PHYS);
2616 }
2617 
2618 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2619                                uint64_t value)
2620 {
2621     gt_cval_write(env, ri, GTIMER_PHYS, value);
2622 }
2623 
2624 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2625 {
2626     return gt_tval_read(env, ri, GTIMER_PHYS);
2627 }
2628 
2629 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2630                                uint64_t value)
2631 {
2632     gt_tval_write(env, ri, GTIMER_PHYS, value);
2633 }
2634 
2635 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2636                               uint64_t value)
2637 {
2638     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2639 }
2640 
2641 static int gt_phys_redir_timeridx(CPUARMState *env)
2642 {
2643     switch (arm_mmu_idx(env)) {
2644     case ARMMMUIdx_E20_0:
2645     case ARMMMUIdx_E20_2:
2646     case ARMMMUIdx_E20_2_PAN:
2647     case ARMMMUIdx_SE20_0:
2648     case ARMMMUIdx_SE20_2:
2649     case ARMMMUIdx_SE20_2_PAN:
2650         return GTIMER_HYP;
2651     default:
2652         return GTIMER_PHYS;
2653     }
2654 }
2655 
2656 static int gt_virt_redir_timeridx(CPUARMState *env)
2657 {
2658     switch (arm_mmu_idx(env)) {
2659     case ARMMMUIdx_E20_0:
2660     case ARMMMUIdx_E20_2:
2661     case ARMMMUIdx_E20_2_PAN:
2662     case ARMMMUIdx_SE20_0:
2663     case ARMMMUIdx_SE20_2:
2664     case ARMMMUIdx_SE20_2_PAN:
2665         return GTIMER_HYPVIRT;
2666     default:
2667         return GTIMER_VIRT;
2668     }
2669 }
2670 
2671 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2672                                         const ARMCPRegInfo *ri)
2673 {
2674     int timeridx = gt_phys_redir_timeridx(env);
2675     return env->cp15.c14_timer[timeridx].cval;
2676 }
2677 
2678 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2679                                      uint64_t value)
2680 {
2681     int timeridx = gt_phys_redir_timeridx(env);
2682     gt_cval_write(env, ri, timeridx, value);
2683 }
2684 
2685 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2686                                         const ARMCPRegInfo *ri)
2687 {
2688     int timeridx = gt_phys_redir_timeridx(env);
2689     return gt_tval_read(env, ri, timeridx);
2690 }
2691 
2692 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2693                                      uint64_t value)
2694 {
2695     int timeridx = gt_phys_redir_timeridx(env);
2696     gt_tval_write(env, ri, timeridx, value);
2697 }
2698 
2699 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2700                                        const ARMCPRegInfo *ri)
2701 {
2702     int timeridx = gt_phys_redir_timeridx(env);
2703     return env->cp15.c14_timer[timeridx].ctl;
2704 }
2705 
2706 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2707                                     uint64_t value)
2708 {
2709     int timeridx = gt_phys_redir_timeridx(env);
2710     gt_ctl_write(env, ri, timeridx, value);
2711 }
2712 
2713 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2714 {
2715     gt_timer_reset(env, ri, GTIMER_VIRT);
2716 }
2717 
2718 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2719                                uint64_t value)
2720 {
2721     gt_cval_write(env, ri, GTIMER_VIRT, value);
2722 }
2723 
2724 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2725 {
2726     return gt_tval_read(env, ri, GTIMER_VIRT);
2727 }
2728 
2729 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2730                                uint64_t value)
2731 {
2732     gt_tval_write(env, ri, GTIMER_VIRT, value);
2733 }
2734 
2735 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2736                               uint64_t value)
2737 {
2738     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2739 }
2740 
2741 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2742                               uint64_t value)
2743 {
2744     ARMCPU *cpu = env_archcpu(env);
2745 
2746     trace_arm_gt_cntvoff_write(value);
2747     raw_write(env, ri, value);
2748     gt_recalc_timer(cpu, GTIMER_VIRT);
2749 }
2750 
2751 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2752                                         const ARMCPRegInfo *ri)
2753 {
2754     int timeridx = gt_virt_redir_timeridx(env);
2755     return env->cp15.c14_timer[timeridx].cval;
2756 }
2757 
2758 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2759                                      uint64_t value)
2760 {
2761     int timeridx = gt_virt_redir_timeridx(env);
2762     gt_cval_write(env, ri, timeridx, value);
2763 }
2764 
2765 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2766                                         const ARMCPRegInfo *ri)
2767 {
2768     int timeridx = gt_virt_redir_timeridx(env);
2769     return gt_tval_read(env, ri, timeridx);
2770 }
2771 
2772 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2773                                      uint64_t value)
2774 {
2775     int timeridx = gt_virt_redir_timeridx(env);
2776     gt_tval_write(env, ri, timeridx, value);
2777 }
2778 
2779 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2780                                        const ARMCPRegInfo *ri)
2781 {
2782     int timeridx = gt_virt_redir_timeridx(env);
2783     return env->cp15.c14_timer[timeridx].ctl;
2784 }
2785 
2786 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2787                                     uint64_t value)
2788 {
2789     int timeridx = gt_virt_redir_timeridx(env);
2790     gt_ctl_write(env, ri, timeridx, value);
2791 }
2792 
2793 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2794 {
2795     gt_timer_reset(env, ri, GTIMER_HYP);
2796 }
2797 
2798 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2799                               uint64_t value)
2800 {
2801     gt_cval_write(env, ri, GTIMER_HYP, value);
2802 }
2803 
2804 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2805 {
2806     return gt_tval_read(env, ri, GTIMER_HYP);
2807 }
2808 
2809 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2810                               uint64_t value)
2811 {
2812     gt_tval_write(env, ri, GTIMER_HYP, value);
2813 }
2814 
2815 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2816                               uint64_t value)
2817 {
2818     gt_ctl_write(env, ri, GTIMER_HYP, value);
2819 }
2820 
2821 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2822 {
2823     gt_timer_reset(env, ri, GTIMER_SEC);
2824 }
2825 
2826 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2827                               uint64_t value)
2828 {
2829     gt_cval_write(env, ri, GTIMER_SEC, value);
2830 }
2831 
2832 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2833 {
2834     return gt_tval_read(env, ri, GTIMER_SEC);
2835 }
2836 
2837 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2838                               uint64_t value)
2839 {
2840     gt_tval_write(env, ri, GTIMER_SEC, value);
2841 }
2842 
2843 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2844                               uint64_t value)
2845 {
2846     gt_ctl_write(env, ri, GTIMER_SEC, value);
2847 }
2848 
2849 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2850 {
2851     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2852 }
2853 
2854 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2855                              uint64_t value)
2856 {
2857     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2858 }
2859 
2860 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2861 {
2862     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2863 }
2864 
2865 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2866                              uint64_t value)
2867 {
2868     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2869 }
2870 
2871 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2872                             uint64_t value)
2873 {
2874     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2875 }
2876 
2877 void arm_gt_ptimer_cb(void *opaque)
2878 {
2879     ARMCPU *cpu = opaque;
2880 
2881     gt_recalc_timer(cpu, GTIMER_PHYS);
2882 }
2883 
2884 void arm_gt_vtimer_cb(void *opaque)
2885 {
2886     ARMCPU *cpu = opaque;
2887 
2888     gt_recalc_timer(cpu, GTIMER_VIRT);
2889 }
2890 
2891 void arm_gt_htimer_cb(void *opaque)
2892 {
2893     ARMCPU *cpu = opaque;
2894 
2895     gt_recalc_timer(cpu, GTIMER_HYP);
2896 }
2897 
2898 void arm_gt_stimer_cb(void *opaque)
2899 {
2900     ARMCPU *cpu = opaque;
2901 
2902     gt_recalc_timer(cpu, GTIMER_SEC);
2903 }
2904 
2905 void arm_gt_hvtimer_cb(void *opaque)
2906 {
2907     ARMCPU *cpu = opaque;
2908 
2909     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2910 }
2911 
2912 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2913 {
2914     ARMCPU *cpu = env_archcpu(env);
2915 
2916     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2917 }
2918 
2919 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2920     /* Note that CNTFRQ is purely reads-as-written for the benefit
2921      * of software; writing it doesn't actually change the timer frequency.
2922      * Our reset value matches the fixed frequency we implement the timer at.
2923      */
2924     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2925       .type = ARM_CP_ALIAS,
2926       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2927       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2928     },
2929     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2930       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2931       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2932       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2933       .resetfn = arm_gt_cntfrq_reset,
2934     },
2935     /* overall control: mostly access permissions */
2936     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2937       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2938       .access = PL1_RW,
2939       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2940       .resetvalue = 0,
2941     },
2942     /* per-timer control */
2943     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2944       .secure = ARM_CP_SECSTATE_NS,
2945       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2946       .accessfn = gt_ptimer_access,
2947       .fieldoffset = offsetoflow32(CPUARMState,
2948                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2949       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2950       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2951     },
2952     { .name = "CNTP_CTL_S",
2953       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2954       .secure = ARM_CP_SECSTATE_S,
2955       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2956       .accessfn = gt_ptimer_access,
2957       .fieldoffset = offsetoflow32(CPUARMState,
2958                                    cp15.c14_timer[GTIMER_SEC].ctl),
2959       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2960     },
2961     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2962       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2963       .type = ARM_CP_IO, .access = PL0_RW,
2964       .accessfn = gt_ptimer_access,
2965       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2966       .resetvalue = 0,
2967       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2968       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2969     },
2970     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2971       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2972       .accessfn = gt_vtimer_access,
2973       .fieldoffset = offsetoflow32(CPUARMState,
2974                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2975       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2976       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2977     },
2978     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2979       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2980       .type = ARM_CP_IO, .access = PL0_RW,
2981       .accessfn = gt_vtimer_access,
2982       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2983       .resetvalue = 0,
2984       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2985       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2986     },
2987     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2988     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2989       .secure = ARM_CP_SECSTATE_NS,
2990       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2991       .accessfn = gt_ptimer_access,
2992       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2993     },
2994     { .name = "CNTP_TVAL_S",
2995       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2996       .secure = ARM_CP_SECSTATE_S,
2997       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2998       .accessfn = gt_ptimer_access,
2999       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3000     },
3001     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3002       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3003       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3004       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3005       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3006     },
3007     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3008       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3009       .accessfn = gt_vtimer_access,
3010       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3011     },
3012     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3013       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3014       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3015       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3016       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3017     },
3018     /* The counter itself */
3019     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3020       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3021       .accessfn = gt_pct_access,
3022       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3023     },
3024     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3025       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3026       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3027       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3028     },
3029     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3030       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3031       .accessfn = gt_vct_access,
3032       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3033     },
3034     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3035       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3036       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3037       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3038     },
3039     /* Comparison value, indicating when the timer goes off */
3040     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3041       .secure = ARM_CP_SECSTATE_NS,
3042       .access = PL0_RW,
3043       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3044       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3045       .accessfn = gt_ptimer_access,
3046       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3047       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3048     },
3049     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3050       .secure = ARM_CP_SECSTATE_S,
3051       .access = PL0_RW,
3052       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3053       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3054       .accessfn = gt_ptimer_access,
3055       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3056     },
3057     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3058       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3059       .access = PL0_RW,
3060       .type = ARM_CP_IO,
3061       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3062       .resetvalue = 0, .accessfn = gt_ptimer_access,
3063       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3064       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3065     },
3066     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3067       .access = PL0_RW,
3068       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3069       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3070       .accessfn = gt_vtimer_access,
3071       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3072       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3073     },
3074     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3075       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3076       .access = PL0_RW,
3077       .type = ARM_CP_IO,
3078       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3079       .resetvalue = 0, .accessfn = gt_vtimer_access,
3080       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3081       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3082     },
3083     /* Secure timer -- this is actually restricted to only EL3
3084      * and configurably Secure-EL1 via the accessfn.
3085      */
3086     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3087       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3088       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3089       .accessfn = gt_stimer_access,
3090       .readfn = gt_sec_tval_read,
3091       .writefn = gt_sec_tval_write,
3092       .resetfn = gt_sec_timer_reset,
3093     },
3094     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3095       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3096       .type = ARM_CP_IO, .access = PL1_RW,
3097       .accessfn = gt_stimer_access,
3098       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3099       .resetvalue = 0,
3100       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3101     },
3102     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3103       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3104       .type = ARM_CP_IO, .access = PL1_RW,
3105       .accessfn = gt_stimer_access,
3106       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3107       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3108     },
3109 };
3110 
3111 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3112                                  bool isread)
3113 {
3114     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3115         return CP_ACCESS_TRAP;
3116     }
3117     return CP_ACCESS_OK;
3118 }
3119 
3120 #else
3121 
3122 /* In user-mode most of the generic timer registers are inaccessible
3123  * however modern kernels (4.12+) allow access to cntvct_el0
3124  */
3125 
3126 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3127 {
3128     ARMCPU *cpu = env_archcpu(env);
3129 
3130     /* Currently we have no support for QEMUTimer in linux-user so we
3131      * can't call gt_get_countervalue(env), instead we directly
3132      * call the lower level functions.
3133      */
3134     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3135 }
3136 
3137 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3138     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3139       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3140       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3141       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3142       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3143     },
3144     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3145       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3146       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3147       .readfn = gt_virt_cnt_read,
3148     },
3149 };
3150 
3151 #endif
3152 
3153 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3154 {
3155     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3156         raw_write(env, ri, value);
3157     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3158         raw_write(env, ri, value & 0xfffff6ff);
3159     } else {
3160         raw_write(env, ri, value & 0xfffff1ff);
3161     }
3162 }
3163 
3164 #ifndef CONFIG_USER_ONLY
3165 /* get_phys_addr() isn't present for user-mode-only targets */
3166 
3167 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3168                                  bool isread)
3169 {
3170     if (ri->opc2 & 4) {
3171         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3172          * Secure EL1 (which can only happen if EL3 is AArch64).
3173          * They are simply UNDEF if executed from NS EL1.
3174          * They function normally from EL2 or EL3.
3175          */
3176         if (arm_current_el(env) == 1) {
3177             if (arm_is_secure_below_el3(env)) {
3178                 if (env->cp15.scr_el3 & SCR_EEL2) {
3179                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3180                 }
3181                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3182             }
3183             return CP_ACCESS_TRAP_UNCATEGORIZED;
3184         }
3185     }
3186     return CP_ACCESS_OK;
3187 }
3188 
3189 #ifdef CONFIG_TCG
3190 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3191                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3192 {
3193     hwaddr phys_addr;
3194     target_ulong page_size;
3195     int prot;
3196     bool ret;
3197     uint64_t par64;
3198     bool format64 = false;
3199     MemTxAttrs attrs = {};
3200     ARMMMUFaultInfo fi = {};
3201     ARMCacheAttrs cacheattrs = {};
3202 
3203     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3204                         &prot, &page_size, &fi, &cacheattrs);
3205 
3206     /*
3207      * ATS operations only do S1 or S1+S2 translations, so we never
3208      * have to deal with the ARMCacheAttrs format for S2 only.
3209      */
3210     assert(!cacheattrs.is_s2_format);
3211 
3212     if (ret) {
3213         /*
3214          * Some kinds of translation fault must cause exceptions rather
3215          * than being reported in the PAR.
3216          */
3217         int current_el = arm_current_el(env);
3218         int target_el;
3219         uint32_t syn, fsr, fsc;
3220         bool take_exc = false;
3221 
3222         if (fi.s1ptw && current_el == 1
3223             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3224             /*
3225              * Synchronous stage 2 fault on an access made as part of the
3226              * translation table walk for AT S1E0* or AT S1E1* insn
3227              * executed from NS EL1. If this is a synchronous external abort
3228              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3229              * to EL3. Otherwise the fault is taken as an exception to EL2,
3230              * and HPFAR_EL2 holds the faulting IPA.
3231              */
3232             if (fi.type == ARMFault_SyncExternalOnWalk &&
3233                 (env->cp15.scr_el3 & SCR_EA)) {
3234                 target_el = 3;
3235             } else {
3236                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3237                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3238                     env->cp15.hpfar_el2 |= HPFAR_NS;
3239                 }
3240                 target_el = 2;
3241             }
3242             take_exc = true;
3243         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3244             /*
3245              * Synchronous external aborts during a translation table walk
3246              * are taken as Data Abort exceptions.
3247              */
3248             if (fi.stage2) {
3249                 if (current_el == 3) {
3250                     target_el = 3;
3251                 } else {
3252                     target_el = 2;
3253                 }
3254             } else {
3255                 target_el = exception_target_el(env);
3256             }
3257             take_exc = true;
3258         }
3259 
3260         if (take_exc) {
3261             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3262             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3263                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3264                 fsr = arm_fi_to_lfsc(&fi);
3265                 fsc = extract32(fsr, 0, 6);
3266             } else {
3267                 fsr = arm_fi_to_sfsc(&fi);
3268                 fsc = 0x3f;
3269             }
3270             /*
3271              * Report exception with ESR indicating a fault due to a
3272              * translation table walk for a cache maintenance instruction.
3273              */
3274             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3275                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3276             env->exception.vaddress = value;
3277             env->exception.fsr = fsr;
3278             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3279         }
3280     }
3281 
3282     if (is_a64(env)) {
3283         format64 = true;
3284     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3285         /*
3286          * ATS1Cxx:
3287          * * TTBCR.EAE determines whether the result is returned using the
3288          *   32-bit or the 64-bit PAR format
3289          * * Instructions executed in Hyp mode always use the 64bit format
3290          *
3291          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3292          * * The Non-secure TTBCR.EAE bit is set to 1
3293          * * The implementation includes EL2, and the value of HCR.VM is 1
3294          *
3295          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3296          *
3297          * ATS1Hx always uses the 64bit format.
3298          */
3299         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3300 
3301         if (arm_feature(env, ARM_FEATURE_EL2)) {
3302             if (mmu_idx == ARMMMUIdx_E10_0 ||
3303                 mmu_idx == ARMMMUIdx_E10_1 ||
3304                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3305                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3306             } else {
3307                 format64 |= arm_current_el(env) == 2;
3308             }
3309         }
3310     }
3311 
3312     if (format64) {
3313         /* Create a 64-bit PAR */
3314         par64 = (1 << 11); /* LPAE bit always set */
3315         if (!ret) {
3316             par64 |= phys_addr & ~0xfffULL;
3317             if (!attrs.secure) {
3318                 par64 |= (1 << 9); /* NS */
3319             }
3320             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3321             par64 |= cacheattrs.shareability << 7; /* SH */
3322         } else {
3323             uint32_t fsr = arm_fi_to_lfsc(&fi);
3324 
3325             par64 |= 1; /* F */
3326             par64 |= (fsr & 0x3f) << 1; /* FS */
3327             if (fi.stage2) {
3328                 par64 |= (1 << 9); /* S */
3329             }
3330             if (fi.s1ptw) {
3331                 par64 |= (1 << 8); /* PTW */
3332             }
3333         }
3334     } else {
3335         /* fsr is a DFSR/IFSR value for the short descriptor
3336          * translation table format (with WnR always clear).
3337          * Convert it to a 32-bit PAR.
3338          */
3339         if (!ret) {
3340             /* We do not set any attribute bits in the PAR */
3341             if (page_size == (1 << 24)
3342                 && arm_feature(env, ARM_FEATURE_V7)) {
3343                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3344             } else {
3345                 par64 = phys_addr & 0xfffff000;
3346             }
3347             if (!attrs.secure) {
3348                 par64 |= (1 << 9); /* NS */
3349             }
3350         } else {
3351             uint32_t fsr = arm_fi_to_sfsc(&fi);
3352 
3353             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3354                     ((fsr & 0xf) << 1) | 1;
3355         }
3356     }
3357     return par64;
3358 }
3359 #endif /* CONFIG_TCG */
3360 
3361 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3362 {
3363 #ifdef CONFIG_TCG
3364     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3365     uint64_t par64;
3366     ARMMMUIdx mmu_idx;
3367     int el = arm_current_el(env);
3368     bool secure = arm_is_secure_below_el3(env);
3369 
3370     switch (ri->opc2 & 6) {
3371     case 0:
3372         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3373         switch (el) {
3374         case 3:
3375             mmu_idx = ARMMMUIdx_SE3;
3376             break;
3377         case 2:
3378             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3379             /* fall through */
3380         case 1:
3381             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3382                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3383                            : ARMMMUIdx_Stage1_E1_PAN);
3384             } else {
3385                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3386             }
3387             break;
3388         default:
3389             g_assert_not_reached();
3390         }
3391         break;
3392     case 2:
3393         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3394         switch (el) {
3395         case 3:
3396             mmu_idx = ARMMMUIdx_SE10_0;
3397             break;
3398         case 2:
3399             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3400             mmu_idx = ARMMMUIdx_Stage1_E0;
3401             break;
3402         case 1:
3403             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3404             break;
3405         default:
3406             g_assert_not_reached();
3407         }
3408         break;
3409     case 4:
3410         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3411         mmu_idx = ARMMMUIdx_E10_1;
3412         break;
3413     case 6:
3414         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3415         mmu_idx = ARMMMUIdx_E10_0;
3416         break;
3417     default:
3418         g_assert_not_reached();
3419     }
3420 
3421     par64 = do_ats_write(env, value, access_type, mmu_idx);
3422 
3423     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3424 #else
3425     /* Handled by hardware accelerator. */
3426     g_assert_not_reached();
3427 #endif /* CONFIG_TCG */
3428 }
3429 
3430 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3431                         uint64_t value)
3432 {
3433 #ifdef CONFIG_TCG
3434     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3435     uint64_t par64;
3436 
3437     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3438 
3439     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3440 #else
3441     /* Handled by hardware accelerator. */
3442     g_assert_not_reached();
3443 #endif /* CONFIG_TCG */
3444 }
3445 
3446 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3447                                      bool isread)
3448 {
3449     if (arm_current_el(env) == 3 &&
3450         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3451         return CP_ACCESS_TRAP;
3452     }
3453     return CP_ACCESS_OK;
3454 }
3455 
3456 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3457                         uint64_t value)
3458 {
3459 #ifdef CONFIG_TCG
3460     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3461     ARMMMUIdx mmu_idx;
3462     int secure = arm_is_secure_below_el3(env);
3463 
3464     switch (ri->opc2 & 6) {
3465     case 0:
3466         switch (ri->opc1) {
3467         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3468             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3469                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3470                            : ARMMMUIdx_Stage1_E1_PAN);
3471             } else {
3472                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3473             }
3474             break;
3475         case 4: /* AT S1E2R, AT S1E2W */
3476             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3477             break;
3478         case 6: /* AT S1E3R, AT S1E3W */
3479             mmu_idx = ARMMMUIdx_SE3;
3480             break;
3481         default:
3482             g_assert_not_reached();
3483         }
3484         break;
3485     case 2: /* AT S1E0R, AT S1E0W */
3486         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3487         break;
3488     case 4: /* AT S12E1R, AT S12E1W */
3489         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3490         break;
3491     case 6: /* AT S12E0R, AT S12E0W */
3492         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3493         break;
3494     default:
3495         g_assert_not_reached();
3496     }
3497 
3498     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3499 #else
3500     /* Handled by hardware accelerator. */
3501     g_assert_not_reached();
3502 #endif /* CONFIG_TCG */
3503 }
3504 #endif
3505 
3506 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3507     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3508       .access = PL1_RW, .resetvalue = 0,
3509       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3510                              offsetoflow32(CPUARMState, cp15.par_ns) },
3511       .writefn = par_write },
3512 #ifndef CONFIG_USER_ONLY
3513     /* This underdecoding is safe because the reginfo is NO_RAW. */
3514     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3515       .access = PL1_W, .accessfn = ats_access,
3516       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3517 #endif
3518 };
3519 
3520 /* Return basic MPU access permission bits.  */
3521 static uint32_t simple_mpu_ap_bits(uint32_t val)
3522 {
3523     uint32_t ret;
3524     uint32_t mask;
3525     int i;
3526     ret = 0;
3527     mask = 3;
3528     for (i = 0; i < 16; i += 2) {
3529         ret |= (val >> i) & mask;
3530         mask <<= 2;
3531     }
3532     return ret;
3533 }
3534 
3535 /* Pad basic MPU access permission bits to extended format.  */
3536 static uint32_t extended_mpu_ap_bits(uint32_t val)
3537 {
3538     uint32_t ret;
3539     uint32_t mask;
3540     int i;
3541     ret = 0;
3542     mask = 3;
3543     for (i = 0; i < 16; i += 2) {
3544         ret |= (val & mask) << i;
3545         mask <<= 2;
3546     }
3547     return ret;
3548 }
3549 
3550 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3551                                  uint64_t value)
3552 {
3553     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3554 }
3555 
3556 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3557 {
3558     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3559 }
3560 
3561 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3562                                  uint64_t value)
3563 {
3564     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3565 }
3566 
3567 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3568 {
3569     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3570 }
3571 
3572 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3573 {
3574     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3575 
3576     if (!u32p) {
3577         return 0;
3578     }
3579 
3580     u32p += env->pmsav7.rnr[M_REG_NS];
3581     return *u32p;
3582 }
3583 
3584 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3585                          uint64_t value)
3586 {
3587     ARMCPU *cpu = env_archcpu(env);
3588     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3589 
3590     if (!u32p) {
3591         return;
3592     }
3593 
3594     u32p += env->pmsav7.rnr[M_REG_NS];
3595     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3596     *u32p = value;
3597 }
3598 
3599 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3600                               uint64_t value)
3601 {
3602     ARMCPU *cpu = env_archcpu(env);
3603     uint32_t nrgs = cpu->pmsav7_dregion;
3604 
3605     if (value >= nrgs) {
3606         qemu_log_mask(LOG_GUEST_ERROR,
3607                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3608                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3609         return;
3610     }
3611 
3612     raw_write(env, ri, value);
3613 }
3614 
3615 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3616     /* Reset for all these registers is handled in arm_cpu_reset(),
3617      * because the PMSAv7 is also used by M-profile CPUs, which do
3618      * not register cpregs but still need the state to be reset.
3619      */
3620     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3621       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3622       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3623       .readfn = pmsav7_read, .writefn = pmsav7_write,
3624       .resetfn = arm_cp_reset_ignore },
3625     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3626       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3627       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3628       .readfn = pmsav7_read, .writefn = pmsav7_write,
3629       .resetfn = arm_cp_reset_ignore },
3630     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3631       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3632       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3633       .readfn = pmsav7_read, .writefn = pmsav7_write,
3634       .resetfn = arm_cp_reset_ignore },
3635     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3636       .access = PL1_RW,
3637       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3638       .writefn = pmsav7_rgnr_write,
3639       .resetfn = arm_cp_reset_ignore },
3640 };
3641 
3642 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3643     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3644       .access = PL1_RW, .type = ARM_CP_ALIAS,
3645       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3646       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3647     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3648       .access = PL1_RW, .type = ARM_CP_ALIAS,
3649       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3650       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3651     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3652       .access = PL1_RW,
3653       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3654       .resetvalue = 0, },
3655     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3656       .access = PL1_RW,
3657       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3658       .resetvalue = 0, },
3659     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3660       .access = PL1_RW,
3661       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3662     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3663       .access = PL1_RW,
3664       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3665     /* Protection region base and size registers */
3666     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3667       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3668       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3669     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3670       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3671       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3672     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3673       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3674       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3675     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3676       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3677       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3678     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3679       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3680       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3681     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3682       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3683       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3684     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3685       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3686       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3687     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3688       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3689       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3690 };
3691 
3692 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3693                              uint64_t value)
3694 {
3695     ARMCPU *cpu = env_archcpu(env);
3696 
3697     if (!arm_feature(env, ARM_FEATURE_V8)) {
3698         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3699             /*
3700              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3701              * using Long-descriptor translation table format
3702              */
3703             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3704         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3705             /*
3706              * In an implementation that includes the Security Extensions
3707              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3708              * Short-descriptor translation table format.
3709              */
3710             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3711         } else {
3712             value &= TTBCR_N;
3713         }
3714     }
3715 
3716     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3717         /* With LPAE the TTBCR could result in a change of ASID
3718          * via the TTBCR.A1 bit, so do a TLB flush.
3719          */
3720         tlb_flush(CPU(cpu));
3721     }
3722     raw_write(env, ri, value);
3723 }
3724 
3725 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3726                                uint64_t value)
3727 {
3728     ARMCPU *cpu = env_archcpu(env);
3729 
3730     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3731     tlb_flush(CPU(cpu));
3732     raw_write(env, ri, value);
3733 }
3734 
3735 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3736                             uint64_t value)
3737 {
3738     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3739     if (cpreg_field_is_64bit(ri) &&
3740         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3741         ARMCPU *cpu = env_archcpu(env);
3742         tlb_flush(CPU(cpu));
3743     }
3744     raw_write(env, ri, value);
3745 }
3746 
3747 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3748                                     uint64_t value)
3749 {
3750     /*
3751      * If we are running with E2&0 regime, then an ASID is active.
3752      * Flush if that might be changing.  Note we're not checking
3753      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3754      * holds the active ASID, only checking the field that might.
3755      */
3756     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3757         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3758         uint16_t mask = ARMMMUIdxBit_E20_2 |
3759                         ARMMMUIdxBit_E20_2_PAN |
3760                         ARMMMUIdxBit_E20_0;
3761 
3762         if (arm_is_secure_below_el3(env)) {
3763             mask >>= ARM_MMU_IDX_A_NS;
3764         }
3765 
3766         tlb_flush_by_mmuidx(env_cpu(env), mask);
3767     }
3768     raw_write(env, ri, value);
3769 }
3770 
3771 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3772                         uint64_t value)
3773 {
3774     ARMCPU *cpu = env_archcpu(env);
3775     CPUState *cs = CPU(cpu);
3776 
3777     /*
3778      * A change in VMID to the stage2 page table (Stage2) invalidates
3779      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3780      */
3781     if (raw_read(env, ri) != value) {
3782         uint16_t mask = ARMMMUIdxBit_E10_1 |
3783                         ARMMMUIdxBit_E10_1_PAN |
3784                         ARMMMUIdxBit_E10_0;
3785 
3786         if (arm_is_secure_below_el3(env)) {
3787             mask >>= ARM_MMU_IDX_A_NS;
3788         }
3789 
3790         tlb_flush_by_mmuidx(cs, mask);
3791         raw_write(env, ri, value);
3792     }
3793 }
3794 
3795 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3796     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3797       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3798       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3799                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3800     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3801       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3802       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3803                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3804     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3805       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3806       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3807                              offsetof(CPUARMState, cp15.dfar_ns) } },
3808     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3809       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3810       .access = PL1_RW, .accessfn = access_tvm_trvm,
3811       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3812       .resetvalue = 0, },
3813 };
3814 
3815 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3816     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3817       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3818       .access = PL1_RW, .accessfn = access_tvm_trvm,
3819       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3820     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3821       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3822       .access = PL1_RW, .accessfn = access_tvm_trvm,
3823       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3824       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3825                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3826     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3827       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3828       .access = PL1_RW, .accessfn = access_tvm_trvm,
3829       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3830       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3831                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3832     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3833       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3834       .access = PL1_RW, .accessfn = access_tvm_trvm,
3835       .writefn = vmsa_tcr_el12_write,
3836       .raw_writefn = raw_write,
3837       .resetvalue = 0,
3838       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3839     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3840       .access = PL1_RW, .accessfn = access_tvm_trvm,
3841       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3842       .raw_writefn = raw_write,
3843       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3844                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3845 };
3846 
3847 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3848  * qemu tlbs nor adjusting cached masks.
3849  */
3850 static const ARMCPRegInfo ttbcr2_reginfo = {
3851     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3852     .access = PL1_RW, .accessfn = access_tvm_trvm,
3853     .type = ARM_CP_ALIAS,
3854     .bank_fieldoffsets = {
3855         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3856         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
3857     },
3858 };
3859 
3860 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3861                                 uint64_t value)
3862 {
3863     env->cp15.c15_ticonfig = value & 0xe7;
3864     /* The OS_TYPE bit in this register changes the reported CPUID! */
3865     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3866         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3867 }
3868 
3869 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3870                                 uint64_t value)
3871 {
3872     env->cp15.c15_threadid = value & 0xffff;
3873 }
3874 
3875 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3876                            uint64_t value)
3877 {
3878     /* Wait-for-interrupt (deprecated) */
3879     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3880 }
3881 
3882 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3883                                   uint64_t value)
3884 {
3885     /* On OMAP there are registers indicating the max/min index of dcache lines
3886      * containing a dirty line; cache flush operations have to reset these.
3887      */
3888     env->cp15.c15_i_max = 0x000;
3889     env->cp15.c15_i_min = 0xff0;
3890 }
3891 
3892 static const ARMCPRegInfo omap_cp_reginfo[] = {
3893     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3894       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3895       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3896       .resetvalue = 0, },
3897     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3898       .access = PL1_RW, .type = ARM_CP_NOP },
3899     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3900       .access = PL1_RW,
3901       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3902       .writefn = omap_ticonfig_write },
3903     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3904       .access = PL1_RW,
3905       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3906     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3907       .access = PL1_RW, .resetvalue = 0xff0,
3908       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3909     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3910       .access = PL1_RW,
3911       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3912       .writefn = omap_threadid_write },
3913     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3914       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3915       .type = ARM_CP_NO_RAW,
3916       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3917     /* TODO: Peripheral port remap register:
3918      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3919      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3920      * when MMU is off.
3921      */
3922     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3923       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3924       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3925       .writefn = omap_cachemaint_write },
3926     { .name = "C9", .cp = 15, .crn = 9,
3927       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3928       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3929 };
3930 
3931 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3932                               uint64_t value)
3933 {
3934     env->cp15.c15_cpar = value & 0x3fff;
3935 }
3936 
3937 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3938     { .name = "XSCALE_CPAR",
3939       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3940       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3941       .writefn = xscale_cpar_write, },
3942     { .name = "XSCALE_AUXCR",
3943       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3944       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3945       .resetvalue = 0, },
3946     /* XScale specific cache-lockdown: since we have no cache we NOP these
3947      * and hope the guest does not really rely on cache behaviour.
3948      */
3949     { .name = "XSCALE_LOCK_ICACHE_LINE",
3950       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3951       .access = PL1_W, .type = ARM_CP_NOP },
3952     { .name = "XSCALE_UNLOCK_ICACHE",
3953       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3954       .access = PL1_W, .type = ARM_CP_NOP },
3955     { .name = "XSCALE_DCACHE_LOCK",
3956       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3957       .access = PL1_RW, .type = ARM_CP_NOP },
3958     { .name = "XSCALE_UNLOCK_DCACHE",
3959       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3960       .access = PL1_W, .type = ARM_CP_NOP },
3961 };
3962 
3963 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3964     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3965      * implementation of this implementation-defined space.
3966      * Ideally this should eventually disappear in favour of actually
3967      * implementing the correct behaviour for all cores.
3968      */
3969     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3970       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3971       .access = PL1_RW,
3972       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3973       .resetvalue = 0 },
3974 };
3975 
3976 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3977     /* Cache status: RAZ because we have no cache so it's always clean */
3978     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3979       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3980       .resetvalue = 0 },
3981 };
3982 
3983 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3984     /* We never have a block transfer operation in progress */
3985     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3986       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3987       .resetvalue = 0 },
3988     /* The cache ops themselves: these all NOP for QEMU */
3989     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3990       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3991     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3992       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3993     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3994       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3995     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3996       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3997     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3998       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3999     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4000       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4001 };
4002 
4003 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4004     /* The cache test-and-clean instructions always return (1 << 30)
4005      * to indicate that there are no dirty cache lines.
4006      */
4007     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4008       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4009       .resetvalue = (1 << 30) },
4010     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4011       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4012       .resetvalue = (1 << 30) },
4013 };
4014 
4015 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4016     /* Ignore ReadBuffer accesses */
4017     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4018       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4019       .access = PL1_RW, .resetvalue = 0,
4020       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4021 };
4022 
4023 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4024 {
4025     unsigned int cur_el = arm_current_el(env);
4026 
4027     if (arm_is_el2_enabled(env) && cur_el == 1) {
4028         return env->cp15.vpidr_el2;
4029     }
4030     return raw_read(env, ri);
4031 }
4032 
4033 static uint64_t mpidr_read_val(CPUARMState *env)
4034 {
4035     ARMCPU *cpu = env_archcpu(env);
4036     uint64_t mpidr = cpu->mp_affinity;
4037 
4038     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4039         mpidr |= (1U << 31);
4040         /* Cores which are uniprocessor (non-coherent)
4041          * but still implement the MP extensions set
4042          * bit 30. (For instance, Cortex-R5).
4043          */
4044         if (cpu->mp_is_up) {
4045             mpidr |= (1u << 30);
4046         }
4047     }
4048     return mpidr;
4049 }
4050 
4051 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4052 {
4053     unsigned int cur_el = arm_current_el(env);
4054 
4055     if (arm_is_el2_enabled(env) && cur_el == 1) {
4056         return env->cp15.vmpidr_el2;
4057     }
4058     return mpidr_read_val(env);
4059 }
4060 
4061 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4062     /* NOP AMAIR0/1 */
4063     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4064       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4065       .access = PL1_RW, .accessfn = access_tvm_trvm,
4066       .type = ARM_CP_CONST, .resetvalue = 0 },
4067     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4068     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4069       .access = PL1_RW, .accessfn = access_tvm_trvm,
4070       .type = ARM_CP_CONST, .resetvalue = 0 },
4071     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4072       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4073       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4074                              offsetof(CPUARMState, cp15.par_ns)} },
4075     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4076       .access = PL1_RW, .accessfn = access_tvm_trvm,
4077       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4078       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4079                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4080       .writefn = vmsa_ttbr_write, },
4081     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4082       .access = PL1_RW, .accessfn = access_tvm_trvm,
4083       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4084       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4085                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4086       .writefn = vmsa_ttbr_write, },
4087 };
4088 
4089 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4090 {
4091     return vfp_get_fpcr(env);
4092 }
4093 
4094 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4095                             uint64_t value)
4096 {
4097     vfp_set_fpcr(env, value);
4098 }
4099 
4100 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4101 {
4102     return vfp_get_fpsr(env);
4103 }
4104 
4105 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4106                             uint64_t value)
4107 {
4108     vfp_set_fpsr(env, value);
4109 }
4110 
4111 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4112                                        bool isread)
4113 {
4114     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4115         return CP_ACCESS_TRAP;
4116     }
4117     return CP_ACCESS_OK;
4118 }
4119 
4120 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4121                             uint64_t value)
4122 {
4123     env->daif = value & PSTATE_DAIF;
4124 }
4125 
4126 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4127 {
4128     return env->pstate & PSTATE_PAN;
4129 }
4130 
4131 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4132                            uint64_t value)
4133 {
4134     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4135 }
4136 
4137 static const ARMCPRegInfo pan_reginfo = {
4138     .name = "PAN", .state = ARM_CP_STATE_AA64,
4139     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4140     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4141     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4142 };
4143 
4144 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4145 {
4146     return env->pstate & PSTATE_UAO;
4147 }
4148 
4149 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4150                            uint64_t value)
4151 {
4152     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4153 }
4154 
4155 static const ARMCPRegInfo uao_reginfo = {
4156     .name = "UAO", .state = ARM_CP_STATE_AA64,
4157     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4158     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4159     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4160 };
4161 
4162 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4163 {
4164     return env->pstate & PSTATE_DIT;
4165 }
4166 
4167 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4168                            uint64_t value)
4169 {
4170     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4171 }
4172 
4173 static const ARMCPRegInfo dit_reginfo = {
4174     .name = "DIT", .state = ARM_CP_STATE_AA64,
4175     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4176     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4177     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4178 };
4179 
4180 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4181 {
4182     return env->pstate & PSTATE_SSBS;
4183 }
4184 
4185 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4186                            uint64_t value)
4187 {
4188     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4189 }
4190 
4191 static const ARMCPRegInfo ssbs_reginfo = {
4192     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4193     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4194     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4195     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4196 };
4197 
4198 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4199                                               const ARMCPRegInfo *ri,
4200                                               bool isread)
4201 {
4202     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4203     switch (arm_current_el(env)) {
4204     case 0:
4205         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4206         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4207             return CP_ACCESS_TRAP;
4208         }
4209         /* fall through */
4210     case 1:
4211         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4212         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4213             return CP_ACCESS_TRAP_EL2;
4214         }
4215         break;
4216     }
4217     return CP_ACCESS_OK;
4218 }
4219 
4220 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4221                                               const ARMCPRegInfo *ri,
4222                                               bool isread)
4223 {
4224     /* Cache invalidate/clean to Point of Unification... */
4225     switch (arm_current_el(env)) {
4226     case 0:
4227         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4228         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4229             return CP_ACCESS_TRAP;
4230         }
4231         /* fall through */
4232     case 1:
4233         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4234         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4235             return CP_ACCESS_TRAP_EL2;
4236         }
4237         break;
4238     }
4239     return CP_ACCESS_OK;
4240 }
4241 
4242 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4243  * Page D4-1736 (DDI0487A.b)
4244  */
4245 
4246 static int vae1_tlbmask(CPUARMState *env)
4247 {
4248     uint64_t hcr = arm_hcr_el2_eff(env);
4249     uint16_t mask;
4250 
4251     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4252         mask = ARMMMUIdxBit_E20_2 |
4253                ARMMMUIdxBit_E20_2_PAN |
4254                ARMMMUIdxBit_E20_0;
4255     } else {
4256         mask = ARMMMUIdxBit_E10_1 |
4257                ARMMMUIdxBit_E10_1_PAN |
4258                ARMMMUIdxBit_E10_0;
4259     }
4260 
4261     if (arm_is_secure_below_el3(env)) {
4262         mask >>= ARM_MMU_IDX_A_NS;
4263     }
4264 
4265     return mask;
4266 }
4267 
4268 /* Return 56 if TBI is enabled, 64 otherwise. */
4269 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4270                               uint64_t addr)
4271 {
4272     uint64_t tcr = regime_tcr(env, mmu_idx);
4273     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4274     int select = extract64(addr, 55, 1);
4275 
4276     return (tbi >> select) & 1 ? 56 : 64;
4277 }
4278 
4279 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4280 {
4281     uint64_t hcr = arm_hcr_el2_eff(env);
4282     ARMMMUIdx mmu_idx;
4283 
4284     /* Only the regime of the mmu_idx below is significant. */
4285     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4286         mmu_idx = ARMMMUIdx_E20_0;
4287     } else {
4288         mmu_idx = ARMMMUIdx_E10_0;
4289     }
4290 
4291     if (arm_is_secure_below_el3(env)) {
4292         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4293     }
4294 
4295     return tlbbits_for_regime(env, mmu_idx, addr);
4296 }
4297 
4298 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4299                                       uint64_t value)
4300 {
4301     CPUState *cs = env_cpu(env);
4302     int mask = vae1_tlbmask(env);
4303 
4304     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4305 }
4306 
4307 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4308                                     uint64_t value)
4309 {
4310     CPUState *cs = env_cpu(env);
4311     int mask = vae1_tlbmask(env);
4312 
4313     if (tlb_force_broadcast(env)) {
4314         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4315     } else {
4316         tlb_flush_by_mmuidx(cs, mask);
4317     }
4318 }
4319 
4320 static int alle1_tlbmask(CPUARMState *env)
4321 {
4322     /*
4323      * Note that the 'ALL' scope must invalidate both stage 1 and
4324      * stage 2 translations, whereas most other scopes only invalidate
4325      * stage 1 translations.
4326      */
4327     if (arm_is_secure_below_el3(env)) {
4328         return ARMMMUIdxBit_SE10_1 |
4329                ARMMMUIdxBit_SE10_1_PAN |
4330                ARMMMUIdxBit_SE10_0;
4331     } else {
4332         return ARMMMUIdxBit_E10_1 |
4333                ARMMMUIdxBit_E10_1_PAN |
4334                ARMMMUIdxBit_E10_0;
4335     }
4336 }
4337 
4338 static int e2_tlbmask(CPUARMState *env)
4339 {
4340     if (arm_is_secure_below_el3(env)) {
4341         return ARMMMUIdxBit_SE20_0 |
4342                ARMMMUIdxBit_SE20_2 |
4343                ARMMMUIdxBit_SE20_2_PAN |
4344                ARMMMUIdxBit_SE2;
4345     } else {
4346         return ARMMMUIdxBit_E20_0 |
4347                ARMMMUIdxBit_E20_2 |
4348                ARMMMUIdxBit_E20_2_PAN |
4349                ARMMMUIdxBit_E2;
4350     }
4351 }
4352 
4353 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4354                                   uint64_t value)
4355 {
4356     CPUState *cs = env_cpu(env);
4357     int mask = alle1_tlbmask(env);
4358 
4359     tlb_flush_by_mmuidx(cs, mask);
4360 }
4361 
4362 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4363                                   uint64_t value)
4364 {
4365     CPUState *cs = env_cpu(env);
4366     int mask = e2_tlbmask(env);
4367 
4368     tlb_flush_by_mmuidx(cs, mask);
4369 }
4370 
4371 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4372                                   uint64_t value)
4373 {
4374     ARMCPU *cpu = env_archcpu(env);
4375     CPUState *cs = CPU(cpu);
4376 
4377     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4378 }
4379 
4380 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4381                                     uint64_t value)
4382 {
4383     CPUState *cs = env_cpu(env);
4384     int mask = alle1_tlbmask(env);
4385 
4386     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4387 }
4388 
4389 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4390                                     uint64_t value)
4391 {
4392     CPUState *cs = env_cpu(env);
4393     int mask = e2_tlbmask(env);
4394 
4395     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4396 }
4397 
4398 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4399                                     uint64_t value)
4400 {
4401     CPUState *cs = env_cpu(env);
4402 
4403     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4404 }
4405 
4406 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4407                                  uint64_t value)
4408 {
4409     /* Invalidate by VA, EL2
4410      * Currently handles both VAE2 and VALE2, since we don't support
4411      * flush-last-level-only.
4412      */
4413     CPUState *cs = env_cpu(env);
4414     int mask = e2_tlbmask(env);
4415     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4416 
4417     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4418 }
4419 
4420 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4421                                  uint64_t value)
4422 {
4423     /* Invalidate by VA, EL3
4424      * Currently handles both VAE3 and VALE3, since we don't support
4425      * flush-last-level-only.
4426      */
4427     ARMCPU *cpu = env_archcpu(env);
4428     CPUState *cs = CPU(cpu);
4429     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4430 
4431     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4432 }
4433 
4434 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4435                                    uint64_t value)
4436 {
4437     CPUState *cs = env_cpu(env);
4438     int mask = vae1_tlbmask(env);
4439     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4440     int bits = vae1_tlbbits(env, pageaddr);
4441 
4442     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4443 }
4444 
4445 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4446                                  uint64_t value)
4447 {
4448     /* Invalidate by VA, EL1&0 (AArch64 version).
4449      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4450      * since we don't support flush-for-specific-ASID-only or
4451      * flush-last-level-only.
4452      */
4453     CPUState *cs = env_cpu(env);
4454     int mask = vae1_tlbmask(env);
4455     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4456     int bits = vae1_tlbbits(env, pageaddr);
4457 
4458     if (tlb_force_broadcast(env)) {
4459         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4460     } else {
4461         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4462     }
4463 }
4464 
4465 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4466                                    uint64_t value)
4467 {
4468     CPUState *cs = env_cpu(env);
4469     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4470     bool secure = arm_is_secure_below_el3(env);
4471     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4472     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4473                                   pageaddr);
4474 
4475     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4476 }
4477 
4478 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4479                                    uint64_t value)
4480 {
4481     CPUState *cs = env_cpu(env);
4482     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4483     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4484 
4485     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4486                                                   ARMMMUIdxBit_SE3, bits);
4487 }
4488 
4489 #ifdef TARGET_AARCH64
4490 typedef struct {
4491     uint64_t base;
4492     uint64_t length;
4493 } TLBIRange;
4494 
4495 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4496                                      uint64_t value)
4497 {
4498     unsigned int page_size_granule, page_shift, num, scale, exponent;
4499     /* Extract one bit to represent the va selector in use. */
4500     uint64_t select = sextract64(value, 36, 1);
4501     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4502     TLBIRange ret = { };
4503 
4504     page_size_granule = extract64(value, 46, 2);
4505 
4506     /* The granule encoded in value must match the granule in use. */
4507     if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) {
4508         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4509                       page_size_granule);
4510         return ret;
4511     }
4512 
4513     page_shift = (page_size_granule - 1) * 2 + 12;
4514     num = extract64(value, 39, 5);
4515     scale = extract64(value, 44, 2);
4516     exponent = (5 * scale) + 1;
4517 
4518     ret.length = (num + 1) << (exponent + page_shift);
4519 
4520     if (param.select) {
4521         ret.base = sextract64(value, 0, 37);
4522     } else {
4523         ret.base = extract64(value, 0, 37);
4524     }
4525     if (param.ds) {
4526         /*
4527          * With DS=1, BaseADDR is always shifted 16 so that it is able
4528          * to address all 52 va bits.  The input address is perforce
4529          * aligned on a 64k boundary regardless of translation granule.
4530          */
4531         page_shift = 16;
4532     }
4533     ret.base <<= page_shift;
4534 
4535     return ret;
4536 }
4537 
4538 static void do_rvae_write(CPUARMState *env, uint64_t value,
4539                           int idxmap, bool synced)
4540 {
4541     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4542     TLBIRange range;
4543     int bits;
4544 
4545     range = tlbi_aa64_get_range(env, one_idx, value);
4546     bits = tlbbits_for_regime(env, one_idx, range.base);
4547 
4548     if (synced) {
4549         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4550                                                   range.base,
4551                                                   range.length,
4552                                                   idxmap,
4553                                                   bits);
4554     } else {
4555         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4556                                   range.length, idxmap, bits);
4557     }
4558 }
4559 
4560 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4561                                   const ARMCPRegInfo *ri,
4562                                   uint64_t value)
4563 {
4564     /*
4565      * Invalidate by VA range, EL1&0.
4566      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4567      * since we don't support flush-for-specific-ASID-only or
4568      * flush-last-level-only.
4569      */
4570 
4571     do_rvae_write(env, value, vae1_tlbmask(env),
4572                   tlb_force_broadcast(env));
4573 }
4574 
4575 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4576                                     const ARMCPRegInfo *ri,
4577                                     uint64_t value)
4578 {
4579     /*
4580      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4581      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4582      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4583      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4584      * shareable specific flushes.
4585      */
4586 
4587     do_rvae_write(env, value, vae1_tlbmask(env), true);
4588 }
4589 
4590 static int vae2_tlbmask(CPUARMState *env)
4591 {
4592     return (arm_is_secure_below_el3(env)
4593             ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4594 }
4595 
4596 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4597                                   const ARMCPRegInfo *ri,
4598                                   uint64_t value)
4599 {
4600     /*
4601      * Invalidate by VA range, EL2.
4602      * Currently handles all of RVAE2 and RVALE2,
4603      * since we don't support flush-for-specific-ASID-only or
4604      * flush-last-level-only.
4605      */
4606 
4607     do_rvae_write(env, value, vae2_tlbmask(env),
4608                   tlb_force_broadcast(env));
4609 
4610 
4611 }
4612 
4613 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4614                                     const ARMCPRegInfo *ri,
4615                                     uint64_t value)
4616 {
4617     /*
4618      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4619      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4620      * since we don't support flush-for-specific-ASID-only,
4621      * flush-last-level-only or inner/outer shareable specific flushes.
4622      */
4623 
4624     do_rvae_write(env, value, vae2_tlbmask(env), true);
4625 
4626 }
4627 
4628 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4629                                   const ARMCPRegInfo *ri,
4630                                   uint64_t value)
4631 {
4632     /*
4633      * Invalidate by VA range, EL3.
4634      * Currently handles all of RVAE3 and RVALE3,
4635      * since we don't support flush-for-specific-ASID-only or
4636      * flush-last-level-only.
4637      */
4638 
4639     do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4640                   tlb_force_broadcast(env));
4641 }
4642 
4643 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4644                                     const ARMCPRegInfo *ri,
4645                                     uint64_t value)
4646 {
4647     /*
4648      * Invalidate by VA range, EL3, Inner/Outer Shareable.
4649      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4650      * since we don't support flush-for-specific-ASID-only,
4651      * flush-last-level-only or inner/outer specific flushes.
4652      */
4653 
4654     do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4655 }
4656 #endif
4657 
4658 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4659                                       bool isread)
4660 {
4661     int cur_el = arm_current_el(env);
4662 
4663     if (cur_el < 2) {
4664         uint64_t hcr = arm_hcr_el2_eff(env);
4665 
4666         if (cur_el == 0) {
4667             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4668                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4669                     return CP_ACCESS_TRAP_EL2;
4670                 }
4671             } else {
4672                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4673                     return CP_ACCESS_TRAP;
4674                 }
4675                 if (hcr & HCR_TDZ) {
4676                     return CP_ACCESS_TRAP_EL2;
4677                 }
4678             }
4679         } else if (hcr & HCR_TDZ) {
4680             return CP_ACCESS_TRAP_EL2;
4681         }
4682     }
4683     return CP_ACCESS_OK;
4684 }
4685 
4686 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4687 {
4688     ARMCPU *cpu = env_archcpu(env);
4689     int dzp_bit = 1 << 4;
4690 
4691     /* DZP indicates whether DC ZVA access is allowed */
4692     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4693         dzp_bit = 0;
4694     }
4695     return cpu->dcz_blocksize | dzp_bit;
4696 }
4697 
4698 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4699                                     bool isread)
4700 {
4701     if (!(env->pstate & PSTATE_SP)) {
4702         /* Access to SP_EL0 is undefined if it's being used as
4703          * the stack pointer.
4704          */
4705         return CP_ACCESS_TRAP_UNCATEGORIZED;
4706     }
4707     return CP_ACCESS_OK;
4708 }
4709 
4710 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4711 {
4712     return env->pstate & PSTATE_SP;
4713 }
4714 
4715 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4716 {
4717     update_spsel(env, val);
4718 }
4719 
4720 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4721                         uint64_t value)
4722 {
4723     ARMCPU *cpu = env_archcpu(env);
4724 
4725     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4726         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4727         value &= ~SCTLR_M;
4728     }
4729 
4730     /* ??? Lots of these bits are not implemented.  */
4731 
4732     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4733         if (ri->opc1 == 6) { /* SCTLR_EL3 */
4734             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4735         } else {
4736             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4737                        SCTLR_ATA0 | SCTLR_ATA);
4738         }
4739     }
4740 
4741     if (raw_read(env, ri) == value) {
4742         /* Skip the TLB flush if nothing actually changed; Linux likes
4743          * to do a lot of pointless SCTLR writes.
4744          */
4745         return;
4746     }
4747 
4748     raw_write(env, ri, value);
4749 
4750     /* This may enable/disable the MMU, so do a TLB flush.  */
4751     tlb_flush(CPU(cpu));
4752 
4753     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4754         /*
4755          * Normally we would always end the TB on an SCTLR write; see the
4756          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4757          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4758          * of hflags from the translator, so do it here.
4759          */
4760         arm_rebuild_hflags(env);
4761     }
4762 }
4763 
4764 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4765                        uint64_t value)
4766 {
4767     /*
4768      * Some MDCR_EL3 bits affect whether PMU counters are running:
4769      * if we are trying to change any of those then we must
4770      * bracket this update with PMU start/finish calls.
4771      */
4772     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
4773 
4774     if (pmu_op) {
4775         pmu_op_start(env);
4776     }
4777     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4778     if (pmu_op) {
4779         pmu_op_finish(env);
4780     }
4781 }
4782 
4783 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4784                            uint64_t value)
4785 {
4786     /*
4787      * Some MDCR_EL2 bits affect whether PMU counters are running:
4788      * if we are trying to change any of those then we must
4789      * bracket this update with PMU start/finish calls.
4790      */
4791     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
4792 
4793     if (pmu_op) {
4794         pmu_op_start(env);
4795     }
4796     env->cp15.mdcr_el2 = value;
4797     if (pmu_op) {
4798         pmu_op_finish(env);
4799     }
4800 }
4801 
4802 static const ARMCPRegInfo v8_cp_reginfo[] = {
4803     /* Minimal set of EL0-visible registers. This will need to be expanded
4804      * significantly for system emulation of AArch64 CPUs.
4805      */
4806     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4807       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4808       .access = PL0_RW, .type = ARM_CP_NZCV },
4809     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4810       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4811       .type = ARM_CP_NO_RAW,
4812       .access = PL0_RW, .accessfn = aa64_daif_access,
4813       .fieldoffset = offsetof(CPUARMState, daif),
4814       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4815     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4816       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4817       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4818       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4819     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4820       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4821       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4822       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4823     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4824       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4825       .access = PL0_R, .type = ARM_CP_NO_RAW,
4826       .readfn = aa64_dczid_read },
4827     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4828       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4829       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4830 #ifndef CONFIG_USER_ONLY
4831       /* Avoid overhead of an access check that always passes in user-mode */
4832       .accessfn = aa64_zva_access,
4833 #endif
4834     },
4835     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4836       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4837       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4838     /* Cache ops: all NOPs since we don't emulate caches */
4839     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4840       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4841       .access = PL1_W, .type = ARM_CP_NOP,
4842       .accessfn = aa64_cacheop_pou_access },
4843     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4844       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4845       .access = PL1_W, .type = ARM_CP_NOP,
4846       .accessfn = aa64_cacheop_pou_access },
4847     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4848       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4849       .access = PL0_W, .type = ARM_CP_NOP,
4850       .accessfn = aa64_cacheop_pou_access },
4851     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4852       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4853       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4854       .type = ARM_CP_NOP },
4855     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4856       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4857       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4858     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4859       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4860       .access = PL0_W, .type = ARM_CP_NOP,
4861       .accessfn = aa64_cacheop_poc_access },
4862     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4863       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4864       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4865     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4866       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4867       .access = PL0_W, .type = ARM_CP_NOP,
4868       .accessfn = aa64_cacheop_pou_access },
4869     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4870       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4871       .access = PL0_W, .type = ARM_CP_NOP,
4872       .accessfn = aa64_cacheop_poc_access },
4873     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4874       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4875       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4876     /* TLBI operations */
4877     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4878       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4879       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4880       .writefn = tlbi_aa64_vmalle1is_write },
4881     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4882       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4883       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4884       .writefn = tlbi_aa64_vae1is_write },
4885     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4886       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4887       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4888       .writefn = tlbi_aa64_vmalle1is_write },
4889     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4890       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4891       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4892       .writefn = tlbi_aa64_vae1is_write },
4893     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4894       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4895       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4896       .writefn = tlbi_aa64_vae1is_write },
4897     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4898       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4899       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4900       .writefn = tlbi_aa64_vae1is_write },
4901     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4902       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4903       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4904       .writefn = tlbi_aa64_vmalle1_write },
4905     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4906       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4907       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4908       .writefn = tlbi_aa64_vae1_write },
4909     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4910       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4911       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4912       .writefn = tlbi_aa64_vmalle1_write },
4913     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4914       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4915       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4916       .writefn = tlbi_aa64_vae1_write },
4917     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4918       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4919       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4920       .writefn = tlbi_aa64_vae1_write },
4921     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4922       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4923       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4924       .writefn = tlbi_aa64_vae1_write },
4925     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4926       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4927       .access = PL2_W, .type = ARM_CP_NOP },
4928     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4929       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4930       .access = PL2_W, .type = ARM_CP_NOP },
4931     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4932       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4933       .access = PL2_W, .type = ARM_CP_NO_RAW,
4934       .writefn = tlbi_aa64_alle1is_write },
4935     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4936       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4937       .access = PL2_W, .type = ARM_CP_NO_RAW,
4938       .writefn = tlbi_aa64_alle1is_write },
4939     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4940       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4941       .access = PL2_W, .type = ARM_CP_NOP },
4942     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4943       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4944       .access = PL2_W, .type = ARM_CP_NOP },
4945     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4946       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4947       .access = PL2_W, .type = ARM_CP_NO_RAW,
4948       .writefn = tlbi_aa64_alle1_write },
4949     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4950       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4951       .access = PL2_W, .type = ARM_CP_NO_RAW,
4952       .writefn = tlbi_aa64_alle1is_write },
4953 #ifndef CONFIG_USER_ONLY
4954     /* 64 bit address translation operations */
4955     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4956       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4957       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4958       .writefn = ats_write64 },
4959     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4960       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4961       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4962       .writefn = ats_write64 },
4963     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4964       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4965       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4966       .writefn = ats_write64 },
4967     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4968       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4969       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4970       .writefn = ats_write64 },
4971     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4972       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4973       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4974       .writefn = ats_write64 },
4975     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4976       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4977       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4978       .writefn = ats_write64 },
4979     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4980       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4981       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4982       .writefn = ats_write64 },
4983     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4984       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4985       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4986       .writefn = ats_write64 },
4987     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4988     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4989       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4990       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4991       .writefn = ats_write64 },
4992     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4993       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4994       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4995       .writefn = ats_write64 },
4996     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4997       .type = ARM_CP_ALIAS,
4998       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4999       .access = PL1_RW, .resetvalue = 0,
5000       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5001       .writefn = par_write },
5002 #endif
5003     /* TLB invalidate last level of translation table walk */
5004     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5005       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5006       .writefn = tlbimva_is_write },
5007     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5008       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5009       .writefn = tlbimvaa_is_write },
5010     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5011       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5012       .writefn = tlbimva_write },
5013     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5014       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5015       .writefn = tlbimvaa_write },
5016     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5017       .type = ARM_CP_NO_RAW, .access = PL2_W,
5018       .writefn = tlbimva_hyp_write },
5019     { .name = "TLBIMVALHIS",
5020       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5021       .type = ARM_CP_NO_RAW, .access = PL2_W,
5022       .writefn = tlbimva_hyp_is_write },
5023     { .name = "TLBIIPAS2",
5024       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5025       .type = ARM_CP_NOP, .access = PL2_W },
5026     { .name = "TLBIIPAS2IS",
5027       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5028       .type = ARM_CP_NOP, .access = PL2_W },
5029     { .name = "TLBIIPAS2L",
5030       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5031       .type = ARM_CP_NOP, .access = PL2_W },
5032     { .name = "TLBIIPAS2LIS",
5033       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5034       .type = ARM_CP_NOP, .access = PL2_W },
5035     /* 32 bit cache operations */
5036     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5037       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5038     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5039       .type = ARM_CP_NOP, .access = PL1_W },
5040     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5041       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5042     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5043       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5044     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5045       .type = ARM_CP_NOP, .access = PL1_W },
5046     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5047       .type = ARM_CP_NOP, .access = PL1_W },
5048     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5049       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5050     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5051       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5052     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5053       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5054     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5055       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5056     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5057       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5058     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5059       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5060     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5061       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5062     /* MMU Domain access control / MPU write buffer control */
5063     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5064       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5065       .writefn = dacr_write, .raw_writefn = raw_write,
5066       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5067                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5068     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5069       .type = ARM_CP_ALIAS,
5070       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5071       .access = PL1_RW,
5072       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5073     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5074       .type = ARM_CP_ALIAS,
5075       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5076       .access = PL1_RW,
5077       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5078     /* We rely on the access checks not allowing the guest to write to the
5079      * state field when SPSel indicates that it's being used as the stack
5080      * pointer.
5081      */
5082     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5083       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5084       .access = PL1_RW, .accessfn = sp_el0_access,
5085       .type = ARM_CP_ALIAS,
5086       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5087     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5088       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5089       .access = PL2_RW, .type = ARM_CP_ALIAS,
5090       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5091     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5092       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5093       .type = ARM_CP_NO_RAW,
5094       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5095     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5096       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5097       .access = PL2_RW,
5098       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5099       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5100     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5101       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5102       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5103       .writefn = dacr_write, .raw_writefn = raw_write,
5104       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5105     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5106       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5107       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5108       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5109     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5110       .type = ARM_CP_ALIAS,
5111       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5112       .access = PL2_RW,
5113       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5114     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5115       .type = ARM_CP_ALIAS,
5116       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5117       .access = PL2_RW,
5118       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5119     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5120       .type = ARM_CP_ALIAS,
5121       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5122       .access = PL2_RW,
5123       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5124     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5125       .type = ARM_CP_ALIAS,
5126       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5127       .access = PL2_RW,
5128       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5129     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5130       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5131       .resetvalue = 0,
5132       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5133     { .name = "SDCR", .type = ARM_CP_ALIAS,
5134       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5135       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5136       .writefn = sdcr_write,
5137       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5138 };
5139 
5140 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5141 {
5142     ARMCPU *cpu = env_archcpu(env);
5143 
5144     if (arm_feature(env, ARM_FEATURE_V8)) {
5145         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5146     } else {
5147         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5148     }
5149 
5150     if (arm_feature(env, ARM_FEATURE_EL3)) {
5151         valid_mask &= ~HCR_HCD;
5152     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5153         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5154          * However, if we're using the SMC PSCI conduit then QEMU is
5155          * effectively acting like EL3 firmware and so the guest at
5156          * EL2 should retain the ability to prevent EL1 from being
5157          * able to make SMC calls into the ersatz firmware, so in
5158          * that case HCR.TSC should be read/write.
5159          */
5160         valid_mask &= ~HCR_TSC;
5161     }
5162 
5163     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5164         if (cpu_isar_feature(aa64_vh, cpu)) {
5165             valid_mask |= HCR_E2H;
5166         }
5167         if (cpu_isar_feature(aa64_ras, cpu)) {
5168             valid_mask |= HCR_TERR | HCR_TEA;
5169         }
5170         if (cpu_isar_feature(aa64_lor, cpu)) {
5171             valid_mask |= HCR_TLOR;
5172         }
5173         if (cpu_isar_feature(aa64_pauth, cpu)) {
5174             valid_mask |= HCR_API | HCR_APK;
5175         }
5176         if (cpu_isar_feature(aa64_mte, cpu)) {
5177             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5178         }
5179         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5180             valid_mask |= HCR_ENSCXT;
5181         }
5182         if (cpu_isar_feature(aa64_fwb, cpu)) {
5183             valid_mask |= HCR_FWB;
5184         }
5185     }
5186 
5187     /* Clear RES0 bits.  */
5188     value &= valid_mask;
5189 
5190     /*
5191      * These bits change the MMU setup:
5192      * HCR_VM enables stage 2 translation
5193      * HCR_PTW forbids certain page-table setups
5194      * HCR_DC disables stage1 and enables stage2 translation
5195      * HCR_DCT enables tagging on (disabled) stage1 translation
5196      * HCR_FWB changes the interpretation of stage2 descriptor bits
5197      */
5198     if ((env->cp15.hcr_el2 ^ value) &
5199         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5200         tlb_flush(CPU(cpu));
5201     }
5202     env->cp15.hcr_el2 = value;
5203 
5204     /*
5205      * Updates to VI and VF require us to update the status of
5206      * virtual interrupts, which are the logical OR of these bits
5207      * and the state of the input lines from the GIC. (This requires
5208      * that we have the iothread lock, which is done by marking the
5209      * reginfo structs as ARM_CP_IO.)
5210      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5211      * possible for it to be taken immediately, because VIRQ and
5212      * VFIQ are masked unless running at EL0 or EL1, and HCR
5213      * can only be written at EL2.
5214      */
5215     g_assert(qemu_mutex_iothread_locked());
5216     arm_cpu_update_virq(cpu);
5217     arm_cpu_update_vfiq(cpu);
5218     arm_cpu_update_vserr(cpu);
5219 }
5220 
5221 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5222 {
5223     do_hcr_write(env, value, 0);
5224 }
5225 
5226 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5227                           uint64_t value)
5228 {
5229     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5230     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5231     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5232 }
5233 
5234 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5235                          uint64_t value)
5236 {
5237     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5238     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5239     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5240 }
5241 
5242 /*
5243  * Return the effective value of HCR_EL2.
5244  * Bits that are not included here:
5245  * RW       (read from SCR_EL3.RW as needed)
5246  */
5247 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5248 {
5249     uint64_t ret = env->cp15.hcr_el2;
5250 
5251     if (!arm_is_el2_enabled(env)) {
5252         /*
5253          * "This register has no effect if EL2 is not enabled in the
5254          * current Security state".  This is ARMv8.4-SecEL2 speak for
5255          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5256          *
5257          * Prior to that, the language was "In an implementation that
5258          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5259          * as if this field is 0 for all purposes other than a direct
5260          * read or write access of HCR_EL2".  With lots of enumeration
5261          * on a per-field basis.  In current QEMU, this is condition
5262          * is arm_is_secure_below_el3.
5263          *
5264          * Since the v8.4 language applies to the entire register, and
5265          * appears to be backward compatible, use that.
5266          */
5267         return 0;
5268     }
5269 
5270     /*
5271      * For a cpu that supports both aarch64 and aarch32, we can set bits
5272      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5273      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5274      */
5275     if (!arm_el_is_aa64(env, 2)) {
5276         uint64_t aa32_valid;
5277 
5278         /*
5279          * These bits are up-to-date as of ARMv8.6.
5280          * For HCR, it's easiest to list just the 2 bits that are invalid.
5281          * For HCR2, list those that are valid.
5282          */
5283         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5284         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5285                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5286         ret &= aa32_valid;
5287     }
5288 
5289     if (ret & HCR_TGE) {
5290         /* These bits are up-to-date as of ARMv8.6.  */
5291         if (ret & HCR_E2H) {
5292             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5293                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5294                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5295                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5296                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5297                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5298         } else {
5299             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5300         }
5301         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5302                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5303                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5304                  HCR_TLOR);
5305     }
5306 
5307     return ret;
5308 }
5309 
5310 /*
5311  * Corresponds to ARM pseudocode function ELIsInHost().
5312  */
5313 bool el_is_in_host(CPUARMState *env, int el)
5314 {
5315     uint64_t mask;
5316 
5317     /*
5318      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5319      * Perform the simplest bit tests first, and validate EL2 afterward.
5320      */
5321     if (el & 1) {
5322         return false; /* EL1 or EL3 */
5323     }
5324 
5325     /*
5326      * Note that hcr_write() checks isar_feature_aa64_vh(),
5327      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5328      */
5329     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5330     if ((env->cp15.hcr_el2 & mask) != mask) {
5331         return false;
5332     }
5333 
5334     /* TGE and/or E2H set: double check those bits are currently legal. */
5335     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5336 }
5337 
5338 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5339                        uint64_t value)
5340 {
5341     uint64_t valid_mask = 0;
5342 
5343     /* No features adding bits to HCRX are implemented. */
5344 
5345     /* Clear RES0 bits.  */
5346     env->cp15.hcrx_el2 = value & valid_mask;
5347 }
5348 
5349 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5350                                   bool isread)
5351 {
5352     if (arm_current_el(env) < 3
5353         && arm_feature(env, ARM_FEATURE_EL3)
5354         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5355         return CP_ACCESS_TRAP_EL3;
5356     }
5357     return CP_ACCESS_OK;
5358 }
5359 
5360 static const ARMCPRegInfo hcrx_el2_reginfo = {
5361     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5362     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5363     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5364     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5365 };
5366 
5367 /* Return the effective value of HCRX_EL2.  */
5368 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5369 {
5370     /*
5371      * The bits in this register behave as 0 for all purposes other than
5372      * direct reads of the register if:
5373      *   - EL2 is not enabled in the current security state,
5374      *   - SCR_EL3.HXEn is 0.
5375      */
5376     if (!arm_is_el2_enabled(env)
5377         || (arm_feature(env, ARM_FEATURE_EL3)
5378             && !(env->cp15.scr_el3 & SCR_HXEN))) {
5379         return 0;
5380     }
5381     return env->cp15.hcrx_el2;
5382 }
5383 
5384 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5385                            uint64_t value)
5386 {
5387     /*
5388      * For A-profile AArch32 EL3, if NSACR.CP10
5389      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5390      */
5391     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5392         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5393         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5394         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5395     }
5396     env->cp15.cptr_el[2] = value;
5397 }
5398 
5399 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5400 {
5401     /*
5402      * For A-profile AArch32 EL3, if NSACR.CP10
5403      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5404      */
5405     uint64_t value = env->cp15.cptr_el[2];
5406 
5407     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5408         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5409         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5410     }
5411     return value;
5412 }
5413 
5414 static const ARMCPRegInfo el2_cp_reginfo[] = {
5415     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5416       .type = ARM_CP_IO,
5417       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5418       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5419       .writefn = hcr_write },
5420     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5421       .type = ARM_CP_ALIAS | ARM_CP_IO,
5422       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5423       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5424       .writefn = hcr_writelow },
5425     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5426       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5427       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5428     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5429       .type = ARM_CP_ALIAS,
5430       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5431       .access = PL2_RW,
5432       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5433     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5434       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5435       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5436     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5437       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5438       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5439     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5440       .type = ARM_CP_ALIAS,
5441       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5442       .access = PL2_RW,
5443       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5444     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5445       .type = ARM_CP_ALIAS,
5446       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5447       .access = PL2_RW,
5448       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5449     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5450       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5451       .access = PL2_RW, .writefn = vbar_write,
5452       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5453       .resetvalue = 0 },
5454     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5455       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5456       .access = PL3_RW, .type = ARM_CP_ALIAS,
5457       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5458     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5459       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5460       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5461       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5462       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5463     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5464       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5465       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5466       .resetvalue = 0 },
5467     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5468       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5469       .access = PL2_RW, .type = ARM_CP_ALIAS,
5470       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5471     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5472       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5473       .access = PL2_RW, .type = ARM_CP_CONST,
5474       .resetvalue = 0 },
5475     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5476     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5477       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5478       .access = PL2_RW, .type = ARM_CP_CONST,
5479       .resetvalue = 0 },
5480     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5481       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5482       .access = PL2_RW, .type = ARM_CP_CONST,
5483       .resetvalue = 0 },
5484     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5485       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5486       .access = PL2_RW, .type = ARM_CP_CONST,
5487       .resetvalue = 0 },
5488     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5489       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5490       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5491       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5492     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5493       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5494       .type = ARM_CP_ALIAS,
5495       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5496       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5497     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5498       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5499       .access = PL2_RW,
5500       /* no .writefn needed as this can't cause an ASID change */
5501       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5502     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5503       .cp = 15, .opc1 = 6, .crm = 2,
5504       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5505       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5506       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5507       .writefn = vttbr_write },
5508     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5509       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5510       .access = PL2_RW, .writefn = vttbr_write,
5511       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5512     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5513       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5514       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5515       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5516     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5517       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5518       .access = PL2_RW, .resetvalue = 0,
5519       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5520     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5521       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5522       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5523       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5524     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5525       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5526       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5527     { .name = "TLBIALLNSNH",
5528       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5529       .type = ARM_CP_NO_RAW, .access = PL2_W,
5530       .writefn = tlbiall_nsnh_write },
5531     { .name = "TLBIALLNSNHIS",
5532       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5533       .type = ARM_CP_NO_RAW, .access = PL2_W,
5534       .writefn = tlbiall_nsnh_is_write },
5535     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5536       .type = ARM_CP_NO_RAW, .access = PL2_W,
5537       .writefn = tlbiall_hyp_write },
5538     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5539       .type = ARM_CP_NO_RAW, .access = PL2_W,
5540       .writefn = tlbiall_hyp_is_write },
5541     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5542       .type = ARM_CP_NO_RAW, .access = PL2_W,
5543       .writefn = tlbimva_hyp_write },
5544     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5545       .type = ARM_CP_NO_RAW, .access = PL2_W,
5546       .writefn = tlbimva_hyp_is_write },
5547     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5548       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5549       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5550       .writefn = tlbi_aa64_alle2_write },
5551     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5552       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5553       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5554       .writefn = tlbi_aa64_vae2_write },
5555     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5556       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5557       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5558       .writefn = tlbi_aa64_vae2_write },
5559     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5560       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5561       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5562       .writefn = tlbi_aa64_alle2is_write },
5563     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5564       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5565       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5566       .writefn = tlbi_aa64_vae2is_write },
5567     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5568       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5569       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5570       .writefn = tlbi_aa64_vae2is_write },
5571 #ifndef CONFIG_USER_ONLY
5572     /* Unlike the other EL2-related AT operations, these must
5573      * UNDEF from EL3 if EL2 is not implemented, which is why we
5574      * define them here rather than with the rest of the AT ops.
5575      */
5576     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5577       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5578       .access = PL2_W, .accessfn = at_s1e2_access,
5579       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5580       .writefn = ats_write64 },
5581     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5582       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5583       .access = PL2_W, .accessfn = at_s1e2_access,
5584       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5585       .writefn = ats_write64 },
5586     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5587      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5588      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5589      * to behave as if SCR.NS was 1.
5590      */
5591     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5592       .access = PL2_W,
5593       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5594     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5595       .access = PL2_W,
5596       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5597     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5598       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5599       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5600        * reset values as IMPDEF. We choose to reset to 3 to comply with
5601        * both ARMv7 and ARMv8.
5602        */
5603       .access = PL2_RW, .resetvalue = 3,
5604       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5605     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5606       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5607       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5608       .writefn = gt_cntvoff_write,
5609       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5610     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5611       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5612       .writefn = gt_cntvoff_write,
5613       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5614     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5615       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5616       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5617       .type = ARM_CP_IO, .access = PL2_RW,
5618       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5619     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5620       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5621       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5622       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5623     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5624       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5625       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5626       .resetfn = gt_hyp_timer_reset,
5627       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5628     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5629       .type = ARM_CP_IO,
5630       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5631       .access = PL2_RW,
5632       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5633       .resetvalue = 0,
5634       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5635 #endif
5636     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5637       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5638       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5639       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5640     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5641       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5642       .access = PL2_RW,
5643       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5644     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5645       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5646       .access = PL2_RW,
5647       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5648 };
5649 
5650 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5651     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5652       .type = ARM_CP_ALIAS | ARM_CP_IO,
5653       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5654       .access = PL2_RW,
5655       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5656       .writefn = hcr_writehigh },
5657 };
5658 
5659 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5660                                   bool isread)
5661 {
5662     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5663         return CP_ACCESS_OK;
5664     }
5665     return CP_ACCESS_TRAP_UNCATEGORIZED;
5666 }
5667 
5668 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5669     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5670       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5671       .access = PL2_RW, .accessfn = sel2_access,
5672       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5673     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5674       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5675       .access = PL2_RW, .accessfn = sel2_access,
5676       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5677 };
5678 
5679 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5680                                    bool isread)
5681 {
5682     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5683      * At Secure EL1 it traps to EL3 or EL2.
5684      */
5685     if (arm_current_el(env) == 3) {
5686         return CP_ACCESS_OK;
5687     }
5688     if (arm_is_secure_below_el3(env)) {
5689         if (env->cp15.scr_el3 & SCR_EEL2) {
5690             return CP_ACCESS_TRAP_EL2;
5691         }
5692         return CP_ACCESS_TRAP_EL3;
5693     }
5694     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5695     if (isread) {
5696         return CP_ACCESS_OK;
5697     }
5698     return CP_ACCESS_TRAP_UNCATEGORIZED;
5699 }
5700 
5701 static const ARMCPRegInfo el3_cp_reginfo[] = {
5702     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5703       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5704       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5705       .resetfn = scr_reset, .writefn = scr_write },
5706     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5707       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5708       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5709       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5710       .writefn = scr_write },
5711     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5712       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5713       .access = PL3_RW, .resetvalue = 0,
5714       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5715     { .name = "SDER",
5716       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5717       .access = PL3_RW, .resetvalue = 0,
5718       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5719     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5720       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5721       .writefn = vbar_write, .resetvalue = 0,
5722       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5723     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5724       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5725       .access = PL3_RW, .resetvalue = 0,
5726       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5727     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5728       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5729       .access = PL3_RW,
5730       /* no .writefn needed as this can't cause an ASID change */
5731       .resetvalue = 0,
5732       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5733     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5734       .type = ARM_CP_ALIAS,
5735       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5736       .access = PL3_RW,
5737       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5738     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5739       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5740       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5741     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5742       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5743       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5744     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5745       .type = ARM_CP_ALIAS,
5746       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5747       .access = PL3_RW,
5748       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5749     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5750       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5751       .access = PL3_RW, .writefn = vbar_write,
5752       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5753       .resetvalue = 0 },
5754     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5755       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5756       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5757       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5758     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5759       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5760       .access = PL3_RW, .resetvalue = 0,
5761       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5762     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5763       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5764       .access = PL3_RW, .type = ARM_CP_CONST,
5765       .resetvalue = 0 },
5766     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5767       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5768       .access = PL3_RW, .type = ARM_CP_CONST,
5769       .resetvalue = 0 },
5770     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5771       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5772       .access = PL3_RW, .type = ARM_CP_CONST,
5773       .resetvalue = 0 },
5774     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5775       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5776       .access = PL3_W, .type = ARM_CP_NO_RAW,
5777       .writefn = tlbi_aa64_alle3is_write },
5778     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5779       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5780       .access = PL3_W, .type = ARM_CP_NO_RAW,
5781       .writefn = tlbi_aa64_vae3is_write },
5782     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5783       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5784       .access = PL3_W, .type = ARM_CP_NO_RAW,
5785       .writefn = tlbi_aa64_vae3is_write },
5786     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5787       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5788       .access = PL3_W, .type = ARM_CP_NO_RAW,
5789       .writefn = tlbi_aa64_alle3_write },
5790     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5791       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5792       .access = PL3_W, .type = ARM_CP_NO_RAW,
5793       .writefn = tlbi_aa64_vae3_write },
5794     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5795       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5796       .access = PL3_W, .type = ARM_CP_NO_RAW,
5797       .writefn = tlbi_aa64_vae3_write },
5798 };
5799 
5800 #ifndef CONFIG_USER_ONLY
5801 /* Test if system register redirection is to occur in the current state.  */
5802 static bool redirect_for_e2h(CPUARMState *env)
5803 {
5804     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5805 }
5806 
5807 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5808 {
5809     CPReadFn *readfn;
5810 
5811     if (redirect_for_e2h(env)) {
5812         /* Switch to the saved EL2 version of the register.  */
5813         ri = ri->opaque;
5814         readfn = ri->readfn;
5815     } else {
5816         readfn = ri->orig_readfn;
5817     }
5818     if (readfn == NULL) {
5819         readfn = raw_read;
5820     }
5821     return readfn(env, ri);
5822 }
5823 
5824 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5825                           uint64_t value)
5826 {
5827     CPWriteFn *writefn;
5828 
5829     if (redirect_for_e2h(env)) {
5830         /* Switch to the saved EL2 version of the register.  */
5831         ri = ri->opaque;
5832         writefn = ri->writefn;
5833     } else {
5834         writefn = ri->orig_writefn;
5835     }
5836     if (writefn == NULL) {
5837         writefn = raw_write;
5838     }
5839     writefn(env, ri, value);
5840 }
5841 
5842 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5843 {
5844     struct E2HAlias {
5845         uint32_t src_key, dst_key, new_key;
5846         const char *src_name, *dst_name, *new_name;
5847         bool (*feature)(const ARMISARegisters *id);
5848     };
5849 
5850 #define K(op0, op1, crn, crm, op2) \
5851     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5852 
5853     static const struct E2HAlias aliases[] = {
5854         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5855           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5856         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5857           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5858         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5859           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5860         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5861           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5862         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5863           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5864         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5865           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5866         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5867           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5868         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5869           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5870         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5871           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5872         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5873           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5874         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5875           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5876         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5877           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5878         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5879           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5880         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5881           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5882         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5883           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5884         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5885           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5886 
5887         /*
5888          * Note that redirection of ZCR is mentioned in the description
5889          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5890          * not in the summary table.
5891          */
5892         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5893           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5894         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
5895           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
5896 
5897         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
5898           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5899 
5900         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
5901           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
5902           isar_feature_aa64_scxtnum },
5903 
5904         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5905         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5906     };
5907 #undef K
5908 
5909     size_t i;
5910 
5911     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5912         const struct E2HAlias *a = &aliases[i];
5913         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
5914         bool ok;
5915 
5916         if (a->feature && !a->feature(&cpu->isar)) {
5917             continue;
5918         }
5919 
5920         src_reg = g_hash_table_lookup(cpu->cp_regs,
5921                                       (gpointer)(uintptr_t)a->src_key);
5922         dst_reg = g_hash_table_lookup(cpu->cp_regs,
5923                                       (gpointer)(uintptr_t)a->dst_key);
5924         g_assert(src_reg != NULL);
5925         g_assert(dst_reg != NULL);
5926 
5927         /* Cross-compare names to detect typos in the keys.  */
5928         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5929         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5930 
5931         /* None of the core system registers use opaque; we will.  */
5932         g_assert(src_reg->opaque == NULL);
5933 
5934         /* Create alias before redirection so we dup the right data. */
5935         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5936 
5937         new_reg->name = a->new_name;
5938         new_reg->type |= ARM_CP_ALIAS;
5939         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5940         new_reg->access &= PL2_RW | PL3_RW;
5941 
5942         ok = g_hash_table_insert(cpu->cp_regs,
5943                                  (gpointer)(uintptr_t)a->new_key, new_reg);
5944         g_assert(ok);
5945 
5946         src_reg->opaque = dst_reg;
5947         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5948         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5949         if (!src_reg->raw_readfn) {
5950             src_reg->raw_readfn = raw_read;
5951         }
5952         if (!src_reg->raw_writefn) {
5953             src_reg->raw_writefn = raw_write;
5954         }
5955         src_reg->readfn = el2_e2h_read;
5956         src_reg->writefn = el2_e2h_write;
5957     }
5958 }
5959 #endif
5960 
5961 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5962                                      bool isread)
5963 {
5964     int cur_el = arm_current_el(env);
5965 
5966     if (cur_el < 2) {
5967         uint64_t hcr = arm_hcr_el2_eff(env);
5968 
5969         if (cur_el == 0) {
5970             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5971                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5972                     return CP_ACCESS_TRAP_EL2;
5973                 }
5974             } else {
5975                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5976                     return CP_ACCESS_TRAP;
5977                 }
5978                 if (hcr & HCR_TID2) {
5979                     return CP_ACCESS_TRAP_EL2;
5980                 }
5981             }
5982         } else if (hcr & HCR_TID2) {
5983             return CP_ACCESS_TRAP_EL2;
5984         }
5985     }
5986 
5987     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5988         return CP_ACCESS_TRAP_EL2;
5989     }
5990 
5991     return CP_ACCESS_OK;
5992 }
5993 
5994 /*
5995  * Check for traps to RAS registers, which are controlled
5996  * by HCR_EL2.TERR and SCR_EL3.TERR.
5997  */
5998 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
5999                                   bool isread)
6000 {
6001     int el = arm_current_el(env);
6002 
6003     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6004         return CP_ACCESS_TRAP_EL2;
6005     }
6006     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6007         return CP_ACCESS_TRAP_EL3;
6008     }
6009     return CP_ACCESS_OK;
6010 }
6011 
6012 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6013 {
6014     int el = arm_current_el(env);
6015 
6016     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6017         return env->cp15.vdisr_el2;
6018     }
6019     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6020         return 0; /* RAZ/WI */
6021     }
6022     return env->cp15.disr_el1;
6023 }
6024 
6025 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6026 {
6027     int el = arm_current_el(env);
6028 
6029     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6030         env->cp15.vdisr_el2 = val;
6031         return;
6032     }
6033     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6034         return; /* RAZ/WI */
6035     }
6036     env->cp15.disr_el1 = val;
6037 }
6038 
6039 /*
6040  * Minimal RAS implementation with no Error Records.
6041  * Which means that all of the Error Record registers:
6042  *   ERXADDR_EL1
6043  *   ERXCTLR_EL1
6044  *   ERXFR_EL1
6045  *   ERXMISC0_EL1
6046  *   ERXMISC1_EL1
6047  *   ERXMISC2_EL1
6048  *   ERXMISC3_EL1
6049  *   ERXPFGCDN_EL1  (RASv1p1)
6050  *   ERXPFGCTL_EL1  (RASv1p1)
6051  *   ERXPFGF_EL1    (RASv1p1)
6052  *   ERXSTATUS_EL1
6053  * and
6054  *   ERRSELR_EL1
6055  * may generate UNDEFINED, which is the effect we get by not
6056  * listing them at all.
6057  */
6058 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6059     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6060       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6061       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6062       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6063     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6064       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6065       .access = PL1_R, .accessfn = access_terr,
6066       .type = ARM_CP_CONST, .resetvalue = 0 },
6067     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6068       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6069       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6070     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6071       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6072       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6073 };
6074 
6075 /*
6076  * Return the exception level to which exceptions should be taken
6077  * via SVEAccessTrap.  This excludes the check for whether the exception
6078  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6079  * be found by testing 0 < fp_exception_el < sve_exception_el.
6080  *
6081  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6082  * pseudocode does *not* separate out the FP trap checks, but has them
6083  * all in one function.
6084  */
6085 int sve_exception_el(CPUARMState *env, int el)
6086 {
6087 #ifndef CONFIG_USER_ONLY
6088     if (el <= 1 && !el_is_in_host(env, el)) {
6089         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6090         case 1:
6091             if (el != 0) {
6092                 break;
6093             }
6094             /* fall through */
6095         case 0:
6096         case 2:
6097             return 1;
6098         }
6099     }
6100 
6101     if (el <= 2 && arm_is_el2_enabled(env)) {
6102         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6103         if (env->cp15.hcr_el2 & HCR_E2H) {
6104             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6105             case 1:
6106                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6107                     break;
6108                 }
6109                 /* fall through */
6110             case 0:
6111             case 2:
6112                 return 2;
6113             }
6114         } else {
6115             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6116                 return 2;
6117             }
6118         }
6119     }
6120 
6121     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6122     if (arm_feature(env, ARM_FEATURE_EL3)
6123         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6124         return 3;
6125     }
6126 #endif
6127     return 0;
6128 }
6129 
6130 /*
6131  * Return the exception level to which exceptions should be taken for SME.
6132  * C.f. the ARM pseudocode function CheckSMEAccess.
6133  */
6134 int sme_exception_el(CPUARMState *env, int el)
6135 {
6136 #ifndef CONFIG_USER_ONLY
6137     if (el <= 1 && !el_is_in_host(env, el)) {
6138         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6139         case 1:
6140             if (el != 0) {
6141                 break;
6142             }
6143             /* fall through */
6144         case 0:
6145         case 2:
6146             return 1;
6147         }
6148     }
6149 
6150     if (el <= 2 && arm_is_el2_enabled(env)) {
6151         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6152         if (env->cp15.hcr_el2 & HCR_E2H) {
6153             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6154             case 1:
6155                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6156                     break;
6157                 }
6158                 /* fall through */
6159             case 0:
6160             case 2:
6161                 return 2;
6162             }
6163         } else {
6164             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6165                 return 2;
6166             }
6167         }
6168     }
6169 
6170     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6171     if (arm_feature(env, ARM_FEATURE_EL3)
6172         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6173         return 3;
6174     }
6175 #endif
6176     return 0;
6177 }
6178 
6179 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
6180 static bool sme_fa64(CPUARMState *env, int el)
6181 {
6182     if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
6183         return false;
6184     }
6185 
6186     if (el <= 1 && !el_is_in_host(env, el)) {
6187         if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
6188             return false;
6189         }
6190     }
6191     if (el <= 2 && arm_is_el2_enabled(env)) {
6192         if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
6193             return false;
6194         }
6195     }
6196     if (arm_feature(env, ARM_FEATURE_EL3)) {
6197         if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
6198             return false;
6199         }
6200     }
6201 
6202     return true;
6203 }
6204 
6205 /*
6206  * Given that SVE is enabled, return the vector length for EL.
6207  */
6208 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6209 {
6210     ARMCPU *cpu = env_archcpu(env);
6211     uint64_t *cr = env->vfp.zcr_el;
6212     uint32_t map = cpu->sve_vq.map;
6213     uint32_t len = ARM_MAX_VQ - 1;
6214 
6215     if (sm) {
6216         cr = env->vfp.smcr_el;
6217         map = cpu->sme_vq.map;
6218     }
6219 
6220     if (el <= 1 && !el_is_in_host(env, el)) {
6221         len = MIN(len, 0xf & (uint32_t)cr[1]);
6222     }
6223     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6224         len = MIN(len, 0xf & (uint32_t)cr[2]);
6225     }
6226     if (arm_feature(env, ARM_FEATURE_EL3)) {
6227         len = MIN(len, 0xf & (uint32_t)cr[3]);
6228     }
6229 
6230     map &= MAKE_64BIT_MASK(0, len + 1);
6231     if (map != 0) {
6232         return 31 - clz32(map);
6233     }
6234 
6235     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6236     assert(sm);
6237     return ctz32(cpu->sme_vq.map);
6238 }
6239 
6240 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6241 {
6242     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6243 }
6244 
6245 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6246                       uint64_t value)
6247 {
6248     int cur_el = arm_current_el(env);
6249     int old_len = sve_vqm1_for_el(env, cur_el);
6250     int new_len;
6251 
6252     /* Bits other than [3:0] are RAZ/WI.  */
6253     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6254     raw_write(env, ri, value & 0xf);
6255 
6256     /*
6257      * Because we arrived here, we know both FP and SVE are enabled;
6258      * otherwise we would have trapped access to the ZCR_ELn register.
6259      */
6260     new_len = sve_vqm1_for_el(env, cur_el);
6261     if (new_len < old_len) {
6262         aarch64_sve_narrow_vq(env, new_len + 1);
6263     }
6264 }
6265 
6266 static const ARMCPRegInfo zcr_reginfo[] = {
6267     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6268       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6269       .access = PL1_RW, .type = ARM_CP_SVE,
6270       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6271       .writefn = zcr_write, .raw_writefn = raw_write },
6272     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6273       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6274       .access = PL2_RW, .type = ARM_CP_SVE,
6275       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6276       .writefn = zcr_write, .raw_writefn = raw_write },
6277     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6278       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6279       .access = PL3_RW, .type = ARM_CP_SVE,
6280       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6281       .writefn = zcr_write, .raw_writefn = raw_write },
6282 };
6283 
6284 #ifdef TARGET_AARCH64
6285 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6286                                     bool isread)
6287 {
6288     int el = arm_current_el(env);
6289 
6290     if (el == 0) {
6291         uint64_t sctlr = arm_sctlr(env, el);
6292         if (!(sctlr & SCTLR_EnTP2)) {
6293             return CP_ACCESS_TRAP;
6294         }
6295     }
6296     /* TODO: FEAT_FGT */
6297     if (el < 3
6298         && arm_feature(env, ARM_FEATURE_EL3)
6299         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6300         return CP_ACCESS_TRAP_EL3;
6301     }
6302     return CP_ACCESS_OK;
6303 }
6304 
6305 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6306                                  bool isread)
6307 {
6308     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6309     if (arm_current_el(env) < 3
6310         && arm_feature(env, ARM_FEATURE_EL3)
6311         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6312         return CP_ACCESS_TRAP_EL3;
6313     }
6314     return CP_ACCESS_OK;
6315 }
6316 
6317 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6318                        uint64_t value)
6319 {
6320     helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM));
6321     helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA));
6322     arm_rebuild_hflags(env);
6323 }
6324 
6325 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6326                        uint64_t value)
6327 {
6328     int cur_el = arm_current_el(env);
6329     int old_len = sve_vqm1_for_el(env, cur_el);
6330     int new_len;
6331 
6332     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6333     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6334     raw_write(env, ri, value);
6335 
6336     /*
6337      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6338      * when SVL is widened (old values kept, or zeros).  Choose to keep the
6339      * current values for simplicity.  But for QEMU internals, we must still
6340      * apply the narrower SVL to the Zregs and Pregs -- see the comment
6341      * above aarch64_sve_narrow_vq.
6342      */
6343     new_len = sve_vqm1_for_el(env, cur_el);
6344     if (new_len < old_len) {
6345         aarch64_sve_narrow_vq(env, new_len + 1);
6346     }
6347 }
6348 
6349 static const ARMCPRegInfo sme_reginfo[] = {
6350     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6351       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6352       .access = PL0_RW, .accessfn = access_tpidr2,
6353       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6354     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6355       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6356       .access = PL0_RW, .type = ARM_CP_SME,
6357       .fieldoffset = offsetof(CPUARMState, svcr),
6358       .writefn = svcr_write, .raw_writefn = raw_write },
6359     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6360       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6361       .access = PL1_RW, .type = ARM_CP_SME,
6362       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6363       .writefn = smcr_write, .raw_writefn = raw_write },
6364     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6365       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6366       .access = PL2_RW, .type = ARM_CP_SME,
6367       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6368       .writefn = smcr_write, .raw_writefn = raw_write },
6369     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6370       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6371       .access = PL3_RW, .type = ARM_CP_SME,
6372       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6373       .writefn = smcr_write, .raw_writefn = raw_write },
6374     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6375       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6376       .access = PL1_R, .accessfn = access_aa64_tid1,
6377       /*
6378        * IMPLEMENTOR = 0 (software)
6379        * REVISION    = 0 (implementation defined)
6380        * SMPS        = 0 (no streaming execution priority in QEMU)
6381        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
6382        */
6383       .type = ARM_CP_CONST, .resetvalue = 0, },
6384     /*
6385      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6386      */
6387     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6388       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6389       .access = PL1_RW, .accessfn = access_esm,
6390       .type = ARM_CP_CONST, .resetvalue = 0 },
6391     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6392       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6393       .access = PL2_RW, .accessfn = access_esm,
6394       .type = ARM_CP_CONST, .resetvalue = 0 },
6395 };
6396 #endif /* TARGET_AARCH64 */
6397 
6398 static void define_pmu_regs(ARMCPU *cpu)
6399 {
6400     /*
6401      * v7 performance monitor control register: same implementor
6402      * field as main ID register, and we implement four counters in
6403      * addition to the cycle count register.
6404      */
6405     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6406     ARMCPRegInfo pmcr = {
6407         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6408         .access = PL0_RW,
6409         .type = ARM_CP_IO | ARM_CP_ALIAS,
6410         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6411         .accessfn = pmreg_access, .writefn = pmcr_write,
6412         .raw_writefn = raw_write,
6413     };
6414     ARMCPRegInfo pmcr64 = {
6415         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6416         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6417         .access = PL0_RW, .accessfn = pmreg_access,
6418         .type = ARM_CP_IO,
6419         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6420         .resetvalue = cpu->isar.reset_pmcr_el0,
6421         .writefn = pmcr_write, .raw_writefn = raw_write,
6422     };
6423 
6424     define_one_arm_cp_reg(cpu, &pmcr);
6425     define_one_arm_cp_reg(cpu, &pmcr64);
6426     for (i = 0; i < pmcrn; i++) {
6427         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6428         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6429         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6430         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6431         ARMCPRegInfo pmev_regs[] = {
6432             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6433               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6434               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6435               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6436               .accessfn = pmreg_access_xevcntr },
6437             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6438               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6439               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6440               .type = ARM_CP_IO,
6441               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6442               .raw_readfn = pmevcntr_rawread,
6443               .raw_writefn = pmevcntr_rawwrite },
6444             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6445               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6446               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6447               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6448               .accessfn = pmreg_access },
6449             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6450               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6451               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6452               .type = ARM_CP_IO,
6453               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6454               .raw_writefn = pmevtyper_rawwrite },
6455         };
6456         define_arm_cp_regs(cpu, pmev_regs);
6457         g_free(pmevcntr_name);
6458         g_free(pmevcntr_el0_name);
6459         g_free(pmevtyper_name);
6460         g_free(pmevtyper_el0_name);
6461     }
6462     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6463         ARMCPRegInfo v81_pmu_regs[] = {
6464             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6465               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6466               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6467               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6468             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6469               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6470               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6471               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6472         };
6473         define_arm_cp_regs(cpu, v81_pmu_regs);
6474     }
6475     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
6476         static const ARMCPRegInfo v84_pmmir = {
6477             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6478             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6479             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6480             .resetvalue = 0
6481         };
6482         define_one_arm_cp_reg(cpu, &v84_pmmir);
6483     }
6484 }
6485 
6486 /* We don't know until after realize whether there's a GICv3
6487  * attached, and that is what registers the gicv3 sysregs.
6488  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6489  * at runtime.
6490  */
6491 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6492 {
6493     ARMCPU *cpu = env_archcpu(env);
6494     uint64_t pfr1 = cpu->isar.id_pfr1;
6495 
6496     if (env->gicv3state) {
6497         pfr1 |= 1 << 28;
6498     }
6499     return pfr1;
6500 }
6501 
6502 #ifndef CONFIG_USER_ONLY
6503 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6504 {
6505     ARMCPU *cpu = env_archcpu(env);
6506     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6507 
6508     if (env->gicv3state) {
6509         pfr0 |= 1 << 24;
6510     }
6511     return pfr0;
6512 }
6513 #endif
6514 
6515 /* Shared logic between LORID and the rest of the LOR* registers.
6516  * Secure state exclusion has already been dealt with.
6517  */
6518 static CPAccessResult access_lor_ns(CPUARMState *env,
6519                                     const ARMCPRegInfo *ri, bool isread)
6520 {
6521     int el = arm_current_el(env);
6522 
6523     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6524         return CP_ACCESS_TRAP_EL2;
6525     }
6526     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6527         return CP_ACCESS_TRAP_EL3;
6528     }
6529     return CP_ACCESS_OK;
6530 }
6531 
6532 static CPAccessResult access_lor_other(CPUARMState *env,
6533                                        const ARMCPRegInfo *ri, bool isread)
6534 {
6535     if (arm_is_secure_below_el3(env)) {
6536         /* Access denied in secure mode.  */
6537         return CP_ACCESS_TRAP;
6538     }
6539     return access_lor_ns(env, ri, isread);
6540 }
6541 
6542 /*
6543  * A trivial implementation of ARMv8.1-LOR leaves all of these
6544  * registers fixed at 0, which indicates that there are zero
6545  * supported Limited Ordering regions.
6546  */
6547 static const ARMCPRegInfo lor_reginfo[] = {
6548     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6549       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6550       .access = PL1_RW, .accessfn = access_lor_other,
6551       .type = ARM_CP_CONST, .resetvalue = 0 },
6552     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6553       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6554       .access = PL1_RW, .accessfn = access_lor_other,
6555       .type = ARM_CP_CONST, .resetvalue = 0 },
6556     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6557       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6558       .access = PL1_RW, .accessfn = access_lor_other,
6559       .type = ARM_CP_CONST, .resetvalue = 0 },
6560     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6561       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6562       .access = PL1_RW, .accessfn = access_lor_other,
6563       .type = ARM_CP_CONST, .resetvalue = 0 },
6564     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6565       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6566       .access = PL1_R, .accessfn = access_lor_ns,
6567       .type = ARM_CP_CONST, .resetvalue = 0 },
6568 };
6569 
6570 #ifdef TARGET_AARCH64
6571 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6572                                    bool isread)
6573 {
6574     int el = arm_current_el(env);
6575 
6576     if (el < 2 &&
6577         arm_is_el2_enabled(env) &&
6578         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6579         return CP_ACCESS_TRAP_EL2;
6580     }
6581     if (el < 3 &&
6582         arm_feature(env, ARM_FEATURE_EL3) &&
6583         !(env->cp15.scr_el3 & SCR_APK)) {
6584         return CP_ACCESS_TRAP_EL3;
6585     }
6586     return CP_ACCESS_OK;
6587 }
6588 
6589 static const ARMCPRegInfo pauth_reginfo[] = {
6590     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6591       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6592       .access = PL1_RW, .accessfn = access_pauth,
6593       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6594     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6595       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6596       .access = PL1_RW, .accessfn = access_pauth,
6597       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6598     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6599       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6600       .access = PL1_RW, .accessfn = access_pauth,
6601       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6602     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6603       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6604       .access = PL1_RW, .accessfn = access_pauth,
6605       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6606     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6607       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6608       .access = PL1_RW, .accessfn = access_pauth,
6609       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6610     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6611       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6612       .access = PL1_RW, .accessfn = access_pauth,
6613       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6614     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6615       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6616       .access = PL1_RW, .accessfn = access_pauth,
6617       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6618     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6619       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6620       .access = PL1_RW, .accessfn = access_pauth,
6621       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6622     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6623       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6624       .access = PL1_RW, .accessfn = access_pauth,
6625       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6626     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6627       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6628       .access = PL1_RW, .accessfn = access_pauth,
6629       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6630 };
6631 
6632 static const ARMCPRegInfo tlbirange_reginfo[] = {
6633     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6634       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6635       .access = PL1_W, .type = ARM_CP_NO_RAW,
6636       .writefn = tlbi_aa64_rvae1is_write },
6637     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6638       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6639       .access = PL1_W, .type = ARM_CP_NO_RAW,
6640       .writefn = tlbi_aa64_rvae1is_write },
6641    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6642       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6643       .access = PL1_W, .type = ARM_CP_NO_RAW,
6644       .writefn = tlbi_aa64_rvae1is_write },
6645     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6646       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6647       .access = PL1_W, .type = ARM_CP_NO_RAW,
6648       .writefn = tlbi_aa64_rvae1is_write },
6649     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6650       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6651       .access = PL1_W, .type = ARM_CP_NO_RAW,
6652       .writefn = tlbi_aa64_rvae1is_write },
6653     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6654       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6655       .access = PL1_W, .type = ARM_CP_NO_RAW,
6656       .writefn = tlbi_aa64_rvae1is_write },
6657    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6658       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6659       .access = PL1_W, .type = ARM_CP_NO_RAW,
6660       .writefn = tlbi_aa64_rvae1is_write },
6661     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6662       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6663       .access = PL1_W, .type = ARM_CP_NO_RAW,
6664       .writefn = tlbi_aa64_rvae1is_write },
6665     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6666       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6667       .access = PL1_W, .type = ARM_CP_NO_RAW,
6668       .writefn = tlbi_aa64_rvae1_write },
6669     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6670       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6671       .access = PL1_W, .type = ARM_CP_NO_RAW,
6672       .writefn = tlbi_aa64_rvae1_write },
6673    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6674       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6675       .access = PL1_W, .type = ARM_CP_NO_RAW,
6676       .writefn = tlbi_aa64_rvae1_write },
6677     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6678       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6679       .access = PL1_W, .type = ARM_CP_NO_RAW,
6680       .writefn = tlbi_aa64_rvae1_write },
6681     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6682       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6683       .access = PL2_W, .type = ARM_CP_NOP },
6684     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6685       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6686       .access = PL2_W, .type = ARM_CP_NOP },
6687     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6688       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6689       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6690       .writefn = tlbi_aa64_rvae2is_write },
6691    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6692       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6693       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6694       .writefn = tlbi_aa64_rvae2is_write },
6695     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6696       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6697       .access = PL2_W, .type = ARM_CP_NOP },
6698    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6699       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6700       .access = PL2_W, .type = ARM_CP_NOP },
6701    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6702       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6703       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6704       .writefn = tlbi_aa64_rvae2is_write },
6705    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6706       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6707       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6708       .writefn = tlbi_aa64_rvae2is_write },
6709     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6710       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6711       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6712       .writefn = tlbi_aa64_rvae2_write },
6713    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6714       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6715       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6716       .writefn = tlbi_aa64_rvae2_write },
6717    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6718       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6719       .access = PL3_W, .type = ARM_CP_NO_RAW,
6720       .writefn = tlbi_aa64_rvae3is_write },
6721    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6722       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6723       .access = PL3_W, .type = ARM_CP_NO_RAW,
6724       .writefn = tlbi_aa64_rvae3is_write },
6725    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6726       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6727       .access = PL3_W, .type = ARM_CP_NO_RAW,
6728       .writefn = tlbi_aa64_rvae3is_write },
6729    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6730       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6731       .access = PL3_W, .type = ARM_CP_NO_RAW,
6732       .writefn = tlbi_aa64_rvae3is_write },
6733    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6734       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6735       .access = PL3_W, .type = ARM_CP_NO_RAW,
6736       .writefn = tlbi_aa64_rvae3_write },
6737    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6738       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6739       .access = PL3_W, .type = ARM_CP_NO_RAW,
6740       .writefn = tlbi_aa64_rvae3_write },
6741 };
6742 
6743 static const ARMCPRegInfo tlbios_reginfo[] = {
6744     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6745       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6746       .access = PL1_W, .type = ARM_CP_NO_RAW,
6747       .writefn = tlbi_aa64_vmalle1is_write },
6748     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
6749       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
6750       .access = PL1_W, .type = ARM_CP_NO_RAW,
6751       .writefn = tlbi_aa64_vae1is_write },
6752     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6753       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
6754       .access = PL1_W, .type = ARM_CP_NO_RAW,
6755       .writefn = tlbi_aa64_vmalle1is_write },
6756     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
6757       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
6758       .access = PL1_W, .type = ARM_CP_NO_RAW,
6759       .writefn = tlbi_aa64_vae1is_write },
6760     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
6761       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
6762       .access = PL1_W, .type = ARM_CP_NO_RAW,
6763       .writefn = tlbi_aa64_vae1is_write },
6764     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
6765       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
6766       .access = PL1_W, .type = ARM_CP_NO_RAW,
6767       .writefn = tlbi_aa64_vae1is_write },
6768     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
6769       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
6770       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6771       .writefn = tlbi_aa64_alle2is_write },
6772     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
6773       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
6774       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6775       .writefn = tlbi_aa64_vae2is_write },
6776    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
6777       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
6778       .access = PL2_W, .type = ARM_CP_NO_RAW,
6779       .writefn = tlbi_aa64_alle1is_write },
6780     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
6781       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
6782       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6783       .writefn = tlbi_aa64_vae2is_write },
6784     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
6785       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
6786       .access = PL2_W, .type = ARM_CP_NO_RAW,
6787       .writefn = tlbi_aa64_alle1is_write },
6788     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
6789       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
6790       .access = PL2_W, .type = ARM_CP_NOP },
6791     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
6792       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
6793       .access = PL2_W, .type = ARM_CP_NOP },
6794     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6795       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
6796       .access = PL2_W, .type = ARM_CP_NOP },
6797     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6798       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
6799       .access = PL2_W, .type = ARM_CP_NOP },
6800     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
6801       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
6802       .access = PL3_W, .type = ARM_CP_NO_RAW,
6803       .writefn = tlbi_aa64_alle3is_write },
6804     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
6805       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
6806       .access = PL3_W, .type = ARM_CP_NO_RAW,
6807       .writefn = tlbi_aa64_vae3is_write },
6808     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
6809       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
6810       .access = PL3_W, .type = ARM_CP_NO_RAW,
6811       .writefn = tlbi_aa64_vae3is_write },
6812 };
6813 
6814 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6815 {
6816     Error *err = NULL;
6817     uint64_t ret;
6818 
6819     /* Success sets NZCV = 0000.  */
6820     env->NF = env->CF = env->VF = 0, env->ZF = 1;
6821 
6822     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6823         /*
6824          * ??? Failed, for unknown reasons in the crypto subsystem.
6825          * The best we can do is log the reason and return the
6826          * timed-out indication to the guest.  There is no reason
6827          * we know to expect this failure to be transitory, so the
6828          * guest may well hang retrying the operation.
6829          */
6830         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6831                       ri->name, error_get_pretty(err));
6832         error_free(err);
6833 
6834         env->ZF = 0; /* NZCF = 0100 */
6835         return 0;
6836     }
6837     return ret;
6838 }
6839 
6840 /* We do not support re-seeding, so the two registers operate the same.  */
6841 static const ARMCPRegInfo rndr_reginfo[] = {
6842     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6843       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6844       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6845       .access = PL0_R, .readfn = rndr_readfn },
6846     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6847       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6848       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6849       .access = PL0_R, .readfn = rndr_readfn },
6850 };
6851 
6852 #ifndef CONFIG_USER_ONLY
6853 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6854                           uint64_t value)
6855 {
6856     ARMCPU *cpu = env_archcpu(env);
6857     /* CTR_EL0 System register -> DminLine, bits [19:16] */
6858     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6859     uint64_t vaddr_in = (uint64_t) value;
6860     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6861     void *haddr;
6862     int mem_idx = cpu_mmu_index(env, false);
6863 
6864     /* This won't be crossing page boundaries */
6865     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6866     if (haddr) {
6867 
6868         ram_addr_t offset;
6869         MemoryRegion *mr;
6870 
6871         /* RCU lock is already being held */
6872         mr = memory_region_from_host(haddr, &offset);
6873 
6874         if (mr) {
6875             memory_region_writeback(mr, offset, dline_size);
6876         }
6877     }
6878 }
6879 
6880 static const ARMCPRegInfo dcpop_reg[] = {
6881     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6882       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6883       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6884       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6885 };
6886 
6887 static const ARMCPRegInfo dcpodp_reg[] = {
6888     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6889       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6890       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6891       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6892 };
6893 #endif /*CONFIG_USER_ONLY*/
6894 
6895 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6896                                        bool isread)
6897 {
6898     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6899         return CP_ACCESS_TRAP_EL2;
6900     }
6901 
6902     return CP_ACCESS_OK;
6903 }
6904 
6905 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6906                                  bool isread)
6907 {
6908     int el = arm_current_el(env);
6909 
6910     if (el < 2 && arm_is_el2_enabled(env)) {
6911         uint64_t hcr = arm_hcr_el2_eff(env);
6912         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
6913             return CP_ACCESS_TRAP_EL2;
6914         }
6915     }
6916     if (el < 3 &&
6917         arm_feature(env, ARM_FEATURE_EL3) &&
6918         !(env->cp15.scr_el3 & SCR_ATA)) {
6919         return CP_ACCESS_TRAP_EL3;
6920     }
6921     return CP_ACCESS_OK;
6922 }
6923 
6924 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6925 {
6926     return env->pstate & PSTATE_TCO;
6927 }
6928 
6929 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6930 {
6931     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6932 }
6933 
6934 static const ARMCPRegInfo mte_reginfo[] = {
6935     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6936       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6937       .access = PL1_RW, .accessfn = access_mte,
6938       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6939     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6940       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6941       .access = PL1_RW, .accessfn = access_mte,
6942       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6943     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
6944       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
6945       .access = PL2_RW, .accessfn = access_mte,
6946       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
6947     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
6948       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
6949       .access = PL3_RW,
6950       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
6951     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
6952       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
6953       .access = PL1_RW, .accessfn = access_mte,
6954       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
6955     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
6956       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
6957       .access = PL1_RW, .accessfn = access_mte,
6958       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
6959     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
6960       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
6961       .access = PL1_R, .accessfn = access_aa64_tid5,
6962       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
6963     { .name = "TCO", .state = ARM_CP_STATE_AA64,
6964       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6965       .type = ARM_CP_NO_RAW,
6966       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
6967     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
6968       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
6969       .type = ARM_CP_NOP, .access = PL1_W,
6970       .accessfn = aa64_cacheop_poc_access },
6971     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
6972       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
6973       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6974     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
6975       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
6976       .type = ARM_CP_NOP, .access = PL1_W,
6977       .accessfn = aa64_cacheop_poc_access },
6978     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
6979       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
6980       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6981     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
6982       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
6983       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6984     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
6985       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
6986       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6987     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
6988       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
6989       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6990     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
6991       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
6992       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6993 };
6994 
6995 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
6996     { .name = "TCO", .state = ARM_CP_STATE_AA64,
6997       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6998       .type = ARM_CP_CONST, .access = PL0_RW, },
6999 };
7000 
7001 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7002     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7003       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7004       .type = ARM_CP_NOP, .access = PL0_W,
7005       .accessfn = aa64_cacheop_poc_access },
7006     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7007       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7008       .type = ARM_CP_NOP, .access = PL0_W,
7009       .accessfn = aa64_cacheop_poc_access },
7010     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7011       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7012       .type = ARM_CP_NOP, .access = PL0_W,
7013       .accessfn = aa64_cacheop_poc_access },
7014     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7015       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7016       .type = ARM_CP_NOP, .access = PL0_W,
7017       .accessfn = aa64_cacheop_poc_access },
7018     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7019       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7020       .type = ARM_CP_NOP, .access = PL0_W,
7021       .accessfn = aa64_cacheop_poc_access },
7022     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7023       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7024       .type = ARM_CP_NOP, .access = PL0_W,
7025       .accessfn = aa64_cacheop_poc_access },
7026     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7027       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7028       .type = ARM_CP_NOP, .access = PL0_W,
7029       .accessfn = aa64_cacheop_poc_access },
7030     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7031       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7032       .type = ARM_CP_NOP, .access = PL0_W,
7033       .accessfn = aa64_cacheop_poc_access },
7034     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7035       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7036       .access = PL0_W, .type = ARM_CP_DC_GVA,
7037 #ifndef CONFIG_USER_ONLY
7038       /* Avoid overhead of an access check that always passes in user-mode */
7039       .accessfn = aa64_zva_access,
7040 #endif
7041     },
7042     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7043       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7044       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7045 #ifndef CONFIG_USER_ONLY
7046       /* Avoid overhead of an access check that always passes in user-mode */
7047       .accessfn = aa64_zva_access,
7048 #endif
7049     },
7050 };
7051 
7052 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7053                                      bool isread)
7054 {
7055     uint64_t hcr = arm_hcr_el2_eff(env);
7056     int el = arm_current_el(env);
7057 
7058     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7059         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7060             if (hcr & HCR_TGE) {
7061                 return CP_ACCESS_TRAP_EL2;
7062             }
7063             return CP_ACCESS_TRAP;
7064         }
7065     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7066         return CP_ACCESS_TRAP_EL2;
7067     }
7068     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7069         return CP_ACCESS_TRAP_EL2;
7070     }
7071     if (el < 3
7072         && arm_feature(env, ARM_FEATURE_EL3)
7073         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7074         return CP_ACCESS_TRAP_EL3;
7075     }
7076     return CP_ACCESS_OK;
7077 }
7078 
7079 static const ARMCPRegInfo scxtnum_reginfo[] = {
7080     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7081       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7082       .access = PL0_RW, .accessfn = access_scxtnum,
7083       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7084     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7085       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7086       .access = PL1_RW, .accessfn = access_scxtnum,
7087       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7088     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7089       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7090       .access = PL2_RW, .accessfn = access_scxtnum,
7091       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7092     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7093       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7094       .access = PL3_RW,
7095       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7096 };
7097 #endif /* TARGET_AARCH64 */
7098 
7099 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7100                                      bool isread)
7101 {
7102     int el = arm_current_el(env);
7103 
7104     if (el == 0) {
7105         uint64_t sctlr = arm_sctlr(env, el);
7106         if (!(sctlr & SCTLR_EnRCTX)) {
7107             return CP_ACCESS_TRAP;
7108         }
7109     } else if (el == 1) {
7110         uint64_t hcr = arm_hcr_el2_eff(env);
7111         if (hcr & HCR_NV) {
7112             return CP_ACCESS_TRAP_EL2;
7113         }
7114     }
7115     return CP_ACCESS_OK;
7116 }
7117 
7118 static const ARMCPRegInfo predinv_reginfo[] = {
7119     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7120       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7121       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7122     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7123       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7124       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7125     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7126       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7127       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7128     /*
7129      * Note the AArch32 opcodes have a different OPC1.
7130      */
7131     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7132       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7133       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7134     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7135       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7136       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7137     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7138       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7139       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7140 };
7141 
7142 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7143 {
7144     /* Read the high 32 bits of the current CCSIDR */
7145     return extract64(ccsidr_read(env, ri), 32, 32);
7146 }
7147 
7148 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7149     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7150       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7151       .access = PL1_R,
7152       .accessfn = access_aa64_tid2,
7153       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7154 };
7155 
7156 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7157                                        bool isread)
7158 {
7159     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7160         return CP_ACCESS_TRAP_EL2;
7161     }
7162 
7163     return CP_ACCESS_OK;
7164 }
7165 
7166 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7167                                        bool isread)
7168 {
7169     if (arm_feature(env, ARM_FEATURE_V8)) {
7170         return access_aa64_tid3(env, ri, isread);
7171     }
7172 
7173     return CP_ACCESS_OK;
7174 }
7175 
7176 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7177                                      bool isread)
7178 {
7179     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7180         return CP_ACCESS_TRAP_EL2;
7181     }
7182 
7183     return CP_ACCESS_OK;
7184 }
7185 
7186 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7187                                         const ARMCPRegInfo *ri, bool isread)
7188 {
7189     /*
7190      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7191      * in v7A, not in v8A.
7192      */
7193     if (!arm_feature(env, ARM_FEATURE_V8) &&
7194         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7195         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7196         return CP_ACCESS_TRAP_EL2;
7197     }
7198     return CP_ACCESS_OK;
7199 }
7200 
7201 static const ARMCPRegInfo jazelle_regs[] = {
7202     { .name = "JIDR",
7203       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7204       .access = PL1_R, .accessfn = access_jazelle,
7205       .type = ARM_CP_CONST, .resetvalue = 0 },
7206     { .name = "JOSCR",
7207       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7208       .accessfn = access_joscr_jmcr,
7209       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7210     { .name = "JMCR",
7211       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7212       .accessfn = access_joscr_jmcr,
7213       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7214 };
7215 
7216 static const ARMCPRegInfo contextidr_el2 = {
7217     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7218     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7219     .access = PL2_RW,
7220     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7221 };
7222 
7223 static const ARMCPRegInfo vhe_reginfo[] = {
7224     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7225       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7226       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7227       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7228 #ifndef CONFIG_USER_ONLY
7229     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7230       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7231       .fieldoffset =
7232         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7233       .type = ARM_CP_IO, .access = PL2_RW,
7234       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7235     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7236       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7237       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7238       .resetfn = gt_hv_timer_reset,
7239       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7240     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7241       .type = ARM_CP_IO,
7242       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7243       .access = PL2_RW,
7244       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7245       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7246     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7247       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7248       .type = ARM_CP_IO | ARM_CP_ALIAS,
7249       .access = PL2_RW, .accessfn = e2h_access,
7250       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7251       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7252     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7253       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7254       .type = ARM_CP_IO | ARM_CP_ALIAS,
7255       .access = PL2_RW, .accessfn = e2h_access,
7256       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7257       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7258     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7259       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7260       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7261       .access = PL2_RW, .accessfn = e2h_access,
7262       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7263     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7264       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7265       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7266       .access = PL2_RW, .accessfn = e2h_access,
7267       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7268     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7269       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7270       .type = ARM_CP_IO | ARM_CP_ALIAS,
7271       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7272       .access = PL2_RW, .accessfn = e2h_access,
7273       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7274     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7275       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7276       .type = ARM_CP_IO | ARM_CP_ALIAS,
7277       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7278       .access = PL2_RW, .accessfn = e2h_access,
7279       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7280 #endif
7281 };
7282 
7283 #ifndef CONFIG_USER_ONLY
7284 static const ARMCPRegInfo ats1e1_reginfo[] = {
7285     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7286       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7287       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7288       .writefn = ats_write64 },
7289     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7290       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7291       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7292       .writefn = ats_write64 },
7293 };
7294 
7295 static const ARMCPRegInfo ats1cp_reginfo[] = {
7296     { .name = "ATS1CPRP",
7297       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7298       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7299       .writefn = ats_write },
7300     { .name = "ATS1CPWP",
7301       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7302       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7303       .writefn = ats_write },
7304 };
7305 #endif
7306 
7307 /*
7308  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7309  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7310  * is non-zero, which is never for ARMv7, optionally in ARMv8
7311  * and mandatorily for ARMv8.2 and up.
7312  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7313  * implementation is RAZ/WI we can ignore this detail, as we
7314  * do for ACTLR.
7315  */
7316 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7317     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7318       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7319       .access = PL1_RW, .accessfn = access_tacr,
7320       .type = ARM_CP_CONST, .resetvalue = 0 },
7321     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7322       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7323       .access = PL2_RW, .type = ARM_CP_CONST,
7324       .resetvalue = 0 },
7325 };
7326 
7327 void register_cp_regs_for_features(ARMCPU *cpu)
7328 {
7329     /* Register all the coprocessor registers based on feature bits */
7330     CPUARMState *env = &cpu->env;
7331     if (arm_feature(env, ARM_FEATURE_M)) {
7332         /* M profile has no coprocessor registers */
7333         return;
7334     }
7335 
7336     define_arm_cp_regs(cpu, cp_reginfo);
7337     if (!arm_feature(env, ARM_FEATURE_V8)) {
7338         /* Must go early as it is full of wildcards that may be
7339          * overridden by later definitions.
7340          */
7341         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7342     }
7343 
7344     if (arm_feature(env, ARM_FEATURE_V6)) {
7345         /* The ID registers all have impdef reset values */
7346         ARMCPRegInfo v6_idregs[] = {
7347             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7348               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7349               .access = PL1_R, .type = ARM_CP_CONST,
7350               .accessfn = access_aa32_tid3,
7351               .resetvalue = cpu->isar.id_pfr0 },
7352             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7353              * the value of the GIC field until after we define these regs.
7354              */
7355             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7356               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7357               .access = PL1_R, .type = ARM_CP_NO_RAW,
7358               .accessfn = access_aa32_tid3,
7359               .readfn = id_pfr1_read,
7360               .writefn = arm_cp_write_ignore },
7361             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7362               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7363               .access = PL1_R, .type = ARM_CP_CONST,
7364               .accessfn = access_aa32_tid3,
7365               .resetvalue = cpu->isar.id_dfr0 },
7366             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7367               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7368               .access = PL1_R, .type = ARM_CP_CONST,
7369               .accessfn = access_aa32_tid3,
7370               .resetvalue = cpu->id_afr0 },
7371             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7372               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7373               .access = PL1_R, .type = ARM_CP_CONST,
7374               .accessfn = access_aa32_tid3,
7375               .resetvalue = cpu->isar.id_mmfr0 },
7376             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7377               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7378               .access = PL1_R, .type = ARM_CP_CONST,
7379               .accessfn = access_aa32_tid3,
7380               .resetvalue = cpu->isar.id_mmfr1 },
7381             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7382               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7383               .access = PL1_R, .type = ARM_CP_CONST,
7384               .accessfn = access_aa32_tid3,
7385               .resetvalue = cpu->isar.id_mmfr2 },
7386             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7387               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7388               .access = PL1_R, .type = ARM_CP_CONST,
7389               .accessfn = access_aa32_tid3,
7390               .resetvalue = cpu->isar.id_mmfr3 },
7391             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7392               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7393               .access = PL1_R, .type = ARM_CP_CONST,
7394               .accessfn = access_aa32_tid3,
7395               .resetvalue = cpu->isar.id_isar0 },
7396             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7397               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7398               .access = PL1_R, .type = ARM_CP_CONST,
7399               .accessfn = access_aa32_tid3,
7400               .resetvalue = cpu->isar.id_isar1 },
7401             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7402               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7403               .access = PL1_R, .type = ARM_CP_CONST,
7404               .accessfn = access_aa32_tid3,
7405               .resetvalue = cpu->isar.id_isar2 },
7406             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7407               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7408               .access = PL1_R, .type = ARM_CP_CONST,
7409               .accessfn = access_aa32_tid3,
7410               .resetvalue = cpu->isar.id_isar3 },
7411             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7412               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7413               .access = PL1_R, .type = ARM_CP_CONST,
7414               .accessfn = access_aa32_tid3,
7415               .resetvalue = cpu->isar.id_isar4 },
7416             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7417               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7418               .access = PL1_R, .type = ARM_CP_CONST,
7419               .accessfn = access_aa32_tid3,
7420               .resetvalue = cpu->isar.id_isar5 },
7421             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7422               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7423               .access = PL1_R, .type = ARM_CP_CONST,
7424               .accessfn = access_aa32_tid3,
7425               .resetvalue = cpu->isar.id_mmfr4 },
7426             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7427               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7428               .access = PL1_R, .type = ARM_CP_CONST,
7429               .accessfn = access_aa32_tid3,
7430               .resetvalue = cpu->isar.id_isar6 },
7431         };
7432         define_arm_cp_regs(cpu, v6_idregs);
7433         define_arm_cp_regs(cpu, v6_cp_reginfo);
7434     } else {
7435         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7436     }
7437     if (arm_feature(env, ARM_FEATURE_V6K)) {
7438         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7439     }
7440     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7441         !arm_feature(env, ARM_FEATURE_PMSA)) {
7442         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7443     }
7444     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7445         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7446     }
7447     if (arm_feature(env, ARM_FEATURE_V7)) {
7448         ARMCPRegInfo clidr = {
7449             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7450             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7451             .access = PL1_R, .type = ARM_CP_CONST,
7452             .accessfn = access_aa64_tid2,
7453             .resetvalue = cpu->clidr
7454         };
7455         define_one_arm_cp_reg(cpu, &clidr);
7456         define_arm_cp_regs(cpu, v7_cp_reginfo);
7457         define_debug_regs(cpu);
7458         define_pmu_regs(cpu);
7459     } else {
7460         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7461     }
7462     if (arm_feature(env, ARM_FEATURE_V8)) {
7463         /*
7464          * v8 ID registers, which all have impdef reset values.
7465          * Note that within the ID register ranges the unused slots
7466          * must all RAZ, not UNDEF; future architecture versions may
7467          * define new registers here.
7468          * ID registers which are AArch64 views of the AArch32 ID registers
7469          * which already existed in v6 and v7 are handled elsewhere,
7470          * in v6_idregs[].
7471          */
7472         int i;
7473         ARMCPRegInfo v8_idregs[] = {
7474             /*
7475              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7476              * emulation because we don't know the right value for the
7477              * GIC field until after we define these regs.
7478              */
7479             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7480               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7481               .access = PL1_R,
7482 #ifdef CONFIG_USER_ONLY
7483               .type = ARM_CP_CONST,
7484               .resetvalue = cpu->isar.id_aa64pfr0
7485 #else
7486               .type = ARM_CP_NO_RAW,
7487               .accessfn = access_aa64_tid3,
7488               .readfn = id_aa64pfr0_read,
7489               .writefn = arm_cp_write_ignore
7490 #endif
7491             },
7492             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7493               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7494               .access = PL1_R, .type = ARM_CP_CONST,
7495               .accessfn = access_aa64_tid3,
7496               .resetvalue = cpu->isar.id_aa64pfr1},
7497             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7498               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7499               .access = PL1_R, .type = ARM_CP_CONST,
7500               .accessfn = access_aa64_tid3,
7501               .resetvalue = 0 },
7502             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7503               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7504               .access = PL1_R, .type = ARM_CP_CONST,
7505               .accessfn = access_aa64_tid3,
7506               .resetvalue = 0 },
7507             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7508               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7509               .access = PL1_R, .type = ARM_CP_CONST,
7510               .accessfn = access_aa64_tid3,
7511               .resetvalue = cpu->isar.id_aa64zfr0 },
7512             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
7513               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7514               .access = PL1_R, .type = ARM_CP_CONST,
7515               .accessfn = access_aa64_tid3,
7516               .resetvalue = cpu->isar.id_aa64smfr0 },
7517             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7518               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7519               .access = PL1_R, .type = ARM_CP_CONST,
7520               .accessfn = access_aa64_tid3,
7521               .resetvalue = 0 },
7522             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7523               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7524               .access = PL1_R, .type = ARM_CP_CONST,
7525               .accessfn = access_aa64_tid3,
7526               .resetvalue = 0 },
7527             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7528               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7529               .access = PL1_R, .type = ARM_CP_CONST,
7530               .accessfn = access_aa64_tid3,
7531               .resetvalue = cpu->isar.id_aa64dfr0 },
7532             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7533               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7534               .access = PL1_R, .type = ARM_CP_CONST,
7535               .accessfn = access_aa64_tid3,
7536               .resetvalue = cpu->isar.id_aa64dfr1 },
7537             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7538               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7539               .access = PL1_R, .type = ARM_CP_CONST,
7540               .accessfn = access_aa64_tid3,
7541               .resetvalue = 0 },
7542             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7543               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7544               .access = PL1_R, .type = ARM_CP_CONST,
7545               .accessfn = access_aa64_tid3,
7546               .resetvalue = 0 },
7547             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7548               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7549               .access = PL1_R, .type = ARM_CP_CONST,
7550               .accessfn = access_aa64_tid3,
7551               .resetvalue = cpu->id_aa64afr0 },
7552             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7553               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7554               .access = PL1_R, .type = ARM_CP_CONST,
7555               .accessfn = access_aa64_tid3,
7556               .resetvalue = cpu->id_aa64afr1 },
7557             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7558               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7559               .access = PL1_R, .type = ARM_CP_CONST,
7560               .accessfn = access_aa64_tid3,
7561               .resetvalue = 0 },
7562             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7563               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7564               .access = PL1_R, .type = ARM_CP_CONST,
7565               .accessfn = access_aa64_tid3,
7566               .resetvalue = 0 },
7567             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7568               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7569               .access = PL1_R, .type = ARM_CP_CONST,
7570               .accessfn = access_aa64_tid3,
7571               .resetvalue = cpu->isar.id_aa64isar0 },
7572             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7573               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7574               .access = PL1_R, .type = ARM_CP_CONST,
7575               .accessfn = access_aa64_tid3,
7576               .resetvalue = cpu->isar.id_aa64isar1 },
7577             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7578               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7579               .access = PL1_R, .type = ARM_CP_CONST,
7580               .accessfn = access_aa64_tid3,
7581               .resetvalue = 0 },
7582             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7583               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7584               .access = PL1_R, .type = ARM_CP_CONST,
7585               .accessfn = access_aa64_tid3,
7586               .resetvalue = 0 },
7587             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7588               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7589               .access = PL1_R, .type = ARM_CP_CONST,
7590               .accessfn = access_aa64_tid3,
7591               .resetvalue = 0 },
7592             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7593               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7594               .access = PL1_R, .type = ARM_CP_CONST,
7595               .accessfn = access_aa64_tid3,
7596               .resetvalue = 0 },
7597             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7598               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7599               .access = PL1_R, .type = ARM_CP_CONST,
7600               .accessfn = access_aa64_tid3,
7601               .resetvalue = 0 },
7602             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7603               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7604               .access = PL1_R, .type = ARM_CP_CONST,
7605               .accessfn = access_aa64_tid3,
7606               .resetvalue = 0 },
7607             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7608               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7609               .access = PL1_R, .type = ARM_CP_CONST,
7610               .accessfn = access_aa64_tid3,
7611               .resetvalue = cpu->isar.id_aa64mmfr0 },
7612             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7613               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7614               .access = PL1_R, .type = ARM_CP_CONST,
7615               .accessfn = access_aa64_tid3,
7616               .resetvalue = cpu->isar.id_aa64mmfr1 },
7617             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7618               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7619               .access = PL1_R, .type = ARM_CP_CONST,
7620               .accessfn = access_aa64_tid3,
7621               .resetvalue = cpu->isar.id_aa64mmfr2 },
7622             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7623               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7624               .access = PL1_R, .type = ARM_CP_CONST,
7625               .accessfn = access_aa64_tid3,
7626               .resetvalue = 0 },
7627             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7628               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7629               .access = PL1_R, .type = ARM_CP_CONST,
7630               .accessfn = access_aa64_tid3,
7631               .resetvalue = 0 },
7632             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7633               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7634               .access = PL1_R, .type = ARM_CP_CONST,
7635               .accessfn = access_aa64_tid3,
7636               .resetvalue = 0 },
7637             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7638               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7639               .access = PL1_R, .type = ARM_CP_CONST,
7640               .accessfn = access_aa64_tid3,
7641               .resetvalue = 0 },
7642             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7643               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7644               .access = PL1_R, .type = ARM_CP_CONST,
7645               .accessfn = access_aa64_tid3,
7646               .resetvalue = 0 },
7647             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7648               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7649               .access = PL1_R, .type = ARM_CP_CONST,
7650               .accessfn = access_aa64_tid3,
7651               .resetvalue = cpu->isar.mvfr0 },
7652             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7653               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7654               .access = PL1_R, .type = ARM_CP_CONST,
7655               .accessfn = access_aa64_tid3,
7656               .resetvalue = cpu->isar.mvfr1 },
7657             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7658               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7659               .access = PL1_R, .type = ARM_CP_CONST,
7660               .accessfn = access_aa64_tid3,
7661               .resetvalue = cpu->isar.mvfr2 },
7662             /*
7663              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
7664              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
7665              * as RAZ, since it is in the "reserved for future ID
7666              * registers, RAZ" part of the AArch32 encoding space.
7667              */
7668             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
7669               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7670               .access = PL1_R, .type = ARM_CP_CONST,
7671               .accessfn = access_aa64_tid3,
7672               .resetvalue = 0 },
7673             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
7674               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7675               .access = PL1_R, .type = ARM_CP_CONST,
7676               .accessfn = access_aa64_tid3,
7677               .resetvalue = 0 },
7678             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
7679               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7680               .access = PL1_R, .type = ARM_CP_CONST,
7681               .accessfn = access_aa64_tid3,
7682               .resetvalue = 0 },
7683             /*
7684              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
7685              * they're also RAZ for AArch64, and in v8 are gradually
7686              * being filled with AArch64-view-of-AArch32-ID-register
7687              * for new ID registers.
7688              */
7689             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
7690               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7691               .access = PL1_R, .type = ARM_CP_CONST,
7692               .accessfn = access_aa64_tid3,
7693               .resetvalue = 0 },
7694             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7695               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7696               .access = PL1_R, .type = ARM_CP_CONST,
7697               .accessfn = access_aa64_tid3,
7698               .resetvalue = cpu->isar.id_pfr2 },
7699             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
7700               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7701               .access = PL1_R, .type = ARM_CP_CONST,
7702               .accessfn = access_aa64_tid3,
7703               .resetvalue = cpu->isar.id_dfr1 },
7704             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
7705               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7706               .access = PL1_R, .type = ARM_CP_CONST,
7707               .accessfn = access_aa64_tid3,
7708               .resetvalue = cpu->isar.id_mmfr5 },
7709             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
7710               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7711               .access = PL1_R, .type = ARM_CP_CONST,
7712               .accessfn = access_aa64_tid3,
7713               .resetvalue = 0 },
7714             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7715               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7716               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7717               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7718             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7719               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7720               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7721               .resetvalue = cpu->pmceid0 },
7722             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7723               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7724               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7725               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7726             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7727               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7728               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7729               .resetvalue = cpu->pmceid1 },
7730         };
7731 #ifdef CONFIG_USER_ONLY
7732         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7733             { .name = "ID_AA64PFR0_EL1",
7734               .exported_bits = 0x000f000f00ff0000,
7735               .fixed_bits    = 0x0000000000000011 },
7736             { .name = "ID_AA64PFR1_EL1",
7737               .exported_bits = 0x00000000000000f0 },
7738             { .name = "ID_AA64PFR*_EL1_RESERVED",
7739               .is_glob = true                     },
7740             { .name = "ID_AA64ZFR0_EL1"           },
7741             { .name = "ID_AA64MMFR0_EL1",
7742               .fixed_bits    = 0x00000000ff000000 },
7743             { .name = "ID_AA64MMFR1_EL1"          },
7744             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7745               .is_glob = true                     },
7746             { .name = "ID_AA64DFR0_EL1",
7747               .fixed_bits    = 0x0000000000000006 },
7748             { .name = "ID_AA64DFR1_EL1"           },
7749             { .name = "ID_AA64DFR*_EL1_RESERVED",
7750               .is_glob = true                     },
7751             { .name = "ID_AA64AFR*",
7752               .is_glob = true                     },
7753             { .name = "ID_AA64ISAR0_EL1",
7754               .exported_bits = 0x00fffffff0fffff0 },
7755             { .name = "ID_AA64ISAR1_EL1",
7756               .exported_bits = 0x000000f0ffffffff },
7757             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7758               .is_glob = true                     },
7759         };
7760         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7761 #endif
7762         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7763         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7764             !arm_feature(env, ARM_FEATURE_EL2)) {
7765             ARMCPRegInfo rvbar = {
7766                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7767                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7768                 .access = PL1_R,
7769                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7770             };
7771             define_one_arm_cp_reg(cpu, &rvbar);
7772         }
7773         define_arm_cp_regs(cpu, v8_idregs);
7774         define_arm_cp_regs(cpu, v8_cp_reginfo);
7775 
7776         for (i = 4; i < 16; i++) {
7777             /*
7778              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
7779              * For pre-v8 cores there are RAZ patterns for these in
7780              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
7781              * v8 extends the "must RAZ" part of the ID register space
7782              * to also cover c0, 0, c{8-15}, {0-7}.
7783              * These are STATE_AA32 because in the AArch64 sysreg space
7784              * c4-c7 is where the AArch64 ID registers live (and we've
7785              * already defined those in v8_idregs[]), and c8-c15 are not
7786              * "must RAZ" for AArch64.
7787              */
7788             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
7789             ARMCPRegInfo v8_aa32_raz_idregs = {
7790                 .name = name,
7791                 .state = ARM_CP_STATE_AA32,
7792                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
7793                 .access = PL1_R, .type = ARM_CP_CONST,
7794                 .accessfn = access_aa64_tid3,
7795                 .resetvalue = 0 };
7796             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
7797         }
7798     }
7799 
7800     /*
7801      * Register the base EL2 cpregs.
7802      * Pre v8, these registers are implemented only as part of the
7803      * Virtualization Extensions (EL2 present).  Beginning with v8,
7804      * if EL2 is missing but EL3 is enabled, mostly these become
7805      * RES0 from EL3, with some specific exceptions.
7806      */
7807     if (arm_feature(env, ARM_FEATURE_EL2)
7808         || (arm_feature(env, ARM_FEATURE_EL3)
7809             && arm_feature(env, ARM_FEATURE_V8))) {
7810         uint64_t vmpidr_def = mpidr_read_val(env);
7811         ARMCPRegInfo vpidr_regs[] = {
7812             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7813               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7814               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7815               .resetvalue = cpu->midr,
7816               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7817               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7818             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7819               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7820               .access = PL2_RW, .resetvalue = cpu->midr,
7821               .type = ARM_CP_EL3_NO_EL2_C_NZ,
7822               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7823             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7824               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7825               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7826               .resetvalue = vmpidr_def,
7827               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7828               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7829             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7830               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7831               .access = PL2_RW, .resetvalue = vmpidr_def,
7832               .type = ARM_CP_EL3_NO_EL2_C_NZ,
7833               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7834         };
7835         /*
7836          * The only field of MDCR_EL2 that has a defined architectural reset
7837          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
7838          */
7839         ARMCPRegInfo mdcr_el2 = {
7840             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
7841             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
7842             .writefn = mdcr_el2_write,
7843             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
7844             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
7845         };
7846         define_one_arm_cp_reg(cpu, &mdcr_el2);
7847         define_arm_cp_regs(cpu, vpidr_regs);
7848         define_arm_cp_regs(cpu, el2_cp_reginfo);
7849         if (arm_feature(env, ARM_FEATURE_V8)) {
7850             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7851         }
7852         if (cpu_isar_feature(aa64_sel2, cpu)) {
7853             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7854         }
7855         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7856         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7857             ARMCPRegInfo rvbar = {
7858                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7859                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7860                 .access = PL2_R,
7861                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7862             };
7863             define_one_arm_cp_reg(cpu, &rvbar);
7864         }
7865     }
7866 
7867     /* Register the base EL3 cpregs. */
7868     if (arm_feature(env, ARM_FEATURE_EL3)) {
7869         define_arm_cp_regs(cpu, el3_cp_reginfo);
7870         ARMCPRegInfo el3_regs[] = {
7871             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7872               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7873               .access = PL3_R,
7874               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7875             },
7876             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7877               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7878               .access = PL3_RW,
7879               .raw_writefn = raw_write, .writefn = sctlr_write,
7880               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7881               .resetvalue = cpu->reset_sctlr },
7882         };
7883 
7884         define_arm_cp_regs(cpu, el3_regs);
7885     }
7886     /* The behaviour of NSACR is sufficiently various that we don't
7887      * try to describe it in a single reginfo:
7888      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
7889      *     reads as constant 0xc00 from NS EL1 and NS EL2
7890      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7891      *  if v7 without EL3, register doesn't exist
7892      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7893      */
7894     if (arm_feature(env, ARM_FEATURE_EL3)) {
7895         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7896             static const ARMCPRegInfo nsacr = {
7897                 .name = "NSACR", .type = ARM_CP_CONST,
7898                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7899                 .access = PL1_RW, .accessfn = nsacr_access,
7900                 .resetvalue = 0xc00
7901             };
7902             define_one_arm_cp_reg(cpu, &nsacr);
7903         } else {
7904             static const ARMCPRegInfo nsacr = {
7905                 .name = "NSACR",
7906                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7907                 .access = PL3_RW | PL1_R,
7908                 .resetvalue = 0,
7909                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7910             };
7911             define_one_arm_cp_reg(cpu, &nsacr);
7912         }
7913     } else {
7914         if (arm_feature(env, ARM_FEATURE_V8)) {
7915             static const ARMCPRegInfo nsacr = {
7916                 .name = "NSACR", .type = ARM_CP_CONST,
7917                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7918                 .access = PL1_R,
7919                 .resetvalue = 0xc00
7920             };
7921             define_one_arm_cp_reg(cpu, &nsacr);
7922         }
7923     }
7924 
7925     if (arm_feature(env, ARM_FEATURE_PMSA)) {
7926         if (arm_feature(env, ARM_FEATURE_V6)) {
7927             /* PMSAv6 not implemented */
7928             assert(arm_feature(env, ARM_FEATURE_V7));
7929             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7930             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7931         } else {
7932             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7933         }
7934     } else {
7935         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7936         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7937         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
7938         if (cpu_isar_feature(aa32_hpd, cpu)) {
7939             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7940         }
7941     }
7942     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7943         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7944     }
7945     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7946         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7947     }
7948     if (arm_feature(env, ARM_FEATURE_VAPA)) {
7949         define_arm_cp_regs(cpu, vapa_cp_reginfo);
7950     }
7951     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7952         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7953     }
7954     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7955         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7956     }
7957     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7958         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7959     }
7960     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7961         define_arm_cp_regs(cpu, omap_cp_reginfo);
7962     }
7963     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7964         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7965     }
7966     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7967         define_arm_cp_regs(cpu, xscale_cp_reginfo);
7968     }
7969     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7970         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7971     }
7972     if (arm_feature(env, ARM_FEATURE_LPAE)) {
7973         define_arm_cp_regs(cpu, lpae_cp_reginfo);
7974     }
7975     if (cpu_isar_feature(aa32_jazelle, cpu)) {
7976         define_arm_cp_regs(cpu, jazelle_regs);
7977     }
7978     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7979      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7980      * be read-only (ie write causes UNDEF exception).
7981      */
7982     {
7983         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7984             /* Pre-v8 MIDR space.
7985              * Note that the MIDR isn't a simple constant register because
7986              * of the TI925 behaviour where writes to another register can
7987              * cause the MIDR value to change.
7988              *
7989              * Unimplemented registers in the c15 0 0 0 space default to
7990              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7991              * and friends override accordingly.
7992              */
7993             { .name = "MIDR",
7994               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7995               .access = PL1_R, .resetvalue = cpu->midr,
7996               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7997               .readfn = midr_read,
7998               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7999               .type = ARM_CP_OVERRIDE },
8000             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8001             { .name = "DUMMY",
8002               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8003               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8004             { .name = "DUMMY",
8005               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8006               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8007             { .name = "DUMMY",
8008               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8009               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8010             { .name = "DUMMY",
8011               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8012               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8013             { .name = "DUMMY",
8014               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8015               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8016         };
8017         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8018             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8019               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8020               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8021               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8022               .readfn = midr_read },
8023             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8024             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8025               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8026               .access = PL1_R, .resetvalue = cpu->midr },
8027             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8028               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8029               .access = PL1_R, .resetvalue = cpu->midr },
8030             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8031               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8032               .access = PL1_R,
8033               .accessfn = access_aa64_tid1,
8034               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8035         };
8036         ARMCPRegInfo id_cp_reginfo[] = {
8037             /* These are common to v8 and pre-v8 */
8038             { .name = "CTR",
8039               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8040               .access = PL1_R, .accessfn = ctr_el0_access,
8041               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8042             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8043               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8044               .access = PL0_R, .accessfn = ctr_el0_access,
8045               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8046             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8047             { .name = "TCMTR",
8048               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8049               .access = PL1_R,
8050               .accessfn = access_aa32_tid1,
8051               .type = ARM_CP_CONST, .resetvalue = 0 },
8052         };
8053         /* TLBTR is specific to VMSA */
8054         ARMCPRegInfo id_tlbtr_reginfo = {
8055               .name = "TLBTR",
8056               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8057               .access = PL1_R,
8058               .accessfn = access_aa32_tid1,
8059               .type = ARM_CP_CONST, .resetvalue = 0,
8060         };
8061         /* MPUIR is specific to PMSA V6+ */
8062         ARMCPRegInfo id_mpuir_reginfo = {
8063               .name = "MPUIR",
8064               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8065               .access = PL1_R, .type = ARM_CP_CONST,
8066               .resetvalue = cpu->pmsav7_dregion << 8
8067         };
8068         static const ARMCPRegInfo crn0_wi_reginfo = {
8069             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8070             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8071             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8072         };
8073 #ifdef CONFIG_USER_ONLY
8074         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8075             { .name = "MIDR_EL1",
8076               .exported_bits = 0x00000000ffffffff },
8077             { .name = "REVIDR_EL1"                },
8078         };
8079         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8080 #endif
8081         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8082             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8083             size_t i;
8084             /* Register the blanket "writes ignored" value first to cover the
8085              * whole space. Then update the specific ID registers to allow write
8086              * access, so that they ignore writes rather than causing them to
8087              * UNDEF.
8088              */
8089             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8090             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8091                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8092             }
8093             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8094                 id_cp_reginfo[i].access = PL1_RW;
8095             }
8096             id_mpuir_reginfo.access = PL1_RW;
8097             id_tlbtr_reginfo.access = PL1_RW;
8098         }
8099         if (arm_feature(env, ARM_FEATURE_V8)) {
8100             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8101         } else {
8102             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8103         }
8104         define_arm_cp_regs(cpu, id_cp_reginfo);
8105         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8106             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8107         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8108             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8109         }
8110     }
8111 
8112     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8113         ARMCPRegInfo mpidr_cp_reginfo[] = {
8114             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8115               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8116               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8117         };
8118 #ifdef CONFIG_USER_ONLY
8119         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8120             { .name = "MPIDR_EL1",
8121               .fixed_bits = 0x0000000080000000 },
8122         };
8123         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8124 #endif
8125         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8126     }
8127 
8128     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8129         ARMCPRegInfo auxcr_reginfo[] = {
8130             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8131               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8132               .access = PL1_RW, .accessfn = access_tacr,
8133               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8134             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8135               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8136               .access = PL2_RW, .type = ARM_CP_CONST,
8137               .resetvalue = 0 },
8138             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8139               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8140               .access = PL3_RW, .type = ARM_CP_CONST,
8141               .resetvalue = 0 },
8142         };
8143         define_arm_cp_regs(cpu, auxcr_reginfo);
8144         if (cpu_isar_feature(aa32_ac2, cpu)) {
8145             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8146         }
8147     }
8148 
8149     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8150         /*
8151          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8152          * There are two flavours:
8153          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8154          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8155          *      32-bit register visible to AArch32 at a different encoding
8156          *      to the "flavour 1" register and with the bits rearranged to
8157          *      be able to squash a 64-bit address into the 32-bit view.
8158          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8159          * in future if we support AArch32-only configs of some of the
8160          * AArch64 cores we might need to add a specific feature flag
8161          * to indicate cores with "flavour 2" CBAR.
8162          */
8163         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8164             /* 32 bit view is [31:18] 0...0 [43:32]. */
8165             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8166                 | extract64(cpu->reset_cbar, 32, 12);
8167             ARMCPRegInfo cbar_reginfo[] = {
8168                 { .name = "CBAR",
8169                   .type = ARM_CP_CONST,
8170                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8171                   .access = PL1_R, .resetvalue = cbar32 },
8172                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8173                   .type = ARM_CP_CONST,
8174                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8175                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8176             };
8177             /* We don't implement a r/w 64 bit CBAR currently */
8178             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8179             define_arm_cp_regs(cpu, cbar_reginfo);
8180         } else {
8181             ARMCPRegInfo cbar = {
8182                 .name = "CBAR",
8183                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8184                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8185                 .fieldoffset = offsetof(CPUARMState,
8186                                         cp15.c15_config_base_address)
8187             };
8188             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8189                 cbar.access = PL1_R;
8190                 cbar.fieldoffset = 0;
8191                 cbar.type = ARM_CP_CONST;
8192             }
8193             define_one_arm_cp_reg(cpu, &cbar);
8194         }
8195     }
8196 
8197     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8198         static const ARMCPRegInfo vbar_cp_reginfo[] = {
8199             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8200               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8201               .access = PL1_RW, .writefn = vbar_write,
8202               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8203                                      offsetof(CPUARMState, cp15.vbar_ns) },
8204               .resetvalue = 0 },
8205         };
8206         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8207     }
8208 
8209     /* Generic registers whose values depend on the implementation */
8210     {
8211         ARMCPRegInfo sctlr = {
8212             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8213             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8214             .access = PL1_RW, .accessfn = access_tvm_trvm,
8215             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8216                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8217             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8218             .raw_writefn = raw_write,
8219         };
8220         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8221             /* Normally we would always end the TB on an SCTLR write, but Linux
8222              * arch/arm/mach-pxa/sleep.S expects two instructions following
8223              * an MMU enable to execute from cache.  Imitate this behaviour.
8224              */
8225             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8226         }
8227         define_one_arm_cp_reg(cpu, &sctlr);
8228     }
8229 
8230     if (cpu_isar_feature(aa64_lor, cpu)) {
8231         define_arm_cp_regs(cpu, lor_reginfo);
8232     }
8233     if (cpu_isar_feature(aa64_pan, cpu)) {
8234         define_one_arm_cp_reg(cpu, &pan_reginfo);
8235     }
8236 #ifndef CONFIG_USER_ONLY
8237     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8238         define_arm_cp_regs(cpu, ats1e1_reginfo);
8239     }
8240     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8241         define_arm_cp_regs(cpu, ats1cp_reginfo);
8242     }
8243 #endif
8244     if (cpu_isar_feature(aa64_uao, cpu)) {
8245         define_one_arm_cp_reg(cpu, &uao_reginfo);
8246     }
8247 
8248     if (cpu_isar_feature(aa64_dit, cpu)) {
8249         define_one_arm_cp_reg(cpu, &dit_reginfo);
8250     }
8251     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8252         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8253     }
8254     if (cpu_isar_feature(any_ras, cpu)) {
8255         define_arm_cp_regs(cpu, minimal_ras_reginfo);
8256     }
8257 
8258     if (cpu_isar_feature(aa64_vh, cpu) ||
8259         cpu_isar_feature(aa64_debugv8p2, cpu)) {
8260         define_one_arm_cp_reg(cpu, &contextidr_el2);
8261     }
8262     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8263         define_arm_cp_regs(cpu, vhe_reginfo);
8264     }
8265 
8266     if (cpu_isar_feature(aa64_sve, cpu)) {
8267         define_arm_cp_regs(cpu, zcr_reginfo);
8268     }
8269 
8270     if (cpu_isar_feature(aa64_hcx, cpu)) {
8271         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
8272     }
8273 
8274 #ifdef TARGET_AARCH64
8275     if (cpu_isar_feature(aa64_sme, cpu)) {
8276         define_arm_cp_regs(cpu, sme_reginfo);
8277     }
8278     if (cpu_isar_feature(aa64_pauth, cpu)) {
8279         define_arm_cp_regs(cpu, pauth_reginfo);
8280     }
8281     if (cpu_isar_feature(aa64_rndr, cpu)) {
8282         define_arm_cp_regs(cpu, rndr_reginfo);
8283     }
8284     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8285         define_arm_cp_regs(cpu, tlbirange_reginfo);
8286     }
8287     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8288         define_arm_cp_regs(cpu, tlbios_reginfo);
8289     }
8290 #ifndef CONFIG_USER_ONLY
8291     /* Data Cache clean instructions up to PoP */
8292     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8293         define_one_arm_cp_reg(cpu, dcpop_reg);
8294 
8295         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8296             define_one_arm_cp_reg(cpu, dcpodp_reg);
8297         }
8298     }
8299 #endif /*CONFIG_USER_ONLY*/
8300 
8301     /*
8302      * If full MTE is enabled, add all of the system registers.
8303      * If only "instructions available at EL0" are enabled,
8304      * then define only a RAZ/WI version of PSTATE.TCO.
8305      */
8306     if (cpu_isar_feature(aa64_mte, cpu)) {
8307         define_arm_cp_regs(cpu, mte_reginfo);
8308         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8309     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8310         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8311         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8312     }
8313 
8314     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
8315         define_arm_cp_regs(cpu, scxtnum_reginfo);
8316     }
8317 #endif
8318 
8319     if (cpu_isar_feature(any_predinv, cpu)) {
8320         define_arm_cp_regs(cpu, predinv_reginfo);
8321     }
8322 
8323     if (cpu_isar_feature(any_ccidx, cpu)) {
8324         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8325     }
8326 
8327 #ifndef CONFIG_USER_ONLY
8328     /*
8329      * Register redirections and aliases must be done last,
8330      * after the registers from the other extensions have been defined.
8331      */
8332     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8333         define_arm_vh_e2h_redirects_aliases(cpu);
8334     }
8335 #endif
8336 }
8337 
8338 /* Sort alphabetically by type name, except for "any". */
8339 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8340 {
8341     ObjectClass *class_a = (ObjectClass *)a;
8342     ObjectClass *class_b = (ObjectClass *)b;
8343     const char *name_a, *name_b;
8344 
8345     name_a = object_class_get_name(class_a);
8346     name_b = object_class_get_name(class_b);
8347     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8348         return 1;
8349     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8350         return -1;
8351     } else {
8352         return strcmp(name_a, name_b);
8353     }
8354 }
8355 
8356 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8357 {
8358     ObjectClass *oc = data;
8359     CPUClass *cc = CPU_CLASS(oc);
8360     const char *typename;
8361     char *name;
8362 
8363     typename = object_class_get_name(oc);
8364     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8365     if (cc->deprecation_note) {
8366         qemu_printf("  %s (deprecated)\n", name);
8367     } else {
8368         qemu_printf("  %s\n", name);
8369     }
8370     g_free(name);
8371 }
8372 
8373 void arm_cpu_list(void)
8374 {
8375     GSList *list;
8376 
8377     list = object_class_get_list(TYPE_ARM_CPU, false);
8378     list = g_slist_sort(list, arm_cpu_list_compare);
8379     qemu_printf("Available CPUs:\n");
8380     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8381     g_slist_free(list);
8382 }
8383 
8384 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8385 {
8386     ObjectClass *oc = data;
8387     CpuDefinitionInfoList **cpu_list = user_data;
8388     CpuDefinitionInfo *info;
8389     const char *typename;
8390 
8391     typename = object_class_get_name(oc);
8392     info = g_malloc0(sizeof(*info));
8393     info->name = g_strndup(typename,
8394                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8395     info->q_typename = g_strdup(typename);
8396 
8397     QAPI_LIST_PREPEND(*cpu_list, info);
8398 }
8399 
8400 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8401 {
8402     CpuDefinitionInfoList *cpu_list = NULL;
8403     GSList *list;
8404 
8405     list = object_class_get_list(TYPE_ARM_CPU, false);
8406     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8407     g_slist_free(list);
8408 
8409     return cpu_list;
8410 }
8411 
8412 /*
8413  * Private utility function for define_one_arm_cp_reg_with_opaque():
8414  * add a single reginfo struct to the hash table.
8415  */
8416 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8417                                    void *opaque, CPState state,
8418                                    CPSecureState secstate,
8419                                    int crm, int opc1, int opc2,
8420                                    const char *name)
8421 {
8422     CPUARMState *env = &cpu->env;
8423     uint32_t key;
8424     ARMCPRegInfo *r2;
8425     bool is64 = r->type & ARM_CP_64BIT;
8426     bool ns = secstate & ARM_CP_SECSTATE_NS;
8427     int cp = r->cp;
8428     size_t name_len;
8429     bool make_const;
8430 
8431     switch (state) {
8432     case ARM_CP_STATE_AA32:
8433         /* We assume it is a cp15 register if the .cp field is left unset. */
8434         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
8435             cp = 15;
8436         }
8437         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
8438         break;
8439     case ARM_CP_STATE_AA64:
8440         /*
8441          * To allow abbreviation of ARMCPRegInfo definitions, we treat
8442          * cp == 0 as equivalent to the value for "standard guest-visible
8443          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
8444          * in their AArch64 view (the .cp value may be non-zero for the
8445          * benefit of the AArch32 view).
8446          */
8447         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8448             cp = CP_REG_ARM64_SYSREG_CP;
8449         }
8450         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
8451         break;
8452     default:
8453         g_assert_not_reached();
8454     }
8455 
8456     /* Overriding of an existing definition must be explicitly requested. */
8457     if (!(r->type & ARM_CP_OVERRIDE)) {
8458         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
8459         if (oldreg) {
8460             assert(oldreg->type & ARM_CP_OVERRIDE);
8461         }
8462     }
8463 
8464     /*
8465      * Eliminate registers that are not present because the EL is missing.
8466      * Doing this here makes it easier to put all registers for a given
8467      * feature into the same ARMCPRegInfo array and define them all at once.
8468      */
8469     make_const = false;
8470     if (arm_feature(env, ARM_FEATURE_EL3)) {
8471         /*
8472          * An EL2 register without EL2 but with EL3 is (usually) RES0.
8473          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
8474          */
8475         int min_el = ctz32(r->access) / 2;
8476         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
8477             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
8478                 return;
8479             }
8480             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
8481         }
8482     } else {
8483         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
8484                                  ? PL2_RW : PL1_RW);
8485         if ((r->access & max_el) == 0) {
8486             return;
8487         }
8488     }
8489 
8490     /* Combine cpreg and name into one allocation. */
8491     name_len = strlen(name) + 1;
8492     r2 = g_malloc(sizeof(*r2) + name_len);
8493     *r2 = *r;
8494     r2->name = memcpy(r2 + 1, name, name_len);
8495 
8496     /*
8497      * Update fields to match the instantiation, overwiting wildcards
8498      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
8499      */
8500     r2->cp = cp;
8501     r2->crm = crm;
8502     r2->opc1 = opc1;
8503     r2->opc2 = opc2;
8504     r2->state = state;
8505     r2->secure = secstate;
8506     if (opaque) {
8507         r2->opaque = opaque;
8508     }
8509 
8510     if (make_const) {
8511         /* This should not have been a very special register to begin. */
8512         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
8513         assert(old_special == 0 || old_special == ARM_CP_NOP);
8514         /*
8515          * Set the special function to CONST, retaining the other flags.
8516          * This is important for e.g. ARM_CP_SVE so that we still
8517          * take the SVE trap if CPTR_EL3.EZ == 0.
8518          */
8519         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
8520         /*
8521          * Usually, these registers become RES0, but there are a few
8522          * special cases like VPIDR_EL2 which have a constant non-zero
8523          * value with writes ignored.
8524          */
8525         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
8526             r2->resetvalue = 0;
8527         }
8528         /*
8529          * ARM_CP_CONST has precedence, so removing the callbacks and
8530          * offsets are not strictly necessary, but it is potentially
8531          * less confusing to debug later.
8532          */
8533         r2->readfn = NULL;
8534         r2->writefn = NULL;
8535         r2->raw_readfn = NULL;
8536         r2->raw_writefn = NULL;
8537         r2->resetfn = NULL;
8538         r2->fieldoffset = 0;
8539         r2->bank_fieldoffsets[0] = 0;
8540         r2->bank_fieldoffsets[1] = 0;
8541     } else {
8542         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
8543 
8544         if (isbanked) {
8545             /*
8546              * Register is banked (using both entries in array).
8547              * Overwriting fieldoffset as the array is only used to define
8548              * banked registers but later only fieldoffset is used.
8549              */
8550             r2->fieldoffset = r->bank_fieldoffsets[ns];
8551         }
8552         if (state == ARM_CP_STATE_AA32) {
8553             if (isbanked) {
8554                 /*
8555                  * If the register is banked then we don't need to migrate or
8556                  * reset the 32-bit instance in certain cases:
8557                  *
8558                  * 1) If the register has both 32-bit and 64-bit instances
8559                  *    then we can count on the 64-bit instance taking care
8560                  *    of the non-secure bank.
8561                  * 2) If ARMv8 is enabled then we can count on a 64-bit
8562                  *    version taking care of the secure bank.  This requires
8563                  *    that separate 32 and 64-bit definitions are provided.
8564                  */
8565                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8566                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
8567                     r2->type |= ARM_CP_ALIAS;
8568                 }
8569             } else if ((secstate != r->secure) && !ns) {
8570                 /*
8571                  * The register is not banked so we only want to allow
8572                  * migration of the non-secure instance.
8573                  */
8574                 r2->type |= ARM_CP_ALIAS;
8575             }
8576 
8577             if (HOST_BIG_ENDIAN &&
8578                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
8579                 r2->fieldoffset += sizeof(uint32_t);
8580             }
8581         }
8582     }
8583 
8584     /*
8585      * By convention, for wildcarded registers only the first
8586      * entry is used for migration; the others are marked as
8587      * ALIAS so we don't try to transfer the register
8588      * multiple times. Special registers (ie NOP/WFI) are
8589      * never migratable and not even raw-accessible.
8590      */
8591     if (r2->type & ARM_CP_SPECIAL_MASK) {
8592         r2->type |= ARM_CP_NO_RAW;
8593     }
8594     if (((r->crm == CP_ANY) && crm != 0) ||
8595         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8596         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8597         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8598     }
8599 
8600     /*
8601      * Check that raw accesses are either forbidden or handled. Note that
8602      * we can't assert this earlier because the setup of fieldoffset for
8603      * banked registers has to be done first.
8604      */
8605     if (!(r2->type & ARM_CP_NO_RAW)) {
8606         assert(!raw_accessors_invalid(r2));
8607     }
8608 
8609     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
8610 }
8611 
8612 
8613 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8614                                        const ARMCPRegInfo *r, void *opaque)
8615 {
8616     /* Define implementations of coprocessor registers.
8617      * We store these in a hashtable because typically
8618      * there are less than 150 registers in a space which
8619      * is 16*16*16*8*8 = 262144 in size.
8620      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8621      * If a register is defined twice then the second definition is
8622      * used, so this can be used to define some generic registers and
8623      * then override them with implementation specific variations.
8624      * At least one of the original and the second definition should
8625      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8626      * against accidental use.
8627      *
8628      * The state field defines whether the register is to be
8629      * visible in the AArch32 or AArch64 execution state. If the
8630      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8631      * reginfo structure for the AArch32 view, which sees the lower
8632      * 32 bits of the 64 bit register.
8633      *
8634      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8635      * be wildcarded. AArch64 registers are always considered to be 64
8636      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8637      * the register, if any.
8638      */
8639     int crm, opc1, opc2;
8640     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8641     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8642     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8643     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8644     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8645     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8646     CPState state;
8647 
8648     /* 64 bit registers have only CRm and Opc1 fields */
8649     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8650     /* op0 only exists in the AArch64 encodings */
8651     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8652     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8653     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8654     /*
8655      * This API is only for Arm's system coprocessors (14 and 15) or
8656      * (M-profile or v7A-and-earlier only) for implementation defined
8657      * coprocessors in the range 0..7.  Our decode assumes this, since
8658      * 8..13 can be used for other insns including VFP and Neon. See
8659      * valid_cp() in translate.c.  Assert here that we haven't tried
8660      * to use an invalid coprocessor number.
8661      */
8662     switch (r->state) {
8663     case ARM_CP_STATE_BOTH:
8664         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8665         if (r->cp == 0) {
8666             break;
8667         }
8668         /* fall through */
8669     case ARM_CP_STATE_AA32:
8670         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8671             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8672             assert(r->cp >= 14 && r->cp <= 15);
8673         } else {
8674             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8675         }
8676         break;
8677     case ARM_CP_STATE_AA64:
8678         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8679         break;
8680     default:
8681         g_assert_not_reached();
8682     }
8683     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8684      * encodes a minimum access level for the register. We roll this
8685      * runtime check into our general permission check code, so check
8686      * here that the reginfo's specified permissions are strict enough
8687      * to encompass the generic architectural permission check.
8688      */
8689     if (r->state != ARM_CP_STATE_AA32) {
8690         CPAccessRights mask;
8691         switch (r->opc1) {
8692         case 0:
8693             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8694             mask = PL0U_R | PL1_RW;
8695             break;
8696         case 1: case 2:
8697             /* min_EL EL1 */
8698             mask = PL1_RW;
8699             break;
8700         case 3:
8701             /* min_EL EL0 */
8702             mask = PL0_RW;
8703             break;
8704         case 4:
8705         case 5:
8706             /* min_EL EL2 */
8707             mask = PL2_RW;
8708             break;
8709         case 6:
8710             /* min_EL EL3 */
8711             mask = PL3_RW;
8712             break;
8713         case 7:
8714             /* min_EL EL1, secure mode only (we don't check the latter) */
8715             mask = PL1_RW;
8716             break;
8717         default:
8718             /* broken reginfo with out-of-range opc1 */
8719             g_assert_not_reached();
8720         }
8721         /* assert our permissions are not too lax (stricter is fine) */
8722         assert((r->access & ~mask) == 0);
8723     }
8724 
8725     /* Check that the register definition has enough info to handle
8726      * reads and writes if they are permitted.
8727      */
8728     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
8729         if (r->access & PL3_R) {
8730             assert((r->fieldoffset ||
8731                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8732                    r->readfn);
8733         }
8734         if (r->access & PL3_W) {
8735             assert((r->fieldoffset ||
8736                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8737                    r->writefn);
8738         }
8739     }
8740 
8741     for (crm = crmmin; crm <= crmmax; crm++) {
8742         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8743             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8744                 for (state = ARM_CP_STATE_AA32;
8745                      state <= ARM_CP_STATE_AA64; state++) {
8746                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8747                         continue;
8748                     }
8749                     if (state == ARM_CP_STATE_AA32) {
8750                         /* Under AArch32 CP registers can be common
8751                          * (same for secure and non-secure world) or banked.
8752                          */
8753                         char *name;
8754 
8755                         switch (r->secure) {
8756                         case ARM_CP_SECSTATE_S:
8757                         case ARM_CP_SECSTATE_NS:
8758                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8759                                                    r->secure, crm, opc1, opc2,
8760                                                    r->name);
8761                             break;
8762                         case ARM_CP_SECSTATE_BOTH:
8763                             name = g_strdup_printf("%s_S", r->name);
8764                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8765                                                    ARM_CP_SECSTATE_S,
8766                                                    crm, opc1, opc2, name);
8767                             g_free(name);
8768                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8769                                                    ARM_CP_SECSTATE_NS,
8770                                                    crm, opc1, opc2, r->name);
8771                             break;
8772                         default:
8773                             g_assert_not_reached();
8774                         }
8775                     } else {
8776                         /* AArch64 registers get mapped to non-secure instance
8777                          * of AArch32 */
8778                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8779                                                ARM_CP_SECSTATE_NS,
8780                                                crm, opc1, opc2, r->name);
8781                     }
8782                 }
8783             }
8784         }
8785     }
8786 }
8787 
8788 /* Define a whole list of registers */
8789 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
8790                                         void *opaque, size_t len)
8791 {
8792     size_t i;
8793     for (i = 0; i < len; ++i) {
8794         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
8795     }
8796 }
8797 
8798 /*
8799  * Modify ARMCPRegInfo for access from userspace.
8800  *
8801  * This is a data driven modification directed by
8802  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8803  * user-space cannot alter any values and dynamic values pertaining to
8804  * execution state are hidden from user space view anyway.
8805  */
8806 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
8807                                  const ARMCPRegUserSpaceInfo *mods,
8808                                  size_t mods_len)
8809 {
8810     for (size_t mi = 0; mi < mods_len; ++mi) {
8811         const ARMCPRegUserSpaceInfo *m = mods + mi;
8812         GPatternSpec *pat = NULL;
8813 
8814         if (m->is_glob) {
8815             pat = g_pattern_spec_new(m->name);
8816         }
8817         for (size_t ri = 0; ri < regs_len; ++ri) {
8818             ARMCPRegInfo *r = regs + ri;
8819 
8820             if (pat && g_pattern_match_string(pat, r->name)) {
8821                 r->type = ARM_CP_CONST;
8822                 r->access = PL0U_R;
8823                 r->resetvalue = 0;
8824                 /* continue */
8825             } else if (strcmp(r->name, m->name) == 0) {
8826                 r->type = ARM_CP_CONST;
8827                 r->access = PL0U_R;
8828                 r->resetvalue &= m->exported_bits;
8829                 r->resetvalue |= m->fixed_bits;
8830                 break;
8831             }
8832         }
8833         if (pat) {
8834             g_pattern_spec_free(pat);
8835         }
8836     }
8837 }
8838 
8839 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8840 {
8841     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
8842 }
8843 
8844 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8845                          uint64_t value)
8846 {
8847     /* Helper coprocessor write function for write-ignore registers */
8848 }
8849 
8850 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8851 {
8852     /* Helper coprocessor write function for read-as-zero registers */
8853     return 0;
8854 }
8855 
8856 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8857 {
8858     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8859 }
8860 
8861 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8862 {
8863     /* Return true if it is not valid for us to switch to
8864      * this CPU mode (ie all the UNPREDICTABLE cases in
8865      * the ARM ARM CPSRWriteByInstr pseudocode).
8866      */
8867 
8868     /* Changes to or from Hyp via MSR and CPS are illegal. */
8869     if (write_type == CPSRWriteByInstr &&
8870         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8871          mode == ARM_CPU_MODE_HYP)) {
8872         return 1;
8873     }
8874 
8875     switch (mode) {
8876     case ARM_CPU_MODE_USR:
8877         return 0;
8878     case ARM_CPU_MODE_SYS:
8879     case ARM_CPU_MODE_SVC:
8880     case ARM_CPU_MODE_ABT:
8881     case ARM_CPU_MODE_UND:
8882     case ARM_CPU_MODE_IRQ:
8883     case ARM_CPU_MODE_FIQ:
8884         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8885          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8886          */
8887         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8888          * and CPS are treated as illegal mode changes.
8889          */
8890         if (write_type == CPSRWriteByInstr &&
8891             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8892             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8893             return 1;
8894         }
8895         return 0;
8896     case ARM_CPU_MODE_HYP:
8897         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8898     case ARM_CPU_MODE_MON:
8899         return arm_current_el(env) < 3;
8900     default:
8901         return 1;
8902     }
8903 }
8904 
8905 uint32_t cpsr_read(CPUARMState *env)
8906 {
8907     int ZF;
8908     ZF = (env->ZF == 0);
8909     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8910         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8911         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8912         | ((env->condexec_bits & 0xfc) << 8)
8913         | (env->GE << 16) | (env->daif & CPSR_AIF);
8914 }
8915 
8916 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8917                 CPSRWriteType write_type)
8918 {
8919     uint32_t changed_daif;
8920     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
8921         (mask & (CPSR_M | CPSR_E | CPSR_IL));
8922 
8923     if (mask & CPSR_NZCV) {
8924         env->ZF = (~val) & CPSR_Z;
8925         env->NF = val;
8926         env->CF = (val >> 29) & 1;
8927         env->VF = (val << 3) & 0x80000000;
8928     }
8929     if (mask & CPSR_Q)
8930         env->QF = ((val & CPSR_Q) != 0);
8931     if (mask & CPSR_T)
8932         env->thumb = ((val & CPSR_T) != 0);
8933     if (mask & CPSR_IT_0_1) {
8934         env->condexec_bits &= ~3;
8935         env->condexec_bits |= (val >> 25) & 3;
8936     }
8937     if (mask & CPSR_IT_2_7) {
8938         env->condexec_bits &= 3;
8939         env->condexec_bits |= (val >> 8) & 0xfc;
8940     }
8941     if (mask & CPSR_GE) {
8942         env->GE = (val >> 16) & 0xf;
8943     }
8944 
8945     /* In a V7 implementation that includes the security extensions but does
8946      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8947      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8948      * bits respectively.
8949      *
8950      * In a V8 implementation, it is permitted for privileged software to
8951      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8952      */
8953     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8954         arm_feature(env, ARM_FEATURE_EL3) &&
8955         !arm_feature(env, ARM_FEATURE_EL2) &&
8956         !arm_is_secure(env)) {
8957 
8958         changed_daif = (env->daif ^ val) & mask;
8959 
8960         if (changed_daif & CPSR_A) {
8961             /* Check to see if we are allowed to change the masking of async
8962              * abort exceptions from a non-secure state.
8963              */
8964             if (!(env->cp15.scr_el3 & SCR_AW)) {
8965                 qemu_log_mask(LOG_GUEST_ERROR,
8966                               "Ignoring attempt to switch CPSR_A flag from "
8967                               "non-secure world with SCR.AW bit clear\n");
8968                 mask &= ~CPSR_A;
8969             }
8970         }
8971 
8972         if (changed_daif & CPSR_F) {
8973             /* Check to see if we are allowed to change the masking of FIQ
8974              * exceptions from a non-secure state.
8975              */
8976             if (!(env->cp15.scr_el3 & SCR_FW)) {
8977                 qemu_log_mask(LOG_GUEST_ERROR,
8978                               "Ignoring attempt to switch CPSR_F flag from "
8979                               "non-secure world with SCR.FW bit clear\n");
8980                 mask &= ~CPSR_F;
8981             }
8982 
8983             /* Check whether non-maskable FIQ (NMFI) support is enabled.
8984              * If this bit is set software is not allowed to mask
8985              * FIQs, but is allowed to set CPSR_F to 0.
8986              */
8987             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8988                 (val & CPSR_F)) {
8989                 qemu_log_mask(LOG_GUEST_ERROR,
8990                               "Ignoring attempt to enable CPSR_F flag "
8991                               "(non-maskable FIQ [NMFI] support enabled)\n");
8992                 mask &= ~CPSR_F;
8993             }
8994         }
8995     }
8996 
8997     env->daif &= ~(CPSR_AIF & mask);
8998     env->daif |= val & CPSR_AIF & mask;
8999 
9000     if (write_type != CPSRWriteRaw &&
9001         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9002         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9003             /* Note that we can only get here in USR mode if this is a
9004              * gdb stub write; for this case we follow the architectural
9005              * behaviour for guest writes in USR mode of ignoring an attempt
9006              * to switch mode. (Those are caught by translate.c for writes
9007              * triggered by guest instructions.)
9008              */
9009             mask &= ~CPSR_M;
9010         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9011             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9012              * v7, and has defined behaviour in v8:
9013              *  + leave CPSR.M untouched
9014              *  + allow changes to the other CPSR fields
9015              *  + set PSTATE.IL
9016              * For user changes via the GDB stub, we don't set PSTATE.IL,
9017              * as this would be unnecessarily harsh for a user error.
9018              */
9019             mask &= ~CPSR_M;
9020             if (write_type != CPSRWriteByGDBStub &&
9021                 arm_feature(env, ARM_FEATURE_V8)) {
9022                 mask |= CPSR_IL;
9023                 val |= CPSR_IL;
9024             }
9025             qemu_log_mask(LOG_GUEST_ERROR,
9026                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9027                           aarch32_mode_name(env->uncached_cpsr),
9028                           aarch32_mode_name(val));
9029         } else {
9030             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9031                           write_type == CPSRWriteExceptionReturn ?
9032                           "Exception return from AArch32" :
9033                           "AArch32 mode switch from",
9034                           aarch32_mode_name(env->uncached_cpsr),
9035                           aarch32_mode_name(val), env->regs[15]);
9036             switch_mode(env, val & CPSR_M);
9037         }
9038     }
9039     mask &= ~CACHED_CPSR_BITS;
9040     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9041     if (rebuild_hflags) {
9042         arm_rebuild_hflags(env);
9043     }
9044 }
9045 
9046 /* Sign/zero extend */
9047 uint32_t HELPER(sxtb16)(uint32_t x)
9048 {
9049     uint32_t res;
9050     res = (uint16_t)(int8_t)x;
9051     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9052     return res;
9053 }
9054 
9055 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9056 {
9057     /*
9058      * Take a division-by-zero exception if necessary; otherwise return
9059      * to get the usual non-trapping division behaviour (result of 0)
9060      */
9061     if (arm_feature(env, ARM_FEATURE_M)
9062         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9063         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9064     }
9065 }
9066 
9067 uint32_t HELPER(uxtb16)(uint32_t x)
9068 {
9069     uint32_t res;
9070     res = (uint16_t)(uint8_t)x;
9071     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9072     return res;
9073 }
9074 
9075 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9076 {
9077     if (den == 0) {
9078         handle_possible_div0_trap(env, GETPC());
9079         return 0;
9080     }
9081     if (num == INT_MIN && den == -1) {
9082         return INT_MIN;
9083     }
9084     return num / den;
9085 }
9086 
9087 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9088 {
9089     if (den == 0) {
9090         handle_possible_div0_trap(env, GETPC());
9091         return 0;
9092     }
9093     return num / den;
9094 }
9095 
9096 uint32_t HELPER(rbit)(uint32_t x)
9097 {
9098     return revbit32(x);
9099 }
9100 
9101 #ifdef CONFIG_USER_ONLY
9102 
9103 static void switch_mode(CPUARMState *env, int mode)
9104 {
9105     ARMCPU *cpu = env_archcpu(env);
9106 
9107     if (mode != ARM_CPU_MODE_USR) {
9108         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9109     }
9110 }
9111 
9112 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9113                                  uint32_t cur_el, bool secure)
9114 {
9115     return 1;
9116 }
9117 
9118 void aarch64_sync_64_to_32(CPUARMState *env)
9119 {
9120     g_assert_not_reached();
9121 }
9122 
9123 #else
9124 
9125 static void switch_mode(CPUARMState *env, int mode)
9126 {
9127     int old_mode;
9128     int i;
9129 
9130     old_mode = env->uncached_cpsr & CPSR_M;
9131     if (mode == old_mode)
9132         return;
9133 
9134     if (old_mode == ARM_CPU_MODE_FIQ) {
9135         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9136         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9137     } else if (mode == ARM_CPU_MODE_FIQ) {
9138         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9139         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9140     }
9141 
9142     i = bank_number(old_mode);
9143     env->banked_r13[i] = env->regs[13];
9144     env->banked_spsr[i] = env->spsr;
9145 
9146     i = bank_number(mode);
9147     env->regs[13] = env->banked_r13[i];
9148     env->spsr = env->banked_spsr[i];
9149 
9150     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9151     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9152 }
9153 
9154 /* Physical Interrupt Target EL Lookup Table
9155  *
9156  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9157  *
9158  * The below multi-dimensional table is used for looking up the target
9159  * exception level given numerous condition criteria.  Specifically, the
9160  * target EL is based on SCR and HCR routing controls as well as the
9161  * currently executing EL and secure state.
9162  *
9163  *    Dimensions:
9164  *    target_el_table[2][2][2][2][2][4]
9165  *                    |  |  |  |  |  +--- Current EL
9166  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9167  *                    |  |  |  +--------- HCR mask override
9168  *                    |  |  +------------ SCR exec state control
9169  *                    |  +--------------- SCR mask override
9170  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9171  *
9172  *    The table values are as such:
9173  *    0-3 = EL0-EL3
9174  *     -1 = Cannot occur
9175  *
9176  * The ARM ARM target EL table includes entries indicating that an "exception
9177  * is not taken".  The two cases where this is applicable are:
9178  *    1) An exception is taken from EL3 but the SCR does not have the exception
9179  *    routed to EL3.
9180  *    2) An exception is taken from EL2 but the HCR does not have the exception
9181  *    routed to EL2.
9182  * In these two cases, the below table contain a target of EL1.  This value is
9183  * returned as it is expected that the consumer of the table data will check
9184  * for "target EL >= current EL" to ensure the exception is not taken.
9185  *
9186  *            SCR     HCR
9187  *         64  EA     AMO                 From
9188  *        BIT IRQ     IMO      Non-secure         Secure
9189  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9190  */
9191 static const int8_t target_el_table[2][2][2][2][2][4] = {
9192     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9193        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9194       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9195        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9196      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9197        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9198       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9199        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9200     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9201        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9202       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9203        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9204      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9205        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9206       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9207        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9208 };
9209 
9210 /*
9211  * Determine the target EL for physical exceptions
9212  */
9213 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9214                                  uint32_t cur_el, bool secure)
9215 {
9216     CPUARMState *env = cs->env_ptr;
9217     bool rw;
9218     bool scr;
9219     bool hcr;
9220     int target_el;
9221     /* Is the highest EL AArch64? */
9222     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9223     uint64_t hcr_el2;
9224 
9225     if (arm_feature(env, ARM_FEATURE_EL3)) {
9226         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9227     } else {
9228         /* Either EL2 is the highest EL (and so the EL2 register width
9229          * is given by is64); or there is no EL2 or EL3, in which case
9230          * the value of 'rw' does not affect the table lookup anyway.
9231          */
9232         rw = is64;
9233     }
9234 
9235     hcr_el2 = arm_hcr_el2_eff(env);
9236     switch (excp_idx) {
9237     case EXCP_IRQ:
9238         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9239         hcr = hcr_el2 & HCR_IMO;
9240         break;
9241     case EXCP_FIQ:
9242         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9243         hcr = hcr_el2 & HCR_FMO;
9244         break;
9245     default:
9246         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9247         hcr = hcr_el2 & HCR_AMO;
9248         break;
9249     };
9250 
9251     /*
9252      * For these purposes, TGE and AMO/IMO/FMO both force the
9253      * interrupt to EL2.  Fold TGE into the bit extracted above.
9254      */
9255     hcr |= (hcr_el2 & HCR_TGE) != 0;
9256 
9257     /* Perform a table-lookup for the target EL given the current state */
9258     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9259 
9260     assert(target_el > 0);
9261 
9262     return target_el;
9263 }
9264 
9265 void arm_log_exception(CPUState *cs)
9266 {
9267     int idx = cs->exception_index;
9268 
9269     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9270         const char *exc = NULL;
9271         static const char * const excnames[] = {
9272             [EXCP_UDEF] = "Undefined Instruction",
9273             [EXCP_SWI] = "SVC",
9274             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9275             [EXCP_DATA_ABORT] = "Data Abort",
9276             [EXCP_IRQ] = "IRQ",
9277             [EXCP_FIQ] = "FIQ",
9278             [EXCP_BKPT] = "Breakpoint",
9279             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9280             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9281             [EXCP_HVC] = "Hypervisor Call",
9282             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9283             [EXCP_SMC] = "Secure Monitor Call",
9284             [EXCP_VIRQ] = "Virtual IRQ",
9285             [EXCP_VFIQ] = "Virtual FIQ",
9286             [EXCP_SEMIHOST] = "Semihosting call",
9287             [EXCP_NOCP] = "v7M NOCP UsageFault",
9288             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9289             [EXCP_STKOF] = "v8M STKOF UsageFault",
9290             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9291             [EXCP_LSERR] = "v8M LSERR UsageFault",
9292             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9293             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9294             [EXCP_VSERR] = "Virtual SERR",
9295         };
9296 
9297         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9298             exc = excnames[idx];
9299         }
9300         if (!exc) {
9301             exc = "unknown";
9302         }
9303         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9304                       idx, exc, cs->cpu_index);
9305     }
9306 }
9307 
9308 /*
9309  * Function used to synchronize QEMU's AArch64 register set with AArch32
9310  * register set.  This is necessary when switching between AArch32 and AArch64
9311  * execution state.
9312  */
9313 void aarch64_sync_32_to_64(CPUARMState *env)
9314 {
9315     int i;
9316     uint32_t mode = env->uncached_cpsr & CPSR_M;
9317 
9318     /* We can blanket copy R[0:7] to X[0:7] */
9319     for (i = 0; i < 8; i++) {
9320         env->xregs[i] = env->regs[i];
9321     }
9322 
9323     /*
9324      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9325      * Otherwise, they come from the banked user regs.
9326      */
9327     if (mode == ARM_CPU_MODE_FIQ) {
9328         for (i = 8; i < 13; i++) {
9329             env->xregs[i] = env->usr_regs[i - 8];
9330         }
9331     } else {
9332         for (i = 8; i < 13; i++) {
9333             env->xregs[i] = env->regs[i];
9334         }
9335     }
9336 
9337     /*
9338      * Registers x13-x23 are the various mode SP and FP registers. Registers
9339      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9340      * from the mode banked register.
9341      */
9342     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9343         env->xregs[13] = env->regs[13];
9344         env->xregs[14] = env->regs[14];
9345     } else {
9346         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9347         /* HYP is an exception in that it is copied from r14 */
9348         if (mode == ARM_CPU_MODE_HYP) {
9349             env->xregs[14] = env->regs[14];
9350         } else {
9351             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9352         }
9353     }
9354 
9355     if (mode == ARM_CPU_MODE_HYP) {
9356         env->xregs[15] = env->regs[13];
9357     } else {
9358         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9359     }
9360 
9361     if (mode == ARM_CPU_MODE_IRQ) {
9362         env->xregs[16] = env->regs[14];
9363         env->xregs[17] = env->regs[13];
9364     } else {
9365         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9366         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9367     }
9368 
9369     if (mode == ARM_CPU_MODE_SVC) {
9370         env->xregs[18] = env->regs[14];
9371         env->xregs[19] = env->regs[13];
9372     } else {
9373         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9374         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9375     }
9376 
9377     if (mode == ARM_CPU_MODE_ABT) {
9378         env->xregs[20] = env->regs[14];
9379         env->xregs[21] = env->regs[13];
9380     } else {
9381         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9382         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9383     }
9384 
9385     if (mode == ARM_CPU_MODE_UND) {
9386         env->xregs[22] = env->regs[14];
9387         env->xregs[23] = env->regs[13];
9388     } else {
9389         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9390         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9391     }
9392 
9393     /*
9394      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9395      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9396      * FIQ bank for r8-r14.
9397      */
9398     if (mode == ARM_CPU_MODE_FIQ) {
9399         for (i = 24; i < 31; i++) {
9400             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9401         }
9402     } else {
9403         for (i = 24; i < 29; i++) {
9404             env->xregs[i] = env->fiq_regs[i - 24];
9405         }
9406         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9407         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9408     }
9409 
9410     env->pc = env->regs[15];
9411 }
9412 
9413 /*
9414  * Function used to synchronize QEMU's AArch32 register set with AArch64
9415  * register set.  This is necessary when switching between AArch32 and AArch64
9416  * execution state.
9417  */
9418 void aarch64_sync_64_to_32(CPUARMState *env)
9419 {
9420     int i;
9421     uint32_t mode = env->uncached_cpsr & CPSR_M;
9422 
9423     /* We can blanket copy X[0:7] to R[0:7] */
9424     for (i = 0; i < 8; i++) {
9425         env->regs[i] = env->xregs[i];
9426     }
9427 
9428     /*
9429      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9430      * Otherwise, we copy x8-x12 into the banked user regs.
9431      */
9432     if (mode == ARM_CPU_MODE_FIQ) {
9433         for (i = 8; i < 13; i++) {
9434             env->usr_regs[i - 8] = env->xregs[i];
9435         }
9436     } else {
9437         for (i = 8; i < 13; i++) {
9438             env->regs[i] = env->xregs[i];
9439         }
9440     }
9441 
9442     /*
9443      * Registers r13 & r14 depend on the current mode.
9444      * If we are in a given mode, we copy the corresponding x registers to r13
9445      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9446      * for the mode.
9447      */
9448     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9449         env->regs[13] = env->xregs[13];
9450         env->regs[14] = env->xregs[14];
9451     } else {
9452         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9453 
9454         /*
9455          * HYP is an exception in that it does not have its own banked r14 but
9456          * shares the USR r14
9457          */
9458         if (mode == ARM_CPU_MODE_HYP) {
9459             env->regs[14] = env->xregs[14];
9460         } else {
9461             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9462         }
9463     }
9464 
9465     if (mode == ARM_CPU_MODE_HYP) {
9466         env->regs[13] = env->xregs[15];
9467     } else {
9468         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9469     }
9470 
9471     if (mode == ARM_CPU_MODE_IRQ) {
9472         env->regs[14] = env->xregs[16];
9473         env->regs[13] = env->xregs[17];
9474     } else {
9475         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9476         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9477     }
9478 
9479     if (mode == ARM_CPU_MODE_SVC) {
9480         env->regs[14] = env->xregs[18];
9481         env->regs[13] = env->xregs[19];
9482     } else {
9483         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9484         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9485     }
9486 
9487     if (mode == ARM_CPU_MODE_ABT) {
9488         env->regs[14] = env->xregs[20];
9489         env->regs[13] = env->xregs[21];
9490     } else {
9491         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9492         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9493     }
9494 
9495     if (mode == ARM_CPU_MODE_UND) {
9496         env->regs[14] = env->xregs[22];
9497         env->regs[13] = env->xregs[23];
9498     } else {
9499         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9500         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9501     }
9502 
9503     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9504      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9505      * FIQ bank for r8-r14.
9506      */
9507     if (mode == ARM_CPU_MODE_FIQ) {
9508         for (i = 24; i < 31; i++) {
9509             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9510         }
9511     } else {
9512         for (i = 24; i < 29; i++) {
9513             env->fiq_regs[i - 24] = env->xregs[i];
9514         }
9515         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9516         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9517     }
9518 
9519     env->regs[15] = env->pc;
9520 }
9521 
9522 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9523                                    uint32_t mask, uint32_t offset,
9524                                    uint32_t newpc)
9525 {
9526     int new_el;
9527 
9528     /* Change the CPU state so as to actually take the exception. */
9529     switch_mode(env, new_mode);
9530 
9531     /*
9532      * For exceptions taken to AArch32 we must clear the SS bit in both
9533      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9534      */
9535     env->pstate &= ~PSTATE_SS;
9536     env->spsr = cpsr_read(env);
9537     /* Clear IT bits.  */
9538     env->condexec_bits = 0;
9539     /* Switch to the new mode, and to the correct instruction set.  */
9540     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9541 
9542     /* This must be after mode switching. */
9543     new_el = arm_current_el(env);
9544 
9545     /* Set new mode endianness */
9546     env->uncached_cpsr &= ~CPSR_E;
9547     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9548         env->uncached_cpsr |= CPSR_E;
9549     }
9550     /* J and IL must always be cleared for exception entry */
9551     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9552     env->daif |= mask;
9553 
9554     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9555         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9556             env->uncached_cpsr |= CPSR_SSBS;
9557         } else {
9558             env->uncached_cpsr &= ~CPSR_SSBS;
9559         }
9560     }
9561 
9562     if (new_mode == ARM_CPU_MODE_HYP) {
9563         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9564         env->elr_el[2] = env->regs[15];
9565     } else {
9566         /* CPSR.PAN is normally preserved preserved unless...  */
9567         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9568             switch (new_el) {
9569             case 3:
9570                 if (!arm_is_secure_below_el3(env)) {
9571                     /* ... the target is EL3, from non-secure state.  */
9572                     env->uncached_cpsr &= ~CPSR_PAN;
9573                     break;
9574                 }
9575                 /* ... the target is EL3, from secure state ... */
9576                 /* fall through */
9577             case 1:
9578                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9579                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9580                     env->uncached_cpsr |= CPSR_PAN;
9581                 }
9582                 break;
9583             }
9584         }
9585         /*
9586          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9587          * and we should just guard the thumb mode on V4
9588          */
9589         if (arm_feature(env, ARM_FEATURE_V4T)) {
9590             env->thumb =
9591                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9592         }
9593         env->regs[14] = env->regs[15] + offset;
9594     }
9595     env->regs[15] = newpc;
9596     arm_rebuild_hflags(env);
9597 }
9598 
9599 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9600 {
9601     /*
9602      * Handle exception entry to Hyp mode; this is sufficiently
9603      * different to entry to other AArch32 modes that we handle it
9604      * separately here.
9605      *
9606      * The vector table entry used is always the 0x14 Hyp mode entry point,
9607      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9608      * The offset applied to the preferred return address is always zero
9609      * (see DDI0487C.a section G1.12.3).
9610      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9611      */
9612     uint32_t addr, mask;
9613     ARMCPU *cpu = ARM_CPU(cs);
9614     CPUARMState *env = &cpu->env;
9615 
9616     switch (cs->exception_index) {
9617     case EXCP_UDEF:
9618         addr = 0x04;
9619         break;
9620     case EXCP_SWI:
9621         addr = 0x08;
9622         break;
9623     case EXCP_BKPT:
9624         /* Fall through to prefetch abort.  */
9625     case EXCP_PREFETCH_ABORT:
9626         env->cp15.ifar_s = env->exception.vaddress;
9627         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9628                       (uint32_t)env->exception.vaddress);
9629         addr = 0x0c;
9630         break;
9631     case EXCP_DATA_ABORT:
9632         env->cp15.dfar_s = env->exception.vaddress;
9633         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9634                       (uint32_t)env->exception.vaddress);
9635         addr = 0x10;
9636         break;
9637     case EXCP_IRQ:
9638         addr = 0x18;
9639         break;
9640     case EXCP_FIQ:
9641         addr = 0x1c;
9642         break;
9643     case EXCP_HVC:
9644         addr = 0x08;
9645         break;
9646     case EXCP_HYP_TRAP:
9647         addr = 0x14;
9648         break;
9649     default:
9650         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9651     }
9652 
9653     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9654         if (!arm_feature(env, ARM_FEATURE_V8)) {
9655             /*
9656              * QEMU syndrome values are v8-style. v7 has the IL bit
9657              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9658              * If this is a v7 CPU, squash the IL bit in those cases.
9659              */
9660             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9661                 (cs->exception_index == EXCP_DATA_ABORT &&
9662                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9663                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9664                 env->exception.syndrome &= ~ARM_EL_IL;
9665             }
9666         }
9667         env->cp15.esr_el[2] = env->exception.syndrome;
9668     }
9669 
9670     if (arm_current_el(env) != 2 && addr < 0x14) {
9671         addr = 0x14;
9672     }
9673 
9674     mask = 0;
9675     if (!(env->cp15.scr_el3 & SCR_EA)) {
9676         mask |= CPSR_A;
9677     }
9678     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9679         mask |= CPSR_I;
9680     }
9681     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9682         mask |= CPSR_F;
9683     }
9684 
9685     addr += env->cp15.hvbar;
9686 
9687     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9688 }
9689 
9690 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9691 {
9692     ARMCPU *cpu = ARM_CPU(cs);
9693     CPUARMState *env = &cpu->env;
9694     uint32_t addr;
9695     uint32_t mask;
9696     int new_mode;
9697     uint32_t offset;
9698     uint32_t moe;
9699 
9700     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9701     switch (syn_get_ec(env->exception.syndrome)) {
9702     case EC_BREAKPOINT:
9703     case EC_BREAKPOINT_SAME_EL:
9704         moe = 1;
9705         break;
9706     case EC_WATCHPOINT:
9707     case EC_WATCHPOINT_SAME_EL:
9708         moe = 10;
9709         break;
9710     case EC_AA32_BKPT:
9711         moe = 3;
9712         break;
9713     case EC_VECTORCATCH:
9714         moe = 5;
9715         break;
9716     default:
9717         moe = 0;
9718         break;
9719     }
9720 
9721     if (moe) {
9722         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9723     }
9724 
9725     if (env->exception.target_el == 2) {
9726         arm_cpu_do_interrupt_aarch32_hyp(cs);
9727         return;
9728     }
9729 
9730     switch (cs->exception_index) {
9731     case EXCP_UDEF:
9732         new_mode = ARM_CPU_MODE_UND;
9733         addr = 0x04;
9734         mask = CPSR_I;
9735         if (env->thumb)
9736             offset = 2;
9737         else
9738             offset = 4;
9739         break;
9740     case EXCP_SWI:
9741         new_mode = ARM_CPU_MODE_SVC;
9742         addr = 0x08;
9743         mask = CPSR_I;
9744         /* The PC already points to the next instruction.  */
9745         offset = 0;
9746         break;
9747     case EXCP_BKPT:
9748         /* Fall through to prefetch abort.  */
9749     case EXCP_PREFETCH_ABORT:
9750         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9751         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9752         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9753                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9754         new_mode = ARM_CPU_MODE_ABT;
9755         addr = 0x0c;
9756         mask = CPSR_A | CPSR_I;
9757         offset = 4;
9758         break;
9759     case EXCP_DATA_ABORT:
9760         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9761         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9762         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9763                       env->exception.fsr,
9764                       (uint32_t)env->exception.vaddress);
9765         new_mode = ARM_CPU_MODE_ABT;
9766         addr = 0x10;
9767         mask = CPSR_A | CPSR_I;
9768         offset = 8;
9769         break;
9770     case EXCP_IRQ:
9771         new_mode = ARM_CPU_MODE_IRQ;
9772         addr = 0x18;
9773         /* Disable IRQ and imprecise data aborts.  */
9774         mask = CPSR_A | CPSR_I;
9775         offset = 4;
9776         if (env->cp15.scr_el3 & SCR_IRQ) {
9777             /* IRQ routed to monitor mode */
9778             new_mode = ARM_CPU_MODE_MON;
9779             mask |= CPSR_F;
9780         }
9781         break;
9782     case EXCP_FIQ:
9783         new_mode = ARM_CPU_MODE_FIQ;
9784         addr = 0x1c;
9785         /* Disable FIQ, IRQ and imprecise data aborts.  */
9786         mask = CPSR_A | CPSR_I | CPSR_F;
9787         if (env->cp15.scr_el3 & SCR_FIQ) {
9788             /* FIQ routed to monitor mode */
9789             new_mode = ARM_CPU_MODE_MON;
9790         }
9791         offset = 4;
9792         break;
9793     case EXCP_VIRQ:
9794         new_mode = ARM_CPU_MODE_IRQ;
9795         addr = 0x18;
9796         /* Disable IRQ and imprecise data aborts.  */
9797         mask = CPSR_A | CPSR_I;
9798         offset = 4;
9799         break;
9800     case EXCP_VFIQ:
9801         new_mode = ARM_CPU_MODE_FIQ;
9802         addr = 0x1c;
9803         /* Disable FIQ, IRQ and imprecise data aborts.  */
9804         mask = CPSR_A | CPSR_I | CPSR_F;
9805         offset = 4;
9806         break;
9807     case EXCP_VSERR:
9808         {
9809             /*
9810              * Note that this is reported as a data abort, but the DFAR
9811              * has an UNKNOWN value.  Construct the SError syndrome from
9812              * AET and ExT fields.
9813              */
9814             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
9815 
9816             if (extended_addresses_enabled(env)) {
9817                 env->exception.fsr = arm_fi_to_lfsc(&fi);
9818             } else {
9819                 env->exception.fsr = arm_fi_to_sfsc(&fi);
9820             }
9821             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
9822             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9823             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
9824                           env->exception.fsr);
9825 
9826             new_mode = ARM_CPU_MODE_ABT;
9827             addr = 0x10;
9828             mask = CPSR_A | CPSR_I;
9829             offset = 8;
9830         }
9831         break;
9832     case EXCP_SMC:
9833         new_mode = ARM_CPU_MODE_MON;
9834         addr = 0x08;
9835         mask = CPSR_A | CPSR_I | CPSR_F;
9836         offset = 0;
9837         break;
9838     default:
9839         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9840         return; /* Never happens.  Keep compiler happy.  */
9841     }
9842 
9843     if (new_mode == ARM_CPU_MODE_MON) {
9844         addr += env->cp15.mvbar;
9845     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9846         /* High vectors. When enabled, base address cannot be remapped. */
9847         addr += 0xffff0000;
9848     } else {
9849         /* ARM v7 architectures provide a vector base address register to remap
9850          * the interrupt vector table.
9851          * This register is only followed in non-monitor mode, and is banked.
9852          * Note: only bits 31:5 are valid.
9853          */
9854         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9855     }
9856 
9857     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9858         env->cp15.scr_el3 &= ~SCR_NS;
9859     }
9860 
9861     take_aarch32_exception(env, new_mode, mask, offset, addr);
9862 }
9863 
9864 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9865 {
9866     /*
9867      * Return the register number of the AArch64 view of the AArch32
9868      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9869      * be that of the AArch32 mode the exception came from.
9870      */
9871     int mode = env->uncached_cpsr & CPSR_M;
9872 
9873     switch (aarch32_reg) {
9874     case 0 ... 7:
9875         return aarch32_reg;
9876     case 8 ... 12:
9877         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9878     case 13:
9879         switch (mode) {
9880         case ARM_CPU_MODE_USR:
9881         case ARM_CPU_MODE_SYS:
9882             return 13;
9883         case ARM_CPU_MODE_HYP:
9884             return 15;
9885         case ARM_CPU_MODE_IRQ:
9886             return 17;
9887         case ARM_CPU_MODE_SVC:
9888             return 19;
9889         case ARM_CPU_MODE_ABT:
9890             return 21;
9891         case ARM_CPU_MODE_UND:
9892             return 23;
9893         case ARM_CPU_MODE_FIQ:
9894             return 29;
9895         default:
9896             g_assert_not_reached();
9897         }
9898     case 14:
9899         switch (mode) {
9900         case ARM_CPU_MODE_USR:
9901         case ARM_CPU_MODE_SYS:
9902         case ARM_CPU_MODE_HYP:
9903             return 14;
9904         case ARM_CPU_MODE_IRQ:
9905             return 16;
9906         case ARM_CPU_MODE_SVC:
9907             return 18;
9908         case ARM_CPU_MODE_ABT:
9909             return 20;
9910         case ARM_CPU_MODE_UND:
9911             return 22;
9912         case ARM_CPU_MODE_FIQ:
9913             return 30;
9914         default:
9915             g_assert_not_reached();
9916         }
9917     case 15:
9918         return 31;
9919     default:
9920         g_assert_not_reached();
9921     }
9922 }
9923 
9924 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9925 {
9926     uint32_t ret = cpsr_read(env);
9927 
9928     /* Move DIT to the correct location for SPSR_ELx */
9929     if (ret & CPSR_DIT) {
9930         ret &= ~CPSR_DIT;
9931         ret |= PSTATE_DIT;
9932     }
9933     /* Merge PSTATE.SS into SPSR_ELx */
9934     ret |= env->pstate & PSTATE_SS;
9935 
9936     return ret;
9937 }
9938 
9939 static bool syndrome_is_sync_extabt(uint32_t syndrome)
9940 {
9941     /* Return true if this syndrome value is a synchronous external abort */
9942     switch (syn_get_ec(syndrome)) {
9943     case EC_INSNABORT:
9944     case EC_INSNABORT_SAME_EL:
9945     case EC_DATAABORT:
9946     case EC_DATAABORT_SAME_EL:
9947         /* Look at fault status code for all the synchronous ext abort cases */
9948         switch (syndrome & 0x3f) {
9949         case 0x10:
9950         case 0x13:
9951         case 0x14:
9952         case 0x15:
9953         case 0x16:
9954         case 0x17:
9955             return true;
9956         default:
9957             return false;
9958         }
9959     default:
9960         return false;
9961     }
9962 }
9963 
9964 /* Handle exception entry to a target EL which is using AArch64 */
9965 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9966 {
9967     ARMCPU *cpu = ARM_CPU(cs);
9968     CPUARMState *env = &cpu->env;
9969     unsigned int new_el = env->exception.target_el;
9970     target_ulong addr = env->cp15.vbar_el[new_el];
9971     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9972     unsigned int old_mode;
9973     unsigned int cur_el = arm_current_el(env);
9974     int rt;
9975 
9976     /*
9977      * Note that new_el can never be 0.  If cur_el is 0, then
9978      * el0_a64 is is_a64(), else el0_a64 is ignored.
9979      */
9980     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9981 
9982     if (cur_el < new_el) {
9983         /* Entry vector offset depends on whether the implemented EL
9984          * immediately lower than the target level is using AArch32 or AArch64
9985          */
9986         bool is_aa64;
9987         uint64_t hcr;
9988 
9989         switch (new_el) {
9990         case 3:
9991             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9992             break;
9993         case 2:
9994             hcr = arm_hcr_el2_eff(env);
9995             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9996                 is_aa64 = (hcr & HCR_RW) != 0;
9997                 break;
9998             }
9999             /* fall through */
10000         case 1:
10001             is_aa64 = is_a64(env);
10002             break;
10003         default:
10004             g_assert_not_reached();
10005         }
10006 
10007         if (is_aa64) {
10008             addr += 0x400;
10009         } else {
10010             addr += 0x600;
10011         }
10012     } else if (pstate_read(env) & PSTATE_SP) {
10013         addr += 0x200;
10014     }
10015 
10016     switch (cs->exception_index) {
10017     case EXCP_PREFETCH_ABORT:
10018     case EXCP_DATA_ABORT:
10019         /*
10020          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10021          * to be taken to the SError vector entrypoint.
10022          */
10023         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10024             syndrome_is_sync_extabt(env->exception.syndrome)) {
10025             addr += 0x180;
10026         }
10027         env->cp15.far_el[new_el] = env->exception.vaddress;
10028         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10029                       env->cp15.far_el[new_el]);
10030         /* fall through */
10031     case EXCP_BKPT:
10032     case EXCP_UDEF:
10033     case EXCP_SWI:
10034     case EXCP_HVC:
10035     case EXCP_HYP_TRAP:
10036     case EXCP_SMC:
10037         switch (syn_get_ec(env->exception.syndrome)) {
10038         case EC_ADVSIMDFPACCESSTRAP:
10039             /*
10040              * QEMU internal FP/SIMD syndromes from AArch32 include the
10041              * TA and coproc fields which are only exposed if the exception
10042              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10043              * AArch64 format syndrome.
10044              */
10045             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10046             break;
10047         case EC_CP14RTTRAP:
10048         case EC_CP15RTTRAP:
10049         case EC_CP14DTTRAP:
10050             /*
10051              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10052              * the raw register field from the insn; when taking this to
10053              * AArch64 we must convert it to the AArch64 view of the register
10054              * number. Notice that we read a 4-bit AArch32 register number and
10055              * write back a 5-bit AArch64 one.
10056              */
10057             rt = extract32(env->exception.syndrome, 5, 4);
10058             rt = aarch64_regnum(env, rt);
10059             env->exception.syndrome = deposit32(env->exception.syndrome,
10060                                                 5, 5, rt);
10061             break;
10062         case EC_CP15RRTTRAP:
10063         case EC_CP14RRTTRAP:
10064             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10065             rt = extract32(env->exception.syndrome, 5, 4);
10066             rt = aarch64_regnum(env, rt);
10067             env->exception.syndrome = deposit32(env->exception.syndrome,
10068                                                 5, 5, rt);
10069             rt = extract32(env->exception.syndrome, 10, 4);
10070             rt = aarch64_regnum(env, rt);
10071             env->exception.syndrome = deposit32(env->exception.syndrome,
10072                                                 10, 5, rt);
10073             break;
10074         }
10075         env->cp15.esr_el[new_el] = env->exception.syndrome;
10076         break;
10077     case EXCP_IRQ:
10078     case EXCP_VIRQ:
10079         addr += 0x80;
10080         break;
10081     case EXCP_FIQ:
10082     case EXCP_VFIQ:
10083         addr += 0x100;
10084         break;
10085     case EXCP_VSERR:
10086         addr += 0x180;
10087         /* Construct the SError syndrome from IDS and ISS fields. */
10088         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10089         env->cp15.esr_el[new_el] = env->exception.syndrome;
10090         break;
10091     default:
10092         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10093     }
10094 
10095     if (is_a64(env)) {
10096         old_mode = pstate_read(env);
10097         aarch64_save_sp(env, arm_current_el(env));
10098         env->elr_el[new_el] = env->pc;
10099     } else {
10100         old_mode = cpsr_read_for_spsr_elx(env);
10101         env->elr_el[new_el] = env->regs[15];
10102 
10103         aarch64_sync_32_to_64(env);
10104 
10105         env->condexec_bits = 0;
10106     }
10107     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10108 
10109     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10110                   env->elr_el[new_el]);
10111 
10112     if (cpu_isar_feature(aa64_pan, cpu)) {
10113         /* The value of PSTATE.PAN is normally preserved, except when ... */
10114         new_mode |= old_mode & PSTATE_PAN;
10115         switch (new_el) {
10116         case 2:
10117             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10118             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10119                 != (HCR_E2H | HCR_TGE)) {
10120                 break;
10121             }
10122             /* fall through */
10123         case 1:
10124             /* ... the target is EL1 ... */
10125             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10126             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10127                 new_mode |= PSTATE_PAN;
10128             }
10129             break;
10130         }
10131     }
10132     if (cpu_isar_feature(aa64_mte, cpu)) {
10133         new_mode |= PSTATE_TCO;
10134     }
10135 
10136     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10137         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10138             new_mode |= PSTATE_SSBS;
10139         } else {
10140             new_mode &= ~PSTATE_SSBS;
10141         }
10142     }
10143 
10144     pstate_write(env, PSTATE_DAIF | new_mode);
10145     env->aarch64 = true;
10146     aarch64_restore_sp(env, new_el);
10147     helper_rebuild_hflags_a64(env, new_el);
10148 
10149     env->pc = addr;
10150 
10151     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10152                   new_el, env->pc, pstate_read(env));
10153 }
10154 
10155 /*
10156  * Do semihosting call and set the appropriate return value. All the
10157  * permission and validity checks have been done at translate time.
10158  *
10159  * We only see semihosting exceptions in TCG only as they are not
10160  * trapped to the hypervisor in KVM.
10161  */
10162 #ifdef CONFIG_TCG
10163 static void handle_semihosting(CPUState *cs)
10164 {
10165     ARMCPU *cpu = ARM_CPU(cs);
10166     CPUARMState *env = &cpu->env;
10167 
10168     if (is_a64(env)) {
10169         qemu_log_mask(CPU_LOG_INT,
10170                       "...handling as semihosting call 0x%" PRIx64 "\n",
10171                       env->xregs[0]);
10172         do_common_semihosting(cs);
10173         env->pc += 4;
10174     } else {
10175         qemu_log_mask(CPU_LOG_INT,
10176                       "...handling as semihosting call 0x%x\n",
10177                       env->regs[0]);
10178         do_common_semihosting(cs);
10179         env->regs[15] += env->thumb ? 2 : 4;
10180     }
10181 }
10182 #endif
10183 
10184 /* Handle a CPU exception for A and R profile CPUs.
10185  * Do any appropriate logging, handle PSCI calls, and then hand off
10186  * to the AArch64-entry or AArch32-entry function depending on the
10187  * target exception level's register width.
10188  *
10189  * Note: this is used for both TCG (as the do_interrupt tcg op),
10190  *       and KVM to re-inject guest debug exceptions, and to
10191  *       inject a Synchronous-External-Abort.
10192  */
10193 void arm_cpu_do_interrupt(CPUState *cs)
10194 {
10195     ARMCPU *cpu = ARM_CPU(cs);
10196     CPUARMState *env = &cpu->env;
10197     unsigned int new_el = env->exception.target_el;
10198 
10199     assert(!arm_feature(env, ARM_FEATURE_M));
10200 
10201     arm_log_exception(cs);
10202     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10203                   new_el);
10204     if (qemu_loglevel_mask(CPU_LOG_INT)
10205         && !excp_is_internal(cs->exception_index)) {
10206         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10207                       syn_get_ec(env->exception.syndrome),
10208                       env->exception.syndrome);
10209     }
10210 
10211     if (arm_is_psci_call(cpu, cs->exception_index)) {
10212         arm_handle_psci_call(cpu);
10213         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10214         return;
10215     }
10216 
10217     /*
10218      * Semihosting semantics depend on the register width of the code
10219      * that caused the exception, not the target exception level, so
10220      * must be handled here.
10221      */
10222 #ifdef CONFIG_TCG
10223     if (cs->exception_index == EXCP_SEMIHOST) {
10224         handle_semihosting(cs);
10225         return;
10226     }
10227 #endif
10228 
10229     /* Hooks may change global state so BQL should be held, also the
10230      * BQL needs to be held for any modification of
10231      * cs->interrupt_request.
10232      */
10233     g_assert(qemu_mutex_iothread_locked());
10234 
10235     arm_call_pre_el_change_hook(cpu);
10236 
10237     assert(!excp_is_internal(cs->exception_index));
10238     if (arm_el_is_aa64(env, new_el)) {
10239         arm_cpu_do_interrupt_aarch64(cs);
10240     } else {
10241         arm_cpu_do_interrupt_aarch32(cs);
10242     }
10243 
10244     arm_call_el_change_hook(cpu);
10245 
10246     if (!kvm_enabled()) {
10247         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10248     }
10249 }
10250 #endif /* !CONFIG_USER_ONLY */
10251 
10252 uint64_t arm_sctlr(CPUARMState *env, int el)
10253 {
10254     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10255     if (el == 0) {
10256         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10257         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10258              ? 2 : 1;
10259     }
10260     return env->cp15.sctlr_el[el];
10261 }
10262 
10263 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10264 {
10265     if (regime_has_2_ranges(mmu_idx)) {
10266         return extract64(tcr, 37, 2);
10267     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10268         return 0; /* VTCR_EL2 */
10269     } else {
10270         /* Replicate the single TBI bit so we always have 2 bits.  */
10271         return extract32(tcr, 20, 1) * 3;
10272     }
10273 }
10274 
10275 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10276 {
10277     if (regime_has_2_ranges(mmu_idx)) {
10278         return extract64(tcr, 51, 2);
10279     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10280         return 0; /* VTCR_EL2 */
10281     } else {
10282         /* Replicate the single TBID bit so we always have 2 bits.  */
10283         return extract32(tcr, 29, 1) * 3;
10284     }
10285 }
10286 
10287 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10288 {
10289     if (regime_has_2_ranges(mmu_idx)) {
10290         return extract64(tcr, 57, 2);
10291     } else {
10292         /* Replicate the single TCMA bit so we always have 2 bits.  */
10293         return extract32(tcr, 30, 1) * 3;
10294     }
10295 }
10296 
10297 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10298                                    ARMMMUIdx mmu_idx, bool data)
10299 {
10300     uint64_t tcr = regime_tcr(env, mmu_idx);
10301     bool epd, hpd, using16k, using64k, tsz_oob, ds;
10302     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
10303     ARMCPU *cpu = env_archcpu(env);
10304 
10305     if (!regime_has_2_ranges(mmu_idx)) {
10306         select = 0;
10307         tsz = extract32(tcr, 0, 6);
10308         using64k = extract32(tcr, 14, 1);
10309         using16k = extract32(tcr, 15, 1);
10310         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10311             /* VTCR_EL2 */
10312             hpd = false;
10313         } else {
10314             hpd = extract32(tcr, 24, 1);
10315         }
10316         epd = false;
10317         sh = extract32(tcr, 12, 2);
10318         ps = extract32(tcr, 16, 3);
10319         ds = extract64(tcr, 32, 1);
10320     } else {
10321         /*
10322          * Bit 55 is always between the two regions, and is canonical for
10323          * determining if address tagging is enabled.
10324          */
10325         select = extract64(va, 55, 1);
10326         if (!select) {
10327             tsz = extract32(tcr, 0, 6);
10328             epd = extract32(tcr, 7, 1);
10329             sh = extract32(tcr, 12, 2);
10330             using64k = extract32(tcr, 14, 1);
10331             using16k = extract32(tcr, 15, 1);
10332             hpd = extract64(tcr, 41, 1);
10333         } else {
10334             int tg = extract32(tcr, 30, 2);
10335             using16k = tg == 1;
10336             using64k = tg == 3;
10337             tsz = extract32(tcr, 16, 6);
10338             epd = extract32(tcr, 23, 1);
10339             sh = extract32(tcr, 28, 2);
10340             hpd = extract64(tcr, 42, 1);
10341         }
10342         ps = extract64(tcr, 32, 3);
10343         ds = extract64(tcr, 59, 1);
10344     }
10345 
10346     if (cpu_isar_feature(aa64_st, cpu)) {
10347         max_tsz = 48 - using64k;
10348     } else {
10349         max_tsz = 39;
10350     }
10351 
10352     /*
10353      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
10354      * adjust the effective value of DS, as documented.
10355      */
10356     min_tsz = 16;
10357     if (using64k) {
10358         if (cpu_isar_feature(aa64_lva, cpu)) {
10359             min_tsz = 12;
10360         }
10361         ds = false;
10362     } else if (ds) {
10363         switch (mmu_idx) {
10364         case ARMMMUIdx_Stage2:
10365         case ARMMMUIdx_Stage2_S:
10366             if (using16k) {
10367                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
10368             } else {
10369                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
10370             }
10371             break;
10372         default:
10373             if (using16k) {
10374                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
10375             } else {
10376                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
10377             }
10378             break;
10379         }
10380         if (ds) {
10381             min_tsz = 12;
10382         }
10383     }
10384 
10385     if (tsz > max_tsz) {
10386         tsz = max_tsz;
10387         tsz_oob = true;
10388     } else if (tsz < min_tsz) {
10389         tsz = min_tsz;
10390         tsz_oob = true;
10391     } else {
10392         tsz_oob = false;
10393     }
10394 
10395     /* Present TBI as a composite with TBID.  */
10396     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10397     if (!data) {
10398         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10399     }
10400     tbi = (tbi >> select) & 1;
10401 
10402     return (ARMVAParameters) {
10403         .tsz = tsz,
10404         .ps = ps,
10405         .sh = sh,
10406         .select = select,
10407         .tbi = tbi,
10408         .epd = epd,
10409         .hpd = hpd,
10410         .using16k = using16k,
10411         .using64k = using64k,
10412         .tsz_oob = tsz_oob,
10413         .ds = ds,
10414     };
10415 }
10416 
10417 /* Note that signed overflow is undefined in C.  The following routines are
10418    careful to use unsigned types where modulo arithmetic is required.
10419    Failure to do so _will_ break on newer gcc.  */
10420 
10421 /* Signed saturating arithmetic.  */
10422 
10423 /* Perform 16-bit signed saturating addition.  */
10424 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10425 {
10426     uint16_t res;
10427 
10428     res = a + b;
10429     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10430         if (a & 0x8000)
10431             res = 0x8000;
10432         else
10433             res = 0x7fff;
10434     }
10435     return res;
10436 }
10437 
10438 /* Perform 8-bit signed saturating addition.  */
10439 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10440 {
10441     uint8_t res;
10442 
10443     res = a + b;
10444     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10445         if (a & 0x80)
10446             res = 0x80;
10447         else
10448             res = 0x7f;
10449     }
10450     return res;
10451 }
10452 
10453 /* Perform 16-bit signed saturating subtraction.  */
10454 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10455 {
10456     uint16_t res;
10457 
10458     res = a - b;
10459     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10460         if (a & 0x8000)
10461             res = 0x8000;
10462         else
10463             res = 0x7fff;
10464     }
10465     return res;
10466 }
10467 
10468 /* Perform 8-bit signed saturating subtraction.  */
10469 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10470 {
10471     uint8_t res;
10472 
10473     res = a - b;
10474     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10475         if (a & 0x80)
10476             res = 0x80;
10477         else
10478             res = 0x7f;
10479     }
10480     return res;
10481 }
10482 
10483 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10484 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10485 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10486 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10487 #define PFX q
10488 
10489 #include "op_addsub.h"
10490 
10491 /* Unsigned saturating arithmetic.  */
10492 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10493 {
10494     uint16_t res;
10495     res = a + b;
10496     if (res < a)
10497         res = 0xffff;
10498     return res;
10499 }
10500 
10501 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10502 {
10503     if (a > b)
10504         return a - b;
10505     else
10506         return 0;
10507 }
10508 
10509 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10510 {
10511     uint8_t res;
10512     res = a + b;
10513     if (res < a)
10514         res = 0xff;
10515     return res;
10516 }
10517 
10518 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10519 {
10520     if (a > b)
10521         return a - b;
10522     else
10523         return 0;
10524 }
10525 
10526 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10527 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10528 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
10529 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
10530 #define PFX uq
10531 
10532 #include "op_addsub.h"
10533 
10534 /* Signed modulo arithmetic.  */
10535 #define SARITH16(a, b, n, op) do { \
10536     int32_t sum; \
10537     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10538     RESULT(sum, n, 16); \
10539     if (sum >= 0) \
10540         ge |= 3 << (n * 2); \
10541     } while(0)
10542 
10543 #define SARITH8(a, b, n, op) do { \
10544     int32_t sum; \
10545     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10546     RESULT(sum, n, 8); \
10547     if (sum >= 0) \
10548         ge |= 1 << n; \
10549     } while(0)
10550 
10551 
10552 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10553 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10554 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
10555 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
10556 #define PFX s
10557 #define ARITH_GE
10558 
10559 #include "op_addsub.h"
10560 
10561 /* Unsigned modulo arithmetic.  */
10562 #define ADD16(a, b, n) do { \
10563     uint32_t sum; \
10564     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10565     RESULT(sum, n, 16); \
10566     if ((sum >> 16) == 1) \
10567         ge |= 3 << (n * 2); \
10568     } while(0)
10569 
10570 #define ADD8(a, b, n) do { \
10571     uint32_t sum; \
10572     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10573     RESULT(sum, n, 8); \
10574     if ((sum >> 8) == 1) \
10575         ge |= 1 << n; \
10576     } while(0)
10577 
10578 #define SUB16(a, b, n) do { \
10579     uint32_t sum; \
10580     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10581     RESULT(sum, n, 16); \
10582     if ((sum >> 16) == 0) \
10583         ge |= 3 << (n * 2); \
10584     } while(0)
10585 
10586 #define SUB8(a, b, n) do { \
10587     uint32_t sum; \
10588     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10589     RESULT(sum, n, 8); \
10590     if ((sum >> 8) == 0) \
10591         ge |= 1 << n; \
10592     } while(0)
10593 
10594 #define PFX u
10595 #define ARITH_GE
10596 
10597 #include "op_addsub.h"
10598 
10599 /* Halved signed arithmetic.  */
10600 #define ADD16(a, b, n) \
10601   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10602 #define SUB16(a, b, n) \
10603   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10604 #define ADD8(a, b, n) \
10605   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10606 #define SUB8(a, b, n) \
10607   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10608 #define PFX sh
10609 
10610 #include "op_addsub.h"
10611 
10612 /* Halved unsigned arithmetic.  */
10613 #define ADD16(a, b, n) \
10614   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10615 #define SUB16(a, b, n) \
10616   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10617 #define ADD8(a, b, n) \
10618   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10619 #define SUB8(a, b, n) \
10620   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10621 #define PFX uh
10622 
10623 #include "op_addsub.h"
10624 
10625 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10626 {
10627     if (a > b)
10628         return a - b;
10629     else
10630         return b - a;
10631 }
10632 
10633 /* Unsigned sum of absolute byte differences.  */
10634 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10635 {
10636     uint32_t sum;
10637     sum = do_usad(a, b);
10638     sum += do_usad(a >> 8, b >> 8);
10639     sum += do_usad(a >> 16, b >> 16);
10640     sum += do_usad(a >> 24, b >> 24);
10641     return sum;
10642 }
10643 
10644 /* For ARMv6 SEL instruction.  */
10645 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10646 {
10647     uint32_t mask;
10648 
10649     mask = 0;
10650     if (flags & 1)
10651         mask |= 0xff;
10652     if (flags & 2)
10653         mask |= 0xff00;
10654     if (flags & 4)
10655         mask |= 0xff0000;
10656     if (flags & 8)
10657         mask |= 0xff000000;
10658     return (a & mask) | (b & ~mask);
10659 }
10660 
10661 /* CRC helpers.
10662  * The upper bytes of val (above the number specified by 'bytes') must have
10663  * been zeroed out by the caller.
10664  */
10665 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10666 {
10667     uint8_t buf[4];
10668 
10669     stl_le_p(buf, val);
10670 
10671     /* zlib crc32 converts the accumulator and output to one's complement.  */
10672     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10673 }
10674 
10675 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10676 {
10677     uint8_t buf[4];
10678 
10679     stl_le_p(buf, val);
10680 
10681     /* Linux crc32c converts the output to one's complement.  */
10682     return crc32c(acc, buf, bytes) ^ 0xffffffff;
10683 }
10684 
10685 /* Return the exception level to which FP-disabled exceptions should
10686  * be taken, or 0 if FP is enabled.
10687  */
10688 int fp_exception_el(CPUARMState *env, int cur_el)
10689 {
10690 #ifndef CONFIG_USER_ONLY
10691     uint64_t hcr_el2;
10692 
10693     /* CPACR and the CPTR registers don't exist before v6, so FP is
10694      * always accessible
10695      */
10696     if (!arm_feature(env, ARM_FEATURE_V6)) {
10697         return 0;
10698     }
10699 
10700     if (arm_feature(env, ARM_FEATURE_M)) {
10701         /* CPACR can cause a NOCP UsageFault taken to current security state */
10702         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
10703             return 1;
10704         }
10705 
10706         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
10707             if (!extract32(env->v7m.nsacr, 10, 1)) {
10708                 /* FP insns cause a NOCP UsageFault taken to Secure */
10709                 return 3;
10710             }
10711         }
10712 
10713         return 0;
10714     }
10715 
10716     hcr_el2 = arm_hcr_el2_eff(env);
10717 
10718     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
10719      * 0, 2 : trap EL0 and EL1/PL1 accesses
10720      * 1    : trap only EL0 accesses
10721      * 3    : trap no accesses
10722      * This register is ignored if E2H+TGE are both set.
10723      */
10724     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10725         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
10726 
10727         switch (fpen) {
10728         case 1:
10729             if (cur_el != 0) {
10730                 break;
10731             }
10732             /* fall through */
10733         case 0:
10734         case 2:
10735             /* Trap from Secure PL0 or PL1 to Secure PL1. */
10736             if (!arm_el_is_aa64(env, 3)
10737                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
10738                 return 3;
10739             }
10740             if (cur_el <= 1) {
10741                 return 1;
10742             }
10743             break;
10744         }
10745     }
10746 
10747     /*
10748      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
10749      * to control non-secure access to the FPU. It doesn't have any
10750      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
10751      */
10752     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
10753          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
10754         if (!extract32(env->cp15.nsacr, 10, 1)) {
10755             /* FP insns act as UNDEF */
10756             return cur_el == 2 ? 2 : 1;
10757         }
10758     }
10759 
10760     /*
10761      * CPTR_EL2 is present in v7VE or v8, and changes format
10762      * with HCR_EL2.E2H (regardless of TGE).
10763      */
10764     if (cur_el <= 2) {
10765         if (hcr_el2 & HCR_E2H) {
10766             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
10767             case 1:
10768                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
10769                     break;
10770                 }
10771                 /* fall through */
10772             case 0:
10773             case 2:
10774                 return 2;
10775             }
10776         } else if (arm_is_el2_enabled(env)) {
10777             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
10778                 return 2;
10779             }
10780         }
10781     }
10782 
10783     /* CPTR_EL3 : present in v8 */
10784     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
10785         /* Trap all FP ops to EL3 */
10786         return 3;
10787     }
10788 #endif
10789     return 0;
10790 }
10791 
10792 /* Return the exception level we're running at if this is our mmu_idx */
10793 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
10794 {
10795     if (mmu_idx & ARM_MMU_IDX_M) {
10796         return mmu_idx & ARM_MMU_IDX_M_PRIV;
10797     }
10798 
10799     switch (mmu_idx) {
10800     case ARMMMUIdx_E10_0:
10801     case ARMMMUIdx_E20_0:
10802     case ARMMMUIdx_SE10_0:
10803     case ARMMMUIdx_SE20_0:
10804         return 0;
10805     case ARMMMUIdx_E10_1:
10806     case ARMMMUIdx_E10_1_PAN:
10807     case ARMMMUIdx_SE10_1:
10808     case ARMMMUIdx_SE10_1_PAN:
10809         return 1;
10810     case ARMMMUIdx_E2:
10811     case ARMMMUIdx_E20_2:
10812     case ARMMMUIdx_E20_2_PAN:
10813     case ARMMMUIdx_SE2:
10814     case ARMMMUIdx_SE20_2:
10815     case ARMMMUIdx_SE20_2_PAN:
10816         return 2;
10817     case ARMMMUIdx_SE3:
10818         return 3;
10819     default:
10820         g_assert_not_reached();
10821     }
10822 }
10823 
10824 #ifndef CONFIG_TCG
10825 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
10826 {
10827     g_assert_not_reached();
10828 }
10829 #endif
10830 
10831 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
10832 {
10833     ARMMMUIdx idx;
10834     uint64_t hcr;
10835 
10836     if (arm_feature(env, ARM_FEATURE_M)) {
10837         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
10838     }
10839 
10840     /* See ARM pseudo-function ELIsInHost.  */
10841     switch (el) {
10842     case 0:
10843         hcr = arm_hcr_el2_eff(env);
10844         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
10845             idx = ARMMMUIdx_E20_0;
10846         } else {
10847             idx = ARMMMUIdx_E10_0;
10848         }
10849         break;
10850     case 1:
10851         if (env->pstate & PSTATE_PAN) {
10852             idx = ARMMMUIdx_E10_1_PAN;
10853         } else {
10854             idx = ARMMMUIdx_E10_1;
10855         }
10856         break;
10857     case 2:
10858         /* Note that TGE does not apply at EL2.  */
10859         if (arm_hcr_el2_eff(env) & HCR_E2H) {
10860             if (env->pstate & PSTATE_PAN) {
10861                 idx = ARMMMUIdx_E20_2_PAN;
10862             } else {
10863                 idx = ARMMMUIdx_E20_2;
10864             }
10865         } else {
10866             idx = ARMMMUIdx_E2;
10867         }
10868         break;
10869     case 3:
10870         return ARMMMUIdx_SE3;
10871     default:
10872         g_assert_not_reached();
10873     }
10874 
10875     if (arm_is_secure_below_el3(env)) {
10876         idx &= ~ARM_MMU_IDX_A_NS;
10877     }
10878 
10879     return idx;
10880 }
10881 
10882 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
10883 {
10884     return arm_mmu_idx_el(env, arm_current_el(env));
10885 }
10886 
10887 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
10888                                            ARMMMUIdx mmu_idx,
10889                                            CPUARMTBFlags flags)
10890 {
10891     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
10892     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
10893 
10894     if (arm_singlestep_active(env)) {
10895         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
10896     }
10897     return flags;
10898 }
10899 
10900 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
10901                                               ARMMMUIdx mmu_idx,
10902                                               CPUARMTBFlags flags)
10903 {
10904     bool sctlr_b = arm_sctlr_b(env);
10905 
10906     if (sctlr_b) {
10907         DP_TBFLAG_A32(flags, SCTLR__B, 1);
10908     }
10909     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
10910         DP_TBFLAG_ANY(flags, BE_DATA, 1);
10911     }
10912     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
10913 
10914     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
10915 }
10916 
10917 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
10918                                         ARMMMUIdx mmu_idx)
10919 {
10920     CPUARMTBFlags flags = {};
10921     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
10922 
10923     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
10924     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
10925         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
10926     }
10927 
10928     if (arm_v7m_is_handler_mode(env)) {
10929         DP_TBFLAG_M32(flags, HANDLER, 1);
10930     }
10931 
10932     /*
10933      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
10934      * is suppressing them because the requested execution priority
10935      * is less than 0.
10936      */
10937     if (arm_feature(env, ARM_FEATURE_V8) &&
10938         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
10939           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
10940         DP_TBFLAG_M32(flags, STACKCHECK, 1);
10941     }
10942 
10943     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
10944 }
10945 
10946 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
10947                                         ARMMMUIdx mmu_idx)
10948 {
10949     CPUARMTBFlags flags = {};
10950     int el = arm_current_el(env);
10951 
10952     if (arm_sctlr(env, el) & SCTLR_A) {
10953         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
10954     }
10955 
10956     if (arm_el_is_aa64(env, 1)) {
10957         DP_TBFLAG_A32(flags, VFPEN, 1);
10958     }
10959 
10960     if (el < 2 && env->cp15.hstr_el2 &&
10961         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10962         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
10963     }
10964 
10965     if (env->uncached_cpsr & CPSR_IL) {
10966         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
10967     }
10968 
10969     /*
10970      * The SME exception we are testing for is raised via
10971      * AArch64.CheckFPAdvSIMDEnabled(), as called from
10972      * AArch32.CheckAdvSIMDOrFPEnabled().
10973      */
10974     if (el == 0
10975         && FIELD_EX64(env->svcr, SVCR, SM)
10976         && (!arm_is_el2_enabled(env)
10977             || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
10978         && arm_el_is_aa64(env, 1)
10979         && !sme_fa64(env, el)) {
10980         DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
10981     }
10982 
10983     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
10984 }
10985 
10986 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
10987                                         ARMMMUIdx mmu_idx)
10988 {
10989     CPUARMTBFlags flags = {};
10990     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
10991     uint64_t tcr = regime_tcr(env, mmu_idx);
10992     uint64_t sctlr;
10993     int tbii, tbid;
10994 
10995     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
10996 
10997     /* Get control bits for tagged addresses.  */
10998     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
10999     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
11000 
11001     DP_TBFLAG_A64(flags, TBII, tbii);
11002     DP_TBFLAG_A64(flags, TBID, tbid);
11003 
11004     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11005         int sve_el = sve_exception_el(env, el);
11006 
11007         /*
11008          * If either FP or SVE are disabled, translator does not need len.
11009          * If SVE EL > FP EL, FP exception has precedence, and translator
11010          * does not need SVE EL.  Save potential re-translations by forcing
11011          * the unneeded data to zero.
11012          */
11013         if (fp_el != 0) {
11014             if (sve_el > fp_el) {
11015                 sve_el = 0;
11016             }
11017         } else if (sve_el == 0) {
11018             DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
11019         }
11020         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
11021     }
11022     if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
11023         int sme_el = sme_exception_el(env, el);
11024         bool sm = FIELD_EX64(env->svcr, SVCR, SM);
11025 
11026         DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
11027         if (sme_el == 0) {
11028             /* Similarly, do not compute SVL if SME is disabled. */
11029             int svl = sve_vqm1_for_el_sm(env, el, true);
11030             DP_TBFLAG_A64(flags, SVL, svl);
11031             if (sm) {
11032                 /* If SVE is disabled, we will not have set VL above. */
11033                 DP_TBFLAG_A64(flags, VL, svl);
11034             }
11035         }
11036         if (sm) {
11037             DP_TBFLAG_A64(flags, PSTATE_SM, 1);
11038             DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
11039         }
11040         DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
11041     }
11042 
11043     sctlr = regime_sctlr(env, stage1);
11044 
11045     if (sctlr & SCTLR_A) {
11046         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11047     }
11048 
11049     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11050         DP_TBFLAG_ANY(flags, BE_DATA, 1);
11051     }
11052 
11053     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11054         /*
11055          * In order to save space in flags, we record only whether
11056          * pauth is "inactive", meaning all insns are implemented as
11057          * a nop, or "active" when some action must be performed.
11058          * The decision of which action to take is left to a helper.
11059          */
11060         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11061             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
11062         }
11063     }
11064 
11065     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11066         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
11067         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11068             DP_TBFLAG_A64(flags, BT, 1);
11069         }
11070     }
11071 
11072     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
11073     if (!(env->pstate & PSTATE_UAO)) {
11074         switch (mmu_idx) {
11075         case ARMMMUIdx_E10_1:
11076         case ARMMMUIdx_E10_1_PAN:
11077         case ARMMMUIdx_SE10_1:
11078         case ARMMMUIdx_SE10_1_PAN:
11079             /* TODO: ARMv8.3-NV */
11080             DP_TBFLAG_A64(flags, UNPRIV, 1);
11081             break;
11082         case ARMMMUIdx_E20_2:
11083         case ARMMMUIdx_E20_2_PAN:
11084         case ARMMMUIdx_SE20_2:
11085         case ARMMMUIdx_SE20_2_PAN:
11086             /*
11087              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
11088              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
11089              */
11090             if (env->cp15.hcr_el2 & HCR_TGE) {
11091                 DP_TBFLAG_A64(flags, UNPRIV, 1);
11092             }
11093             break;
11094         default:
11095             break;
11096         }
11097     }
11098 
11099     if (env->pstate & PSTATE_IL) {
11100         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
11101     }
11102 
11103     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
11104         /*
11105          * Set MTE_ACTIVE if any access may be Checked, and leave clear
11106          * if all accesses must be Unchecked:
11107          * 1) If no TBI, then there are no tags in the address to check,
11108          * 2) If Tag Check Override, then all accesses are Unchecked,
11109          * 3) If Tag Check Fail == 0, then Checked access have no effect,
11110          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
11111          */
11112         if (allocation_tag_access_enabled(env, el, sctlr)) {
11113             DP_TBFLAG_A64(flags, ATA, 1);
11114             if (tbid
11115                 && !(env->pstate & PSTATE_TCO)
11116                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
11117                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
11118             }
11119         }
11120         /* And again for unprivileged accesses, if required.  */
11121         if (EX_TBFLAG_A64(flags, UNPRIV)
11122             && tbid
11123             && !(env->pstate & PSTATE_TCO)
11124             && (sctlr & SCTLR_TCF0)
11125             && allocation_tag_access_enabled(env, 0, sctlr)) {
11126             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
11127         }
11128         /* Cache TCMA as well as TBI. */
11129         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
11130     }
11131 
11132     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11133 }
11134 
11135 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
11136 {
11137     int el = arm_current_el(env);
11138     int fp_el = fp_exception_el(env, el);
11139     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11140 
11141     if (is_a64(env)) {
11142         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11143     } else if (arm_feature(env, ARM_FEATURE_M)) {
11144         return rebuild_hflags_m32(env, fp_el, mmu_idx);
11145     } else {
11146         return rebuild_hflags_a32(env, fp_el, mmu_idx);
11147     }
11148 }
11149 
11150 void arm_rebuild_hflags(CPUARMState *env)
11151 {
11152     env->hflags = rebuild_hflags_internal(env);
11153 }
11154 
11155 /*
11156  * If we have triggered a EL state change we can't rely on the
11157  * translator having passed it to us, we need to recompute.
11158  */
11159 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
11160 {
11161     int el = arm_current_el(env);
11162     int fp_el = fp_exception_el(env, el);
11163     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11164 
11165     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11166 }
11167 
11168 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11169 {
11170     int fp_el = fp_exception_el(env, el);
11171     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11172 
11173     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11174 }
11175 
11176 /*
11177  * If we have triggered a EL state change we can't rely on the
11178  * translator having passed it to us, we need to recompute.
11179  */
11180 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
11181 {
11182     int el = arm_current_el(env);
11183     int fp_el = fp_exception_el(env, el);
11184     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11185     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11186 }
11187 
11188 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11189 {
11190     int fp_el = fp_exception_el(env, el);
11191     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11192 
11193     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11194 }
11195 
11196 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11197 {
11198     int fp_el = fp_exception_el(env, el);
11199     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11200 
11201     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11202 }
11203 
11204 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
11205 {
11206 #ifdef CONFIG_DEBUG_TCG
11207     CPUARMTBFlags c = env->hflags;
11208     CPUARMTBFlags r = rebuild_hflags_internal(env);
11209 
11210     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
11211         fprintf(stderr, "TCG hflags mismatch "
11212                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
11213                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
11214                 c.flags, c.flags2, r.flags, r.flags2);
11215         abort();
11216     }
11217 #endif
11218 }
11219 
11220 static bool mve_no_pred(CPUARMState *env)
11221 {
11222     /*
11223      * Return true if there is definitely no predication of MVE
11224      * instructions by VPR or LTPSIZE. (Returning false even if there
11225      * isn't any predication is OK; generated code will just be
11226      * a little worse.)
11227      * If the CPU does not implement MVE then this TB flag is always 0.
11228      *
11229      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11230      * logic in gen_update_fp_context() needs to be updated to match.
11231      *
11232      * We do not include the effect of the ECI bits here -- they are
11233      * tracked in other TB flags. This simplifies the logic for
11234      * "when did we emit code that changes the MVE_NO_PRED TB flag
11235      * and thus need to end the TB?".
11236      */
11237     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11238         return false;
11239     }
11240     if (env->v7m.vpr) {
11241         return false;
11242     }
11243     if (env->v7m.ltpsize < 4) {
11244         return false;
11245     }
11246     return true;
11247 }
11248 
11249 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11250                           target_ulong *cs_base, uint32_t *pflags)
11251 {
11252     CPUARMTBFlags flags;
11253 
11254     assert_hflags_rebuild_correctly(env);
11255     flags = env->hflags;
11256 
11257     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11258         *pc = env->pc;
11259         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11260             DP_TBFLAG_A64(flags, BTYPE, env->btype);
11261         }
11262     } else {
11263         *pc = env->regs[15];
11264 
11265         if (arm_feature(env, ARM_FEATURE_M)) {
11266             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11267                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11268                 != env->v7m.secure) {
11269                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11270             }
11271 
11272             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11273                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11274                  (env->v7m.secure &&
11275                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11276                 /*
11277                  * ASPEN is set, but FPCA/SFPA indicate that there is no
11278                  * active FP context; we must create a new FP context before
11279                  * executing any FP insn.
11280                  */
11281                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11282             }
11283 
11284             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11285             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11286                 DP_TBFLAG_M32(flags, LSPACT, 1);
11287             }
11288 
11289             if (mve_no_pred(env)) {
11290                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
11291             }
11292         } else {
11293             /*
11294              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11295              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11296              */
11297             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11298                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
11299             } else {
11300                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
11301                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
11302             }
11303             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11304                 DP_TBFLAG_A32(flags, VFPEN, 1);
11305             }
11306         }
11307 
11308         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
11309         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
11310     }
11311 
11312     /*
11313      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11314      * states defined in the ARM ARM for software singlestep:
11315      *  SS_ACTIVE   PSTATE.SS   State
11316      *     0            x       Inactive (the TB flag for SS is always 0)
11317      *     1            0       Active-pending
11318      *     1            1       Active-not-pending
11319      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
11320      */
11321     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
11322         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
11323     }
11324 
11325     *pflags = flags.flags;
11326     *cs_base = flags.flags2;
11327 }
11328 
11329 #ifdef TARGET_AARCH64
11330 /*
11331  * The manual says that when SVE is enabled and VQ is widened the
11332  * implementation is allowed to zero the previously inaccessible
11333  * portion of the registers.  The corollary to that is that when
11334  * SVE is enabled and VQ is narrowed we are also allowed to zero
11335  * the now inaccessible portion of the registers.
11336  *
11337  * The intent of this is that no predicate bit beyond VQ is ever set.
11338  * Which means that some operations on predicate registers themselves
11339  * may operate on full uint64_t or even unrolled across the maximum
11340  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
11341  * may well be cheaper than conditionals to restrict the operation
11342  * to the relevant portion of a uint16_t[16].
11343  */
11344 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11345 {
11346     int i, j;
11347     uint64_t pmask;
11348 
11349     assert(vq >= 1 && vq <= ARM_MAX_VQ);
11350     assert(vq <= env_archcpu(env)->sve_max_vq);
11351 
11352     /* Zap the high bits of the zregs.  */
11353     for (i = 0; i < 32; i++) {
11354         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11355     }
11356 
11357     /* Zap the high bits of the pregs and ffr.  */
11358     pmask = 0;
11359     if (vq & 3) {
11360         pmask = ~(-1ULL << (16 * (vq & 3)));
11361     }
11362     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11363         for (i = 0; i < 17; ++i) {
11364             env->vfp.pregs[i].p[j] &= pmask;
11365         }
11366         pmask = 0;
11367     }
11368 }
11369 
11370 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
11371 {
11372     int exc_el;
11373 
11374     if (sm) {
11375         exc_el = sme_exception_el(env, el);
11376     } else {
11377         exc_el = sve_exception_el(env, el);
11378     }
11379     if (exc_el) {
11380         return 0; /* disabled */
11381     }
11382     return sve_vqm1_for_el_sm(env, el, sm);
11383 }
11384 
11385 /*
11386  * Notice a change in SVE vector size when changing EL.
11387  */
11388 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11389                            int new_el, bool el0_a64)
11390 {
11391     ARMCPU *cpu = env_archcpu(env);
11392     int old_len, new_len;
11393     bool old_a64, new_a64, sm;
11394 
11395     /* Nothing to do if no SVE.  */
11396     if (!cpu_isar_feature(aa64_sve, cpu)) {
11397         return;
11398     }
11399 
11400     /* Nothing to do if FP is disabled in either EL.  */
11401     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11402         return;
11403     }
11404 
11405     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11406     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11407 
11408     /*
11409      * Both AArch64.TakeException and AArch64.ExceptionReturn
11410      * invoke ResetSVEState when taking an exception from, or
11411      * returning to, AArch32 state when PSTATE.SM is enabled.
11412      */
11413     sm = FIELD_EX64(env->svcr, SVCR, SM);
11414     if (old_a64 != new_a64 && sm) {
11415         arm_reset_sve_state(env);
11416         return;
11417     }
11418 
11419     /*
11420      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11421      * at ELx, or not available because the EL is in AArch32 state, then
11422      * for all purposes other than a direct read, the ZCR_ELx.LEN field
11423      * has an effective value of 0".
11424      *
11425      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11426      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11427      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
11428      * we already have the correct register contents when encountering the
11429      * vq0->vq0 transition between EL0->EL1.
11430      */
11431     old_len = new_len = 0;
11432     if (old_a64) {
11433         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
11434     }
11435     if (new_a64) {
11436         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
11437     }
11438 
11439     /* When changing vector length, clear inaccessible state.  */
11440     if (new_len < old_len) {
11441         aarch64_sve_narrow_vq(env, new_len + 1);
11442     }
11443 }
11444 #endif
11445