1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #include "semihosting/common-semi.h" 37 #endif 38 #include "cpregs.h" 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 42 static void switch_mode(CPUARMState *env, int mode); 43 44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 45 { 46 assert(ri->fieldoffset); 47 if (cpreg_field_is_64bit(ri)) { 48 return CPREG_FIELD64(env, ri); 49 } else { 50 return CPREG_FIELD32(env, ri); 51 } 52 } 53 54 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 55 { 56 assert(ri->fieldoffset); 57 if (cpreg_field_is_64bit(ri)) { 58 CPREG_FIELD64(env, ri) = value; 59 } else { 60 CPREG_FIELD32(env, ri) = value; 61 } 62 } 63 64 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 return (char *)env + ri->fieldoffset; 67 } 68 69 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 70 { 71 /* Raw read of a coprocessor register (as needed for migration, etc). */ 72 if (ri->type & ARM_CP_CONST) { 73 return ri->resetvalue; 74 } else if (ri->raw_readfn) { 75 return ri->raw_readfn(env, ri); 76 } else if (ri->readfn) { 77 return ri->readfn(env, ri); 78 } else { 79 return raw_read(env, ri); 80 } 81 } 82 83 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 84 uint64_t v) 85 { 86 /* Raw write of a coprocessor register (as needed for migration, etc). 87 * Note that constant registers are treated as write-ignored; the 88 * caller should check for success by whether a readback gives the 89 * value written. 90 */ 91 if (ri->type & ARM_CP_CONST) { 92 return; 93 } else if (ri->raw_writefn) { 94 ri->raw_writefn(env, ri, v); 95 } else if (ri->writefn) { 96 ri->writefn(env, ri, v); 97 } else { 98 raw_write(env, ri, v); 99 } 100 } 101 102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 103 { 104 /* Return true if the regdef would cause an assertion if you called 105 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 106 * program bug for it not to have the NO_RAW flag). 107 * NB that returning false here doesn't necessarily mean that calling 108 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 109 * read/write access functions which are safe for raw use" from "has 110 * read/write access functions which have side effects but has forgotten 111 * to provide raw access functions". 112 * The tests here line up with the conditions in read/write_raw_cp_reg() 113 * and assertions in raw_read()/raw_write(). 114 */ 115 if ((ri->type & ARM_CP_CONST) || 116 ri->fieldoffset || 117 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 118 return false; 119 } 120 return true; 121 } 122 123 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 124 { 125 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 126 int i; 127 bool ok = true; 128 129 for (i = 0; i < cpu->cpreg_array_len; i++) { 130 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 131 const ARMCPRegInfo *ri; 132 uint64_t newval; 133 134 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 135 if (!ri) { 136 ok = false; 137 continue; 138 } 139 if (ri->type & ARM_CP_NO_RAW) { 140 continue; 141 } 142 143 newval = read_raw_cp_reg(&cpu->env, ri); 144 if (kvm_sync) { 145 /* 146 * Only sync if the previous list->cpustate sync succeeded. 147 * Rather than tracking the success/failure state for every 148 * item in the list, we just recheck "does the raw write we must 149 * have made in write_list_to_cpustate() read back OK" here. 150 */ 151 uint64_t oldval = cpu->cpreg_values[i]; 152 153 if (oldval == newval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, oldval); 158 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 159 continue; 160 } 161 162 write_raw_cp_reg(&cpu->env, ri, newval); 163 } 164 cpu->cpreg_values[i] = newval; 165 } 166 return ok; 167 } 168 169 bool write_list_to_cpustate(ARMCPU *cpu) 170 { 171 int i; 172 bool ok = true; 173 174 for (i = 0; i < cpu->cpreg_array_len; i++) { 175 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 176 uint64_t v = cpu->cpreg_values[i]; 177 const ARMCPRegInfo *ri; 178 179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 180 if (!ri) { 181 ok = false; 182 continue; 183 } 184 if (ri->type & ARM_CP_NO_RAW) { 185 continue; 186 } 187 /* Write value and confirm it reads back as written 188 * (to catch read-only registers and partially read-only 189 * registers where the incoming migration value doesn't match) 190 */ 191 write_raw_cp_reg(&cpu->env, ri, v); 192 if (read_raw_cp_reg(&cpu->env, ri) != v) { 193 ok = false; 194 } 195 } 196 return ok; 197 } 198 199 static void add_cpreg_to_list(gpointer key, gpointer opaque) 200 { 201 ARMCPU *cpu = opaque; 202 uint32_t regidx = (uintptr_t)key; 203 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 204 205 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 207 /* The value array need not be initialized at this point */ 208 cpu->cpreg_array_len++; 209 } 210 } 211 212 static void count_cpreg(gpointer key, gpointer opaque) 213 { 214 ARMCPU *cpu = opaque; 215 const ARMCPRegInfo *ri; 216 217 ri = g_hash_table_lookup(cpu->cp_regs, key); 218 219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 220 cpu->cpreg_array_len++; 221 } 222 } 223 224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 225 { 226 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 227 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 228 229 if (aidx > bidx) { 230 return 1; 231 } 232 if (aidx < bidx) { 233 return -1; 234 } 235 return 0; 236 } 237 238 void init_cpreg_list(ARMCPU *cpu) 239 { 240 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 241 * Note that we require cpreg_tuples[] to be sorted by key ID. 242 */ 243 GList *keys; 244 int arraylen; 245 246 keys = g_hash_table_get_keys(cpu->cp_regs); 247 keys = g_list_sort(keys, cpreg_key_compare); 248 249 cpu->cpreg_array_len = 0; 250 251 g_list_foreach(keys, count_cpreg, cpu); 252 253 arraylen = cpu->cpreg_array_len; 254 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 259 cpu->cpreg_array_len = 0; 260 261 g_list_foreach(keys, add_cpreg_to_list, cpu); 262 263 assert(cpu->cpreg_array_len == arraylen); 264 265 g_list_free(keys); 266 } 267 268 /* 269 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 270 */ 271 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 272 const ARMCPRegInfo *ri, 273 bool isread) 274 { 275 if (!is_a64(env) && arm_current_el(env) == 3 && 276 arm_is_secure_below_el3(env)) { 277 return CP_ACCESS_TRAP_UNCATEGORIZED; 278 } 279 return CP_ACCESS_OK; 280 } 281 282 /* Some secure-only AArch32 registers trap to EL3 if used from 283 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 284 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 285 * We assume that the .access field is set to PL1_RW. 286 */ 287 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 288 const ARMCPRegInfo *ri, 289 bool isread) 290 { 291 if (arm_current_el(env) == 3) { 292 return CP_ACCESS_OK; 293 } 294 if (arm_is_secure_below_el3(env)) { 295 if (env->cp15.scr_el3 & SCR_EEL2) { 296 return CP_ACCESS_TRAP_EL2; 297 } 298 return CP_ACCESS_TRAP_EL3; 299 } 300 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 301 return CP_ACCESS_TRAP_UNCATEGORIZED; 302 } 303 304 /* Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 366 { 367 ARMCPU *cpu = env_archcpu(env); 368 369 raw_write(env, ri, value); 370 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 371 } 372 373 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 374 { 375 ARMCPU *cpu = env_archcpu(env); 376 377 if (raw_read(env, ri) != value) { 378 /* Unlike real hardware the qemu TLB uses virtual addresses, 379 * not modified virtual addresses, so this causes a TLB flush. 380 */ 381 tlb_flush(CPU(cpu)); 382 raw_write(env, ri, value); 383 } 384 } 385 386 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 387 uint64_t value) 388 { 389 ARMCPU *cpu = env_archcpu(env); 390 391 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 392 && !extended_addresses_enabled(env)) { 393 /* For VMSA (when not using the LPAE long descriptor page table 394 * format) this register includes the ASID, so do a TLB flush. 395 * For PMSA it is purely a process ID and no action is needed. 396 */ 397 tlb_flush(CPU(cpu)); 398 } 399 raw_write(env, ri, value); 400 } 401 402 /* IS variants of TLB operations must affect all cores */ 403 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 404 uint64_t value) 405 { 406 CPUState *cs = env_cpu(env); 407 408 tlb_flush_all_cpus_synced(cs); 409 } 410 411 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 412 uint64_t value) 413 { 414 CPUState *cs = env_cpu(env); 415 416 tlb_flush_all_cpus_synced(cs); 417 } 418 419 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 420 uint64_t value) 421 { 422 CPUState *cs = env_cpu(env); 423 424 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 425 } 426 427 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 428 uint64_t value) 429 { 430 CPUState *cs = env_cpu(env); 431 432 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 433 } 434 435 /* 436 * Non-IS variants of TLB operations are upgraded to 437 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 438 * force broadcast of these operations. 439 */ 440 static bool tlb_force_broadcast(CPUARMState *env) 441 { 442 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 443 } 444 445 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 446 uint64_t value) 447 { 448 /* Invalidate all (TLBIALL) */ 449 CPUState *cs = env_cpu(env); 450 451 if (tlb_force_broadcast(env)) { 452 tlb_flush_all_cpus_synced(cs); 453 } else { 454 tlb_flush(cs); 455 } 456 } 457 458 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 459 uint64_t value) 460 { 461 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 462 CPUState *cs = env_cpu(env); 463 464 value &= TARGET_PAGE_MASK; 465 if (tlb_force_broadcast(env)) { 466 tlb_flush_page_all_cpus_synced(cs, value); 467 } else { 468 tlb_flush_page(cs, value); 469 } 470 } 471 472 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 473 uint64_t value) 474 { 475 /* Invalidate by ASID (TLBIASID) */ 476 CPUState *cs = env_cpu(env); 477 478 if (tlb_force_broadcast(env)) { 479 tlb_flush_all_cpus_synced(cs); 480 } else { 481 tlb_flush(cs); 482 } 483 } 484 485 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 489 CPUState *cs = env_cpu(env); 490 491 value &= TARGET_PAGE_MASK; 492 if (tlb_force_broadcast(env)) { 493 tlb_flush_page_all_cpus_synced(cs, value); 494 } else { 495 tlb_flush_page(cs, value); 496 } 497 } 498 499 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 CPUState *cs = env_cpu(env); 503 504 tlb_flush_by_mmuidx(cs, 505 ARMMMUIdxBit_E10_1 | 506 ARMMMUIdxBit_E10_1_PAN | 507 ARMMMUIdxBit_E10_0); 508 } 509 510 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 511 uint64_t value) 512 { 513 CPUState *cs = env_cpu(env); 514 515 tlb_flush_by_mmuidx_all_cpus_synced(cs, 516 ARMMMUIdxBit_E10_1 | 517 ARMMMUIdxBit_E10_1_PAN | 518 ARMMMUIdxBit_E10_0); 519 } 520 521 522 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 523 uint64_t value) 524 { 525 CPUState *cs = env_cpu(env); 526 527 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 528 } 529 530 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 531 uint64_t value) 532 { 533 CPUState *cs = env_cpu(env); 534 535 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 536 } 537 538 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 CPUState *cs = env_cpu(env); 542 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 543 544 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 545 } 546 547 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 552 553 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 554 ARMMMUIdxBit_E2); 555 } 556 557 static const ARMCPRegInfo cp_reginfo[] = { 558 /* Define the secure and non-secure FCSE identifier CP registers 559 * separately because there is no secure bank in V8 (no _EL3). This allows 560 * the secure register to be properly reset and migrated. There is also no 561 * v8 EL1 version of the register so the non-secure instance stands alone. 562 */ 563 { .name = "FCSEIDR", 564 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 565 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 566 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 567 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 568 { .name = "FCSEIDR_S", 569 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 570 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 571 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 572 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 573 /* Define the secure and non-secure context identifier CP registers 574 * separately because there is no secure bank in V8 (no _EL3). This allows 575 * the secure register to be properly reset and migrated. In the 576 * non-secure case, the 32-bit register will have reset and migration 577 * disabled during registration as it is handled by the 64-bit instance. 578 */ 579 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 580 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 581 .access = PL1_RW, .accessfn = access_tvm_trvm, 582 .secure = ARM_CP_SECSTATE_NS, 583 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 584 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 585 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 586 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 587 .access = PL1_RW, .accessfn = access_tvm_trvm, 588 .secure = ARM_CP_SECSTATE_S, 589 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 590 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 591 }; 592 593 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 594 /* NB: Some of these registers exist in v8 but with more precise 595 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 596 */ 597 /* MMU Domain access control / MPU write buffer control */ 598 { .name = "DACR", 599 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 600 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 601 .writefn = dacr_write, .raw_writefn = raw_write, 602 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 603 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 604 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 605 * For v6 and v5, these mappings are overly broad. 606 */ 607 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 608 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 609 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 610 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 611 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 612 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 613 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 614 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 615 /* Cache maintenance ops; some of this space may be overridden later. */ 616 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 617 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 618 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 619 }; 620 621 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 622 /* Not all pre-v6 cores implemented this WFI, so this is slightly 623 * over-broad. 624 */ 625 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 626 .access = PL1_W, .type = ARM_CP_WFI }, 627 }; 628 629 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 630 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 631 * is UNPREDICTABLE; we choose to NOP as most implementations do). 632 */ 633 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 634 .access = PL1_W, .type = ARM_CP_WFI }, 635 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 636 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 637 * OMAPCP will override this space. 638 */ 639 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 640 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 641 .resetvalue = 0 }, 642 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 643 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 644 .resetvalue = 0 }, 645 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 646 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 647 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 648 .resetvalue = 0 }, 649 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 650 * implementing it as RAZ means the "debug architecture version" bits 651 * will read as a reserved value, which should cause Linux to not try 652 * to use the debug hardware. 653 */ 654 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 655 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 656 /* MMU TLB control. Note that the wildcarding means we cover not just 657 * the unified TLB ops but also the dside/iside/inner-shareable variants. 658 */ 659 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 660 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 661 .type = ARM_CP_NO_RAW }, 662 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 663 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 664 .type = ARM_CP_NO_RAW }, 665 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 666 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 667 .type = ARM_CP_NO_RAW }, 668 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 669 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 670 .type = ARM_CP_NO_RAW }, 671 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 672 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 673 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 674 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 675 }; 676 677 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 678 uint64_t value) 679 { 680 uint32_t mask = 0; 681 682 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 683 if (!arm_feature(env, ARM_FEATURE_V8)) { 684 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 685 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 686 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 687 */ 688 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 689 /* VFP coprocessor: cp10 & cp11 [23:20] */ 690 mask |= R_CPACR_ASEDIS_MASK | 691 R_CPACR_D32DIS_MASK | 692 R_CPACR_CP11_MASK | 693 R_CPACR_CP10_MASK; 694 695 if (!arm_feature(env, ARM_FEATURE_NEON)) { 696 /* ASEDIS [31] bit is RAO/WI */ 697 value |= R_CPACR_ASEDIS_MASK; 698 } 699 700 /* VFPv3 and upwards with NEON implement 32 double precision 701 * registers (D0-D31). 702 */ 703 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 704 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 705 value |= R_CPACR_D32DIS_MASK; 706 } 707 } 708 value &= mask; 709 } 710 711 /* 712 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 713 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 714 */ 715 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 716 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 717 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 718 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 719 } 720 721 env->cp15.cpacr_el1 = value; 722 } 723 724 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 725 { 726 /* 727 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 728 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 729 */ 730 uint64_t value = env->cp15.cpacr_el1; 731 732 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 733 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 734 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 735 } 736 return value; 737 } 738 739 740 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 741 { 742 /* Call cpacr_write() so that we reset with the correct RAO bits set 743 * for our CPU features. 744 */ 745 cpacr_write(env, ri, 0); 746 } 747 748 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 749 bool isread) 750 { 751 if (arm_feature(env, ARM_FEATURE_V8)) { 752 /* Check if CPACR accesses are to be trapped to EL2 */ 753 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 754 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 755 return CP_ACCESS_TRAP_EL2; 756 /* Check if CPACR accesses are to be trapped to EL3 */ 757 } else if (arm_current_el(env) < 3 && 758 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 759 return CP_ACCESS_TRAP_EL3; 760 } 761 } 762 763 return CP_ACCESS_OK; 764 } 765 766 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 767 bool isread) 768 { 769 /* Check if CPTR accesses are set to trap to EL3 */ 770 if (arm_current_el(env) == 2 && 771 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 772 return CP_ACCESS_TRAP_EL3; 773 } 774 775 return CP_ACCESS_OK; 776 } 777 778 static const ARMCPRegInfo v6_cp_reginfo[] = { 779 /* prefetch by MVA in v6, NOP in v7 */ 780 { .name = "MVA_prefetch", 781 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 782 .access = PL1_W, .type = ARM_CP_NOP }, 783 /* We need to break the TB after ISB to execute self-modifying code 784 * correctly and also to take any pending interrupts immediately. 785 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 786 */ 787 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 788 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 789 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 790 .access = PL0_W, .type = ARM_CP_NOP }, 791 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 792 .access = PL0_W, .type = ARM_CP_NOP }, 793 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 794 .access = PL1_RW, .accessfn = access_tvm_trvm, 795 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 796 offsetof(CPUARMState, cp15.ifar_ns) }, 797 .resetvalue = 0, }, 798 /* Watchpoint Fault Address Register : should actually only be present 799 * for 1136, 1176, 11MPCore. 800 */ 801 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 802 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 803 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 804 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 806 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 807 }; 808 809 typedef struct pm_event { 810 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 811 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 812 bool (*supported)(CPUARMState *); 813 /* 814 * Retrieve the current count of the underlying event. The programmed 815 * counters hold a difference from the return value from this function 816 */ 817 uint64_t (*get_count)(CPUARMState *); 818 /* 819 * Return how many nanoseconds it will take (at a minimum) for count events 820 * to occur. A negative value indicates the counter will never overflow, or 821 * that the counter has otherwise arranged for the overflow bit to be set 822 * and the PMU interrupt to be raised on overflow. 823 */ 824 int64_t (*ns_per_count)(uint64_t); 825 } pm_event; 826 827 static bool event_always_supported(CPUARMState *env) 828 { 829 return true; 830 } 831 832 static uint64_t swinc_get_count(CPUARMState *env) 833 { 834 /* 835 * SW_INCR events are written directly to the pmevcntr's by writes to 836 * PMSWINC, so there is no underlying count maintained by the PMU itself 837 */ 838 return 0; 839 } 840 841 static int64_t swinc_ns_per(uint64_t ignored) 842 { 843 return -1; 844 } 845 846 /* 847 * Return the underlying cycle count for the PMU cycle counters. If we're in 848 * usermode, simply return 0. 849 */ 850 static uint64_t cycles_get_count(CPUARMState *env) 851 { 852 #ifndef CONFIG_USER_ONLY 853 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 854 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 855 #else 856 return cpu_get_host_ticks(); 857 #endif 858 } 859 860 #ifndef CONFIG_USER_ONLY 861 static int64_t cycles_ns_per(uint64_t cycles) 862 { 863 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 864 } 865 866 static bool instructions_supported(CPUARMState *env) 867 { 868 return icount_enabled() == 1; /* Precise instruction counting */ 869 } 870 871 static uint64_t instructions_get_count(CPUARMState *env) 872 { 873 return (uint64_t)icount_get_raw(); 874 } 875 876 static int64_t instructions_ns_per(uint64_t icount) 877 { 878 return icount_to_ns((int64_t)icount); 879 } 880 #endif 881 882 static bool pmuv3p1_events_supported(CPUARMState *env) 883 { 884 /* For events which are supported in any v8.1 PMU */ 885 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 886 } 887 888 static bool pmuv3p4_events_supported(CPUARMState *env) 889 { 890 /* For events which are supported in any v8.1 PMU */ 891 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 892 } 893 894 static uint64_t zero_event_get_count(CPUARMState *env) 895 { 896 /* For events which on QEMU never fire, so their count is always zero */ 897 return 0; 898 } 899 900 static int64_t zero_event_ns_per(uint64_t cycles) 901 { 902 /* An event which never fires can never overflow */ 903 return -1; 904 } 905 906 static const pm_event pm_events[] = { 907 { .number = 0x000, /* SW_INCR */ 908 .supported = event_always_supported, 909 .get_count = swinc_get_count, 910 .ns_per_count = swinc_ns_per, 911 }, 912 #ifndef CONFIG_USER_ONLY 913 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 914 .supported = instructions_supported, 915 .get_count = instructions_get_count, 916 .ns_per_count = instructions_ns_per, 917 }, 918 { .number = 0x011, /* CPU_CYCLES, Cycle */ 919 .supported = event_always_supported, 920 .get_count = cycles_get_count, 921 .ns_per_count = cycles_ns_per, 922 }, 923 #endif 924 { .number = 0x023, /* STALL_FRONTEND */ 925 .supported = pmuv3p1_events_supported, 926 .get_count = zero_event_get_count, 927 .ns_per_count = zero_event_ns_per, 928 }, 929 { .number = 0x024, /* STALL_BACKEND */ 930 .supported = pmuv3p1_events_supported, 931 .get_count = zero_event_get_count, 932 .ns_per_count = zero_event_ns_per, 933 }, 934 { .number = 0x03c, /* STALL */ 935 .supported = pmuv3p4_events_supported, 936 .get_count = zero_event_get_count, 937 .ns_per_count = zero_event_ns_per, 938 }, 939 }; 940 941 /* 942 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 943 * events (i.e. the statistical profiling extension), this implementation 944 * should first be updated to something sparse instead of the current 945 * supported_event_map[] array. 946 */ 947 #define MAX_EVENT_ID 0x3c 948 #define UNSUPPORTED_EVENT UINT16_MAX 949 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 950 951 /* 952 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 953 * of ARM event numbers to indices in our pm_events array. 954 * 955 * Note: Events in the 0x40XX range are not currently supported. 956 */ 957 void pmu_init(ARMCPU *cpu) 958 { 959 unsigned int i; 960 961 /* 962 * Empty supported_event_map and cpu->pmceid[01] before adding supported 963 * events to them 964 */ 965 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 966 supported_event_map[i] = UNSUPPORTED_EVENT; 967 } 968 cpu->pmceid0 = 0; 969 cpu->pmceid1 = 0; 970 971 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 972 const pm_event *cnt = &pm_events[i]; 973 assert(cnt->number <= MAX_EVENT_ID); 974 /* We do not currently support events in the 0x40xx range */ 975 assert(cnt->number <= 0x3f); 976 977 if (cnt->supported(&cpu->env)) { 978 supported_event_map[cnt->number] = i; 979 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 980 if (cnt->number & 0x20) { 981 cpu->pmceid1 |= event_mask; 982 } else { 983 cpu->pmceid0 |= event_mask; 984 } 985 } 986 } 987 } 988 989 /* 990 * Check at runtime whether a PMU event is supported for the current machine 991 */ 992 static bool event_supported(uint16_t number) 993 { 994 if (number > MAX_EVENT_ID) { 995 return false; 996 } 997 return supported_event_map[number] != UNSUPPORTED_EVENT; 998 } 999 1000 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1001 bool isread) 1002 { 1003 /* Performance monitor registers user accessibility is controlled 1004 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1005 * trapping to EL2 or EL3 for other accesses. 1006 */ 1007 int el = arm_current_el(env); 1008 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1009 1010 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1011 return CP_ACCESS_TRAP; 1012 } 1013 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1014 return CP_ACCESS_TRAP_EL2; 1015 } 1016 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1017 return CP_ACCESS_TRAP_EL3; 1018 } 1019 1020 return CP_ACCESS_OK; 1021 } 1022 1023 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1024 const ARMCPRegInfo *ri, 1025 bool isread) 1026 { 1027 /* ER: event counter read trap control */ 1028 if (arm_feature(env, ARM_FEATURE_V8) 1029 && arm_current_el(env) == 0 1030 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1031 && isread) { 1032 return CP_ACCESS_OK; 1033 } 1034 1035 return pmreg_access(env, ri, isread); 1036 } 1037 1038 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1039 const ARMCPRegInfo *ri, 1040 bool isread) 1041 { 1042 /* SW: software increment write trap control */ 1043 if (arm_feature(env, ARM_FEATURE_V8) 1044 && arm_current_el(env) == 0 1045 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1046 && !isread) { 1047 return CP_ACCESS_OK; 1048 } 1049 1050 return pmreg_access(env, ri, isread); 1051 } 1052 1053 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1054 const ARMCPRegInfo *ri, 1055 bool isread) 1056 { 1057 /* ER: event counter read trap control */ 1058 if (arm_feature(env, ARM_FEATURE_V8) 1059 && arm_current_el(env) == 0 1060 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1061 return CP_ACCESS_OK; 1062 } 1063 1064 return pmreg_access(env, ri, isread); 1065 } 1066 1067 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1068 const ARMCPRegInfo *ri, 1069 bool isread) 1070 { 1071 /* CR: cycle counter read trap control */ 1072 if (arm_feature(env, ARM_FEATURE_V8) 1073 && arm_current_el(env) == 0 1074 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1075 && isread) { 1076 return CP_ACCESS_OK; 1077 } 1078 1079 return pmreg_access(env, ri, isread); 1080 } 1081 1082 /* 1083 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1084 * We use these to decide whether we need to wrap a write to MDCR_EL2 1085 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1086 */ 1087 #define MDCR_EL2_PMU_ENABLE_BITS \ 1088 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1089 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1090 1091 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1092 * the current EL, security state, and register configuration. 1093 */ 1094 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1095 { 1096 uint64_t filter; 1097 bool e, p, u, nsk, nsu, nsh, m; 1098 bool enabled, prohibited = false, filtered; 1099 bool secure = arm_is_secure(env); 1100 int el = arm_current_el(env); 1101 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1102 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1103 1104 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1105 return false; 1106 } 1107 1108 if (!arm_feature(env, ARM_FEATURE_EL2) || 1109 (counter < hpmn || counter == 31)) { 1110 e = env->cp15.c9_pmcr & PMCRE; 1111 } else { 1112 e = mdcr_el2 & MDCR_HPME; 1113 } 1114 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1115 1116 /* Is event counting prohibited? */ 1117 if (el == 2 && (counter < hpmn || counter == 31)) { 1118 prohibited = mdcr_el2 & MDCR_HPMD; 1119 } 1120 if (secure) { 1121 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1122 } 1123 1124 if (counter == 31) { 1125 /* 1126 * The cycle counter defaults to running. PMCR.DP says "disable 1127 * the cycle counter when event counting is prohibited". 1128 * Some MDCR bits disable the cycle counter specifically. 1129 */ 1130 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1131 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1132 if (secure) { 1133 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1134 } 1135 if (el == 2) { 1136 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1137 } 1138 } 1139 } 1140 1141 if (counter == 31) { 1142 filter = env->cp15.pmccfiltr_el0; 1143 } else { 1144 filter = env->cp15.c14_pmevtyper[counter]; 1145 } 1146 1147 p = filter & PMXEVTYPER_P; 1148 u = filter & PMXEVTYPER_U; 1149 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1150 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1151 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1152 m = arm_el_is_aa64(env, 1) && 1153 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1154 1155 if (el == 0) { 1156 filtered = secure ? u : u != nsu; 1157 } else if (el == 1) { 1158 filtered = secure ? p : p != nsk; 1159 } else if (el == 2) { 1160 filtered = !nsh; 1161 } else { /* EL3 */ 1162 filtered = m != p; 1163 } 1164 1165 if (counter != 31) { 1166 /* 1167 * If not checking PMCCNTR, ensure the counter is setup to an event we 1168 * support 1169 */ 1170 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1171 if (!event_supported(event)) { 1172 return false; 1173 } 1174 } 1175 1176 return enabled && !prohibited && !filtered; 1177 } 1178 1179 static void pmu_update_irq(CPUARMState *env) 1180 { 1181 ARMCPU *cpu = env_archcpu(env); 1182 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1183 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1184 } 1185 1186 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1187 { 1188 /* 1189 * Return true if the clock divider is enabled and the cycle counter 1190 * is supposed to tick only once every 64 clock cycles. This is 1191 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1192 * (64-bit) cycle counter PMCR.D has no effect. 1193 */ 1194 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1195 } 1196 1197 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1198 { 1199 /* Return true if the specified event counter is configured to be 64 bit */ 1200 1201 /* This isn't intended to be used with the cycle counter */ 1202 assert(counter < 31); 1203 1204 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1205 return false; 1206 } 1207 1208 if (arm_feature(env, ARM_FEATURE_EL2)) { 1209 /* 1210 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1211 * current security state, so we don't use arm_mdcr_el2_eff() here. 1212 */ 1213 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1214 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1215 1216 if (hpmn != 0 && counter >= hpmn) { 1217 return hlp; 1218 } 1219 } 1220 return env->cp15.c9_pmcr & PMCRLP; 1221 } 1222 1223 /* 1224 * Ensure c15_ccnt is the guest-visible count so that operations such as 1225 * enabling/disabling the counter or filtering, modifying the count itself, 1226 * etc. can be done logically. This is essentially a no-op if the counter is 1227 * not enabled at the time of the call. 1228 */ 1229 static void pmccntr_op_start(CPUARMState *env) 1230 { 1231 uint64_t cycles = cycles_get_count(env); 1232 1233 if (pmu_counter_enabled(env, 31)) { 1234 uint64_t eff_cycles = cycles; 1235 if (pmccntr_clockdiv_enabled(env)) { 1236 eff_cycles /= 64; 1237 } 1238 1239 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1240 1241 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1242 1ull << 63 : 1ull << 31; 1243 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1244 env->cp15.c9_pmovsr |= (1ULL << 31); 1245 pmu_update_irq(env); 1246 } 1247 1248 env->cp15.c15_ccnt = new_pmccntr; 1249 } 1250 env->cp15.c15_ccnt_delta = cycles; 1251 } 1252 1253 /* 1254 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1255 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1256 * pmccntr_op_start. 1257 */ 1258 static void pmccntr_op_finish(CPUARMState *env) 1259 { 1260 if (pmu_counter_enabled(env, 31)) { 1261 #ifndef CONFIG_USER_ONLY 1262 /* Calculate when the counter will next overflow */ 1263 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1264 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1265 remaining_cycles = (uint32_t)remaining_cycles; 1266 } 1267 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1268 1269 if (overflow_in > 0) { 1270 int64_t overflow_at; 1271 1272 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1273 overflow_in, &overflow_at)) { 1274 ARMCPU *cpu = env_archcpu(env); 1275 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1276 } 1277 } 1278 #endif 1279 1280 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1281 if (pmccntr_clockdiv_enabled(env)) { 1282 prev_cycles /= 64; 1283 } 1284 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1285 } 1286 } 1287 1288 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1289 { 1290 1291 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1292 uint64_t count = 0; 1293 if (event_supported(event)) { 1294 uint16_t event_idx = supported_event_map[event]; 1295 count = pm_events[event_idx].get_count(env); 1296 } 1297 1298 if (pmu_counter_enabled(env, counter)) { 1299 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1300 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1301 1ULL << 63 : 1ULL << 31; 1302 1303 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1304 env->cp15.c9_pmovsr |= (1 << counter); 1305 pmu_update_irq(env); 1306 } 1307 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1308 } 1309 env->cp15.c14_pmevcntr_delta[counter] = count; 1310 } 1311 1312 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1313 { 1314 if (pmu_counter_enabled(env, counter)) { 1315 #ifndef CONFIG_USER_ONLY 1316 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1317 uint16_t event_idx = supported_event_map[event]; 1318 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1319 int64_t overflow_in; 1320 1321 if (!pmevcntr_is_64_bit(env, counter)) { 1322 delta = (uint32_t)delta; 1323 } 1324 overflow_in = pm_events[event_idx].ns_per_count(delta); 1325 1326 if (overflow_in > 0) { 1327 int64_t overflow_at; 1328 1329 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1330 overflow_in, &overflow_at)) { 1331 ARMCPU *cpu = env_archcpu(env); 1332 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1333 } 1334 } 1335 #endif 1336 1337 env->cp15.c14_pmevcntr_delta[counter] -= 1338 env->cp15.c14_pmevcntr[counter]; 1339 } 1340 } 1341 1342 void pmu_op_start(CPUARMState *env) 1343 { 1344 unsigned int i; 1345 pmccntr_op_start(env); 1346 for (i = 0; i < pmu_num_counters(env); i++) { 1347 pmevcntr_op_start(env, i); 1348 } 1349 } 1350 1351 void pmu_op_finish(CPUARMState *env) 1352 { 1353 unsigned int i; 1354 pmccntr_op_finish(env); 1355 for (i = 0; i < pmu_num_counters(env); i++) { 1356 pmevcntr_op_finish(env, i); 1357 } 1358 } 1359 1360 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1361 { 1362 pmu_op_start(&cpu->env); 1363 } 1364 1365 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1366 { 1367 pmu_op_finish(&cpu->env); 1368 } 1369 1370 void arm_pmu_timer_cb(void *opaque) 1371 { 1372 ARMCPU *cpu = opaque; 1373 1374 /* 1375 * Update all the counter values based on the current underlying counts, 1376 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1377 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1378 * counter may expire. 1379 */ 1380 pmu_op_start(&cpu->env); 1381 pmu_op_finish(&cpu->env); 1382 } 1383 1384 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1385 uint64_t value) 1386 { 1387 pmu_op_start(env); 1388 1389 if (value & PMCRC) { 1390 /* The counter has been reset */ 1391 env->cp15.c15_ccnt = 0; 1392 } 1393 1394 if (value & PMCRP) { 1395 unsigned int i; 1396 for (i = 0; i < pmu_num_counters(env); i++) { 1397 env->cp15.c14_pmevcntr[i] = 0; 1398 } 1399 } 1400 1401 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1402 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1403 1404 pmu_op_finish(env); 1405 } 1406 1407 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1408 uint64_t value) 1409 { 1410 unsigned int i; 1411 uint64_t overflow_mask, new_pmswinc; 1412 1413 for (i = 0; i < pmu_num_counters(env); i++) { 1414 /* Increment a counter's count iff: */ 1415 if ((value & (1 << i)) && /* counter's bit is set */ 1416 /* counter is enabled and not filtered */ 1417 pmu_counter_enabled(env, i) && 1418 /* counter is SW_INCR */ 1419 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1420 pmevcntr_op_start(env, i); 1421 1422 /* 1423 * Detect if this write causes an overflow since we can't predict 1424 * PMSWINC overflows like we can for other events 1425 */ 1426 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1427 1428 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1429 1ULL << 63 : 1ULL << 31; 1430 1431 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1432 env->cp15.c9_pmovsr |= (1 << i); 1433 pmu_update_irq(env); 1434 } 1435 1436 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1437 1438 pmevcntr_op_finish(env, i); 1439 } 1440 } 1441 } 1442 1443 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1444 { 1445 uint64_t ret; 1446 pmccntr_op_start(env); 1447 ret = env->cp15.c15_ccnt; 1448 pmccntr_op_finish(env); 1449 return ret; 1450 } 1451 1452 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1453 uint64_t value) 1454 { 1455 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1456 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1457 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1458 * accessed. 1459 */ 1460 env->cp15.c9_pmselr = value & 0x1f; 1461 } 1462 1463 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1464 uint64_t value) 1465 { 1466 pmccntr_op_start(env); 1467 env->cp15.c15_ccnt = value; 1468 pmccntr_op_finish(env); 1469 } 1470 1471 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1472 uint64_t value) 1473 { 1474 uint64_t cur_val = pmccntr_read(env, NULL); 1475 1476 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1477 } 1478 1479 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1480 uint64_t value) 1481 { 1482 pmccntr_op_start(env); 1483 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1484 pmccntr_op_finish(env); 1485 } 1486 1487 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1488 uint64_t value) 1489 { 1490 pmccntr_op_start(env); 1491 /* M is not accessible from AArch32 */ 1492 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1493 (value & PMCCFILTR); 1494 pmccntr_op_finish(env); 1495 } 1496 1497 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1498 { 1499 /* M is not visible in AArch32 */ 1500 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1501 } 1502 1503 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1504 uint64_t value) 1505 { 1506 pmu_op_start(env); 1507 value &= pmu_counter_mask(env); 1508 env->cp15.c9_pmcnten |= value; 1509 pmu_op_finish(env); 1510 } 1511 1512 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1513 uint64_t value) 1514 { 1515 pmu_op_start(env); 1516 value &= pmu_counter_mask(env); 1517 env->cp15.c9_pmcnten &= ~value; 1518 pmu_op_finish(env); 1519 } 1520 1521 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1522 uint64_t value) 1523 { 1524 value &= pmu_counter_mask(env); 1525 env->cp15.c9_pmovsr &= ~value; 1526 pmu_update_irq(env); 1527 } 1528 1529 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1530 uint64_t value) 1531 { 1532 value &= pmu_counter_mask(env); 1533 env->cp15.c9_pmovsr |= value; 1534 pmu_update_irq(env); 1535 } 1536 1537 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1538 uint64_t value, const uint8_t counter) 1539 { 1540 if (counter == 31) { 1541 pmccfiltr_write(env, ri, value); 1542 } else if (counter < pmu_num_counters(env)) { 1543 pmevcntr_op_start(env, counter); 1544 1545 /* 1546 * If this counter's event type is changing, store the current 1547 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1548 * pmevcntr_op_finish has the correct baseline when it converts back to 1549 * a delta. 1550 */ 1551 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1552 PMXEVTYPER_EVTCOUNT; 1553 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1554 if (old_event != new_event) { 1555 uint64_t count = 0; 1556 if (event_supported(new_event)) { 1557 uint16_t event_idx = supported_event_map[new_event]; 1558 count = pm_events[event_idx].get_count(env); 1559 } 1560 env->cp15.c14_pmevcntr_delta[counter] = count; 1561 } 1562 1563 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1564 pmevcntr_op_finish(env, counter); 1565 } 1566 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1567 * PMSELR value is equal to or greater than the number of implemented 1568 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1569 */ 1570 } 1571 1572 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1573 const uint8_t counter) 1574 { 1575 if (counter == 31) { 1576 return env->cp15.pmccfiltr_el0; 1577 } else if (counter < pmu_num_counters(env)) { 1578 return env->cp15.c14_pmevtyper[counter]; 1579 } else { 1580 /* 1581 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1582 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1583 */ 1584 return 0; 1585 } 1586 } 1587 1588 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1589 uint64_t value) 1590 { 1591 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1592 pmevtyper_write(env, ri, value, counter); 1593 } 1594 1595 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1596 uint64_t value) 1597 { 1598 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1599 env->cp15.c14_pmevtyper[counter] = value; 1600 1601 /* 1602 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1603 * pmu_op_finish calls when loading saved state for a migration. Because 1604 * we're potentially updating the type of event here, the value written to 1605 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1606 * different counter type. Therefore, we need to set this value to the 1607 * current count for the counter type we're writing so that pmu_op_finish 1608 * has the correct count for its calculation. 1609 */ 1610 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1611 if (event_supported(event)) { 1612 uint16_t event_idx = supported_event_map[event]; 1613 env->cp15.c14_pmevcntr_delta[counter] = 1614 pm_events[event_idx].get_count(env); 1615 } 1616 } 1617 1618 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1619 { 1620 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1621 return pmevtyper_read(env, ri, counter); 1622 } 1623 1624 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1625 uint64_t value) 1626 { 1627 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1628 } 1629 1630 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1631 { 1632 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1633 } 1634 1635 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value, uint8_t counter) 1637 { 1638 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1639 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1640 value &= MAKE_64BIT_MASK(0, 32); 1641 } 1642 if (counter < pmu_num_counters(env)) { 1643 pmevcntr_op_start(env, counter); 1644 env->cp15.c14_pmevcntr[counter] = value; 1645 pmevcntr_op_finish(env, counter); 1646 } 1647 /* 1648 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1649 * are CONSTRAINED UNPREDICTABLE. 1650 */ 1651 } 1652 1653 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1654 uint8_t counter) 1655 { 1656 if (counter < pmu_num_counters(env)) { 1657 uint64_t ret; 1658 pmevcntr_op_start(env, counter); 1659 ret = env->cp15.c14_pmevcntr[counter]; 1660 pmevcntr_op_finish(env, counter); 1661 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1662 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1663 ret &= MAKE_64BIT_MASK(0, 32); 1664 } 1665 return ret; 1666 } else { 1667 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1668 * are CONSTRAINED UNPREDICTABLE. */ 1669 return 0; 1670 } 1671 } 1672 1673 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1674 uint64_t value) 1675 { 1676 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1677 pmevcntr_write(env, ri, value, counter); 1678 } 1679 1680 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1681 { 1682 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1683 return pmevcntr_read(env, ri, counter); 1684 } 1685 1686 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1687 uint64_t value) 1688 { 1689 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1690 assert(counter < pmu_num_counters(env)); 1691 env->cp15.c14_pmevcntr[counter] = value; 1692 pmevcntr_write(env, ri, value, counter); 1693 } 1694 1695 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1696 { 1697 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1698 assert(counter < pmu_num_counters(env)); 1699 return env->cp15.c14_pmevcntr[counter]; 1700 } 1701 1702 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1703 uint64_t value) 1704 { 1705 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1706 } 1707 1708 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1709 { 1710 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1711 } 1712 1713 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1714 uint64_t value) 1715 { 1716 if (arm_feature(env, ARM_FEATURE_V8)) { 1717 env->cp15.c9_pmuserenr = value & 0xf; 1718 } else { 1719 env->cp15.c9_pmuserenr = value & 1; 1720 } 1721 } 1722 1723 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1724 uint64_t value) 1725 { 1726 /* We have no event counters so only the C bit can be changed */ 1727 value &= pmu_counter_mask(env); 1728 env->cp15.c9_pminten |= value; 1729 pmu_update_irq(env); 1730 } 1731 1732 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1733 uint64_t value) 1734 { 1735 value &= pmu_counter_mask(env); 1736 env->cp15.c9_pminten &= ~value; 1737 pmu_update_irq(env); 1738 } 1739 1740 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1741 uint64_t value) 1742 { 1743 /* Note that even though the AArch64 view of this register has bits 1744 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1745 * architectural requirements for bits which are RES0 only in some 1746 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1747 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1748 */ 1749 raw_write(env, ri, value & ~0x1FULL); 1750 } 1751 1752 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1753 { 1754 /* Begin with base v8.0 state. */ 1755 uint32_t valid_mask = 0x3fff; 1756 ARMCPU *cpu = env_archcpu(env); 1757 1758 /* 1759 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1760 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1761 * Instead, choose the format based on the mode of EL3. 1762 */ 1763 if (arm_el_is_aa64(env, 3)) { 1764 value |= SCR_FW | SCR_AW; /* RES1 */ 1765 valid_mask &= ~SCR_NET; /* RES0 */ 1766 1767 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1768 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1769 value |= SCR_RW; /* RAO/WI */ 1770 } 1771 if (cpu_isar_feature(aa64_ras, cpu)) { 1772 valid_mask |= SCR_TERR; 1773 } 1774 if (cpu_isar_feature(aa64_lor, cpu)) { 1775 valid_mask |= SCR_TLOR; 1776 } 1777 if (cpu_isar_feature(aa64_pauth, cpu)) { 1778 valid_mask |= SCR_API | SCR_APK; 1779 } 1780 if (cpu_isar_feature(aa64_sel2, cpu)) { 1781 valid_mask |= SCR_EEL2; 1782 } 1783 if (cpu_isar_feature(aa64_mte, cpu)) { 1784 valid_mask |= SCR_ATA; 1785 } 1786 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1787 valid_mask |= SCR_ENSCXT; 1788 } 1789 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1790 valid_mask |= SCR_EASE | SCR_NMEA; 1791 } 1792 } else { 1793 valid_mask &= ~(SCR_RW | SCR_ST); 1794 if (cpu_isar_feature(aa32_ras, cpu)) { 1795 valid_mask |= SCR_TERR; 1796 } 1797 } 1798 1799 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1800 valid_mask &= ~SCR_HCE; 1801 1802 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1803 * supported if EL2 exists. The bit is UNK/SBZP when 1804 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1805 * when EL2 is unavailable. 1806 * On ARMv8, this bit is always available. 1807 */ 1808 if (arm_feature(env, ARM_FEATURE_V7) && 1809 !arm_feature(env, ARM_FEATURE_V8)) { 1810 valid_mask &= ~SCR_SMD; 1811 } 1812 } 1813 1814 /* Clear all-context RES0 bits. */ 1815 value &= valid_mask; 1816 raw_write(env, ri, value); 1817 } 1818 1819 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1820 { 1821 /* 1822 * scr_write will set the RES1 bits on an AArch64-only CPU. 1823 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1824 */ 1825 scr_write(env, ri, 0); 1826 } 1827 1828 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1829 const ARMCPRegInfo *ri, 1830 bool isread) 1831 { 1832 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1833 return CP_ACCESS_TRAP_EL2; 1834 } 1835 1836 return CP_ACCESS_OK; 1837 } 1838 1839 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1840 { 1841 ARMCPU *cpu = env_archcpu(env); 1842 1843 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1844 * bank 1845 */ 1846 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1847 ri->secure & ARM_CP_SECSTATE_S); 1848 1849 return cpu->ccsidr[index]; 1850 } 1851 1852 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1853 uint64_t value) 1854 { 1855 raw_write(env, ri, value & 0xf); 1856 } 1857 1858 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1859 { 1860 CPUState *cs = env_cpu(env); 1861 bool el1 = arm_current_el(env) == 1; 1862 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1863 uint64_t ret = 0; 1864 1865 if (hcr_el2 & HCR_IMO) { 1866 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1867 ret |= CPSR_I; 1868 } 1869 } else { 1870 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1871 ret |= CPSR_I; 1872 } 1873 } 1874 1875 if (hcr_el2 & HCR_FMO) { 1876 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1877 ret |= CPSR_F; 1878 } 1879 } else { 1880 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1881 ret |= CPSR_F; 1882 } 1883 } 1884 1885 if (hcr_el2 & HCR_AMO) { 1886 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1887 ret |= CPSR_A; 1888 } 1889 } 1890 1891 return ret; 1892 } 1893 1894 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1895 bool isread) 1896 { 1897 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1898 return CP_ACCESS_TRAP_EL2; 1899 } 1900 1901 return CP_ACCESS_OK; 1902 } 1903 1904 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1905 bool isread) 1906 { 1907 if (arm_feature(env, ARM_FEATURE_V8)) { 1908 return access_aa64_tid1(env, ri, isread); 1909 } 1910 1911 return CP_ACCESS_OK; 1912 } 1913 1914 static const ARMCPRegInfo v7_cp_reginfo[] = { 1915 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1916 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1917 .access = PL1_W, .type = ARM_CP_NOP }, 1918 /* Performance monitors are implementation defined in v7, 1919 * but with an ARM recommended set of registers, which we 1920 * follow. 1921 * 1922 * Performance registers fall into three categories: 1923 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1924 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1925 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1926 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1927 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1928 */ 1929 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1930 .access = PL0_RW, .type = ARM_CP_ALIAS, 1931 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1932 .writefn = pmcntenset_write, 1933 .accessfn = pmreg_access, 1934 .raw_writefn = raw_write }, 1935 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1936 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1937 .access = PL0_RW, .accessfn = pmreg_access, 1938 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1939 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1940 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1941 .access = PL0_RW, 1942 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1943 .accessfn = pmreg_access, 1944 .writefn = pmcntenclr_write, 1945 .type = ARM_CP_ALIAS }, 1946 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1947 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1948 .access = PL0_RW, .accessfn = pmreg_access, 1949 .type = ARM_CP_ALIAS, 1950 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1951 .writefn = pmcntenclr_write }, 1952 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1953 .access = PL0_RW, .type = ARM_CP_IO, 1954 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1955 .accessfn = pmreg_access, 1956 .writefn = pmovsr_write, 1957 .raw_writefn = raw_write }, 1958 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1960 .access = PL0_RW, .accessfn = pmreg_access, 1961 .type = ARM_CP_ALIAS | ARM_CP_IO, 1962 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1963 .writefn = pmovsr_write, 1964 .raw_writefn = raw_write }, 1965 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1966 .access = PL0_W, .accessfn = pmreg_access_swinc, 1967 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1968 .writefn = pmswinc_write }, 1969 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1970 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1971 .access = PL0_W, .accessfn = pmreg_access_swinc, 1972 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1973 .writefn = pmswinc_write }, 1974 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1975 .access = PL0_RW, .type = ARM_CP_ALIAS, 1976 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1977 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1978 .raw_writefn = raw_write}, 1979 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1980 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1981 .access = PL0_RW, .accessfn = pmreg_access_selr, 1982 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1983 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1984 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1985 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1986 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1987 .accessfn = pmreg_access_ccntr }, 1988 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1989 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1990 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1991 .type = ARM_CP_IO, 1992 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1993 .readfn = pmccntr_read, .writefn = pmccntr_write, 1994 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1995 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1996 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1997 .access = PL0_RW, .accessfn = pmreg_access, 1998 .type = ARM_CP_ALIAS | ARM_CP_IO, 1999 .resetvalue = 0, }, 2000 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2001 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2002 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2003 .access = PL0_RW, .accessfn = pmreg_access, 2004 .type = ARM_CP_IO, 2005 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2006 .resetvalue = 0, }, 2007 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2008 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2009 .accessfn = pmreg_access, 2010 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2011 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2012 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2013 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2014 .accessfn = pmreg_access, 2015 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2016 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2017 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2018 .accessfn = pmreg_access_xevcntr, 2019 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2020 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2021 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2022 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2023 .accessfn = pmreg_access_xevcntr, 2024 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2025 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2026 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2027 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2028 .resetvalue = 0, 2029 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2030 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2031 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2032 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2033 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2034 .resetvalue = 0, 2035 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2036 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2037 .access = PL1_RW, .accessfn = access_tpm, 2038 .type = ARM_CP_ALIAS | ARM_CP_IO, 2039 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2040 .resetvalue = 0, 2041 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2042 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2043 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2044 .access = PL1_RW, .accessfn = access_tpm, 2045 .type = ARM_CP_IO, 2046 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2047 .writefn = pmintenset_write, .raw_writefn = raw_write, 2048 .resetvalue = 0x0 }, 2049 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2050 .access = PL1_RW, .accessfn = access_tpm, 2051 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2052 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2053 .writefn = pmintenclr_write, }, 2054 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2055 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2056 .access = PL1_RW, .accessfn = access_tpm, 2057 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2058 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2059 .writefn = pmintenclr_write }, 2060 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2061 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2062 .access = PL1_R, 2063 .accessfn = access_aa64_tid2, 2064 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2065 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2066 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2067 .access = PL1_RW, 2068 .accessfn = access_aa64_tid2, 2069 .writefn = csselr_write, .resetvalue = 0, 2070 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2071 offsetof(CPUARMState, cp15.csselr_ns) } }, 2072 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2073 * just RAZ for all cores: 2074 */ 2075 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2076 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2077 .access = PL1_R, .type = ARM_CP_CONST, 2078 .accessfn = access_aa64_tid1, 2079 .resetvalue = 0 }, 2080 /* Auxiliary fault status registers: these also are IMPDEF, and we 2081 * choose to RAZ/WI for all cores. 2082 */ 2083 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2084 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2085 .access = PL1_RW, .accessfn = access_tvm_trvm, 2086 .type = ARM_CP_CONST, .resetvalue = 0 }, 2087 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2088 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2089 .access = PL1_RW, .accessfn = access_tvm_trvm, 2090 .type = ARM_CP_CONST, .resetvalue = 0 }, 2091 /* MAIR can just read-as-written because we don't implement caches 2092 * and so don't need to care about memory attributes. 2093 */ 2094 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2095 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2096 .access = PL1_RW, .accessfn = access_tvm_trvm, 2097 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2098 .resetvalue = 0 }, 2099 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2100 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2101 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2102 .resetvalue = 0 }, 2103 /* For non-long-descriptor page tables these are PRRR and NMRR; 2104 * regardless they still act as reads-as-written for QEMU. 2105 */ 2106 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2107 * allows them to assign the correct fieldoffset based on the endianness 2108 * handled in the field definitions. 2109 */ 2110 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2111 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2112 .access = PL1_RW, .accessfn = access_tvm_trvm, 2113 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2114 offsetof(CPUARMState, cp15.mair0_ns) }, 2115 .resetfn = arm_cp_reset_ignore }, 2116 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2117 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2118 .access = PL1_RW, .accessfn = access_tvm_trvm, 2119 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2120 offsetof(CPUARMState, cp15.mair1_ns) }, 2121 .resetfn = arm_cp_reset_ignore }, 2122 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2123 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2124 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2125 /* 32 bit ITLB invalidates */ 2126 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbiall_write }, 2129 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2131 .writefn = tlbimva_write }, 2132 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2134 .writefn = tlbiasid_write }, 2135 /* 32 bit DTLB invalidates */ 2136 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2138 .writefn = tlbiall_write }, 2139 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2140 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2141 .writefn = tlbimva_write }, 2142 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2144 .writefn = tlbiasid_write }, 2145 /* 32 bit TLB invalidates */ 2146 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbiall_write }, 2149 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbimva_write }, 2152 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbiasid_write }, 2155 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2157 .writefn = tlbimvaa_write }, 2158 }; 2159 2160 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2161 /* 32 bit TLB invalidates, Inner Shareable */ 2162 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2163 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2164 .writefn = tlbiall_is_write }, 2165 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2167 .writefn = tlbimva_is_write }, 2168 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2169 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2170 .writefn = tlbiasid_is_write }, 2171 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2172 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2173 .writefn = tlbimvaa_is_write }, 2174 }; 2175 2176 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2177 /* PMOVSSET is not implemented in v7 before v7ve */ 2178 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2179 .access = PL0_RW, .accessfn = pmreg_access, 2180 .type = ARM_CP_ALIAS | ARM_CP_IO, 2181 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2182 .writefn = pmovsset_write, 2183 .raw_writefn = raw_write }, 2184 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2185 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2186 .access = PL0_RW, .accessfn = pmreg_access, 2187 .type = ARM_CP_ALIAS | ARM_CP_IO, 2188 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2189 .writefn = pmovsset_write, 2190 .raw_writefn = raw_write }, 2191 }; 2192 2193 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2194 uint64_t value) 2195 { 2196 value &= 1; 2197 env->teecr = value; 2198 } 2199 2200 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2201 bool isread) 2202 { 2203 /* 2204 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2205 * at all, so we don't need to check whether we're v8A. 2206 */ 2207 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2208 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2209 return CP_ACCESS_TRAP_EL2; 2210 } 2211 return CP_ACCESS_OK; 2212 } 2213 2214 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2215 bool isread) 2216 { 2217 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2218 return CP_ACCESS_TRAP; 2219 } 2220 return teecr_access(env, ri, isread); 2221 } 2222 2223 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2224 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2225 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2226 .resetvalue = 0, 2227 .writefn = teecr_write, .accessfn = teecr_access }, 2228 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2229 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2230 .accessfn = teehbr_access, .resetvalue = 0 }, 2231 }; 2232 2233 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2234 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2236 .access = PL0_RW, 2237 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2238 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2239 .access = PL0_RW, 2240 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2241 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2242 .resetfn = arm_cp_reset_ignore }, 2243 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2244 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2245 .access = PL0_R|PL1_W, 2246 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2247 .resetvalue = 0}, 2248 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2249 .access = PL0_R|PL1_W, 2250 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2251 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2252 .resetfn = arm_cp_reset_ignore }, 2253 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2254 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2255 .access = PL1_RW, 2256 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2257 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2258 .access = PL1_RW, 2259 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2260 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2261 .resetvalue = 0 }, 2262 }; 2263 2264 #ifndef CONFIG_USER_ONLY 2265 2266 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2267 bool isread) 2268 { 2269 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2270 * Writable only at the highest implemented exception level. 2271 */ 2272 int el = arm_current_el(env); 2273 uint64_t hcr; 2274 uint32_t cntkctl; 2275 2276 switch (el) { 2277 case 0: 2278 hcr = arm_hcr_el2_eff(env); 2279 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2280 cntkctl = env->cp15.cnthctl_el2; 2281 } else { 2282 cntkctl = env->cp15.c14_cntkctl; 2283 } 2284 if (!extract32(cntkctl, 0, 2)) { 2285 return CP_ACCESS_TRAP; 2286 } 2287 break; 2288 case 1: 2289 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2290 arm_is_secure_below_el3(env)) { 2291 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2292 return CP_ACCESS_TRAP_UNCATEGORIZED; 2293 } 2294 break; 2295 case 2: 2296 case 3: 2297 break; 2298 } 2299 2300 if (!isread && el < arm_highest_el(env)) { 2301 return CP_ACCESS_TRAP_UNCATEGORIZED; 2302 } 2303 2304 return CP_ACCESS_OK; 2305 } 2306 2307 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2308 bool isread) 2309 { 2310 unsigned int cur_el = arm_current_el(env); 2311 bool has_el2 = arm_is_el2_enabled(env); 2312 uint64_t hcr = arm_hcr_el2_eff(env); 2313 2314 switch (cur_el) { 2315 case 0: 2316 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2317 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2318 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2319 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2320 } 2321 2322 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2323 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2324 return CP_ACCESS_TRAP; 2325 } 2326 2327 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2328 if (hcr & HCR_E2H) { 2329 if (timeridx == GTIMER_PHYS && 2330 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2331 return CP_ACCESS_TRAP_EL2; 2332 } 2333 } else { 2334 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2335 if (has_el2 && timeridx == GTIMER_PHYS && 2336 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2337 return CP_ACCESS_TRAP_EL2; 2338 } 2339 } 2340 break; 2341 2342 case 1: 2343 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2344 if (has_el2 && timeridx == GTIMER_PHYS && 2345 (hcr & HCR_E2H 2346 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2347 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2348 return CP_ACCESS_TRAP_EL2; 2349 } 2350 break; 2351 } 2352 return CP_ACCESS_OK; 2353 } 2354 2355 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2356 bool isread) 2357 { 2358 unsigned int cur_el = arm_current_el(env); 2359 bool has_el2 = arm_is_el2_enabled(env); 2360 uint64_t hcr = arm_hcr_el2_eff(env); 2361 2362 switch (cur_el) { 2363 case 0: 2364 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2365 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2366 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2367 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2368 } 2369 2370 /* 2371 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2372 * EL0 if EL0[PV]TEN is zero. 2373 */ 2374 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2375 return CP_ACCESS_TRAP; 2376 } 2377 /* fall through */ 2378 2379 case 1: 2380 if (has_el2 && timeridx == GTIMER_PHYS) { 2381 if (hcr & HCR_E2H) { 2382 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2383 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2384 return CP_ACCESS_TRAP_EL2; 2385 } 2386 } else { 2387 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2388 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2389 return CP_ACCESS_TRAP_EL2; 2390 } 2391 } 2392 } 2393 break; 2394 } 2395 return CP_ACCESS_OK; 2396 } 2397 2398 static CPAccessResult gt_pct_access(CPUARMState *env, 2399 const ARMCPRegInfo *ri, 2400 bool isread) 2401 { 2402 return gt_counter_access(env, GTIMER_PHYS, isread); 2403 } 2404 2405 static CPAccessResult gt_vct_access(CPUARMState *env, 2406 const ARMCPRegInfo *ri, 2407 bool isread) 2408 { 2409 return gt_counter_access(env, GTIMER_VIRT, isread); 2410 } 2411 2412 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2413 bool isread) 2414 { 2415 return gt_timer_access(env, GTIMER_PHYS, isread); 2416 } 2417 2418 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2419 bool isread) 2420 { 2421 return gt_timer_access(env, GTIMER_VIRT, isread); 2422 } 2423 2424 static CPAccessResult gt_stimer_access(CPUARMState *env, 2425 const ARMCPRegInfo *ri, 2426 bool isread) 2427 { 2428 /* The AArch64 register view of the secure physical timer is 2429 * always accessible from EL3, and configurably accessible from 2430 * Secure EL1. 2431 */ 2432 switch (arm_current_el(env)) { 2433 case 1: 2434 if (!arm_is_secure(env)) { 2435 return CP_ACCESS_TRAP; 2436 } 2437 if (!(env->cp15.scr_el3 & SCR_ST)) { 2438 return CP_ACCESS_TRAP_EL3; 2439 } 2440 return CP_ACCESS_OK; 2441 case 0: 2442 case 2: 2443 return CP_ACCESS_TRAP; 2444 case 3: 2445 return CP_ACCESS_OK; 2446 default: 2447 g_assert_not_reached(); 2448 } 2449 } 2450 2451 static uint64_t gt_get_countervalue(CPUARMState *env) 2452 { 2453 ARMCPU *cpu = env_archcpu(env); 2454 2455 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2456 } 2457 2458 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2459 { 2460 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2461 2462 if (gt->ctl & 1) { 2463 /* Timer enabled: calculate and set current ISTATUS, irq, and 2464 * reset timer to when ISTATUS next has to change 2465 */ 2466 uint64_t offset = timeridx == GTIMER_VIRT ? 2467 cpu->env.cp15.cntvoff_el2 : 0; 2468 uint64_t count = gt_get_countervalue(&cpu->env); 2469 /* Note that this must be unsigned 64 bit arithmetic: */ 2470 int istatus = count - offset >= gt->cval; 2471 uint64_t nexttick; 2472 int irqstate; 2473 2474 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2475 2476 irqstate = (istatus && !(gt->ctl & 2)); 2477 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2478 2479 if (istatus) { 2480 /* Next transition is when count rolls back over to zero */ 2481 nexttick = UINT64_MAX; 2482 } else { 2483 /* Next transition is when we hit cval */ 2484 nexttick = gt->cval + offset; 2485 } 2486 /* Note that the desired next expiry time might be beyond the 2487 * signed-64-bit range of a QEMUTimer -- in this case we just 2488 * set the timer for as far in the future as possible. When the 2489 * timer expires we will reset the timer for any remaining period. 2490 */ 2491 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2492 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2493 } else { 2494 timer_mod(cpu->gt_timer[timeridx], nexttick); 2495 } 2496 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2497 } else { 2498 /* Timer disabled: ISTATUS and timer output always clear */ 2499 gt->ctl &= ~4; 2500 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2501 timer_del(cpu->gt_timer[timeridx]); 2502 trace_arm_gt_recalc_disabled(timeridx); 2503 } 2504 } 2505 2506 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2507 int timeridx) 2508 { 2509 ARMCPU *cpu = env_archcpu(env); 2510 2511 timer_del(cpu->gt_timer[timeridx]); 2512 } 2513 2514 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2515 { 2516 return gt_get_countervalue(env); 2517 } 2518 2519 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2520 { 2521 uint64_t hcr; 2522 2523 switch (arm_current_el(env)) { 2524 case 2: 2525 hcr = arm_hcr_el2_eff(env); 2526 if (hcr & HCR_E2H) { 2527 return 0; 2528 } 2529 break; 2530 case 0: 2531 hcr = arm_hcr_el2_eff(env); 2532 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2533 return 0; 2534 } 2535 break; 2536 } 2537 2538 return env->cp15.cntvoff_el2; 2539 } 2540 2541 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2542 { 2543 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2544 } 2545 2546 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2547 int timeridx, 2548 uint64_t value) 2549 { 2550 trace_arm_gt_cval_write(timeridx, value); 2551 env->cp15.c14_timer[timeridx].cval = value; 2552 gt_recalc_timer(env_archcpu(env), timeridx); 2553 } 2554 2555 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2556 int timeridx) 2557 { 2558 uint64_t offset = 0; 2559 2560 switch (timeridx) { 2561 case GTIMER_VIRT: 2562 case GTIMER_HYPVIRT: 2563 offset = gt_virt_cnt_offset(env); 2564 break; 2565 } 2566 2567 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2568 (gt_get_countervalue(env) - offset)); 2569 } 2570 2571 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2572 int timeridx, 2573 uint64_t value) 2574 { 2575 uint64_t offset = 0; 2576 2577 switch (timeridx) { 2578 case GTIMER_VIRT: 2579 case GTIMER_HYPVIRT: 2580 offset = gt_virt_cnt_offset(env); 2581 break; 2582 } 2583 2584 trace_arm_gt_tval_write(timeridx, value); 2585 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2586 sextract64(value, 0, 32); 2587 gt_recalc_timer(env_archcpu(env), timeridx); 2588 } 2589 2590 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2591 int timeridx, 2592 uint64_t value) 2593 { 2594 ARMCPU *cpu = env_archcpu(env); 2595 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2596 2597 trace_arm_gt_ctl_write(timeridx, value); 2598 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2599 if ((oldval ^ value) & 1) { 2600 /* Enable toggled */ 2601 gt_recalc_timer(cpu, timeridx); 2602 } else if ((oldval ^ value) & 2) { 2603 /* IMASK toggled: don't need to recalculate, 2604 * just set the interrupt line based on ISTATUS 2605 */ 2606 int irqstate = (oldval & 4) && !(value & 2); 2607 2608 trace_arm_gt_imask_toggle(timeridx, irqstate); 2609 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2610 } 2611 } 2612 2613 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2614 { 2615 gt_timer_reset(env, ri, GTIMER_PHYS); 2616 } 2617 2618 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2619 uint64_t value) 2620 { 2621 gt_cval_write(env, ri, GTIMER_PHYS, value); 2622 } 2623 2624 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2625 { 2626 return gt_tval_read(env, ri, GTIMER_PHYS); 2627 } 2628 2629 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2630 uint64_t value) 2631 { 2632 gt_tval_write(env, ri, GTIMER_PHYS, value); 2633 } 2634 2635 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2636 uint64_t value) 2637 { 2638 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2639 } 2640 2641 static int gt_phys_redir_timeridx(CPUARMState *env) 2642 { 2643 switch (arm_mmu_idx(env)) { 2644 case ARMMMUIdx_E20_0: 2645 case ARMMMUIdx_E20_2: 2646 case ARMMMUIdx_E20_2_PAN: 2647 case ARMMMUIdx_SE20_0: 2648 case ARMMMUIdx_SE20_2: 2649 case ARMMMUIdx_SE20_2_PAN: 2650 return GTIMER_HYP; 2651 default: 2652 return GTIMER_PHYS; 2653 } 2654 } 2655 2656 static int gt_virt_redir_timeridx(CPUARMState *env) 2657 { 2658 switch (arm_mmu_idx(env)) { 2659 case ARMMMUIdx_E20_0: 2660 case ARMMMUIdx_E20_2: 2661 case ARMMMUIdx_E20_2_PAN: 2662 case ARMMMUIdx_SE20_0: 2663 case ARMMMUIdx_SE20_2: 2664 case ARMMMUIdx_SE20_2_PAN: 2665 return GTIMER_HYPVIRT; 2666 default: 2667 return GTIMER_VIRT; 2668 } 2669 } 2670 2671 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2672 const ARMCPRegInfo *ri) 2673 { 2674 int timeridx = gt_phys_redir_timeridx(env); 2675 return env->cp15.c14_timer[timeridx].cval; 2676 } 2677 2678 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2679 uint64_t value) 2680 { 2681 int timeridx = gt_phys_redir_timeridx(env); 2682 gt_cval_write(env, ri, timeridx, value); 2683 } 2684 2685 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2686 const ARMCPRegInfo *ri) 2687 { 2688 int timeridx = gt_phys_redir_timeridx(env); 2689 return gt_tval_read(env, ri, timeridx); 2690 } 2691 2692 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2693 uint64_t value) 2694 { 2695 int timeridx = gt_phys_redir_timeridx(env); 2696 gt_tval_write(env, ri, timeridx, value); 2697 } 2698 2699 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2700 const ARMCPRegInfo *ri) 2701 { 2702 int timeridx = gt_phys_redir_timeridx(env); 2703 return env->cp15.c14_timer[timeridx].ctl; 2704 } 2705 2706 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2707 uint64_t value) 2708 { 2709 int timeridx = gt_phys_redir_timeridx(env); 2710 gt_ctl_write(env, ri, timeridx, value); 2711 } 2712 2713 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2714 { 2715 gt_timer_reset(env, ri, GTIMER_VIRT); 2716 } 2717 2718 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2719 uint64_t value) 2720 { 2721 gt_cval_write(env, ri, GTIMER_VIRT, value); 2722 } 2723 2724 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2725 { 2726 return gt_tval_read(env, ri, GTIMER_VIRT); 2727 } 2728 2729 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2730 uint64_t value) 2731 { 2732 gt_tval_write(env, ri, GTIMER_VIRT, value); 2733 } 2734 2735 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2736 uint64_t value) 2737 { 2738 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2739 } 2740 2741 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2742 uint64_t value) 2743 { 2744 ARMCPU *cpu = env_archcpu(env); 2745 2746 trace_arm_gt_cntvoff_write(value); 2747 raw_write(env, ri, value); 2748 gt_recalc_timer(cpu, GTIMER_VIRT); 2749 } 2750 2751 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2752 const ARMCPRegInfo *ri) 2753 { 2754 int timeridx = gt_virt_redir_timeridx(env); 2755 return env->cp15.c14_timer[timeridx].cval; 2756 } 2757 2758 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2759 uint64_t value) 2760 { 2761 int timeridx = gt_virt_redir_timeridx(env); 2762 gt_cval_write(env, ri, timeridx, value); 2763 } 2764 2765 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2766 const ARMCPRegInfo *ri) 2767 { 2768 int timeridx = gt_virt_redir_timeridx(env); 2769 return gt_tval_read(env, ri, timeridx); 2770 } 2771 2772 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2773 uint64_t value) 2774 { 2775 int timeridx = gt_virt_redir_timeridx(env); 2776 gt_tval_write(env, ri, timeridx, value); 2777 } 2778 2779 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2780 const ARMCPRegInfo *ri) 2781 { 2782 int timeridx = gt_virt_redir_timeridx(env); 2783 return env->cp15.c14_timer[timeridx].ctl; 2784 } 2785 2786 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2787 uint64_t value) 2788 { 2789 int timeridx = gt_virt_redir_timeridx(env); 2790 gt_ctl_write(env, ri, timeridx, value); 2791 } 2792 2793 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2794 { 2795 gt_timer_reset(env, ri, GTIMER_HYP); 2796 } 2797 2798 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2799 uint64_t value) 2800 { 2801 gt_cval_write(env, ri, GTIMER_HYP, value); 2802 } 2803 2804 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2805 { 2806 return gt_tval_read(env, ri, GTIMER_HYP); 2807 } 2808 2809 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2810 uint64_t value) 2811 { 2812 gt_tval_write(env, ri, GTIMER_HYP, value); 2813 } 2814 2815 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2816 uint64_t value) 2817 { 2818 gt_ctl_write(env, ri, GTIMER_HYP, value); 2819 } 2820 2821 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2822 { 2823 gt_timer_reset(env, ri, GTIMER_SEC); 2824 } 2825 2826 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2827 uint64_t value) 2828 { 2829 gt_cval_write(env, ri, GTIMER_SEC, value); 2830 } 2831 2832 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2833 { 2834 return gt_tval_read(env, ri, GTIMER_SEC); 2835 } 2836 2837 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 gt_tval_write(env, ri, GTIMER_SEC, value); 2841 } 2842 2843 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2844 uint64_t value) 2845 { 2846 gt_ctl_write(env, ri, GTIMER_SEC, value); 2847 } 2848 2849 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2850 { 2851 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2852 } 2853 2854 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2855 uint64_t value) 2856 { 2857 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2858 } 2859 2860 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2861 { 2862 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2863 } 2864 2865 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2866 uint64_t value) 2867 { 2868 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2869 } 2870 2871 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2872 uint64_t value) 2873 { 2874 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2875 } 2876 2877 void arm_gt_ptimer_cb(void *opaque) 2878 { 2879 ARMCPU *cpu = opaque; 2880 2881 gt_recalc_timer(cpu, GTIMER_PHYS); 2882 } 2883 2884 void arm_gt_vtimer_cb(void *opaque) 2885 { 2886 ARMCPU *cpu = opaque; 2887 2888 gt_recalc_timer(cpu, GTIMER_VIRT); 2889 } 2890 2891 void arm_gt_htimer_cb(void *opaque) 2892 { 2893 ARMCPU *cpu = opaque; 2894 2895 gt_recalc_timer(cpu, GTIMER_HYP); 2896 } 2897 2898 void arm_gt_stimer_cb(void *opaque) 2899 { 2900 ARMCPU *cpu = opaque; 2901 2902 gt_recalc_timer(cpu, GTIMER_SEC); 2903 } 2904 2905 void arm_gt_hvtimer_cb(void *opaque) 2906 { 2907 ARMCPU *cpu = opaque; 2908 2909 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2910 } 2911 2912 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2913 { 2914 ARMCPU *cpu = env_archcpu(env); 2915 2916 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2917 } 2918 2919 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2920 /* Note that CNTFRQ is purely reads-as-written for the benefit 2921 * of software; writing it doesn't actually change the timer frequency. 2922 * Our reset value matches the fixed frequency we implement the timer at. 2923 */ 2924 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2925 .type = ARM_CP_ALIAS, 2926 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2927 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2928 }, 2929 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2930 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2931 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2932 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2933 .resetfn = arm_gt_cntfrq_reset, 2934 }, 2935 /* overall control: mostly access permissions */ 2936 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2937 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2938 .access = PL1_RW, 2939 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2940 .resetvalue = 0, 2941 }, 2942 /* per-timer control */ 2943 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2944 .secure = ARM_CP_SECSTATE_NS, 2945 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2946 .accessfn = gt_ptimer_access, 2947 .fieldoffset = offsetoflow32(CPUARMState, 2948 cp15.c14_timer[GTIMER_PHYS].ctl), 2949 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2950 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2951 }, 2952 { .name = "CNTP_CTL_S", 2953 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2954 .secure = ARM_CP_SECSTATE_S, 2955 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2956 .accessfn = gt_ptimer_access, 2957 .fieldoffset = offsetoflow32(CPUARMState, 2958 cp15.c14_timer[GTIMER_SEC].ctl), 2959 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2960 }, 2961 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2962 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2963 .type = ARM_CP_IO, .access = PL0_RW, 2964 .accessfn = gt_ptimer_access, 2965 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2966 .resetvalue = 0, 2967 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2968 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2969 }, 2970 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2971 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2972 .accessfn = gt_vtimer_access, 2973 .fieldoffset = offsetoflow32(CPUARMState, 2974 cp15.c14_timer[GTIMER_VIRT].ctl), 2975 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2976 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2977 }, 2978 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2979 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2980 .type = ARM_CP_IO, .access = PL0_RW, 2981 .accessfn = gt_vtimer_access, 2982 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2983 .resetvalue = 0, 2984 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2985 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2986 }, 2987 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2988 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2989 .secure = ARM_CP_SECSTATE_NS, 2990 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2991 .accessfn = gt_ptimer_access, 2992 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2993 }, 2994 { .name = "CNTP_TVAL_S", 2995 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2996 .secure = ARM_CP_SECSTATE_S, 2997 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2998 .accessfn = gt_ptimer_access, 2999 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3000 }, 3001 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3002 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3003 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3004 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3005 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3006 }, 3007 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3008 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3009 .accessfn = gt_vtimer_access, 3010 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3011 }, 3012 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3013 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3014 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3015 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3016 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3017 }, 3018 /* The counter itself */ 3019 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3020 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3021 .accessfn = gt_pct_access, 3022 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3023 }, 3024 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3025 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3026 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3027 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3028 }, 3029 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3030 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3031 .accessfn = gt_vct_access, 3032 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3033 }, 3034 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3035 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3036 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3037 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3038 }, 3039 /* Comparison value, indicating when the timer goes off */ 3040 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3041 .secure = ARM_CP_SECSTATE_NS, 3042 .access = PL0_RW, 3043 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3044 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3045 .accessfn = gt_ptimer_access, 3046 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3047 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3048 }, 3049 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3050 .secure = ARM_CP_SECSTATE_S, 3051 .access = PL0_RW, 3052 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3054 .accessfn = gt_ptimer_access, 3055 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3056 }, 3057 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3058 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3059 .access = PL0_RW, 3060 .type = ARM_CP_IO, 3061 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3062 .resetvalue = 0, .accessfn = gt_ptimer_access, 3063 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3064 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3065 }, 3066 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3067 .access = PL0_RW, 3068 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3069 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3070 .accessfn = gt_vtimer_access, 3071 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3072 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3073 }, 3074 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3075 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3076 .access = PL0_RW, 3077 .type = ARM_CP_IO, 3078 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3079 .resetvalue = 0, .accessfn = gt_vtimer_access, 3080 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3081 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3082 }, 3083 /* Secure timer -- this is actually restricted to only EL3 3084 * and configurably Secure-EL1 via the accessfn. 3085 */ 3086 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3087 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3088 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3089 .accessfn = gt_stimer_access, 3090 .readfn = gt_sec_tval_read, 3091 .writefn = gt_sec_tval_write, 3092 .resetfn = gt_sec_timer_reset, 3093 }, 3094 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3095 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3096 .type = ARM_CP_IO, .access = PL1_RW, 3097 .accessfn = gt_stimer_access, 3098 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3099 .resetvalue = 0, 3100 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3101 }, 3102 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3103 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3104 .type = ARM_CP_IO, .access = PL1_RW, 3105 .accessfn = gt_stimer_access, 3106 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3107 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3108 }, 3109 }; 3110 3111 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3112 bool isread) 3113 { 3114 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3115 return CP_ACCESS_TRAP; 3116 } 3117 return CP_ACCESS_OK; 3118 } 3119 3120 #else 3121 3122 /* In user-mode most of the generic timer registers are inaccessible 3123 * however modern kernels (4.12+) allow access to cntvct_el0 3124 */ 3125 3126 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3127 { 3128 ARMCPU *cpu = env_archcpu(env); 3129 3130 /* Currently we have no support for QEMUTimer in linux-user so we 3131 * can't call gt_get_countervalue(env), instead we directly 3132 * call the lower level functions. 3133 */ 3134 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3135 } 3136 3137 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3138 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3139 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3140 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3141 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3142 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3143 }, 3144 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3145 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3146 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3147 .readfn = gt_virt_cnt_read, 3148 }, 3149 }; 3150 3151 #endif 3152 3153 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3154 { 3155 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3156 raw_write(env, ri, value); 3157 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3158 raw_write(env, ri, value & 0xfffff6ff); 3159 } else { 3160 raw_write(env, ri, value & 0xfffff1ff); 3161 } 3162 } 3163 3164 #ifndef CONFIG_USER_ONLY 3165 /* get_phys_addr() isn't present for user-mode-only targets */ 3166 3167 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3168 bool isread) 3169 { 3170 if (ri->opc2 & 4) { 3171 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3172 * Secure EL1 (which can only happen if EL3 is AArch64). 3173 * They are simply UNDEF if executed from NS EL1. 3174 * They function normally from EL2 or EL3. 3175 */ 3176 if (arm_current_el(env) == 1) { 3177 if (arm_is_secure_below_el3(env)) { 3178 if (env->cp15.scr_el3 & SCR_EEL2) { 3179 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3180 } 3181 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3182 } 3183 return CP_ACCESS_TRAP_UNCATEGORIZED; 3184 } 3185 } 3186 return CP_ACCESS_OK; 3187 } 3188 3189 #ifdef CONFIG_TCG 3190 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3191 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3192 { 3193 hwaddr phys_addr; 3194 target_ulong page_size; 3195 int prot; 3196 bool ret; 3197 uint64_t par64; 3198 bool format64 = false; 3199 MemTxAttrs attrs = {}; 3200 ARMMMUFaultInfo fi = {}; 3201 ARMCacheAttrs cacheattrs = {}; 3202 3203 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3204 &prot, &page_size, &fi, &cacheattrs); 3205 3206 /* 3207 * ATS operations only do S1 or S1+S2 translations, so we never 3208 * have to deal with the ARMCacheAttrs format for S2 only. 3209 */ 3210 assert(!cacheattrs.is_s2_format); 3211 3212 if (ret) { 3213 /* 3214 * Some kinds of translation fault must cause exceptions rather 3215 * than being reported in the PAR. 3216 */ 3217 int current_el = arm_current_el(env); 3218 int target_el; 3219 uint32_t syn, fsr, fsc; 3220 bool take_exc = false; 3221 3222 if (fi.s1ptw && current_el == 1 3223 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3224 /* 3225 * Synchronous stage 2 fault on an access made as part of the 3226 * translation table walk for AT S1E0* or AT S1E1* insn 3227 * executed from NS EL1. If this is a synchronous external abort 3228 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3229 * to EL3. Otherwise the fault is taken as an exception to EL2, 3230 * and HPFAR_EL2 holds the faulting IPA. 3231 */ 3232 if (fi.type == ARMFault_SyncExternalOnWalk && 3233 (env->cp15.scr_el3 & SCR_EA)) { 3234 target_el = 3; 3235 } else { 3236 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3237 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3238 env->cp15.hpfar_el2 |= HPFAR_NS; 3239 } 3240 target_el = 2; 3241 } 3242 take_exc = true; 3243 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3244 /* 3245 * Synchronous external aborts during a translation table walk 3246 * are taken as Data Abort exceptions. 3247 */ 3248 if (fi.stage2) { 3249 if (current_el == 3) { 3250 target_el = 3; 3251 } else { 3252 target_el = 2; 3253 } 3254 } else { 3255 target_el = exception_target_el(env); 3256 } 3257 take_exc = true; 3258 } 3259 3260 if (take_exc) { 3261 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3262 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3263 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3264 fsr = arm_fi_to_lfsc(&fi); 3265 fsc = extract32(fsr, 0, 6); 3266 } else { 3267 fsr = arm_fi_to_sfsc(&fi); 3268 fsc = 0x3f; 3269 } 3270 /* 3271 * Report exception with ESR indicating a fault due to a 3272 * translation table walk for a cache maintenance instruction. 3273 */ 3274 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3275 fi.ea, 1, fi.s1ptw, 1, fsc); 3276 env->exception.vaddress = value; 3277 env->exception.fsr = fsr; 3278 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3279 } 3280 } 3281 3282 if (is_a64(env)) { 3283 format64 = true; 3284 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3285 /* 3286 * ATS1Cxx: 3287 * * TTBCR.EAE determines whether the result is returned using the 3288 * 32-bit or the 64-bit PAR format 3289 * * Instructions executed in Hyp mode always use the 64bit format 3290 * 3291 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3292 * * The Non-secure TTBCR.EAE bit is set to 1 3293 * * The implementation includes EL2, and the value of HCR.VM is 1 3294 * 3295 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3296 * 3297 * ATS1Hx always uses the 64bit format. 3298 */ 3299 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3300 3301 if (arm_feature(env, ARM_FEATURE_EL2)) { 3302 if (mmu_idx == ARMMMUIdx_E10_0 || 3303 mmu_idx == ARMMMUIdx_E10_1 || 3304 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3305 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3306 } else { 3307 format64 |= arm_current_el(env) == 2; 3308 } 3309 } 3310 } 3311 3312 if (format64) { 3313 /* Create a 64-bit PAR */ 3314 par64 = (1 << 11); /* LPAE bit always set */ 3315 if (!ret) { 3316 par64 |= phys_addr & ~0xfffULL; 3317 if (!attrs.secure) { 3318 par64 |= (1 << 9); /* NS */ 3319 } 3320 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3321 par64 |= cacheattrs.shareability << 7; /* SH */ 3322 } else { 3323 uint32_t fsr = arm_fi_to_lfsc(&fi); 3324 3325 par64 |= 1; /* F */ 3326 par64 |= (fsr & 0x3f) << 1; /* FS */ 3327 if (fi.stage2) { 3328 par64 |= (1 << 9); /* S */ 3329 } 3330 if (fi.s1ptw) { 3331 par64 |= (1 << 8); /* PTW */ 3332 } 3333 } 3334 } else { 3335 /* fsr is a DFSR/IFSR value for the short descriptor 3336 * translation table format (with WnR always clear). 3337 * Convert it to a 32-bit PAR. 3338 */ 3339 if (!ret) { 3340 /* We do not set any attribute bits in the PAR */ 3341 if (page_size == (1 << 24) 3342 && arm_feature(env, ARM_FEATURE_V7)) { 3343 par64 = (phys_addr & 0xff000000) | (1 << 1); 3344 } else { 3345 par64 = phys_addr & 0xfffff000; 3346 } 3347 if (!attrs.secure) { 3348 par64 |= (1 << 9); /* NS */ 3349 } 3350 } else { 3351 uint32_t fsr = arm_fi_to_sfsc(&fi); 3352 3353 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3354 ((fsr & 0xf) << 1) | 1; 3355 } 3356 } 3357 return par64; 3358 } 3359 #endif /* CONFIG_TCG */ 3360 3361 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3362 { 3363 #ifdef CONFIG_TCG 3364 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3365 uint64_t par64; 3366 ARMMMUIdx mmu_idx; 3367 int el = arm_current_el(env); 3368 bool secure = arm_is_secure_below_el3(env); 3369 3370 switch (ri->opc2 & 6) { 3371 case 0: 3372 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3373 switch (el) { 3374 case 3: 3375 mmu_idx = ARMMMUIdx_SE3; 3376 break; 3377 case 2: 3378 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3379 /* fall through */ 3380 case 1: 3381 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3382 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3383 : ARMMMUIdx_Stage1_E1_PAN); 3384 } else { 3385 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3386 } 3387 break; 3388 default: 3389 g_assert_not_reached(); 3390 } 3391 break; 3392 case 2: 3393 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3394 switch (el) { 3395 case 3: 3396 mmu_idx = ARMMMUIdx_SE10_0; 3397 break; 3398 case 2: 3399 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3400 mmu_idx = ARMMMUIdx_Stage1_E0; 3401 break; 3402 case 1: 3403 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3404 break; 3405 default: 3406 g_assert_not_reached(); 3407 } 3408 break; 3409 case 4: 3410 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3411 mmu_idx = ARMMMUIdx_E10_1; 3412 break; 3413 case 6: 3414 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3415 mmu_idx = ARMMMUIdx_E10_0; 3416 break; 3417 default: 3418 g_assert_not_reached(); 3419 } 3420 3421 par64 = do_ats_write(env, value, access_type, mmu_idx); 3422 3423 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3424 #else 3425 /* Handled by hardware accelerator. */ 3426 g_assert_not_reached(); 3427 #endif /* CONFIG_TCG */ 3428 } 3429 3430 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3431 uint64_t value) 3432 { 3433 #ifdef CONFIG_TCG 3434 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3435 uint64_t par64; 3436 3437 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3438 3439 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3440 #else 3441 /* Handled by hardware accelerator. */ 3442 g_assert_not_reached(); 3443 #endif /* CONFIG_TCG */ 3444 } 3445 3446 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3447 bool isread) 3448 { 3449 if (arm_current_el(env) == 3 && 3450 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3451 return CP_ACCESS_TRAP; 3452 } 3453 return CP_ACCESS_OK; 3454 } 3455 3456 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3457 uint64_t value) 3458 { 3459 #ifdef CONFIG_TCG 3460 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3461 ARMMMUIdx mmu_idx; 3462 int secure = arm_is_secure_below_el3(env); 3463 3464 switch (ri->opc2 & 6) { 3465 case 0: 3466 switch (ri->opc1) { 3467 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3468 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3469 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3470 : ARMMMUIdx_Stage1_E1_PAN); 3471 } else { 3472 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3473 } 3474 break; 3475 case 4: /* AT S1E2R, AT S1E2W */ 3476 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3477 break; 3478 case 6: /* AT S1E3R, AT S1E3W */ 3479 mmu_idx = ARMMMUIdx_SE3; 3480 break; 3481 default: 3482 g_assert_not_reached(); 3483 } 3484 break; 3485 case 2: /* AT S1E0R, AT S1E0W */ 3486 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3487 break; 3488 case 4: /* AT S12E1R, AT S12E1W */ 3489 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3490 break; 3491 case 6: /* AT S12E0R, AT S12E0W */ 3492 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3493 break; 3494 default: 3495 g_assert_not_reached(); 3496 } 3497 3498 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3499 #else 3500 /* Handled by hardware accelerator. */ 3501 g_assert_not_reached(); 3502 #endif /* CONFIG_TCG */ 3503 } 3504 #endif 3505 3506 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3507 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3508 .access = PL1_RW, .resetvalue = 0, 3509 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3510 offsetoflow32(CPUARMState, cp15.par_ns) }, 3511 .writefn = par_write }, 3512 #ifndef CONFIG_USER_ONLY 3513 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3514 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3515 .access = PL1_W, .accessfn = ats_access, 3516 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3517 #endif 3518 }; 3519 3520 /* Return basic MPU access permission bits. */ 3521 static uint32_t simple_mpu_ap_bits(uint32_t val) 3522 { 3523 uint32_t ret; 3524 uint32_t mask; 3525 int i; 3526 ret = 0; 3527 mask = 3; 3528 for (i = 0; i < 16; i += 2) { 3529 ret |= (val >> i) & mask; 3530 mask <<= 2; 3531 } 3532 return ret; 3533 } 3534 3535 /* Pad basic MPU access permission bits to extended format. */ 3536 static uint32_t extended_mpu_ap_bits(uint32_t val) 3537 { 3538 uint32_t ret; 3539 uint32_t mask; 3540 int i; 3541 ret = 0; 3542 mask = 3; 3543 for (i = 0; i < 16; i += 2) { 3544 ret |= (val & mask) << i; 3545 mask <<= 2; 3546 } 3547 return ret; 3548 } 3549 3550 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3551 uint64_t value) 3552 { 3553 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3554 } 3555 3556 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3557 { 3558 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3559 } 3560 3561 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3562 uint64_t value) 3563 { 3564 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3565 } 3566 3567 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3568 { 3569 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3570 } 3571 3572 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3573 { 3574 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3575 3576 if (!u32p) { 3577 return 0; 3578 } 3579 3580 u32p += env->pmsav7.rnr[M_REG_NS]; 3581 return *u32p; 3582 } 3583 3584 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3585 uint64_t value) 3586 { 3587 ARMCPU *cpu = env_archcpu(env); 3588 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3589 3590 if (!u32p) { 3591 return; 3592 } 3593 3594 u32p += env->pmsav7.rnr[M_REG_NS]; 3595 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3596 *u32p = value; 3597 } 3598 3599 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3600 uint64_t value) 3601 { 3602 ARMCPU *cpu = env_archcpu(env); 3603 uint32_t nrgs = cpu->pmsav7_dregion; 3604 3605 if (value >= nrgs) { 3606 qemu_log_mask(LOG_GUEST_ERROR, 3607 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3608 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3609 return; 3610 } 3611 3612 raw_write(env, ri, value); 3613 } 3614 3615 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3616 /* Reset for all these registers is handled in arm_cpu_reset(), 3617 * because the PMSAv7 is also used by M-profile CPUs, which do 3618 * not register cpregs but still need the state to be reset. 3619 */ 3620 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3621 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3622 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3623 .readfn = pmsav7_read, .writefn = pmsav7_write, 3624 .resetfn = arm_cp_reset_ignore }, 3625 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3626 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3627 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3628 .readfn = pmsav7_read, .writefn = pmsav7_write, 3629 .resetfn = arm_cp_reset_ignore }, 3630 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3631 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3632 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3633 .readfn = pmsav7_read, .writefn = pmsav7_write, 3634 .resetfn = arm_cp_reset_ignore }, 3635 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3636 .access = PL1_RW, 3637 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3638 .writefn = pmsav7_rgnr_write, 3639 .resetfn = arm_cp_reset_ignore }, 3640 }; 3641 3642 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3643 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3644 .access = PL1_RW, .type = ARM_CP_ALIAS, 3645 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3646 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3647 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3648 .access = PL1_RW, .type = ARM_CP_ALIAS, 3649 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3650 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3651 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3652 .access = PL1_RW, 3653 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3654 .resetvalue = 0, }, 3655 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3656 .access = PL1_RW, 3657 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3658 .resetvalue = 0, }, 3659 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3660 .access = PL1_RW, 3661 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3662 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3663 .access = PL1_RW, 3664 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3665 /* Protection region base and size registers */ 3666 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3667 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3668 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3669 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3670 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3671 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3672 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3673 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3674 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3675 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3676 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3677 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3678 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3679 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3680 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3681 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3682 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3683 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3684 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3685 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3686 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3687 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3688 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3689 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3690 }; 3691 3692 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3693 uint64_t value) 3694 { 3695 ARMCPU *cpu = env_archcpu(env); 3696 3697 if (!arm_feature(env, ARM_FEATURE_V8)) { 3698 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3699 /* 3700 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3701 * using Long-descriptor translation table format 3702 */ 3703 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3704 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3705 /* 3706 * In an implementation that includes the Security Extensions 3707 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3708 * Short-descriptor translation table format. 3709 */ 3710 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3711 } else { 3712 value &= TTBCR_N; 3713 } 3714 } 3715 3716 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3717 /* With LPAE the TTBCR could result in a change of ASID 3718 * via the TTBCR.A1 bit, so do a TLB flush. 3719 */ 3720 tlb_flush(CPU(cpu)); 3721 } 3722 raw_write(env, ri, value); 3723 } 3724 3725 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3726 uint64_t value) 3727 { 3728 ARMCPU *cpu = env_archcpu(env); 3729 3730 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3731 tlb_flush(CPU(cpu)); 3732 raw_write(env, ri, value); 3733 } 3734 3735 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3736 uint64_t value) 3737 { 3738 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3739 if (cpreg_field_is_64bit(ri) && 3740 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3741 ARMCPU *cpu = env_archcpu(env); 3742 tlb_flush(CPU(cpu)); 3743 } 3744 raw_write(env, ri, value); 3745 } 3746 3747 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3748 uint64_t value) 3749 { 3750 /* 3751 * If we are running with E2&0 regime, then an ASID is active. 3752 * Flush if that might be changing. Note we're not checking 3753 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3754 * holds the active ASID, only checking the field that might. 3755 */ 3756 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3757 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3758 uint16_t mask = ARMMMUIdxBit_E20_2 | 3759 ARMMMUIdxBit_E20_2_PAN | 3760 ARMMMUIdxBit_E20_0; 3761 3762 if (arm_is_secure_below_el3(env)) { 3763 mask >>= ARM_MMU_IDX_A_NS; 3764 } 3765 3766 tlb_flush_by_mmuidx(env_cpu(env), mask); 3767 } 3768 raw_write(env, ri, value); 3769 } 3770 3771 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3772 uint64_t value) 3773 { 3774 ARMCPU *cpu = env_archcpu(env); 3775 CPUState *cs = CPU(cpu); 3776 3777 /* 3778 * A change in VMID to the stage2 page table (Stage2) invalidates 3779 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3780 */ 3781 if (raw_read(env, ri) != value) { 3782 uint16_t mask = ARMMMUIdxBit_E10_1 | 3783 ARMMMUIdxBit_E10_1_PAN | 3784 ARMMMUIdxBit_E10_0; 3785 3786 if (arm_is_secure_below_el3(env)) { 3787 mask >>= ARM_MMU_IDX_A_NS; 3788 } 3789 3790 tlb_flush_by_mmuidx(cs, mask); 3791 raw_write(env, ri, value); 3792 } 3793 } 3794 3795 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3796 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3797 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3798 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3799 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3800 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3801 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3802 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3803 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3804 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3805 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3806 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3807 offsetof(CPUARMState, cp15.dfar_ns) } }, 3808 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3809 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3810 .access = PL1_RW, .accessfn = access_tvm_trvm, 3811 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3812 .resetvalue = 0, }, 3813 }; 3814 3815 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3816 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3817 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3818 .access = PL1_RW, .accessfn = access_tvm_trvm, 3819 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3820 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3821 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3822 .access = PL1_RW, .accessfn = access_tvm_trvm, 3823 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3824 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3825 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3826 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3827 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3828 .access = PL1_RW, .accessfn = access_tvm_trvm, 3829 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3830 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3831 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3832 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3833 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3834 .access = PL1_RW, .accessfn = access_tvm_trvm, 3835 .writefn = vmsa_tcr_el12_write, 3836 .raw_writefn = raw_write, 3837 .resetvalue = 0, 3838 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3839 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3840 .access = PL1_RW, .accessfn = access_tvm_trvm, 3841 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3842 .raw_writefn = raw_write, 3843 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3844 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3845 }; 3846 3847 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3848 * qemu tlbs nor adjusting cached masks. 3849 */ 3850 static const ARMCPRegInfo ttbcr2_reginfo = { 3851 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3852 .access = PL1_RW, .accessfn = access_tvm_trvm, 3853 .type = ARM_CP_ALIAS, 3854 .bank_fieldoffsets = { 3855 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3856 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 3857 }, 3858 }; 3859 3860 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3861 uint64_t value) 3862 { 3863 env->cp15.c15_ticonfig = value & 0xe7; 3864 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3865 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3866 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3867 } 3868 3869 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3870 uint64_t value) 3871 { 3872 env->cp15.c15_threadid = value & 0xffff; 3873 } 3874 3875 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3876 uint64_t value) 3877 { 3878 /* Wait-for-interrupt (deprecated) */ 3879 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3880 } 3881 3882 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3883 uint64_t value) 3884 { 3885 /* On OMAP there are registers indicating the max/min index of dcache lines 3886 * containing a dirty line; cache flush operations have to reset these. 3887 */ 3888 env->cp15.c15_i_max = 0x000; 3889 env->cp15.c15_i_min = 0xff0; 3890 } 3891 3892 static const ARMCPRegInfo omap_cp_reginfo[] = { 3893 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3894 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3895 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3896 .resetvalue = 0, }, 3897 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3898 .access = PL1_RW, .type = ARM_CP_NOP }, 3899 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3900 .access = PL1_RW, 3901 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3902 .writefn = omap_ticonfig_write }, 3903 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3904 .access = PL1_RW, 3905 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3906 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3907 .access = PL1_RW, .resetvalue = 0xff0, 3908 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3909 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3910 .access = PL1_RW, 3911 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3912 .writefn = omap_threadid_write }, 3913 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3914 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3915 .type = ARM_CP_NO_RAW, 3916 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3917 /* TODO: Peripheral port remap register: 3918 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3919 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3920 * when MMU is off. 3921 */ 3922 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3923 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3924 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3925 .writefn = omap_cachemaint_write }, 3926 { .name = "C9", .cp = 15, .crn = 9, 3927 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3928 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3929 }; 3930 3931 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3932 uint64_t value) 3933 { 3934 env->cp15.c15_cpar = value & 0x3fff; 3935 } 3936 3937 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3938 { .name = "XSCALE_CPAR", 3939 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3940 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3941 .writefn = xscale_cpar_write, }, 3942 { .name = "XSCALE_AUXCR", 3943 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3944 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3945 .resetvalue = 0, }, 3946 /* XScale specific cache-lockdown: since we have no cache we NOP these 3947 * and hope the guest does not really rely on cache behaviour. 3948 */ 3949 { .name = "XSCALE_LOCK_ICACHE_LINE", 3950 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3951 .access = PL1_W, .type = ARM_CP_NOP }, 3952 { .name = "XSCALE_UNLOCK_ICACHE", 3953 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3954 .access = PL1_W, .type = ARM_CP_NOP }, 3955 { .name = "XSCALE_DCACHE_LOCK", 3956 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3957 .access = PL1_RW, .type = ARM_CP_NOP }, 3958 { .name = "XSCALE_UNLOCK_DCACHE", 3959 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3960 .access = PL1_W, .type = ARM_CP_NOP }, 3961 }; 3962 3963 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3964 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3965 * implementation of this implementation-defined space. 3966 * Ideally this should eventually disappear in favour of actually 3967 * implementing the correct behaviour for all cores. 3968 */ 3969 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3970 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3971 .access = PL1_RW, 3972 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3973 .resetvalue = 0 }, 3974 }; 3975 3976 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3977 /* Cache status: RAZ because we have no cache so it's always clean */ 3978 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3979 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3980 .resetvalue = 0 }, 3981 }; 3982 3983 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3984 /* We never have a block transfer operation in progress */ 3985 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3986 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3987 .resetvalue = 0 }, 3988 /* The cache ops themselves: these all NOP for QEMU */ 3989 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3990 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3991 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3992 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3993 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3994 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3995 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3996 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3997 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3998 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3999 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4000 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4001 }; 4002 4003 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4004 /* The cache test-and-clean instructions always return (1 << 30) 4005 * to indicate that there are no dirty cache lines. 4006 */ 4007 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4008 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4009 .resetvalue = (1 << 30) }, 4010 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4011 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4012 .resetvalue = (1 << 30) }, 4013 }; 4014 4015 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4016 /* Ignore ReadBuffer accesses */ 4017 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4018 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4019 .access = PL1_RW, .resetvalue = 0, 4020 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4021 }; 4022 4023 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4024 { 4025 unsigned int cur_el = arm_current_el(env); 4026 4027 if (arm_is_el2_enabled(env) && cur_el == 1) { 4028 return env->cp15.vpidr_el2; 4029 } 4030 return raw_read(env, ri); 4031 } 4032 4033 static uint64_t mpidr_read_val(CPUARMState *env) 4034 { 4035 ARMCPU *cpu = env_archcpu(env); 4036 uint64_t mpidr = cpu->mp_affinity; 4037 4038 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4039 mpidr |= (1U << 31); 4040 /* Cores which are uniprocessor (non-coherent) 4041 * but still implement the MP extensions set 4042 * bit 30. (For instance, Cortex-R5). 4043 */ 4044 if (cpu->mp_is_up) { 4045 mpidr |= (1u << 30); 4046 } 4047 } 4048 return mpidr; 4049 } 4050 4051 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4052 { 4053 unsigned int cur_el = arm_current_el(env); 4054 4055 if (arm_is_el2_enabled(env) && cur_el == 1) { 4056 return env->cp15.vmpidr_el2; 4057 } 4058 return mpidr_read_val(env); 4059 } 4060 4061 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4062 /* NOP AMAIR0/1 */ 4063 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4064 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4065 .access = PL1_RW, .accessfn = access_tvm_trvm, 4066 .type = ARM_CP_CONST, .resetvalue = 0 }, 4067 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4068 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4069 .access = PL1_RW, .accessfn = access_tvm_trvm, 4070 .type = ARM_CP_CONST, .resetvalue = 0 }, 4071 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4072 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4073 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4074 offsetof(CPUARMState, cp15.par_ns)} }, 4075 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4076 .access = PL1_RW, .accessfn = access_tvm_trvm, 4077 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4078 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4079 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4080 .writefn = vmsa_ttbr_write, }, 4081 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4082 .access = PL1_RW, .accessfn = access_tvm_trvm, 4083 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4084 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4085 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4086 .writefn = vmsa_ttbr_write, }, 4087 }; 4088 4089 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4090 { 4091 return vfp_get_fpcr(env); 4092 } 4093 4094 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4095 uint64_t value) 4096 { 4097 vfp_set_fpcr(env, value); 4098 } 4099 4100 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4101 { 4102 return vfp_get_fpsr(env); 4103 } 4104 4105 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4106 uint64_t value) 4107 { 4108 vfp_set_fpsr(env, value); 4109 } 4110 4111 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4112 bool isread) 4113 { 4114 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4115 return CP_ACCESS_TRAP; 4116 } 4117 return CP_ACCESS_OK; 4118 } 4119 4120 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4121 uint64_t value) 4122 { 4123 env->daif = value & PSTATE_DAIF; 4124 } 4125 4126 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4127 { 4128 return env->pstate & PSTATE_PAN; 4129 } 4130 4131 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4132 uint64_t value) 4133 { 4134 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4135 } 4136 4137 static const ARMCPRegInfo pan_reginfo = { 4138 .name = "PAN", .state = ARM_CP_STATE_AA64, 4139 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4140 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4141 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4142 }; 4143 4144 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4145 { 4146 return env->pstate & PSTATE_UAO; 4147 } 4148 4149 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4150 uint64_t value) 4151 { 4152 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4153 } 4154 4155 static const ARMCPRegInfo uao_reginfo = { 4156 .name = "UAO", .state = ARM_CP_STATE_AA64, 4157 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4158 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4159 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4160 }; 4161 4162 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4163 { 4164 return env->pstate & PSTATE_DIT; 4165 } 4166 4167 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4168 uint64_t value) 4169 { 4170 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4171 } 4172 4173 static const ARMCPRegInfo dit_reginfo = { 4174 .name = "DIT", .state = ARM_CP_STATE_AA64, 4175 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4176 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4177 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4178 }; 4179 4180 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4181 { 4182 return env->pstate & PSTATE_SSBS; 4183 } 4184 4185 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4186 uint64_t value) 4187 { 4188 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4189 } 4190 4191 static const ARMCPRegInfo ssbs_reginfo = { 4192 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4193 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4194 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4195 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4196 }; 4197 4198 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4199 const ARMCPRegInfo *ri, 4200 bool isread) 4201 { 4202 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4203 switch (arm_current_el(env)) { 4204 case 0: 4205 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4206 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4207 return CP_ACCESS_TRAP; 4208 } 4209 /* fall through */ 4210 case 1: 4211 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4212 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4213 return CP_ACCESS_TRAP_EL2; 4214 } 4215 break; 4216 } 4217 return CP_ACCESS_OK; 4218 } 4219 4220 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4221 const ARMCPRegInfo *ri, 4222 bool isread) 4223 { 4224 /* Cache invalidate/clean to Point of Unification... */ 4225 switch (arm_current_el(env)) { 4226 case 0: 4227 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4228 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4229 return CP_ACCESS_TRAP; 4230 } 4231 /* fall through */ 4232 case 1: 4233 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4234 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4235 return CP_ACCESS_TRAP_EL2; 4236 } 4237 break; 4238 } 4239 return CP_ACCESS_OK; 4240 } 4241 4242 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4243 * Page D4-1736 (DDI0487A.b) 4244 */ 4245 4246 static int vae1_tlbmask(CPUARMState *env) 4247 { 4248 uint64_t hcr = arm_hcr_el2_eff(env); 4249 uint16_t mask; 4250 4251 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4252 mask = ARMMMUIdxBit_E20_2 | 4253 ARMMMUIdxBit_E20_2_PAN | 4254 ARMMMUIdxBit_E20_0; 4255 } else { 4256 mask = ARMMMUIdxBit_E10_1 | 4257 ARMMMUIdxBit_E10_1_PAN | 4258 ARMMMUIdxBit_E10_0; 4259 } 4260 4261 if (arm_is_secure_below_el3(env)) { 4262 mask >>= ARM_MMU_IDX_A_NS; 4263 } 4264 4265 return mask; 4266 } 4267 4268 /* Return 56 if TBI is enabled, 64 otherwise. */ 4269 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4270 uint64_t addr) 4271 { 4272 uint64_t tcr = regime_tcr(env, mmu_idx); 4273 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4274 int select = extract64(addr, 55, 1); 4275 4276 return (tbi >> select) & 1 ? 56 : 64; 4277 } 4278 4279 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4280 { 4281 uint64_t hcr = arm_hcr_el2_eff(env); 4282 ARMMMUIdx mmu_idx; 4283 4284 /* Only the regime of the mmu_idx below is significant. */ 4285 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4286 mmu_idx = ARMMMUIdx_E20_0; 4287 } else { 4288 mmu_idx = ARMMMUIdx_E10_0; 4289 } 4290 4291 if (arm_is_secure_below_el3(env)) { 4292 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4293 } 4294 4295 return tlbbits_for_regime(env, mmu_idx, addr); 4296 } 4297 4298 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4299 uint64_t value) 4300 { 4301 CPUState *cs = env_cpu(env); 4302 int mask = vae1_tlbmask(env); 4303 4304 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4305 } 4306 4307 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4308 uint64_t value) 4309 { 4310 CPUState *cs = env_cpu(env); 4311 int mask = vae1_tlbmask(env); 4312 4313 if (tlb_force_broadcast(env)) { 4314 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4315 } else { 4316 tlb_flush_by_mmuidx(cs, mask); 4317 } 4318 } 4319 4320 static int alle1_tlbmask(CPUARMState *env) 4321 { 4322 /* 4323 * Note that the 'ALL' scope must invalidate both stage 1 and 4324 * stage 2 translations, whereas most other scopes only invalidate 4325 * stage 1 translations. 4326 */ 4327 if (arm_is_secure_below_el3(env)) { 4328 return ARMMMUIdxBit_SE10_1 | 4329 ARMMMUIdxBit_SE10_1_PAN | 4330 ARMMMUIdxBit_SE10_0; 4331 } else { 4332 return ARMMMUIdxBit_E10_1 | 4333 ARMMMUIdxBit_E10_1_PAN | 4334 ARMMMUIdxBit_E10_0; 4335 } 4336 } 4337 4338 static int e2_tlbmask(CPUARMState *env) 4339 { 4340 if (arm_is_secure_below_el3(env)) { 4341 return ARMMMUIdxBit_SE20_0 | 4342 ARMMMUIdxBit_SE20_2 | 4343 ARMMMUIdxBit_SE20_2_PAN | 4344 ARMMMUIdxBit_SE2; 4345 } else { 4346 return ARMMMUIdxBit_E20_0 | 4347 ARMMMUIdxBit_E20_2 | 4348 ARMMMUIdxBit_E20_2_PAN | 4349 ARMMMUIdxBit_E2; 4350 } 4351 } 4352 4353 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4354 uint64_t value) 4355 { 4356 CPUState *cs = env_cpu(env); 4357 int mask = alle1_tlbmask(env); 4358 4359 tlb_flush_by_mmuidx(cs, mask); 4360 } 4361 4362 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4363 uint64_t value) 4364 { 4365 CPUState *cs = env_cpu(env); 4366 int mask = e2_tlbmask(env); 4367 4368 tlb_flush_by_mmuidx(cs, mask); 4369 } 4370 4371 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4372 uint64_t value) 4373 { 4374 ARMCPU *cpu = env_archcpu(env); 4375 CPUState *cs = CPU(cpu); 4376 4377 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4378 } 4379 4380 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4381 uint64_t value) 4382 { 4383 CPUState *cs = env_cpu(env); 4384 int mask = alle1_tlbmask(env); 4385 4386 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4387 } 4388 4389 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4390 uint64_t value) 4391 { 4392 CPUState *cs = env_cpu(env); 4393 int mask = e2_tlbmask(env); 4394 4395 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4396 } 4397 4398 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4399 uint64_t value) 4400 { 4401 CPUState *cs = env_cpu(env); 4402 4403 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4404 } 4405 4406 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4407 uint64_t value) 4408 { 4409 /* Invalidate by VA, EL2 4410 * Currently handles both VAE2 and VALE2, since we don't support 4411 * flush-last-level-only. 4412 */ 4413 CPUState *cs = env_cpu(env); 4414 int mask = e2_tlbmask(env); 4415 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4416 4417 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4418 } 4419 4420 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4421 uint64_t value) 4422 { 4423 /* Invalidate by VA, EL3 4424 * Currently handles both VAE3 and VALE3, since we don't support 4425 * flush-last-level-only. 4426 */ 4427 ARMCPU *cpu = env_archcpu(env); 4428 CPUState *cs = CPU(cpu); 4429 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4430 4431 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4432 } 4433 4434 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4435 uint64_t value) 4436 { 4437 CPUState *cs = env_cpu(env); 4438 int mask = vae1_tlbmask(env); 4439 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4440 int bits = vae1_tlbbits(env, pageaddr); 4441 4442 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4443 } 4444 4445 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4446 uint64_t value) 4447 { 4448 /* Invalidate by VA, EL1&0 (AArch64 version). 4449 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4450 * since we don't support flush-for-specific-ASID-only or 4451 * flush-last-level-only. 4452 */ 4453 CPUState *cs = env_cpu(env); 4454 int mask = vae1_tlbmask(env); 4455 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4456 int bits = vae1_tlbbits(env, pageaddr); 4457 4458 if (tlb_force_broadcast(env)) { 4459 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4460 } else { 4461 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4462 } 4463 } 4464 4465 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4466 uint64_t value) 4467 { 4468 CPUState *cs = env_cpu(env); 4469 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4470 bool secure = arm_is_secure_below_el3(env); 4471 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4472 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4473 pageaddr); 4474 4475 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4476 } 4477 4478 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4479 uint64_t value) 4480 { 4481 CPUState *cs = env_cpu(env); 4482 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4483 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4484 4485 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4486 ARMMMUIdxBit_SE3, bits); 4487 } 4488 4489 #ifdef TARGET_AARCH64 4490 typedef struct { 4491 uint64_t base; 4492 uint64_t length; 4493 } TLBIRange; 4494 4495 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4496 uint64_t value) 4497 { 4498 unsigned int page_size_granule, page_shift, num, scale, exponent; 4499 /* Extract one bit to represent the va selector in use. */ 4500 uint64_t select = sextract64(value, 36, 1); 4501 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4502 TLBIRange ret = { }; 4503 4504 page_size_granule = extract64(value, 46, 2); 4505 4506 /* The granule encoded in value must match the granule in use. */ 4507 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4508 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4509 page_size_granule); 4510 return ret; 4511 } 4512 4513 page_shift = (page_size_granule - 1) * 2 + 12; 4514 num = extract64(value, 39, 5); 4515 scale = extract64(value, 44, 2); 4516 exponent = (5 * scale) + 1; 4517 4518 ret.length = (num + 1) << (exponent + page_shift); 4519 4520 if (param.select) { 4521 ret.base = sextract64(value, 0, 37); 4522 } else { 4523 ret.base = extract64(value, 0, 37); 4524 } 4525 if (param.ds) { 4526 /* 4527 * With DS=1, BaseADDR is always shifted 16 so that it is able 4528 * to address all 52 va bits. The input address is perforce 4529 * aligned on a 64k boundary regardless of translation granule. 4530 */ 4531 page_shift = 16; 4532 } 4533 ret.base <<= page_shift; 4534 4535 return ret; 4536 } 4537 4538 static void do_rvae_write(CPUARMState *env, uint64_t value, 4539 int idxmap, bool synced) 4540 { 4541 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4542 TLBIRange range; 4543 int bits; 4544 4545 range = tlbi_aa64_get_range(env, one_idx, value); 4546 bits = tlbbits_for_regime(env, one_idx, range.base); 4547 4548 if (synced) { 4549 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4550 range.base, 4551 range.length, 4552 idxmap, 4553 bits); 4554 } else { 4555 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4556 range.length, idxmap, bits); 4557 } 4558 } 4559 4560 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4561 const ARMCPRegInfo *ri, 4562 uint64_t value) 4563 { 4564 /* 4565 * Invalidate by VA range, EL1&0. 4566 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4567 * since we don't support flush-for-specific-ASID-only or 4568 * flush-last-level-only. 4569 */ 4570 4571 do_rvae_write(env, value, vae1_tlbmask(env), 4572 tlb_force_broadcast(env)); 4573 } 4574 4575 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4576 const ARMCPRegInfo *ri, 4577 uint64_t value) 4578 { 4579 /* 4580 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4581 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4582 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4583 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4584 * shareable specific flushes. 4585 */ 4586 4587 do_rvae_write(env, value, vae1_tlbmask(env), true); 4588 } 4589 4590 static int vae2_tlbmask(CPUARMState *env) 4591 { 4592 return (arm_is_secure_below_el3(env) 4593 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4594 } 4595 4596 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4597 const ARMCPRegInfo *ri, 4598 uint64_t value) 4599 { 4600 /* 4601 * Invalidate by VA range, EL2. 4602 * Currently handles all of RVAE2 and RVALE2, 4603 * since we don't support flush-for-specific-ASID-only or 4604 * flush-last-level-only. 4605 */ 4606 4607 do_rvae_write(env, value, vae2_tlbmask(env), 4608 tlb_force_broadcast(env)); 4609 4610 4611 } 4612 4613 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4614 const ARMCPRegInfo *ri, 4615 uint64_t value) 4616 { 4617 /* 4618 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4619 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4620 * since we don't support flush-for-specific-ASID-only, 4621 * flush-last-level-only or inner/outer shareable specific flushes. 4622 */ 4623 4624 do_rvae_write(env, value, vae2_tlbmask(env), true); 4625 4626 } 4627 4628 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4629 const ARMCPRegInfo *ri, 4630 uint64_t value) 4631 { 4632 /* 4633 * Invalidate by VA range, EL3. 4634 * Currently handles all of RVAE3 and RVALE3, 4635 * since we don't support flush-for-specific-ASID-only or 4636 * flush-last-level-only. 4637 */ 4638 4639 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4640 tlb_force_broadcast(env)); 4641 } 4642 4643 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4644 const ARMCPRegInfo *ri, 4645 uint64_t value) 4646 { 4647 /* 4648 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4649 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4650 * since we don't support flush-for-specific-ASID-only, 4651 * flush-last-level-only or inner/outer specific flushes. 4652 */ 4653 4654 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4655 } 4656 #endif 4657 4658 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4659 bool isread) 4660 { 4661 int cur_el = arm_current_el(env); 4662 4663 if (cur_el < 2) { 4664 uint64_t hcr = arm_hcr_el2_eff(env); 4665 4666 if (cur_el == 0) { 4667 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4668 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4669 return CP_ACCESS_TRAP_EL2; 4670 } 4671 } else { 4672 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4673 return CP_ACCESS_TRAP; 4674 } 4675 if (hcr & HCR_TDZ) { 4676 return CP_ACCESS_TRAP_EL2; 4677 } 4678 } 4679 } else if (hcr & HCR_TDZ) { 4680 return CP_ACCESS_TRAP_EL2; 4681 } 4682 } 4683 return CP_ACCESS_OK; 4684 } 4685 4686 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4687 { 4688 ARMCPU *cpu = env_archcpu(env); 4689 int dzp_bit = 1 << 4; 4690 4691 /* DZP indicates whether DC ZVA access is allowed */ 4692 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4693 dzp_bit = 0; 4694 } 4695 return cpu->dcz_blocksize | dzp_bit; 4696 } 4697 4698 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4699 bool isread) 4700 { 4701 if (!(env->pstate & PSTATE_SP)) { 4702 /* Access to SP_EL0 is undefined if it's being used as 4703 * the stack pointer. 4704 */ 4705 return CP_ACCESS_TRAP_UNCATEGORIZED; 4706 } 4707 return CP_ACCESS_OK; 4708 } 4709 4710 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4711 { 4712 return env->pstate & PSTATE_SP; 4713 } 4714 4715 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4716 { 4717 update_spsel(env, val); 4718 } 4719 4720 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4721 uint64_t value) 4722 { 4723 ARMCPU *cpu = env_archcpu(env); 4724 4725 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4726 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4727 value &= ~SCTLR_M; 4728 } 4729 4730 /* ??? Lots of these bits are not implemented. */ 4731 4732 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4733 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4734 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4735 } else { 4736 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4737 SCTLR_ATA0 | SCTLR_ATA); 4738 } 4739 } 4740 4741 if (raw_read(env, ri) == value) { 4742 /* Skip the TLB flush if nothing actually changed; Linux likes 4743 * to do a lot of pointless SCTLR writes. 4744 */ 4745 return; 4746 } 4747 4748 raw_write(env, ri, value); 4749 4750 /* This may enable/disable the MMU, so do a TLB flush. */ 4751 tlb_flush(CPU(cpu)); 4752 4753 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4754 /* 4755 * Normally we would always end the TB on an SCTLR write; see the 4756 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4757 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4758 * of hflags from the translator, so do it here. 4759 */ 4760 arm_rebuild_hflags(env); 4761 } 4762 } 4763 4764 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4765 uint64_t value) 4766 { 4767 /* 4768 * Some MDCR_EL3 bits affect whether PMU counters are running: 4769 * if we are trying to change any of those then we must 4770 * bracket this update with PMU start/finish calls. 4771 */ 4772 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4773 4774 if (pmu_op) { 4775 pmu_op_start(env); 4776 } 4777 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4778 if (pmu_op) { 4779 pmu_op_finish(env); 4780 } 4781 } 4782 4783 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4784 uint64_t value) 4785 { 4786 /* 4787 * Some MDCR_EL2 bits affect whether PMU counters are running: 4788 * if we are trying to change any of those then we must 4789 * bracket this update with PMU start/finish calls. 4790 */ 4791 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4792 4793 if (pmu_op) { 4794 pmu_op_start(env); 4795 } 4796 env->cp15.mdcr_el2 = value; 4797 if (pmu_op) { 4798 pmu_op_finish(env); 4799 } 4800 } 4801 4802 static const ARMCPRegInfo v8_cp_reginfo[] = { 4803 /* Minimal set of EL0-visible registers. This will need to be expanded 4804 * significantly for system emulation of AArch64 CPUs. 4805 */ 4806 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4807 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4808 .access = PL0_RW, .type = ARM_CP_NZCV }, 4809 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4810 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4811 .type = ARM_CP_NO_RAW, 4812 .access = PL0_RW, .accessfn = aa64_daif_access, 4813 .fieldoffset = offsetof(CPUARMState, daif), 4814 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4815 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4817 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4818 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4819 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4821 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4822 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4823 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4825 .access = PL0_R, .type = ARM_CP_NO_RAW, 4826 .readfn = aa64_dczid_read }, 4827 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4829 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4830 #ifndef CONFIG_USER_ONLY 4831 /* Avoid overhead of an access check that always passes in user-mode */ 4832 .accessfn = aa64_zva_access, 4833 #endif 4834 }, 4835 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4837 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4838 /* Cache ops: all NOPs since we don't emulate caches */ 4839 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4841 .access = PL1_W, .type = ARM_CP_NOP, 4842 .accessfn = aa64_cacheop_pou_access }, 4843 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4845 .access = PL1_W, .type = ARM_CP_NOP, 4846 .accessfn = aa64_cacheop_pou_access }, 4847 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4849 .access = PL0_W, .type = ARM_CP_NOP, 4850 .accessfn = aa64_cacheop_pou_access }, 4851 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4853 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4854 .type = ARM_CP_NOP }, 4855 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4857 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4858 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4859 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4860 .access = PL0_W, .type = ARM_CP_NOP, 4861 .accessfn = aa64_cacheop_poc_access }, 4862 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4864 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4865 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4866 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4867 .access = PL0_W, .type = ARM_CP_NOP, 4868 .accessfn = aa64_cacheop_pou_access }, 4869 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4871 .access = PL0_W, .type = ARM_CP_NOP, 4872 .accessfn = aa64_cacheop_poc_access }, 4873 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4874 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4875 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4876 /* TLBI operations */ 4877 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4879 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4880 .writefn = tlbi_aa64_vmalle1is_write }, 4881 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4883 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4884 .writefn = tlbi_aa64_vae1is_write }, 4885 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4887 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4888 .writefn = tlbi_aa64_vmalle1is_write }, 4889 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4891 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4892 .writefn = tlbi_aa64_vae1is_write }, 4893 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4895 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4896 .writefn = tlbi_aa64_vae1is_write }, 4897 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4899 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4900 .writefn = tlbi_aa64_vae1is_write }, 4901 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4903 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4904 .writefn = tlbi_aa64_vmalle1_write }, 4905 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4907 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4908 .writefn = tlbi_aa64_vae1_write }, 4909 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4911 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4912 .writefn = tlbi_aa64_vmalle1_write }, 4913 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4915 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4916 .writefn = tlbi_aa64_vae1_write }, 4917 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4919 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4920 .writefn = tlbi_aa64_vae1_write }, 4921 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4923 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4924 .writefn = tlbi_aa64_vae1_write }, 4925 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4926 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4927 .access = PL2_W, .type = ARM_CP_NOP }, 4928 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4930 .access = PL2_W, .type = ARM_CP_NOP }, 4931 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4933 .access = PL2_W, .type = ARM_CP_NO_RAW, 4934 .writefn = tlbi_aa64_alle1is_write }, 4935 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4937 .access = PL2_W, .type = ARM_CP_NO_RAW, 4938 .writefn = tlbi_aa64_alle1is_write }, 4939 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4941 .access = PL2_W, .type = ARM_CP_NOP }, 4942 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4944 .access = PL2_W, .type = ARM_CP_NOP }, 4945 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4947 .access = PL2_W, .type = ARM_CP_NO_RAW, 4948 .writefn = tlbi_aa64_alle1_write }, 4949 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4951 .access = PL2_W, .type = ARM_CP_NO_RAW, 4952 .writefn = tlbi_aa64_alle1is_write }, 4953 #ifndef CONFIG_USER_ONLY 4954 /* 64 bit address translation operations */ 4955 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4957 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4958 .writefn = ats_write64 }, 4959 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4961 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4962 .writefn = ats_write64 }, 4963 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4965 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4966 .writefn = ats_write64 }, 4967 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4969 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4970 .writefn = ats_write64 }, 4971 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4972 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4973 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4974 .writefn = ats_write64 }, 4975 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4976 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4977 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4978 .writefn = ats_write64 }, 4979 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4980 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4981 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4982 .writefn = ats_write64 }, 4983 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4984 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4985 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4986 .writefn = ats_write64 }, 4987 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4988 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4989 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4990 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4991 .writefn = ats_write64 }, 4992 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4993 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4994 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4995 .writefn = ats_write64 }, 4996 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4997 .type = ARM_CP_ALIAS, 4998 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4999 .access = PL1_RW, .resetvalue = 0, 5000 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5001 .writefn = par_write }, 5002 #endif 5003 /* TLB invalidate last level of translation table walk */ 5004 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5005 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5006 .writefn = tlbimva_is_write }, 5007 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5008 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5009 .writefn = tlbimvaa_is_write }, 5010 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5011 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5012 .writefn = tlbimva_write }, 5013 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5014 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5015 .writefn = tlbimvaa_write }, 5016 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5017 .type = ARM_CP_NO_RAW, .access = PL2_W, 5018 .writefn = tlbimva_hyp_write }, 5019 { .name = "TLBIMVALHIS", 5020 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5021 .type = ARM_CP_NO_RAW, .access = PL2_W, 5022 .writefn = tlbimva_hyp_is_write }, 5023 { .name = "TLBIIPAS2", 5024 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5025 .type = ARM_CP_NOP, .access = PL2_W }, 5026 { .name = "TLBIIPAS2IS", 5027 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5028 .type = ARM_CP_NOP, .access = PL2_W }, 5029 { .name = "TLBIIPAS2L", 5030 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5031 .type = ARM_CP_NOP, .access = PL2_W }, 5032 { .name = "TLBIIPAS2LIS", 5033 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5034 .type = ARM_CP_NOP, .access = PL2_W }, 5035 /* 32 bit cache operations */ 5036 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5037 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5038 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5039 .type = ARM_CP_NOP, .access = PL1_W }, 5040 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5041 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5042 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5043 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5044 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5045 .type = ARM_CP_NOP, .access = PL1_W }, 5046 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5047 .type = ARM_CP_NOP, .access = PL1_W }, 5048 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5049 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5050 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5051 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5052 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5053 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5054 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5055 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5056 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5057 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5058 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5059 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5060 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5061 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5062 /* MMU Domain access control / MPU write buffer control */ 5063 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5064 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5065 .writefn = dacr_write, .raw_writefn = raw_write, 5066 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5067 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5068 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5069 .type = ARM_CP_ALIAS, 5070 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5071 .access = PL1_RW, 5072 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5073 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5074 .type = ARM_CP_ALIAS, 5075 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5076 .access = PL1_RW, 5077 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5078 /* We rely on the access checks not allowing the guest to write to the 5079 * state field when SPSel indicates that it's being used as the stack 5080 * pointer. 5081 */ 5082 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5083 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5084 .access = PL1_RW, .accessfn = sp_el0_access, 5085 .type = ARM_CP_ALIAS, 5086 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5087 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5088 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5089 .access = PL2_RW, .type = ARM_CP_ALIAS, 5090 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5091 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5092 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5093 .type = ARM_CP_NO_RAW, 5094 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5095 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5096 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5097 .access = PL2_RW, 5098 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5099 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5100 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5101 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5102 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5103 .writefn = dacr_write, .raw_writefn = raw_write, 5104 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5105 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5106 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5107 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5108 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5109 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5110 .type = ARM_CP_ALIAS, 5111 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5112 .access = PL2_RW, 5113 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5114 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5115 .type = ARM_CP_ALIAS, 5116 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5117 .access = PL2_RW, 5118 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5119 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5120 .type = ARM_CP_ALIAS, 5121 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5122 .access = PL2_RW, 5123 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5124 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5125 .type = ARM_CP_ALIAS, 5126 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5127 .access = PL2_RW, 5128 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5129 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5130 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5131 .resetvalue = 0, 5132 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5133 { .name = "SDCR", .type = ARM_CP_ALIAS, 5134 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5135 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5136 .writefn = sdcr_write, 5137 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5138 }; 5139 5140 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5141 { 5142 ARMCPU *cpu = env_archcpu(env); 5143 5144 if (arm_feature(env, ARM_FEATURE_V8)) { 5145 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5146 } else { 5147 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5148 } 5149 5150 if (arm_feature(env, ARM_FEATURE_EL3)) { 5151 valid_mask &= ~HCR_HCD; 5152 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5153 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5154 * However, if we're using the SMC PSCI conduit then QEMU is 5155 * effectively acting like EL3 firmware and so the guest at 5156 * EL2 should retain the ability to prevent EL1 from being 5157 * able to make SMC calls into the ersatz firmware, so in 5158 * that case HCR.TSC should be read/write. 5159 */ 5160 valid_mask &= ~HCR_TSC; 5161 } 5162 5163 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5164 if (cpu_isar_feature(aa64_vh, cpu)) { 5165 valid_mask |= HCR_E2H; 5166 } 5167 if (cpu_isar_feature(aa64_ras, cpu)) { 5168 valid_mask |= HCR_TERR | HCR_TEA; 5169 } 5170 if (cpu_isar_feature(aa64_lor, cpu)) { 5171 valid_mask |= HCR_TLOR; 5172 } 5173 if (cpu_isar_feature(aa64_pauth, cpu)) { 5174 valid_mask |= HCR_API | HCR_APK; 5175 } 5176 if (cpu_isar_feature(aa64_mte, cpu)) { 5177 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5178 } 5179 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5180 valid_mask |= HCR_ENSCXT; 5181 } 5182 if (cpu_isar_feature(aa64_fwb, cpu)) { 5183 valid_mask |= HCR_FWB; 5184 } 5185 } 5186 5187 /* Clear RES0 bits. */ 5188 value &= valid_mask; 5189 5190 /* 5191 * These bits change the MMU setup: 5192 * HCR_VM enables stage 2 translation 5193 * HCR_PTW forbids certain page-table setups 5194 * HCR_DC disables stage1 and enables stage2 translation 5195 * HCR_DCT enables tagging on (disabled) stage1 translation 5196 * HCR_FWB changes the interpretation of stage2 descriptor bits 5197 */ 5198 if ((env->cp15.hcr_el2 ^ value) & 5199 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5200 tlb_flush(CPU(cpu)); 5201 } 5202 env->cp15.hcr_el2 = value; 5203 5204 /* 5205 * Updates to VI and VF require us to update the status of 5206 * virtual interrupts, which are the logical OR of these bits 5207 * and the state of the input lines from the GIC. (This requires 5208 * that we have the iothread lock, which is done by marking the 5209 * reginfo structs as ARM_CP_IO.) 5210 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5211 * possible for it to be taken immediately, because VIRQ and 5212 * VFIQ are masked unless running at EL0 or EL1, and HCR 5213 * can only be written at EL2. 5214 */ 5215 g_assert(qemu_mutex_iothread_locked()); 5216 arm_cpu_update_virq(cpu); 5217 arm_cpu_update_vfiq(cpu); 5218 arm_cpu_update_vserr(cpu); 5219 } 5220 5221 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5222 { 5223 do_hcr_write(env, value, 0); 5224 } 5225 5226 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5227 uint64_t value) 5228 { 5229 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5230 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5231 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5232 } 5233 5234 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5235 uint64_t value) 5236 { 5237 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5238 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5239 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5240 } 5241 5242 /* 5243 * Return the effective value of HCR_EL2. 5244 * Bits that are not included here: 5245 * RW (read from SCR_EL3.RW as needed) 5246 */ 5247 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5248 { 5249 uint64_t ret = env->cp15.hcr_el2; 5250 5251 if (!arm_is_el2_enabled(env)) { 5252 /* 5253 * "This register has no effect if EL2 is not enabled in the 5254 * current Security state". This is ARMv8.4-SecEL2 speak for 5255 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5256 * 5257 * Prior to that, the language was "In an implementation that 5258 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5259 * as if this field is 0 for all purposes other than a direct 5260 * read or write access of HCR_EL2". With lots of enumeration 5261 * on a per-field basis. In current QEMU, this is condition 5262 * is arm_is_secure_below_el3. 5263 * 5264 * Since the v8.4 language applies to the entire register, and 5265 * appears to be backward compatible, use that. 5266 */ 5267 return 0; 5268 } 5269 5270 /* 5271 * For a cpu that supports both aarch64 and aarch32, we can set bits 5272 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5273 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5274 */ 5275 if (!arm_el_is_aa64(env, 2)) { 5276 uint64_t aa32_valid; 5277 5278 /* 5279 * These bits are up-to-date as of ARMv8.6. 5280 * For HCR, it's easiest to list just the 2 bits that are invalid. 5281 * For HCR2, list those that are valid. 5282 */ 5283 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5284 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5285 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5286 ret &= aa32_valid; 5287 } 5288 5289 if (ret & HCR_TGE) { 5290 /* These bits are up-to-date as of ARMv8.6. */ 5291 if (ret & HCR_E2H) { 5292 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5293 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5294 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5295 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5296 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5297 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5298 } else { 5299 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5300 } 5301 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5302 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5303 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5304 HCR_TLOR); 5305 } 5306 5307 return ret; 5308 } 5309 5310 /* 5311 * Corresponds to ARM pseudocode function ELIsInHost(). 5312 */ 5313 bool el_is_in_host(CPUARMState *env, int el) 5314 { 5315 uint64_t mask; 5316 5317 /* 5318 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5319 * Perform the simplest bit tests first, and validate EL2 afterward. 5320 */ 5321 if (el & 1) { 5322 return false; /* EL1 or EL3 */ 5323 } 5324 5325 /* 5326 * Note that hcr_write() checks isar_feature_aa64_vh(), 5327 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5328 */ 5329 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5330 if ((env->cp15.hcr_el2 & mask) != mask) { 5331 return false; 5332 } 5333 5334 /* TGE and/or E2H set: double check those bits are currently legal. */ 5335 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5336 } 5337 5338 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5339 uint64_t value) 5340 { 5341 uint64_t valid_mask = 0; 5342 5343 /* No features adding bits to HCRX are implemented. */ 5344 5345 /* Clear RES0 bits. */ 5346 env->cp15.hcrx_el2 = value & valid_mask; 5347 } 5348 5349 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5350 bool isread) 5351 { 5352 if (arm_current_el(env) < 3 5353 && arm_feature(env, ARM_FEATURE_EL3) 5354 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5355 return CP_ACCESS_TRAP_EL3; 5356 } 5357 return CP_ACCESS_OK; 5358 } 5359 5360 static const ARMCPRegInfo hcrx_el2_reginfo = { 5361 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5362 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5363 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5364 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5365 }; 5366 5367 /* Return the effective value of HCRX_EL2. */ 5368 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5369 { 5370 /* 5371 * The bits in this register behave as 0 for all purposes other than 5372 * direct reads of the register if: 5373 * - EL2 is not enabled in the current security state, 5374 * - SCR_EL3.HXEn is 0. 5375 */ 5376 if (!arm_is_el2_enabled(env) 5377 || (arm_feature(env, ARM_FEATURE_EL3) 5378 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5379 return 0; 5380 } 5381 return env->cp15.hcrx_el2; 5382 } 5383 5384 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5385 uint64_t value) 5386 { 5387 /* 5388 * For A-profile AArch32 EL3, if NSACR.CP10 5389 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5390 */ 5391 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5392 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5393 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5394 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5395 } 5396 env->cp15.cptr_el[2] = value; 5397 } 5398 5399 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5400 { 5401 /* 5402 * For A-profile AArch32 EL3, if NSACR.CP10 5403 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5404 */ 5405 uint64_t value = env->cp15.cptr_el[2]; 5406 5407 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5408 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5409 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5410 } 5411 return value; 5412 } 5413 5414 static const ARMCPRegInfo el2_cp_reginfo[] = { 5415 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5416 .type = ARM_CP_IO, 5417 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5418 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5419 .writefn = hcr_write }, 5420 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5421 .type = ARM_CP_ALIAS | ARM_CP_IO, 5422 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5423 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5424 .writefn = hcr_writelow }, 5425 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5426 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5427 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5428 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5429 .type = ARM_CP_ALIAS, 5430 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5431 .access = PL2_RW, 5432 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5433 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5434 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5435 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5436 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5437 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5438 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5439 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5440 .type = ARM_CP_ALIAS, 5441 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5442 .access = PL2_RW, 5443 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5444 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5445 .type = ARM_CP_ALIAS, 5446 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5447 .access = PL2_RW, 5448 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5449 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5450 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5451 .access = PL2_RW, .writefn = vbar_write, 5452 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5453 .resetvalue = 0 }, 5454 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5455 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5456 .access = PL3_RW, .type = ARM_CP_ALIAS, 5457 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5458 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5459 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5460 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5461 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5462 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5463 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5464 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5465 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5466 .resetvalue = 0 }, 5467 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5468 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5469 .access = PL2_RW, .type = ARM_CP_ALIAS, 5470 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5471 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5472 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5473 .access = PL2_RW, .type = ARM_CP_CONST, 5474 .resetvalue = 0 }, 5475 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5476 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5477 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5478 .access = PL2_RW, .type = ARM_CP_CONST, 5479 .resetvalue = 0 }, 5480 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5481 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5482 .access = PL2_RW, .type = ARM_CP_CONST, 5483 .resetvalue = 0 }, 5484 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5485 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5486 .access = PL2_RW, .type = ARM_CP_CONST, 5487 .resetvalue = 0 }, 5488 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5489 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5490 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5491 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5492 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5493 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5494 .type = ARM_CP_ALIAS, 5495 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5496 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5497 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5498 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5499 .access = PL2_RW, 5500 /* no .writefn needed as this can't cause an ASID change */ 5501 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5502 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5503 .cp = 15, .opc1 = 6, .crm = 2, 5504 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5505 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5506 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5507 .writefn = vttbr_write }, 5508 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5509 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5510 .access = PL2_RW, .writefn = vttbr_write, 5511 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5512 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5513 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5514 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5515 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5516 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5517 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5518 .access = PL2_RW, .resetvalue = 0, 5519 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5520 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5521 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5522 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5523 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5524 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5525 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5526 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5527 { .name = "TLBIALLNSNH", 5528 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5529 .type = ARM_CP_NO_RAW, .access = PL2_W, 5530 .writefn = tlbiall_nsnh_write }, 5531 { .name = "TLBIALLNSNHIS", 5532 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5533 .type = ARM_CP_NO_RAW, .access = PL2_W, 5534 .writefn = tlbiall_nsnh_is_write }, 5535 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5536 .type = ARM_CP_NO_RAW, .access = PL2_W, 5537 .writefn = tlbiall_hyp_write }, 5538 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5539 .type = ARM_CP_NO_RAW, .access = PL2_W, 5540 .writefn = tlbiall_hyp_is_write }, 5541 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5542 .type = ARM_CP_NO_RAW, .access = PL2_W, 5543 .writefn = tlbimva_hyp_write }, 5544 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5545 .type = ARM_CP_NO_RAW, .access = PL2_W, 5546 .writefn = tlbimva_hyp_is_write }, 5547 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5548 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5549 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5550 .writefn = tlbi_aa64_alle2_write }, 5551 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5552 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5553 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5554 .writefn = tlbi_aa64_vae2_write }, 5555 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5556 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5557 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5558 .writefn = tlbi_aa64_vae2_write }, 5559 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5560 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5561 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5562 .writefn = tlbi_aa64_alle2is_write }, 5563 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5564 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5565 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5566 .writefn = tlbi_aa64_vae2is_write }, 5567 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5568 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5569 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5570 .writefn = tlbi_aa64_vae2is_write }, 5571 #ifndef CONFIG_USER_ONLY 5572 /* Unlike the other EL2-related AT operations, these must 5573 * UNDEF from EL3 if EL2 is not implemented, which is why we 5574 * define them here rather than with the rest of the AT ops. 5575 */ 5576 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5577 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5578 .access = PL2_W, .accessfn = at_s1e2_access, 5579 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5580 .writefn = ats_write64 }, 5581 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5582 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5583 .access = PL2_W, .accessfn = at_s1e2_access, 5584 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5585 .writefn = ats_write64 }, 5586 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5587 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5588 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5589 * to behave as if SCR.NS was 1. 5590 */ 5591 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5592 .access = PL2_W, 5593 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5594 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5595 .access = PL2_W, 5596 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5597 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5598 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5599 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5600 * reset values as IMPDEF. We choose to reset to 3 to comply with 5601 * both ARMv7 and ARMv8. 5602 */ 5603 .access = PL2_RW, .resetvalue = 3, 5604 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5605 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5606 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5607 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5608 .writefn = gt_cntvoff_write, 5609 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5610 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5611 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5612 .writefn = gt_cntvoff_write, 5613 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5614 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5615 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5616 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5617 .type = ARM_CP_IO, .access = PL2_RW, 5618 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5619 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5620 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5621 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5622 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5623 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5624 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5625 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5626 .resetfn = gt_hyp_timer_reset, 5627 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5628 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5629 .type = ARM_CP_IO, 5630 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5631 .access = PL2_RW, 5632 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5633 .resetvalue = 0, 5634 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5635 #endif 5636 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5637 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5638 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5639 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5640 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5641 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5642 .access = PL2_RW, 5643 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5644 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5645 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5646 .access = PL2_RW, 5647 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5648 }; 5649 5650 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5651 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5652 .type = ARM_CP_ALIAS | ARM_CP_IO, 5653 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5654 .access = PL2_RW, 5655 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5656 .writefn = hcr_writehigh }, 5657 }; 5658 5659 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5660 bool isread) 5661 { 5662 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5663 return CP_ACCESS_OK; 5664 } 5665 return CP_ACCESS_TRAP_UNCATEGORIZED; 5666 } 5667 5668 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5669 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5670 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5671 .access = PL2_RW, .accessfn = sel2_access, 5672 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5673 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5674 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5675 .access = PL2_RW, .accessfn = sel2_access, 5676 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5677 }; 5678 5679 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5680 bool isread) 5681 { 5682 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5683 * At Secure EL1 it traps to EL3 or EL2. 5684 */ 5685 if (arm_current_el(env) == 3) { 5686 return CP_ACCESS_OK; 5687 } 5688 if (arm_is_secure_below_el3(env)) { 5689 if (env->cp15.scr_el3 & SCR_EEL2) { 5690 return CP_ACCESS_TRAP_EL2; 5691 } 5692 return CP_ACCESS_TRAP_EL3; 5693 } 5694 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5695 if (isread) { 5696 return CP_ACCESS_OK; 5697 } 5698 return CP_ACCESS_TRAP_UNCATEGORIZED; 5699 } 5700 5701 static const ARMCPRegInfo el3_cp_reginfo[] = { 5702 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5703 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5704 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5705 .resetfn = scr_reset, .writefn = scr_write }, 5706 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5707 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5708 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5709 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5710 .writefn = scr_write }, 5711 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5712 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5713 .access = PL3_RW, .resetvalue = 0, 5714 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5715 { .name = "SDER", 5716 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5717 .access = PL3_RW, .resetvalue = 0, 5718 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5719 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5720 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5721 .writefn = vbar_write, .resetvalue = 0, 5722 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5723 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5724 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5725 .access = PL3_RW, .resetvalue = 0, 5726 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5727 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5728 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5729 .access = PL3_RW, 5730 /* no .writefn needed as this can't cause an ASID change */ 5731 .resetvalue = 0, 5732 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5733 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5734 .type = ARM_CP_ALIAS, 5735 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5736 .access = PL3_RW, 5737 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5738 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5739 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5740 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5741 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5742 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5743 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5744 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5745 .type = ARM_CP_ALIAS, 5746 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5747 .access = PL3_RW, 5748 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5749 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5750 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5751 .access = PL3_RW, .writefn = vbar_write, 5752 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5753 .resetvalue = 0 }, 5754 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5755 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5756 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5757 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5758 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5759 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5760 .access = PL3_RW, .resetvalue = 0, 5761 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5762 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5763 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5764 .access = PL3_RW, .type = ARM_CP_CONST, 5765 .resetvalue = 0 }, 5766 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5767 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5768 .access = PL3_RW, .type = ARM_CP_CONST, 5769 .resetvalue = 0 }, 5770 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5771 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5772 .access = PL3_RW, .type = ARM_CP_CONST, 5773 .resetvalue = 0 }, 5774 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5775 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5776 .access = PL3_W, .type = ARM_CP_NO_RAW, 5777 .writefn = tlbi_aa64_alle3is_write }, 5778 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5779 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5780 .access = PL3_W, .type = ARM_CP_NO_RAW, 5781 .writefn = tlbi_aa64_vae3is_write }, 5782 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5783 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5784 .access = PL3_W, .type = ARM_CP_NO_RAW, 5785 .writefn = tlbi_aa64_vae3is_write }, 5786 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5787 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5788 .access = PL3_W, .type = ARM_CP_NO_RAW, 5789 .writefn = tlbi_aa64_alle3_write }, 5790 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5791 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5792 .access = PL3_W, .type = ARM_CP_NO_RAW, 5793 .writefn = tlbi_aa64_vae3_write }, 5794 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5795 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5796 .access = PL3_W, .type = ARM_CP_NO_RAW, 5797 .writefn = tlbi_aa64_vae3_write }, 5798 }; 5799 5800 #ifndef CONFIG_USER_ONLY 5801 /* Test if system register redirection is to occur in the current state. */ 5802 static bool redirect_for_e2h(CPUARMState *env) 5803 { 5804 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5805 } 5806 5807 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5808 { 5809 CPReadFn *readfn; 5810 5811 if (redirect_for_e2h(env)) { 5812 /* Switch to the saved EL2 version of the register. */ 5813 ri = ri->opaque; 5814 readfn = ri->readfn; 5815 } else { 5816 readfn = ri->orig_readfn; 5817 } 5818 if (readfn == NULL) { 5819 readfn = raw_read; 5820 } 5821 return readfn(env, ri); 5822 } 5823 5824 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5825 uint64_t value) 5826 { 5827 CPWriteFn *writefn; 5828 5829 if (redirect_for_e2h(env)) { 5830 /* Switch to the saved EL2 version of the register. */ 5831 ri = ri->opaque; 5832 writefn = ri->writefn; 5833 } else { 5834 writefn = ri->orig_writefn; 5835 } 5836 if (writefn == NULL) { 5837 writefn = raw_write; 5838 } 5839 writefn(env, ri, value); 5840 } 5841 5842 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5843 { 5844 struct E2HAlias { 5845 uint32_t src_key, dst_key, new_key; 5846 const char *src_name, *dst_name, *new_name; 5847 bool (*feature)(const ARMISARegisters *id); 5848 }; 5849 5850 #define K(op0, op1, crn, crm, op2) \ 5851 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5852 5853 static const struct E2HAlias aliases[] = { 5854 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5855 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5856 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5857 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5858 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5859 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5860 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5861 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5862 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5863 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5864 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5865 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5866 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5867 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5868 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5869 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5870 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5871 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5872 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5873 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5874 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5875 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5876 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5877 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5878 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5879 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5880 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5881 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5882 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5883 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5884 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5885 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5886 5887 /* 5888 * Note that redirection of ZCR is mentioned in the description 5889 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5890 * not in the summary table. 5891 */ 5892 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5893 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5894 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 5895 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 5896 5897 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5898 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5899 5900 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5901 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5902 isar_feature_aa64_scxtnum }, 5903 5904 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5905 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5906 }; 5907 #undef K 5908 5909 size_t i; 5910 5911 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5912 const struct E2HAlias *a = &aliases[i]; 5913 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5914 bool ok; 5915 5916 if (a->feature && !a->feature(&cpu->isar)) { 5917 continue; 5918 } 5919 5920 src_reg = g_hash_table_lookup(cpu->cp_regs, 5921 (gpointer)(uintptr_t)a->src_key); 5922 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5923 (gpointer)(uintptr_t)a->dst_key); 5924 g_assert(src_reg != NULL); 5925 g_assert(dst_reg != NULL); 5926 5927 /* Cross-compare names to detect typos in the keys. */ 5928 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5929 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5930 5931 /* None of the core system registers use opaque; we will. */ 5932 g_assert(src_reg->opaque == NULL); 5933 5934 /* Create alias before redirection so we dup the right data. */ 5935 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5936 5937 new_reg->name = a->new_name; 5938 new_reg->type |= ARM_CP_ALIAS; 5939 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5940 new_reg->access &= PL2_RW | PL3_RW; 5941 5942 ok = g_hash_table_insert(cpu->cp_regs, 5943 (gpointer)(uintptr_t)a->new_key, new_reg); 5944 g_assert(ok); 5945 5946 src_reg->opaque = dst_reg; 5947 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5948 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5949 if (!src_reg->raw_readfn) { 5950 src_reg->raw_readfn = raw_read; 5951 } 5952 if (!src_reg->raw_writefn) { 5953 src_reg->raw_writefn = raw_write; 5954 } 5955 src_reg->readfn = el2_e2h_read; 5956 src_reg->writefn = el2_e2h_write; 5957 } 5958 } 5959 #endif 5960 5961 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5962 bool isread) 5963 { 5964 int cur_el = arm_current_el(env); 5965 5966 if (cur_el < 2) { 5967 uint64_t hcr = arm_hcr_el2_eff(env); 5968 5969 if (cur_el == 0) { 5970 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5971 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5972 return CP_ACCESS_TRAP_EL2; 5973 } 5974 } else { 5975 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5976 return CP_ACCESS_TRAP; 5977 } 5978 if (hcr & HCR_TID2) { 5979 return CP_ACCESS_TRAP_EL2; 5980 } 5981 } 5982 } else if (hcr & HCR_TID2) { 5983 return CP_ACCESS_TRAP_EL2; 5984 } 5985 } 5986 5987 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5988 return CP_ACCESS_TRAP_EL2; 5989 } 5990 5991 return CP_ACCESS_OK; 5992 } 5993 5994 /* 5995 * Check for traps to RAS registers, which are controlled 5996 * by HCR_EL2.TERR and SCR_EL3.TERR. 5997 */ 5998 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 5999 bool isread) 6000 { 6001 int el = arm_current_el(env); 6002 6003 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6004 return CP_ACCESS_TRAP_EL2; 6005 } 6006 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6007 return CP_ACCESS_TRAP_EL3; 6008 } 6009 return CP_ACCESS_OK; 6010 } 6011 6012 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6013 { 6014 int el = arm_current_el(env); 6015 6016 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6017 return env->cp15.vdisr_el2; 6018 } 6019 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6020 return 0; /* RAZ/WI */ 6021 } 6022 return env->cp15.disr_el1; 6023 } 6024 6025 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6026 { 6027 int el = arm_current_el(env); 6028 6029 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6030 env->cp15.vdisr_el2 = val; 6031 return; 6032 } 6033 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6034 return; /* RAZ/WI */ 6035 } 6036 env->cp15.disr_el1 = val; 6037 } 6038 6039 /* 6040 * Minimal RAS implementation with no Error Records. 6041 * Which means that all of the Error Record registers: 6042 * ERXADDR_EL1 6043 * ERXCTLR_EL1 6044 * ERXFR_EL1 6045 * ERXMISC0_EL1 6046 * ERXMISC1_EL1 6047 * ERXMISC2_EL1 6048 * ERXMISC3_EL1 6049 * ERXPFGCDN_EL1 (RASv1p1) 6050 * ERXPFGCTL_EL1 (RASv1p1) 6051 * ERXPFGF_EL1 (RASv1p1) 6052 * ERXSTATUS_EL1 6053 * and 6054 * ERRSELR_EL1 6055 * may generate UNDEFINED, which is the effect we get by not 6056 * listing them at all. 6057 */ 6058 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6059 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6060 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6061 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6062 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6063 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6064 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6065 .access = PL1_R, .accessfn = access_terr, 6066 .type = ARM_CP_CONST, .resetvalue = 0 }, 6067 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6068 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6069 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6070 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6071 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6072 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6073 }; 6074 6075 /* 6076 * Return the exception level to which exceptions should be taken 6077 * via SVEAccessTrap. This excludes the check for whether the exception 6078 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6079 * be found by testing 0 < fp_exception_el < sve_exception_el. 6080 * 6081 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6082 * pseudocode does *not* separate out the FP trap checks, but has them 6083 * all in one function. 6084 */ 6085 int sve_exception_el(CPUARMState *env, int el) 6086 { 6087 #ifndef CONFIG_USER_ONLY 6088 if (el <= 1 && !el_is_in_host(env, el)) { 6089 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6090 case 1: 6091 if (el != 0) { 6092 break; 6093 } 6094 /* fall through */ 6095 case 0: 6096 case 2: 6097 return 1; 6098 } 6099 } 6100 6101 if (el <= 2 && arm_is_el2_enabled(env)) { 6102 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6103 if (env->cp15.hcr_el2 & HCR_E2H) { 6104 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6105 case 1: 6106 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6107 break; 6108 } 6109 /* fall through */ 6110 case 0: 6111 case 2: 6112 return 2; 6113 } 6114 } else { 6115 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6116 return 2; 6117 } 6118 } 6119 } 6120 6121 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6122 if (arm_feature(env, ARM_FEATURE_EL3) 6123 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6124 return 3; 6125 } 6126 #endif 6127 return 0; 6128 } 6129 6130 /* 6131 * Return the exception level to which exceptions should be taken for SME. 6132 * C.f. the ARM pseudocode function CheckSMEAccess. 6133 */ 6134 int sme_exception_el(CPUARMState *env, int el) 6135 { 6136 #ifndef CONFIG_USER_ONLY 6137 if (el <= 1 && !el_is_in_host(env, el)) { 6138 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6139 case 1: 6140 if (el != 0) { 6141 break; 6142 } 6143 /* fall through */ 6144 case 0: 6145 case 2: 6146 return 1; 6147 } 6148 } 6149 6150 if (el <= 2 && arm_is_el2_enabled(env)) { 6151 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6152 if (env->cp15.hcr_el2 & HCR_E2H) { 6153 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6154 case 1: 6155 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6156 break; 6157 } 6158 /* fall through */ 6159 case 0: 6160 case 2: 6161 return 2; 6162 } 6163 } else { 6164 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6165 return 2; 6166 } 6167 } 6168 } 6169 6170 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6171 if (arm_feature(env, ARM_FEATURE_EL3) 6172 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6173 return 3; 6174 } 6175 #endif 6176 return 0; 6177 } 6178 6179 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ 6180 static bool sme_fa64(CPUARMState *env, int el) 6181 { 6182 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { 6183 return false; 6184 } 6185 6186 if (el <= 1 && !el_is_in_host(env, el)) { 6187 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { 6188 return false; 6189 } 6190 } 6191 if (el <= 2 && arm_is_el2_enabled(env)) { 6192 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { 6193 return false; 6194 } 6195 } 6196 if (arm_feature(env, ARM_FEATURE_EL3)) { 6197 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { 6198 return false; 6199 } 6200 } 6201 6202 return true; 6203 } 6204 6205 /* 6206 * Given that SVE is enabled, return the vector length for EL. 6207 */ 6208 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6209 { 6210 ARMCPU *cpu = env_archcpu(env); 6211 uint64_t *cr = env->vfp.zcr_el; 6212 uint32_t map = cpu->sve_vq.map; 6213 uint32_t len = ARM_MAX_VQ - 1; 6214 6215 if (sm) { 6216 cr = env->vfp.smcr_el; 6217 map = cpu->sme_vq.map; 6218 } 6219 6220 if (el <= 1 && !el_is_in_host(env, el)) { 6221 len = MIN(len, 0xf & (uint32_t)cr[1]); 6222 } 6223 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6224 len = MIN(len, 0xf & (uint32_t)cr[2]); 6225 } 6226 if (arm_feature(env, ARM_FEATURE_EL3)) { 6227 len = MIN(len, 0xf & (uint32_t)cr[3]); 6228 } 6229 6230 map &= MAKE_64BIT_MASK(0, len + 1); 6231 if (map != 0) { 6232 return 31 - clz32(map); 6233 } 6234 6235 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6236 assert(sm); 6237 return ctz32(cpu->sme_vq.map); 6238 } 6239 6240 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6241 { 6242 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6243 } 6244 6245 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6246 uint64_t value) 6247 { 6248 int cur_el = arm_current_el(env); 6249 int old_len = sve_vqm1_for_el(env, cur_el); 6250 int new_len; 6251 6252 /* Bits other than [3:0] are RAZ/WI. */ 6253 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6254 raw_write(env, ri, value & 0xf); 6255 6256 /* 6257 * Because we arrived here, we know both FP and SVE are enabled; 6258 * otherwise we would have trapped access to the ZCR_ELn register. 6259 */ 6260 new_len = sve_vqm1_for_el(env, cur_el); 6261 if (new_len < old_len) { 6262 aarch64_sve_narrow_vq(env, new_len + 1); 6263 } 6264 } 6265 6266 static const ARMCPRegInfo zcr_reginfo[] = { 6267 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6268 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6269 .access = PL1_RW, .type = ARM_CP_SVE, 6270 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6271 .writefn = zcr_write, .raw_writefn = raw_write }, 6272 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6273 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6274 .access = PL2_RW, .type = ARM_CP_SVE, 6275 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6276 .writefn = zcr_write, .raw_writefn = raw_write }, 6277 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6278 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6279 .access = PL3_RW, .type = ARM_CP_SVE, 6280 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6281 .writefn = zcr_write, .raw_writefn = raw_write }, 6282 }; 6283 6284 #ifdef TARGET_AARCH64 6285 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6286 bool isread) 6287 { 6288 int el = arm_current_el(env); 6289 6290 if (el == 0) { 6291 uint64_t sctlr = arm_sctlr(env, el); 6292 if (!(sctlr & SCTLR_EnTP2)) { 6293 return CP_ACCESS_TRAP; 6294 } 6295 } 6296 /* TODO: FEAT_FGT */ 6297 if (el < 3 6298 && arm_feature(env, ARM_FEATURE_EL3) 6299 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6300 return CP_ACCESS_TRAP_EL3; 6301 } 6302 return CP_ACCESS_OK; 6303 } 6304 6305 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6306 bool isread) 6307 { 6308 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6309 if (arm_current_el(env) < 3 6310 && arm_feature(env, ARM_FEATURE_EL3) 6311 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6312 return CP_ACCESS_TRAP_EL3; 6313 } 6314 return CP_ACCESS_OK; 6315 } 6316 6317 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6318 uint64_t value) 6319 { 6320 helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM)); 6321 helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA)); 6322 arm_rebuild_hflags(env); 6323 } 6324 6325 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6326 uint64_t value) 6327 { 6328 int cur_el = arm_current_el(env); 6329 int old_len = sve_vqm1_for_el(env, cur_el); 6330 int new_len; 6331 6332 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6333 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6334 raw_write(env, ri, value); 6335 6336 /* 6337 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6338 * when SVL is widened (old values kept, or zeros). Choose to keep the 6339 * current values for simplicity. But for QEMU internals, we must still 6340 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6341 * above aarch64_sve_narrow_vq. 6342 */ 6343 new_len = sve_vqm1_for_el(env, cur_el); 6344 if (new_len < old_len) { 6345 aarch64_sve_narrow_vq(env, new_len + 1); 6346 } 6347 } 6348 6349 static const ARMCPRegInfo sme_reginfo[] = { 6350 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6351 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6352 .access = PL0_RW, .accessfn = access_tpidr2, 6353 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6354 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6355 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6356 .access = PL0_RW, .type = ARM_CP_SME, 6357 .fieldoffset = offsetof(CPUARMState, svcr), 6358 .writefn = svcr_write, .raw_writefn = raw_write }, 6359 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6360 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6361 .access = PL1_RW, .type = ARM_CP_SME, 6362 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6363 .writefn = smcr_write, .raw_writefn = raw_write }, 6364 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6365 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6366 .access = PL2_RW, .type = ARM_CP_SME, 6367 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6368 .writefn = smcr_write, .raw_writefn = raw_write }, 6369 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6370 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6371 .access = PL3_RW, .type = ARM_CP_SME, 6372 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6373 .writefn = smcr_write, .raw_writefn = raw_write }, 6374 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6375 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6376 .access = PL1_R, .accessfn = access_aa64_tid1, 6377 /* 6378 * IMPLEMENTOR = 0 (software) 6379 * REVISION = 0 (implementation defined) 6380 * SMPS = 0 (no streaming execution priority in QEMU) 6381 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6382 */ 6383 .type = ARM_CP_CONST, .resetvalue = 0, }, 6384 /* 6385 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6386 */ 6387 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6388 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6389 .access = PL1_RW, .accessfn = access_esm, 6390 .type = ARM_CP_CONST, .resetvalue = 0 }, 6391 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6392 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6393 .access = PL2_RW, .accessfn = access_esm, 6394 .type = ARM_CP_CONST, .resetvalue = 0 }, 6395 }; 6396 #endif /* TARGET_AARCH64 */ 6397 6398 static void define_pmu_regs(ARMCPU *cpu) 6399 { 6400 /* 6401 * v7 performance monitor control register: same implementor 6402 * field as main ID register, and we implement four counters in 6403 * addition to the cycle count register. 6404 */ 6405 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6406 ARMCPRegInfo pmcr = { 6407 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6408 .access = PL0_RW, 6409 .type = ARM_CP_IO | ARM_CP_ALIAS, 6410 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6411 .accessfn = pmreg_access, .writefn = pmcr_write, 6412 .raw_writefn = raw_write, 6413 }; 6414 ARMCPRegInfo pmcr64 = { 6415 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6416 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6417 .access = PL0_RW, .accessfn = pmreg_access, 6418 .type = ARM_CP_IO, 6419 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6420 .resetvalue = cpu->isar.reset_pmcr_el0, 6421 .writefn = pmcr_write, .raw_writefn = raw_write, 6422 }; 6423 6424 define_one_arm_cp_reg(cpu, &pmcr); 6425 define_one_arm_cp_reg(cpu, &pmcr64); 6426 for (i = 0; i < pmcrn; i++) { 6427 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6428 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6429 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6430 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6431 ARMCPRegInfo pmev_regs[] = { 6432 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6433 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6434 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6435 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6436 .accessfn = pmreg_access_xevcntr }, 6437 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6438 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6439 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6440 .type = ARM_CP_IO, 6441 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6442 .raw_readfn = pmevcntr_rawread, 6443 .raw_writefn = pmevcntr_rawwrite }, 6444 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6445 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6446 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6447 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6448 .accessfn = pmreg_access }, 6449 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6450 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6451 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6452 .type = ARM_CP_IO, 6453 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6454 .raw_writefn = pmevtyper_rawwrite }, 6455 }; 6456 define_arm_cp_regs(cpu, pmev_regs); 6457 g_free(pmevcntr_name); 6458 g_free(pmevcntr_el0_name); 6459 g_free(pmevtyper_name); 6460 g_free(pmevtyper_el0_name); 6461 } 6462 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6463 ARMCPRegInfo v81_pmu_regs[] = { 6464 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6465 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6466 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6467 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6468 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6469 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6470 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6471 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6472 }; 6473 define_arm_cp_regs(cpu, v81_pmu_regs); 6474 } 6475 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6476 static const ARMCPRegInfo v84_pmmir = { 6477 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6478 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6479 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6480 .resetvalue = 0 6481 }; 6482 define_one_arm_cp_reg(cpu, &v84_pmmir); 6483 } 6484 } 6485 6486 /* We don't know until after realize whether there's a GICv3 6487 * attached, and that is what registers the gicv3 sysregs. 6488 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6489 * at runtime. 6490 */ 6491 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6492 { 6493 ARMCPU *cpu = env_archcpu(env); 6494 uint64_t pfr1 = cpu->isar.id_pfr1; 6495 6496 if (env->gicv3state) { 6497 pfr1 |= 1 << 28; 6498 } 6499 return pfr1; 6500 } 6501 6502 #ifndef CONFIG_USER_ONLY 6503 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6504 { 6505 ARMCPU *cpu = env_archcpu(env); 6506 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6507 6508 if (env->gicv3state) { 6509 pfr0 |= 1 << 24; 6510 } 6511 return pfr0; 6512 } 6513 #endif 6514 6515 /* Shared logic between LORID and the rest of the LOR* registers. 6516 * Secure state exclusion has already been dealt with. 6517 */ 6518 static CPAccessResult access_lor_ns(CPUARMState *env, 6519 const ARMCPRegInfo *ri, bool isread) 6520 { 6521 int el = arm_current_el(env); 6522 6523 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6524 return CP_ACCESS_TRAP_EL2; 6525 } 6526 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6527 return CP_ACCESS_TRAP_EL3; 6528 } 6529 return CP_ACCESS_OK; 6530 } 6531 6532 static CPAccessResult access_lor_other(CPUARMState *env, 6533 const ARMCPRegInfo *ri, bool isread) 6534 { 6535 if (arm_is_secure_below_el3(env)) { 6536 /* Access denied in secure mode. */ 6537 return CP_ACCESS_TRAP; 6538 } 6539 return access_lor_ns(env, ri, isread); 6540 } 6541 6542 /* 6543 * A trivial implementation of ARMv8.1-LOR leaves all of these 6544 * registers fixed at 0, which indicates that there are zero 6545 * supported Limited Ordering regions. 6546 */ 6547 static const ARMCPRegInfo lor_reginfo[] = { 6548 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6549 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6550 .access = PL1_RW, .accessfn = access_lor_other, 6551 .type = ARM_CP_CONST, .resetvalue = 0 }, 6552 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6553 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6554 .access = PL1_RW, .accessfn = access_lor_other, 6555 .type = ARM_CP_CONST, .resetvalue = 0 }, 6556 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6557 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6558 .access = PL1_RW, .accessfn = access_lor_other, 6559 .type = ARM_CP_CONST, .resetvalue = 0 }, 6560 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6561 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6562 .access = PL1_RW, .accessfn = access_lor_other, 6563 .type = ARM_CP_CONST, .resetvalue = 0 }, 6564 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6565 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6566 .access = PL1_R, .accessfn = access_lor_ns, 6567 .type = ARM_CP_CONST, .resetvalue = 0 }, 6568 }; 6569 6570 #ifdef TARGET_AARCH64 6571 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6572 bool isread) 6573 { 6574 int el = arm_current_el(env); 6575 6576 if (el < 2 && 6577 arm_is_el2_enabled(env) && 6578 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6579 return CP_ACCESS_TRAP_EL2; 6580 } 6581 if (el < 3 && 6582 arm_feature(env, ARM_FEATURE_EL3) && 6583 !(env->cp15.scr_el3 & SCR_APK)) { 6584 return CP_ACCESS_TRAP_EL3; 6585 } 6586 return CP_ACCESS_OK; 6587 } 6588 6589 static const ARMCPRegInfo pauth_reginfo[] = { 6590 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6591 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6592 .access = PL1_RW, .accessfn = access_pauth, 6593 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6594 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6595 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6596 .access = PL1_RW, .accessfn = access_pauth, 6597 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6598 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6599 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6600 .access = PL1_RW, .accessfn = access_pauth, 6601 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6602 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6603 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6604 .access = PL1_RW, .accessfn = access_pauth, 6605 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6606 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6607 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6608 .access = PL1_RW, .accessfn = access_pauth, 6609 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6610 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6611 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6612 .access = PL1_RW, .accessfn = access_pauth, 6613 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6614 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6615 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6616 .access = PL1_RW, .accessfn = access_pauth, 6617 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6618 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6619 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6620 .access = PL1_RW, .accessfn = access_pauth, 6621 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6622 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6623 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6624 .access = PL1_RW, .accessfn = access_pauth, 6625 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6626 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6627 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6628 .access = PL1_RW, .accessfn = access_pauth, 6629 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6630 }; 6631 6632 static const ARMCPRegInfo tlbirange_reginfo[] = { 6633 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6634 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6635 .access = PL1_W, .type = ARM_CP_NO_RAW, 6636 .writefn = tlbi_aa64_rvae1is_write }, 6637 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6638 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6639 .access = PL1_W, .type = ARM_CP_NO_RAW, 6640 .writefn = tlbi_aa64_rvae1is_write }, 6641 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6642 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6643 .access = PL1_W, .type = ARM_CP_NO_RAW, 6644 .writefn = tlbi_aa64_rvae1is_write }, 6645 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6646 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6647 .access = PL1_W, .type = ARM_CP_NO_RAW, 6648 .writefn = tlbi_aa64_rvae1is_write }, 6649 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6650 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6651 .access = PL1_W, .type = ARM_CP_NO_RAW, 6652 .writefn = tlbi_aa64_rvae1is_write }, 6653 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6654 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6655 .access = PL1_W, .type = ARM_CP_NO_RAW, 6656 .writefn = tlbi_aa64_rvae1is_write }, 6657 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6658 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6659 .access = PL1_W, .type = ARM_CP_NO_RAW, 6660 .writefn = tlbi_aa64_rvae1is_write }, 6661 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6662 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6663 .access = PL1_W, .type = ARM_CP_NO_RAW, 6664 .writefn = tlbi_aa64_rvae1is_write }, 6665 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6666 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6667 .access = PL1_W, .type = ARM_CP_NO_RAW, 6668 .writefn = tlbi_aa64_rvae1_write }, 6669 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6670 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6671 .access = PL1_W, .type = ARM_CP_NO_RAW, 6672 .writefn = tlbi_aa64_rvae1_write }, 6673 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6674 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6675 .access = PL1_W, .type = ARM_CP_NO_RAW, 6676 .writefn = tlbi_aa64_rvae1_write }, 6677 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6678 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6679 .access = PL1_W, .type = ARM_CP_NO_RAW, 6680 .writefn = tlbi_aa64_rvae1_write }, 6681 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6682 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6683 .access = PL2_W, .type = ARM_CP_NOP }, 6684 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6685 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6686 .access = PL2_W, .type = ARM_CP_NOP }, 6687 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6688 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6689 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6690 .writefn = tlbi_aa64_rvae2is_write }, 6691 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6692 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6693 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6694 .writefn = tlbi_aa64_rvae2is_write }, 6695 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6696 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6697 .access = PL2_W, .type = ARM_CP_NOP }, 6698 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6699 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6700 .access = PL2_W, .type = ARM_CP_NOP }, 6701 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6702 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6703 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6704 .writefn = tlbi_aa64_rvae2is_write }, 6705 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6706 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6707 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6708 .writefn = tlbi_aa64_rvae2is_write }, 6709 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6710 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6711 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6712 .writefn = tlbi_aa64_rvae2_write }, 6713 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6714 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6715 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6716 .writefn = tlbi_aa64_rvae2_write }, 6717 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6718 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6719 .access = PL3_W, .type = ARM_CP_NO_RAW, 6720 .writefn = tlbi_aa64_rvae3is_write }, 6721 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6722 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6723 .access = PL3_W, .type = ARM_CP_NO_RAW, 6724 .writefn = tlbi_aa64_rvae3is_write }, 6725 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6726 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6727 .access = PL3_W, .type = ARM_CP_NO_RAW, 6728 .writefn = tlbi_aa64_rvae3is_write }, 6729 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6730 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6731 .access = PL3_W, .type = ARM_CP_NO_RAW, 6732 .writefn = tlbi_aa64_rvae3is_write }, 6733 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6734 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6735 .access = PL3_W, .type = ARM_CP_NO_RAW, 6736 .writefn = tlbi_aa64_rvae3_write }, 6737 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6738 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6739 .access = PL3_W, .type = ARM_CP_NO_RAW, 6740 .writefn = tlbi_aa64_rvae3_write }, 6741 }; 6742 6743 static const ARMCPRegInfo tlbios_reginfo[] = { 6744 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6745 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6746 .access = PL1_W, .type = ARM_CP_NO_RAW, 6747 .writefn = tlbi_aa64_vmalle1is_write }, 6748 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6749 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6750 .access = PL1_W, .type = ARM_CP_NO_RAW, 6751 .writefn = tlbi_aa64_vae1is_write }, 6752 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6753 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6754 .access = PL1_W, .type = ARM_CP_NO_RAW, 6755 .writefn = tlbi_aa64_vmalle1is_write }, 6756 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6757 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6758 .access = PL1_W, .type = ARM_CP_NO_RAW, 6759 .writefn = tlbi_aa64_vae1is_write }, 6760 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6761 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6762 .access = PL1_W, .type = ARM_CP_NO_RAW, 6763 .writefn = tlbi_aa64_vae1is_write }, 6764 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6765 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6766 .access = PL1_W, .type = ARM_CP_NO_RAW, 6767 .writefn = tlbi_aa64_vae1is_write }, 6768 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6769 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6770 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6771 .writefn = tlbi_aa64_alle2is_write }, 6772 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6773 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6774 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6775 .writefn = tlbi_aa64_vae2is_write }, 6776 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6777 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6778 .access = PL2_W, .type = ARM_CP_NO_RAW, 6779 .writefn = tlbi_aa64_alle1is_write }, 6780 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6781 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6782 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6783 .writefn = tlbi_aa64_vae2is_write }, 6784 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6785 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6786 .access = PL2_W, .type = ARM_CP_NO_RAW, 6787 .writefn = tlbi_aa64_alle1is_write }, 6788 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6789 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6790 .access = PL2_W, .type = ARM_CP_NOP }, 6791 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6792 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6793 .access = PL2_W, .type = ARM_CP_NOP }, 6794 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6795 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6796 .access = PL2_W, .type = ARM_CP_NOP }, 6797 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6798 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 6799 .access = PL2_W, .type = ARM_CP_NOP }, 6800 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 6801 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 6802 .access = PL3_W, .type = ARM_CP_NO_RAW, 6803 .writefn = tlbi_aa64_alle3is_write }, 6804 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 6805 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 6806 .access = PL3_W, .type = ARM_CP_NO_RAW, 6807 .writefn = tlbi_aa64_vae3is_write }, 6808 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 6809 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 6810 .access = PL3_W, .type = ARM_CP_NO_RAW, 6811 .writefn = tlbi_aa64_vae3is_write }, 6812 }; 6813 6814 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6815 { 6816 Error *err = NULL; 6817 uint64_t ret; 6818 6819 /* Success sets NZCV = 0000. */ 6820 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6821 6822 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6823 /* 6824 * ??? Failed, for unknown reasons in the crypto subsystem. 6825 * The best we can do is log the reason and return the 6826 * timed-out indication to the guest. There is no reason 6827 * we know to expect this failure to be transitory, so the 6828 * guest may well hang retrying the operation. 6829 */ 6830 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6831 ri->name, error_get_pretty(err)); 6832 error_free(err); 6833 6834 env->ZF = 0; /* NZCF = 0100 */ 6835 return 0; 6836 } 6837 return ret; 6838 } 6839 6840 /* We do not support re-seeding, so the two registers operate the same. */ 6841 static const ARMCPRegInfo rndr_reginfo[] = { 6842 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6843 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6844 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6845 .access = PL0_R, .readfn = rndr_readfn }, 6846 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6847 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6848 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6849 .access = PL0_R, .readfn = rndr_readfn }, 6850 }; 6851 6852 #ifndef CONFIG_USER_ONLY 6853 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6854 uint64_t value) 6855 { 6856 ARMCPU *cpu = env_archcpu(env); 6857 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6858 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6859 uint64_t vaddr_in = (uint64_t) value; 6860 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6861 void *haddr; 6862 int mem_idx = cpu_mmu_index(env, false); 6863 6864 /* This won't be crossing page boundaries */ 6865 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6866 if (haddr) { 6867 6868 ram_addr_t offset; 6869 MemoryRegion *mr; 6870 6871 /* RCU lock is already being held */ 6872 mr = memory_region_from_host(haddr, &offset); 6873 6874 if (mr) { 6875 memory_region_writeback(mr, offset, dline_size); 6876 } 6877 } 6878 } 6879 6880 static const ARMCPRegInfo dcpop_reg[] = { 6881 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6882 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6883 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6884 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6885 }; 6886 6887 static const ARMCPRegInfo dcpodp_reg[] = { 6888 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6889 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6890 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6891 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6892 }; 6893 #endif /*CONFIG_USER_ONLY*/ 6894 6895 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6896 bool isread) 6897 { 6898 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6899 return CP_ACCESS_TRAP_EL2; 6900 } 6901 6902 return CP_ACCESS_OK; 6903 } 6904 6905 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6906 bool isread) 6907 { 6908 int el = arm_current_el(env); 6909 6910 if (el < 2 && arm_is_el2_enabled(env)) { 6911 uint64_t hcr = arm_hcr_el2_eff(env); 6912 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 6913 return CP_ACCESS_TRAP_EL2; 6914 } 6915 } 6916 if (el < 3 && 6917 arm_feature(env, ARM_FEATURE_EL3) && 6918 !(env->cp15.scr_el3 & SCR_ATA)) { 6919 return CP_ACCESS_TRAP_EL3; 6920 } 6921 return CP_ACCESS_OK; 6922 } 6923 6924 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 6925 { 6926 return env->pstate & PSTATE_TCO; 6927 } 6928 6929 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6930 { 6931 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 6932 } 6933 6934 static const ARMCPRegInfo mte_reginfo[] = { 6935 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 6936 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 6937 .access = PL1_RW, .accessfn = access_mte, 6938 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 6939 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 6940 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 6941 .access = PL1_RW, .accessfn = access_mte, 6942 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 6943 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 6944 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 6945 .access = PL2_RW, .accessfn = access_mte, 6946 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 6947 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 6948 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 6949 .access = PL3_RW, 6950 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 6951 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 6952 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 6953 .access = PL1_RW, .accessfn = access_mte, 6954 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 6955 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 6956 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 6957 .access = PL1_RW, .accessfn = access_mte, 6958 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 6959 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 6960 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 6961 .access = PL1_R, .accessfn = access_aa64_tid5, 6962 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 6963 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6964 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6965 .type = ARM_CP_NO_RAW, 6966 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 6967 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 6968 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 6969 .type = ARM_CP_NOP, .access = PL1_W, 6970 .accessfn = aa64_cacheop_poc_access }, 6971 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 6972 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 6973 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6974 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 6975 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 6976 .type = ARM_CP_NOP, .access = PL1_W, 6977 .accessfn = aa64_cacheop_poc_access }, 6978 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 6979 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 6980 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6981 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 6982 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 6983 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6984 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 6985 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 6986 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6987 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 6988 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 6989 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6990 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 6991 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 6992 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6993 }; 6994 6995 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 6996 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6997 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6998 .type = ARM_CP_CONST, .access = PL0_RW, }, 6999 }; 7000 7001 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7002 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7003 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7004 .type = ARM_CP_NOP, .access = PL0_W, 7005 .accessfn = aa64_cacheop_poc_access }, 7006 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7007 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7008 .type = ARM_CP_NOP, .access = PL0_W, 7009 .accessfn = aa64_cacheop_poc_access }, 7010 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7011 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7012 .type = ARM_CP_NOP, .access = PL0_W, 7013 .accessfn = aa64_cacheop_poc_access }, 7014 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7015 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7016 .type = ARM_CP_NOP, .access = PL0_W, 7017 .accessfn = aa64_cacheop_poc_access }, 7018 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7019 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7020 .type = ARM_CP_NOP, .access = PL0_W, 7021 .accessfn = aa64_cacheop_poc_access }, 7022 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7023 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7024 .type = ARM_CP_NOP, .access = PL0_W, 7025 .accessfn = aa64_cacheop_poc_access }, 7026 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7027 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7028 .type = ARM_CP_NOP, .access = PL0_W, 7029 .accessfn = aa64_cacheop_poc_access }, 7030 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7031 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7032 .type = ARM_CP_NOP, .access = PL0_W, 7033 .accessfn = aa64_cacheop_poc_access }, 7034 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7035 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7036 .access = PL0_W, .type = ARM_CP_DC_GVA, 7037 #ifndef CONFIG_USER_ONLY 7038 /* Avoid overhead of an access check that always passes in user-mode */ 7039 .accessfn = aa64_zva_access, 7040 #endif 7041 }, 7042 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7043 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7044 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7045 #ifndef CONFIG_USER_ONLY 7046 /* Avoid overhead of an access check that always passes in user-mode */ 7047 .accessfn = aa64_zva_access, 7048 #endif 7049 }, 7050 }; 7051 7052 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7053 bool isread) 7054 { 7055 uint64_t hcr = arm_hcr_el2_eff(env); 7056 int el = arm_current_el(env); 7057 7058 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7059 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7060 if (hcr & HCR_TGE) { 7061 return CP_ACCESS_TRAP_EL2; 7062 } 7063 return CP_ACCESS_TRAP; 7064 } 7065 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7066 return CP_ACCESS_TRAP_EL2; 7067 } 7068 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7069 return CP_ACCESS_TRAP_EL2; 7070 } 7071 if (el < 3 7072 && arm_feature(env, ARM_FEATURE_EL3) 7073 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7074 return CP_ACCESS_TRAP_EL3; 7075 } 7076 return CP_ACCESS_OK; 7077 } 7078 7079 static const ARMCPRegInfo scxtnum_reginfo[] = { 7080 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7081 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7082 .access = PL0_RW, .accessfn = access_scxtnum, 7083 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7084 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7085 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7086 .access = PL1_RW, .accessfn = access_scxtnum, 7087 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7088 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7089 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7090 .access = PL2_RW, .accessfn = access_scxtnum, 7091 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7092 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7093 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7094 .access = PL3_RW, 7095 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7096 }; 7097 #endif /* TARGET_AARCH64 */ 7098 7099 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7100 bool isread) 7101 { 7102 int el = arm_current_el(env); 7103 7104 if (el == 0) { 7105 uint64_t sctlr = arm_sctlr(env, el); 7106 if (!(sctlr & SCTLR_EnRCTX)) { 7107 return CP_ACCESS_TRAP; 7108 } 7109 } else if (el == 1) { 7110 uint64_t hcr = arm_hcr_el2_eff(env); 7111 if (hcr & HCR_NV) { 7112 return CP_ACCESS_TRAP_EL2; 7113 } 7114 } 7115 return CP_ACCESS_OK; 7116 } 7117 7118 static const ARMCPRegInfo predinv_reginfo[] = { 7119 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7121 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7122 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7123 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7124 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7125 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7126 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7127 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7128 /* 7129 * Note the AArch32 opcodes have a different OPC1. 7130 */ 7131 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7132 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7133 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7134 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7135 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7136 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7137 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7138 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7139 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7140 }; 7141 7142 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7143 { 7144 /* Read the high 32 bits of the current CCSIDR */ 7145 return extract64(ccsidr_read(env, ri), 32, 32); 7146 } 7147 7148 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7149 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7150 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7151 .access = PL1_R, 7152 .accessfn = access_aa64_tid2, 7153 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7154 }; 7155 7156 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7157 bool isread) 7158 { 7159 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7160 return CP_ACCESS_TRAP_EL2; 7161 } 7162 7163 return CP_ACCESS_OK; 7164 } 7165 7166 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7167 bool isread) 7168 { 7169 if (arm_feature(env, ARM_FEATURE_V8)) { 7170 return access_aa64_tid3(env, ri, isread); 7171 } 7172 7173 return CP_ACCESS_OK; 7174 } 7175 7176 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7177 bool isread) 7178 { 7179 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7180 return CP_ACCESS_TRAP_EL2; 7181 } 7182 7183 return CP_ACCESS_OK; 7184 } 7185 7186 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7187 const ARMCPRegInfo *ri, bool isread) 7188 { 7189 /* 7190 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7191 * in v7A, not in v8A. 7192 */ 7193 if (!arm_feature(env, ARM_FEATURE_V8) && 7194 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7195 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7196 return CP_ACCESS_TRAP_EL2; 7197 } 7198 return CP_ACCESS_OK; 7199 } 7200 7201 static const ARMCPRegInfo jazelle_regs[] = { 7202 { .name = "JIDR", 7203 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7204 .access = PL1_R, .accessfn = access_jazelle, 7205 .type = ARM_CP_CONST, .resetvalue = 0 }, 7206 { .name = "JOSCR", 7207 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7208 .accessfn = access_joscr_jmcr, 7209 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7210 { .name = "JMCR", 7211 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7212 .accessfn = access_joscr_jmcr, 7213 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7214 }; 7215 7216 static const ARMCPRegInfo contextidr_el2 = { 7217 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7219 .access = PL2_RW, 7220 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7221 }; 7222 7223 static const ARMCPRegInfo vhe_reginfo[] = { 7224 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7225 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7226 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7227 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7228 #ifndef CONFIG_USER_ONLY 7229 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7230 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7231 .fieldoffset = 7232 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7233 .type = ARM_CP_IO, .access = PL2_RW, 7234 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7235 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7236 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7237 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7238 .resetfn = gt_hv_timer_reset, 7239 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7240 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7241 .type = ARM_CP_IO, 7242 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7243 .access = PL2_RW, 7244 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7245 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7246 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7247 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7248 .type = ARM_CP_IO | ARM_CP_ALIAS, 7249 .access = PL2_RW, .accessfn = e2h_access, 7250 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7251 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7252 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7253 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7254 .type = ARM_CP_IO | ARM_CP_ALIAS, 7255 .access = PL2_RW, .accessfn = e2h_access, 7256 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7257 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7258 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7259 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7260 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7261 .access = PL2_RW, .accessfn = e2h_access, 7262 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7263 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7264 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7265 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7266 .access = PL2_RW, .accessfn = e2h_access, 7267 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7268 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7269 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7270 .type = ARM_CP_IO | ARM_CP_ALIAS, 7271 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7272 .access = PL2_RW, .accessfn = e2h_access, 7273 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7274 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7275 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7276 .type = ARM_CP_IO | ARM_CP_ALIAS, 7277 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7278 .access = PL2_RW, .accessfn = e2h_access, 7279 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7280 #endif 7281 }; 7282 7283 #ifndef CONFIG_USER_ONLY 7284 static const ARMCPRegInfo ats1e1_reginfo[] = { 7285 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7286 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7287 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7288 .writefn = ats_write64 }, 7289 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7290 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7291 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7292 .writefn = ats_write64 }, 7293 }; 7294 7295 static const ARMCPRegInfo ats1cp_reginfo[] = { 7296 { .name = "ATS1CPRP", 7297 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7298 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7299 .writefn = ats_write }, 7300 { .name = "ATS1CPWP", 7301 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7302 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7303 .writefn = ats_write }, 7304 }; 7305 #endif 7306 7307 /* 7308 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7309 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7310 * is non-zero, which is never for ARMv7, optionally in ARMv8 7311 * and mandatorily for ARMv8.2 and up. 7312 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7313 * implementation is RAZ/WI we can ignore this detail, as we 7314 * do for ACTLR. 7315 */ 7316 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7317 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7318 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7319 .access = PL1_RW, .accessfn = access_tacr, 7320 .type = ARM_CP_CONST, .resetvalue = 0 }, 7321 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7322 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7323 .access = PL2_RW, .type = ARM_CP_CONST, 7324 .resetvalue = 0 }, 7325 }; 7326 7327 void register_cp_regs_for_features(ARMCPU *cpu) 7328 { 7329 /* Register all the coprocessor registers based on feature bits */ 7330 CPUARMState *env = &cpu->env; 7331 if (arm_feature(env, ARM_FEATURE_M)) { 7332 /* M profile has no coprocessor registers */ 7333 return; 7334 } 7335 7336 define_arm_cp_regs(cpu, cp_reginfo); 7337 if (!arm_feature(env, ARM_FEATURE_V8)) { 7338 /* Must go early as it is full of wildcards that may be 7339 * overridden by later definitions. 7340 */ 7341 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7342 } 7343 7344 if (arm_feature(env, ARM_FEATURE_V6)) { 7345 /* The ID registers all have impdef reset values */ 7346 ARMCPRegInfo v6_idregs[] = { 7347 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7348 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7349 .access = PL1_R, .type = ARM_CP_CONST, 7350 .accessfn = access_aa32_tid3, 7351 .resetvalue = cpu->isar.id_pfr0 }, 7352 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7353 * the value of the GIC field until after we define these regs. 7354 */ 7355 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7357 .access = PL1_R, .type = ARM_CP_NO_RAW, 7358 .accessfn = access_aa32_tid3, 7359 .readfn = id_pfr1_read, 7360 .writefn = arm_cp_write_ignore }, 7361 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7362 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7363 .access = PL1_R, .type = ARM_CP_CONST, 7364 .accessfn = access_aa32_tid3, 7365 .resetvalue = cpu->isar.id_dfr0 }, 7366 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7367 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7368 .access = PL1_R, .type = ARM_CP_CONST, 7369 .accessfn = access_aa32_tid3, 7370 .resetvalue = cpu->id_afr0 }, 7371 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7372 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7373 .access = PL1_R, .type = ARM_CP_CONST, 7374 .accessfn = access_aa32_tid3, 7375 .resetvalue = cpu->isar.id_mmfr0 }, 7376 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7377 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7378 .access = PL1_R, .type = ARM_CP_CONST, 7379 .accessfn = access_aa32_tid3, 7380 .resetvalue = cpu->isar.id_mmfr1 }, 7381 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7382 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7383 .access = PL1_R, .type = ARM_CP_CONST, 7384 .accessfn = access_aa32_tid3, 7385 .resetvalue = cpu->isar.id_mmfr2 }, 7386 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7388 .access = PL1_R, .type = ARM_CP_CONST, 7389 .accessfn = access_aa32_tid3, 7390 .resetvalue = cpu->isar.id_mmfr3 }, 7391 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7392 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7393 .access = PL1_R, .type = ARM_CP_CONST, 7394 .accessfn = access_aa32_tid3, 7395 .resetvalue = cpu->isar.id_isar0 }, 7396 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7397 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7398 .access = PL1_R, .type = ARM_CP_CONST, 7399 .accessfn = access_aa32_tid3, 7400 .resetvalue = cpu->isar.id_isar1 }, 7401 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7402 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7403 .access = PL1_R, .type = ARM_CP_CONST, 7404 .accessfn = access_aa32_tid3, 7405 .resetvalue = cpu->isar.id_isar2 }, 7406 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7407 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7408 .access = PL1_R, .type = ARM_CP_CONST, 7409 .accessfn = access_aa32_tid3, 7410 .resetvalue = cpu->isar.id_isar3 }, 7411 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7412 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7413 .access = PL1_R, .type = ARM_CP_CONST, 7414 .accessfn = access_aa32_tid3, 7415 .resetvalue = cpu->isar.id_isar4 }, 7416 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7417 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7418 .access = PL1_R, .type = ARM_CP_CONST, 7419 .accessfn = access_aa32_tid3, 7420 .resetvalue = cpu->isar.id_isar5 }, 7421 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7422 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7423 .access = PL1_R, .type = ARM_CP_CONST, 7424 .accessfn = access_aa32_tid3, 7425 .resetvalue = cpu->isar.id_mmfr4 }, 7426 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7427 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7428 .access = PL1_R, .type = ARM_CP_CONST, 7429 .accessfn = access_aa32_tid3, 7430 .resetvalue = cpu->isar.id_isar6 }, 7431 }; 7432 define_arm_cp_regs(cpu, v6_idregs); 7433 define_arm_cp_regs(cpu, v6_cp_reginfo); 7434 } else { 7435 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7436 } 7437 if (arm_feature(env, ARM_FEATURE_V6K)) { 7438 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7439 } 7440 if (arm_feature(env, ARM_FEATURE_V7MP) && 7441 !arm_feature(env, ARM_FEATURE_PMSA)) { 7442 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7443 } 7444 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7445 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7446 } 7447 if (arm_feature(env, ARM_FEATURE_V7)) { 7448 ARMCPRegInfo clidr = { 7449 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7450 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7451 .access = PL1_R, .type = ARM_CP_CONST, 7452 .accessfn = access_aa64_tid2, 7453 .resetvalue = cpu->clidr 7454 }; 7455 define_one_arm_cp_reg(cpu, &clidr); 7456 define_arm_cp_regs(cpu, v7_cp_reginfo); 7457 define_debug_regs(cpu); 7458 define_pmu_regs(cpu); 7459 } else { 7460 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7461 } 7462 if (arm_feature(env, ARM_FEATURE_V8)) { 7463 /* 7464 * v8 ID registers, which all have impdef reset values. 7465 * Note that within the ID register ranges the unused slots 7466 * must all RAZ, not UNDEF; future architecture versions may 7467 * define new registers here. 7468 * ID registers which are AArch64 views of the AArch32 ID registers 7469 * which already existed in v6 and v7 are handled elsewhere, 7470 * in v6_idregs[]. 7471 */ 7472 int i; 7473 ARMCPRegInfo v8_idregs[] = { 7474 /* 7475 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7476 * emulation because we don't know the right value for the 7477 * GIC field until after we define these regs. 7478 */ 7479 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7481 .access = PL1_R, 7482 #ifdef CONFIG_USER_ONLY 7483 .type = ARM_CP_CONST, 7484 .resetvalue = cpu->isar.id_aa64pfr0 7485 #else 7486 .type = ARM_CP_NO_RAW, 7487 .accessfn = access_aa64_tid3, 7488 .readfn = id_aa64pfr0_read, 7489 .writefn = arm_cp_write_ignore 7490 #endif 7491 }, 7492 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7494 .access = PL1_R, .type = ARM_CP_CONST, 7495 .accessfn = access_aa64_tid3, 7496 .resetvalue = cpu->isar.id_aa64pfr1}, 7497 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7498 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7499 .access = PL1_R, .type = ARM_CP_CONST, 7500 .accessfn = access_aa64_tid3, 7501 .resetvalue = 0 }, 7502 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7504 .access = PL1_R, .type = ARM_CP_CONST, 7505 .accessfn = access_aa64_tid3, 7506 .resetvalue = 0 }, 7507 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7509 .access = PL1_R, .type = ARM_CP_CONST, 7510 .accessfn = access_aa64_tid3, 7511 .resetvalue = cpu->isar.id_aa64zfr0 }, 7512 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7514 .access = PL1_R, .type = ARM_CP_CONST, 7515 .accessfn = access_aa64_tid3, 7516 .resetvalue = cpu->isar.id_aa64smfr0 }, 7517 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7519 .access = PL1_R, .type = ARM_CP_CONST, 7520 .accessfn = access_aa64_tid3, 7521 .resetvalue = 0 }, 7522 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7524 .access = PL1_R, .type = ARM_CP_CONST, 7525 .accessfn = access_aa64_tid3, 7526 .resetvalue = 0 }, 7527 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7529 .access = PL1_R, .type = ARM_CP_CONST, 7530 .accessfn = access_aa64_tid3, 7531 .resetvalue = cpu->isar.id_aa64dfr0 }, 7532 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7534 .access = PL1_R, .type = ARM_CP_CONST, 7535 .accessfn = access_aa64_tid3, 7536 .resetvalue = cpu->isar.id_aa64dfr1 }, 7537 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7539 .access = PL1_R, .type = ARM_CP_CONST, 7540 .accessfn = access_aa64_tid3, 7541 .resetvalue = 0 }, 7542 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7544 .access = PL1_R, .type = ARM_CP_CONST, 7545 .accessfn = access_aa64_tid3, 7546 .resetvalue = 0 }, 7547 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7549 .access = PL1_R, .type = ARM_CP_CONST, 7550 .accessfn = access_aa64_tid3, 7551 .resetvalue = cpu->id_aa64afr0 }, 7552 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7553 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7554 .access = PL1_R, .type = ARM_CP_CONST, 7555 .accessfn = access_aa64_tid3, 7556 .resetvalue = cpu->id_aa64afr1 }, 7557 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7559 .access = PL1_R, .type = ARM_CP_CONST, 7560 .accessfn = access_aa64_tid3, 7561 .resetvalue = 0 }, 7562 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7564 .access = PL1_R, .type = ARM_CP_CONST, 7565 .accessfn = access_aa64_tid3, 7566 .resetvalue = 0 }, 7567 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7569 .access = PL1_R, .type = ARM_CP_CONST, 7570 .accessfn = access_aa64_tid3, 7571 .resetvalue = cpu->isar.id_aa64isar0 }, 7572 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7574 .access = PL1_R, .type = ARM_CP_CONST, 7575 .accessfn = access_aa64_tid3, 7576 .resetvalue = cpu->isar.id_aa64isar1 }, 7577 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7579 .access = PL1_R, .type = ARM_CP_CONST, 7580 .accessfn = access_aa64_tid3, 7581 .resetvalue = 0 }, 7582 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7584 .access = PL1_R, .type = ARM_CP_CONST, 7585 .accessfn = access_aa64_tid3, 7586 .resetvalue = 0 }, 7587 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7588 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7589 .access = PL1_R, .type = ARM_CP_CONST, 7590 .accessfn = access_aa64_tid3, 7591 .resetvalue = 0 }, 7592 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7593 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7594 .access = PL1_R, .type = ARM_CP_CONST, 7595 .accessfn = access_aa64_tid3, 7596 .resetvalue = 0 }, 7597 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7598 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7599 .access = PL1_R, .type = ARM_CP_CONST, 7600 .accessfn = access_aa64_tid3, 7601 .resetvalue = 0 }, 7602 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7604 .access = PL1_R, .type = ARM_CP_CONST, 7605 .accessfn = access_aa64_tid3, 7606 .resetvalue = 0 }, 7607 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7608 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7609 .access = PL1_R, .type = ARM_CP_CONST, 7610 .accessfn = access_aa64_tid3, 7611 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7612 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7614 .access = PL1_R, .type = ARM_CP_CONST, 7615 .accessfn = access_aa64_tid3, 7616 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7617 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7618 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7619 .access = PL1_R, .type = ARM_CP_CONST, 7620 .accessfn = access_aa64_tid3, 7621 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7622 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7624 .access = PL1_R, .type = ARM_CP_CONST, 7625 .accessfn = access_aa64_tid3, 7626 .resetvalue = 0 }, 7627 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7629 .access = PL1_R, .type = ARM_CP_CONST, 7630 .accessfn = access_aa64_tid3, 7631 .resetvalue = 0 }, 7632 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7633 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7634 .access = PL1_R, .type = ARM_CP_CONST, 7635 .accessfn = access_aa64_tid3, 7636 .resetvalue = 0 }, 7637 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7638 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7639 .access = PL1_R, .type = ARM_CP_CONST, 7640 .accessfn = access_aa64_tid3, 7641 .resetvalue = 0 }, 7642 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7644 .access = PL1_R, .type = ARM_CP_CONST, 7645 .accessfn = access_aa64_tid3, 7646 .resetvalue = 0 }, 7647 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7649 .access = PL1_R, .type = ARM_CP_CONST, 7650 .accessfn = access_aa64_tid3, 7651 .resetvalue = cpu->isar.mvfr0 }, 7652 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7653 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7654 .access = PL1_R, .type = ARM_CP_CONST, 7655 .accessfn = access_aa64_tid3, 7656 .resetvalue = cpu->isar.mvfr1 }, 7657 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7658 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7659 .access = PL1_R, .type = ARM_CP_CONST, 7660 .accessfn = access_aa64_tid3, 7661 .resetvalue = cpu->isar.mvfr2 }, 7662 /* 7663 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 7664 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 7665 * as RAZ, since it is in the "reserved for future ID 7666 * registers, RAZ" part of the AArch32 encoding space. 7667 */ 7668 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 7669 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7670 .access = PL1_R, .type = ARM_CP_CONST, 7671 .accessfn = access_aa64_tid3, 7672 .resetvalue = 0 }, 7673 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 7674 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7675 .access = PL1_R, .type = ARM_CP_CONST, 7676 .accessfn = access_aa64_tid3, 7677 .resetvalue = 0 }, 7678 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 7679 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7680 .access = PL1_R, .type = ARM_CP_CONST, 7681 .accessfn = access_aa64_tid3, 7682 .resetvalue = 0 }, 7683 /* 7684 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 7685 * they're also RAZ for AArch64, and in v8 are gradually 7686 * being filled with AArch64-view-of-AArch32-ID-register 7687 * for new ID registers. 7688 */ 7689 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 7690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7691 .access = PL1_R, .type = ARM_CP_CONST, 7692 .accessfn = access_aa64_tid3, 7693 .resetvalue = 0 }, 7694 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7696 .access = PL1_R, .type = ARM_CP_CONST, 7697 .accessfn = access_aa64_tid3, 7698 .resetvalue = cpu->isar.id_pfr2 }, 7699 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 7700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7701 .access = PL1_R, .type = ARM_CP_CONST, 7702 .accessfn = access_aa64_tid3, 7703 .resetvalue = cpu->isar.id_dfr1 }, 7704 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 7705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7706 .access = PL1_R, .type = ARM_CP_CONST, 7707 .accessfn = access_aa64_tid3, 7708 .resetvalue = cpu->isar.id_mmfr5 }, 7709 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 7710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7711 .access = PL1_R, .type = ARM_CP_CONST, 7712 .accessfn = access_aa64_tid3, 7713 .resetvalue = 0 }, 7714 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7715 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7716 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7717 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7718 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7719 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7720 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7721 .resetvalue = cpu->pmceid0 }, 7722 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7723 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7724 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7725 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7726 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7727 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7728 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7729 .resetvalue = cpu->pmceid1 }, 7730 }; 7731 #ifdef CONFIG_USER_ONLY 7732 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7733 { .name = "ID_AA64PFR0_EL1", 7734 .exported_bits = 0x000f000f00ff0000, 7735 .fixed_bits = 0x0000000000000011 }, 7736 { .name = "ID_AA64PFR1_EL1", 7737 .exported_bits = 0x00000000000000f0 }, 7738 { .name = "ID_AA64PFR*_EL1_RESERVED", 7739 .is_glob = true }, 7740 { .name = "ID_AA64ZFR0_EL1" }, 7741 { .name = "ID_AA64MMFR0_EL1", 7742 .fixed_bits = 0x00000000ff000000 }, 7743 { .name = "ID_AA64MMFR1_EL1" }, 7744 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7745 .is_glob = true }, 7746 { .name = "ID_AA64DFR0_EL1", 7747 .fixed_bits = 0x0000000000000006 }, 7748 { .name = "ID_AA64DFR1_EL1" }, 7749 { .name = "ID_AA64DFR*_EL1_RESERVED", 7750 .is_glob = true }, 7751 { .name = "ID_AA64AFR*", 7752 .is_glob = true }, 7753 { .name = "ID_AA64ISAR0_EL1", 7754 .exported_bits = 0x00fffffff0fffff0 }, 7755 { .name = "ID_AA64ISAR1_EL1", 7756 .exported_bits = 0x000000f0ffffffff }, 7757 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7758 .is_glob = true }, 7759 }; 7760 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7761 #endif 7762 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7763 if (!arm_feature(env, ARM_FEATURE_EL3) && 7764 !arm_feature(env, ARM_FEATURE_EL2)) { 7765 ARMCPRegInfo rvbar = { 7766 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7767 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7768 .access = PL1_R, 7769 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7770 }; 7771 define_one_arm_cp_reg(cpu, &rvbar); 7772 } 7773 define_arm_cp_regs(cpu, v8_idregs); 7774 define_arm_cp_regs(cpu, v8_cp_reginfo); 7775 7776 for (i = 4; i < 16; i++) { 7777 /* 7778 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 7779 * For pre-v8 cores there are RAZ patterns for these in 7780 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 7781 * v8 extends the "must RAZ" part of the ID register space 7782 * to also cover c0, 0, c{8-15}, {0-7}. 7783 * These are STATE_AA32 because in the AArch64 sysreg space 7784 * c4-c7 is where the AArch64 ID registers live (and we've 7785 * already defined those in v8_idregs[]), and c8-c15 are not 7786 * "must RAZ" for AArch64. 7787 */ 7788 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 7789 ARMCPRegInfo v8_aa32_raz_idregs = { 7790 .name = name, 7791 .state = ARM_CP_STATE_AA32, 7792 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 7793 .access = PL1_R, .type = ARM_CP_CONST, 7794 .accessfn = access_aa64_tid3, 7795 .resetvalue = 0 }; 7796 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 7797 } 7798 } 7799 7800 /* 7801 * Register the base EL2 cpregs. 7802 * Pre v8, these registers are implemented only as part of the 7803 * Virtualization Extensions (EL2 present). Beginning with v8, 7804 * if EL2 is missing but EL3 is enabled, mostly these become 7805 * RES0 from EL3, with some specific exceptions. 7806 */ 7807 if (arm_feature(env, ARM_FEATURE_EL2) 7808 || (arm_feature(env, ARM_FEATURE_EL3) 7809 && arm_feature(env, ARM_FEATURE_V8))) { 7810 uint64_t vmpidr_def = mpidr_read_val(env); 7811 ARMCPRegInfo vpidr_regs[] = { 7812 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7813 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7814 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7815 .resetvalue = cpu->midr, 7816 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7817 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7818 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7819 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7820 .access = PL2_RW, .resetvalue = cpu->midr, 7821 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7822 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7823 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7824 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7825 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7826 .resetvalue = vmpidr_def, 7827 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7828 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7829 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7830 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7831 .access = PL2_RW, .resetvalue = vmpidr_def, 7832 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7833 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7834 }; 7835 /* 7836 * The only field of MDCR_EL2 that has a defined architectural reset 7837 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 7838 */ 7839 ARMCPRegInfo mdcr_el2 = { 7840 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 7841 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 7842 .writefn = mdcr_el2_write, 7843 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 7844 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 7845 }; 7846 define_one_arm_cp_reg(cpu, &mdcr_el2); 7847 define_arm_cp_regs(cpu, vpidr_regs); 7848 define_arm_cp_regs(cpu, el2_cp_reginfo); 7849 if (arm_feature(env, ARM_FEATURE_V8)) { 7850 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7851 } 7852 if (cpu_isar_feature(aa64_sel2, cpu)) { 7853 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7854 } 7855 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7856 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7857 ARMCPRegInfo rvbar = { 7858 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7859 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7860 .access = PL2_R, 7861 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7862 }; 7863 define_one_arm_cp_reg(cpu, &rvbar); 7864 } 7865 } 7866 7867 /* Register the base EL3 cpregs. */ 7868 if (arm_feature(env, ARM_FEATURE_EL3)) { 7869 define_arm_cp_regs(cpu, el3_cp_reginfo); 7870 ARMCPRegInfo el3_regs[] = { 7871 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7872 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7873 .access = PL3_R, 7874 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7875 }, 7876 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7877 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7878 .access = PL3_RW, 7879 .raw_writefn = raw_write, .writefn = sctlr_write, 7880 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7881 .resetvalue = cpu->reset_sctlr }, 7882 }; 7883 7884 define_arm_cp_regs(cpu, el3_regs); 7885 } 7886 /* The behaviour of NSACR is sufficiently various that we don't 7887 * try to describe it in a single reginfo: 7888 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7889 * reads as constant 0xc00 from NS EL1 and NS EL2 7890 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7891 * if v7 without EL3, register doesn't exist 7892 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7893 */ 7894 if (arm_feature(env, ARM_FEATURE_EL3)) { 7895 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7896 static const ARMCPRegInfo nsacr = { 7897 .name = "NSACR", .type = ARM_CP_CONST, 7898 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7899 .access = PL1_RW, .accessfn = nsacr_access, 7900 .resetvalue = 0xc00 7901 }; 7902 define_one_arm_cp_reg(cpu, &nsacr); 7903 } else { 7904 static const ARMCPRegInfo nsacr = { 7905 .name = "NSACR", 7906 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7907 .access = PL3_RW | PL1_R, 7908 .resetvalue = 0, 7909 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7910 }; 7911 define_one_arm_cp_reg(cpu, &nsacr); 7912 } 7913 } else { 7914 if (arm_feature(env, ARM_FEATURE_V8)) { 7915 static const ARMCPRegInfo nsacr = { 7916 .name = "NSACR", .type = ARM_CP_CONST, 7917 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7918 .access = PL1_R, 7919 .resetvalue = 0xc00 7920 }; 7921 define_one_arm_cp_reg(cpu, &nsacr); 7922 } 7923 } 7924 7925 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7926 if (arm_feature(env, ARM_FEATURE_V6)) { 7927 /* PMSAv6 not implemented */ 7928 assert(arm_feature(env, ARM_FEATURE_V7)); 7929 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7930 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7931 } else { 7932 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7933 } 7934 } else { 7935 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7936 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7937 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7938 if (cpu_isar_feature(aa32_hpd, cpu)) { 7939 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7940 } 7941 } 7942 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7943 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7944 } 7945 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7946 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7947 } 7948 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7949 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7950 } 7951 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7952 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7953 } 7954 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7955 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7956 } 7957 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7958 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7959 } 7960 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7961 define_arm_cp_regs(cpu, omap_cp_reginfo); 7962 } 7963 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7964 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7965 } 7966 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7967 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7968 } 7969 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7970 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7971 } 7972 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7973 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7974 } 7975 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7976 define_arm_cp_regs(cpu, jazelle_regs); 7977 } 7978 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7979 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7980 * be read-only (ie write causes UNDEF exception). 7981 */ 7982 { 7983 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7984 /* Pre-v8 MIDR space. 7985 * Note that the MIDR isn't a simple constant register because 7986 * of the TI925 behaviour where writes to another register can 7987 * cause the MIDR value to change. 7988 * 7989 * Unimplemented registers in the c15 0 0 0 space default to 7990 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7991 * and friends override accordingly. 7992 */ 7993 { .name = "MIDR", 7994 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7995 .access = PL1_R, .resetvalue = cpu->midr, 7996 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7997 .readfn = midr_read, 7998 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7999 .type = ARM_CP_OVERRIDE }, 8000 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8001 { .name = "DUMMY", 8002 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8003 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8004 { .name = "DUMMY", 8005 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8006 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8007 { .name = "DUMMY", 8008 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8009 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8010 { .name = "DUMMY", 8011 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8012 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8013 { .name = "DUMMY", 8014 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8015 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8016 }; 8017 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8018 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8020 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8021 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8022 .readfn = midr_read }, 8023 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8024 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8025 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8026 .access = PL1_R, .resetvalue = cpu->midr }, 8027 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8028 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8029 .access = PL1_R, .resetvalue = cpu->midr }, 8030 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8032 .access = PL1_R, 8033 .accessfn = access_aa64_tid1, 8034 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8035 }; 8036 ARMCPRegInfo id_cp_reginfo[] = { 8037 /* These are common to v8 and pre-v8 */ 8038 { .name = "CTR", 8039 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8040 .access = PL1_R, .accessfn = ctr_el0_access, 8041 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8042 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8043 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8044 .access = PL0_R, .accessfn = ctr_el0_access, 8045 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8046 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8047 { .name = "TCMTR", 8048 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8049 .access = PL1_R, 8050 .accessfn = access_aa32_tid1, 8051 .type = ARM_CP_CONST, .resetvalue = 0 }, 8052 }; 8053 /* TLBTR is specific to VMSA */ 8054 ARMCPRegInfo id_tlbtr_reginfo = { 8055 .name = "TLBTR", 8056 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8057 .access = PL1_R, 8058 .accessfn = access_aa32_tid1, 8059 .type = ARM_CP_CONST, .resetvalue = 0, 8060 }; 8061 /* MPUIR is specific to PMSA V6+ */ 8062 ARMCPRegInfo id_mpuir_reginfo = { 8063 .name = "MPUIR", 8064 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8065 .access = PL1_R, .type = ARM_CP_CONST, 8066 .resetvalue = cpu->pmsav7_dregion << 8 8067 }; 8068 static const ARMCPRegInfo crn0_wi_reginfo = { 8069 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8070 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8071 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8072 }; 8073 #ifdef CONFIG_USER_ONLY 8074 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8075 { .name = "MIDR_EL1", 8076 .exported_bits = 0x00000000ffffffff }, 8077 { .name = "REVIDR_EL1" }, 8078 }; 8079 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8080 #endif 8081 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8082 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8083 size_t i; 8084 /* Register the blanket "writes ignored" value first to cover the 8085 * whole space. Then update the specific ID registers to allow write 8086 * access, so that they ignore writes rather than causing them to 8087 * UNDEF. 8088 */ 8089 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8090 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8091 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8092 } 8093 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8094 id_cp_reginfo[i].access = PL1_RW; 8095 } 8096 id_mpuir_reginfo.access = PL1_RW; 8097 id_tlbtr_reginfo.access = PL1_RW; 8098 } 8099 if (arm_feature(env, ARM_FEATURE_V8)) { 8100 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8101 } else { 8102 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8103 } 8104 define_arm_cp_regs(cpu, id_cp_reginfo); 8105 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8106 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8107 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8108 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8109 } 8110 } 8111 8112 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8113 ARMCPRegInfo mpidr_cp_reginfo[] = { 8114 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8115 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8116 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8117 }; 8118 #ifdef CONFIG_USER_ONLY 8119 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8120 { .name = "MPIDR_EL1", 8121 .fixed_bits = 0x0000000080000000 }, 8122 }; 8123 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8124 #endif 8125 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8126 } 8127 8128 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8129 ARMCPRegInfo auxcr_reginfo[] = { 8130 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8131 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8132 .access = PL1_RW, .accessfn = access_tacr, 8133 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8134 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8135 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8136 .access = PL2_RW, .type = ARM_CP_CONST, 8137 .resetvalue = 0 }, 8138 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8139 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8140 .access = PL3_RW, .type = ARM_CP_CONST, 8141 .resetvalue = 0 }, 8142 }; 8143 define_arm_cp_regs(cpu, auxcr_reginfo); 8144 if (cpu_isar_feature(aa32_ac2, cpu)) { 8145 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8146 } 8147 } 8148 8149 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8150 /* 8151 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8152 * There are two flavours: 8153 * (1) older 32-bit only cores have a simple 32-bit CBAR 8154 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8155 * 32-bit register visible to AArch32 at a different encoding 8156 * to the "flavour 1" register and with the bits rearranged to 8157 * be able to squash a 64-bit address into the 32-bit view. 8158 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8159 * in future if we support AArch32-only configs of some of the 8160 * AArch64 cores we might need to add a specific feature flag 8161 * to indicate cores with "flavour 2" CBAR. 8162 */ 8163 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8164 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8165 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8166 | extract64(cpu->reset_cbar, 32, 12); 8167 ARMCPRegInfo cbar_reginfo[] = { 8168 { .name = "CBAR", 8169 .type = ARM_CP_CONST, 8170 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8171 .access = PL1_R, .resetvalue = cbar32 }, 8172 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8173 .type = ARM_CP_CONST, 8174 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8175 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8176 }; 8177 /* We don't implement a r/w 64 bit CBAR currently */ 8178 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8179 define_arm_cp_regs(cpu, cbar_reginfo); 8180 } else { 8181 ARMCPRegInfo cbar = { 8182 .name = "CBAR", 8183 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8184 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8185 .fieldoffset = offsetof(CPUARMState, 8186 cp15.c15_config_base_address) 8187 }; 8188 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8189 cbar.access = PL1_R; 8190 cbar.fieldoffset = 0; 8191 cbar.type = ARM_CP_CONST; 8192 } 8193 define_one_arm_cp_reg(cpu, &cbar); 8194 } 8195 } 8196 8197 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8198 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8199 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8200 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8201 .access = PL1_RW, .writefn = vbar_write, 8202 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8203 offsetof(CPUARMState, cp15.vbar_ns) }, 8204 .resetvalue = 0 }, 8205 }; 8206 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8207 } 8208 8209 /* Generic registers whose values depend on the implementation */ 8210 { 8211 ARMCPRegInfo sctlr = { 8212 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8213 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8214 .access = PL1_RW, .accessfn = access_tvm_trvm, 8215 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8216 offsetof(CPUARMState, cp15.sctlr_ns) }, 8217 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8218 .raw_writefn = raw_write, 8219 }; 8220 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8221 /* Normally we would always end the TB on an SCTLR write, but Linux 8222 * arch/arm/mach-pxa/sleep.S expects two instructions following 8223 * an MMU enable to execute from cache. Imitate this behaviour. 8224 */ 8225 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8226 } 8227 define_one_arm_cp_reg(cpu, &sctlr); 8228 } 8229 8230 if (cpu_isar_feature(aa64_lor, cpu)) { 8231 define_arm_cp_regs(cpu, lor_reginfo); 8232 } 8233 if (cpu_isar_feature(aa64_pan, cpu)) { 8234 define_one_arm_cp_reg(cpu, &pan_reginfo); 8235 } 8236 #ifndef CONFIG_USER_ONLY 8237 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8238 define_arm_cp_regs(cpu, ats1e1_reginfo); 8239 } 8240 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8241 define_arm_cp_regs(cpu, ats1cp_reginfo); 8242 } 8243 #endif 8244 if (cpu_isar_feature(aa64_uao, cpu)) { 8245 define_one_arm_cp_reg(cpu, &uao_reginfo); 8246 } 8247 8248 if (cpu_isar_feature(aa64_dit, cpu)) { 8249 define_one_arm_cp_reg(cpu, &dit_reginfo); 8250 } 8251 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8252 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8253 } 8254 if (cpu_isar_feature(any_ras, cpu)) { 8255 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8256 } 8257 8258 if (cpu_isar_feature(aa64_vh, cpu) || 8259 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8260 define_one_arm_cp_reg(cpu, &contextidr_el2); 8261 } 8262 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8263 define_arm_cp_regs(cpu, vhe_reginfo); 8264 } 8265 8266 if (cpu_isar_feature(aa64_sve, cpu)) { 8267 define_arm_cp_regs(cpu, zcr_reginfo); 8268 } 8269 8270 if (cpu_isar_feature(aa64_hcx, cpu)) { 8271 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8272 } 8273 8274 #ifdef TARGET_AARCH64 8275 if (cpu_isar_feature(aa64_sme, cpu)) { 8276 define_arm_cp_regs(cpu, sme_reginfo); 8277 } 8278 if (cpu_isar_feature(aa64_pauth, cpu)) { 8279 define_arm_cp_regs(cpu, pauth_reginfo); 8280 } 8281 if (cpu_isar_feature(aa64_rndr, cpu)) { 8282 define_arm_cp_regs(cpu, rndr_reginfo); 8283 } 8284 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8285 define_arm_cp_regs(cpu, tlbirange_reginfo); 8286 } 8287 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8288 define_arm_cp_regs(cpu, tlbios_reginfo); 8289 } 8290 #ifndef CONFIG_USER_ONLY 8291 /* Data Cache clean instructions up to PoP */ 8292 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8293 define_one_arm_cp_reg(cpu, dcpop_reg); 8294 8295 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8296 define_one_arm_cp_reg(cpu, dcpodp_reg); 8297 } 8298 } 8299 #endif /*CONFIG_USER_ONLY*/ 8300 8301 /* 8302 * If full MTE is enabled, add all of the system registers. 8303 * If only "instructions available at EL0" are enabled, 8304 * then define only a RAZ/WI version of PSTATE.TCO. 8305 */ 8306 if (cpu_isar_feature(aa64_mte, cpu)) { 8307 define_arm_cp_regs(cpu, mte_reginfo); 8308 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8309 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8310 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8311 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8312 } 8313 8314 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8315 define_arm_cp_regs(cpu, scxtnum_reginfo); 8316 } 8317 #endif 8318 8319 if (cpu_isar_feature(any_predinv, cpu)) { 8320 define_arm_cp_regs(cpu, predinv_reginfo); 8321 } 8322 8323 if (cpu_isar_feature(any_ccidx, cpu)) { 8324 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8325 } 8326 8327 #ifndef CONFIG_USER_ONLY 8328 /* 8329 * Register redirections and aliases must be done last, 8330 * after the registers from the other extensions have been defined. 8331 */ 8332 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8333 define_arm_vh_e2h_redirects_aliases(cpu); 8334 } 8335 #endif 8336 } 8337 8338 /* Sort alphabetically by type name, except for "any". */ 8339 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8340 { 8341 ObjectClass *class_a = (ObjectClass *)a; 8342 ObjectClass *class_b = (ObjectClass *)b; 8343 const char *name_a, *name_b; 8344 8345 name_a = object_class_get_name(class_a); 8346 name_b = object_class_get_name(class_b); 8347 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8348 return 1; 8349 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8350 return -1; 8351 } else { 8352 return strcmp(name_a, name_b); 8353 } 8354 } 8355 8356 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8357 { 8358 ObjectClass *oc = data; 8359 CPUClass *cc = CPU_CLASS(oc); 8360 const char *typename; 8361 char *name; 8362 8363 typename = object_class_get_name(oc); 8364 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8365 if (cc->deprecation_note) { 8366 qemu_printf(" %s (deprecated)\n", name); 8367 } else { 8368 qemu_printf(" %s\n", name); 8369 } 8370 g_free(name); 8371 } 8372 8373 void arm_cpu_list(void) 8374 { 8375 GSList *list; 8376 8377 list = object_class_get_list(TYPE_ARM_CPU, false); 8378 list = g_slist_sort(list, arm_cpu_list_compare); 8379 qemu_printf("Available CPUs:\n"); 8380 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8381 g_slist_free(list); 8382 } 8383 8384 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8385 { 8386 ObjectClass *oc = data; 8387 CpuDefinitionInfoList **cpu_list = user_data; 8388 CpuDefinitionInfo *info; 8389 const char *typename; 8390 8391 typename = object_class_get_name(oc); 8392 info = g_malloc0(sizeof(*info)); 8393 info->name = g_strndup(typename, 8394 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8395 info->q_typename = g_strdup(typename); 8396 8397 QAPI_LIST_PREPEND(*cpu_list, info); 8398 } 8399 8400 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8401 { 8402 CpuDefinitionInfoList *cpu_list = NULL; 8403 GSList *list; 8404 8405 list = object_class_get_list(TYPE_ARM_CPU, false); 8406 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8407 g_slist_free(list); 8408 8409 return cpu_list; 8410 } 8411 8412 /* 8413 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8414 * add a single reginfo struct to the hash table. 8415 */ 8416 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8417 void *opaque, CPState state, 8418 CPSecureState secstate, 8419 int crm, int opc1, int opc2, 8420 const char *name) 8421 { 8422 CPUARMState *env = &cpu->env; 8423 uint32_t key; 8424 ARMCPRegInfo *r2; 8425 bool is64 = r->type & ARM_CP_64BIT; 8426 bool ns = secstate & ARM_CP_SECSTATE_NS; 8427 int cp = r->cp; 8428 size_t name_len; 8429 bool make_const; 8430 8431 switch (state) { 8432 case ARM_CP_STATE_AA32: 8433 /* We assume it is a cp15 register if the .cp field is left unset. */ 8434 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8435 cp = 15; 8436 } 8437 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8438 break; 8439 case ARM_CP_STATE_AA64: 8440 /* 8441 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8442 * cp == 0 as equivalent to the value for "standard guest-visible 8443 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8444 * in their AArch64 view (the .cp value may be non-zero for the 8445 * benefit of the AArch32 view). 8446 */ 8447 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8448 cp = CP_REG_ARM64_SYSREG_CP; 8449 } 8450 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8451 break; 8452 default: 8453 g_assert_not_reached(); 8454 } 8455 8456 /* Overriding of an existing definition must be explicitly requested. */ 8457 if (!(r->type & ARM_CP_OVERRIDE)) { 8458 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8459 if (oldreg) { 8460 assert(oldreg->type & ARM_CP_OVERRIDE); 8461 } 8462 } 8463 8464 /* 8465 * Eliminate registers that are not present because the EL is missing. 8466 * Doing this here makes it easier to put all registers for a given 8467 * feature into the same ARMCPRegInfo array and define them all at once. 8468 */ 8469 make_const = false; 8470 if (arm_feature(env, ARM_FEATURE_EL3)) { 8471 /* 8472 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8473 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8474 */ 8475 int min_el = ctz32(r->access) / 2; 8476 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8477 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8478 return; 8479 } 8480 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8481 } 8482 } else { 8483 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8484 ? PL2_RW : PL1_RW); 8485 if ((r->access & max_el) == 0) { 8486 return; 8487 } 8488 } 8489 8490 /* Combine cpreg and name into one allocation. */ 8491 name_len = strlen(name) + 1; 8492 r2 = g_malloc(sizeof(*r2) + name_len); 8493 *r2 = *r; 8494 r2->name = memcpy(r2 + 1, name, name_len); 8495 8496 /* 8497 * Update fields to match the instantiation, overwiting wildcards 8498 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8499 */ 8500 r2->cp = cp; 8501 r2->crm = crm; 8502 r2->opc1 = opc1; 8503 r2->opc2 = opc2; 8504 r2->state = state; 8505 r2->secure = secstate; 8506 if (opaque) { 8507 r2->opaque = opaque; 8508 } 8509 8510 if (make_const) { 8511 /* This should not have been a very special register to begin. */ 8512 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8513 assert(old_special == 0 || old_special == ARM_CP_NOP); 8514 /* 8515 * Set the special function to CONST, retaining the other flags. 8516 * This is important for e.g. ARM_CP_SVE so that we still 8517 * take the SVE trap if CPTR_EL3.EZ == 0. 8518 */ 8519 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8520 /* 8521 * Usually, these registers become RES0, but there are a few 8522 * special cases like VPIDR_EL2 which have a constant non-zero 8523 * value with writes ignored. 8524 */ 8525 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8526 r2->resetvalue = 0; 8527 } 8528 /* 8529 * ARM_CP_CONST has precedence, so removing the callbacks and 8530 * offsets are not strictly necessary, but it is potentially 8531 * less confusing to debug later. 8532 */ 8533 r2->readfn = NULL; 8534 r2->writefn = NULL; 8535 r2->raw_readfn = NULL; 8536 r2->raw_writefn = NULL; 8537 r2->resetfn = NULL; 8538 r2->fieldoffset = 0; 8539 r2->bank_fieldoffsets[0] = 0; 8540 r2->bank_fieldoffsets[1] = 0; 8541 } else { 8542 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8543 8544 if (isbanked) { 8545 /* 8546 * Register is banked (using both entries in array). 8547 * Overwriting fieldoffset as the array is only used to define 8548 * banked registers but later only fieldoffset is used. 8549 */ 8550 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8551 } 8552 if (state == ARM_CP_STATE_AA32) { 8553 if (isbanked) { 8554 /* 8555 * If the register is banked then we don't need to migrate or 8556 * reset the 32-bit instance in certain cases: 8557 * 8558 * 1) If the register has both 32-bit and 64-bit instances 8559 * then we can count on the 64-bit instance taking care 8560 * of the non-secure bank. 8561 * 2) If ARMv8 is enabled then we can count on a 64-bit 8562 * version taking care of the secure bank. This requires 8563 * that separate 32 and 64-bit definitions are provided. 8564 */ 8565 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8566 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8567 r2->type |= ARM_CP_ALIAS; 8568 } 8569 } else if ((secstate != r->secure) && !ns) { 8570 /* 8571 * The register is not banked so we only want to allow 8572 * migration of the non-secure instance. 8573 */ 8574 r2->type |= ARM_CP_ALIAS; 8575 } 8576 8577 if (HOST_BIG_ENDIAN && 8578 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8579 r2->fieldoffset += sizeof(uint32_t); 8580 } 8581 } 8582 } 8583 8584 /* 8585 * By convention, for wildcarded registers only the first 8586 * entry is used for migration; the others are marked as 8587 * ALIAS so we don't try to transfer the register 8588 * multiple times. Special registers (ie NOP/WFI) are 8589 * never migratable and not even raw-accessible. 8590 */ 8591 if (r2->type & ARM_CP_SPECIAL_MASK) { 8592 r2->type |= ARM_CP_NO_RAW; 8593 } 8594 if (((r->crm == CP_ANY) && crm != 0) || 8595 ((r->opc1 == CP_ANY) && opc1 != 0) || 8596 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8597 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8598 } 8599 8600 /* 8601 * Check that raw accesses are either forbidden or handled. Note that 8602 * we can't assert this earlier because the setup of fieldoffset for 8603 * banked registers has to be done first. 8604 */ 8605 if (!(r2->type & ARM_CP_NO_RAW)) { 8606 assert(!raw_accessors_invalid(r2)); 8607 } 8608 8609 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8610 } 8611 8612 8613 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8614 const ARMCPRegInfo *r, void *opaque) 8615 { 8616 /* Define implementations of coprocessor registers. 8617 * We store these in a hashtable because typically 8618 * there are less than 150 registers in a space which 8619 * is 16*16*16*8*8 = 262144 in size. 8620 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8621 * If a register is defined twice then the second definition is 8622 * used, so this can be used to define some generic registers and 8623 * then override them with implementation specific variations. 8624 * At least one of the original and the second definition should 8625 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8626 * against accidental use. 8627 * 8628 * The state field defines whether the register is to be 8629 * visible in the AArch32 or AArch64 execution state. If the 8630 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8631 * reginfo structure for the AArch32 view, which sees the lower 8632 * 32 bits of the 64 bit register. 8633 * 8634 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8635 * be wildcarded. AArch64 registers are always considered to be 64 8636 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8637 * the register, if any. 8638 */ 8639 int crm, opc1, opc2; 8640 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8641 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8642 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8643 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8644 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8645 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8646 CPState state; 8647 8648 /* 64 bit registers have only CRm and Opc1 fields */ 8649 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8650 /* op0 only exists in the AArch64 encodings */ 8651 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8652 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8653 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8654 /* 8655 * This API is only for Arm's system coprocessors (14 and 15) or 8656 * (M-profile or v7A-and-earlier only) for implementation defined 8657 * coprocessors in the range 0..7. Our decode assumes this, since 8658 * 8..13 can be used for other insns including VFP and Neon. See 8659 * valid_cp() in translate.c. Assert here that we haven't tried 8660 * to use an invalid coprocessor number. 8661 */ 8662 switch (r->state) { 8663 case ARM_CP_STATE_BOTH: 8664 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8665 if (r->cp == 0) { 8666 break; 8667 } 8668 /* fall through */ 8669 case ARM_CP_STATE_AA32: 8670 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8671 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8672 assert(r->cp >= 14 && r->cp <= 15); 8673 } else { 8674 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8675 } 8676 break; 8677 case ARM_CP_STATE_AA64: 8678 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8679 break; 8680 default: 8681 g_assert_not_reached(); 8682 } 8683 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8684 * encodes a minimum access level for the register. We roll this 8685 * runtime check into our general permission check code, so check 8686 * here that the reginfo's specified permissions are strict enough 8687 * to encompass the generic architectural permission check. 8688 */ 8689 if (r->state != ARM_CP_STATE_AA32) { 8690 CPAccessRights mask; 8691 switch (r->opc1) { 8692 case 0: 8693 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8694 mask = PL0U_R | PL1_RW; 8695 break; 8696 case 1: case 2: 8697 /* min_EL EL1 */ 8698 mask = PL1_RW; 8699 break; 8700 case 3: 8701 /* min_EL EL0 */ 8702 mask = PL0_RW; 8703 break; 8704 case 4: 8705 case 5: 8706 /* min_EL EL2 */ 8707 mask = PL2_RW; 8708 break; 8709 case 6: 8710 /* min_EL EL3 */ 8711 mask = PL3_RW; 8712 break; 8713 case 7: 8714 /* min_EL EL1, secure mode only (we don't check the latter) */ 8715 mask = PL1_RW; 8716 break; 8717 default: 8718 /* broken reginfo with out-of-range opc1 */ 8719 g_assert_not_reached(); 8720 } 8721 /* assert our permissions are not too lax (stricter is fine) */ 8722 assert((r->access & ~mask) == 0); 8723 } 8724 8725 /* Check that the register definition has enough info to handle 8726 * reads and writes if they are permitted. 8727 */ 8728 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8729 if (r->access & PL3_R) { 8730 assert((r->fieldoffset || 8731 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8732 r->readfn); 8733 } 8734 if (r->access & PL3_W) { 8735 assert((r->fieldoffset || 8736 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8737 r->writefn); 8738 } 8739 } 8740 8741 for (crm = crmmin; crm <= crmmax; crm++) { 8742 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8743 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8744 for (state = ARM_CP_STATE_AA32; 8745 state <= ARM_CP_STATE_AA64; state++) { 8746 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8747 continue; 8748 } 8749 if (state == ARM_CP_STATE_AA32) { 8750 /* Under AArch32 CP registers can be common 8751 * (same for secure and non-secure world) or banked. 8752 */ 8753 char *name; 8754 8755 switch (r->secure) { 8756 case ARM_CP_SECSTATE_S: 8757 case ARM_CP_SECSTATE_NS: 8758 add_cpreg_to_hashtable(cpu, r, opaque, state, 8759 r->secure, crm, opc1, opc2, 8760 r->name); 8761 break; 8762 case ARM_CP_SECSTATE_BOTH: 8763 name = g_strdup_printf("%s_S", r->name); 8764 add_cpreg_to_hashtable(cpu, r, opaque, state, 8765 ARM_CP_SECSTATE_S, 8766 crm, opc1, opc2, name); 8767 g_free(name); 8768 add_cpreg_to_hashtable(cpu, r, opaque, state, 8769 ARM_CP_SECSTATE_NS, 8770 crm, opc1, opc2, r->name); 8771 break; 8772 default: 8773 g_assert_not_reached(); 8774 } 8775 } else { 8776 /* AArch64 registers get mapped to non-secure instance 8777 * of AArch32 */ 8778 add_cpreg_to_hashtable(cpu, r, opaque, state, 8779 ARM_CP_SECSTATE_NS, 8780 crm, opc1, opc2, r->name); 8781 } 8782 } 8783 } 8784 } 8785 } 8786 } 8787 8788 /* Define a whole list of registers */ 8789 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8790 void *opaque, size_t len) 8791 { 8792 size_t i; 8793 for (i = 0; i < len; ++i) { 8794 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8795 } 8796 } 8797 8798 /* 8799 * Modify ARMCPRegInfo for access from userspace. 8800 * 8801 * This is a data driven modification directed by 8802 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8803 * user-space cannot alter any values and dynamic values pertaining to 8804 * execution state are hidden from user space view anyway. 8805 */ 8806 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8807 const ARMCPRegUserSpaceInfo *mods, 8808 size_t mods_len) 8809 { 8810 for (size_t mi = 0; mi < mods_len; ++mi) { 8811 const ARMCPRegUserSpaceInfo *m = mods + mi; 8812 GPatternSpec *pat = NULL; 8813 8814 if (m->is_glob) { 8815 pat = g_pattern_spec_new(m->name); 8816 } 8817 for (size_t ri = 0; ri < regs_len; ++ri) { 8818 ARMCPRegInfo *r = regs + ri; 8819 8820 if (pat && g_pattern_match_string(pat, r->name)) { 8821 r->type = ARM_CP_CONST; 8822 r->access = PL0U_R; 8823 r->resetvalue = 0; 8824 /* continue */ 8825 } else if (strcmp(r->name, m->name) == 0) { 8826 r->type = ARM_CP_CONST; 8827 r->access = PL0U_R; 8828 r->resetvalue &= m->exported_bits; 8829 r->resetvalue |= m->fixed_bits; 8830 break; 8831 } 8832 } 8833 if (pat) { 8834 g_pattern_spec_free(pat); 8835 } 8836 } 8837 } 8838 8839 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8840 { 8841 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8842 } 8843 8844 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8845 uint64_t value) 8846 { 8847 /* Helper coprocessor write function for write-ignore registers */ 8848 } 8849 8850 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8851 { 8852 /* Helper coprocessor write function for read-as-zero registers */ 8853 return 0; 8854 } 8855 8856 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8857 { 8858 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8859 } 8860 8861 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8862 { 8863 /* Return true if it is not valid for us to switch to 8864 * this CPU mode (ie all the UNPREDICTABLE cases in 8865 * the ARM ARM CPSRWriteByInstr pseudocode). 8866 */ 8867 8868 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8869 if (write_type == CPSRWriteByInstr && 8870 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8871 mode == ARM_CPU_MODE_HYP)) { 8872 return 1; 8873 } 8874 8875 switch (mode) { 8876 case ARM_CPU_MODE_USR: 8877 return 0; 8878 case ARM_CPU_MODE_SYS: 8879 case ARM_CPU_MODE_SVC: 8880 case ARM_CPU_MODE_ABT: 8881 case ARM_CPU_MODE_UND: 8882 case ARM_CPU_MODE_IRQ: 8883 case ARM_CPU_MODE_FIQ: 8884 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8885 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8886 */ 8887 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8888 * and CPS are treated as illegal mode changes. 8889 */ 8890 if (write_type == CPSRWriteByInstr && 8891 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8892 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8893 return 1; 8894 } 8895 return 0; 8896 case ARM_CPU_MODE_HYP: 8897 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8898 case ARM_CPU_MODE_MON: 8899 return arm_current_el(env) < 3; 8900 default: 8901 return 1; 8902 } 8903 } 8904 8905 uint32_t cpsr_read(CPUARMState *env) 8906 { 8907 int ZF; 8908 ZF = (env->ZF == 0); 8909 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8910 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8911 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8912 | ((env->condexec_bits & 0xfc) << 8) 8913 | (env->GE << 16) | (env->daif & CPSR_AIF); 8914 } 8915 8916 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8917 CPSRWriteType write_type) 8918 { 8919 uint32_t changed_daif; 8920 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 8921 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 8922 8923 if (mask & CPSR_NZCV) { 8924 env->ZF = (~val) & CPSR_Z; 8925 env->NF = val; 8926 env->CF = (val >> 29) & 1; 8927 env->VF = (val << 3) & 0x80000000; 8928 } 8929 if (mask & CPSR_Q) 8930 env->QF = ((val & CPSR_Q) != 0); 8931 if (mask & CPSR_T) 8932 env->thumb = ((val & CPSR_T) != 0); 8933 if (mask & CPSR_IT_0_1) { 8934 env->condexec_bits &= ~3; 8935 env->condexec_bits |= (val >> 25) & 3; 8936 } 8937 if (mask & CPSR_IT_2_7) { 8938 env->condexec_bits &= 3; 8939 env->condexec_bits |= (val >> 8) & 0xfc; 8940 } 8941 if (mask & CPSR_GE) { 8942 env->GE = (val >> 16) & 0xf; 8943 } 8944 8945 /* In a V7 implementation that includes the security extensions but does 8946 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8947 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8948 * bits respectively. 8949 * 8950 * In a V8 implementation, it is permitted for privileged software to 8951 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8952 */ 8953 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8954 arm_feature(env, ARM_FEATURE_EL3) && 8955 !arm_feature(env, ARM_FEATURE_EL2) && 8956 !arm_is_secure(env)) { 8957 8958 changed_daif = (env->daif ^ val) & mask; 8959 8960 if (changed_daif & CPSR_A) { 8961 /* Check to see if we are allowed to change the masking of async 8962 * abort exceptions from a non-secure state. 8963 */ 8964 if (!(env->cp15.scr_el3 & SCR_AW)) { 8965 qemu_log_mask(LOG_GUEST_ERROR, 8966 "Ignoring attempt to switch CPSR_A flag from " 8967 "non-secure world with SCR.AW bit clear\n"); 8968 mask &= ~CPSR_A; 8969 } 8970 } 8971 8972 if (changed_daif & CPSR_F) { 8973 /* Check to see if we are allowed to change the masking of FIQ 8974 * exceptions from a non-secure state. 8975 */ 8976 if (!(env->cp15.scr_el3 & SCR_FW)) { 8977 qemu_log_mask(LOG_GUEST_ERROR, 8978 "Ignoring attempt to switch CPSR_F flag from " 8979 "non-secure world with SCR.FW bit clear\n"); 8980 mask &= ~CPSR_F; 8981 } 8982 8983 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8984 * If this bit is set software is not allowed to mask 8985 * FIQs, but is allowed to set CPSR_F to 0. 8986 */ 8987 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8988 (val & CPSR_F)) { 8989 qemu_log_mask(LOG_GUEST_ERROR, 8990 "Ignoring attempt to enable CPSR_F flag " 8991 "(non-maskable FIQ [NMFI] support enabled)\n"); 8992 mask &= ~CPSR_F; 8993 } 8994 } 8995 } 8996 8997 env->daif &= ~(CPSR_AIF & mask); 8998 env->daif |= val & CPSR_AIF & mask; 8999 9000 if (write_type != CPSRWriteRaw && 9001 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9002 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9003 /* Note that we can only get here in USR mode if this is a 9004 * gdb stub write; for this case we follow the architectural 9005 * behaviour for guest writes in USR mode of ignoring an attempt 9006 * to switch mode. (Those are caught by translate.c for writes 9007 * triggered by guest instructions.) 9008 */ 9009 mask &= ~CPSR_M; 9010 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9011 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9012 * v7, and has defined behaviour in v8: 9013 * + leave CPSR.M untouched 9014 * + allow changes to the other CPSR fields 9015 * + set PSTATE.IL 9016 * For user changes via the GDB stub, we don't set PSTATE.IL, 9017 * as this would be unnecessarily harsh for a user error. 9018 */ 9019 mask &= ~CPSR_M; 9020 if (write_type != CPSRWriteByGDBStub && 9021 arm_feature(env, ARM_FEATURE_V8)) { 9022 mask |= CPSR_IL; 9023 val |= CPSR_IL; 9024 } 9025 qemu_log_mask(LOG_GUEST_ERROR, 9026 "Illegal AArch32 mode switch attempt from %s to %s\n", 9027 aarch32_mode_name(env->uncached_cpsr), 9028 aarch32_mode_name(val)); 9029 } else { 9030 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9031 write_type == CPSRWriteExceptionReturn ? 9032 "Exception return from AArch32" : 9033 "AArch32 mode switch from", 9034 aarch32_mode_name(env->uncached_cpsr), 9035 aarch32_mode_name(val), env->regs[15]); 9036 switch_mode(env, val & CPSR_M); 9037 } 9038 } 9039 mask &= ~CACHED_CPSR_BITS; 9040 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9041 if (rebuild_hflags) { 9042 arm_rebuild_hflags(env); 9043 } 9044 } 9045 9046 /* Sign/zero extend */ 9047 uint32_t HELPER(sxtb16)(uint32_t x) 9048 { 9049 uint32_t res; 9050 res = (uint16_t)(int8_t)x; 9051 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9052 return res; 9053 } 9054 9055 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9056 { 9057 /* 9058 * Take a division-by-zero exception if necessary; otherwise return 9059 * to get the usual non-trapping division behaviour (result of 0) 9060 */ 9061 if (arm_feature(env, ARM_FEATURE_M) 9062 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9063 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9064 } 9065 } 9066 9067 uint32_t HELPER(uxtb16)(uint32_t x) 9068 { 9069 uint32_t res; 9070 res = (uint16_t)(uint8_t)x; 9071 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9072 return res; 9073 } 9074 9075 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9076 { 9077 if (den == 0) { 9078 handle_possible_div0_trap(env, GETPC()); 9079 return 0; 9080 } 9081 if (num == INT_MIN && den == -1) { 9082 return INT_MIN; 9083 } 9084 return num / den; 9085 } 9086 9087 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9088 { 9089 if (den == 0) { 9090 handle_possible_div0_trap(env, GETPC()); 9091 return 0; 9092 } 9093 return num / den; 9094 } 9095 9096 uint32_t HELPER(rbit)(uint32_t x) 9097 { 9098 return revbit32(x); 9099 } 9100 9101 #ifdef CONFIG_USER_ONLY 9102 9103 static void switch_mode(CPUARMState *env, int mode) 9104 { 9105 ARMCPU *cpu = env_archcpu(env); 9106 9107 if (mode != ARM_CPU_MODE_USR) { 9108 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9109 } 9110 } 9111 9112 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9113 uint32_t cur_el, bool secure) 9114 { 9115 return 1; 9116 } 9117 9118 void aarch64_sync_64_to_32(CPUARMState *env) 9119 { 9120 g_assert_not_reached(); 9121 } 9122 9123 #else 9124 9125 static void switch_mode(CPUARMState *env, int mode) 9126 { 9127 int old_mode; 9128 int i; 9129 9130 old_mode = env->uncached_cpsr & CPSR_M; 9131 if (mode == old_mode) 9132 return; 9133 9134 if (old_mode == ARM_CPU_MODE_FIQ) { 9135 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9136 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9137 } else if (mode == ARM_CPU_MODE_FIQ) { 9138 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9139 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9140 } 9141 9142 i = bank_number(old_mode); 9143 env->banked_r13[i] = env->regs[13]; 9144 env->banked_spsr[i] = env->spsr; 9145 9146 i = bank_number(mode); 9147 env->regs[13] = env->banked_r13[i]; 9148 env->spsr = env->banked_spsr[i]; 9149 9150 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9151 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9152 } 9153 9154 /* Physical Interrupt Target EL Lookup Table 9155 * 9156 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9157 * 9158 * The below multi-dimensional table is used for looking up the target 9159 * exception level given numerous condition criteria. Specifically, the 9160 * target EL is based on SCR and HCR routing controls as well as the 9161 * currently executing EL and secure state. 9162 * 9163 * Dimensions: 9164 * target_el_table[2][2][2][2][2][4] 9165 * | | | | | +--- Current EL 9166 * | | | | +------ Non-secure(0)/Secure(1) 9167 * | | | +--------- HCR mask override 9168 * | | +------------ SCR exec state control 9169 * | +--------------- SCR mask override 9170 * +------------------ 32-bit(0)/64-bit(1) EL3 9171 * 9172 * The table values are as such: 9173 * 0-3 = EL0-EL3 9174 * -1 = Cannot occur 9175 * 9176 * The ARM ARM target EL table includes entries indicating that an "exception 9177 * is not taken". The two cases where this is applicable are: 9178 * 1) An exception is taken from EL3 but the SCR does not have the exception 9179 * routed to EL3. 9180 * 2) An exception is taken from EL2 but the HCR does not have the exception 9181 * routed to EL2. 9182 * In these two cases, the below table contain a target of EL1. This value is 9183 * returned as it is expected that the consumer of the table data will check 9184 * for "target EL >= current EL" to ensure the exception is not taken. 9185 * 9186 * SCR HCR 9187 * 64 EA AMO From 9188 * BIT IRQ IMO Non-secure Secure 9189 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9190 */ 9191 static const int8_t target_el_table[2][2][2][2][2][4] = { 9192 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9193 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9194 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9195 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9196 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9197 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9198 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9199 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9200 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9201 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9202 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9203 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9204 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9205 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9206 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9207 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9208 }; 9209 9210 /* 9211 * Determine the target EL for physical exceptions 9212 */ 9213 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9214 uint32_t cur_el, bool secure) 9215 { 9216 CPUARMState *env = cs->env_ptr; 9217 bool rw; 9218 bool scr; 9219 bool hcr; 9220 int target_el; 9221 /* Is the highest EL AArch64? */ 9222 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9223 uint64_t hcr_el2; 9224 9225 if (arm_feature(env, ARM_FEATURE_EL3)) { 9226 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9227 } else { 9228 /* Either EL2 is the highest EL (and so the EL2 register width 9229 * is given by is64); or there is no EL2 or EL3, in which case 9230 * the value of 'rw' does not affect the table lookup anyway. 9231 */ 9232 rw = is64; 9233 } 9234 9235 hcr_el2 = arm_hcr_el2_eff(env); 9236 switch (excp_idx) { 9237 case EXCP_IRQ: 9238 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9239 hcr = hcr_el2 & HCR_IMO; 9240 break; 9241 case EXCP_FIQ: 9242 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9243 hcr = hcr_el2 & HCR_FMO; 9244 break; 9245 default: 9246 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9247 hcr = hcr_el2 & HCR_AMO; 9248 break; 9249 }; 9250 9251 /* 9252 * For these purposes, TGE and AMO/IMO/FMO both force the 9253 * interrupt to EL2. Fold TGE into the bit extracted above. 9254 */ 9255 hcr |= (hcr_el2 & HCR_TGE) != 0; 9256 9257 /* Perform a table-lookup for the target EL given the current state */ 9258 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9259 9260 assert(target_el > 0); 9261 9262 return target_el; 9263 } 9264 9265 void arm_log_exception(CPUState *cs) 9266 { 9267 int idx = cs->exception_index; 9268 9269 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9270 const char *exc = NULL; 9271 static const char * const excnames[] = { 9272 [EXCP_UDEF] = "Undefined Instruction", 9273 [EXCP_SWI] = "SVC", 9274 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9275 [EXCP_DATA_ABORT] = "Data Abort", 9276 [EXCP_IRQ] = "IRQ", 9277 [EXCP_FIQ] = "FIQ", 9278 [EXCP_BKPT] = "Breakpoint", 9279 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9280 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9281 [EXCP_HVC] = "Hypervisor Call", 9282 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9283 [EXCP_SMC] = "Secure Monitor Call", 9284 [EXCP_VIRQ] = "Virtual IRQ", 9285 [EXCP_VFIQ] = "Virtual FIQ", 9286 [EXCP_SEMIHOST] = "Semihosting call", 9287 [EXCP_NOCP] = "v7M NOCP UsageFault", 9288 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9289 [EXCP_STKOF] = "v8M STKOF UsageFault", 9290 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9291 [EXCP_LSERR] = "v8M LSERR UsageFault", 9292 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9293 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9294 [EXCP_VSERR] = "Virtual SERR", 9295 }; 9296 9297 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9298 exc = excnames[idx]; 9299 } 9300 if (!exc) { 9301 exc = "unknown"; 9302 } 9303 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9304 idx, exc, cs->cpu_index); 9305 } 9306 } 9307 9308 /* 9309 * Function used to synchronize QEMU's AArch64 register set with AArch32 9310 * register set. This is necessary when switching between AArch32 and AArch64 9311 * execution state. 9312 */ 9313 void aarch64_sync_32_to_64(CPUARMState *env) 9314 { 9315 int i; 9316 uint32_t mode = env->uncached_cpsr & CPSR_M; 9317 9318 /* We can blanket copy R[0:7] to X[0:7] */ 9319 for (i = 0; i < 8; i++) { 9320 env->xregs[i] = env->regs[i]; 9321 } 9322 9323 /* 9324 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9325 * Otherwise, they come from the banked user regs. 9326 */ 9327 if (mode == ARM_CPU_MODE_FIQ) { 9328 for (i = 8; i < 13; i++) { 9329 env->xregs[i] = env->usr_regs[i - 8]; 9330 } 9331 } else { 9332 for (i = 8; i < 13; i++) { 9333 env->xregs[i] = env->regs[i]; 9334 } 9335 } 9336 9337 /* 9338 * Registers x13-x23 are the various mode SP and FP registers. Registers 9339 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9340 * from the mode banked register. 9341 */ 9342 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9343 env->xregs[13] = env->regs[13]; 9344 env->xregs[14] = env->regs[14]; 9345 } else { 9346 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9347 /* HYP is an exception in that it is copied from r14 */ 9348 if (mode == ARM_CPU_MODE_HYP) { 9349 env->xregs[14] = env->regs[14]; 9350 } else { 9351 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9352 } 9353 } 9354 9355 if (mode == ARM_CPU_MODE_HYP) { 9356 env->xregs[15] = env->regs[13]; 9357 } else { 9358 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9359 } 9360 9361 if (mode == ARM_CPU_MODE_IRQ) { 9362 env->xregs[16] = env->regs[14]; 9363 env->xregs[17] = env->regs[13]; 9364 } else { 9365 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9366 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9367 } 9368 9369 if (mode == ARM_CPU_MODE_SVC) { 9370 env->xregs[18] = env->regs[14]; 9371 env->xregs[19] = env->regs[13]; 9372 } else { 9373 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9374 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9375 } 9376 9377 if (mode == ARM_CPU_MODE_ABT) { 9378 env->xregs[20] = env->regs[14]; 9379 env->xregs[21] = env->regs[13]; 9380 } else { 9381 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9382 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9383 } 9384 9385 if (mode == ARM_CPU_MODE_UND) { 9386 env->xregs[22] = env->regs[14]; 9387 env->xregs[23] = env->regs[13]; 9388 } else { 9389 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9390 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9391 } 9392 9393 /* 9394 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9395 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9396 * FIQ bank for r8-r14. 9397 */ 9398 if (mode == ARM_CPU_MODE_FIQ) { 9399 for (i = 24; i < 31; i++) { 9400 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9401 } 9402 } else { 9403 for (i = 24; i < 29; i++) { 9404 env->xregs[i] = env->fiq_regs[i - 24]; 9405 } 9406 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9407 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9408 } 9409 9410 env->pc = env->regs[15]; 9411 } 9412 9413 /* 9414 * Function used to synchronize QEMU's AArch32 register set with AArch64 9415 * register set. This is necessary when switching between AArch32 and AArch64 9416 * execution state. 9417 */ 9418 void aarch64_sync_64_to_32(CPUARMState *env) 9419 { 9420 int i; 9421 uint32_t mode = env->uncached_cpsr & CPSR_M; 9422 9423 /* We can blanket copy X[0:7] to R[0:7] */ 9424 for (i = 0; i < 8; i++) { 9425 env->regs[i] = env->xregs[i]; 9426 } 9427 9428 /* 9429 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9430 * Otherwise, we copy x8-x12 into the banked user regs. 9431 */ 9432 if (mode == ARM_CPU_MODE_FIQ) { 9433 for (i = 8; i < 13; i++) { 9434 env->usr_regs[i - 8] = env->xregs[i]; 9435 } 9436 } else { 9437 for (i = 8; i < 13; i++) { 9438 env->regs[i] = env->xregs[i]; 9439 } 9440 } 9441 9442 /* 9443 * Registers r13 & r14 depend on the current mode. 9444 * If we are in a given mode, we copy the corresponding x registers to r13 9445 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9446 * for the mode. 9447 */ 9448 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9449 env->regs[13] = env->xregs[13]; 9450 env->regs[14] = env->xregs[14]; 9451 } else { 9452 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9453 9454 /* 9455 * HYP is an exception in that it does not have its own banked r14 but 9456 * shares the USR r14 9457 */ 9458 if (mode == ARM_CPU_MODE_HYP) { 9459 env->regs[14] = env->xregs[14]; 9460 } else { 9461 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9462 } 9463 } 9464 9465 if (mode == ARM_CPU_MODE_HYP) { 9466 env->regs[13] = env->xregs[15]; 9467 } else { 9468 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9469 } 9470 9471 if (mode == ARM_CPU_MODE_IRQ) { 9472 env->regs[14] = env->xregs[16]; 9473 env->regs[13] = env->xregs[17]; 9474 } else { 9475 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9476 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9477 } 9478 9479 if (mode == ARM_CPU_MODE_SVC) { 9480 env->regs[14] = env->xregs[18]; 9481 env->regs[13] = env->xregs[19]; 9482 } else { 9483 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9484 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9485 } 9486 9487 if (mode == ARM_CPU_MODE_ABT) { 9488 env->regs[14] = env->xregs[20]; 9489 env->regs[13] = env->xregs[21]; 9490 } else { 9491 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9492 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9493 } 9494 9495 if (mode == ARM_CPU_MODE_UND) { 9496 env->regs[14] = env->xregs[22]; 9497 env->regs[13] = env->xregs[23]; 9498 } else { 9499 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9500 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9501 } 9502 9503 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9504 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9505 * FIQ bank for r8-r14. 9506 */ 9507 if (mode == ARM_CPU_MODE_FIQ) { 9508 for (i = 24; i < 31; i++) { 9509 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9510 } 9511 } else { 9512 for (i = 24; i < 29; i++) { 9513 env->fiq_regs[i - 24] = env->xregs[i]; 9514 } 9515 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9516 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9517 } 9518 9519 env->regs[15] = env->pc; 9520 } 9521 9522 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9523 uint32_t mask, uint32_t offset, 9524 uint32_t newpc) 9525 { 9526 int new_el; 9527 9528 /* Change the CPU state so as to actually take the exception. */ 9529 switch_mode(env, new_mode); 9530 9531 /* 9532 * For exceptions taken to AArch32 we must clear the SS bit in both 9533 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9534 */ 9535 env->pstate &= ~PSTATE_SS; 9536 env->spsr = cpsr_read(env); 9537 /* Clear IT bits. */ 9538 env->condexec_bits = 0; 9539 /* Switch to the new mode, and to the correct instruction set. */ 9540 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9541 9542 /* This must be after mode switching. */ 9543 new_el = arm_current_el(env); 9544 9545 /* Set new mode endianness */ 9546 env->uncached_cpsr &= ~CPSR_E; 9547 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9548 env->uncached_cpsr |= CPSR_E; 9549 } 9550 /* J and IL must always be cleared for exception entry */ 9551 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9552 env->daif |= mask; 9553 9554 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9555 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9556 env->uncached_cpsr |= CPSR_SSBS; 9557 } else { 9558 env->uncached_cpsr &= ~CPSR_SSBS; 9559 } 9560 } 9561 9562 if (new_mode == ARM_CPU_MODE_HYP) { 9563 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9564 env->elr_el[2] = env->regs[15]; 9565 } else { 9566 /* CPSR.PAN is normally preserved preserved unless... */ 9567 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9568 switch (new_el) { 9569 case 3: 9570 if (!arm_is_secure_below_el3(env)) { 9571 /* ... the target is EL3, from non-secure state. */ 9572 env->uncached_cpsr &= ~CPSR_PAN; 9573 break; 9574 } 9575 /* ... the target is EL3, from secure state ... */ 9576 /* fall through */ 9577 case 1: 9578 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9579 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9580 env->uncached_cpsr |= CPSR_PAN; 9581 } 9582 break; 9583 } 9584 } 9585 /* 9586 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9587 * and we should just guard the thumb mode on V4 9588 */ 9589 if (arm_feature(env, ARM_FEATURE_V4T)) { 9590 env->thumb = 9591 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9592 } 9593 env->regs[14] = env->regs[15] + offset; 9594 } 9595 env->regs[15] = newpc; 9596 arm_rebuild_hflags(env); 9597 } 9598 9599 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9600 { 9601 /* 9602 * Handle exception entry to Hyp mode; this is sufficiently 9603 * different to entry to other AArch32 modes that we handle it 9604 * separately here. 9605 * 9606 * The vector table entry used is always the 0x14 Hyp mode entry point, 9607 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9608 * The offset applied to the preferred return address is always zero 9609 * (see DDI0487C.a section G1.12.3). 9610 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9611 */ 9612 uint32_t addr, mask; 9613 ARMCPU *cpu = ARM_CPU(cs); 9614 CPUARMState *env = &cpu->env; 9615 9616 switch (cs->exception_index) { 9617 case EXCP_UDEF: 9618 addr = 0x04; 9619 break; 9620 case EXCP_SWI: 9621 addr = 0x08; 9622 break; 9623 case EXCP_BKPT: 9624 /* Fall through to prefetch abort. */ 9625 case EXCP_PREFETCH_ABORT: 9626 env->cp15.ifar_s = env->exception.vaddress; 9627 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9628 (uint32_t)env->exception.vaddress); 9629 addr = 0x0c; 9630 break; 9631 case EXCP_DATA_ABORT: 9632 env->cp15.dfar_s = env->exception.vaddress; 9633 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9634 (uint32_t)env->exception.vaddress); 9635 addr = 0x10; 9636 break; 9637 case EXCP_IRQ: 9638 addr = 0x18; 9639 break; 9640 case EXCP_FIQ: 9641 addr = 0x1c; 9642 break; 9643 case EXCP_HVC: 9644 addr = 0x08; 9645 break; 9646 case EXCP_HYP_TRAP: 9647 addr = 0x14; 9648 break; 9649 default: 9650 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9651 } 9652 9653 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9654 if (!arm_feature(env, ARM_FEATURE_V8)) { 9655 /* 9656 * QEMU syndrome values are v8-style. v7 has the IL bit 9657 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9658 * If this is a v7 CPU, squash the IL bit in those cases. 9659 */ 9660 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9661 (cs->exception_index == EXCP_DATA_ABORT && 9662 !(env->exception.syndrome & ARM_EL_ISV)) || 9663 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9664 env->exception.syndrome &= ~ARM_EL_IL; 9665 } 9666 } 9667 env->cp15.esr_el[2] = env->exception.syndrome; 9668 } 9669 9670 if (arm_current_el(env) != 2 && addr < 0x14) { 9671 addr = 0x14; 9672 } 9673 9674 mask = 0; 9675 if (!(env->cp15.scr_el3 & SCR_EA)) { 9676 mask |= CPSR_A; 9677 } 9678 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9679 mask |= CPSR_I; 9680 } 9681 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9682 mask |= CPSR_F; 9683 } 9684 9685 addr += env->cp15.hvbar; 9686 9687 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9688 } 9689 9690 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9691 { 9692 ARMCPU *cpu = ARM_CPU(cs); 9693 CPUARMState *env = &cpu->env; 9694 uint32_t addr; 9695 uint32_t mask; 9696 int new_mode; 9697 uint32_t offset; 9698 uint32_t moe; 9699 9700 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9701 switch (syn_get_ec(env->exception.syndrome)) { 9702 case EC_BREAKPOINT: 9703 case EC_BREAKPOINT_SAME_EL: 9704 moe = 1; 9705 break; 9706 case EC_WATCHPOINT: 9707 case EC_WATCHPOINT_SAME_EL: 9708 moe = 10; 9709 break; 9710 case EC_AA32_BKPT: 9711 moe = 3; 9712 break; 9713 case EC_VECTORCATCH: 9714 moe = 5; 9715 break; 9716 default: 9717 moe = 0; 9718 break; 9719 } 9720 9721 if (moe) { 9722 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9723 } 9724 9725 if (env->exception.target_el == 2) { 9726 arm_cpu_do_interrupt_aarch32_hyp(cs); 9727 return; 9728 } 9729 9730 switch (cs->exception_index) { 9731 case EXCP_UDEF: 9732 new_mode = ARM_CPU_MODE_UND; 9733 addr = 0x04; 9734 mask = CPSR_I; 9735 if (env->thumb) 9736 offset = 2; 9737 else 9738 offset = 4; 9739 break; 9740 case EXCP_SWI: 9741 new_mode = ARM_CPU_MODE_SVC; 9742 addr = 0x08; 9743 mask = CPSR_I; 9744 /* The PC already points to the next instruction. */ 9745 offset = 0; 9746 break; 9747 case EXCP_BKPT: 9748 /* Fall through to prefetch abort. */ 9749 case EXCP_PREFETCH_ABORT: 9750 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9751 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9752 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9753 env->exception.fsr, (uint32_t)env->exception.vaddress); 9754 new_mode = ARM_CPU_MODE_ABT; 9755 addr = 0x0c; 9756 mask = CPSR_A | CPSR_I; 9757 offset = 4; 9758 break; 9759 case EXCP_DATA_ABORT: 9760 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9761 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9762 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9763 env->exception.fsr, 9764 (uint32_t)env->exception.vaddress); 9765 new_mode = ARM_CPU_MODE_ABT; 9766 addr = 0x10; 9767 mask = CPSR_A | CPSR_I; 9768 offset = 8; 9769 break; 9770 case EXCP_IRQ: 9771 new_mode = ARM_CPU_MODE_IRQ; 9772 addr = 0x18; 9773 /* Disable IRQ and imprecise data aborts. */ 9774 mask = CPSR_A | CPSR_I; 9775 offset = 4; 9776 if (env->cp15.scr_el3 & SCR_IRQ) { 9777 /* IRQ routed to monitor mode */ 9778 new_mode = ARM_CPU_MODE_MON; 9779 mask |= CPSR_F; 9780 } 9781 break; 9782 case EXCP_FIQ: 9783 new_mode = ARM_CPU_MODE_FIQ; 9784 addr = 0x1c; 9785 /* Disable FIQ, IRQ and imprecise data aborts. */ 9786 mask = CPSR_A | CPSR_I | CPSR_F; 9787 if (env->cp15.scr_el3 & SCR_FIQ) { 9788 /* FIQ routed to monitor mode */ 9789 new_mode = ARM_CPU_MODE_MON; 9790 } 9791 offset = 4; 9792 break; 9793 case EXCP_VIRQ: 9794 new_mode = ARM_CPU_MODE_IRQ; 9795 addr = 0x18; 9796 /* Disable IRQ and imprecise data aborts. */ 9797 mask = CPSR_A | CPSR_I; 9798 offset = 4; 9799 break; 9800 case EXCP_VFIQ: 9801 new_mode = ARM_CPU_MODE_FIQ; 9802 addr = 0x1c; 9803 /* Disable FIQ, IRQ and imprecise data aborts. */ 9804 mask = CPSR_A | CPSR_I | CPSR_F; 9805 offset = 4; 9806 break; 9807 case EXCP_VSERR: 9808 { 9809 /* 9810 * Note that this is reported as a data abort, but the DFAR 9811 * has an UNKNOWN value. Construct the SError syndrome from 9812 * AET and ExT fields. 9813 */ 9814 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9815 9816 if (extended_addresses_enabled(env)) { 9817 env->exception.fsr = arm_fi_to_lfsc(&fi); 9818 } else { 9819 env->exception.fsr = arm_fi_to_sfsc(&fi); 9820 } 9821 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9822 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9823 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9824 env->exception.fsr); 9825 9826 new_mode = ARM_CPU_MODE_ABT; 9827 addr = 0x10; 9828 mask = CPSR_A | CPSR_I; 9829 offset = 8; 9830 } 9831 break; 9832 case EXCP_SMC: 9833 new_mode = ARM_CPU_MODE_MON; 9834 addr = 0x08; 9835 mask = CPSR_A | CPSR_I | CPSR_F; 9836 offset = 0; 9837 break; 9838 default: 9839 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9840 return; /* Never happens. Keep compiler happy. */ 9841 } 9842 9843 if (new_mode == ARM_CPU_MODE_MON) { 9844 addr += env->cp15.mvbar; 9845 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9846 /* High vectors. When enabled, base address cannot be remapped. */ 9847 addr += 0xffff0000; 9848 } else { 9849 /* ARM v7 architectures provide a vector base address register to remap 9850 * the interrupt vector table. 9851 * This register is only followed in non-monitor mode, and is banked. 9852 * Note: only bits 31:5 are valid. 9853 */ 9854 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9855 } 9856 9857 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9858 env->cp15.scr_el3 &= ~SCR_NS; 9859 } 9860 9861 take_aarch32_exception(env, new_mode, mask, offset, addr); 9862 } 9863 9864 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9865 { 9866 /* 9867 * Return the register number of the AArch64 view of the AArch32 9868 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9869 * be that of the AArch32 mode the exception came from. 9870 */ 9871 int mode = env->uncached_cpsr & CPSR_M; 9872 9873 switch (aarch32_reg) { 9874 case 0 ... 7: 9875 return aarch32_reg; 9876 case 8 ... 12: 9877 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9878 case 13: 9879 switch (mode) { 9880 case ARM_CPU_MODE_USR: 9881 case ARM_CPU_MODE_SYS: 9882 return 13; 9883 case ARM_CPU_MODE_HYP: 9884 return 15; 9885 case ARM_CPU_MODE_IRQ: 9886 return 17; 9887 case ARM_CPU_MODE_SVC: 9888 return 19; 9889 case ARM_CPU_MODE_ABT: 9890 return 21; 9891 case ARM_CPU_MODE_UND: 9892 return 23; 9893 case ARM_CPU_MODE_FIQ: 9894 return 29; 9895 default: 9896 g_assert_not_reached(); 9897 } 9898 case 14: 9899 switch (mode) { 9900 case ARM_CPU_MODE_USR: 9901 case ARM_CPU_MODE_SYS: 9902 case ARM_CPU_MODE_HYP: 9903 return 14; 9904 case ARM_CPU_MODE_IRQ: 9905 return 16; 9906 case ARM_CPU_MODE_SVC: 9907 return 18; 9908 case ARM_CPU_MODE_ABT: 9909 return 20; 9910 case ARM_CPU_MODE_UND: 9911 return 22; 9912 case ARM_CPU_MODE_FIQ: 9913 return 30; 9914 default: 9915 g_assert_not_reached(); 9916 } 9917 case 15: 9918 return 31; 9919 default: 9920 g_assert_not_reached(); 9921 } 9922 } 9923 9924 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9925 { 9926 uint32_t ret = cpsr_read(env); 9927 9928 /* Move DIT to the correct location for SPSR_ELx */ 9929 if (ret & CPSR_DIT) { 9930 ret &= ~CPSR_DIT; 9931 ret |= PSTATE_DIT; 9932 } 9933 /* Merge PSTATE.SS into SPSR_ELx */ 9934 ret |= env->pstate & PSTATE_SS; 9935 9936 return ret; 9937 } 9938 9939 static bool syndrome_is_sync_extabt(uint32_t syndrome) 9940 { 9941 /* Return true if this syndrome value is a synchronous external abort */ 9942 switch (syn_get_ec(syndrome)) { 9943 case EC_INSNABORT: 9944 case EC_INSNABORT_SAME_EL: 9945 case EC_DATAABORT: 9946 case EC_DATAABORT_SAME_EL: 9947 /* Look at fault status code for all the synchronous ext abort cases */ 9948 switch (syndrome & 0x3f) { 9949 case 0x10: 9950 case 0x13: 9951 case 0x14: 9952 case 0x15: 9953 case 0x16: 9954 case 0x17: 9955 return true; 9956 default: 9957 return false; 9958 } 9959 default: 9960 return false; 9961 } 9962 } 9963 9964 /* Handle exception entry to a target EL which is using AArch64 */ 9965 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9966 { 9967 ARMCPU *cpu = ARM_CPU(cs); 9968 CPUARMState *env = &cpu->env; 9969 unsigned int new_el = env->exception.target_el; 9970 target_ulong addr = env->cp15.vbar_el[new_el]; 9971 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9972 unsigned int old_mode; 9973 unsigned int cur_el = arm_current_el(env); 9974 int rt; 9975 9976 /* 9977 * Note that new_el can never be 0. If cur_el is 0, then 9978 * el0_a64 is is_a64(), else el0_a64 is ignored. 9979 */ 9980 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9981 9982 if (cur_el < new_el) { 9983 /* Entry vector offset depends on whether the implemented EL 9984 * immediately lower than the target level is using AArch32 or AArch64 9985 */ 9986 bool is_aa64; 9987 uint64_t hcr; 9988 9989 switch (new_el) { 9990 case 3: 9991 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9992 break; 9993 case 2: 9994 hcr = arm_hcr_el2_eff(env); 9995 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9996 is_aa64 = (hcr & HCR_RW) != 0; 9997 break; 9998 } 9999 /* fall through */ 10000 case 1: 10001 is_aa64 = is_a64(env); 10002 break; 10003 default: 10004 g_assert_not_reached(); 10005 } 10006 10007 if (is_aa64) { 10008 addr += 0x400; 10009 } else { 10010 addr += 0x600; 10011 } 10012 } else if (pstate_read(env) & PSTATE_SP) { 10013 addr += 0x200; 10014 } 10015 10016 switch (cs->exception_index) { 10017 case EXCP_PREFETCH_ABORT: 10018 case EXCP_DATA_ABORT: 10019 /* 10020 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10021 * to be taken to the SError vector entrypoint. 10022 */ 10023 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10024 syndrome_is_sync_extabt(env->exception.syndrome)) { 10025 addr += 0x180; 10026 } 10027 env->cp15.far_el[new_el] = env->exception.vaddress; 10028 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10029 env->cp15.far_el[new_el]); 10030 /* fall through */ 10031 case EXCP_BKPT: 10032 case EXCP_UDEF: 10033 case EXCP_SWI: 10034 case EXCP_HVC: 10035 case EXCP_HYP_TRAP: 10036 case EXCP_SMC: 10037 switch (syn_get_ec(env->exception.syndrome)) { 10038 case EC_ADVSIMDFPACCESSTRAP: 10039 /* 10040 * QEMU internal FP/SIMD syndromes from AArch32 include the 10041 * TA and coproc fields which are only exposed if the exception 10042 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10043 * AArch64 format syndrome. 10044 */ 10045 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10046 break; 10047 case EC_CP14RTTRAP: 10048 case EC_CP15RTTRAP: 10049 case EC_CP14DTTRAP: 10050 /* 10051 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10052 * the raw register field from the insn; when taking this to 10053 * AArch64 we must convert it to the AArch64 view of the register 10054 * number. Notice that we read a 4-bit AArch32 register number and 10055 * write back a 5-bit AArch64 one. 10056 */ 10057 rt = extract32(env->exception.syndrome, 5, 4); 10058 rt = aarch64_regnum(env, rt); 10059 env->exception.syndrome = deposit32(env->exception.syndrome, 10060 5, 5, rt); 10061 break; 10062 case EC_CP15RRTTRAP: 10063 case EC_CP14RRTTRAP: 10064 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10065 rt = extract32(env->exception.syndrome, 5, 4); 10066 rt = aarch64_regnum(env, rt); 10067 env->exception.syndrome = deposit32(env->exception.syndrome, 10068 5, 5, rt); 10069 rt = extract32(env->exception.syndrome, 10, 4); 10070 rt = aarch64_regnum(env, rt); 10071 env->exception.syndrome = deposit32(env->exception.syndrome, 10072 10, 5, rt); 10073 break; 10074 } 10075 env->cp15.esr_el[new_el] = env->exception.syndrome; 10076 break; 10077 case EXCP_IRQ: 10078 case EXCP_VIRQ: 10079 addr += 0x80; 10080 break; 10081 case EXCP_FIQ: 10082 case EXCP_VFIQ: 10083 addr += 0x100; 10084 break; 10085 case EXCP_VSERR: 10086 addr += 0x180; 10087 /* Construct the SError syndrome from IDS and ISS fields. */ 10088 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10089 env->cp15.esr_el[new_el] = env->exception.syndrome; 10090 break; 10091 default: 10092 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10093 } 10094 10095 if (is_a64(env)) { 10096 old_mode = pstate_read(env); 10097 aarch64_save_sp(env, arm_current_el(env)); 10098 env->elr_el[new_el] = env->pc; 10099 } else { 10100 old_mode = cpsr_read_for_spsr_elx(env); 10101 env->elr_el[new_el] = env->regs[15]; 10102 10103 aarch64_sync_32_to_64(env); 10104 10105 env->condexec_bits = 0; 10106 } 10107 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10108 10109 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10110 env->elr_el[new_el]); 10111 10112 if (cpu_isar_feature(aa64_pan, cpu)) { 10113 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10114 new_mode |= old_mode & PSTATE_PAN; 10115 switch (new_el) { 10116 case 2: 10117 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10118 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10119 != (HCR_E2H | HCR_TGE)) { 10120 break; 10121 } 10122 /* fall through */ 10123 case 1: 10124 /* ... the target is EL1 ... */ 10125 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10126 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10127 new_mode |= PSTATE_PAN; 10128 } 10129 break; 10130 } 10131 } 10132 if (cpu_isar_feature(aa64_mte, cpu)) { 10133 new_mode |= PSTATE_TCO; 10134 } 10135 10136 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10137 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10138 new_mode |= PSTATE_SSBS; 10139 } else { 10140 new_mode &= ~PSTATE_SSBS; 10141 } 10142 } 10143 10144 pstate_write(env, PSTATE_DAIF | new_mode); 10145 env->aarch64 = true; 10146 aarch64_restore_sp(env, new_el); 10147 helper_rebuild_hflags_a64(env, new_el); 10148 10149 env->pc = addr; 10150 10151 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10152 new_el, env->pc, pstate_read(env)); 10153 } 10154 10155 /* 10156 * Do semihosting call and set the appropriate return value. All the 10157 * permission and validity checks have been done at translate time. 10158 * 10159 * We only see semihosting exceptions in TCG only as they are not 10160 * trapped to the hypervisor in KVM. 10161 */ 10162 #ifdef CONFIG_TCG 10163 static void handle_semihosting(CPUState *cs) 10164 { 10165 ARMCPU *cpu = ARM_CPU(cs); 10166 CPUARMState *env = &cpu->env; 10167 10168 if (is_a64(env)) { 10169 qemu_log_mask(CPU_LOG_INT, 10170 "...handling as semihosting call 0x%" PRIx64 "\n", 10171 env->xregs[0]); 10172 do_common_semihosting(cs); 10173 env->pc += 4; 10174 } else { 10175 qemu_log_mask(CPU_LOG_INT, 10176 "...handling as semihosting call 0x%x\n", 10177 env->regs[0]); 10178 do_common_semihosting(cs); 10179 env->regs[15] += env->thumb ? 2 : 4; 10180 } 10181 } 10182 #endif 10183 10184 /* Handle a CPU exception for A and R profile CPUs. 10185 * Do any appropriate logging, handle PSCI calls, and then hand off 10186 * to the AArch64-entry or AArch32-entry function depending on the 10187 * target exception level's register width. 10188 * 10189 * Note: this is used for both TCG (as the do_interrupt tcg op), 10190 * and KVM to re-inject guest debug exceptions, and to 10191 * inject a Synchronous-External-Abort. 10192 */ 10193 void arm_cpu_do_interrupt(CPUState *cs) 10194 { 10195 ARMCPU *cpu = ARM_CPU(cs); 10196 CPUARMState *env = &cpu->env; 10197 unsigned int new_el = env->exception.target_el; 10198 10199 assert(!arm_feature(env, ARM_FEATURE_M)); 10200 10201 arm_log_exception(cs); 10202 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10203 new_el); 10204 if (qemu_loglevel_mask(CPU_LOG_INT) 10205 && !excp_is_internal(cs->exception_index)) { 10206 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10207 syn_get_ec(env->exception.syndrome), 10208 env->exception.syndrome); 10209 } 10210 10211 if (arm_is_psci_call(cpu, cs->exception_index)) { 10212 arm_handle_psci_call(cpu); 10213 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10214 return; 10215 } 10216 10217 /* 10218 * Semihosting semantics depend on the register width of the code 10219 * that caused the exception, not the target exception level, so 10220 * must be handled here. 10221 */ 10222 #ifdef CONFIG_TCG 10223 if (cs->exception_index == EXCP_SEMIHOST) { 10224 handle_semihosting(cs); 10225 return; 10226 } 10227 #endif 10228 10229 /* Hooks may change global state so BQL should be held, also the 10230 * BQL needs to be held for any modification of 10231 * cs->interrupt_request. 10232 */ 10233 g_assert(qemu_mutex_iothread_locked()); 10234 10235 arm_call_pre_el_change_hook(cpu); 10236 10237 assert(!excp_is_internal(cs->exception_index)); 10238 if (arm_el_is_aa64(env, new_el)) { 10239 arm_cpu_do_interrupt_aarch64(cs); 10240 } else { 10241 arm_cpu_do_interrupt_aarch32(cs); 10242 } 10243 10244 arm_call_el_change_hook(cpu); 10245 10246 if (!kvm_enabled()) { 10247 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10248 } 10249 } 10250 #endif /* !CONFIG_USER_ONLY */ 10251 10252 uint64_t arm_sctlr(CPUARMState *env, int el) 10253 { 10254 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10255 if (el == 0) { 10256 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10257 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10258 ? 2 : 1; 10259 } 10260 return env->cp15.sctlr_el[el]; 10261 } 10262 10263 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10264 { 10265 if (regime_has_2_ranges(mmu_idx)) { 10266 return extract64(tcr, 37, 2); 10267 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10268 return 0; /* VTCR_EL2 */ 10269 } else { 10270 /* Replicate the single TBI bit so we always have 2 bits. */ 10271 return extract32(tcr, 20, 1) * 3; 10272 } 10273 } 10274 10275 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10276 { 10277 if (regime_has_2_ranges(mmu_idx)) { 10278 return extract64(tcr, 51, 2); 10279 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10280 return 0; /* VTCR_EL2 */ 10281 } else { 10282 /* Replicate the single TBID bit so we always have 2 bits. */ 10283 return extract32(tcr, 29, 1) * 3; 10284 } 10285 } 10286 10287 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10288 { 10289 if (regime_has_2_ranges(mmu_idx)) { 10290 return extract64(tcr, 57, 2); 10291 } else { 10292 /* Replicate the single TCMA bit so we always have 2 bits. */ 10293 return extract32(tcr, 30, 1) * 3; 10294 } 10295 } 10296 10297 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10298 ARMMMUIdx mmu_idx, bool data) 10299 { 10300 uint64_t tcr = regime_tcr(env, mmu_idx); 10301 bool epd, hpd, using16k, using64k, tsz_oob, ds; 10302 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 10303 ARMCPU *cpu = env_archcpu(env); 10304 10305 if (!regime_has_2_ranges(mmu_idx)) { 10306 select = 0; 10307 tsz = extract32(tcr, 0, 6); 10308 using64k = extract32(tcr, 14, 1); 10309 using16k = extract32(tcr, 15, 1); 10310 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10311 /* VTCR_EL2 */ 10312 hpd = false; 10313 } else { 10314 hpd = extract32(tcr, 24, 1); 10315 } 10316 epd = false; 10317 sh = extract32(tcr, 12, 2); 10318 ps = extract32(tcr, 16, 3); 10319 ds = extract64(tcr, 32, 1); 10320 } else { 10321 /* 10322 * Bit 55 is always between the two regions, and is canonical for 10323 * determining if address tagging is enabled. 10324 */ 10325 select = extract64(va, 55, 1); 10326 if (!select) { 10327 tsz = extract32(tcr, 0, 6); 10328 epd = extract32(tcr, 7, 1); 10329 sh = extract32(tcr, 12, 2); 10330 using64k = extract32(tcr, 14, 1); 10331 using16k = extract32(tcr, 15, 1); 10332 hpd = extract64(tcr, 41, 1); 10333 } else { 10334 int tg = extract32(tcr, 30, 2); 10335 using16k = tg == 1; 10336 using64k = tg == 3; 10337 tsz = extract32(tcr, 16, 6); 10338 epd = extract32(tcr, 23, 1); 10339 sh = extract32(tcr, 28, 2); 10340 hpd = extract64(tcr, 42, 1); 10341 } 10342 ps = extract64(tcr, 32, 3); 10343 ds = extract64(tcr, 59, 1); 10344 } 10345 10346 if (cpu_isar_feature(aa64_st, cpu)) { 10347 max_tsz = 48 - using64k; 10348 } else { 10349 max_tsz = 39; 10350 } 10351 10352 /* 10353 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 10354 * adjust the effective value of DS, as documented. 10355 */ 10356 min_tsz = 16; 10357 if (using64k) { 10358 if (cpu_isar_feature(aa64_lva, cpu)) { 10359 min_tsz = 12; 10360 } 10361 ds = false; 10362 } else if (ds) { 10363 switch (mmu_idx) { 10364 case ARMMMUIdx_Stage2: 10365 case ARMMMUIdx_Stage2_S: 10366 if (using16k) { 10367 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 10368 } else { 10369 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 10370 } 10371 break; 10372 default: 10373 if (using16k) { 10374 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 10375 } else { 10376 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 10377 } 10378 break; 10379 } 10380 if (ds) { 10381 min_tsz = 12; 10382 } 10383 } 10384 10385 if (tsz > max_tsz) { 10386 tsz = max_tsz; 10387 tsz_oob = true; 10388 } else if (tsz < min_tsz) { 10389 tsz = min_tsz; 10390 tsz_oob = true; 10391 } else { 10392 tsz_oob = false; 10393 } 10394 10395 /* Present TBI as a composite with TBID. */ 10396 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10397 if (!data) { 10398 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10399 } 10400 tbi = (tbi >> select) & 1; 10401 10402 return (ARMVAParameters) { 10403 .tsz = tsz, 10404 .ps = ps, 10405 .sh = sh, 10406 .select = select, 10407 .tbi = tbi, 10408 .epd = epd, 10409 .hpd = hpd, 10410 .using16k = using16k, 10411 .using64k = using64k, 10412 .tsz_oob = tsz_oob, 10413 .ds = ds, 10414 }; 10415 } 10416 10417 /* Note that signed overflow is undefined in C. The following routines are 10418 careful to use unsigned types where modulo arithmetic is required. 10419 Failure to do so _will_ break on newer gcc. */ 10420 10421 /* Signed saturating arithmetic. */ 10422 10423 /* Perform 16-bit signed saturating addition. */ 10424 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10425 { 10426 uint16_t res; 10427 10428 res = a + b; 10429 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10430 if (a & 0x8000) 10431 res = 0x8000; 10432 else 10433 res = 0x7fff; 10434 } 10435 return res; 10436 } 10437 10438 /* Perform 8-bit signed saturating addition. */ 10439 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10440 { 10441 uint8_t res; 10442 10443 res = a + b; 10444 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10445 if (a & 0x80) 10446 res = 0x80; 10447 else 10448 res = 0x7f; 10449 } 10450 return res; 10451 } 10452 10453 /* Perform 16-bit signed saturating subtraction. */ 10454 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10455 { 10456 uint16_t res; 10457 10458 res = a - b; 10459 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10460 if (a & 0x8000) 10461 res = 0x8000; 10462 else 10463 res = 0x7fff; 10464 } 10465 return res; 10466 } 10467 10468 /* Perform 8-bit signed saturating subtraction. */ 10469 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10470 { 10471 uint8_t res; 10472 10473 res = a - b; 10474 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10475 if (a & 0x80) 10476 res = 0x80; 10477 else 10478 res = 0x7f; 10479 } 10480 return res; 10481 } 10482 10483 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10484 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10485 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10486 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10487 #define PFX q 10488 10489 #include "op_addsub.h" 10490 10491 /* Unsigned saturating arithmetic. */ 10492 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10493 { 10494 uint16_t res; 10495 res = a + b; 10496 if (res < a) 10497 res = 0xffff; 10498 return res; 10499 } 10500 10501 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10502 { 10503 if (a > b) 10504 return a - b; 10505 else 10506 return 0; 10507 } 10508 10509 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10510 { 10511 uint8_t res; 10512 res = a + b; 10513 if (res < a) 10514 res = 0xff; 10515 return res; 10516 } 10517 10518 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10519 { 10520 if (a > b) 10521 return a - b; 10522 else 10523 return 0; 10524 } 10525 10526 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10527 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10528 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10529 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10530 #define PFX uq 10531 10532 #include "op_addsub.h" 10533 10534 /* Signed modulo arithmetic. */ 10535 #define SARITH16(a, b, n, op) do { \ 10536 int32_t sum; \ 10537 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10538 RESULT(sum, n, 16); \ 10539 if (sum >= 0) \ 10540 ge |= 3 << (n * 2); \ 10541 } while(0) 10542 10543 #define SARITH8(a, b, n, op) do { \ 10544 int32_t sum; \ 10545 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10546 RESULT(sum, n, 8); \ 10547 if (sum >= 0) \ 10548 ge |= 1 << n; \ 10549 } while(0) 10550 10551 10552 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10553 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10554 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10555 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10556 #define PFX s 10557 #define ARITH_GE 10558 10559 #include "op_addsub.h" 10560 10561 /* Unsigned modulo arithmetic. */ 10562 #define ADD16(a, b, n) do { \ 10563 uint32_t sum; \ 10564 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10565 RESULT(sum, n, 16); \ 10566 if ((sum >> 16) == 1) \ 10567 ge |= 3 << (n * 2); \ 10568 } while(0) 10569 10570 #define ADD8(a, b, n) do { \ 10571 uint32_t sum; \ 10572 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10573 RESULT(sum, n, 8); \ 10574 if ((sum >> 8) == 1) \ 10575 ge |= 1 << n; \ 10576 } while(0) 10577 10578 #define SUB16(a, b, n) do { \ 10579 uint32_t sum; \ 10580 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10581 RESULT(sum, n, 16); \ 10582 if ((sum >> 16) == 0) \ 10583 ge |= 3 << (n * 2); \ 10584 } while(0) 10585 10586 #define SUB8(a, b, n) do { \ 10587 uint32_t sum; \ 10588 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10589 RESULT(sum, n, 8); \ 10590 if ((sum >> 8) == 0) \ 10591 ge |= 1 << n; \ 10592 } while(0) 10593 10594 #define PFX u 10595 #define ARITH_GE 10596 10597 #include "op_addsub.h" 10598 10599 /* Halved signed arithmetic. */ 10600 #define ADD16(a, b, n) \ 10601 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10602 #define SUB16(a, b, n) \ 10603 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10604 #define ADD8(a, b, n) \ 10605 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10606 #define SUB8(a, b, n) \ 10607 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10608 #define PFX sh 10609 10610 #include "op_addsub.h" 10611 10612 /* Halved unsigned arithmetic. */ 10613 #define ADD16(a, b, n) \ 10614 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10615 #define SUB16(a, b, n) \ 10616 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10617 #define ADD8(a, b, n) \ 10618 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10619 #define SUB8(a, b, n) \ 10620 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10621 #define PFX uh 10622 10623 #include "op_addsub.h" 10624 10625 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10626 { 10627 if (a > b) 10628 return a - b; 10629 else 10630 return b - a; 10631 } 10632 10633 /* Unsigned sum of absolute byte differences. */ 10634 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10635 { 10636 uint32_t sum; 10637 sum = do_usad(a, b); 10638 sum += do_usad(a >> 8, b >> 8); 10639 sum += do_usad(a >> 16, b >> 16); 10640 sum += do_usad(a >> 24, b >> 24); 10641 return sum; 10642 } 10643 10644 /* For ARMv6 SEL instruction. */ 10645 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10646 { 10647 uint32_t mask; 10648 10649 mask = 0; 10650 if (flags & 1) 10651 mask |= 0xff; 10652 if (flags & 2) 10653 mask |= 0xff00; 10654 if (flags & 4) 10655 mask |= 0xff0000; 10656 if (flags & 8) 10657 mask |= 0xff000000; 10658 return (a & mask) | (b & ~mask); 10659 } 10660 10661 /* CRC helpers. 10662 * The upper bytes of val (above the number specified by 'bytes') must have 10663 * been zeroed out by the caller. 10664 */ 10665 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10666 { 10667 uint8_t buf[4]; 10668 10669 stl_le_p(buf, val); 10670 10671 /* zlib crc32 converts the accumulator and output to one's complement. */ 10672 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10673 } 10674 10675 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10676 { 10677 uint8_t buf[4]; 10678 10679 stl_le_p(buf, val); 10680 10681 /* Linux crc32c converts the output to one's complement. */ 10682 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10683 } 10684 10685 /* Return the exception level to which FP-disabled exceptions should 10686 * be taken, or 0 if FP is enabled. 10687 */ 10688 int fp_exception_el(CPUARMState *env, int cur_el) 10689 { 10690 #ifndef CONFIG_USER_ONLY 10691 uint64_t hcr_el2; 10692 10693 /* CPACR and the CPTR registers don't exist before v6, so FP is 10694 * always accessible 10695 */ 10696 if (!arm_feature(env, ARM_FEATURE_V6)) { 10697 return 0; 10698 } 10699 10700 if (arm_feature(env, ARM_FEATURE_M)) { 10701 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10702 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10703 return 1; 10704 } 10705 10706 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10707 if (!extract32(env->v7m.nsacr, 10, 1)) { 10708 /* FP insns cause a NOCP UsageFault taken to Secure */ 10709 return 3; 10710 } 10711 } 10712 10713 return 0; 10714 } 10715 10716 hcr_el2 = arm_hcr_el2_eff(env); 10717 10718 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10719 * 0, 2 : trap EL0 and EL1/PL1 accesses 10720 * 1 : trap only EL0 accesses 10721 * 3 : trap no accesses 10722 * This register is ignored if E2H+TGE are both set. 10723 */ 10724 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10725 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 10726 10727 switch (fpen) { 10728 case 1: 10729 if (cur_el != 0) { 10730 break; 10731 } 10732 /* fall through */ 10733 case 0: 10734 case 2: 10735 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 10736 if (!arm_el_is_aa64(env, 3) 10737 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 10738 return 3; 10739 } 10740 if (cur_el <= 1) { 10741 return 1; 10742 } 10743 break; 10744 } 10745 } 10746 10747 /* 10748 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 10749 * to control non-secure access to the FPU. It doesn't have any 10750 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 10751 */ 10752 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 10753 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 10754 if (!extract32(env->cp15.nsacr, 10, 1)) { 10755 /* FP insns act as UNDEF */ 10756 return cur_el == 2 ? 2 : 1; 10757 } 10758 } 10759 10760 /* 10761 * CPTR_EL2 is present in v7VE or v8, and changes format 10762 * with HCR_EL2.E2H (regardless of TGE). 10763 */ 10764 if (cur_el <= 2) { 10765 if (hcr_el2 & HCR_E2H) { 10766 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 10767 case 1: 10768 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 10769 break; 10770 } 10771 /* fall through */ 10772 case 0: 10773 case 2: 10774 return 2; 10775 } 10776 } else if (arm_is_el2_enabled(env)) { 10777 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 10778 return 2; 10779 } 10780 } 10781 } 10782 10783 /* CPTR_EL3 : present in v8 */ 10784 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 10785 /* Trap all FP ops to EL3 */ 10786 return 3; 10787 } 10788 #endif 10789 return 0; 10790 } 10791 10792 /* Return the exception level we're running at if this is our mmu_idx */ 10793 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 10794 { 10795 if (mmu_idx & ARM_MMU_IDX_M) { 10796 return mmu_idx & ARM_MMU_IDX_M_PRIV; 10797 } 10798 10799 switch (mmu_idx) { 10800 case ARMMMUIdx_E10_0: 10801 case ARMMMUIdx_E20_0: 10802 case ARMMMUIdx_SE10_0: 10803 case ARMMMUIdx_SE20_0: 10804 return 0; 10805 case ARMMMUIdx_E10_1: 10806 case ARMMMUIdx_E10_1_PAN: 10807 case ARMMMUIdx_SE10_1: 10808 case ARMMMUIdx_SE10_1_PAN: 10809 return 1; 10810 case ARMMMUIdx_E2: 10811 case ARMMMUIdx_E20_2: 10812 case ARMMMUIdx_E20_2_PAN: 10813 case ARMMMUIdx_SE2: 10814 case ARMMMUIdx_SE20_2: 10815 case ARMMMUIdx_SE20_2_PAN: 10816 return 2; 10817 case ARMMMUIdx_SE3: 10818 return 3; 10819 default: 10820 g_assert_not_reached(); 10821 } 10822 } 10823 10824 #ifndef CONFIG_TCG 10825 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 10826 { 10827 g_assert_not_reached(); 10828 } 10829 #endif 10830 10831 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 10832 { 10833 ARMMMUIdx idx; 10834 uint64_t hcr; 10835 10836 if (arm_feature(env, ARM_FEATURE_M)) { 10837 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 10838 } 10839 10840 /* See ARM pseudo-function ELIsInHost. */ 10841 switch (el) { 10842 case 0: 10843 hcr = arm_hcr_el2_eff(env); 10844 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 10845 idx = ARMMMUIdx_E20_0; 10846 } else { 10847 idx = ARMMMUIdx_E10_0; 10848 } 10849 break; 10850 case 1: 10851 if (env->pstate & PSTATE_PAN) { 10852 idx = ARMMMUIdx_E10_1_PAN; 10853 } else { 10854 idx = ARMMMUIdx_E10_1; 10855 } 10856 break; 10857 case 2: 10858 /* Note that TGE does not apply at EL2. */ 10859 if (arm_hcr_el2_eff(env) & HCR_E2H) { 10860 if (env->pstate & PSTATE_PAN) { 10861 idx = ARMMMUIdx_E20_2_PAN; 10862 } else { 10863 idx = ARMMMUIdx_E20_2; 10864 } 10865 } else { 10866 idx = ARMMMUIdx_E2; 10867 } 10868 break; 10869 case 3: 10870 return ARMMMUIdx_SE3; 10871 default: 10872 g_assert_not_reached(); 10873 } 10874 10875 if (arm_is_secure_below_el3(env)) { 10876 idx &= ~ARM_MMU_IDX_A_NS; 10877 } 10878 10879 return idx; 10880 } 10881 10882 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 10883 { 10884 return arm_mmu_idx_el(env, arm_current_el(env)); 10885 } 10886 10887 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 10888 ARMMMUIdx mmu_idx, 10889 CPUARMTBFlags flags) 10890 { 10891 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 10892 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 10893 10894 if (arm_singlestep_active(env)) { 10895 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 10896 } 10897 return flags; 10898 } 10899 10900 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 10901 ARMMMUIdx mmu_idx, 10902 CPUARMTBFlags flags) 10903 { 10904 bool sctlr_b = arm_sctlr_b(env); 10905 10906 if (sctlr_b) { 10907 DP_TBFLAG_A32(flags, SCTLR__B, 1); 10908 } 10909 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 10910 DP_TBFLAG_ANY(flags, BE_DATA, 1); 10911 } 10912 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 10913 10914 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 10915 } 10916 10917 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 10918 ARMMMUIdx mmu_idx) 10919 { 10920 CPUARMTBFlags flags = {}; 10921 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 10922 10923 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 10924 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 10925 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 10926 } 10927 10928 if (arm_v7m_is_handler_mode(env)) { 10929 DP_TBFLAG_M32(flags, HANDLER, 1); 10930 } 10931 10932 /* 10933 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 10934 * is suppressing them because the requested execution priority 10935 * is less than 0. 10936 */ 10937 if (arm_feature(env, ARM_FEATURE_V8) && 10938 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 10939 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 10940 DP_TBFLAG_M32(flags, STACKCHECK, 1); 10941 } 10942 10943 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 10944 } 10945 10946 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 10947 ARMMMUIdx mmu_idx) 10948 { 10949 CPUARMTBFlags flags = {}; 10950 int el = arm_current_el(env); 10951 10952 if (arm_sctlr(env, el) & SCTLR_A) { 10953 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 10954 } 10955 10956 if (arm_el_is_aa64(env, 1)) { 10957 DP_TBFLAG_A32(flags, VFPEN, 1); 10958 } 10959 10960 if (el < 2 && env->cp15.hstr_el2 && 10961 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10962 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 10963 } 10964 10965 if (env->uncached_cpsr & CPSR_IL) { 10966 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 10967 } 10968 10969 /* 10970 * The SME exception we are testing for is raised via 10971 * AArch64.CheckFPAdvSIMDEnabled(), as called from 10972 * AArch32.CheckAdvSIMDOrFPEnabled(). 10973 */ 10974 if (el == 0 10975 && FIELD_EX64(env->svcr, SVCR, SM) 10976 && (!arm_is_el2_enabled(env) 10977 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) 10978 && arm_el_is_aa64(env, 1) 10979 && !sme_fa64(env, el)) { 10980 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); 10981 } 10982 10983 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 10984 } 10985 10986 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 10987 ARMMMUIdx mmu_idx) 10988 { 10989 CPUARMTBFlags flags = {}; 10990 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 10991 uint64_t tcr = regime_tcr(env, mmu_idx); 10992 uint64_t sctlr; 10993 int tbii, tbid; 10994 10995 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 10996 10997 /* Get control bits for tagged addresses. */ 10998 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 10999 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 11000 11001 DP_TBFLAG_A64(flags, TBII, tbii); 11002 DP_TBFLAG_A64(flags, TBID, tbid); 11003 11004 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11005 int sve_el = sve_exception_el(env, el); 11006 11007 /* 11008 * If either FP or SVE are disabled, translator does not need len. 11009 * If SVE EL > FP EL, FP exception has precedence, and translator 11010 * does not need SVE EL. Save potential re-translations by forcing 11011 * the unneeded data to zero. 11012 */ 11013 if (fp_el != 0) { 11014 if (sve_el > fp_el) { 11015 sve_el = 0; 11016 } 11017 } else if (sve_el == 0) { 11018 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 11019 } 11020 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 11021 } 11022 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 11023 int sme_el = sme_exception_el(env, el); 11024 bool sm = FIELD_EX64(env->svcr, SVCR, SM); 11025 11026 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); 11027 if (sme_el == 0) { 11028 /* Similarly, do not compute SVL if SME is disabled. */ 11029 int svl = sve_vqm1_for_el_sm(env, el, true); 11030 DP_TBFLAG_A64(flags, SVL, svl); 11031 if (sm) { 11032 /* If SVE is disabled, we will not have set VL above. */ 11033 DP_TBFLAG_A64(flags, VL, svl); 11034 } 11035 } 11036 if (sm) { 11037 DP_TBFLAG_A64(flags, PSTATE_SM, 1); 11038 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); 11039 } 11040 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); 11041 } 11042 11043 sctlr = regime_sctlr(env, stage1); 11044 11045 if (sctlr & SCTLR_A) { 11046 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11047 } 11048 11049 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11050 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11051 } 11052 11053 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11054 /* 11055 * In order to save space in flags, we record only whether 11056 * pauth is "inactive", meaning all insns are implemented as 11057 * a nop, or "active" when some action must be performed. 11058 * The decision of which action to take is left to a helper. 11059 */ 11060 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11061 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 11062 } 11063 } 11064 11065 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11066 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11067 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11068 DP_TBFLAG_A64(flags, BT, 1); 11069 } 11070 } 11071 11072 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 11073 if (!(env->pstate & PSTATE_UAO)) { 11074 switch (mmu_idx) { 11075 case ARMMMUIdx_E10_1: 11076 case ARMMMUIdx_E10_1_PAN: 11077 case ARMMMUIdx_SE10_1: 11078 case ARMMMUIdx_SE10_1_PAN: 11079 /* TODO: ARMv8.3-NV */ 11080 DP_TBFLAG_A64(flags, UNPRIV, 1); 11081 break; 11082 case ARMMMUIdx_E20_2: 11083 case ARMMMUIdx_E20_2_PAN: 11084 case ARMMMUIdx_SE20_2: 11085 case ARMMMUIdx_SE20_2_PAN: 11086 /* 11087 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 11088 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 11089 */ 11090 if (env->cp15.hcr_el2 & HCR_TGE) { 11091 DP_TBFLAG_A64(flags, UNPRIV, 1); 11092 } 11093 break; 11094 default: 11095 break; 11096 } 11097 } 11098 11099 if (env->pstate & PSTATE_IL) { 11100 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11101 } 11102 11103 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 11104 /* 11105 * Set MTE_ACTIVE if any access may be Checked, and leave clear 11106 * if all accesses must be Unchecked: 11107 * 1) If no TBI, then there are no tags in the address to check, 11108 * 2) If Tag Check Override, then all accesses are Unchecked, 11109 * 3) If Tag Check Fail == 0, then Checked access have no effect, 11110 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 11111 */ 11112 if (allocation_tag_access_enabled(env, el, sctlr)) { 11113 DP_TBFLAG_A64(flags, ATA, 1); 11114 if (tbid 11115 && !(env->pstate & PSTATE_TCO) 11116 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 11117 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 11118 } 11119 } 11120 /* And again for unprivileged accesses, if required. */ 11121 if (EX_TBFLAG_A64(flags, UNPRIV) 11122 && tbid 11123 && !(env->pstate & PSTATE_TCO) 11124 && (sctlr & SCTLR_TCF0) 11125 && allocation_tag_access_enabled(env, 0, sctlr)) { 11126 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 11127 } 11128 /* Cache TCMA as well as TBI. */ 11129 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 11130 } 11131 11132 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11133 } 11134 11135 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 11136 { 11137 int el = arm_current_el(env); 11138 int fp_el = fp_exception_el(env, el); 11139 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11140 11141 if (is_a64(env)) { 11142 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11143 } else if (arm_feature(env, ARM_FEATURE_M)) { 11144 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11145 } else { 11146 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11147 } 11148 } 11149 11150 void arm_rebuild_hflags(CPUARMState *env) 11151 { 11152 env->hflags = rebuild_hflags_internal(env); 11153 } 11154 11155 /* 11156 * If we have triggered a EL state change we can't rely on the 11157 * translator having passed it to us, we need to recompute. 11158 */ 11159 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 11160 { 11161 int el = arm_current_el(env); 11162 int fp_el = fp_exception_el(env, el); 11163 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11164 11165 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11166 } 11167 11168 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11169 { 11170 int fp_el = fp_exception_el(env, el); 11171 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11172 11173 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11174 } 11175 11176 /* 11177 * If we have triggered a EL state change we can't rely on the 11178 * translator having passed it to us, we need to recompute. 11179 */ 11180 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 11181 { 11182 int el = arm_current_el(env); 11183 int fp_el = fp_exception_el(env, el); 11184 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11185 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11186 } 11187 11188 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11189 { 11190 int fp_el = fp_exception_el(env, el); 11191 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11192 11193 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11194 } 11195 11196 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11197 { 11198 int fp_el = fp_exception_el(env, el); 11199 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11200 11201 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11202 } 11203 11204 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 11205 { 11206 #ifdef CONFIG_DEBUG_TCG 11207 CPUARMTBFlags c = env->hflags; 11208 CPUARMTBFlags r = rebuild_hflags_internal(env); 11209 11210 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 11211 fprintf(stderr, "TCG hflags mismatch " 11212 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 11213 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 11214 c.flags, c.flags2, r.flags, r.flags2); 11215 abort(); 11216 } 11217 #endif 11218 } 11219 11220 static bool mve_no_pred(CPUARMState *env) 11221 { 11222 /* 11223 * Return true if there is definitely no predication of MVE 11224 * instructions by VPR or LTPSIZE. (Returning false even if there 11225 * isn't any predication is OK; generated code will just be 11226 * a little worse.) 11227 * If the CPU does not implement MVE then this TB flag is always 0. 11228 * 11229 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11230 * logic in gen_update_fp_context() needs to be updated to match. 11231 * 11232 * We do not include the effect of the ECI bits here -- they are 11233 * tracked in other TB flags. This simplifies the logic for 11234 * "when did we emit code that changes the MVE_NO_PRED TB flag 11235 * and thus need to end the TB?". 11236 */ 11237 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11238 return false; 11239 } 11240 if (env->v7m.vpr) { 11241 return false; 11242 } 11243 if (env->v7m.ltpsize < 4) { 11244 return false; 11245 } 11246 return true; 11247 } 11248 11249 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11250 target_ulong *cs_base, uint32_t *pflags) 11251 { 11252 CPUARMTBFlags flags; 11253 11254 assert_hflags_rebuild_correctly(env); 11255 flags = env->hflags; 11256 11257 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11258 *pc = env->pc; 11259 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11260 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11261 } 11262 } else { 11263 *pc = env->regs[15]; 11264 11265 if (arm_feature(env, ARM_FEATURE_M)) { 11266 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11267 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11268 != env->v7m.secure) { 11269 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11270 } 11271 11272 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11273 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11274 (env->v7m.secure && 11275 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11276 /* 11277 * ASPEN is set, but FPCA/SFPA indicate that there is no 11278 * active FP context; we must create a new FP context before 11279 * executing any FP insn. 11280 */ 11281 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11282 } 11283 11284 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11285 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11286 DP_TBFLAG_M32(flags, LSPACT, 1); 11287 } 11288 11289 if (mve_no_pred(env)) { 11290 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11291 } 11292 } else { 11293 /* 11294 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11295 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11296 */ 11297 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11298 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11299 } else { 11300 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11301 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11302 } 11303 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11304 DP_TBFLAG_A32(flags, VFPEN, 1); 11305 } 11306 } 11307 11308 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11309 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11310 } 11311 11312 /* 11313 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11314 * states defined in the ARM ARM for software singlestep: 11315 * SS_ACTIVE PSTATE.SS State 11316 * 0 x Inactive (the TB flag for SS is always 0) 11317 * 1 0 Active-pending 11318 * 1 1 Active-not-pending 11319 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11320 */ 11321 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11322 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11323 } 11324 11325 *pflags = flags.flags; 11326 *cs_base = flags.flags2; 11327 } 11328 11329 #ifdef TARGET_AARCH64 11330 /* 11331 * The manual says that when SVE is enabled and VQ is widened the 11332 * implementation is allowed to zero the previously inaccessible 11333 * portion of the registers. The corollary to that is that when 11334 * SVE is enabled and VQ is narrowed we are also allowed to zero 11335 * the now inaccessible portion of the registers. 11336 * 11337 * The intent of this is that no predicate bit beyond VQ is ever set. 11338 * Which means that some operations on predicate registers themselves 11339 * may operate on full uint64_t or even unrolled across the maximum 11340 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11341 * may well be cheaper than conditionals to restrict the operation 11342 * to the relevant portion of a uint16_t[16]. 11343 */ 11344 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11345 { 11346 int i, j; 11347 uint64_t pmask; 11348 11349 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11350 assert(vq <= env_archcpu(env)->sve_max_vq); 11351 11352 /* Zap the high bits of the zregs. */ 11353 for (i = 0; i < 32; i++) { 11354 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11355 } 11356 11357 /* Zap the high bits of the pregs and ffr. */ 11358 pmask = 0; 11359 if (vq & 3) { 11360 pmask = ~(-1ULL << (16 * (vq & 3))); 11361 } 11362 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11363 for (i = 0; i < 17; ++i) { 11364 env->vfp.pregs[i].p[j] &= pmask; 11365 } 11366 pmask = 0; 11367 } 11368 } 11369 11370 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11371 { 11372 int exc_el; 11373 11374 if (sm) { 11375 exc_el = sme_exception_el(env, el); 11376 } else { 11377 exc_el = sve_exception_el(env, el); 11378 } 11379 if (exc_el) { 11380 return 0; /* disabled */ 11381 } 11382 return sve_vqm1_for_el_sm(env, el, sm); 11383 } 11384 11385 /* 11386 * Notice a change in SVE vector size when changing EL. 11387 */ 11388 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11389 int new_el, bool el0_a64) 11390 { 11391 ARMCPU *cpu = env_archcpu(env); 11392 int old_len, new_len; 11393 bool old_a64, new_a64, sm; 11394 11395 /* Nothing to do if no SVE. */ 11396 if (!cpu_isar_feature(aa64_sve, cpu)) { 11397 return; 11398 } 11399 11400 /* Nothing to do if FP is disabled in either EL. */ 11401 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11402 return; 11403 } 11404 11405 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11406 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11407 11408 /* 11409 * Both AArch64.TakeException and AArch64.ExceptionReturn 11410 * invoke ResetSVEState when taking an exception from, or 11411 * returning to, AArch32 state when PSTATE.SM is enabled. 11412 */ 11413 sm = FIELD_EX64(env->svcr, SVCR, SM); 11414 if (old_a64 != new_a64 && sm) { 11415 arm_reset_sve_state(env); 11416 return; 11417 } 11418 11419 /* 11420 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11421 * at ELx, or not available because the EL is in AArch32 state, then 11422 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11423 * has an effective value of 0". 11424 * 11425 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11426 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11427 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11428 * we already have the correct register contents when encountering the 11429 * vq0->vq0 transition between EL0->EL1. 11430 */ 11431 old_len = new_len = 0; 11432 if (old_a64) { 11433 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11434 } 11435 if (new_a64) { 11436 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11437 } 11438 11439 /* When changing vector length, clear inaccessible state. */ 11440 if (new_len < old_len) { 11441 aarch64_sve_narrow_vq(env, new_len + 1); 11442 } 11443 } 11444 #endif 11445