1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 42 43 #ifndef CONFIG_USER_ONLY 44 45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 46 MMUAccessType access_type, ARMMMUIdx mmu_idx, 47 bool s1_is_el0, 48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 49 target_ulong *page_size_ptr, 50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 51 __attribute__((nonnull)); 52 #endif 53 54 static void switch_mode(CPUARMState *env, int mode); 55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 56 57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 58 { 59 ARMCPU *cpu = env_archcpu(env); 60 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 61 62 /* VFP data registers are always little-endian. */ 63 if (reg < nregs) { 64 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 65 } 66 if (arm_feature(env, ARM_FEATURE_NEON)) { 67 /* Aliases for Q regs. */ 68 nregs += 16; 69 if (reg < nregs) { 70 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 71 return gdb_get_reg128(buf, q[0], q[1]); 72 } 73 } 74 switch (reg - nregs) { 75 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 76 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 77 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 78 } 79 return 0; 80 } 81 82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 83 { 84 ARMCPU *cpu = env_archcpu(env); 85 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 86 87 if (reg < nregs) { 88 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 89 return 8; 90 } 91 if (arm_feature(env, ARM_FEATURE_NEON)) { 92 nregs += 16; 93 if (reg < nregs) { 94 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 95 q[0] = ldq_le_p(buf); 96 q[1] = ldq_le_p(buf + 8); 97 return 16; 98 } 99 } 100 switch (reg - nregs) { 101 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 102 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 103 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 104 } 105 return 0; 106 } 107 108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 109 { 110 switch (reg) { 111 case 0 ... 31: 112 { 113 /* 128 bit FP register - quads are in LE order */ 114 uint64_t *q = aa64_vfp_qreg(env, reg); 115 return gdb_get_reg128(buf, q[1], q[0]); 116 } 117 case 32: 118 /* FPSR */ 119 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 120 case 33: 121 /* FPCR */ 122 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 /** 212 * arm_get/set_gdb_*: get/set a gdb register 213 * @env: the CPU state 214 * @buf: a buffer to copy to/from 215 * @reg: register number (offset from start of group) 216 * 217 * We return the number of bytes copied 218 */ 219 220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 221 { 222 ARMCPU *cpu = env_archcpu(env); 223 const ARMCPRegInfo *ri; 224 uint32_t key; 225 226 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 227 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 228 if (ri) { 229 if (cpreg_field_is_64bit(ri)) { 230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 231 } else { 232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 233 } 234 } 235 return 0; 236 } 237 238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 239 { 240 return 0; 241 } 242 243 #ifdef TARGET_AARCH64 244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 245 { 246 ARMCPU *cpu = env_archcpu(env); 247 248 switch (reg) { 249 /* The first 32 registers are the zregs */ 250 case 0 ... 31: 251 { 252 int vq, len = 0; 253 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 254 len += gdb_get_reg128(buf, 255 env->vfp.zregs[reg].d[vq * 2 + 1], 256 env->vfp.zregs[reg].d[vq * 2]); 257 } 258 return len; 259 } 260 case 32: 261 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 262 case 33: 263 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 264 /* then 16 predicates and the ffr */ 265 case 34 ... 50: 266 { 267 int preg = reg - 34; 268 int vq, len = 0; 269 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 270 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 271 } 272 return len; 273 } 274 case 51: 275 { 276 /* 277 * We report in Vector Granules (VG) which is 64bit in a Z reg 278 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 279 */ 280 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 281 return gdb_get_reg64(buf, vq * 2); 282 } 283 default: 284 /* gdbstub asked for something out our range */ 285 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 286 break; 287 } 288 289 return 0; 290 } 291 292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 293 { 294 ARMCPU *cpu = env_archcpu(env); 295 296 /* The first 32 registers are the zregs */ 297 switch (reg) { 298 /* The first 32 registers are the zregs */ 299 case 0 ... 31: 300 { 301 int vq, len = 0; 302 uint64_t *p = (uint64_t *) buf; 303 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 304 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 305 env->vfp.zregs[reg].d[vq * 2] = *p++; 306 len += 16; 307 } 308 return len; 309 } 310 case 32: 311 vfp_set_fpsr(env, *(uint32_t *)buf); 312 return 4; 313 case 33: 314 vfp_set_fpcr(env, *(uint32_t *)buf); 315 return 4; 316 case 34 ... 50: 317 { 318 int preg = reg - 34; 319 int vq, len = 0; 320 uint64_t *p = (uint64_t *) buf; 321 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 322 env->vfp.pregs[preg].p[vq / 4] = *p++; 323 len += 8; 324 } 325 return len; 326 } 327 case 51: 328 /* cannot set vg via gdbstub */ 329 return 0; 330 default: 331 /* gdbstub asked for something out our range */ 332 break; 333 } 334 335 return 0; 336 } 337 #endif /* TARGET_AARCH64 */ 338 339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 340 { 341 /* Return true if the regdef would cause an assertion if you called 342 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 343 * program bug for it not to have the NO_RAW flag). 344 * NB that returning false here doesn't necessarily mean that calling 345 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 346 * read/write access functions which are safe for raw use" from "has 347 * read/write access functions which have side effects but has forgotten 348 * to provide raw access functions". 349 * The tests here line up with the conditions in read/write_raw_cp_reg() 350 * and assertions in raw_read()/raw_write(). 351 */ 352 if ((ri->type & ARM_CP_CONST) || 353 ri->fieldoffset || 354 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 355 return false; 356 } 357 return true; 358 } 359 360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 361 { 362 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 363 int i; 364 bool ok = true; 365 366 for (i = 0; i < cpu->cpreg_array_len; i++) { 367 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 368 const ARMCPRegInfo *ri; 369 uint64_t newval; 370 371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 372 if (!ri) { 373 ok = false; 374 continue; 375 } 376 if (ri->type & ARM_CP_NO_RAW) { 377 continue; 378 } 379 380 newval = read_raw_cp_reg(&cpu->env, ri); 381 if (kvm_sync) { 382 /* 383 * Only sync if the previous list->cpustate sync succeeded. 384 * Rather than tracking the success/failure state for every 385 * item in the list, we just recheck "does the raw write we must 386 * have made in write_list_to_cpustate() read back OK" here. 387 */ 388 uint64_t oldval = cpu->cpreg_values[i]; 389 390 if (oldval == newval) { 391 continue; 392 } 393 394 write_raw_cp_reg(&cpu->env, ri, oldval); 395 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 396 continue; 397 } 398 399 write_raw_cp_reg(&cpu->env, ri, newval); 400 } 401 cpu->cpreg_values[i] = newval; 402 } 403 return ok; 404 } 405 406 bool write_list_to_cpustate(ARMCPU *cpu) 407 { 408 int i; 409 bool ok = true; 410 411 for (i = 0; i < cpu->cpreg_array_len; i++) { 412 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 413 uint64_t v = cpu->cpreg_values[i]; 414 const ARMCPRegInfo *ri; 415 416 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 417 if (!ri) { 418 ok = false; 419 continue; 420 } 421 if (ri->type & ARM_CP_NO_RAW) { 422 continue; 423 } 424 /* Write value and confirm it reads back as written 425 * (to catch read-only registers and partially read-only 426 * registers where the incoming migration value doesn't match) 427 */ 428 write_raw_cp_reg(&cpu->env, ri, v); 429 if (read_raw_cp_reg(&cpu->env, ri) != v) { 430 ok = false; 431 } 432 } 433 return ok; 434 } 435 436 static void add_cpreg_to_list(gpointer key, gpointer opaque) 437 { 438 ARMCPU *cpu = opaque; 439 uint64_t regidx; 440 const ARMCPRegInfo *ri; 441 442 regidx = *(uint32_t *)key; 443 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 444 445 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 446 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 447 /* The value array need not be initialized at this point */ 448 cpu->cpreg_array_len++; 449 } 450 } 451 452 static void count_cpreg(gpointer key, gpointer opaque) 453 { 454 ARMCPU *cpu = opaque; 455 uint64_t regidx; 456 const ARMCPRegInfo *ri; 457 458 regidx = *(uint32_t *)key; 459 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 460 461 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 462 cpu->cpreg_array_len++; 463 } 464 } 465 466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 467 { 468 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 469 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 470 471 if (aidx > bidx) { 472 return 1; 473 } 474 if (aidx < bidx) { 475 return -1; 476 } 477 return 0; 478 } 479 480 void init_cpreg_list(ARMCPU *cpu) 481 { 482 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 483 * Note that we require cpreg_tuples[] to be sorted by key ID. 484 */ 485 GList *keys; 486 int arraylen; 487 488 keys = g_hash_table_get_keys(cpu->cp_regs); 489 keys = g_list_sort(keys, cpreg_key_compare); 490 491 cpu->cpreg_array_len = 0; 492 493 g_list_foreach(keys, count_cpreg, cpu); 494 495 arraylen = cpu->cpreg_array_len; 496 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 497 cpu->cpreg_values = g_new(uint64_t, arraylen); 498 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 499 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 500 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 501 cpu->cpreg_array_len = 0; 502 503 g_list_foreach(keys, add_cpreg_to_list, cpu); 504 505 assert(cpu->cpreg_array_len == arraylen); 506 507 g_list_free(keys); 508 } 509 510 /* 511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 512 */ 513 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 514 const ARMCPRegInfo *ri, 515 bool isread) 516 { 517 if (!is_a64(env) && arm_current_el(env) == 3 && 518 arm_is_secure_below_el3(env)) { 519 return CP_ACCESS_TRAP_UNCATEGORIZED; 520 } 521 return CP_ACCESS_OK; 522 } 523 524 /* Some secure-only AArch32 registers trap to EL3 if used from 525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 527 * We assume that the .access field is set to PL1_RW. 528 */ 529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 530 const ARMCPRegInfo *ri, 531 bool isread) 532 { 533 if (arm_current_el(env) == 3) { 534 return CP_ACCESS_OK; 535 } 536 if (arm_is_secure_below_el3(env)) { 537 if (env->cp15.scr_el3 & SCR_EEL2) { 538 return CP_ACCESS_TRAP_EL2; 539 } 540 return CP_ACCESS_TRAP_EL3; 541 } 542 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 543 return CP_ACCESS_TRAP_UNCATEGORIZED; 544 } 545 546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 547 { 548 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 549 } 550 551 /* Check for traps to "powerdown debug" registers, which are controlled 552 * by MDCR.TDOSA 553 */ 554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 555 bool isread) 556 { 557 int el = arm_current_el(env); 558 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 559 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 560 (arm_hcr_el2_eff(env) & HCR_TGE); 561 562 if (el < 2 && mdcr_el2_tdosa) { 563 return CP_ACCESS_TRAP_EL2; 564 } 565 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 566 return CP_ACCESS_TRAP_EL3; 567 } 568 return CP_ACCESS_OK; 569 } 570 571 /* Check for traps to "debug ROM" registers, which are controlled 572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 573 */ 574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 575 bool isread) 576 { 577 int el = arm_current_el(env); 578 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 579 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 580 (arm_hcr_el2_eff(env) & HCR_TGE); 581 582 if (el < 2 && mdcr_el2_tdra) { 583 return CP_ACCESS_TRAP_EL2; 584 } 585 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 586 return CP_ACCESS_TRAP_EL3; 587 } 588 return CP_ACCESS_OK; 589 } 590 591 /* Check for traps to general debug registers, which are controlled 592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 593 */ 594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 595 bool isread) 596 { 597 int el = arm_current_el(env); 598 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 599 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 600 (arm_hcr_el2_eff(env) & HCR_TGE); 601 602 if (el < 2 && mdcr_el2_tda) { 603 return CP_ACCESS_TRAP_EL2; 604 } 605 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 606 return CP_ACCESS_TRAP_EL3; 607 } 608 return CP_ACCESS_OK; 609 } 610 611 /* Check for traps to performance monitor registers, which are controlled 612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 613 */ 614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 615 bool isread) 616 { 617 int el = arm_current_el(env); 618 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 619 620 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 621 return CP_ACCESS_TRAP_EL2; 622 } 623 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 624 return CP_ACCESS_TRAP_EL3; 625 } 626 return CP_ACCESS_OK; 627 } 628 629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 631 bool isread) 632 { 633 if (arm_current_el(env) == 1) { 634 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 635 if (arm_hcr_el2_eff(env) & trap) { 636 return CP_ACCESS_TRAP_EL2; 637 } 638 } 639 return CP_ACCESS_OK; 640 } 641 642 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 644 bool isread) 645 { 646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 647 return CP_ACCESS_TRAP_EL2; 648 } 649 return CP_ACCESS_OK; 650 } 651 652 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 654 bool isread) 655 { 656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 657 return CP_ACCESS_TRAP_EL2; 658 } 659 return CP_ACCESS_OK; 660 } 661 662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 664 bool isread) 665 { 666 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 667 return CP_ACCESS_TRAP_EL2; 668 } 669 return CP_ACCESS_OK; 670 } 671 672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 673 { 674 ARMCPU *cpu = env_archcpu(env); 675 676 raw_write(env, ri, value); 677 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 678 } 679 680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 681 { 682 ARMCPU *cpu = env_archcpu(env); 683 684 if (raw_read(env, ri) != value) { 685 /* Unlike real hardware the qemu TLB uses virtual addresses, 686 * not modified virtual addresses, so this causes a TLB flush. 687 */ 688 tlb_flush(CPU(cpu)); 689 raw_write(env, ri, value); 690 } 691 } 692 693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 694 uint64_t value) 695 { 696 ARMCPU *cpu = env_archcpu(env); 697 698 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 699 && !extended_addresses_enabled(env)) { 700 /* For VMSA (when not using the LPAE long descriptor page table 701 * format) this register includes the ASID, so do a TLB flush. 702 * For PMSA it is purely a process ID and no action is needed. 703 */ 704 tlb_flush(CPU(cpu)); 705 } 706 raw_write(env, ri, value); 707 } 708 709 /* IS variants of TLB operations must affect all cores */ 710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 711 uint64_t value) 712 { 713 CPUState *cs = env_cpu(env); 714 715 tlb_flush_all_cpus_synced(cs); 716 } 717 718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 719 uint64_t value) 720 { 721 CPUState *cs = env_cpu(env); 722 723 tlb_flush_all_cpus_synced(cs); 724 } 725 726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 727 uint64_t value) 728 { 729 CPUState *cs = env_cpu(env); 730 731 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 732 } 733 734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 735 uint64_t value) 736 { 737 CPUState *cs = env_cpu(env); 738 739 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 740 } 741 742 /* 743 * Non-IS variants of TLB operations are upgraded to 744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 745 * force broadcast of these operations. 746 */ 747 static bool tlb_force_broadcast(CPUARMState *env) 748 { 749 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 750 } 751 752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 753 uint64_t value) 754 { 755 /* Invalidate all (TLBIALL) */ 756 CPUState *cs = env_cpu(env); 757 758 if (tlb_force_broadcast(env)) { 759 tlb_flush_all_cpus_synced(cs); 760 } else { 761 tlb_flush(cs); 762 } 763 } 764 765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 766 uint64_t value) 767 { 768 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 769 CPUState *cs = env_cpu(env); 770 771 value &= TARGET_PAGE_MASK; 772 if (tlb_force_broadcast(env)) { 773 tlb_flush_page_all_cpus_synced(cs, value); 774 } else { 775 tlb_flush_page(cs, value); 776 } 777 } 778 779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 780 uint64_t value) 781 { 782 /* Invalidate by ASID (TLBIASID) */ 783 CPUState *cs = env_cpu(env); 784 785 if (tlb_force_broadcast(env)) { 786 tlb_flush_all_cpus_synced(cs); 787 } else { 788 tlb_flush(cs); 789 } 790 } 791 792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 793 uint64_t value) 794 { 795 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 796 CPUState *cs = env_cpu(env); 797 798 value &= TARGET_PAGE_MASK; 799 if (tlb_force_broadcast(env)) { 800 tlb_flush_page_all_cpus_synced(cs, value); 801 } else { 802 tlb_flush_page(cs, value); 803 } 804 } 805 806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 807 uint64_t value) 808 { 809 CPUState *cs = env_cpu(env); 810 811 tlb_flush_by_mmuidx(cs, 812 ARMMMUIdxBit_E10_1 | 813 ARMMMUIdxBit_E10_1_PAN | 814 ARMMMUIdxBit_E10_0); 815 } 816 817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 818 uint64_t value) 819 { 820 CPUState *cs = env_cpu(env); 821 822 tlb_flush_by_mmuidx_all_cpus_synced(cs, 823 ARMMMUIdxBit_E10_1 | 824 ARMMMUIdxBit_E10_1_PAN | 825 ARMMMUIdxBit_E10_0); 826 } 827 828 829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 830 uint64_t value) 831 { 832 CPUState *cs = env_cpu(env); 833 834 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 835 } 836 837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 838 uint64_t value) 839 { 840 CPUState *cs = env_cpu(env); 841 842 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 843 } 844 845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 846 uint64_t value) 847 { 848 CPUState *cs = env_cpu(env); 849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 850 851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 852 } 853 854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 855 uint64_t value) 856 { 857 CPUState *cs = env_cpu(env); 858 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 859 860 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 861 ARMMMUIdxBit_E2); 862 } 863 864 static const ARMCPRegInfo cp_reginfo[] = { 865 /* Define the secure and non-secure FCSE identifier CP registers 866 * separately because there is no secure bank in V8 (no _EL3). This allows 867 * the secure register to be properly reset and migrated. There is also no 868 * v8 EL1 version of the register so the non-secure instance stands alone. 869 */ 870 { .name = "FCSEIDR", 871 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 872 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 873 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 874 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 875 { .name = "FCSEIDR_S", 876 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 877 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 878 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 879 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 880 /* Define the secure and non-secure context identifier CP registers 881 * separately because there is no secure bank in V8 (no _EL3). This allows 882 * the secure register to be properly reset and migrated. In the 883 * non-secure case, the 32-bit register will have reset and migration 884 * disabled during registration as it is handled by the 64-bit instance. 885 */ 886 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 887 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 888 .access = PL1_RW, .accessfn = access_tvm_trvm, 889 .secure = ARM_CP_SECSTATE_NS, 890 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 891 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 892 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 893 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 894 .access = PL1_RW, .accessfn = access_tvm_trvm, 895 .secure = ARM_CP_SECSTATE_S, 896 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 897 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 898 REGINFO_SENTINEL 899 }; 900 901 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 902 /* NB: Some of these registers exist in v8 but with more precise 903 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 904 */ 905 /* MMU Domain access control / MPU write buffer control */ 906 { .name = "DACR", 907 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 908 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 909 .writefn = dacr_write, .raw_writefn = raw_write, 910 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 911 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 912 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 913 * For v6 and v5, these mappings are overly broad. 914 */ 915 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 916 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 917 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 918 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 919 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 920 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 921 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 922 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 923 /* Cache maintenance ops; some of this space may be overridden later. */ 924 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 925 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 926 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 927 REGINFO_SENTINEL 928 }; 929 930 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 931 /* Not all pre-v6 cores implemented this WFI, so this is slightly 932 * over-broad. 933 */ 934 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 935 .access = PL1_W, .type = ARM_CP_WFI }, 936 REGINFO_SENTINEL 937 }; 938 939 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 940 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 941 * is UNPREDICTABLE; we choose to NOP as most implementations do). 942 */ 943 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 944 .access = PL1_W, .type = ARM_CP_WFI }, 945 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 946 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 947 * OMAPCP will override this space. 948 */ 949 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 950 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 951 .resetvalue = 0 }, 952 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 953 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 954 .resetvalue = 0 }, 955 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 956 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 957 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 958 .resetvalue = 0 }, 959 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 960 * implementing it as RAZ means the "debug architecture version" bits 961 * will read as a reserved value, which should cause Linux to not try 962 * to use the debug hardware. 963 */ 964 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 965 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 966 /* MMU TLB control. Note that the wildcarding means we cover not just 967 * the unified TLB ops but also the dside/iside/inner-shareable variants. 968 */ 969 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 970 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 971 .type = ARM_CP_NO_RAW }, 972 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 973 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 974 .type = ARM_CP_NO_RAW }, 975 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 976 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 977 .type = ARM_CP_NO_RAW }, 978 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 979 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 980 .type = ARM_CP_NO_RAW }, 981 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 982 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 983 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 984 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 985 REGINFO_SENTINEL 986 }; 987 988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 989 uint64_t value) 990 { 991 uint32_t mask = 0; 992 993 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 994 if (!arm_feature(env, ARM_FEATURE_V8)) { 995 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 996 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 997 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 998 */ 999 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 1000 /* VFP coprocessor: cp10 & cp11 [23:20] */ 1001 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 1002 1003 if (!arm_feature(env, ARM_FEATURE_NEON)) { 1004 /* ASEDIS [31] bit is RAO/WI */ 1005 value |= (1 << 31); 1006 } 1007 1008 /* VFPv3 and upwards with NEON implement 32 double precision 1009 * registers (D0-D31). 1010 */ 1011 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1012 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1013 value |= (1 << 30); 1014 } 1015 } 1016 value &= mask; 1017 } 1018 1019 /* 1020 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1021 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1022 */ 1023 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1024 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1025 value &= ~(0xf << 20); 1026 value |= env->cp15.cpacr_el1 & (0xf << 20); 1027 } 1028 1029 env->cp15.cpacr_el1 = value; 1030 } 1031 1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1033 { 1034 /* 1035 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1036 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1037 */ 1038 uint64_t value = env->cp15.cpacr_el1; 1039 1040 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1041 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1042 value &= ~(0xf << 20); 1043 } 1044 return value; 1045 } 1046 1047 1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1049 { 1050 /* Call cpacr_write() so that we reset with the correct RAO bits set 1051 * for our CPU features. 1052 */ 1053 cpacr_write(env, ri, 0); 1054 } 1055 1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1057 bool isread) 1058 { 1059 if (arm_feature(env, ARM_FEATURE_V8)) { 1060 /* Check if CPACR accesses are to be trapped to EL2 */ 1061 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 1062 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 1063 return CP_ACCESS_TRAP_EL2; 1064 /* Check if CPACR accesses are to be trapped to EL3 */ 1065 } else if (arm_current_el(env) < 3 && 1066 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1067 return CP_ACCESS_TRAP_EL3; 1068 } 1069 } 1070 1071 return CP_ACCESS_OK; 1072 } 1073 1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1075 bool isread) 1076 { 1077 /* Check if CPTR accesses are set to trap to EL3 */ 1078 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1079 return CP_ACCESS_TRAP_EL3; 1080 } 1081 1082 return CP_ACCESS_OK; 1083 } 1084 1085 static const ARMCPRegInfo v6_cp_reginfo[] = { 1086 /* prefetch by MVA in v6, NOP in v7 */ 1087 { .name = "MVA_prefetch", 1088 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1089 .access = PL1_W, .type = ARM_CP_NOP }, 1090 /* We need to break the TB after ISB to execute self-modifying code 1091 * correctly and also to take any pending interrupts immediately. 1092 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1093 */ 1094 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1095 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1096 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1097 .access = PL0_W, .type = ARM_CP_NOP }, 1098 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1099 .access = PL0_W, .type = ARM_CP_NOP }, 1100 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1101 .access = PL1_RW, .accessfn = access_tvm_trvm, 1102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1103 offsetof(CPUARMState, cp15.ifar_ns) }, 1104 .resetvalue = 0, }, 1105 /* Watchpoint Fault Address Register : should actually only be present 1106 * for 1136, 1176, 11MPCore. 1107 */ 1108 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1110 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1111 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1112 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1113 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1114 REGINFO_SENTINEL 1115 }; 1116 1117 typedef struct pm_event { 1118 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1119 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1120 bool (*supported)(CPUARMState *); 1121 /* 1122 * Retrieve the current count of the underlying event. The programmed 1123 * counters hold a difference from the return value from this function 1124 */ 1125 uint64_t (*get_count)(CPUARMState *); 1126 /* 1127 * Return how many nanoseconds it will take (at a minimum) for count events 1128 * to occur. A negative value indicates the counter will never overflow, or 1129 * that the counter has otherwise arranged for the overflow bit to be set 1130 * and the PMU interrupt to be raised on overflow. 1131 */ 1132 int64_t (*ns_per_count)(uint64_t); 1133 } pm_event; 1134 1135 static bool event_always_supported(CPUARMState *env) 1136 { 1137 return true; 1138 } 1139 1140 static uint64_t swinc_get_count(CPUARMState *env) 1141 { 1142 /* 1143 * SW_INCR events are written directly to the pmevcntr's by writes to 1144 * PMSWINC, so there is no underlying count maintained by the PMU itself 1145 */ 1146 return 0; 1147 } 1148 1149 static int64_t swinc_ns_per(uint64_t ignored) 1150 { 1151 return -1; 1152 } 1153 1154 /* 1155 * Return the underlying cycle count for the PMU cycle counters. If we're in 1156 * usermode, simply return 0. 1157 */ 1158 static uint64_t cycles_get_count(CPUARMState *env) 1159 { 1160 #ifndef CONFIG_USER_ONLY 1161 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1162 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1163 #else 1164 return cpu_get_host_ticks(); 1165 #endif 1166 } 1167 1168 #ifndef CONFIG_USER_ONLY 1169 static int64_t cycles_ns_per(uint64_t cycles) 1170 { 1171 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1172 } 1173 1174 static bool instructions_supported(CPUARMState *env) 1175 { 1176 return icount_enabled() == 1; /* Precise instruction counting */ 1177 } 1178 1179 static uint64_t instructions_get_count(CPUARMState *env) 1180 { 1181 return (uint64_t)icount_get_raw(); 1182 } 1183 1184 static int64_t instructions_ns_per(uint64_t icount) 1185 { 1186 return icount_to_ns((int64_t)icount); 1187 } 1188 #endif 1189 1190 static bool pmu_8_1_events_supported(CPUARMState *env) 1191 { 1192 /* For events which are supported in any v8.1 PMU */ 1193 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1194 } 1195 1196 static bool pmu_8_4_events_supported(CPUARMState *env) 1197 { 1198 /* For events which are supported in any v8.1 PMU */ 1199 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1200 } 1201 1202 static uint64_t zero_event_get_count(CPUARMState *env) 1203 { 1204 /* For events which on QEMU never fire, so their count is always zero */ 1205 return 0; 1206 } 1207 1208 static int64_t zero_event_ns_per(uint64_t cycles) 1209 { 1210 /* An event which never fires can never overflow */ 1211 return -1; 1212 } 1213 1214 static const pm_event pm_events[] = { 1215 { .number = 0x000, /* SW_INCR */ 1216 .supported = event_always_supported, 1217 .get_count = swinc_get_count, 1218 .ns_per_count = swinc_ns_per, 1219 }, 1220 #ifndef CONFIG_USER_ONLY 1221 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1222 .supported = instructions_supported, 1223 .get_count = instructions_get_count, 1224 .ns_per_count = instructions_ns_per, 1225 }, 1226 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1227 .supported = event_always_supported, 1228 .get_count = cycles_get_count, 1229 .ns_per_count = cycles_ns_per, 1230 }, 1231 #endif 1232 { .number = 0x023, /* STALL_FRONTEND */ 1233 .supported = pmu_8_1_events_supported, 1234 .get_count = zero_event_get_count, 1235 .ns_per_count = zero_event_ns_per, 1236 }, 1237 { .number = 0x024, /* STALL_BACKEND */ 1238 .supported = pmu_8_1_events_supported, 1239 .get_count = zero_event_get_count, 1240 .ns_per_count = zero_event_ns_per, 1241 }, 1242 { .number = 0x03c, /* STALL */ 1243 .supported = pmu_8_4_events_supported, 1244 .get_count = zero_event_get_count, 1245 .ns_per_count = zero_event_ns_per, 1246 }, 1247 }; 1248 1249 /* 1250 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1251 * events (i.e. the statistical profiling extension), this implementation 1252 * should first be updated to something sparse instead of the current 1253 * supported_event_map[] array. 1254 */ 1255 #define MAX_EVENT_ID 0x3c 1256 #define UNSUPPORTED_EVENT UINT16_MAX 1257 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1258 1259 /* 1260 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1261 * of ARM event numbers to indices in our pm_events array. 1262 * 1263 * Note: Events in the 0x40XX range are not currently supported. 1264 */ 1265 void pmu_init(ARMCPU *cpu) 1266 { 1267 unsigned int i; 1268 1269 /* 1270 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1271 * events to them 1272 */ 1273 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1274 supported_event_map[i] = UNSUPPORTED_EVENT; 1275 } 1276 cpu->pmceid0 = 0; 1277 cpu->pmceid1 = 0; 1278 1279 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1280 const pm_event *cnt = &pm_events[i]; 1281 assert(cnt->number <= MAX_EVENT_ID); 1282 /* We do not currently support events in the 0x40xx range */ 1283 assert(cnt->number <= 0x3f); 1284 1285 if (cnt->supported(&cpu->env)) { 1286 supported_event_map[cnt->number] = i; 1287 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1288 if (cnt->number & 0x20) { 1289 cpu->pmceid1 |= event_mask; 1290 } else { 1291 cpu->pmceid0 |= event_mask; 1292 } 1293 } 1294 } 1295 } 1296 1297 /* 1298 * Check at runtime whether a PMU event is supported for the current machine 1299 */ 1300 static bool event_supported(uint16_t number) 1301 { 1302 if (number > MAX_EVENT_ID) { 1303 return false; 1304 } 1305 return supported_event_map[number] != UNSUPPORTED_EVENT; 1306 } 1307 1308 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1309 bool isread) 1310 { 1311 /* Performance monitor registers user accessibility is controlled 1312 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1313 * trapping to EL2 or EL3 for other accesses. 1314 */ 1315 int el = arm_current_el(env); 1316 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1317 1318 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1319 return CP_ACCESS_TRAP; 1320 } 1321 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1322 return CP_ACCESS_TRAP_EL2; 1323 } 1324 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1325 return CP_ACCESS_TRAP_EL3; 1326 } 1327 1328 return CP_ACCESS_OK; 1329 } 1330 1331 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1332 const ARMCPRegInfo *ri, 1333 bool isread) 1334 { 1335 /* ER: event counter read trap control */ 1336 if (arm_feature(env, ARM_FEATURE_V8) 1337 && arm_current_el(env) == 0 1338 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1339 && isread) { 1340 return CP_ACCESS_OK; 1341 } 1342 1343 return pmreg_access(env, ri, isread); 1344 } 1345 1346 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1347 const ARMCPRegInfo *ri, 1348 bool isread) 1349 { 1350 /* SW: software increment write trap control */ 1351 if (arm_feature(env, ARM_FEATURE_V8) 1352 && arm_current_el(env) == 0 1353 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1354 && !isread) { 1355 return CP_ACCESS_OK; 1356 } 1357 1358 return pmreg_access(env, ri, isread); 1359 } 1360 1361 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1362 const ARMCPRegInfo *ri, 1363 bool isread) 1364 { 1365 /* ER: event counter read trap control */ 1366 if (arm_feature(env, ARM_FEATURE_V8) 1367 && arm_current_el(env) == 0 1368 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1369 return CP_ACCESS_OK; 1370 } 1371 1372 return pmreg_access(env, ri, isread); 1373 } 1374 1375 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1376 const ARMCPRegInfo *ri, 1377 bool isread) 1378 { 1379 /* CR: cycle counter read trap control */ 1380 if (arm_feature(env, ARM_FEATURE_V8) 1381 && arm_current_el(env) == 0 1382 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1383 && isread) { 1384 return CP_ACCESS_OK; 1385 } 1386 1387 return pmreg_access(env, ri, isread); 1388 } 1389 1390 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1391 * the current EL, security state, and register configuration. 1392 */ 1393 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1394 { 1395 uint64_t filter; 1396 bool e, p, u, nsk, nsu, nsh, m; 1397 bool enabled, prohibited, filtered; 1398 bool secure = arm_is_secure(env); 1399 int el = arm_current_el(env); 1400 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1401 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1402 1403 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1404 return false; 1405 } 1406 1407 if (!arm_feature(env, ARM_FEATURE_EL2) || 1408 (counter < hpmn || counter == 31)) { 1409 e = env->cp15.c9_pmcr & PMCRE; 1410 } else { 1411 e = mdcr_el2 & MDCR_HPME; 1412 } 1413 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1414 1415 if (!secure) { 1416 if (el == 2 && (counter < hpmn || counter == 31)) { 1417 prohibited = mdcr_el2 & MDCR_HPMD; 1418 } else { 1419 prohibited = false; 1420 } 1421 } else { 1422 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1423 !(env->cp15.mdcr_el3 & MDCR_SPME); 1424 } 1425 1426 if (prohibited && counter == 31) { 1427 prohibited = env->cp15.c9_pmcr & PMCRDP; 1428 } 1429 1430 if (counter == 31) { 1431 filter = env->cp15.pmccfiltr_el0; 1432 } else { 1433 filter = env->cp15.c14_pmevtyper[counter]; 1434 } 1435 1436 p = filter & PMXEVTYPER_P; 1437 u = filter & PMXEVTYPER_U; 1438 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1439 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1440 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1441 m = arm_el_is_aa64(env, 1) && 1442 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1443 1444 if (el == 0) { 1445 filtered = secure ? u : u != nsu; 1446 } else if (el == 1) { 1447 filtered = secure ? p : p != nsk; 1448 } else if (el == 2) { 1449 filtered = !nsh; 1450 } else { /* EL3 */ 1451 filtered = m != p; 1452 } 1453 1454 if (counter != 31) { 1455 /* 1456 * If not checking PMCCNTR, ensure the counter is setup to an event we 1457 * support 1458 */ 1459 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1460 if (!event_supported(event)) { 1461 return false; 1462 } 1463 } 1464 1465 return enabled && !prohibited && !filtered; 1466 } 1467 1468 static void pmu_update_irq(CPUARMState *env) 1469 { 1470 ARMCPU *cpu = env_archcpu(env); 1471 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1472 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1473 } 1474 1475 /* 1476 * Ensure c15_ccnt is the guest-visible count so that operations such as 1477 * enabling/disabling the counter or filtering, modifying the count itself, 1478 * etc. can be done logically. This is essentially a no-op if the counter is 1479 * not enabled at the time of the call. 1480 */ 1481 static void pmccntr_op_start(CPUARMState *env) 1482 { 1483 uint64_t cycles = cycles_get_count(env); 1484 1485 if (pmu_counter_enabled(env, 31)) { 1486 uint64_t eff_cycles = cycles; 1487 if (env->cp15.c9_pmcr & PMCRD) { 1488 /* Increment once every 64 processor clock cycles */ 1489 eff_cycles /= 64; 1490 } 1491 1492 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1493 1494 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1495 1ull << 63 : 1ull << 31; 1496 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1497 env->cp15.c9_pmovsr |= (1 << 31); 1498 pmu_update_irq(env); 1499 } 1500 1501 env->cp15.c15_ccnt = new_pmccntr; 1502 } 1503 env->cp15.c15_ccnt_delta = cycles; 1504 } 1505 1506 /* 1507 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1508 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1509 * pmccntr_op_start. 1510 */ 1511 static void pmccntr_op_finish(CPUARMState *env) 1512 { 1513 if (pmu_counter_enabled(env, 31)) { 1514 #ifndef CONFIG_USER_ONLY 1515 /* Calculate when the counter will next overflow */ 1516 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1517 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1518 remaining_cycles = (uint32_t)remaining_cycles; 1519 } 1520 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1521 1522 if (overflow_in > 0) { 1523 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1524 overflow_in; 1525 ARMCPU *cpu = env_archcpu(env); 1526 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1527 } 1528 #endif 1529 1530 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1531 if (env->cp15.c9_pmcr & PMCRD) { 1532 /* Increment once every 64 processor clock cycles */ 1533 prev_cycles /= 64; 1534 } 1535 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1536 } 1537 } 1538 1539 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1540 { 1541 1542 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1543 uint64_t count = 0; 1544 if (event_supported(event)) { 1545 uint16_t event_idx = supported_event_map[event]; 1546 count = pm_events[event_idx].get_count(env); 1547 } 1548 1549 if (pmu_counter_enabled(env, counter)) { 1550 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1551 1552 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1553 env->cp15.c9_pmovsr |= (1 << counter); 1554 pmu_update_irq(env); 1555 } 1556 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1557 } 1558 env->cp15.c14_pmevcntr_delta[counter] = count; 1559 } 1560 1561 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1562 { 1563 if (pmu_counter_enabled(env, counter)) { 1564 #ifndef CONFIG_USER_ONLY 1565 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1566 uint16_t event_idx = supported_event_map[event]; 1567 uint64_t delta = UINT32_MAX - 1568 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1569 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1570 1571 if (overflow_in > 0) { 1572 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1573 overflow_in; 1574 ARMCPU *cpu = env_archcpu(env); 1575 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1576 } 1577 #endif 1578 1579 env->cp15.c14_pmevcntr_delta[counter] -= 1580 env->cp15.c14_pmevcntr[counter]; 1581 } 1582 } 1583 1584 void pmu_op_start(CPUARMState *env) 1585 { 1586 unsigned int i; 1587 pmccntr_op_start(env); 1588 for (i = 0; i < pmu_num_counters(env); i++) { 1589 pmevcntr_op_start(env, i); 1590 } 1591 } 1592 1593 void pmu_op_finish(CPUARMState *env) 1594 { 1595 unsigned int i; 1596 pmccntr_op_finish(env); 1597 for (i = 0; i < pmu_num_counters(env); i++) { 1598 pmevcntr_op_finish(env, i); 1599 } 1600 } 1601 1602 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1603 { 1604 pmu_op_start(&cpu->env); 1605 } 1606 1607 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1608 { 1609 pmu_op_finish(&cpu->env); 1610 } 1611 1612 void arm_pmu_timer_cb(void *opaque) 1613 { 1614 ARMCPU *cpu = opaque; 1615 1616 /* 1617 * Update all the counter values based on the current underlying counts, 1618 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1619 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1620 * counter may expire. 1621 */ 1622 pmu_op_start(&cpu->env); 1623 pmu_op_finish(&cpu->env); 1624 } 1625 1626 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1627 uint64_t value) 1628 { 1629 pmu_op_start(env); 1630 1631 if (value & PMCRC) { 1632 /* The counter has been reset */ 1633 env->cp15.c15_ccnt = 0; 1634 } 1635 1636 if (value & PMCRP) { 1637 unsigned int i; 1638 for (i = 0; i < pmu_num_counters(env); i++) { 1639 env->cp15.c14_pmevcntr[i] = 0; 1640 } 1641 } 1642 1643 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1644 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1645 1646 pmu_op_finish(env); 1647 } 1648 1649 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1650 uint64_t value) 1651 { 1652 unsigned int i; 1653 for (i = 0; i < pmu_num_counters(env); i++) { 1654 /* Increment a counter's count iff: */ 1655 if ((value & (1 << i)) && /* counter's bit is set */ 1656 /* counter is enabled and not filtered */ 1657 pmu_counter_enabled(env, i) && 1658 /* counter is SW_INCR */ 1659 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1660 pmevcntr_op_start(env, i); 1661 1662 /* 1663 * Detect if this write causes an overflow since we can't predict 1664 * PMSWINC overflows like we can for other events 1665 */ 1666 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1667 1668 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1669 env->cp15.c9_pmovsr |= (1 << i); 1670 pmu_update_irq(env); 1671 } 1672 1673 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1674 1675 pmevcntr_op_finish(env, i); 1676 } 1677 } 1678 } 1679 1680 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1681 { 1682 uint64_t ret; 1683 pmccntr_op_start(env); 1684 ret = env->cp15.c15_ccnt; 1685 pmccntr_op_finish(env); 1686 return ret; 1687 } 1688 1689 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1690 uint64_t value) 1691 { 1692 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1693 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1694 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1695 * accessed. 1696 */ 1697 env->cp15.c9_pmselr = value & 0x1f; 1698 } 1699 1700 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1701 uint64_t value) 1702 { 1703 pmccntr_op_start(env); 1704 env->cp15.c15_ccnt = value; 1705 pmccntr_op_finish(env); 1706 } 1707 1708 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1709 uint64_t value) 1710 { 1711 uint64_t cur_val = pmccntr_read(env, NULL); 1712 1713 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1714 } 1715 1716 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 pmccntr_op_start(env); 1720 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1721 pmccntr_op_finish(env); 1722 } 1723 1724 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1725 uint64_t value) 1726 { 1727 pmccntr_op_start(env); 1728 /* M is not accessible from AArch32 */ 1729 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1730 (value & PMCCFILTR); 1731 pmccntr_op_finish(env); 1732 } 1733 1734 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1735 { 1736 /* M is not visible in AArch32 */ 1737 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1738 } 1739 1740 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1741 uint64_t value) 1742 { 1743 value &= pmu_counter_mask(env); 1744 env->cp15.c9_pmcnten |= value; 1745 } 1746 1747 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1748 uint64_t value) 1749 { 1750 value &= pmu_counter_mask(env); 1751 env->cp15.c9_pmcnten &= ~value; 1752 } 1753 1754 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1755 uint64_t value) 1756 { 1757 value &= pmu_counter_mask(env); 1758 env->cp15.c9_pmovsr &= ~value; 1759 pmu_update_irq(env); 1760 } 1761 1762 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1763 uint64_t value) 1764 { 1765 value &= pmu_counter_mask(env); 1766 env->cp15.c9_pmovsr |= value; 1767 pmu_update_irq(env); 1768 } 1769 1770 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1771 uint64_t value, const uint8_t counter) 1772 { 1773 if (counter == 31) { 1774 pmccfiltr_write(env, ri, value); 1775 } else if (counter < pmu_num_counters(env)) { 1776 pmevcntr_op_start(env, counter); 1777 1778 /* 1779 * If this counter's event type is changing, store the current 1780 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1781 * pmevcntr_op_finish has the correct baseline when it converts back to 1782 * a delta. 1783 */ 1784 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1785 PMXEVTYPER_EVTCOUNT; 1786 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1787 if (old_event != new_event) { 1788 uint64_t count = 0; 1789 if (event_supported(new_event)) { 1790 uint16_t event_idx = supported_event_map[new_event]; 1791 count = pm_events[event_idx].get_count(env); 1792 } 1793 env->cp15.c14_pmevcntr_delta[counter] = count; 1794 } 1795 1796 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1797 pmevcntr_op_finish(env, counter); 1798 } 1799 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1800 * PMSELR value is equal to or greater than the number of implemented 1801 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1802 */ 1803 } 1804 1805 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1806 const uint8_t counter) 1807 { 1808 if (counter == 31) { 1809 return env->cp15.pmccfiltr_el0; 1810 } else if (counter < pmu_num_counters(env)) { 1811 return env->cp15.c14_pmevtyper[counter]; 1812 } else { 1813 /* 1814 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1815 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1816 */ 1817 return 0; 1818 } 1819 } 1820 1821 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1822 uint64_t value) 1823 { 1824 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1825 pmevtyper_write(env, ri, value, counter); 1826 } 1827 1828 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1829 uint64_t value) 1830 { 1831 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1832 env->cp15.c14_pmevtyper[counter] = value; 1833 1834 /* 1835 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1836 * pmu_op_finish calls when loading saved state for a migration. Because 1837 * we're potentially updating the type of event here, the value written to 1838 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1839 * different counter type. Therefore, we need to set this value to the 1840 * current count for the counter type we're writing so that pmu_op_finish 1841 * has the correct count for its calculation. 1842 */ 1843 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1844 if (event_supported(event)) { 1845 uint16_t event_idx = supported_event_map[event]; 1846 env->cp15.c14_pmevcntr_delta[counter] = 1847 pm_events[event_idx].get_count(env); 1848 } 1849 } 1850 1851 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1852 { 1853 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1854 return pmevtyper_read(env, ri, counter); 1855 } 1856 1857 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1861 } 1862 1863 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1864 { 1865 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1866 } 1867 1868 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1869 uint64_t value, uint8_t counter) 1870 { 1871 if (counter < pmu_num_counters(env)) { 1872 pmevcntr_op_start(env, counter); 1873 env->cp15.c14_pmevcntr[counter] = value; 1874 pmevcntr_op_finish(env, counter); 1875 } 1876 /* 1877 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1878 * are CONSTRAINED UNPREDICTABLE. 1879 */ 1880 } 1881 1882 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1883 uint8_t counter) 1884 { 1885 if (counter < pmu_num_counters(env)) { 1886 uint64_t ret; 1887 pmevcntr_op_start(env, counter); 1888 ret = env->cp15.c14_pmevcntr[counter]; 1889 pmevcntr_op_finish(env, counter); 1890 return ret; 1891 } else { 1892 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1893 * are CONSTRAINED UNPREDICTABLE. */ 1894 return 0; 1895 } 1896 } 1897 1898 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1899 uint64_t value) 1900 { 1901 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1902 pmevcntr_write(env, ri, value, counter); 1903 } 1904 1905 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1906 { 1907 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1908 return pmevcntr_read(env, ri, counter); 1909 } 1910 1911 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1912 uint64_t value) 1913 { 1914 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1915 assert(counter < pmu_num_counters(env)); 1916 env->cp15.c14_pmevcntr[counter] = value; 1917 pmevcntr_write(env, ri, value, counter); 1918 } 1919 1920 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1921 { 1922 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1923 assert(counter < pmu_num_counters(env)); 1924 return env->cp15.c14_pmevcntr[counter]; 1925 } 1926 1927 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1928 uint64_t value) 1929 { 1930 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1931 } 1932 1933 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1934 { 1935 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1936 } 1937 1938 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1939 uint64_t value) 1940 { 1941 if (arm_feature(env, ARM_FEATURE_V8)) { 1942 env->cp15.c9_pmuserenr = value & 0xf; 1943 } else { 1944 env->cp15.c9_pmuserenr = value & 1; 1945 } 1946 } 1947 1948 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1949 uint64_t value) 1950 { 1951 /* We have no event counters so only the C bit can be changed */ 1952 value &= pmu_counter_mask(env); 1953 env->cp15.c9_pminten |= value; 1954 pmu_update_irq(env); 1955 } 1956 1957 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1958 uint64_t value) 1959 { 1960 value &= pmu_counter_mask(env); 1961 env->cp15.c9_pminten &= ~value; 1962 pmu_update_irq(env); 1963 } 1964 1965 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1966 uint64_t value) 1967 { 1968 /* Note that even though the AArch64 view of this register has bits 1969 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1970 * architectural requirements for bits which are RES0 only in some 1971 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1972 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1973 */ 1974 raw_write(env, ri, value & ~0x1FULL); 1975 } 1976 1977 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1978 { 1979 /* Begin with base v8.0 state. */ 1980 uint32_t valid_mask = 0x3fff; 1981 ARMCPU *cpu = env_archcpu(env); 1982 1983 if (ri->state == ARM_CP_STATE_AA64) { 1984 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1985 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1986 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1987 } 1988 valid_mask &= ~SCR_NET; 1989 1990 if (cpu_isar_feature(aa64_lor, cpu)) { 1991 valid_mask |= SCR_TLOR; 1992 } 1993 if (cpu_isar_feature(aa64_pauth, cpu)) { 1994 valid_mask |= SCR_API | SCR_APK; 1995 } 1996 if (cpu_isar_feature(aa64_sel2, cpu)) { 1997 valid_mask |= SCR_EEL2; 1998 } 1999 if (cpu_isar_feature(aa64_mte, cpu)) { 2000 valid_mask |= SCR_ATA; 2001 } 2002 } else { 2003 valid_mask &= ~(SCR_RW | SCR_ST); 2004 } 2005 2006 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2007 valid_mask &= ~SCR_HCE; 2008 2009 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2010 * supported if EL2 exists. The bit is UNK/SBZP when 2011 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2012 * when EL2 is unavailable. 2013 * On ARMv8, this bit is always available. 2014 */ 2015 if (arm_feature(env, ARM_FEATURE_V7) && 2016 !arm_feature(env, ARM_FEATURE_V8)) { 2017 valid_mask &= ~SCR_SMD; 2018 } 2019 } 2020 2021 /* Clear all-context RES0 bits. */ 2022 value &= valid_mask; 2023 raw_write(env, ri, value); 2024 } 2025 2026 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2027 { 2028 /* 2029 * scr_write will set the RES1 bits on an AArch64-only CPU. 2030 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 2031 */ 2032 scr_write(env, ri, 0); 2033 } 2034 2035 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2036 const ARMCPRegInfo *ri, 2037 bool isread) 2038 { 2039 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2040 return CP_ACCESS_TRAP_EL2; 2041 } 2042 2043 return CP_ACCESS_OK; 2044 } 2045 2046 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2047 { 2048 ARMCPU *cpu = env_archcpu(env); 2049 2050 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2051 * bank 2052 */ 2053 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2054 ri->secure & ARM_CP_SECSTATE_S); 2055 2056 return cpu->ccsidr[index]; 2057 } 2058 2059 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2060 uint64_t value) 2061 { 2062 raw_write(env, ri, value & 0xf); 2063 } 2064 2065 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2066 { 2067 CPUState *cs = env_cpu(env); 2068 bool el1 = arm_current_el(env) == 1; 2069 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2070 uint64_t ret = 0; 2071 2072 if (hcr_el2 & HCR_IMO) { 2073 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2074 ret |= CPSR_I; 2075 } 2076 } else { 2077 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2078 ret |= CPSR_I; 2079 } 2080 } 2081 2082 if (hcr_el2 & HCR_FMO) { 2083 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2084 ret |= CPSR_F; 2085 } 2086 } else { 2087 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2088 ret |= CPSR_F; 2089 } 2090 } 2091 2092 /* External aborts are not possible in QEMU so A bit is always clear */ 2093 return ret; 2094 } 2095 2096 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2097 bool isread) 2098 { 2099 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2100 return CP_ACCESS_TRAP_EL2; 2101 } 2102 2103 return CP_ACCESS_OK; 2104 } 2105 2106 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2107 bool isread) 2108 { 2109 if (arm_feature(env, ARM_FEATURE_V8)) { 2110 return access_aa64_tid1(env, ri, isread); 2111 } 2112 2113 return CP_ACCESS_OK; 2114 } 2115 2116 static const ARMCPRegInfo v7_cp_reginfo[] = { 2117 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2118 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2119 .access = PL1_W, .type = ARM_CP_NOP }, 2120 /* Performance monitors are implementation defined in v7, 2121 * but with an ARM recommended set of registers, which we 2122 * follow. 2123 * 2124 * Performance registers fall into three categories: 2125 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2126 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2127 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2128 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2129 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2130 */ 2131 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2132 .access = PL0_RW, .type = ARM_CP_ALIAS, 2133 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2134 .writefn = pmcntenset_write, 2135 .accessfn = pmreg_access, 2136 .raw_writefn = raw_write }, 2137 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2139 .access = PL0_RW, .accessfn = pmreg_access, 2140 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2141 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2142 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2143 .access = PL0_RW, 2144 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2145 .accessfn = pmreg_access, 2146 .writefn = pmcntenclr_write, 2147 .type = ARM_CP_ALIAS }, 2148 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2150 .access = PL0_RW, .accessfn = pmreg_access, 2151 .type = ARM_CP_ALIAS, 2152 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2153 .writefn = pmcntenclr_write }, 2154 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2155 .access = PL0_RW, .type = ARM_CP_IO, 2156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2157 .accessfn = pmreg_access, 2158 .writefn = pmovsr_write, 2159 .raw_writefn = raw_write }, 2160 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2161 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2162 .access = PL0_RW, .accessfn = pmreg_access, 2163 .type = ARM_CP_ALIAS | ARM_CP_IO, 2164 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2165 .writefn = pmovsr_write, 2166 .raw_writefn = raw_write }, 2167 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2168 .access = PL0_W, .accessfn = pmreg_access_swinc, 2169 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2170 .writefn = pmswinc_write }, 2171 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2172 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2173 .access = PL0_W, .accessfn = pmreg_access_swinc, 2174 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2175 .writefn = pmswinc_write }, 2176 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2177 .access = PL0_RW, .type = ARM_CP_ALIAS, 2178 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2179 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2180 .raw_writefn = raw_write}, 2181 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2183 .access = PL0_RW, .accessfn = pmreg_access_selr, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2185 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2186 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2187 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2188 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2189 .accessfn = pmreg_access_ccntr }, 2190 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2191 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2192 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2193 .type = ARM_CP_IO, 2194 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2195 .readfn = pmccntr_read, .writefn = pmccntr_write, 2196 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2197 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2198 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2199 .access = PL0_RW, .accessfn = pmreg_access, 2200 .type = ARM_CP_ALIAS | ARM_CP_IO, 2201 .resetvalue = 0, }, 2202 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2203 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2204 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2205 .access = PL0_RW, .accessfn = pmreg_access, 2206 .type = ARM_CP_IO, 2207 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2208 .resetvalue = 0, }, 2209 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2210 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2211 .accessfn = pmreg_access, 2212 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2213 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2214 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2215 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2216 .accessfn = pmreg_access, 2217 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2218 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2219 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2220 .accessfn = pmreg_access_xevcntr, 2221 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2222 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2223 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2224 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2225 .accessfn = pmreg_access_xevcntr, 2226 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2227 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2228 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2229 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2230 .resetvalue = 0, 2231 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2232 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2233 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2234 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2235 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2236 .resetvalue = 0, 2237 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2238 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2239 .access = PL1_RW, .accessfn = access_tpm, 2240 .type = ARM_CP_ALIAS | ARM_CP_IO, 2241 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2242 .resetvalue = 0, 2243 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2244 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2245 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2246 .access = PL1_RW, .accessfn = access_tpm, 2247 .type = ARM_CP_IO, 2248 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2249 .writefn = pmintenset_write, .raw_writefn = raw_write, 2250 .resetvalue = 0x0 }, 2251 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2252 .access = PL1_RW, .accessfn = access_tpm, 2253 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2254 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2255 .writefn = pmintenclr_write, }, 2256 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2257 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2258 .access = PL1_RW, .accessfn = access_tpm, 2259 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2260 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2261 .writefn = pmintenclr_write }, 2262 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2263 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2264 .access = PL1_R, 2265 .accessfn = access_aa64_tid2, 2266 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2267 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2268 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2269 .access = PL1_RW, 2270 .accessfn = access_aa64_tid2, 2271 .writefn = csselr_write, .resetvalue = 0, 2272 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2273 offsetof(CPUARMState, cp15.csselr_ns) } }, 2274 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2275 * just RAZ for all cores: 2276 */ 2277 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2278 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2279 .access = PL1_R, .type = ARM_CP_CONST, 2280 .accessfn = access_aa64_tid1, 2281 .resetvalue = 0 }, 2282 /* Auxiliary fault status registers: these also are IMPDEF, and we 2283 * choose to RAZ/WI for all cores. 2284 */ 2285 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2286 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2287 .access = PL1_RW, .accessfn = access_tvm_trvm, 2288 .type = ARM_CP_CONST, .resetvalue = 0 }, 2289 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2290 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2291 .access = PL1_RW, .accessfn = access_tvm_trvm, 2292 .type = ARM_CP_CONST, .resetvalue = 0 }, 2293 /* MAIR can just read-as-written because we don't implement caches 2294 * and so don't need to care about memory attributes. 2295 */ 2296 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2297 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2298 .access = PL1_RW, .accessfn = access_tvm_trvm, 2299 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2300 .resetvalue = 0 }, 2301 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2302 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2303 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2304 .resetvalue = 0 }, 2305 /* For non-long-descriptor page tables these are PRRR and NMRR; 2306 * regardless they still act as reads-as-written for QEMU. 2307 */ 2308 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2309 * allows them to assign the correct fieldoffset based on the endianness 2310 * handled in the field definitions. 2311 */ 2312 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2313 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2314 .access = PL1_RW, .accessfn = access_tvm_trvm, 2315 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2316 offsetof(CPUARMState, cp15.mair0_ns) }, 2317 .resetfn = arm_cp_reset_ignore }, 2318 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2319 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2320 .access = PL1_RW, .accessfn = access_tvm_trvm, 2321 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2322 offsetof(CPUARMState, cp15.mair1_ns) }, 2323 .resetfn = arm_cp_reset_ignore }, 2324 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2325 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2326 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2327 /* 32 bit ITLB invalidates */ 2328 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2329 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2330 .writefn = tlbiall_write }, 2331 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2332 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2333 .writefn = tlbimva_write }, 2334 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2335 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2336 .writefn = tlbiasid_write }, 2337 /* 32 bit DTLB invalidates */ 2338 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2339 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2340 .writefn = tlbiall_write }, 2341 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2342 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2343 .writefn = tlbimva_write }, 2344 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2345 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2346 .writefn = tlbiasid_write }, 2347 /* 32 bit TLB invalidates */ 2348 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2350 .writefn = tlbiall_write }, 2351 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2352 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2353 .writefn = tlbimva_write }, 2354 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2355 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2356 .writefn = tlbiasid_write }, 2357 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2358 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2359 .writefn = tlbimvaa_write }, 2360 REGINFO_SENTINEL 2361 }; 2362 2363 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2364 /* 32 bit TLB invalidates, Inner Shareable */ 2365 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2366 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2367 .writefn = tlbiall_is_write }, 2368 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2369 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2370 .writefn = tlbimva_is_write }, 2371 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2373 .writefn = tlbiasid_is_write }, 2374 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2376 .writefn = tlbimvaa_is_write }, 2377 REGINFO_SENTINEL 2378 }; 2379 2380 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2381 /* PMOVSSET is not implemented in v7 before v7ve */ 2382 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2383 .access = PL0_RW, .accessfn = pmreg_access, 2384 .type = ARM_CP_ALIAS | ARM_CP_IO, 2385 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2386 .writefn = pmovsset_write, 2387 .raw_writefn = raw_write }, 2388 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2389 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2390 .access = PL0_RW, .accessfn = pmreg_access, 2391 .type = ARM_CP_ALIAS | ARM_CP_IO, 2392 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2393 .writefn = pmovsset_write, 2394 .raw_writefn = raw_write }, 2395 REGINFO_SENTINEL 2396 }; 2397 2398 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2399 uint64_t value) 2400 { 2401 value &= 1; 2402 env->teecr = value; 2403 } 2404 2405 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2406 bool isread) 2407 { 2408 /* 2409 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2410 * at all, so we don't need to check whether we're v8A. 2411 */ 2412 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2413 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2414 return CP_ACCESS_TRAP_EL2; 2415 } 2416 return CP_ACCESS_OK; 2417 } 2418 2419 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2420 bool isread) 2421 { 2422 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2423 return CP_ACCESS_TRAP; 2424 } 2425 return teecr_access(env, ri, isread); 2426 } 2427 2428 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2429 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2430 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2431 .resetvalue = 0, 2432 .writefn = teecr_write, .accessfn = teecr_access }, 2433 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2434 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2435 .accessfn = teehbr_access, .resetvalue = 0 }, 2436 REGINFO_SENTINEL 2437 }; 2438 2439 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2440 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2441 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2442 .access = PL0_RW, 2443 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2444 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2445 .access = PL0_RW, 2446 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2447 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2448 .resetfn = arm_cp_reset_ignore }, 2449 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2450 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2451 .access = PL0_R|PL1_W, 2452 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2453 .resetvalue = 0}, 2454 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2455 .access = PL0_R|PL1_W, 2456 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2457 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2458 .resetfn = arm_cp_reset_ignore }, 2459 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2460 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2461 .access = PL1_RW, 2462 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2463 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2464 .access = PL1_RW, 2465 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2466 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2467 .resetvalue = 0 }, 2468 REGINFO_SENTINEL 2469 }; 2470 2471 #ifndef CONFIG_USER_ONLY 2472 2473 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2474 bool isread) 2475 { 2476 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2477 * Writable only at the highest implemented exception level. 2478 */ 2479 int el = arm_current_el(env); 2480 uint64_t hcr; 2481 uint32_t cntkctl; 2482 2483 switch (el) { 2484 case 0: 2485 hcr = arm_hcr_el2_eff(env); 2486 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2487 cntkctl = env->cp15.cnthctl_el2; 2488 } else { 2489 cntkctl = env->cp15.c14_cntkctl; 2490 } 2491 if (!extract32(cntkctl, 0, 2)) { 2492 return CP_ACCESS_TRAP; 2493 } 2494 break; 2495 case 1: 2496 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2497 arm_is_secure_below_el3(env)) { 2498 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2499 return CP_ACCESS_TRAP_UNCATEGORIZED; 2500 } 2501 break; 2502 case 2: 2503 case 3: 2504 break; 2505 } 2506 2507 if (!isread && el < arm_highest_el(env)) { 2508 return CP_ACCESS_TRAP_UNCATEGORIZED; 2509 } 2510 2511 return CP_ACCESS_OK; 2512 } 2513 2514 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2515 bool isread) 2516 { 2517 unsigned int cur_el = arm_current_el(env); 2518 bool has_el2 = arm_is_el2_enabled(env); 2519 uint64_t hcr = arm_hcr_el2_eff(env); 2520 2521 switch (cur_el) { 2522 case 0: 2523 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2524 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2525 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2526 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2527 } 2528 2529 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2530 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2531 return CP_ACCESS_TRAP; 2532 } 2533 2534 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2535 if (hcr & HCR_E2H) { 2536 if (timeridx == GTIMER_PHYS && 2537 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2538 return CP_ACCESS_TRAP_EL2; 2539 } 2540 } else { 2541 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2542 if (has_el2 && timeridx == GTIMER_PHYS && 2543 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2544 return CP_ACCESS_TRAP_EL2; 2545 } 2546 } 2547 break; 2548 2549 case 1: 2550 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2551 if (has_el2 && timeridx == GTIMER_PHYS && 2552 (hcr & HCR_E2H 2553 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2554 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2555 return CP_ACCESS_TRAP_EL2; 2556 } 2557 break; 2558 } 2559 return CP_ACCESS_OK; 2560 } 2561 2562 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2563 bool isread) 2564 { 2565 unsigned int cur_el = arm_current_el(env); 2566 bool has_el2 = arm_is_el2_enabled(env); 2567 uint64_t hcr = arm_hcr_el2_eff(env); 2568 2569 switch (cur_el) { 2570 case 0: 2571 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2572 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2573 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2574 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2575 } 2576 2577 /* 2578 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2579 * EL0 if EL0[PV]TEN is zero. 2580 */ 2581 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2582 return CP_ACCESS_TRAP; 2583 } 2584 /* fall through */ 2585 2586 case 1: 2587 if (has_el2 && timeridx == GTIMER_PHYS) { 2588 if (hcr & HCR_E2H) { 2589 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2590 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2591 return CP_ACCESS_TRAP_EL2; 2592 } 2593 } else { 2594 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2595 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2596 return CP_ACCESS_TRAP_EL2; 2597 } 2598 } 2599 } 2600 break; 2601 } 2602 return CP_ACCESS_OK; 2603 } 2604 2605 static CPAccessResult gt_pct_access(CPUARMState *env, 2606 const ARMCPRegInfo *ri, 2607 bool isread) 2608 { 2609 return gt_counter_access(env, GTIMER_PHYS, isread); 2610 } 2611 2612 static CPAccessResult gt_vct_access(CPUARMState *env, 2613 const ARMCPRegInfo *ri, 2614 bool isread) 2615 { 2616 return gt_counter_access(env, GTIMER_VIRT, isread); 2617 } 2618 2619 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2620 bool isread) 2621 { 2622 return gt_timer_access(env, GTIMER_PHYS, isread); 2623 } 2624 2625 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2626 bool isread) 2627 { 2628 return gt_timer_access(env, GTIMER_VIRT, isread); 2629 } 2630 2631 static CPAccessResult gt_stimer_access(CPUARMState *env, 2632 const ARMCPRegInfo *ri, 2633 bool isread) 2634 { 2635 /* The AArch64 register view of the secure physical timer is 2636 * always accessible from EL3, and configurably accessible from 2637 * Secure EL1. 2638 */ 2639 switch (arm_current_el(env)) { 2640 case 1: 2641 if (!arm_is_secure(env)) { 2642 return CP_ACCESS_TRAP; 2643 } 2644 if (!(env->cp15.scr_el3 & SCR_ST)) { 2645 return CP_ACCESS_TRAP_EL3; 2646 } 2647 return CP_ACCESS_OK; 2648 case 0: 2649 case 2: 2650 return CP_ACCESS_TRAP; 2651 case 3: 2652 return CP_ACCESS_OK; 2653 default: 2654 g_assert_not_reached(); 2655 } 2656 } 2657 2658 static uint64_t gt_get_countervalue(CPUARMState *env) 2659 { 2660 ARMCPU *cpu = env_archcpu(env); 2661 2662 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2663 } 2664 2665 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2666 { 2667 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2668 2669 if (gt->ctl & 1) { 2670 /* Timer enabled: calculate and set current ISTATUS, irq, and 2671 * reset timer to when ISTATUS next has to change 2672 */ 2673 uint64_t offset = timeridx == GTIMER_VIRT ? 2674 cpu->env.cp15.cntvoff_el2 : 0; 2675 uint64_t count = gt_get_countervalue(&cpu->env); 2676 /* Note that this must be unsigned 64 bit arithmetic: */ 2677 int istatus = count - offset >= gt->cval; 2678 uint64_t nexttick; 2679 int irqstate; 2680 2681 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2682 2683 irqstate = (istatus && !(gt->ctl & 2)); 2684 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2685 2686 if (istatus) { 2687 /* Next transition is when count rolls back over to zero */ 2688 nexttick = UINT64_MAX; 2689 } else { 2690 /* Next transition is when we hit cval */ 2691 nexttick = gt->cval + offset; 2692 } 2693 /* Note that the desired next expiry time might be beyond the 2694 * signed-64-bit range of a QEMUTimer -- in this case we just 2695 * set the timer for as far in the future as possible. When the 2696 * timer expires we will reset the timer for any remaining period. 2697 */ 2698 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2699 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2700 } else { 2701 timer_mod(cpu->gt_timer[timeridx], nexttick); 2702 } 2703 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2704 } else { 2705 /* Timer disabled: ISTATUS and timer output always clear */ 2706 gt->ctl &= ~4; 2707 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2708 timer_del(cpu->gt_timer[timeridx]); 2709 trace_arm_gt_recalc_disabled(timeridx); 2710 } 2711 } 2712 2713 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2714 int timeridx) 2715 { 2716 ARMCPU *cpu = env_archcpu(env); 2717 2718 timer_del(cpu->gt_timer[timeridx]); 2719 } 2720 2721 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2722 { 2723 return gt_get_countervalue(env); 2724 } 2725 2726 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2727 { 2728 uint64_t hcr; 2729 2730 switch (arm_current_el(env)) { 2731 case 2: 2732 hcr = arm_hcr_el2_eff(env); 2733 if (hcr & HCR_E2H) { 2734 return 0; 2735 } 2736 break; 2737 case 0: 2738 hcr = arm_hcr_el2_eff(env); 2739 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2740 return 0; 2741 } 2742 break; 2743 } 2744 2745 return env->cp15.cntvoff_el2; 2746 } 2747 2748 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2749 { 2750 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2751 } 2752 2753 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2754 int timeridx, 2755 uint64_t value) 2756 { 2757 trace_arm_gt_cval_write(timeridx, value); 2758 env->cp15.c14_timer[timeridx].cval = value; 2759 gt_recalc_timer(env_archcpu(env), timeridx); 2760 } 2761 2762 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2763 int timeridx) 2764 { 2765 uint64_t offset = 0; 2766 2767 switch (timeridx) { 2768 case GTIMER_VIRT: 2769 case GTIMER_HYPVIRT: 2770 offset = gt_virt_cnt_offset(env); 2771 break; 2772 } 2773 2774 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2775 (gt_get_countervalue(env) - offset)); 2776 } 2777 2778 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2779 int timeridx, 2780 uint64_t value) 2781 { 2782 uint64_t offset = 0; 2783 2784 switch (timeridx) { 2785 case GTIMER_VIRT: 2786 case GTIMER_HYPVIRT: 2787 offset = gt_virt_cnt_offset(env); 2788 break; 2789 } 2790 2791 trace_arm_gt_tval_write(timeridx, value); 2792 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2793 sextract64(value, 0, 32); 2794 gt_recalc_timer(env_archcpu(env), timeridx); 2795 } 2796 2797 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2798 int timeridx, 2799 uint64_t value) 2800 { 2801 ARMCPU *cpu = env_archcpu(env); 2802 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2803 2804 trace_arm_gt_ctl_write(timeridx, value); 2805 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2806 if ((oldval ^ value) & 1) { 2807 /* Enable toggled */ 2808 gt_recalc_timer(cpu, timeridx); 2809 } else if ((oldval ^ value) & 2) { 2810 /* IMASK toggled: don't need to recalculate, 2811 * just set the interrupt line based on ISTATUS 2812 */ 2813 int irqstate = (oldval & 4) && !(value & 2); 2814 2815 trace_arm_gt_imask_toggle(timeridx, irqstate); 2816 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2817 } 2818 } 2819 2820 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2821 { 2822 gt_timer_reset(env, ri, GTIMER_PHYS); 2823 } 2824 2825 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2826 uint64_t value) 2827 { 2828 gt_cval_write(env, ri, GTIMER_PHYS, value); 2829 } 2830 2831 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2832 { 2833 return gt_tval_read(env, ri, GTIMER_PHYS); 2834 } 2835 2836 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2837 uint64_t value) 2838 { 2839 gt_tval_write(env, ri, GTIMER_PHYS, value); 2840 } 2841 2842 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2843 uint64_t value) 2844 { 2845 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2846 } 2847 2848 static int gt_phys_redir_timeridx(CPUARMState *env) 2849 { 2850 switch (arm_mmu_idx(env)) { 2851 case ARMMMUIdx_E20_0: 2852 case ARMMMUIdx_E20_2: 2853 case ARMMMUIdx_E20_2_PAN: 2854 case ARMMMUIdx_SE20_0: 2855 case ARMMMUIdx_SE20_2: 2856 case ARMMMUIdx_SE20_2_PAN: 2857 return GTIMER_HYP; 2858 default: 2859 return GTIMER_PHYS; 2860 } 2861 } 2862 2863 static int gt_virt_redir_timeridx(CPUARMState *env) 2864 { 2865 switch (arm_mmu_idx(env)) { 2866 case ARMMMUIdx_E20_0: 2867 case ARMMMUIdx_E20_2: 2868 case ARMMMUIdx_E20_2_PAN: 2869 case ARMMMUIdx_SE20_0: 2870 case ARMMMUIdx_SE20_2: 2871 case ARMMMUIdx_SE20_2_PAN: 2872 return GTIMER_HYPVIRT; 2873 default: 2874 return GTIMER_VIRT; 2875 } 2876 } 2877 2878 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2879 const ARMCPRegInfo *ri) 2880 { 2881 int timeridx = gt_phys_redir_timeridx(env); 2882 return env->cp15.c14_timer[timeridx].cval; 2883 } 2884 2885 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2886 uint64_t value) 2887 { 2888 int timeridx = gt_phys_redir_timeridx(env); 2889 gt_cval_write(env, ri, timeridx, value); 2890 } 2891 2892 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2893 const ARMCPRegInfo *ri) 2894 { 2895 int timeridx = gt_phys_redir_timeridx(env); 2896 return gt_tval_read(env, ri, timeridx); 2897 } 2898 2899 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2900 uint64_t value) 2901 { 2902 int timeridx = gt_phys_redir_timeridx(env); 2903 gt_tval_write(env, ri, timeridx, value); 2904 } 2905 2906 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2907 const ARMCPRegInfo *ri) 2908 { 2909 int timeridx = gt_phys_redir_timeridx(env); 2910 return env->cp15.c14_timer[timeridx].ctl; 2911 } 2912 2913 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2914 uint64_t value) 2915 { 2916 int timeridx = gt_phys_redir_timeridx(env); 2917 gt_ctl_write(env, ri, timeridx, value); 2918 } 2919 2920 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2921 { 2922 gt_timer_reset(env, ri, GTIMER_VIRT); 2923 } 2924 2925 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2926 uint64_t value) 2927 { 2928 gt_cval_write(env, ri, GTIMER_VIRT, value); 2929 } 2930 2931 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2932 { 2933 return gt_tval_read(env, ri, GTIMER_VIRT); 2934 } 2935 2936 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2937 uint64_t value) 2938 { 2939 gt_tval_write(env, ri, GTIMER_VIRT, value); 2940 } 2941 2942 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2943 uint64_t value) 2944 { 2945 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2946 } 2947 2948 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2949 uint64_t value) 2950 { 2951 ARMCPU *cpu = env_archcpu(env); 2952 2953 trace_arm_gt_cntvoff_write(value); 2954 raw_write(env, ri, value); 2955 gt_recalc_timer(cpu, GTIMER_VIRT); 2956 } 2957 2958 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2959 const ARMCPRegInfo *ri) 2960 { 2961 int timeridx = gt_virt_redir_timeridx(env); 2962 return env->cp15.c14_timer[timeridx].cval; 2963 } 2964 2965 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2966 uint64_t value) 2967 { 2968 int timeridx = gt_virt_redir_timeridx(env); 2969 gt_cval_write(env, ri, timeridx, value); 2970 } 2971 2972 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2973 const ARMCPRegInfo *ri) 2974 { 2975 int timeridx = gt_virt_redir_timeridx(env); 2976 return gt_tval_read(env, ri, timeridx); 2977 } 2978 2979 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2980 uint64_t value) 2981 { 2982 int timeridx = gt_virt_redir_timeridx(env); 2983 gt_tval_write(env, ri, timeridx, value); 2984 } 2985 2986 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2987 const ARMCPRegInfo *ri) 2988 { 2989 int timeridx = gt_virt_redir_timeridx(env); 2990 return env->cp15.c14_timer[timeridx].ctl; 2991 } 2992 2993 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2994 uint64_t value) 2995 { 2996 int timeridx = gt_virt_redir_timeridx(env); 2997 gt_ctl_write(env, ri, timeridx, value); 2998 } 2999 3000 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3001 { 3002 gt_timer_reset(env, ri, GTIMER_HYP); 3003 } 3004 3005 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3006 uint64_t value) 3007 { 3008 gt_cval_write(env, ri, GTIMER_HYP, value); 3009 } 3010 3011 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3012 { 3013 return gt_tval_read(env, ri, GTIMER_HYP); 3014 } 3015 3016 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3017 uint64_t value) 3018 { 3019 gt_tval_write(env, ri, GTIMER_HYP, value); 3020 } 3021 3022 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3023 uint64_t value) 3024 { 3025 gt_ctl_write(env, ri, GTIMER_HYP, value); 3026 } 3027 3028 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3029 { 3030 gt_timer_reset(env, ri, GTIMER_SEC); 3031 } 3032 3033 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3034 uint64_t value) 3035 { 3036 gt_cval_write(env, ri, GTIMER_SEC, value); 3037 } 3038 3039 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3040 { 3041 return gt_tval_read(env, ri, GTIMER_SEC); 3042 } 3043 3044 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3045 uint64_t value) 3046 { 3047 gt_tval_write(env, ri, GTIMER_SEC, value); 3048 } 3049 3050 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3051 uint64_t value) 3052 { 3053 gt_ctl_write(env, ri, GTIMER_SEC, value); 3054 } 3055 3056 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3057 { 3058 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3059 } 3060 3061 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3062 uint64_t value) 3063 { 3064 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3065 } 3066 3067 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3068 { 3069 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3070 } 3071 3072 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3073 uint64_t value) 3074 { 3075 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3076 } 3077 3078 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3079 uint64_t value) 3080 { 3081 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3082 } 3083 3084 void arm_gt_ptimer_cb(void *opaque) 3085 { 3086 ARMCPU *cpu = opaque; 3087 3088 gt_recalc_timer(cpu, GTIMER_PHYS); 3089 } 3090 3091 void arm_gt_vtimer_cb(void *opaque) 3092 { 3093 ARMCPU *cpu = opaque; 3094 3095 gt_recalc_timer(cpu, GTIMER_VIRT); 3096 } 3097 3098 void arm_gt_htimer_cb(void *opaque) 3099 { 3100 ARMCPU *cpu = opaque; 3101 3102 gt_recalc_timer(cpu, GTIMER_HYP); 3103 } 3104 3105 void arm_gt_stimer_cb(void *opaque) 3106 { 3107 ARMCPU *cpu = opaque; 3108 3109 gt_recalc_timer(cpu, GTIMER_SEC); 3110 } 3111 3112 void arm_gt_hvtimer_cb(void *opaque) 3113 { 3114 ARMCPU *cpu = opaque; 3115 3116 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3117 } 3118 3119 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3120 { 3121 ARMCPU *cpu = env_archcpu(env); 3122 3123 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3124 } 3125 3126 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3127 /* Note that CNTFRQ is purely reads-as-written for the benefit 3128 * of software; writing it doesn't actually change the timer frequency. 3129 * Our reset value matches the fixed frequency we implement the timer at. 3130 */ 3131 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3132 .type = ARM_CP_ALIAS, 3133 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3134 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3135 }, 3136 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3137 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3138 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3139 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3140 .resetfn = arm_gt_cntfrq_reset, 3141 }, 3142 /* overall control: mostly access permissions */ 3143 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3144 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3145 .access = PL1_RW, 3146 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3147 .resetvalue = 0, 3148 }, 3149 /* per-timer control */ 3150 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3151 .secure = ARM_CP_SECSTATE_NS, 3152 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3153 .accessfn = gt_ptimer_access, 3154 .fieldoffset = offsetoflow32(CPUARMState, 3155 cp15.c14_timer[GTIMER_PHYS].ctl), 3156 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3157 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3158 }, 3159 { .name = "CNTP_CTL_S", 3160 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3161 .secure = ARM_CP_SECSTATE_S, 3162 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3163 .accessfn = gt_ptimer_access, 3164 .fieldoffset = offsetoflow32(CPUARMState, 3165 cp15.c14_timer[GTIMER_SEC].ctl), 3166 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3167 }, 3168 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3169 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3170 .type = ARM_CP_IO, .access = PL0_RW, 3171 .accessfn = gt_ptimer_access, 3172 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3173 .resetvalue = 0, 3174 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3175 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3176 }, 3177 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3178 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3179 .accessfn = gt_vtimer_access, 3180 .fieldoffset = offsetoflow32(CPUARMState, 3181 cp15.c14_timer[GTIMER_VIRT].ctl), 3182 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3183 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3184 }, 3185 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3186 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3187 .type = ARM_CP_IO, .access = PL0_RW, 3188 .accessfn = gt_vtimer_access, 3189 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3190 .resetvalue = 0, 3191 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3192 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3193 }, 3194 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3195 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3196 .secure = ARM_CP_SECSTATE_NS, 3197 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3198 .accessfn = gt_ptimer_access, 3199 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3200 }, 3201 { .name = "CNTP_TVAL_S", 3202 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3203 .secure = ARM_CP_SECSTATE_S, 3204 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3205 .accessfn = gt_ptimer_access, 3206 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3207 }, 3208 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3209 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3210 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3211 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3212 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3213 }, 3214 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3215 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3216 .accessfn = gt_vtimer_access, 3217 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3218 }, 3219 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3220 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3221 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3222 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3223 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3224 }, 3225 /* The counter itself */ 3226 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3227 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3228 .accessfn = gt_pct_access, 3229 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3230 }, 3231 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3232 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3233 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3234 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3235 }, 3236 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3237 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3238 .accessfn = gt_vct_access, 3239 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3240 }, 3241 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3242 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3243 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3244 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3245 }, 3246 /* Comparison value, indicating when the timer goes off */ 3247 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3248 .secure = ARM_CP_SECSTATE_NS, 3249 .access = PL0_RW, 3250 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3251 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3252 .accessfn = gt_ptimer_access, 3253 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3254 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3255 }, 3256 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3257 .secure = ARM_CP_SECSTATE_S, 3258 .access = PL0_RW, 3259 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3260 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3261 .accessfn = gt_ptimer_access, 3262 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3263 }, 3264 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3265 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3266 .access = PL0_RW, 3267 .type = ARM_CP_IO, 3268 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3269 .resetvalue = 0, .accessfn = gt_ptimer_access, 3270 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3271 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3272 }, 3273 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3274 .access = PL0_RW, 3275 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3276 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3277 .accessfn = gt_vtimer_access, 3278 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3279 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3280 }, 3281 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3282 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3283 .access = PL0_RW, 3284 .type = ARM_CP_IO, 3285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3286 .resetvalue = 0, .accessfn = gt_vtimer_access, 3287 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3288 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3289 }, 3290 /* Secure timer -- this is actually restricted to only EL3 3291 * and configurably Secure-EL1 via the accessfn. 3292 */ 3293 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3294 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3295 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3296 .accessfn = gt_stimer_access, 3297 .readfn = gt_sec_tval_read, 3298 .writefn = gt_sec_tval_write, 3299 .resetfn = gt_sec_timer_reset, 3300 }, 3301 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3302 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3303 .type = ARM_CP_IO, .access = PL1_RW, 3304 .accessfn = gt_stimer_access, 3305 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3306 .resetvalue = 0, 3307 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3308 }, 3309 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3310 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3311 .type = ARM_CP_IO, .access = PL1_RW, 3312 .accessfn = gt_stimer_access, 3313 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3314 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3315 }, 3316 REGINFO_SENTINEL 3317 }; 3318 3319 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3320 bool isread) 3321 { 3322 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3323 return CP_ACCESS_TRAP; 3324 } 3325 return CP_ACCESS_OK; 3326 } 3327 3328 #else 3329 3330 /* In user-mode most of the generic timer registers are inaccessible 3331 * however modern kernels (4.12+) allow access to cntvct_el0 3332 */ 3333 3334 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3335 { 3336 ARMCPU *cpu = env_archcpu(env); 3337 3338 /* Currently we have no support for QEMUTimer in linux-user so we 3339 * can't call gt_get_countervalue(env), instead we directly 3340 * call the lower level functions. 3341 */ 3342 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3343 } 3344 3345 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3346 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3347 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3348 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3349 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3350 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3351 }, 3352 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3353 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3354 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3355 .readfn = gt_virt_cnt_read, 3356 }, 3357 REGINFO_SENTINEL 3358 }; 3359 3360 #endif 3361 3362 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3363 { 3364 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3365 raw_write(env, ri, value); 3366 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3367 raw_write(env, ri, value & 0xfffff6ff); 3368 } else { 3369 raw_write(env, ri, value & 0xfffff1ff); 3370 } 3371 } 3372 3373 #ifndef CONFIG_USER_ONLY 3374 /* get_phys_addr() isn't present for user-mode-only targets */ 3375 3376 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3377 bool isread) 3378 { 3379 if (ri->opc2 & 4) { 3380 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3381 * Secure EL1 (which can only happen if EL3 is AArch64). 3382 * They are simply UNDEF if executed from NS EL1. 3383 * They function normally from EL2 or EL3. 3384 */ 3385 if (arm_current_el(env) == 1) { 3386 if (arm_is_secure_below_el3(env)) { 3387 if (env->cp15.scr_el3 & SCR_EEL2) { 3388 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3389 } 3390 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3391 } 3392 return CP_ACCESS_TRAP_UNCATEGORIZED; 3393 } 3394 } 3395 return CP_ACCESS_OK; 3396 } 3397 3398 #ifdef CONFIG_TCG 3399 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3400 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3401 { 3402 hwaddr phys_addr; 3403 target_ulong page_size; 3404 int prot; 3405 bool ret; 3406 uint64_t par64; 3407 bool format64 = false; 3408 MemTxAttrs attrs = {}; 3409 ARMMMUFaultInfo fi = {}; 3410 ARMCacheAttrs cacheattrs = {}; 3411 3412 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3413 &prot, &page_size, &fi, &cacheattrs); 3414 3415 if (ret) { 3416 /* 3417 * Some kinds of translation fault must cause exceptions rather 3418 * than being reported in the PAR. 3419 */ 3420 int current_el = arm_current_el(env); 3421 int target_el; 3422 uint32_t syn, fsr, fsc; 3423 bool take_exc = false; 3424 3425 if (fi.s1ptw && current_el == 1 3426 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3427 /* 3428 * Synchronous stage 2 fault on an access made as part of the 3429 * translation table walk for AT S1E0* or AT S1E1* insn 3430 * executed from NS EL1. If this is a synchronous external abort 3431 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3432 * to EL3. Otherwise the fault is taken as an exception to EL2, 3433 * and HPFAR_EL2 holds the faulting IPA. 3434 */ 3435 if (fi.type == ARMFault_SyncExternalOnWalk && 3436 (env->cp15.scr_el3 & SCR_EA)) { 3437 target_el = 3; 3438 } else { 3439 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3440 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3441 env->cp15.hpfar_el2 |= HPFAR_NS; 3442 } 3443 target_el = 2; 3444 } 3445 take_exc = true; 3446 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3447 /* 3448 * Synchronous external aborts during a translation table walk 3449 * are taken as Data Abort exceptions. 3450 */ 3451 if (fi.stage2) { 3452 if (current_el == 3) { 3453 target_el = 3; 3454 } else { 3455 target_el = 2; 3456 } 3457 } else { 3458 target_el = exception_target_el(env); 3459 } 3460 take_exc = true; 3461 } 3462 3463 if (take_exc) { 3464 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3465 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3466 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3467 fsr = arm_fi_to_lfsc(&fi); 3468 fsc = extract32(fsr, 0, 6); 3469 } else { 3470 fsr = arm_fi_to_sfsc(&fi); 3471 fsc = 0x3f; 3472 } 3473 /* 3474 * Report exception with ESR indicating a fault due to a 3475 * translation table walk for a cache maintenance instruction. 3476 */ 3477 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3478 fi.ea, 1, fi.s1ptw, 1, fsc); 3479 env->exception.vaddress = value; 3480 env->exception.fsr = fsr; 3481 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3482 } 3483 } 3484 3485 if (is_a64(env)) { 3486 format64 = true; 3487 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3488 /* 3489 * ATS1Cxx: 3490 * * TTBCR.EAE determines whether the result is returned using the 3491 * 32-bit or the 64-bit PAR format 3492 * * Instructions executed in Hyp mode always use the 64bit format 3493 * 3494 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3495 * * The Non-secure TTBCR.EAE bit is set to 1 3496 * * The implementation includes EL2, and the value of HCR.VM is 1 3497 * 3498 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3499 * 3500 * ATS1Hx always uses the 64bit format. 3501 */ 3502 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3503 3504 if (arm_feature(env, ARM_FEATURE_EL2)) { 3505 if (mmu_idx == ARMMMUIdx_E10_0 || 3506 mmu_idx == ARMMMUIdx_E10_1 || 3507 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3508 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3509 } else { 3510 format64 |= arm_current_el(env) == 2; 3511 } 3512 } 3513 } 3514 3515 if (format64) { 3516 /* Create a 64-bit PAR */ 3517 par64 = (1 << 11); /* LPAE bit always set */ 3518 if (!ret) { 3519 par64 |= phys_addr & ~0xfffULL; 3520 if (!attrs.secure) { 3521 par64 |= (1 << 9); /* NS */ 3522 } 3523 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3524 par64 |= cacheattrs.shareability << 7; /* SH */ 3525 } else { 3526 uint32_t fsr = arm_fi_to_lfsc(&fi); 3527 3528 par64 |= 1; /* F */ 3529 par64 |= (fsr & 0x3f) << 1; /* FS */ 3530 if (fi.stage2) { 3531 par64 |= (1 << 9); /* S */ 3532 } 3533 if (fi.s1ptw) { 3534 par64 |= (1 << 8); /* PTW */ 3535 } 3536 } 3537 } else { 3538 /* fsr is a DFSR/IFSR value for the short descriptor 3539 * translation table format (with WnR always clear). 3540 * Convert it to a 32-bit PAR. 3541 */ 3542 if (!ret) { 3543 /* We do not set any attribute bits in the PAR */ 3544 if (page_size == (1 << 24) 3545 && arm_feature(env, ARM_FEATURE_V7)) { 3546 par64 = (phys_addr & 0xff000000) | (1 << 1); 3547 } else { 3548 par64 = phys_addr & 0xfffff000; 3549 } 3550 if (!attrs.secure) { 3551 par64 |= (1 << 9); /* NS */ 3552 } 3553 } else { 3554 uint32_t fsr = arm_fi_to_sfsc(&fi); 3555 3556 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3557 ((fsr & 0xf) << 1) | 1; 3558 } 3559 } 3560 return par64; 3561 } 3562 #endif /* CONFIG_TCG */ 3563 3564 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3565 { 3566 #ifdef CONFIG_TCG 3567 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3568 uint64_t par64; 3569 ARMMMUIdx mmu_idx; 3570 int el = arm_current_el(env); 3571 bool secure = arm_is_secure_below_el3(env); 3572 3573 switch (ri->opc2 & 6) { 3574 case 0: 3575 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3576 switch (el) { 3577 case 3: 3578 mmu_idx = ARMMMUIdx_SE3; 3579 break; 3580 case 2: 3581 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3582 /* fall through */ 3583 case 1: 3584 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3585 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3586 : ARMMMUIdx_Stage1_E1_PAN); 3587 } else { 3588 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3589 } 3590 break; 3591 default: 3592 g_assert_not_reached(); 3593 } 3594 break; 3595 case 2: 3596 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3597 switch (el) { 3598 case 3: 3599 mmu_idx = ARMMMUIdx_SE10_0; 3600 break; 3601 case 2: 3602 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3603 mmu_idx = ARMMMUIdx_Stage1_E0; 3604 break; 3605 case 1: 3606 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3607 break; 3608 default: 3609 g_assert_not_reached(); 3610 } 3611 break; 3612 case 4: 3613 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3614 mmu_idx = ARMMMUIdx_E10_1; 3615 break; 3616 case 6: 3617 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3618 mmu_idx = ARMMMUIdx_E10_0; 3619 break; 3620 default: 3621 g_assert_not_reached(); 3622 } 3623 3624 par64 = do_ats_write(env, value, access_type, mmu_idx); 3625 3626 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3627 #else 3628 /* Handled by hardware accelerator. */ 3629 g_assert_not_reached(); 3630 #endif /* CONFIG_TCG */ 3631 } 3632 3633 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3634 uint64_t value) 3635 { 3636 #ifdef CONFIG_TCG 3637 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3638 uint64_t par64; 3639 3640 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3641 3642 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3643 #else 3644 /* Handled by hardware accelerator. */ 3645 g_assert_not_reached(); 3646 #endif /* CONFIG_TCG */ 3647 } 3648 3649 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3650 bool isread) 3651 { 3652 if (arm_current_el(env) == 3 && 3653 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3654 return CP_ACCESS_TRAP; 3655 } 3656 return CP_ACCESS_OK; 3657 } 3658 3659 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3660 uint64_t value) 3661 { 3662 #ifdef CONFIG_TCG 3663 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3664 ARMMMUIdx mmu_idx; 3665 int secure = arm_is_secure_below_el3(env); 3666 3667 switch (ri->opc2 & 6) { 3668 case 0: 3669 switch (ri->opc1) { 3670 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3671 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3672 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3673 : ARMMMUIdx_Stage1_E1_PAN); 3674 } else { 3675 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3676 } 3677 break; 3678 case 4: /* AT S1E2R, AT S1E2W */ 3679 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3680 break; 3681 case 6: /* AT S1E3R, AT S1E3W */ 3682 mmu_idx = ARMMMUIdx_SE3; 3683 break; 3684 default: 3685 g_assert_not_reached(); 3686 } 3687 break; 3688 case 2: /* AT S1E0R, AT S1E0W */ 3689 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3690 break; 3691 case 4: /* AT S12E1R, AT S12E1W */ 3692 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3693 break; 3694 case 6: /* AT S12E0R, AT S12E0W */ 3695 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3696 break; 3697 default: 3698 g_assert_not_reached(); 3699 } 3700 3701 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3702 #else 3703 /* Handled by hardware accelerator. */ 3704 g_assert_not_reached(); 3705 #endif /* CONFIG_TCG */ 3706 } 3707 #endif 3708 3709 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3710 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3711 .access = PL1_RW, .resetvalue = 0, 3712 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3713 offsetoflow32(CPUARMState, cp15.par_ns) }, 3714 .writefn = par_write }, 3715 #ifndef CONFIG_USER_ONLY 3716 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3717 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3718 .access = PL1_W, .accessfn = ats_access, 3719 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3720 #endif 3721 REGINFO_SENTINEL 3722 }; 3723 3724 /* Return basic MPU access permission bits. */ 3725 static uint32_t simple_mpu_ap_bits(uint32_t val) 3726 { 3727 uint32_t ret; 3728 uint32_t mask; 3729 int i; 3730 ret = 0; 3731 mask = 3; 3732 for (i = 0; i < 16; i += 2) { 3733 ret |= (val >> i) & mask; 3734 mask <<= 2; 3735 } 3736 return ret; 3737 } 3738 3739 /* Pad basic MPU access permission bits to extended format. */ 3740 static uint32_t extended_mpu_ap_bits(uint32_t val) 3741 { 3742 uint32_t ret; 3743 uint32_t mask; 3744 int i; 3745 ret = 0; 3746 mask = 3; 3747 for (i = 0; i < 16; i += 2) { 3748 ret |= (val & mask) << i; 3749 mask <<= 2; 3750 } 3751 return ret; 3752 } 3753 3754 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3755 uint64_t value) 3756 { 3757 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3758 } 3759 3760 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3761 { 3762 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3763 } 3764 3765 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3766 uint64_t value) 3767 { 3768 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3769 } 3770 3771 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3772 { 3773 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3774 } 3775 3776 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3777 { 3778 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3779 3780 if (!u32p) { 3781 return 0; 3782 } 3783 3784 u32p += env->pmsav7.rnr[M_REG_NS]; 3785 return *u32p; 3786 } 3787 3788 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3789 uint64_t value) 3790 { 3791 ARMCPU *cpu = env_archcpu(env); 3792 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3793 3794 if (!u32p) { 3795 return; 3796 } 3797 3798 u32p += env->pmsav7.rnr[M_REG_NS]; 3799 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3800 *u32p = value; 3801 } 3802 3803 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3804 uint64_t value) 3805 { 3806 ARMCPU *cpu = env_archcpu(env); 3807 uint32_t nrgs = cpu->pmsav7_dregion; 3808 3809 if (value >= nrgs) { 3810 qemu_log_mask(LOG_GUEST_ERROR, 3811 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3812 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3813 return; 3814 } 3815 3816 raw_write(env, ri, value); 3817 } 3818 3819 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3820 /* Reset for all these registers is handled in arm_cpu_reset(), 3821 * because the PMSAv7 is also used by M-profile CPUs, which do 3822 * not register cpregs but still need the state to be reset. 3823 */ 3824 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3825 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3826 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3827 .readfn = pmsav7_read, .writefn = pmsav7_write, 3828 .resetfn = arm_cp_reset_ignore }, 3829 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3830 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3831 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3832 .readfn = pmsav7_read, .writefn = pmsav7_write, 3833 .resetfn = arm_cp_reset_ignore }, 3834 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3835 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3836 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3837 .readfn = pmsav7_read, .writefn = pmsav7_write, 3838 .resetfn = arm_cp_reset_ignore }, 3839 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3840 .access = PL1_RW, 3841 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3842 .writefn = pmsav7_rgnr_write, 3843 .resetfn = arm_cp_reset_ignore }, 3844 REGINFO_SENTINEL 3845 }; 3846 3847 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3848 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3849 .access = PL1_RW, .type = ARM_CP_ALIAS, 3850 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3851 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3852 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3853 .access = PL1_RW, .type = ARM_CP_ALIAS, 3854 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3855 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3856 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3857 .access = PL1_RW, 3858 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3859 .resetvalue = 0, }, 3860 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3861 .access = PL1_RW, 3862 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3863 .resetvalue = 0, }, 3864 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3865 .access = PL1_RW, 3866 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3867 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3868 .access = PL1_RW, 3869 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3870 /* Protection region base and size registers */ 3871 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3872 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3873 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3874 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3875 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3876 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3877 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3878 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3879 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3880 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3881 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3882 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3883 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3884 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3885 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3886 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3887 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3888 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3889 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3890 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3891 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3892 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3893 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3894 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3895 REGINFO_SENTINEL 3896 }; 3897 3898 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3899 uint64_t value) 3900 { 3901 TCR *tcr = raw_ptr(env, ri); 3902 int maskshift = extract32(value, 0, 3); 3903 3904 if (!arm_feature(env, ARM_FEATURE_V8)) { 3905 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3906 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3907 * using Long-desciptor translation table format */ 3908 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3909 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3910 /* In an implementation that includes the Security Extensions 3911 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3912 * Short-descriptor translation table format. 3913 */ 3914 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3915 } else { 3916 value &= TTBCR_N; 3917 } 3918 } 3919 3920 /* Update the masks corresponding to the TCR bank being written 3921 * Note that we always calculate mask and base_mask, but 3922 * they are only used for short-descriptor tables (ie if EAE is 0); 3923 * for long-descriptor tables the TCR fields are used differently 3924 * and the mask and base_mask values are meaningless. 3925 */ 3926 tcr->raw_tcr = value; 3927 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3928 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3929 } 3930 3931 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3932 uint64_t value) 3933 { 3934 ARMCPU *cpu = env_archcpu(env); 3935 TCR *tcr = raw_ptr(env, ri); 3936 3937 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3938 /* With LPAE the TTBCR could result in a change of ASID 3939 * via the TTBCR.A1 bit, so do a TLB flush. 3940 */ 3941 tlb_flush(CPU(cpu)); 3942 } 3943 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3944 value = deposit64(tcr->raw_tcr, 0, 32, value); 3945 vmsa_ttbcr_raw_write(env, ri, value); 3946 } 3947 3948 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3949 { 3950 TCR *tcr = raw_ptr(env, ri); 3951 3952 /* Reset both the TCR as well as the masks corresponding to the bank of 3953 * the TCR being reset. 3954 */ 3955 tcr->raw_tcr = 0; 3956 tcr->mask = 0; 3957 tcr->base_mask = 0xffffc000u; 3958 } 3959 3960 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3961 uint64_t value) 3962 { 3963 ARMCPU *cpu = env_archcpu(env); 3964 TCR *tcr = raw_ptr(env, ri); 3965 3966 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3967 tlb_flush(CPU(cpu)); 3968 tcr->raw_tcr = value; 3969 } 3970 3971 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3972 uint64_t value) 3973 { 3974 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3975 if (cpreg_field_is_64bit(ri) && 3976 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3977 ARMCPU *cpu = env_archcpu(env); 3978 tlb_flush(CPU(cpu)); 3979 } 3980 raw_write(env, ri, value); 3981 } 3982 3983 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3984 uint64_t value) 3985 { 3986 /* 3987 * If we are running with E2&0 regime, then an ASID is active. 3988 * Flush if that might be changing. Note we're not checking 3989 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3990 * holds the active ASID, only checking the field that might. 3991 */ 3992 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3993 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3994 uint16_t mask = ARMMMUIdxBit_E20_2 | 3995 ARMMMUIdxBit_E20_2_PAN | 3996 ARMMMUIdxBit_E20_0; 3997 3998 if (arm_is_secure_below_el3(env)) { 3999 mask >>= ARM_MMU_IDX_A_NS; 4000 } 4001 4002 tlb_flush_by_mmuidx(env_cpu(env), mask); 4003 } 4004 raw_write(env, ri, value); 4005 } 4006 4007 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4008 uint64_t value) 4009 { 4010 ARMCPU *cpu = env_archcpu(env); 4011 CPUState *cs = CPU(cpu); 4012 4013 /* 4014 * A change in VMID to the stage2 page table (Stage2) invalidates 4015 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4016 */ 4017 if (raw_read(env, ri) != value) { 4018 uint16_t mask = ARMMMUIdxBit_E10_1 | 4019 ARMMMUIdxBit_E10_1_PAN | 4020 ARMMMUIdxBit_E10_0; 4021 4022 if (arm_is_secure_below_el3(env)) { 4023 mask >>= ARM_MMU_IDX_A_NS; 4024 } 4025 4026 tlb_flush_by_mmuidx(cs, mask); 4027 raw_write(env, ri, value); 4028 } 4029 } 4030 4031 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4032 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4033 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4034 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4035 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4036 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4037 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4038 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4039 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4040 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4041 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4042 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4043 offsetof(CPUARMState, cp15.dfar_ns) } }, 4044 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4045 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4046 .access = PL1_RW, .accessfn = access_tvm_trvm, 4047 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4048 .resetvalue = 0, }, 4049 REGINFO_SENTINEL 4050 }; 4051 4052 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4053 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4054 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4055 .access = PL1_RW, .accessfn = access_tvm_trvm, 4056 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4057 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4058 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4059 .access = PL1_RW, .accessfn = access_tvm_trvm, 4060 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4061 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4062 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4063 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4064 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4065 .access = PL1_RW, .accessfn = access_tvm_trvm, 4066 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4067 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4068 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4069 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4070 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4071 .access = PL1_RW, .accessfn = access_tvm_trvm, 4072 .writefn = vmsa_tcr_el12_write, 4073 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4074 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4075 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4076 .access = PL1_RW, .accessfn = access_tvm_trvm, 4077 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4078 .raw_writefn = vmsa_ttbcr_raw_write, 4079 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 4080 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 4081 offsetof(CPUARMState, cp15.tcr_el[1])} }, 4082 REGINFO_SENTINEL 4083 }; 4084 4085 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4086 * qemu tlbs nor adjusting cached masks. 4087 */ 4088 static const ARMCPRegInfo ttbcr2_reginfo = { 4089 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4090 .access = PL1_RW, .accessfn = access_tvm_trvm, 4091 .type = ARM_CP_ALIAS, 4092 .bank_fieldoffsets = { 4093 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 4094 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 4095 }, 4096 }; 4097 4098 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4099 uint64_t value) 4100 { 4101 env->cp15.c15_ticonfig = value & 0xe7; 4102 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4103 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4104 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4105 } 4106 4107 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4108 uint64_t value) 4109 { 4110 env->cp15.c15_threadid = value & 0xffff; 4111 } 4112 4113 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4114 uint64_t value) 4115 { 4116 /* Wait-for-interrupt (deprecated) */ 4117 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4118 } 4119 4120 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4121 uint64_t value) 4122 { 4123 /* On OMAP there are registers indicating the max/min index of dcache lines 4124 * containing a dirty line; cache flush operations have to reset these. 4125 */ 4126 env->cp15.c15_i_max = 0x000; 4127 env->cp15.c15_i_min = 0xff0; 4128 } 4129 4130 static const ARMCPRegInfo omap_cp_reginfo[] = { 4131 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4132 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4133 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4134 .resetvalue = 0, }, 4135 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4136 .access = PL1_RW, .type = ARM_CP_NOP }, 4137 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4138 .access = PL1_RW, 4139 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4140 .writefn = omap_ticonfig_write }, 4141 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4142 .access = PL1_RW, 4143 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4144 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4145 .access = PL1_RW, .resetvalue = 0xff0, 4146 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4147 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4148 .access = PL1_RW, 4149 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4150 .writefn = omap_threadid_write }, 4151 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4152 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4153 .type = ARM_CP_NO_RAW, 4154 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4155 /* TODO: Peripheral port remap register: 4156 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4157 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4158 * when MMU is off. 4159 */ 4160 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4161 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4162 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4163 .writefn = omap_cachemaint_write }, 4164 { .name = "C9", .cp = 15, .crn = 9, 4165 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4166 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4167 REGINFO_SENTINEL 4168 }; 4169 4170 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4171 uint64_t value) 4172 { 4173 env->cp15.c15_cpar = value & 0x3fff; 4174 } 4175 4176 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4177 { .name = "XSCALE_CPAR", 4178 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4179 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4180 .writefn = xscale_cpar_write, }, 4181 { .name = "XSCALE_AUXCR", 4182 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4183 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4184 .resetvalue = 0, }, 4185 /* XScale specific cache-lockdown: since we have no cache we NOP these 4186 * and hope the guest does not really rely on cache behaviour. 4187 */ 4188 { .name = "XSCALE_LOCK_ICACHE_LINE", 4189 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4190 .access = PL1_W, .type = ARM_CP_NOP }, 4191 { .name = "XSCALE_UNLOCK_ICACHE", 4192 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4193 .access = PL1_W, .type = ARM_CP_NOP }, 4194 { .name = "XSCALE_DCACHE_LOCK", 4195 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4196 .access = PL1_RW, .type = ARM_CP_NOP }, 4197 { .name = "XSCALE_UNLOCK_DCACHE", 4198 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4199 .access = PL1_W, .type = ARM_CP_NOP }, 4200 REGINFO_SENTINEL 4201 }; 4202 4203 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4204 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4205 * implementation of this implementation-defined space. 4206 * Ideally this should eventually disappear in favour of actually 4207 * implementing the correct behaviour for all cores. 4208 */ 4209 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4210 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4211 .access = PL1_RW, 4212 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4213 .resetvalue = 0 }, 4214 REGINFO_SENTINEL 4215 }; 4216 4217 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4218 /* Cache status: RAZ because we have no cache so it's always clean */ 4219 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4220 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4221 .resetvalue = 0 }, 4222 REGINFO_SENTINEL 4223 }; 4224 4225 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4226 /* We never have a a block transfer operation in progress */ 4227 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4228 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4229 .resetvalue = 0 }, 4230 /* The cache ops themselves: these all NOP for QEMU */ 4231 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4232 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4233 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4234 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4235 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4236 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4237 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4238 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4239 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4240 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4241 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4242 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4243 REGINFO_SENTINEL 4244 }; 4245 4246 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4247 /* The cache test-and-clean instructions always return (1 << 30) 4248 * to indicate that there are no dirty cache lines. 4249 */ 4250 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4251 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4252 .resetvalue = (1 << 30) }, 4253 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4254 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4255 .resetvalue = (1 << 30) }, 4256 REGINFO_SENTINEL 4257 }; 4258 4259 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4260 /* Ignore ReadBuffer accesses */ 4261 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4262 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4263 .access = PL1_RW, .resetvalue = 0, 4264 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4265 REGINFO_SENTINEL 4266 }; 4267 4268 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4269 { 4270 unsigned int cur_el = arm_current_el(env); 4271 4272 if (arm_is_el2_enabled(env) && cur_el == 1) { 4273 return env->cp15.vpidr_el2; 4274 } 4275 return raw_read(env, ri); 4276 } 4277 4278 static uint64_t mpidr_read_val(CPUARMState *env) 4279 { 4280 ARMCPU *cpu = env_archcpu(env); 4281 uint64_t mpidr = cpu->mp_affinity; 4282 4283 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4284 mpidr |= (1U << 31); 4285 /* Cores which are uniprocessor (non-coherent) 4286 * but still implement the MP extensions set 4287 * bit 30. (For instance, Cortex-R5). 4288 */ 4289 if (cpu->mp_is_up) { 4290 mpidr |= (1u << 30); 4291 } 4292 } 4293 return mpidr; 4294 } 4295 4296 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4297 { 4298 unsigned int cur_el = arm_current_el(env); 4299 4300 if (arm_is_el2_enabled(env) && cur_el == 1) { 4301 return env->cp15.vmpidr_el2; 4302 } 4303 return mpidr_read_val(env); 4304 } 4305 4306 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4307 /* NOP AMAIR0/1 */ 4308 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4309 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4310 .access = PL1_RW, .accessfn = access_tvm_trvm, 4311 .type = ARM_CP_CONST, .resetvalue = 0 }, 4312 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4313 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4314 .access = PL1_RW, .accessfn = access_tvm_trvm, 4315 .type = ARM_CP_CONST, .resetvalue = 0 }, 4316 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4317 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4318 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4319 offsetof(CPUARMState, cp15.par_ns)} }, 4320 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4321 .access = PL1_RW, .accessfn = access_tvm_trvm, 4322 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4323 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4324 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4325 .writefn = vmsa_ttbr_write, }, 4326 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4327 .access = PL1_RW, .accessfn = access_tvm_trvm, 4328 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4329 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4330 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4331 .writefn = vmsa_ttbr_write, }, 4332 REGINFO_SENTINEL 4333 }; 4334 4335 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4336 { 4337 return vfp_get_fpcr(env); 4338 } 4339 4340 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4341 uint64_t value) 4342 { 4343 vfp_set_fpcr(env, value); 4344 } 4345 4346 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4347 { 4348 return vfp_get_fpsr(env); 4349 } 4350 4351 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4352 uint64_t value) 4353 { 4354 vfp_set_fpsr(env, value); 4355 } 4356 4357 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4358 bool isread) 4359 { 4360 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4361 return CP_ACCESS_TRAP; 4362 } 4363 return CP_ACCESS_OK; 4364 } 4365 4366 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4367 uint64_t value) 4368 { 4369 env->daif = value & PSTATE_DAIF; 4370 } 4371 4372 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4373 { 4374 return env->pstate & PSTATE_PAN; 4375 } 4376 4377 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4378 uint64_t value) 4379 { 4380 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4381 } 4382 4383 static const ARMCPRegInfo pan_reginfo = { 4384 .name = "PAN", .state = ARM_CP_STATE_AA64, 4385 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4386 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4387 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4388 }; 4389 4390 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4391 { 4392 return env->pstate & PSTATE_UAO; 4393 } 4394 4395 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4396 uint64_t value) 4397 { 4398 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4399 } 4400 4401 static const ARMCPRegInfo uao_reginfo = { 4402 .name = "UAO", .state = ARM_CP_STATE_AA64, 4403 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4404 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4405 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4406 }; 4407 4408 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4409 { 4410 return env->pstate & PSTATE_DIT; 4411 } 4412 4413 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4417 } 4418 4419 static const ARMCPRegInfo dit_reginfo = { 4420 .name = "DIT", .state = ARM_CP_STATE_AA64, 4421 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4422 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4423 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4424 }; 4425 4426 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4427 { 4428 return env->pstate & PSTATE_SSBS; 4429 } 4430 4431 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4432 uint64_t value) 4433 { 4434 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4435 } 4436 4437 static const ARMCPRegInfo ssbs_reginfo = { 4438 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4439 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4440 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4441 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4442 }; 4443 4444 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4445 const ARMCPRegInfo *ri, 4446 bool isread) 4447 { 4448 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4449 switch (arm_current_el(env)) { 4450 case 0: 4451 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4452 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4453 return CP_ACCESS_TRAP; 4454 } 4455 /* fall through */ 4456 case 1: 4457 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4458 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4459 return CP_ACCESS_TRAP_EL2; 4460 } 4461 break; 4462 } 4463 return CP_ACCESS_OK; 4464 } 4465 4466 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4467 const ARMCPRegInfo *ri, 4468 bool isread) 4469 { 4470 /* Cache invalidate/clean to Point of Unification... */ 4471 switch (arm_current_el(env)) { 4472 case 0: 4473 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4474 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4475 return CP_ACCESS_TRAP; 4476 } 4477 /* fall through */ 4478 case 1: 4479 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4480 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4481 return CP_ACCESS_TRAP_EL2; 4482 } 4483 break; 4484 } 4485 return CP_ACCESS_OK; 4486 } 4487 4488 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4489 * Page D4-1736 (DDI0487A.b) 4490 */ 4491 4492 static int vae1_tlbmask(CPUARMState *env) 4493 { 4494 uint64_t hcr = arm_hcr_el2_eff(env); 4495 uint16_t mask; 4496 4497 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4498 mask = ARMMMUIdxBit_E20_2 | 4499 ARMMMUIdxBit_E20_2_PAN | 4500 ARMMMUIdxBit_E20_0; 4501 } else { 4502 mask = ARMMMUIdxBit_E10_1 | 4503 ARMMMUIdxBit_E10_1_PAN | 4504 ARMMMUIdxBit_E10_0; 4505 } 4506 4507 if (arm_is_secure_below_el3(env)) { 4508 mask >>= ARM_MMU_IDX_A_NS; 4509 } 4510 4511 return mask; 4512 } 4513 4514 /* Return 56 if TBI is enabled, 64 otherwise. */ 4515 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4516 uint64_t addr) 4517 { 4518 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4519 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4520 int select = extract64(addr, 55, 1); 4521 4522 return (tbi >> select) & 1 ? 56 : 64; 4523 } 4524 4525 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4526 { 4527 uint64_t hcr = arm_hcr_el2_eff(env); 4528 ARMMMUIdx mmu_idx; 4529 4530 /* Only the regime of the mmu_idx below is significant. */ 4531 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4532 mmu_idx = ARMMMUIdx_E20_0; 4533 } else { 4534 mmu_idx = ARMMMUIdx_E10_0; 4535 } 4536 4537 if (arm_is_secure_below_el3(env)) { 4538 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4539 } 4540 4541 return tlbbits_for_regime(env, mmu_idx, addr); 4542 } 4543 4544 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4545 uint64_t value) 4546 { 4547 CPUState *cs = env_cpu(env); 4548 int mask = vae1_tlbmask(env); 4549 4550 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4551 } 4552 4553 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4554 uint64_t value) 4555 { 4556 CPUState *cs = env_cpu(env); 4557 int mask = vae1_tlbmask(env); 4558 4559 if (tlb_force_broadcast(env)) { 4560 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4561 } else { 4562 tlb_flush_by_mmuidx(cs, mask); 4563 } 4564 } 4565 4566 static int alle1_tlbmask(CPUARMState *env) 4567 { 4568 /* 4569 * Note that the 'ALL' scope must invalidate both stage 1 and 4570 * stage 2 translations, whereas most other scopes only invalidate 4571 * stage 1 translations. 4572 */ 4573 if (arm_is_secure_below_el3(env)) { 4574 return ARMMMUIdxBit_SE10_1 | 4575 ARMMMUIdxBit_SE10_1_PAN | 4576 ARMMMUIdxBit_SE10_0; 4577 } else { 4578 return ARMMMUIdxBit_E10_1 | 4579 ARMMMUIdxBit_E10_1_PAN | 4580 ARMMMUIdxBit_E10_0; 4581 } 4582 } 4583 4584 static int e2_tlbmask(CPUARMState *env) 4585 { 4586 if (arm_is_secure_below_el3(env)) { 4587 return ARMMMUIdxBit_SE20_0 | 4588 ARMMMUIdxBit_SE20_2 | 4589 ARMMMUIdxBit_SE20_2_PAN | 4590 ARMMMUIdxBit_SE2; 4591 } else { 4592 return ARMMMUIdxBit_E20_0 | 4593 ARMMMUIdxBit_E20_2 | 4594 ARMMMUIdxBit_E20_2_PAN | 4595 ARMMMUIdxBit_E2; 4596 } 4597 } 4598 4599 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4600 uint64_t value) 4601 { 4602 CPUState *cs = env_cpu(env); 4603 int mask = alle1_tlbmask(env); 4604 4605 tlb_flush_by_mmuidx(cs, mask); 4606 } 4607 4608 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4609 uint64_t value) 4610 { 4611 CPUState *cs = env_cpu(env); 4612 int mask = e2_tlbmask(env); 4613 4614 tlb_flush_by_mmuidx(cs, mask); 4615 } 4616 4617 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4618 uint64_t value) 4619 { 4620 ARMCPU *cpu = env_archcpu(env); 4621 CPUState *cs = CPU(cpu); 4622 4623 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4624 } 4625 4626 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4627 uint64_t value) 4628 { 4629 CPUState *cs = env_cpu(env); 4630 int mask = alle1_tlbmask(env); 4631 4632 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4633 } 4634 4635 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4636 uint64_t value) 4637 { 4638 CPUState *cs = env_cpu(env); 4639 int mask = e2_tlbmask(env); 4640 4641 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4642 } 4643 4644 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4645 uint64_t value) 4646 { 4647 CPUState *cs = env_cpu(env); 4648 4649 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4650 } 4651 4652 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4653 uint64_t value) 4654 { 4655 /* Invalidate by VA, EL2 4656 * Currently handles both VAE2 and VALE2, since we don't support 4657 * flush-last-level-only. 4658 */ 4659 CPUState *cs = env_cpu(env); 4660 int mask = e2_tlbmask(env); 4661 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4662 4663 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4664 } 4665 4666 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4667 uint64_t value) 4668 { 4669 /* Invalidate by VA, EL3 4670 * Currently handles both VAE3 and VALE3, since we don't support 4671 * flush-last-level-only. 4672 */ 4673 ARMCPU *cpu = env_archcpu(env); 4674 CPUState *cs = CPU(cpu); 4675 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4676 4677 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4678 } 4679 4680 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4681 uint64_t value) 4682 { 4683 CPUState *cs = env_cpu(env); 4684 int mask = vae1_tlbmask(env); 4685 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4686 int bits = vae1_tlbbits(env, pageaddr); 4687 4688 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4689 } 4690 4691 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4692 uint64_t value) 4693 { 4694 /* Invalidate by VA, EL1&0 (AArch64 version). 4695 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4696 * since we don't support flush-for-specific-ASID-only or 4697 * flush-last-level-only. 4698 */ 4699 CPUState *cs = env_cpu(env); 4700 int mask = vae1_tlbmask(env); 4701 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4702 int bits = vae1_tlbbits(env, pageaddr); 4703 4704 if (tlb_force_broadcast(env)) { 4705 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4706 } else { 4707 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4708 } 4709 } 4710 4711 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4712 uint64_t value) 4713 { 4714 CPUState *cs = env_cpu(env); 4715 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4716 bool secure = arm_is_secure_below_el3(env); 4717 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4718 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4719 pageaddr); 4720 4721 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4722 } 4723 4724 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4725 uint64_t value) 4726 { 4727 CPUState *cs = env_cpu(env); 4728 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4729 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4730 4731 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4732 ARMMMUIdxBit_SE3, bits); 4733 } 4734 4735 #ifdef TARGET_AARCH64 4736 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env, 4737 uint64_t value) 4738 { 4739 unsigned int page_shift; 4740 unsigned int page_size_granule; 4741 uint64_t num; 4742 uint64_t scale; 4743 uint64_t exponent; 4744 uint64_t length; 4745 4746 num = extract64(value, 39, 4); 4747 scale = extract64(value, 44, 2); 4748 page_size_granule = extract64(value, 46, 2); 4749 4750 page_shift = page_size_granule * 2 + 12; 4751 4752 if (page_size_granule == 0) { 4753 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n", 4754 page_size_granule); 4755 return 0; 4756 } 4757 4758 exponent = (5 * scale) + 1; 4759 length = (num + 1) << (exponent + page_shift); 4760 4761 return length; 4762 } 4763 4764 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value, 4765 bool two_ranges) 4766 { 4767 /* TODO: ARMv8.7 FEAT_LPA2 */ 4768 uint64_t pageaddr; 4769 4770 if (two_ranges) { 4771 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS; 4772 } else { 4773 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS; 4774 } 4775 4776 return pageaddr; 4777 } 4778 4779 static void do_rvae_write(CPUARMState *env, uint64_t value, 4780 int idxmap, bool synced) 4781 { 4782 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4783 bool two_ranges = regime_has_2_ranges(one_idx); 4784 uint64_t baseaddr, length; 4785 int bits; 4786 4787 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges); 4788 length = tlbi_aa64_range_get_length(env, value); 4789 bits = tlbbits_for_regime(env, one_idx, baseaddr); 4790 4791 if (synced) { 4792 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4793 baseaddr, 4794 length, 4795 idxmap, 4796 bits); 4797 } else { 4798 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr, 4799 length, idxmap, bits); 4800 } 4801 } 4802 4803 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4804 const ARMCPRegInfo *ri, 4805 uint64_t value) 4806 { 4807 /* 4808 * Invalidate by VA range, EL1&0. 4809 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4810 * since we don't support flush-for-specific-ASID-only or 4811 * flush-last-level-only. 4812 */ 4813 4814 do_rvae_write(env, value, vae1_tlbmask(env), 4815 tlb_force_broadcast(env)); 4816 } 4817 4818 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4819 const ARMCPRegInfo *ri, 4820 uint64_t value) 4821 { 4822 /* 4823 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4824 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4825 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4826 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4827 * shareable specific flushes. 4828 */ 4829 4830 do_rvae_write(env, value, vae1_tlbmask(env), true); 4831 } 4832 4833 static int vae2_tlbmask(CPUARMState *env) 4834 { 4835 return (arm_is_secure_below_el3(env) 4836 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4837 } 4838 4839 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4840 const ARMCPRegInfo *ri, 4841 uint64_t value) 4842 { 4843 /* 4844 * Invalidate by VA range, EL2. 4845 * Currently handles all of RVAE2 and RVALE2, 4846 * since we don't support flush-for-specific-ASID-only or 4847 * flush-last-level-only. 4848 */ 4849 4850 do_rvae_write(env, value, vae2_tlbmask(env), 4851 tlb_force_broadcast(env)); 4852 4853 4854 } 4855 4856 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4857 const ARMCPRegInfo *ri, 4858 uint64_t value) 4859 { 4860 /* 4861 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4862 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4863 * since we don't support flush-for-specific-ASID-only, 4864 * flush-last-level-only or inner/outer shareable specific flushes. 4865 */ 4866 4867 do_rvae_write(env, value, vae2_tlbmask(env), true); 4868 4869 } 4870 4871 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4872 const ARMCPRegInfo *ri, 4873 uint64_t value) 4874 { 4875 /* 4876 * Invalidate by VA range, EL3. 4877 * Currently handles all of RVAE3 and RVALE3, 4878 * since we don't support flush-for-specific-ASID-only or 4879 * flush-last-level-only. 4880 */ 4881 4882 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4883 tlb_force_broadcast(env)); 4884 } 4885 4886 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4887 const ARMCPRegInfo *ri, 4888 uint64_t value) 4889 { 4890 /* 4891 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4892 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4893 * since we don't support flush-for-specific-ASID-only, 4894 * flush-last-level-only or inner/outer specific flushes. 4895 */ 4896 4897 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4898 } 4899 #endif 4900 4901 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4902 bool isread) 4903 { 4904 int cur_el = arm_current_el(env); 4905 4906 if (cur_el < 2) { 4907 uint64_t hcr = arm_hcr_el2_eff(env); 4908 4909 if (cur_el == 0) { 4910 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4911 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4912 return CP_ACCESS_TRAP_EL2; 4913 } 4914 } else { 4915 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4916 return CP_ACCESS_TRAP; 4917 } 4918 if (hcr & HCR_TDZ) { 4919 return CP_ACCESS_TRAP_EL2; 4920 } 4921 } 4922 } else if (hcr & HCR_TDZ) { 4923 return CP_ACCESS_TRAP_EL2; 4924 } 4925 } 4926 return CP_ACCESS_OK; 4927 } 4928 4929 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4930 { 4931 ARMCPU *cpu = env_archcpu(env); 4932 int dzp_bit = 1 << 4; 4933 4934 /* DZP indicates whether DC ZVA access is allowed */ 4935 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4936 dzp_bit = 0; 4937 } 4938 return cpu->dcz_blocksize | dzp_bit; 4939 } 4940 4941 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4942 bool isread) 4943 { 4944 if (!(env->pstate & PSTATE_SP)) { 4945 /* Access to SP_EL0 is undefined if it's being used as 4946 * the stack pointer. 4947 */ 4948 return CP_ACCESS_TRAP_UNCATEGORIZED; 4949 } 4950 return CP_ACCESS_OK; 4951 } 4952 4953 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4954 { 4955 return env->pstate & PSTATE_SP; 4956 } 4957 4958 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4959 { 4960 update_spsel(env, val); 4961 } 4962 4963 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4964 uint64_t value) 4965 { 4966 ARMCPU *cpu = env_archcpu(env); 4967 4968 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4969 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4970 value &= ~SCTLR_M; 4971 } 4972 4973 /* ??? Lots of these bits are not implemented. */ 4974 4975 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4976 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4977 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4978 } else { 4979 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4980 SCTLR_ATA0 | SCTLR_ATA); 4981 } 4982 } 4983 4984 if (raw_read(env, ri) == value) { 4985 /* Skip the TLB flush if nothing actually changed; Linux likes 4986 * to do a lot of pointless SCTLR writes. 4987 */ 4988 return; 4989 } 4990 4991 raw_write(env, ri, value); 4992 4993 /* This may enable/disable the MMU, so do a TLB flush. */ 4994 tlb_flush(CPU(cpu)); 4995 4996 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4997 /* 4998 * Normally we would always end the TB on an SCTLR write; see the 4999 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5000 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5001 * of hflags from the translator, so do it here. 5002 */ 5003 arm_rebuild_hflags(env); 5004 } 5005 } 5006 5007 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 5008 bool isread) 5009 { 5010 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 5011 return CP_ACCESS_TRAP_FP_EL2; 5012 } 5013 if (env->cp15.cptr_el[3] & CPTR_TFP) { 5014 return CP_ACCESS_TRAP_FP_EL3; 5015 } 5016 return CP_ACCESS_OK; 5017 } 5018 5019 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5020 uint64_t value) 5021 { 5022 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 5023 } 5024 5025 static const ARMCPRegInfo v8_cp_reginfo[] = { 5026 /* Minimal set of EL0-visible registers. This will need to be expanded 5027 * significantly for system emulation of AArch64 CPUs. 5028 */ 5029 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5030 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5031 .access = PL0_RW, .type = ARM_CP_NZCV }, 5032 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5033 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5034 .type = ARM_CP_NO_RAW, 5035 .access = PL0_RW, .accessfn = aa64_daif_access, 5036 .fieldoffset = offsetof(CPUARMState, daif), 5037 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5038 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5039 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5040 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5041 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5042 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5043 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5044 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5045 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5046 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5047 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5048 .access = PL0_R, .type = ARM_CP_NO_RAW, 5049 .readfn = aa64_dczid_read }, 5050 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5051 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5052 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5053 #ifndef CONFIG_USER_ONLY 5054 /* Avoid overhead of an access check that always passes in user-mode */ 5055 .accessfn = aa64_zva_access, 5056 #endif 5057 }, 5058 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5059 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5060 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5061 /* Cache ops: all NOPs since we don't emulate caches */ 5062 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5063 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5064 .access = PL1_W, .type = ARM_CP_NOP, 5065 .accessfn = aa64_cacheop_pou_access }, 5066 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5067 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5068 .access = PL1_W, .type = ARM_CP_NOP, 5069 .accessfn = aa64_cacheop_pou_access }, 5070 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5071 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5072 .access = PL0_W, .type = ARM_CP_NOP, 5073 .accessfn = aa64_cacheop_pou_access }, 5074 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5075 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5076 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5077 .type = ARM_CP_NOP }, 5078 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5079 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5080 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5081 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5082 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5083 .access = PL0_W, .type = ARM_CP_NOP, 5084 .accessfn = aa64_cacheop_poc_access }, 5085 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5086 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5087 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5088 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5090 .access = PL0_W, .type = ARM_CP_NOP, 5091 .accessfn = aa64_cacheop_pou_access }, 5092 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5093 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5094 .access = PL0_W, .type = ARM_CP_NOP, 5095 .accessfn = aa64_cacheop_poc_access }, 5096 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5097 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5098 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5099 /* TLBI operations */ 5100 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5101 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5102 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5103 .writefn = tlbi_aa64_vmalle1is_write }, 5104 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5105 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5106 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5107 .writefn = tlbi_aa64_vae1is_write }, 5108 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5109 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5110 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5111 .writefn = tlbi_aa64_vmalle1is_write }, 5112 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5113 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5114 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5115 .writefn = tlbi_aa64_vae1is_write }, 5116 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5117 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5118 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5119 .writefn = tlbi_aa64_vae1is_write }, 5120 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5121 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5122 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5123 .writefn = tlbi_aa64_vae1is_write }, 5124 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5125 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5126 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5127 .writefn = tlbi_aa64_vmalle1_write }, 5128 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5129 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5130 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5131 .writefn = tlbi_aa64_vae1_write }, 5132 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5133 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5134 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5135 .writefn = tlbi_aa64_vmalle1_write }, 5136 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5137 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5138 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5139 .writefn = tlbi_aa64_vae1_write }, 5140 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5141 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5142 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5143 .writefn = tlbi_aa64_vae1_write }, 5144 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5145 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5146 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5147 .writefn = tlbi_aa64_vae1_write }, 5148 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5149 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5150 .access = PL2_W, .type = ARM_CP_NOP }, 5151 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5152 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5153 .access = PL2_W, .type = ARM_CP_NOP }, 5154 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5155 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5156 .access = PL2_W, .type = ARM_CP_NO_RAW, 5157 .writefn = tlbi_aa64_alle1is_write }, 5158 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5159 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5160 .access = PL2_W, .type = ARM_CP_NO_RAW, 5161 .writefn = tlbi_aa64_alle1is_write }, 5162 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5163 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5164 .access = PL2_W, .type = ARM_CP_NOP }, 5165 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5166 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5167 .access = PL2_W, .type = ARM_CP_NOP }, 5168 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5169 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5170 .access = PL2_W, .type = ARM_CP_NO_RAW, 5171 .writefn = tlbi_aa64_alle1_write }, 5172 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5173 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5174 .access = PL2_W, .type = ARM_CP_NO_RAW, 5175 .writefn = tlbi_aa64_alle1is_write }, 5176 #ifndef CONFIG_USER_ONLY 5177 /* 64 bit address translation operations */ 5178 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5179 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5180 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5181 .writefn = ats_write64 }, 5182 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5183 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5184 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5185 .writefn = ats_write64 }, 5186 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5187 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5188 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5189 .writefn = ats_write64 }, 5190 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5191 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5192 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5193 .writefn = ats_write64 }, 5194 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5195 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5196 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5197 .writefn = ats_write64 }, 5198 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5199 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5200 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5201 .writefn = ats_write64 }, 5202 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5203 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5204 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5205 .writefn = ats_write64 }, 5206 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5207 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5208 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5209 .writefn = ats_write64 }, 5210 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5211 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5212 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5213 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5214 .writefn = ats_write64 }, 5215 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5216 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5217 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5218 .writefn = ats_write64 }, 5219 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5220 .type = ARM_CP_ALIAS, 5221 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5222 .access = PL1_RW, .resetvalue = 0, 5223 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5224 .writefn = par_write }, 5225 #endif 5226 /* TLB invalidate last level of translation table walk */ 5227 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5228 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5229 .writefn = tlbimva_is_write }, 5230 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5231 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5232 .writefn = tlbimvaa_is_write }, 5233 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5234 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5235 .writefn = tlbimva_write }, 5236 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5237 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5238 .writefn = tlbimvaa_write }, 5239 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5240 .type = ARM_CP_NO_RAW, .access = PL2_W, 5241 .writefn = tlbimva_hyp_write }, 5242 { .name = "TLBIMVALHIS", 5243 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5244 .type = ARM_CP_NO_RAW, .access = PL2_W, 5245 .writefn = tlbimva_hyp_is_write }, 5246 { .name = "TLBIIPAS2", 5247 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5248 .type = ARM_CP_NOP, .access = PL2_W }, 5249 { .name = "TLBIIPAS2IS", 5250 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5251 .type = ARM_CP_NOP, .access = PL2_W }, 5252 { .name = "TLBIIPAS2L", 5253 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5254 .type = ARM_CP_NOP, .access = PL2_W }, 5255 { .name = "TLBIIPAS2LIS", 5256 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5257 .type = ARM_CP_NOP, .access = PL2_W }, 5258 /* 32 bit cache operations */ 5259 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5260 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5261 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5262 .type = ARM_CP_NOP, .access = PL1_W }, 5263 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5264 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5265 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5266 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5267 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5268 .type = ARM_CP_NOP, .access = PL1_W }, 5269 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5270 .type = ARM_CP_NOP, .access = PL1_W }, 5271 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5272 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5273 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5274 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5275 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5276 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5277 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5278 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5279 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5280 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5281 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5282 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5283 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5284 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5285 /* MMU Domain access control / MPU write buffer control */ 5286 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5287 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5288 .writefn = dacr_write, .raw_writefn = raw_write, 5289 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5290 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5291 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5292 .type = ARM_CP_ALIAS, 5293 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5294 .access = PL1_RW, 5295 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5296 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5297 .type = ARM_CP_ALIAS, 5298 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5299 .access = PL1_RW, 5300 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5301 /* We rely on the access checks not allowing the guest to write to the 5302 * state field when SPSel indicates that it's being used as the stack 5303 * pointer. 5304 */ 5305 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5306 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5307 .access = PL1_RW, .accessfn = sp_el0_access, 5308 .type = ARM_CP_ALIAS, 5309 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5310 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5311 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5312 .access = PL2_RW, .type = ARM_CP_ALIAS, 5313 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5314 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5315 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5316 .type = ARM_CP_NO_RAW, 5317 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5318 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5319 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5320 .type = ARM_CP_ALIAS, 5321 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5322 .access = PL2_RW, .accessfn = fpexc32_access }, 5323 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5324 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5325 .access = PL2_RW, .resetvalue = 0, 5326 .writefn = dacr_write, .raw_writefn = raw_write, 5327 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5328 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5329 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5330 .access = PL2_RW, .resetvalue = 0, 5331 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5332 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5333 .type = ARM_CP_ALIAS, 5334 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5335 .access = PL2_RW, 5336 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5337 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5338 .type = ARM_CP_ALIAS, 5339 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5340 .access = PL2_RW, 5341 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5342 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5343 .type = ARM_CP_ALIAS, 5344 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5345 .access = PL2_RW, 5346 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5347 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5348 .type = ARM_CP_ALIAS, 5349 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5350 .access = PL2_RW, 5351 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5352 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5353 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5354 .resetvalue = 0, 5355 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5356 { .name = "SDCR", .type = ARM_CP_ALIAS, 5357 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5358 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5359 .writefn = sdcr_write, 5360 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5361 REGINFO_SENTINEL 5362 }; 5363 5364 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5365 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5366 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5367 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5368 .access = PL2_RW, 5369 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5370 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5371 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5372 .access = PL2_RW, 5373 .type = ARM_CP_CONST, .resetvalue = 0 }, 5374 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5375 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5376 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5377 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5378 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5379 .access = PL2_RW, 5380 .type = ARM_CP_CONST, .resetvalue = 0 }, 5381 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5382 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5383 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5384 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5385 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5386 .access = PL2_RW, .type = ARM_CP_CONST, 5387 .resetvalue = 0 }, 5388 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5389 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5390 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5391 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5392 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5393 .access = PL2_RW, .type = ARM_CP_CONST, 5394 .resetvalue = 0 }, 5395 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5396 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5397 .access = PL2_RW, .type = ARM_CP_CONST, 5398 .resetvalue = 0 }, 5399 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5400 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5401 .access = PL2_RW, .type = ARM_CP_CONST, 5402 .resetvalue = 0 }, 5403 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5404 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5405 .access = PL2_RW, .type = ARM_CP_CONST, 5406 .resetvalue = 0 }, 5407 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5408 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5409 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5410 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5411 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5412 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5413 .type = ARM_CP_CONST, .resetvalue = 0 }, 5414 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5415 .cp = 15, .opc1 = 6, .crm = 2, 5416 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5417 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5418 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5419 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5420 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5421 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5422 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5423 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5424 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5425 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5426 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5427 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5428 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5429 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5430 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5431 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5432 .resetvalue = 0 }, 5433 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5434 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5435 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5436 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5437 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5438 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5439 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5440 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5441 .resetvalue = 0 }, 5442 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5443 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5444 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5445 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5446 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5447 .resetvalue = 0 }, 5448 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5449 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5450 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5451 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5452 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5453 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5454 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5455 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5456 .access = PL2_RW, .accessfn = access_tda, 5457 .type = ARM_CP_CONST, .resetvalue = 0 }, 5458 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5459 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5460 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5461 .type = ARM_CP_CONST, .resetvalue = 0 }, 5462 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5463 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5464 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5465 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5466 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5467 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5468 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5469 .type = ARM_CP_CONST, 5470 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5471 .access = PL2_RW, .resetvalue = 0 }, 5472 REGINFO_SENTINEL 5473 }; 5474 5475 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5476 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5477 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5478 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5479 .access = PL2_RW, 5480 .type = ARM_CP_CONST, .resetvalue = 0 }, 5481 REGINFO_SENTINEL 5482 }; 5483 5484 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5485 { 5486 ARMCPU *cpu = env_archcpu(env); 5487 5488 if (arm_feature(env, ARM_FEATURE_V8)) { 5489 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5490 } else { 5491 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5492 } 5493 5494 if (arm_feature(env, ARM_FEATURE_EL3)) { 5495 valid_mask &= ~HCR_HCD; 5496 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5497 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5498 * However, if we're using the SMC PSCI conduit then QEMU is 5499 * effectively acting like EL3 firmware and so the guest at 5500 * EL2 should retain the ability to prevent EL1 from being 5501 * able to make SMC calls into the ersatz firmware, so in 5502 * that case HCR.TSC should be read/write. 5503 */ 5504 valid_mask &= ~HCR_TSC; 5505 } 5506 5507 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5508 if (cpu_isar_feature(aa64_vh, cpu)) { 5509 valid_mask |= HCR_E2H; 5510 } 5511 if (cpu_isar_feature(aa64_lor, cpu)) { 5512 valid_mask |= HCR_TLOR; 5513 } 5514 if (cpu_isar_feature(aa64_pauth, cpu)) { 5515 valid_mask |= HCR_API | HCR_APK; 5516 } 5517 if (cpu_isar_feature(aa64_mte, cpu)) { 5518 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5519 } 5520 } 5521 5522 /* Clear RES0 bits. */ 5523 value &= valid_mask; 5524 5525 /* 5526 * These bits change the MMU setup: 5527 * HCR_VM enables stage 2 translation 5528 * HCR_PTW forbids certain page-table setups 5529 * HCR_DC disables stage1 and enables stage2 translation 5530 * HCR_DCT enables tagging on (disabled) stage1 translation 5531 */ 5532 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5533 tlb_flush(CPU(cpu)); 5534 } 5535 env->cp15.hcr_el2 = value; 5536 5537 /* 5538 * Updates to VI and VF require us to update the status of 5539 * virtual interrupts, which are the logical OR of these bits 5540 * and the state of the input lines from the GIC. (This requires 5541 * that we have the iothread lock, which is done by marking the 5542 * reginfo structs as ARM_CP_IO.) 5543 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5544 * possible for it to be taken immediately, because VIRQ and 5545 * VFIQ are masked unless running at EL0 or EL1, and HCR 5546 * can only be written at EL2. 5547 */ 5548 g_assert(qemu_mutex_iothread_locked()); 5549 arm_cpu_update_virq(cpu); 5550 arm_cpu_update_vfiq(cpu); 5551 } 5552 5553 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5554 { 5555 do_hcr_write(env, value, 0); 5556 } 5557 5558 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5559 uint64_t value) 5560 { 5561 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5562 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5563 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5564 } 5565 5566 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5567 uint64_t value) 5568 { 5569 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5570 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5571 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5572 } 5573 5574 /* 5575 * Return the effective value of HCR_EL2. 5576 * Bits that are not included here: 5577 * RW (read from SCR_EL3.RW as needed) 5578 */ 5579 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5580 { 5581 uint64_t ret = env->cp15.hcr_el2; 5582 5583 if (!arm_is_el2_enabled(env)) { 5584 /* 5585 * "This register has no effect if EL2 is not enabled in the 5586 * current Security state". This is ARMv8.4-SecEL2 speak for 5587 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5588 * 5589 * Prior to that, the language was "In an implementation that 5590 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5591 * as if this field is 0 for all purposes other than a direct 5592 * read or write access of HCR_EL2". With lots of enumeration 5593 * on a per-field basis. In current QEMU, this is condition 5594 * is arm_is_secure_below_el3. 5595 * 5596 * Since the v8.4 language applies to the entire register, and 5597 * appears to be backward compatible, use that. 5598 */ 5599 return 0; 5600 } 5601 5602 /* 5603 * For a cpu that supports both aarch64 and aarch32, we can set bits 5604 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5605 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5606 */ 5607 if (!arm_el_is_aa64(env, 2)) { 5608 uint64_t aa32_valid; 5609 5610 /* 5611 * These bits are up-to-date as of ARMv8.6. 5612 * For HCR, it's easiest to list just the 2 bits that are invalid. 5613 * For HCR2, list those that are valid. 5614 */ 5615 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5616 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5617 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5618 ret &= aa32_valid; 5619 } 5620 5621 if (ret & HCR_TGE) { 5622 /* These bits are up-to-date as of ARMv8.6. */ 5623 if (ret & HCR_E2H) { 5624 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5625 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5626 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5627 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5628 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5629 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5630 } else { 5631 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5632 } 5633 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5634 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5635 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5636 HCR_TLOR); 5637 } 5638 5639 return ret; 5640 } 5641 5642 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5643 uint64_t value) 5644 { 5645 /* 5646 * For A-profile AArch32 EL3, if NSACR.CP10 5647 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5648 */ 5649 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5650 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5651 value &= ~(0x3 << 10); 5652 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5653 } 5654 env->cp15.cptr_el[2] = value; 5655 } 5656 5657 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5658 { 5659 /* 5660 * For A-profile AArch32 EL3, if NSACR.CP10 5661 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5662 */ 5663 uint64_t value = env->cp15.cptr_el[2]; 5664 5665 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5666 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5667 value |= 0x3 << 10; 5668 } 5669 return value; 5670 } 5671 5672 static const ARMCPRegInfo el2_cp_reginfo[] = { 5673 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5674 .type = ARM_CP_IO, 5675 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5676 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5677 .writefn = hcr_write }, 5678 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5679 .type = ARM_CP_ALIAS | ARM_CP_IO, 5680 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5681 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5682 .writefn = hcr_writelow }, 5683 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5684 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5685 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5686 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5687 .type = ARM_CP_ALIAS, 5688 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5689 .access = PL2_RW, 5690 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5691 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5692 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5693 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5694 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5695 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5696 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5697 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5698 .type = ARM_CP_ALIAS, 5699 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5700 .access = PL2_RW, 5701 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5702 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5703 .type = ARM_CP_ALIAS, 5704 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5705 .access = PL2_RW, 5706 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5707 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5708 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5709 .access = PL2_RW, .writefn = vbar_write, 5710 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5711 .resetvalue = 0 }, 5712 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5713 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5714 .access = PL3_RW, .type = ARM_CP_ALIAS, 5715 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5716 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5717 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5718 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5719 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5720 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5721 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5722 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5723 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5724 .resetvalue = 0 }, 5725 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5726 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5727 .access = PL2_RW, .type = ARM_CP_ALIAS, 5728 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5729 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5730 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5731 .access = PL2_RW, .type = ARM_CP_CONST, 5732 .resetvalue = 0 }, 5733 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5734 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5735 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5736 .access = PL2_RW, .type = ARM_CP_CONST, 5737 .resetvalue = 0 }, 5738 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5739 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5740 .access = PL2_RW, .type = ARM_CP_CONST, 5741 .resetvalue = 0 }, 5742 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5743 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5744 .access = PL2_RW, .type = ARM_CP_CONST, 5745 .resetvalue = 0 }, 5746 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5747 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5748 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5749 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5750 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5751 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5752 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5753 .type = ARM_CP_ALIAS, 5754 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5755 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5756 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5757 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5758 .access = PL2_RW, 5759 /* no .writefn needed as this can't cause an ASID change; 5760 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5761 */ 5762 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5763 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5764 .cp = 15, .opc1 = 6, .crm = 2, 5765 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5766 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5767 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5768 .writefn = vttbr_write }, 5769 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5770 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5771 .access = PL2_RW, .writefn = vttbr_write, 5772 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5773 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5774 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5775 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5776 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5777 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5778 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5779 .access = PL2_RW, .resetvalue = 0, 5780 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5781 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5782 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5783 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5784 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5785 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5786 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5787 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5788 { .name = "TLBIALLNSNH", 5789 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5790 .type = ARM_CP_NO_RAW, .access = PL2_W, 5791 .writefn = tlbiall_nsnh_write }, 5792 { .name = "TLBIALLNSNHIS", 5793 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5794 .type = ARM_CP_NO_RAW, .access = PL2_W, 5795 .writefn = tlbiall_nsnh_is_write }, 5796 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5797 .type = ARM_CP_NO_RAW, .access = PL2_W, 5798 .writefn = tlbiall_hyp_write }, 5799 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5800 .type = ARM_CP_NO_RAW, .access = PL2_W, 5801 .writefn = tlbiall_hyp_is_write }, 5802 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5803 .type = ARM_CP_NO_RAW, .access = PL2_W, 5804 .writefn = tlbimva_hyp_write }, 5805 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5806 .type = ARM_CP_NO_RAW, .access = PL2_W, 5807 .writefn = tlbimva_hyp_is_write }, 5808 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5809 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5810 .type = ARM_CP_NO_RAW, .access = PL2_W, 5811 .writefn = tlbi_aa64_alle2_write }, 5812 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5813 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5814 .type = ARM_CP_NO_RAW, .access = PL2_W, 5815 .writefn = tlbi_aa64_vae2_write }, 5816 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5817 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5818 .access = PL2_W, .type = ARM_CP_NO_RAW, 5819 .writefn = tlbi_aa64_vae2_write }, 5820 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5821 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5822 .access = PL2_W, .type = ARM_CP_NO_RAW, 5823 .writefn = tlbi_aa64_alle2is_write }, 5824 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5825 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5826 .type = ARM_CP_NO_RAW, .access = PL2_W, 5827 .writefn = tlbi_aa64_vae2is_write }, 5828 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5829 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5830 .access = PL2_W, .type = ARM_CP_NO_RAW, 5831 .writefn = tlbi_aa64_vae2is_write }, 5832 #ifndef CONFIG_USER_ONLY 5833 /* Unlike the other EL2-related AT operations, these must 5834 * UNDEF from EL3 if EL2 is not implemented, which is why we 5835 * define them here rather than with the rest of the AT ops. 5836 */ 5837 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5838 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5839 .access = PL2_W, .accessfn = at_s1e2_access, 5840 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5841 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5842 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5843 .access = PL2_W, .accessfn = at_s1e2_access, 5844 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5845 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5846 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5847 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5848 * to behave as if SCR.NS was 1. 5849 */ 5850 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5851 .access = PL2_W, 5852 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5853 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5854 .access = PL2_W, 5855 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5856 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5857 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5858 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5859 * reset values as IMPDEF. We choose to reset to 3 to comply with 5860 * both ARMv7 and ARMv8. 5861 */ 5862 .access = PL2_RW, .resetvalue = 3, 5863 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5864 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5865 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5866 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5867 .writefn = gt_cntvoff_write, 5868 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5869 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5870 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5871 .writefn = gt_cntvoff_write, 5872 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5873 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5874 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5875 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5876 .type = ARM_CP_IO, .access = PL2_RW, 5877 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5878 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5879 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5880 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5881 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5882 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5883 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5884 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5885 .resetfn = gt_hyp_timer_reset, 5886 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5887 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5888 .type = ARM_CP_IO, 5889 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5890 .access = PL2_RW, 5891 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5892 .resetvalue = 0, 5893 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5894 #endif 5895 /* The only field of MDCR_EL2 that has a defined architectural reset value 5896 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5897 */ 5898 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5899 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5900 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5901 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5902 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5903 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5904 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5905 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5906 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5907 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5908 .access = PL2_RW, 5909 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5910 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5911 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5912 .access = PL2_RW, 5913 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5914 REGINFO_SENTINEL 5915 }; 5916 5917 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5918 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5919 .type = ARM_CP_ALIAS | ARM_CP_IO, 5920 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5921 .access = PL2_RW, 5922 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5923 .writefn = hcr_writehigh }, 5924 REGINFO_SENTINEL 5925 }; 5926 5927 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5928 bool isread) 5929 { 5930 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5931 return CP_ACCESS_OK; 5932 } 5933 return CP_ACCESS_TRAP_UNCATEGORIZED; 5934 } 5935 5936 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5937 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5938 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5939 .access = PL2_RW, .accessfn = sel2_access, 5940 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5941 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5942 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5943 .access = PL2_RW, .accessfn = sel2_access, 5944 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5945 REGINFO_SENTINEL 5946 }; 5947 5948 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5949 bool isread) 5950 { 5951 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5952 * At Secure EL1 it traps to EL3 or EL2. 5953 */ 5954 if (arm_current_el(env) == 3) { 5955 return CP_ACCESS_OK; 5956 } 5957 if (arm_is_secure_below_el3(env)) { 5958 if (env->cp15.scr_el3 & SCR_EEL2) { 5959 return CP_ACCESS_TRAP_EL2; 5960 } 5961 return CP_ACCESS_TRAP_EL3; 5962 } 5963 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5964 if (isread) { 5965 return CP_ACCESS_OK; 5966 } 5967 return CP_ACCESS_TRAP_UNCATEGORIZED; 5968 } 5969 5970 static const ARMCPRegInfo el3_cp_reginfo[] = { 5971 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5972 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5973 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5974 .resetfn = scr_reset, .writefn = scr_write }, 5975 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5976 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5977 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5978 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5979 .writefn = scr_write }, 5980 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5981 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5982 .access = PL3_RW, .resetvalue = 0, 5983 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5984 { .name = "SDER", 5985 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5986 .access = PL3_RW, .resetvalue = 0, 5987 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5988 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5989 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5990 .writefn = vbar_write, .resetvalue = 0, 5991 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5992 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5993 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5994 .access = PL3_RW, .resetvalue = 0, 5995 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5996 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5997 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5998 .access = PL3_RW, 5999 /* no .writefn needed as this can't cause an ASID change; 6000 * we must provide a .raw_writefn and .resetfn because we handle 6001 * reset and migration for the AArch32 TTBCR(S), which might be 6002 * using mask and base_mask. 6003 */ 6004 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 6005 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6006 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6007 .type = ARM_CP_ALIAS, 6008 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6009 .access = PL3_RW, 6010 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6011 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6012 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6013 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6014 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6015 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6016 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6017 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6018 .type = ARM_CP_ALIAS, 6019 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6020 .access = PL3_RW, 6021 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6022 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6023 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6024 .access = PL3_RW, .writefn = vbar_write, 6025 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6026 .resetvalue = 0 }, 6027 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6028 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6029 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6030 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6031 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6032 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6033 .access = PL3_RW, .resetvalue = 0, 6034 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6035 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6036 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6037 .access = PL3_RW, .type = ARM_CP_CONST, 6038 .resetvalue = 0 }, 6039 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6040 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6041 .access = PL3_RW, .type = ARM_CP_CONST, 6042 .resetvalue = 0 }, 6043 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6044 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6045 .access = PL3_RW, .type = ARM_CP_CONST, 6046 .resetvalue = 0 }, 6047 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6048 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6049 .access = PL3_W, .type = ARM_CP_NO_RAW, 6050 .writefn = tlbi_aa64_alle3is_write }, 6051 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6052 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6053 .access = PL3_W, .type = ARM_CP_NO_RAW, 6054 .writefn = tlbi_aa64_vae3is_write }, 6055 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6056 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6057 .access = PL3_W, .type = ARM_CP_NO_RAW, 6058 .writefn = tlbi_aa64_vae3is_write }, 6059 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6060 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6061 .access = PL3_W, .type = ARM_CP_NO_RAW, 6062 .writefn = tlbi_aa64_alle3_write }, 6063 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6064 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6065 .access = PL3_W, .type = ARM_CP_NO_RAW, 6066 .writefn = tlbi_aa64_vae3_write }, 6067 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6068 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6069 .access = PL3_W, .type = ARM_CP_NO_RAW, 6070 .writefn = tlbi_aa64_vae3_write }, 6071 REGINFO_SENTINEL 6072 }; 6073 6074 #ifndef CONFIG_USER_ONLY 6075 /* Test if system register redirection is to occur in the current state. */ 6076 static bool redirect_for_e2h(CPUARMState *env) 6077 { 6078 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6079 } 6080 6081 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6082 { 6083 CPReadFn *readfn; 6084 6085 if (redirect_for_e2h(env)) { 6086 /* Switch to the saved EL2 version of the register. */ 6087 ri = ri->opaque; 6088 readfn = ri->readfn; 6089 } else { 6090 readfn = ri->orig_readfn; 6091 } 6092 if (readfn == NULL) { 6093 readfn = raw_read; 6094 } 6095 return readfn(env, ri); 6096 } 6097 6098 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6099 uint64_t value) 6100 { 6101 CPWriteFn *writefn; 6102 6103 if (redirect_for_e2h(env)) { 6104 /* Switch to the saved EL2 version of the register. */ 6105 ri = ri->opaque; 6106 writefn = ri->writefn; 6107 } else { 6108 writefn = ri->orig_writefn; 6109 } 6110 if (writefn == NULL) { 6111 writefn = raw_write; 6112 } 6113 writefn(env, ri, value); 6114 } 6115 6116 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6117 { 6118 struct E2HAlias { 6119 uint32_t src_key, dst_key, new_key; 6120 const char *src_name, *dst_name, *new_name; 6121 bool (*feature)(const ARMISARegisters *id); 6122 }; 6123 6124 #define K(op0, op1, crn, crm, op2) \ 6125 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6126 6127 static const struct E2HAlias aliases[] = { 6128 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6129 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6130 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6131 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6132 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6133 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6134 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6135 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6136 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6137 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6138 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6139 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6140 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6141 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6142 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6143 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6144 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6145 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6146 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6147 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6148 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6149 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6150 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6151 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6152 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6153 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6154 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6155 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6156 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6157 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6158 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6159 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6160 6161 /* 6162 * Note that redirection of ZCR is mentioned in the description 6163 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6164 * not in the summary table. 6165 */ 6166 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6167 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6168 6169 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6170 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6171 6172 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6173 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6174 }; 6175 #undef K 6176 6177 size_t i; 6178 6179 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6180 const struct E2HAlias *a = &aliases[i]; 6181 ARMCPRegInfo *src_reg, *dst_reg; 6182 6183 if (a->feature && !a->feature(&cpu->isar)) { 6184 continue; 6185 } 6186 6187 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 6188 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 6189 g_assert(src_reg != NULL); 6190 g_assert(dst_reg != NULL); 6191 6192 /* Cross-compare names to detect typos in the keys. */ 6193 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6194 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6195 6196 /* None of the core system registers use opaque; we will. */ 6197 g_assert(src_reg->opaque == NULL); 6198 6199 /* Create alias before redirection so we dup the right data. */ 6200 if (a->new_key) { 6201 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6202 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 6203 bool ok; 6204 6205 new_reg->name = a->new_name; 6206 new_reg->type |= ARM_CP_ALIAS; 6207 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6208 new_reg->access &= PL2_RW | PL3_RW; 6209 6210 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 6211 g_assert(ok); 6212 } 6213 6214 src_reg->opaque = dst_reg; 6215 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6216 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6217 if (!src_reg->raw_readfn) { 6218 src_reg->raw_readfn = raw_read; 6219 } 6220 if (!src_reg->raw_writefn) { 6221 src_reg->raw_writefn = raw_write; 6222 } 6223 src_reg->readfn = el2_e2h_read; 6224 src_reg->writefn = el2_e2h_write; 6225 } 6226 } 6227 #endif 6228 6229 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6230 bool isread) 6231 { 6232 int cur_el = arm_current_el(env); 6233 6234 if (cur_el < 2) { 6235 uint64_t hcr = arm_hcr_el2_eff(env); 6236 6237 if (cur_el == 0) { 6238 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6239 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6240 return CP_ACCESS_TRAP_EL2; 6241 } 6242 } else { 6243 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6244 return CP_ACCESS_TRAP; 6245 } 6246 if (hcr & HCR_TID2) { 6247 return CP_ACCESS_TRAP_EL2; 6248 } 6249 } 6250 } else if (hcr & HCR_TID2) { 6251 return CP_ACCESS_TRAP_EL2; 6252 } 6253 } 6254 6255 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6256 return CP_ACCESS_TRAP_EL2; 6257 } 6258 6259 return CP_ACCESS_OK; 6260 } 6261 6262 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6263 uint64_t value) 6264 { 6265 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6266 * read via a bit in OSLSR_EL1. 6267 */ 6268 int oslock; 6269 6270 if (ri->state == ARM_CP_STATE_AA32) { 6271 oslock = (value == 0xC5ACCE55); 6272 } else { 6273 oslock = value & 1; 6274 } 6275 6276 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6277 } 6278 6279 static const ARMCPRegInfo debug_cp_reginfo[] = { 6280 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6281 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6282 * unlike DBGDRAR it is never accessible from EL0. 6283 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6284 * accessor. 6285 */ 6286 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6287 .access = PL0_R, .accessfn = access_tdra, 6288 .type = ARM_CP_CONST, .resetvalue = 0 }, 6289 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6290 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6291 .access = PL1_R, .accessfn = access_tdra, 6292 .type = ARM_CP_CONST, .resetvalue = 0 }, 6293 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6294 .access = PL0_R, .accessfn = access_tdra, 6295 .type = ARM_CP_CONST, .resetvalue = 0 }, 6296 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6297 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6298 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6299 .access = PL1_RW, .accessfn = access_tda, 6300 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6301 .resetvalue = 0 }, 6302 /* 6303 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6304 * Debug Communication Channel is not implemented. 6305 */ 6306 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6307 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6308 .access = PL0_R, .accessfn = access_tda, 6309 .type = ARM_CP_CONST, .resetvalue = 0 }, 6310 /* 6311 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6312 * it is unlikely a guest will care. 6313 * We don't implement the configurable EL0 access. 6314 */ 6315 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6316 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6317 .type = ARM_CP_ALIAS, 6318 .access = PL1_R, .accessfn = access_tda, 6319 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6320 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6321 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6322 .access = PL1_W, .type = ARM_CP_NO_RAW, 6323 .accessfn = access_tdosa, 6324 .writefn = oslar_write }, 6325 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6326 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6327 .access = PL1_R, .resetvalue = 10, 6328 .accessfn = access_tdosa, 6329 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6330 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6331 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6332 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6333 .access = PL1_RW, .accessfn = access_tdosa, 6334 .type = ARM_CP_NOP }, 6335 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6336 * implement vector catch debug events yet. 6337 */ 6338 { .name = "DBGVCR", 6339 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6340 .access = PL1_RW, .accessfn = access_tda, 6341 .type = ARM_CP_NOP }, 6342 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6343 * to save and restore a 32-bit guest's DBGVCR) 6344 */ 6345 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6346 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6347 .access = PL2_RW, .accessfn = access_tda, 6348 .type = ARM_CP_NOP }, 6349 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6350 * Channel but Linux may try to access this register. The 32-bit 6351 * alias is DBGDCCINT. 6352 */ 6353 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6354 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6355 .access = PL1_RW, .accessfn = access_tda, 6356 .type = ARM_CP_NOP }, 6357 REGINFO_SENTINEL 6358 }; 6359 6360 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6361 /* 64 bit access versions of the (dummy) debug registers */ 6362 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6363 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6364 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6365 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6366 REGINFO_SENTINEL 6367 }; 6368 6369 /* Return the exception level to which exceptions should be taken 6370 * via SVEAccessTrap. If an exception should be routed through 6371 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6372 * take care of raising that exception. 6373 * C.f. the ARM pseudocode function CheckSVEEnabled. 6374 */ 6375 int sve_exception_el(CPUARMState *env, int el) 6376 { 6377 #ifndef CONFIG_USER_ONLY 6378 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6379 6380 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6381 bool disabled = false; 6382 6383 /* The CPACR.ZEN controls traps to EL1: 6384 * 0, 2 : trap EL0 and EL1 accesses 6385 * 1 : trap only EL0 accesses 6386 * 3 : trap no accesses 6387 */ 6388 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6389 disabled = true; 6390 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6391 disabled = el == 0; 6392 } 6393 if (disabled) { 6394 /* route_to_el2 */ 6395 return hcr_el2 & HCR_TGE ? 2 : 1; 6396 } 6397 6398 /* Check CPACR.FPEN. */ 6399 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6400 disabled = true; 6401 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6402 disabled = el == 0; 6403 } 6404 if (disabled) { 6405 return 0; 6406 } 6407 } 6408 6409 /* CPTR_EL2. Since TZ and TFP are positive, 6410 * they will be zero when EL2 is not present. 6411 */ 6412 if (el <= 2 && arm_is_el2_enabled(env)) { 6413 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6414 return 2; 6415 } 6416 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6417 return 0; 6418 } 6419 } 6420 6421 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6422 if (arm_feature(env, ARM_FEATURE_EL3) 6423 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6424 return 3; 6425 } 6426 #endif 6427 return 0; 6428 } 6429 6430 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6431 { 6432 uint32_t end_len; 6433 6434 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6435 end_len = start_len; 6436 6437 if (!test_bit(start_len, cpu->sve_vq_map)) { 6438 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6439 assert(end_len < start_len); 6440 } 6441 return end_len; 6442 } 6443 6444 /* 6445 * Given that SVE is enabled, return the vector length for EL. 6446 */ 6447 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6448 { 6449 ARMCPU *cpu = env_archcpu(env); 6450 uint32_t zcr_len = cpu->sve_max_vq - 1; 6451 6452 if (el <= 1) { 6453 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6454 } 6455 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6456 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6457 } 6458 if (arm_feature(env, ARM_FEATURE_EL3)) { 6459 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6460 } 6461 6462 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6463 } 6464 6465 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6466 uint64_t value) 6467 { 6468 int cur_el = arm_current_el(env); 6469 int old_len = sve_zcr_len_for_el(env, cur_el); 6470 int new_len; 6471 6472 /* Bits other than [3:0] are RAZ/WI. */ 6473 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6474 raw_write(env, ri, value & 0xf); 6475 6476 /* 6477 * Because we arrived here, we know both FP and SVE are enabled; 6478 * otherwise we would have trapped access to the ZCR_ELn register. 6479 */ 6480 new_len = sve_zcr_len_for_el(env, cur_el); 6481 if (new_len < old_len) { 6482 aarch64_sve_narrow_vq(env, new_len + 1); 6483 } 6484 } 6485 6486 static const ARMCPRegInfo zcr_el1_reginfo = { 6487 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6488 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6489 .access = PL1_RW, .type = ARM_CP_SVE, 6490 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6491 .writefn = zcr_write, .raw_writefn = raw_write 6492 }; 6493 6494 static const ARMCPRegInfo zcr_el2_reginfo = { 6495 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6496 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6497 .access = PL2_RW, .type = ARM_CP_SVE, 6498 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6499 .writefn = zcr_write, .raw_writefn = raw_write 6500 }; 6501 6502 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6503 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6504 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6505 .access = PL2_RW, .type = ARM_CP_SVE, 6506 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6507 }; 6508 6509 static const ARMCPRegInfo zcr_el3_reginfo = { 6510 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6511 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6512 .access = PL3_RW, .type = ARM_CP_SVE, 6513 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6514 .writefn = zcr_write, .raw_writefn = raw_write 6515 }; 6516 6517 void hw_watchpoint_update(ARMCPU *cpu, int n) 6518 { 6519 CPUARMState *env = &cpu->env; 6520 vaddr len = 0; 6521 vaddr wvr = env->cp15.dbgwvr[n]; 6522 uint64_t wcr = env->cp15.dbgwcr[n]; 6523 int mask; 6524 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6525 6526 if (env->cpu_watchpoint[n]) { 6527 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6528 env->cpu_watchpoint[n] = NULL; 6529 } 6530 6531 if (!extract64(wcr, 0, 1)) { 6532 /* E bit clear : watchpoint disabled */ 6533 return; 6534 } 6535 6536 switch (extract64(wcr, 3, 2)) { 6537 case 0: 6538 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6539 return; 6540 case 1: 6541 flags |= BP_MEM_READ; 6542 break; 6543 case 2: 6544 flags |= BP_MEM_WRITE; 6545 break; 6546 case 3: 6547 flags |= BP_MEM_ACCESS; 6548 break; 6549 } 6550 6551 /* Attempts to use both MASK and BAS fields simultaneously are 6552 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6553 * thus generating a watchpoint for every byte in the masked region. 6554 */ 6555 mask = extract64(wcr, 24, 4); 6556 if (mask == 1 || mask == 2) { 6557 /* Reserved values of MASK; we must act as if the mask value was 6558 * some non-reserved value, or as if the watchpoint were disabled. 6559 * We choose the latter. 6560 */ 6561 return; 6562 } else if (mask) { 6563 /* Watchpoint covers an aligned area up to 2GB in size */ 6564 len = 1ULL << mask; 6565 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6566 * whether the watchpoint fires when the unmasked bits match; we opt 6567 * to generate the exceptions. 6568 */ 6569 wvr &= ~(len - 1); 6570 } else { 6571 /* Watchpoint covers bytes defined by the byte address select bits */ 6572 int bas = extract64(wcr, 5, 8); 6573 int basstart; 6574 6575 if (extract64(wvr, 2, 1)) { 6576 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6577 * ignored, and BAS[3:0] define which bytes to watch. 6578 */ 6579 bas &= 0xf; 6580 } 6581 6582 if (bas == 0) { 6583 /* This must act as if the watchpoint is disabled */ 6584 return; 6585 } 6586 6587 /* The BAS bits are supposed to be programmed to indicate a contiguous 6588 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6589 * we fire for each byte in the word/doubleword addressed by the WVR. 6590 * We choose to ignore any non-zero bits after the first range of 1s. 6591 */ 6592 basstart = ctz32(bas); 6593 len = cto32(bas >> basstart); 6594 wvr += basstart; 6595 } 6596 6597 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6598 &env->cpu_watchpoint[n]); 6599 } 6600 6601 void hw_watchpoint_update_all(ARMCPU *cpu) 6602 { 6603 int i; 6604 CPUARMState *env = &cpu->env; 6605 6606 /* Completely clear out existing QEMU watchpoints and our array, to 6607 * avoid possible stale entries following migration load. 6608 */ 6609 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6610 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6611 6612 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6613 hw_watchpoint_update(cpu, i); 6614 } 6615 } 6616 6617 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6618 uint64_t value) 6619 { 6620 ARMCPU *cpu = env_archcpu(env); 6621 int i = ri->crm; 6622 6623 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6624 * register reads and behaves as if values written are sign extended. 6625 * Bits [1:0] are RES0. 6626 */ 6627 value = sextract64(value, 0, 49) & ~3ULL; 6628 6629 raw_write(env, ri, value); 6630 hw_watchpoint_update(cpu, i); 6631 } 6632 6633 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6634 uint64_t value) 6635 { 6636 ARMCPU *cpu = env_archcpu(env); 6637 int i = ri->crm; 6638 6639 raw_write(env, ri, value); 6640 hw_watchpoint_update(cpu, i); 6641 } 6642 6643 void hw_breakpoint_update(ARMCPU *cpu, int n) 6644 { 6645 CPUARMState *env = &cpu->env; 6646 uint64_t bvr = env->cp15.dbgbvr[n]; 6647 uint64_t bcr = env->cp15.dbgbcr[n]; 6648 vaddr addr; 6649 int bt; 6650 int flags = BP_CPU; 6651 6652 if (env->cpu_breakpoint[n]) { 6653 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6654 env->cpu_breakpoint[n] = NULL; 6655 } 6656 6657 if (!extract64(bcr, 0, 1)) { 6658 /* E bit clear : watchpoint disabled */ 6659 return; 6660 } 6661 6662 bt = extract64(bcr, 20, 4); 6663 6664 switch (bt) { 6665 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6666 case 5: /* linked address mismatch (reserved if AArch64) */ 6667 qemu_log_mask(LOG_UNIMP, 6668 "arm: address mismatch breakpoint types not implemented\n"); 6669 return; 6670 case 0: /* unlinked address match */ 6671 case 1: /* linked address match */ 6672 { 6673 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6674 * we behave as if the register was sign extended. Bits [1:0] are 6675 * RES0. The BAS field is used to allow setting breakpoints on 16 6676 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6677 * a bp will fire if the addresses covered by the bp and the addresses 6678 * covered by the insn overlap but the insn doesn't start at the 6679 * start of the bp address range. We choose to require the insn and 6680 * the bp to have the same address. The constraints on writing to 6681 * BAS enforced in dbgbcr_write mean we have only four cases: 6682 * 0b0000 => no breakpoint 6683 * 0b0011 => breakpoint on addr 6684 * 0b1100 => breakpoint on addr + 2 6685 * 0b1111 => breakpoint on addr 6686 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6687 */ 6688 int bas = extract64(bcr, 5, 4); 6689 addr = sextract64(bvr, 0, 49) & ~3ULL; 6690 if (bas == 0) { 6691 return; 6692 } 6693 if (bas == 0xc) { 6694 addr += 2; 6695 } 6696 break; 6697 } 6698 case 2: /* unlinked context ID match */ 6699 case 8: /* unlinked VMID match (reserved if no EL2) */ 6700 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6701 qemu_log_mask(LOG_UNIMP, 6702 "arm: unlinked context breakpoint types not implemented\n"); 6703 return; 6704 case 9: /* linked VMID match (reserved if no EL2) */ 6705 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6706 case 3: /* linked context ID match */ 6707 default: 6708 /* We must generate no events for Linked context matches (unless 6709 * they are linked to by some other bp/wp, which is handled in 6710 * updates for the linking bp/wp). We choose to also generate no events 6711 * for reserved values. 6712 */ 6713 return; 6714 } 6715 6716 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6717 } 6718 6719 void hw_breakpoint_update_all(ARMCPU *cpu) 6720 { 6721 int i; 6722 CPUARMState *env = &cpu->env; 6723 6724 /* Completely clear out existing QEMU breakpoints and our array, to 6725 * avoid possible stale entries following migration load. 6726 */ 6727 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6728 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6729 6730 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6731 hw_breakpoint_update(cpu, i); 6732 } 6733 } 6734 6735 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6736 uint64_t value) 6737 { 6738 ARMCPU *cpu = env_archcpu(env); 6739 int i = ri->crm; 6740 6741 raw_write(env, ri, value); 6742 hw_breakpoint_update(cpu, i); 6743 } 6744 6745 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6746 uint64_t value) 6747 { 6748 ARMCPU *cpu = env_archcpu(env); 6749 int i = ri->crm; 6750 6751 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6752 * copy of BAS[0]. 6753 */ 6754 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6755 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6756 6757 raw_write(env, ri, value); 6758 hw_breakpoint_update(cpu, i); 6759 } 6760 6761 static void define_debug_regs(ARMCPU *cpu) 6762 { 6763 /* Define v7 and v8 architectural debug registers. 6764 * These are just dummy implementations for now. 6765 */ 6766 int i; 6767 int wrps, brps, ctx_cmps; 6768 6769 /* 6770 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6771 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6772 * the register must not exist for this cpu. 6773 */ 6774 if (cpu->isar.dbgdidr != 0) { 6775 ARMCPRegInfo dbgdidr = { 6776 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6777 .opc1 = 0, .opc2 = 0, 6778 .access = PL0_R, .accessfn = access_tda, 6779 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6780 }; 6781 define_one_arm_cp_reg(cpu, &dbgdidr); 6782 } 6783 6784 /* Note that all these register fields hold "number of Xs minus 1". */ 6785 brps = arm_num_brps(cpu); 6786 wrps = arm_num_wrps(cpu); 6787 ctx_cmps = arm_num_ctx_cmps(cpu); 6788 6789 assert(ctx_cmps <= brps); 6790 6791 define_arm_cp_regs(cpu, debug_cp_reginfo); 6792 6793 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6794 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6795 } 6796 6797 for (i = 0; i < brps; i++) { 6798 ARMCPRegInfo dbgregs[] = { 6799 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6800 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6801 .access = PL1_RW, .accessfn = access_tda, 6802 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6803 .writefn = dbgbvr_write, .raw_writefn = raw_write 6804 }, 6805 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6806 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6807 .access = PL1_RW, .accessfn = access_tda, 6808 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6809 .writefn = dbgbcr_write, .raw_writefn = raw_write 6810 }, 6811 REGINFO_SENTINEL 6812 }; 6813 define_arm_cp_regs(cpu, dbgregs); 6814 } 6815 6816 for (i = 0; i < wrps; i++) { 6817 ARMCPRegInfo dbgregs[] = { 6818 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6819 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6820 .access = PL1_RW, .accessfn = access_tda, 6821 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6822 .writefn = dbgwvr_write, .raw_writefn = raw_write 6823 }, 6824 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6825 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6826 .access = PL1_RW, .accessfn = access_tda, 6827 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6828 .writefn = dbgwcr_write, .raw_writefn = raw_write 6829 }, 6830 REGINFO_SENTINEL 6831 }; 6832 define_arm_cp_regs(cpu, dbgregs); 6833 } 6834 } 6835 6836 static void define_pmu_regs(ARMCPU *cpu) 6837 { 6838 /* 6839 * v7 performance monitor control register: same implementor 6840 * field as main ID register, and we implement four counters in 6841 * addition to the cycle count register. 6842 */ 6843 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6844 ARMCPRegInfo pmcr = { 6845 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6846 .access = PL0_RW, 6847 .type = ARM_CP_IO | ARM_CP_ALIAS, 6848 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6849 .accessfn = pmreg_access, .writefn = pmcr_write, 6850 .raw_writefn = raw_write, 6851 }; 6852 ARMCPRegInfo pmcr64 = { 6853 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6854 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6855 .access = PL0_RW, .accessfn = pmreg_access, 6856 .type = ARM_CP_IO, 6857 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6858 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6859 PMCRLC, 6860 .writefn = pmcr_write, .raw_writefn = raw_write, 6861 }; 6862 define_one_arm_cp_reg(cpu, &pmcr); 6863 define_one_arm_cp_reg(cpu, &pmcr64); 6864 for (i = 0; i < pmcrn; i++) { 6865 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6866 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6867 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6868 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6869 ARMCPRegInfo pmev_regs[] = { 6870 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6871 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6872 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6873 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6874 .accessfn = pmreg_access }, 6875 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6876 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6877 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6878 .type = ARM_CP_IO, 6879 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6880 .raw_readfn = pmevcntr_rawread, 6881 .raw_writefn = pmevcntr_rawwrite }, 6882 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6883 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6884 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6885 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6886 .accessfn = pmreg_access }, 6887 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6888 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6889 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6890 .type = ARM_CP_IO, 6891 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6892 .raw_writefn = pmevtyper_rawwrite }, 6893 REGINFO_SENTINEL 6894 }; 6895 define_arm_cp_regs(cpu, pmev_regs); 6896 g_free(pmevcntr_name); 6897 g_free(pmevcntr_el0_name); 6898 g_free(pmevtyper_name); 6899 g_free(pmevtyper_el0_name); 6900 } 6901 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6902 ARMCPRegInfo v81_pmu_regs[] = { 6903 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6904 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6905 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6906 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6907 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6908 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6909 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6910 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6911 REGINFO_SENTINEL 6912 }; 6913 define_arm_cp_regs(cpu, v81_pmu_regs); 6914 } 6915 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6916 static const ARMCPRegInfo v84_pmmir = { 6917 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6918 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6919 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6920 .resetvalue = 0 6921 }; 6922 define_one_arm_cp_reg(cpu, &v84_pmmir); 6923 } 6924 } 6925 6926 /* We don't know until after realize whether there's a GICv3 6927 * attached, and that is what registers the gicv3 sysregs. 6928 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6929 * at runtime. 6930 */ 6931 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6932 { 6933 ARMCPU *cpu = env_archcpu(env); 6934 uint64_t pfr1 = cpu->isar.id_pfr1; 6935 6936 if (env->gicv3state) { 6937 pfr1 |= 1 << 28; 6938 } 6939 return pfr1; 6940 } 6941 6942 #ifndef CONFIG_USER_ONLY 6943 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6944 { 6945 ARMCPU *cpu = env_archcpu(env); 6946 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6947 6948 if (env->gicv3state) { 6949 pfr0 |= 1 << 24; 6950 } 6951 return pfr0; 6952 } 6953 #endif 6954 6955 /* Shared logic between LORID and the rest of the LOR* registers. 6956 * Secure state exclusion has already been dealt with. 6957 */ 6958 static CPAccessResult access_lor_ns(CPUARMState *env, 6959 const ARMCPRegInfo *ri, bool isread) 6960 { 6961 int el = arm_current_el(env); 6962 6963 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6964 return CP_ACCESS_TRAP_EL2; 6965 } 6966 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6967 return CP_ACCESS_TRAP_EL3; 6968 } 6969 return CP_ACCESS_OK; 6970 } 6971 6972 static CPAccessResult access_lor_other(CPUARMState *env, 6973 const ARMCPRegInfo *ri, bool isread) 6974 { 6975 if (arm_is_secure_below_el3(env)) { 6976 /* Access denied in secure mode. */ 6977 return CP_ACCESS_TRAP; 6978 } 6979 return access_lor_ns(env, ri, isread); 6980 } 6981 6982 /* 6983 * A trivial implementation of ARMv8.1-LOR leaves all of these 6984 * registers fixed at 0, which indicates that there are zero 6985 * supported Limited Ordering regions. 6986 */ 6987 static const ARMCPRegInfo lor_reginfo[] = { 6988 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6989 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6990 .access = PL1_RW, .accessfn = access_lor_other, 6991 .type = ARM_CP_CONST, .resetvalue = 0 }, 6992 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6993 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6994 .access = PL1_RW, .accessfn = access_lor_other, 6995 .type = ARM_CP_CONST, .resetvalue = 0 }, 6996 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6997 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6998 .access = PL1_RW, .accessfn = access_lor_other, 6999 .type = ARM_CP_CONST, .resetvalue = 0 }, 7000 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7001 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7002 .access = PL1_RW, .accessfn = access_lor_other, 7003 .type = ARM_CP_CONST, .resetvalue = 0 }, 7004 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7005 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7006 .access = PL1_R, .accessfn = access_lor_ns, 7007 .type = ARM_CP_CONST, .resetvalue = 0 }, 7008 REGINFO_SENTINEL 7009 }; 7010 7011 #ifdef TARGET_AARCH64 7012 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7013 bool isread) 7014 { 7015 int el = arm_current_el(env); 7016 7017 if (el < 2 && 7018 arm_feature(env, ARM_FEATURE_EL2) && 7019 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7020 return CP_ACCESS_TRAP_EL2; 7021 } 7022 if (el < 3 && 7023 arm_feature(env, ARM_FEATURE_EL3) && 7024 !(env->cp15.scr_el3 & SCR_APK)) { 7025 return CP_ACCESS_TRAP_EL3; 7026 } 7027 return CP_ACCESS_OK; 7028 } 7029 7030 static const ARMCPRegInfo pauth_reginfo[] = { 7031 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7032 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7033 .access = PL1_RW, .accessfn = access_pauth, 7034 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7035 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7036 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7037 .access = PL1_RW, .accessfn = access_pauth, 7038 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7039 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7040 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7041 .access = PL1_RW, .accessfn = access_pauth, 7042 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7043 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7045 .access = PL1_RW, .accessfn = access_pauth, 7046 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7047 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7048 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7049 .access = PL1_RW, .accessfn = access_pauth, 7050 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7051 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7052 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7053 .access = PL1_RW, .accessfn = access_pauth, 7054 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7055 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7056 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7057 .access = PL1_RW, .accessfn = access_pauth, 7058 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7059 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7061 .access = PL1_RW, .accessfn = access_pauth, 7062 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7063 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7064 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7065 .access = PL1_RW, .accessfn = access_pauth, 7066 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7067 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7068 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7069 .access = PL1_RW, .accessfn = access_pauth, 7070 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7071 REGINFO_SENTINEL 7072 }; 7073 7074 static const ARMCPRegInfo tlbirange_reginfo[] = { 7075 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7077 .access = PL1_W, .type = ARM_CP_NO_RAW, 7078 .writefn = tlbi_aa64_rvae1is_write }, 7079 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7081 .access = PL1_W, .type = ARM_CP_NO_RAW, 7082 .writefn = tlbi_aa64_rvae1is_write }, 7083 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7084 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7085 .access = PL1_W, .type = ARM_CP_NO_RAW, 7086 .writefn = tlbi_aa64_rvae1is_write }, 7087 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7088 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7089 .access = PL1_W, .type = ARM_CP_NO_RAW, 7090 .writefn = tlbi_aa64_rvae1is_write }, 7091 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7092 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7093 .access = PL1_W, .type = ARM_CP_NO_RAW, 7094 .writefn = tlbi_aa64_rvae1is_write }, 7095 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7096 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7097 .access = PL1_W, .type = ARM_CP_NO_RAW, 7098 .writefn = tlbi_aa64_rvae1is_write }, 7099 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7100 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7101 .access = PL1_W, .type = ARM_CP_NO_RAW, 7102 .writefn = tlbi_aa64_rvae1is_write }, 7103 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7104 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7105 .access = PL1_W, .type = ARM_CP_NO_RAW, 7106 .writefn = tlbi_aa64_rvae1is_write }, 7107 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7108 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7109 .access = PL1_W, .type = ARM_CP_NO_RAW, 7110 .writefn = tlbi_aa64_rvae1_write }, 7111 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7112 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7113 .access = PL1_W, .type = ARM_CP_NO_RAW, 7114 .writefn = tlbi_aa64_rvae1_write }, 7115 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7116 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7117 .access = PL1_W, .type = ARM_CP_NO_RAW, 7118 .writefn = tlbi_aa64_rvae1_write }, 7119 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7121 .access = PL1_W, .type = ARM_CP_NO_RAW, 7122 .writefn = tlbi_aa64_rvae1_write }, 7123 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7124 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7125 .access = PL2_W, .type = ARM_CP_NOP }, 7126 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7127 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7128 .access = PL2_W, .type = ARM_CP_NOP }, 7129 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7130 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7131 .access = PL2_W, .type = ARM_CP_NO_RAW, 7132 .writefn = tlbi_aa64_rvae2is_write }, 7133 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7134 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7135 .access = PL2_W, .type = ARM_CP_NO_RAW, 7136 .writefn = tlbi_aa64_rvae2is_write }, 7137 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7138 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7139 .access = PL2_W, .type = ARM_CP_NOP }, 7140 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7141 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7142 .access = PL2_W, .type = ARM_CP_NOP }, 7143 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7144 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7145 .access = PL2_W, .type = ARM_CP_NO_RAW, 7146 .writefn = tlbi_aa64_rvae2is_write }, 7147 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7148 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7149 .access = PL2_W, .type = ARM_CP_NO_RAW, 7150 .writefn = tlbi_aa64_rvae2is_write }, 7151 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7152 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7153 .access = PL2_W, .type = ARM_CP_NO_RAW, 7154 .writefn = tlbi_aa64_rvae2_write }, 7155 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7156 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7157 .access = PL2_W, .type = ARM_CP_NO_RAW, 7158 .writefn = tlbi_aa64_rvae2_write }, 7159 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7160 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7161 .access = PL3_W, .type = ARM_CP_NO_RAW, 7162 .writefn = tlbi_aa64_rvae3is_write }, 7163 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7164 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7165 .access = PL3_W, .type = ARM_CP_NO_RAW, 7166 .writefn = tlbi_aa64_rvae3is_write }, 7167 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7168 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7169 .access = PL3_W, .type = ARM_CP_NO_RAW, 7170 .writefn = tlbi_aa64_rvae3is_write }, 7171 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7172 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7173 .access = PL3_W, .type = ARM_CP_NO_RAW, 7174 .writefn = tlbi_aa64_rvae3is_write }, 7175 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7176 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7177 .access = PL3_W, .type = ARM_CP_NO_RAW, 7178 .writefn = tlbi_aa64_rvae3_write }, 7179 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7180 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7181 .access = PL3_W, .type = ARM_CP_NO_RAW, 7182 .writefn = tlbi_aa64_rvae3_write }, 7183 REGINFO_SENTINEL 7184 }; 7185 7186 static const ARMCPRegInfo tlbios_reginfo[] = { 7187 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7188 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7189 .access = PL1_W, .type = ARM_CP_NO_RAW, 7190 .writefn = tlbi_aa64_vmalle1is_write }, 7191 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7192 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7193 .access = PL1_W, .type = ARM_CP_NO_RAW, 7194 .writefn = tlbi_aa64_vmalle1is_write }, 7195 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7196 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7197 .access = PL2_W, .type = ARM_CP_NO_RAW, 7198 .writefn = tlbi_aa64_alle2is_write }, 7199 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7200 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7201 .access = PL2_W, .type = ARM_CP_NO_RAW, 7202 .writefn = tlbi_aa64_alle1is_write }, 7203 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7204 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7205 .access = PL2_W, .type = ARM_CP_NO_RAW, 7206 .writefn = tlbi_aa64_alle1is_write }, 7207 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7208 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7209 .access = PL2_W, .type = ARM_CP_NOP }, 7210 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7211 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7212 .access = PL2_W, .type = ARM_CP_NOP }, 7213 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7214 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7215 .access = PL2_W, .type = ARM_CP_NOP }, 7216 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7218 .access = PL2_W, .type = ARM_CP_NOP }, 7219 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7220 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7221 .access = PL3_W, .type = ARM_CP_NO_RAW, 7222 .writefn = tlbi_aa64_alle3is_write }, 7223 REGINFO_SENTINEL 7224 }; 7225 7226 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7227 { 7228 Error *err = NULL; 7229 uint64_t ret; 7230 7231 /* Success sets NZCV = 0000. */ 7232 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7233 7234 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7235 /* 7236 * ??? Failed, for unknown reasons in the crypto subsystem. 7237 * The best we can do is log the reason and return the 7238 * timed-out indication to the guest. There is no reason 7239 * we know to expect this failure to be transitory, so the 7240 * guest may well hang retrying the operation. 7241 */ 7242 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7243 ri->name, error_get_pretty(err)); 7244 error_free(err); 7245 7246 env->ZF = 0; /* NZCF = 0100 */ 7247 return 0; 7248 } 7249 return ret; 7250 } 7251 7252 /* We do not support re-seeding, so the two registers operate the same. */ 7253 static const ARMCPRegInfo rndr_reginfo[] = { 7254 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7255 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7256 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7257 .access = PL0_R, .readfn = rndr_readfn }, 7258 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7259 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7260 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7261 .access = PL0_R, .readfn = rndr_readfn }, 7262 REGINFO_SENTINEL 7263 }; 7264 7265 #ifndef CONFIG_USER_ONLY 7266 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7267 uint64_t value) 7268 { 7269 ARMCPU *cpu = env_archcpu(env); 7270 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7271 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7272 uint64_t vaddr_in = (uint64_t) value; 7273 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7274 void *haddr; 7275 int mem_idx = cpu_mmu_index(env, false); 7276 7277 /* This won't be crossing page boundaries */ 7278 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7279 if (haddr) { 7280 7281 ram_addr_t offset; 7282 MemoryRegion *mr; 7283 7284 /* RCU lock is already being held */ 7285 mr = memory_region_from_host(haddr, &offset); 7286 7287 if (mr) { 7288 memory_region_writeback(mr, offset, dline_size); 7289 } 7290 } 7291 } 7292 7293 static const ARMCPRegInfo dcpop_reg[] = { 7294 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7295 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7296 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7297 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7298 REGINFO_SENTINEL 7299 }; 7300 7301 static const ARMCPRegInfo dcpodp_reg[] = { 7302 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7303 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7304 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7305 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7306 REGINFO_SENTINEL 7307 }; 7308 #endif /*CONFIG_USER_ONLY*/ 7309 7310 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7311 bool isread) 7312 { 7313 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7314 return CP_ACCESS_TRAP_EL2; 7315 } 7316 7317 return CP_ACCESS_OK; 7318 } 7319 7320 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7321 bool isread) 7322 { 7323 int el = arm_current_el(env); 7324 7325 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7326 uint64_t hcr = arm_hcr_el2_eff(env); 7327 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7328 return CP_ACCESS_TRAP_EL2; 7329 } 7330 } 7331 if (el < 3 && 7332 arm_feature(env, ARM_FEATURE_EL3) && 7333 !(env->cp15.scr_el3 & SCR_ATA)) { 7334 return CP_ACCESS_TRAP_EL3; 7335 } 7336 return CP_ACCESS_OK; 7337 } 7338 7339 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7340 { 7341 return env->pstate & PSTATE_TCO; 7342 } 7343 7344 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7345 { 7346 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7347 } 7348 7349 static const ARMCPRegInfo mte_reginfo[] = { 7350 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7351 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7352 .access = PL1_RW, .accessfn = access_mte, 7353 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7354 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7355 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7356 .access = PL1_RW, .accessfn = access_mte, 7357 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7358 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7359 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7360 .access = PL2_RW, .accessfn = access_mte, 7361 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7362 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7363 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7364 .access = PL3_RW, 7365 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7366 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7367 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7368 .access = PL1_RW, .accessfn = access_mte, 7369 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7370 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7371 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7372 .access = PL1_RW, .accessfn = access_mte, 7373 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7374 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7375 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7376 .access = PL1_R, .accessfn = access_aa64_tid5, 7377 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7378 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7379 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7380 .type = ARM_CP_NO_RAW, 7381 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7382 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7383 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7384 .type = ARM_CP_NOP, .access = PL1_W, 7385 .accessfn = aa64_cacheop_poc_access }, 7386 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7387 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7388 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7389 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7390 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7391 .type = ARM_CP_NOP, .access = PL1_W, 7392 .accessfn = aa64_cacheop_poc_access }, 7393 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7394 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7395 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7396 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7397 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7398 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7399 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7400 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7401 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7402 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7403 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7404 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7405 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7406 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7407 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7408 REGINFO_SENTINEL 7409 }; 7410 7411 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7412 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7413 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7414 .type = ARM_CP_CONST, .access = PL0_RW, }, 7415 REGINFO_SENTINEL 7416 }; 7417 7418 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7419 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7420 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7421 .type = ARM_CP_NOP, .access = PL0_W, 7422 .accessfn = aa64_cacheop_poc_access }, 7423 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7424 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7425 .type = ARM_CP_NOP, .access = PL0_W, 7426 .accessfn = aa64_cacheop_poc_access }, 7427 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7428 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7429 .type = ARM_CP_NOP, .access = PL0_W, 7430 .accessfn = aa64_cacheop_poc_access }, 7431 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7432 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7433 .type = ARM_CP_NOP, .access = PL0_W, 7434 .accessfn = aa64_cacheop_poc_access }, 7435 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7437 .type = ARM_CP_NOP, .access = PL0_W, 7438 .accessfn = aa64_cacheop_poc_access }, 7439 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7440 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7441 .type = ARM_CP_NOP, .access = PL0_W, 7442 .accessfn = aa64_cacheop_poc_access }, 7443 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7444 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7445 .type = ARM_CP_NOP, .access = PL0_W, 7446 .accessfn = aa64_cacheop_poc_access }, 7447 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7448 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7449 .type = ARM_CP_NOP, .access = PL0_W, 7450 .accessfn = aa64_cacheop_poc_access }, 7451 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7452 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7453 .access = PL0_W, .type = ARM_CP_DC_GVA, 7454 #ifndef CONFIG_USER_ONLY 7455 /* Avoid overhead of an access check that always passes in user-mode */ 7456 .accessfn = aa64_zva_access, 7457 #endif 7458 }, 7459 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7460 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7461 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7462 #ifndef CONFIG_USER_ONLY 7463 /* Avoid overhead of an access check that always passes in user-mode */ 7464 .accessfn = aa64_zva_access, 7465 #endif 7466 }, 7467 REGINFO_SENTINEL 7468 }; 7469 7470 #endif 7471 7472 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7473 bool isread) 7474 { 7475 int el = arm_current_el(env); 7476 7477 if (el == 0) { 7478 uint64_t sctlr = arm_sctlr(env, el); 7479 if (!(sctlr & SCTLR_EnRCTX)) { 7480 return CP_ACCESS_TRAP; 7481 } 7482 } else if (el == 1) { 7483 uint64_t hcr = arm_hcr_el2_eff(env); 7484 if (hcr & HCR_NV) { 7485 return CP_ACCESS_TRAP_EL2; 7486 } 7487 } 7488 return CP_ACCESS_OK; 7489 } 7490 7491 static const ARMCPRegInfo predinv_reginfo[] = { 7492 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7494 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7495 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7496 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7497 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7498 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7499 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7500 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7501 /* 7502 * Note the AArch32 opcodes have a different OPC1. 7503 */ 7504 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7505 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7506 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7507 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7508 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7509 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7510 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7511 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7512 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7513 REGINFO_SENTINEL 7514 }; 7515 7516 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7517 { 7518 /* Read the high 32 bits of the current CCSIDR */ 7519 return extract64(ccsidr_read(env, ri), 32, 32); 7520 } 7521 7522 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7523 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7524 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7525 .access = PL1_R, 7526 .accessfn = access_aa64_tid2, 7527 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7528 REGINFO_SENTINEL 7529 }; 7530 7531 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7532 bool isread) 7533 { 7534 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7535 return CP_ACCESS_TRAP_EL2; 7536 } 7537 7538 return CP_ACCESS_OK; 7539 } 7540 7541 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7542 bool isread) 7543 { 7544 if (arm_feature(env, ARM_FEATURE_V8)) { 7545 return access_aa64_tid3(env, ri, isread); 7546 } 7547 7548 return CP_ACCESS_OK; 7549 } 7550 7551 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7552 bool isread) 7553 { 7554 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7555 return CP_ACCESS_TRAP_EL2; 7556 } 7557 7558 return CP_ACCESS_OK; 7559 } 7560 7561 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7562 const ARMCPRegInfo *ri, bool isread) 7563 { 7564 /* 7565 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7566 * in v7A, not in v8A. 7567 */ 7568 if (!arm_feature(env, ARM_FEATURE_V8) && 7569 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7570 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7571 return CP_ACCESS_TRAP_EL2; 7572 } 7573 return CP_ACCESS_OK; 7574 } 7575 7576 static const ARMCPRegInfo jazelle_regs[] = { 7577 { .name = "JIDR", 7578 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7579 .access = PL1_R, .accessfn = access_jazelle, 7580 .type = ARM_CP_CONST, .resetvalue = 0 }, 7581 { .name = "JOSCR", 7582 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7583 .accessfn = access_joscr_jmcr, 7584 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7585 { .name = "JMCR", 7586 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7587 .accessfn = access_joscr_jmcr, 7588 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7589 REGINFO_SENTINEL 7590 }; 7591 7592 static const ARMCPRegInfo vhe_reginfo[] = { 7593 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7594 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7595 .access = PL2_RW, 7596 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7597 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7598 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7599 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7600 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7601 #ifndef CONFIG_USER_ONLY 7602 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7603 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7604 .fieldoffset = 7605 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7606 .type = ARM_CP_IO, .access = PL2_RW, 7607 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7608 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7609 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7610 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7611 .resetfn = gt_hv_timer_reset, 7612 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7613 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7614 .type = ARM_CP_IO, 7615 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7616 .access = PL2_RW, 7617 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7618 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7619 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7620 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7621 .type = ARM_CP_IO | ARM_CP_ALIAS, 7622 .access = PL2_RW, .accessfn = e2h_access, 7623 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7624 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7625 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7626 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7627 .type = ARM_CP_IO | ARM_CP_ALIAS, 7628 .access = PL2_RW, .accessfn = e2h_access, 7629 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7630 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7631 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7632 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7633 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7634 .access = PL2_RW, .accessfn = e2h_access, 7635 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7636 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7637 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7638 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7639 .access = PL2_RW, .accessfn = e2h_access, 7640 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7641 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7642 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7643 .type = ARM_CP_IO | ARM_CP_ALIAS, 7644 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7645 .access = PL2_RW, .accessfn = e2h_access, 7646 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7647 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7648 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7649 .type = ARM_CP_IO | ARM_CP_ALIAS, 7650 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7651 .access = PL2_RW, .accessfn = e2h_access, 7652 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7653 #endif 7654 REGINFO_SENTINEL 7655 }; 7656 7657 #ifndef CONFIG_USER_ONLY 7658 static const ARMCPRegInfo ats1e1_reginfo[] = { 7659 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7660 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7661 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7662 .writefn = ats_write64 }, 7663 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7664 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7665 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7666 .writefn = ats_write64 }, 7667 REGINFO_SENTINEL 7668 }; 7669 7670 static const ARMCPRegInfo ats1cp_reginfo[] = { 7671 { .name = "ATS1CPRP", 7672 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7673 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7674 .writefn = ats_write }, 7675 { .name = "ATS1CPWP", 7676 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7677 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7678 .writefn = ats_write }, 7679 REGINFO_SENTINEL 7680 }; 7681 #endif 7682 7683 /* 7684 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7685 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7686 * is non-zero, which is never for ARMv7, optionally in ARMv8 7687 * and mandatorily for ARMv8.2 and up. 7688 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7689 * implementation is RAZ/WI we can ignore this detail, as we 7690 * do for ACTLR. 7691 */ 7692 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7693 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7694 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7695 .access = PL1_RW, .accessfn = access_tacr, 7696 .type = ARM_CP_CONST, .resetvalue = 0 }, 7697 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7698 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7699 .access = PL2_RW, .type = ARM_CP_CONST, 7700 .resetvalue = 0 }, 7701 REGINFO_SENTINEL 7702 }; 7703 7704 void register_cp_regs_for_features(ARMCPU *cpu) 7705 { 7706 /* Register all the coprocessor registers based on feature bits */ 7707 CPUARMState *env = &cpu->env; 7708 if (arm_feature(env, ARM_FEATURE_M)) { 7709 /* M profile has no coprocessor registers */ 7710 return; 7711 } 7712 7713 define_arm_cp_regs(cpu, cp_reginfo); 7714 if (!arm_feature(env, ARM_FEATURE_V8)) { 7715 /* Must go early as it is full of wildcards that may be 7716 * overridden by later definitions. 7717 */ 7718 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7719 } 7720 7721 if (arm_feature(env, ARM_FEATURE_V6)) { 7722 /* The ID registers all have impdef reset values */ 7723 ARMCPRegInfo v6_idregs[] = { 7724 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7725 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7726 .access = PL1_R, .type = ARM_CP_CONST, 7727 .accessfn = access_aa32_tid3, 7728 .resetvalue = cpu->isar.id_pfr0 }, 7729 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7730 * the value of the GIC field until after we define these regs. 7731 */ 7732 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7733 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7734 .access = PL1_R, .type = ARM_CP_NO_RAW, 7735 .accessfn = access_aa32_tid3, 7736 .readfn = id_pfr1_read, 7737 .writefn = arm_cp_write_ignore }, 7738 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7740 .access = PL1_R, .type = ARM_CP_CONST, 7741 .accessfn = access_aa32_tid3, 7742 .resetvalue = cpu->isar.id_dfr0 }, 7743 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7745 .access = PL1_R, .type = ARM_CP_CONST, 7746 .accessfn = access_aa32_tid3, 7747 .resetvalue = cpu->id_afr0 }, 7748 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7749 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7750 .access = PL1_R, .type = ARM_CP_CONST, 7751 .accessfn = access_aa32_tid3, 7752 .resetvalue = cpu->isar.id_mmfr0 }, 7753 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7755 .access = PL1_R, .type = ARM_CP_CONST, 7756 .accessfn = access_aa32_tid3, 7757 .resetvalue = cpu->isar.id_mmfr1 }, 7758 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7760 .access = PL1_R, .type = ARM_CP_CONST, 7761 .accessfn = access_aa32_tid3, 7762 .resetvalue = cpu->isar.id_mmfr2 }, 7763 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7765 .access = PL1_R, .type = ARM_CP_CONST, 7766 .accessfn = access_aa32_tid3, 7767 .resetvalue = cpu->isar.id_mmfr3 }, 7768 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7770 .access = PL1_R, .type = ARM_CP_CONST, 7771 .accessfn = access_aa32_tid3, 7772 .resetvalue = cpu->isar.id_isar0 }, 7773 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7775 .access = PL1_R, .type = ARM_CP_CONST, 7776 .accessfn = access_aa32_tid3, 7777 .resetvalue = cpu->isar.id_isar1 }, 7778 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7780 .access = PL1_R, .type = ARM_CP_CONST, 7781 .accessfn = access_aa32_tid3, 7782 .resetvalue = cpu->isar.id_isar2 }, 7783 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7785 .access = PL1_R, .type = ARM_CP_CONST, 7786 .accessfn = access_aa32_tid3, 7787 .resetvalue = cpu->isar.id_isar3 }, 7788 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7790 .access = PL1_R, .type = ARM_CP_CONST, 7791 .accessfn = access_aa32_tid3, 7792 .resetvalue = cpu->isar.id_isar4 }, 7793 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7795 .access = PL1_R, .type = ARM_CP_CONST, 7796 .accessfn = access_aa32_tid3, 7797 .resetvalue = cpu->isar.id_isar5 }, 7798 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7800 .access = PL1_R, .type = ARM_CP_CONST, 7801 .accessfn = access_aa32_tid3, 7802 .resetvalue = cpu->isar.id_mmfr4 }, 7803 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7805 .access = PL1_R, .type = ARM_CP_CONST, 7806 .accessfn = access_aa32_tid3, 7807 .resetvalue = cpu->isar.id_isar6 }, 7808 REGINFO_SENTINEL 7809 }; 7810 define_arm_cp_regs(cpu, v6_idregs); 7811 define_arm_cp_regs(cpu, v6_cp_reginfo); 7812 } else { 7813 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7814 } 7815 if (arm_feature(env, ARM_FEATURE_V6K)) { 7816 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7817 } 7818 if (arm_feature(env, ARM_FEATURE_V7MP) && 7819 !arm_feature(env, ARM_FEATURE_PMSA)) { 7820 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7821 } 7822 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7823 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7824 } 7825 if (arm_feature(env, ARM_FEATURE_V7)) { 7826 ARMCPRegInfo clidr = { 7827 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7828 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7829 .access = PL1_R, .type = ARM_CP_CONST, 7830 .accessfn = access_aa64_tid2, 7831 .resetvalue = cpu->clidr 7832 }; 7833 define_one_arm_cp_reg(cpu, &clidr); 7834 define_arm_cp_regs(cpu, v7_cp_reginfo); 7835 define_debug_regs(cpu); 7836 define_pmu_regs(cpu); 7837 } else { 7838 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7839 } 7840 if (arm_feature(env, ARM_FEATURE_V8)) { 7841 /* AArch64 ID registers, which all have impdef reset values. 7842 * Note that within the ID register ranges the unused slots 7843 * must all RAZ, not UNDEF; future architecture versions may 7844 * define new registers here. 7845 */ 7846 ARMCPRegInfo v8_idregs[] = { 7847 /* 7848 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7849 * emulation because we don't know the right value for the 7850 * GIC field until after we define these regs. 7851 */ 7852 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7853 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7854 .access = PL1_R, 7855 #ifdef CONFIG_USER_ONLY 7856 .type = ARM_CP_CONST, 7857 .resetvalue = cpu->isar.id_aa64pfr0 7858 #else 7859 .type = ARM_CP_NO_RAW, 7860 .accessfn = access_aa64_tid3, 7861 .readfn = id_aa64pfr0_read, 7862 .writefn = arm_cp_write_ignore 7863 #endif 7864 }, 7865 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7866 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7867 .access = PL1_R, .type = ARM_CP_CONST, 7868 .accessfn = access_aa64_tid3, 7869 .resetvalue = cpu->isar.id_aa64pfr1}, 7870 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7871 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7872 .access = PL1_R, .type = ARM_CP_CONST, 7873 .accessfn = access_aa64_tid3, 7874 .resetvalue = 0 }, 7875 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7877 .access = PL1_R, .type = ARM_CP_CONST, 7878 .accessfn = access_aa64_tid3, 7879 .resetvalue = 0 }, 7880 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7882 .access = PL1_R, .type = ARM_CP_CONST, 7883 .accessfn = access_aa64_tid3, 7884 .resetvalue = cpu->isar.id_aa64zfr0 }, 7885 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7887 .access = PL1_R, .type = ARM_CP_CONST, 7888 .accessfn = access_aa64_tid3, 7889 .resetvalue = 0 }, 7890 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7891 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7892 .access = PL1_R, .type = ARM_CP_CONST, 7893 .accessfn = access_aa64_tid3, 7894 .resetvalue = 0 }, 7895 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7897 .access = PL1_R, .type = ARM_CP_CONST, 7898 .accessfn = access_aa64_tid3, 7899 .resetvalue = 0 }, 7900 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7902 .access = PL1_R, .type = ARM_CP_CONST, 7903 .accessfn = access_aa64_tid3, 7904 .resetvalue = cpu->isar.id_aa64dfr0 }, 7905 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7907 .access = PL1_R, .type = ARM_CP_CONST, 7908 .accessfn = access_aa64_tid3, 7909 .resetvalue = cpu->isar.id_aa64dfr1 }, 7910 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7911 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7912 .access = PL1_R, .type = ARM_CP_CONST, 7913 .accessfn = access_aa64_tid3, 7914 .resetvalue = 0 }, 7915 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7917 .access = PL1_R, .type = ARM_CP_CONST, 7918 .accessfn = access_aa64_tid3, 7919 .resetvalue = 0 }, 7920 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7922 .access = PL1_R, .type = ARM_CP_CONST, 7923 .accessfn = access_aa64_tid3, 7924 .resetvalue = cpu->id_aa64afr0 }, 7925 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7927 .access = PL1_R, .type = ARM_CP_CONST, 7928 .accessfn = access_aa64_tid3, 7929 .resetvalue = cpu->id_aa64afr1 }, 7930 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7931 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7932 .access = PL1_R, .type = ARM_CP_CONST, 7933 .accessfn = access_aa64_tid3, 7934 .resetvalue = 0 }, 7935 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7936 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7937 .access = PL1_R, .type = ARM_CP_CONST, 7938 .accessfn = access_aa64_tid3, 7939 .resetvalue = 0 }, 7940 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7941 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7942 .access = PL1_R, .type = ARM_CP_CONST, 7943 .accessfn = access_aa64_tid3, 7944 .resetvalue = cpu->isar.id_aa64isar0 }, 7945 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7947 .access = PL1_R, .type = ARM_CP_CONST, 7948 .accessfn = access_aa64_tid3, 7949 .resetvalue = cpu->isar.id_aa64isar1 }, 7950 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7952 .access = PL1_R, .type = ARM_CP_CONST, 7953 .accessfn = access_aa64_tid3, 7954 .resetvalue = 0 }, 7955 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7956 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7957 .access = PL1_R, .type = ARM_CP_CONST, 7958 .accessfn = access_aa64_tid3, 7959 .resetvalue = 0 }, 7960 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7961 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7962 .access = PL1_R, .type = ARM_CP_CONST, 7963 .accessfn = access_aa64_tid3, 7964 .resetvalue = 0 }, 7965 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7967 .access = PL1_R, .type = ARM_CP_CONST, 7968 .accessfn = access_aa64_tid3, 7969 .resetvalue = 0 }, 7970 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7972 .access = PL1_R, .type = ARM_CP_CONST, 7973 .accessfn = access_aa64_tid3, 7974 .resetvalue = 0 }, 7975 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7977 .access = PL1_R, .type = ARM_CP_CONST, 7978 .accessfn = access_aa64_tid3, 7979 .resetvalue = 0 }, 7980 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7981 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7982 .access = PL1_R, .type = ARM_CP_CONST, 7983 .accessfn = access_aa64_tid3, 7984 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7985 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7987 .access = PL1_R, .type = ARM_CP_CONST, 7988 .accessfn = access_aa64_tid3, 7989 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7990 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7991 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7992 .access = PL1_R, .type = ARM_CP_CONST, 7993 .accessfn = access_aa64_tid3, 7994 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7995 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7997 .access = PL1_R, .type = ARM_CP_CONST, 7998 .accessfn = access_aa64_tid3, 7999 .resetvalue = 0 }, 8000 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8002 .access = PL1_R, .type = ARM_CP_CONST, 8003 .accessfn = access_aa64_tid3, 8004 .resetvalue = 0 }, 8005 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8007 .access = PL1_R, .type = ARM_CP_CONST, 8008 .accessfn = access_aa64_tid3, 8009 .resetvalue = 0 }, 8010 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8012 .access = PL1_R, .type = ARM_CP_CONST, 8013 .accessfn = access_aa64_tid3, 8014 .resetvalue = 0 }, 8015 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8017 .access = PL1_R, .type = ARM_CP_CONST, 8018 .accessfn = access_aa64_tid3, 8019 .resetvalue = 0 }, 8020 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8022 .access = PL1_R, .type = ARM_CP_CONST, 8023 .accessfn = access_aa64_tid3, 8024 .resetvalue = cpu->isar.mvfr0 }, 8025 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8027 .access = PL1_R, .type = ARM_CP_CONST, 8028 .accessfn = access_aa64_tid3, 8029 .resetvalue = cpu->isar.mvfr1 }, 8030 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8032 .access = PL1_R, .type = ARM_CP_CONST, 8033 .accessfn = access_aa64_tid3, 8034 .resetvalue = cpu->isar.mvfr2 }, 8035 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8037 .access = PL1_R, .type = ARM_CP_CONST, 8038 .accessfn = access_aa64_tid3, 8039 .resetvalue = 0 }, 8040 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8042 .access = PL1_R, .type = ARM_CP_CONST, 8043 .accessfn = access_aa64_tid3, 8044 .resetvalue = cpu->isar.id_pfr2 }, 8045 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8047 .access = PL1_R, .type = ARM_CP_CONST, 8048 .accessfn = access_aa64_tid3, 8049 .resetvalue = 0 }, 8050 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8051 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8052 .access = PL1_R, .type = ARM_CP_CONST, 8053 .accessfn = access_aa64_tid3, 8054 .resetvalue = 0 }, 8055 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8056 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8057 .access = PL1_R, .type = ARM_CP_CONST, 8058 .accessfn = access_aa64_tid3, 8059 .resetvalue = 0 }, 8060 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8061 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8062 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8063 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8064 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8065 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8066 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8067 .resetvalue = cpu->pmceid0 }, 8068 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8069 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8070 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8071 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8072 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8073 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8074 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8075 .resetvalue = cpu->pmceid1 }, 8076 REGINFO_SENTINEL 8077 }; 8078 #ifdef CONFIG_USER_ONLY 8079 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8080 { .name = "ID_AA64PFR0_EL1", 8081 .exported_bits = 0x000f000f00ff0000, 8082 .fixed_bits = 0x0000000000000011 }, 8083 { .name = "ID_AA64PFR1_EL1", 8084 .exported_bits = 0x00000000000000f0 }, 8085 { .name = "ID_AA64PFR*_EL1_RESERVED", 8086 .is_glob = true }, 8087 { .name = "ID_AA64ZFR0_EL1" }, 8088 { .name = "ID_AA64MMFR0_EL1", 8089 .fixed_bits = 0x00000000ff000000 }, 8090 { .name = "ID_AA64MMFR1_EL1" }, 8091 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8092 .is_glob = true }, 8093 { .name = "ID_AA64DFR0_EL1", 8094 .fixed_bits = 0x0000000000000006 }, 8095 { .name = "ID_AA64DFR1_EL1" }, 8096 { .name = "ID_AA64DFR*_EL1_RESERVED", 8097 .is_glob = true }, 8098 { .name = "ID_AA64AFR*", 8099 .is_glob = true }, 8100 { .name = "ID_AA64ISAR0_EL1", 8101 .exported_bits = 0x00fffffff0fffff0 }, 8102 { .name = "ID_AA64ISAR1_EL1", 8103 .exported_bits = 0x000000f0ffffffff }, 8104 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8105 .is_glob = true }, 8106 REGUSERINFO_SENTINEL 8107 }; 8108 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8109 #endif 8110 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8111 if (!arm_feature(env, ARM_FEATURE_EL3) && 8112 !arm_feature(env, ARM_FEATURE_EL2)) { 8113 ARMCPRegInfo rvbar = { 8114 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 8115 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8116 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 8117 }; 8118 define_one_arm_cp_reg(cpu, &rvbar); 8119 } 8120 define_arm_cp_regs(cpu, v8_idregs); 8121 define_arm_cp_regs(cpu, v8_cp_reginfo); 8122 } 8123 if (arm_feature(env, ARM_FEATURE_EL2)) { 8124 uint64_t vmpidr_def = mpidr_read_val(env); 8125 ARMCPRegInfo vpidr_regs[] = { 8126 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8127 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8128 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8129 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 8130 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8131 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8132 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8133 .access = PL2_RW, .resetvalue = cpu->midr, 8134 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8135 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8136 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8137 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8138 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 8139 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8140 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8141 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8142 .access = PL2_RW, 8143 .resetvalue = vmpidr_def, 8144 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8145 REGINFO_SENTINEL 8146 }; 8147 define_arm_cp_regs(cpu, vpidr_regs); 8148 define_arm_cp_regs(cpu, el2_cp_reginfo); 8149 if (arm_feature(env, ARM_FEATURE_V8)) { 8150 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8151 } 8152 if (cpu_isar_feature(aa64_sel2, cpu)) { 8153 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8154 } 8155 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8156 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8157 ARMCPRegInfo rvbar = { 8158 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8159 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8160 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 8161 }; 8162 define_one_arm_cp_reg(cpu, &rvbar); 8163 } 8164 } else { 8165 /* If EL2 is missing but higher ELs are enabled, we need to 8166 * register the no_el2 reginfos. 8167 */ 8168 if (arm_feature(env, ARM_FEATURE_EL3)) { 8169 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8170 * of MIDR_EL1 and MPIDR_EL1. 8171 */ 8172 ARMCPRegInfo vpidr_regs[] = { 8173 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8174 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8175 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8176 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8177 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8178 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8179 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8180 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8181 .type = ARM_CP_NO_RAW, 8182 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8183 REGINFO_SENTINEL 8184 }; 8185 define_arm_cp_regs(cpu, vpidr_regs); 8186 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8187 if (arm_feature(env, ARM_FEATURE_V8)) { 8188 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8189 } 8190 } 8191 } 8192 if (arm_feature(env, ARM_FEATURE_EL3)) { 8193 define_arm_cp_regs(cpu, el3_cp_reginfo); 8194 ARMCPRegInfo el3_regs[] = { 8195 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8196 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8197 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 8198 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8199 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8200 .access = PL3_RW, 8201 .raw_writefn = raw_write, .writefn = sctlr_write, 8202 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8203 .resetvalue = cpu->reset_sctlr }, 8204 REGINFO_SENTINEL 8205 }; 8206 8207 define_arm_cp_regs(cpu, el3_regs); 8208 } 8209 /* The behaviour of NSACR is sufficiently various that we don't 8210 * try to describe it in a single reginfo: 8211 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8212 * reads as constant 0xc00 from NS EL1 and NS EL2 8213 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8214 * if v7 without EL3, register doesn't exist 8215 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8216 */ 8217 if (arm_feature(env, ARM_FEATURE_EL3)) { 8218 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8219 ARMCPRegInfo nsacr = { 8220 .name = "NSACR", .type = ARM_CP_CONST, 8221 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8222 .access = PL1_RW, .accessfn = nsacr_access, 8223 .resetvalue = 0xc00 8224 }; 8225 define_one_arm_cp_reg(cpu, &nsacr); 8226 } else { 8227 ARMCPRegInfo nsacr = { 8228 .name = "NSACR", 8229 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8230 .access = PL3_RW | PL1_R, 8231 .resetvalue = 0, 8232 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8233 }; 8234 define_one_arm_cp_reg(cpu, &nsacr); 8235 } 8236 } else { 8237 if (arm_feature(env, ARM_FEATURE_V8)) { 8238 ARMCPRegInfo nsacr = { 8239 .name = "NSACR", .type = ARM_CP_CONST, 8240 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8241 .access = PL1_R, 8242 .resetvalue = 0xc00 8243 }; 8244 define_one_arm_cp_reg(cpu, &nsacr); 8245 } 8246 } 8247 8248 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8249 if (arm_feature(env, ARM_FEATURE_V6)) { 8250 /* PMSAv6 not implemented */ 8251 assert(arm_feature(env, ARM_FEATURE_V7)); 8252 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8253 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8254 } else { 8255 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8256 } 8257 } else { 8258 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8259 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8260 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8261 if (cpu_isar_feature(aa32_hpd, cpu)) { 8262 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8263 } 8264 } 8265 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8266 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8267 } 8268 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8269 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8270 } 8271 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8272 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8273 } 8274 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8275 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8276 } 8277 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8278 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8279 } 8280 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8281 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8282 } 8283 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8284 define_arm_cp_regs(cpu, omap_cp_reginfo); 8285 } 8286 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8287 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8288 } 8289 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8290 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8291 } 8292 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8293 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8294 } 8295 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8296 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8297 } 8298 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8299 define_arm_cp_regs(cpu, jazelle_regs); 8300 } 8301 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8302 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8303 * be read-only (ie write causes UNDEF exception). 8304 */ 8305 { 8306 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8307 /* Pre-v8 MIDR space. 8308 * Note that the MIDR isn't a simple constant register because 8309 * of the TI925 behaviour where writes to another register can 8310 * cause the MIDR value to change. 8311 * 8312 * Unimplemented registers in the c15 0 0 0 space default to 8313 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8314 * and friends override accordingly. 8315 */ 8316 { .name = "MIDR", 8317 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8318 .access = PL1_R, .resetvalue = cpu->midr, 8319 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8320 .readfn = midr_read, 8321 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8322 .type = ARM_CP_OVERRIDE }, 8323 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8324 { .name = "DUMMY", 8325 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8326 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8327 { .name = "DUMMY", 8328 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8329 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8330 { .name = "DUMMY", 8331 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8332 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8333 { .name = "DUMMY", 8334 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8335 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8336 { .name = "DUMMY", 8337 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8338 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8339 REGINFO_SENTINEL 8340 }; 8341 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8342 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8343 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8344 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8345 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8346 .readfn = midr_read }, 8347 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8348 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8349 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8350 .access = PL1_R, .resetvalue = cpu->midr }, 8351 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8352 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8353 .access = PL1_R, .resetvalue = cpu->midr }, 8354 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8355 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8356 .access = PL1_R, 8357 .accessfn = access_aa64_tid1, 8358 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8359 REGINFO_SENTINEL 8360 }; 8361 ARMCPRegInfo id_cp_reginfo[] = { 8362 /* These are common to v8 and pre-v8 */ 8363 { .name = "CTR", 8364 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8365 .access = PL1_R, .accessfn = ctr_el0_access, 8366 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8367 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8368 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8369 .access = PL0_R, .accessfn = ctr_el0_access, 8370 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8371 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8372 { .name = "TCMTR", 8373 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8374 .access = PL1_R, 8375 .accessfn = access_aa32_tid1, 8376 .type = ARM_CP_CONST, .resetvalue = 0 }, 8377 REGINFO_SENTINEL 8378 }; 8379 /* TLBTR is specific to VMSA */ 8380 ARMCPRegInfo id_tlbtr_reginfo = { 8381 .name = "TLBTR", 8382 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8383 .access = PL1_R, 8384 .accessfn = access_aa32_tid1, 8385 .type = ARM_CP_CONST, .resetvalue = 0, 8386 }; 8387 /* MPUIR is specific to PMSA V6+ */ 8388 ARMCPRegInfo id_mpuir_reginfo = { 8389 .name = "MPUIR", 8390 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8391 .access = PL1_R, .type = ARM_CP_CONST, 8392 .resetvalue = cpu->pmsav7_dregion << 8 8393 }; 8394 ARMCPRegInfo crn0_wi_reginfo = { 8395 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8396 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8397 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8398 }; 8399 #ifdef CONFIG_USER_ONLY 8400 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8401 { .name = "MIDR_EL1", 8402 .exported_bits = 0x00000000ffffffff }, 8403 { .name = "REVIDR_EL1" }, 8404 REGUSERINFO_SENTINEL 8405 }; 8406 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8407 #endif 8408 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8409 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8410 ARMCPRegInfo *r; 8411 /* Register the blanket "writes ignored" value first to cover the 8412 * whole space. Then update the specific ID registers to allow write 8413 * access, so that they ignore writes rather than causing them to 8414 * UNDEF. 8415 */ 8416 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8417 for (r = id_pre_v8_midr_cp_reginfo; 8418 r->type != ARM_CP_SENTINEL; r++) { 8419 r->access = PL1_RW; 8420 } 8421 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8422 r->access = PL1_RW; 8423 } 8424 id_mpuir_reginfo.access = PL1_RW; 8425 id_tlbtr_reginfo.access = PL1_RW; 8426 } 8427 if (arm_feature(env, ARM_FEATURE_V8)) { 8428 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8429 } else { 8430 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8431 } 8432 define_arm_cp_regs(cpu, id_cp_reginfo); 8433 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8434 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8435 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8436 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8437 } 8438 } 8439 8440 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8441 ARMCPRegInfo mpidr_cp_reginfo[] = { 8442 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8443 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8444 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8445 REGINFO_SENTINEL 8446 }; 8447 #ifdef CONFIG_USER_ONLY 8448 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8449 { .name = "MPIDR_EL1", 8450 .fixed_bits = 0x0000000080000000 }, 8451 REGUSERINFO_SENTINEL 8452 }; 8453 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8454 #endif 8455 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8456 } 8457 8458 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8459 ARMCPRegInfo auxcr_reginfo[] = { 8460 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8461 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8462 .access = PL1_RW, .accessfn = access_tacr, 8463 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8464 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8465 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8466 .access = PL2_RW, .type = ARM_CP_CONST, 8467 .resetvalue = 0 }, 8468 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8469 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8470 .access = PL3_RW, .type = ARM_CP_CONST, 8471 .resetvalue = 0 }, 8472 REGINFO_SENTINEL 8473 }; 8474 define_arm_cp_regs(cpu, auxcr_reginfo); 8475 if (cpu_isar_feature(aa32_ac2, cpu)) { 8476 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8477 } 8478 } 8479 8480 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8481 /* 8482 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8483 * There are two flavours: 8484 * (1) older 32-bit only cores have a simple 32-bit CBAR 8485 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8486 * 32-bit register visible to AArch32 at a different encoding 8487 * to the "flavour 1" register and with the bits rearranged to 8488 * be able to squash a 64-bit address into the 32-bit view. 8489 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8490 * in future if we support AArch32-only configs of some of the 8491 * AArch64 cores we might need to add a specific feature flag 8492 * to indicate cores with "flavour 2" CBAR. 8493 */ 8494 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8495 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8496 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8497 | extract64(cpu->reset_cbar, 32, 12); 8498 ARMCPRegInfo cbar_reginfo[] = { 8499 { .name = "CBAR", 8500 .type = ARM_CP_CONST, 8501 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8502 .access = PL1_R, .resetvalue = cbar32 }, 8503 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8504 .type = ARM_CP_CONST, 8505 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8506 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8507 REGINFO_SENTINEL 8508 }; 8509 /* We don't implement a r/w 64 bit CBAR currently */ 8510 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8511 define_arm_cp_regs(cpu, cbar_reginfo); 8512 } else { 8513 ARMCPRegInfo cbar = { 8514 .name = "CBAR", 8515 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8516 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8517 .fieldoffset = offsetof(CPUARMState, 8518 cp15.c15_config_base_address) 8519 }; 8520 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8521 cbar.access = PL1_R; 8522 cbar.fieldoffset = 0; 8523 cbar.type = ARM_CP_CONST; 8524 } 8525 define_one_arm_cp_reg(cpu, &cbar); 8526 } 8527 } 8528 8529 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8530 ARMCPRegInfo vbar_cp_reginfo[] = { 8531 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8532 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8533 .access = PL1_RW, .writefn = vbar_write, 8534 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8535 offsetof(CPUARMState, cp15.vbar_ns) }, 8536 .resetvalue = 0 }, 8537 REGINFO_SENTINEL 8538 }; 8539 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8540 } 8541 8542 /* Generic registers whose values depend on the implementation */ 8543 { 8544 ARMCPRegInfo sctlr = { 8545 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8546 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8547 .access = PL1_RW, .accessfn = access_tvm_trvm, 8548 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8549 offsetof(CPUARMState, cp15.sctlr_ns) }, 8550 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8551 .raw_writefn = raw_write, 8552 }; 8553 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8554 /* Normally we would always end the TB on an SCTLR write, but Linux 8555 * arch/arm/mach-pxa/sleep.S expects two instructions following 8556 * an MMU enable to execute from cache. Imitate this behaviour. 8557 */ 8558 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8559 } 8560 define_one_arm_cp_reg(cpu, &sctlr); 8561 } 8562 8563 if (cpu_isar_feature(aa64_lor, cpu)) { 8564 define_arm_cp_regs(cpu, lor_reginfo); 8565 } 8566 if (cpu_isar_feature(aa64_pan, cpu)) { 8567 define_one_arm_cp_reg(cpu, &pan_reginfo); 8568 } 8569 #ifndef CONFIG_USER_ONLY 8570 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8571 define_arm_cp_regs(cpu, ats1e1_reginfo); 8572 } 8573 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8574 define_arm_cp_regs(cpu, ats1cp_reginfo); 8575 } 8576 #endif 8577 if (cpu_isar_feature(aa64_uao, cpu)) { 8578 define_one_arm_cp_reg(cpu, &uao_reginfo); 8579 } 8580 8581 if (cpu_isar_feature(aa64_dit, cpu)) { 8582 define_one_arm_cp_reg(cpu, &dit_reginfo); 8583 } 8584 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8585 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8586 } 8587 8588 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8589 define_arm_cp_regs(cpu, vhe_reginfo); 8590 } 8591 8592 if (cpu_isar_feature(aa64_sve, cpu)) { 8593 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8594 if (arm_feature(env, ARM_FEATURE_EL2)) { 8595 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8596 } else { 8597 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8598 } 8599 if (arm_feature(env, ARM_FEATURE_EL3)) { 8600 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8601 } 8602 } 8603 8604 #ifdef TARGET_AARCH64 8605 if (cpu_isar_feature(aa64_pauth, cpu)) { 8606 define_arm_cp_regs(cpu, pauth_reginfo); 8607 } 8608 if (cpu_isar_feature(aa64_rndr, cpu)) { 8609 define_arm_cp_regs(cpu, rndr_reginfo); 8610 } 8611 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8612 define_arm_cp_regs(cpu, tlbirange_reginfo); 8613 } 8614 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8615 define_arm_cp_regs(cpu, tlbios_reginfo); 8616 } 8617 #ifndef CONFIG_USER_ONLY 8618 /* Data Cache clean instructions up to PoP */ 8619 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8620 define_one_arm_cp_reg(cpu, dcpop_reg); 8621 8622 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8623 define_one_arm_cp_reg(cpu, dcpodp_reg); 8624 } 8625 } 8626 #endif /*CONFIG_USER_ONLY*/ 8627 8628 /* 8629 * If full MTE is enabled, add all of the system registers. 8630 * If only "instructions available at EL0" are enabled, 8631 * then define only a RAZ/WI version of PSTATE.TCO. 8632 */ 8633 if (cpu_isar_feature(aa64_mte, cpu)) { 8634 define_arm_cp_regs(cpu, mte_reginfo); 8635 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8636 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8637 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8638 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8639 } 8640 #endif 8641 8642 if (cpu_isar_feature(any_predinv, cpu)) { 8643 define_arm_cp_regs(cpu, predinv_reginfo); 8644 } 8645 8646 if (cpu_isar_feature(any_ccidx, cpu)) { 8647 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8648 } 8649 8650 #ifndef CONFIG_USER_ONLY 8651 /* 8652 * Register redirections and aliases must be done last, 8653 * after the registers from the other extensions have been defined. 8654 */ 8655 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8656 define_arm_vh_e2h_redirects_aliases(cpu); 8657 } 8658 #endif 8659 } 8660 8661 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8662 { 8663 CPUState *cs = CPU(cpu); 8664 CPUARMState *env = &cpu->env; 8665 8666 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8667 /* 8668 * The lower part of each SVE register aliases to the FPU 8669 * registers so we don't need to include both. 8670 */ 8671 #ifdef TARGET_AARCH64 8672 if (isar_feature_aa64_sve(&cpu->isar)) { 8673 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8674 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8675 "sve-registers.xml", 0); 8676 } else 8677 #endif 8678 { 8679 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8680 aarch64_fpu_gdb_set_reg, 8681 34, "aarch64-fpu.xml", 0); 8682 } 8683 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8684 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8685 51, "arm-neon.xml", 0); 8686 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8687 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8688 35, "arm-vfp3.xml", 0); 8689 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8690 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8691 19, "arm-vfp.xml", 0); 8692 } 8693 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8694 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8695 "system-registers.xml", 0); 8696 8697 } 8698 8699 /* Sort alphabetically by type name, except for "any". */ 8700 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8701 { 8702 ObjectClass *class_a = (ObjectClass *)a; 8703 ObjectClass *class_b = (ObjectClass *)b; 8704 const char *name_a, *name_b; 8705 8706 name_a = object_class_get_name(class_a); 8707 name_b = object_class_get_name(class_b); 8708 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8709 return 1; 8710 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8711 return -1; 8712 } else { 8713 return strcmp(name_a, name_b); 8714 } 8715 } 8716 8717 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8718 { 8719 ObjectClass *oc = data; 8720 const char *typename; 8721 char *name; 8722 8723 typename = object_class_get_name(oc); 8724 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8725 qemu_printf(" %s\n", name); 8726 g_free(name); 8727 } 8728 8729 void arm_cpu_list(void) 8730 { 8731 GSList *list; 8732 8733 list = object_class_get_list(TYPE_ARM_CPU, false); 8734 list = g_slist_sort(list, arm_cpu_list_compare); 8735 qemu_printf("Available CPUs:\n"); 8736 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8737 g_slist_free(list); 8738 } 8739 8740 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8741 { 8742 ObjectClass *oc = data; 8743 CpuDefinitionInfoList **cpu_list = user_data; 8744 CpuDefinitionInfo *info; 8745 const char *typename; 8746 8747 typename = object_class_get_name(oc); 8748 info = g_malloc0(sizeof(*info)); 8749 info->name = g_strndup(typename, 8750 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8751 info->q_typename = g_strdup(typename); 8752 8753 QAPI_LIST_PREPEND(*cpu_list, info); 8754 } 8755 8756 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8757 { 8758 CpuDefinitionInfoList *cpu_list = NULL; 8759 GSList *list; 8760 8761 list = object_class_get_list(TYPE_ARM_CPU, false); 8762 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8763 g_slist_free(list); 8764 8765 return cpu_list; 8766 } 8767 8768 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8769 void *opaque, int state, int secstate, 8770 int crm, int opc1, int opc2, 8771 const char *name) 8772 { 8773 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8774 * add a single reginfo struct to the hash table. 8775 */ 8776 uint32_t *key = g_new(uint32_t, 1); 8777 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8778 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8779 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8780 8781 r2->name = g_strdup(name); 8782 /* Reset the secure state to the specific incoming state. This is 8783 * necessary as the register may have been defined with both states. 8784 */ 8785 r2->secure = secstate; 8786 8787 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8788 /* Register is banked (using both entries in array). 8789 * Overwriting fieldoffset as the array is only used to define 8790 * banked registers but later only fieldoffset is used. 8791 */ 8792 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8793 } 8794 8795 if (state == ARM_CP_STATE_AA32) { 8796 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8797 /* If the register is banked then we don't need to migrate or 8798 * reset the 32-bit instance in certain cases: 8799 * 8800 * 1) If the register has both 32-bit and 64-bit instances then we 8801 * can count on the 64-bit instance taking care of the 8802 * non-secure bank. 8803 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8804 * taking care of the secure bank. This requires that separate 8805 * 32 and 64-bit definitions are provided. 8806 */ 8807 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8808 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8809 r2->type |= ARM_CP_ALIAS; 8810 } 8811 } else if ((secstate != r->secure) && !ns) { 8812 /* The register is not banked so we only want to allow migration of 8813 * the non-secure instance. 8814 */ 8815 r2->type |= ARM_CP_ALIAS; 8816 } 8817 8818 if (r->state == ARM_CP_STATE_BOTH) { 8819 /* We assume it is a cp15 register if the .cp field is left unset. 8820 */ 8821 if (r2->cp == 0) { 8822 r2->cp = 15; 8823 } 8824 8825 #ifdef HOST_WORDS_BIGENDIAN 8826 if (r2->fieldoffset) { 8827 r2->fieldoffset += sizeof(uint32_t); 8828 } 8829 #endif 8830 } 8831 } 8832 if (state == ARM_CP_STATE_AA64) { 8833 /* To allow abbreviation of ARMCPRegInfo 8834 * definitions, we treat cp == 0 as equivalent to 8835 * the value for "standard guest-visible sysreg". 8836 * STATE_BOTH definitions are also always "standard 8837 * sysreg" in their AArch64 view (the .cp value may 8838 * be non-zero for the benefit of the AArch32 view). 8839 */ 8840 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8841 r2->cp = CP_REG_ARM64_SYSREG_CP; 8842 } 8843 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8844 r2->opc0, opc1, opc2); 8845 } else { 8846 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8847 } 8848 if (opaque) { 8849 r2->opaque = opaque; 8850 } 8851 /* reginfo passed to helpers is correct for the actual access, 8852 * and is never ARM_CP_STATE_BOTH: 8853 */ 8854 r2->state = state; 8855 /* Make sure reginfo passed to helpers for wildcarded regs 8856 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8857 */ 8858 r2->crm = crm; 8859 r2->opc1 = opc1; 8860 r2->opc2 = opc2; 8861 /* By convention, for wildcarded registers only the first 8862 * entry is used for migration; the others are marked as 8863 * ALIAS so we don't try to transfer the register 8864 * multiple times. Special registers (ie NOP/WFI) are 8865 * never migratable and not even raw-accessible. 8866 */ 8867 if ((r->type & ARM_CP_SPECIAL)) { 8868 r2->type |= ARM_CP_NO_RAW; 8869 } 8870 if (((r->crm == CP_ANY) && crm != 0) || 8871 ((r->opc1 == CP_ANY) && opc1 != 0) || 8872 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8873 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8874 } 8875 8876 /* Check that raw accesses are either forbidden or handled. Note that 8877 * we can't assert this earlier because the setup of fieldoffset for 8878 * banked registers has to be done first. 8879 */ 8880 if (!(r2->type & ARM_CP_NO_RAW)) { 8881 assert(!raw_accessors_invalid(r2)); 8882 } 8883 8884 /* Overriding of an existing definition must be explicitly 8885 * requested. 8886 */ 8887 if (!(r->type & ARM_CP_OVERRIDE)) { 8888 ARMCPRegInfo *oldreg; 8889 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8890 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8891 fprintf(stderr, "Register redefined: cp=%d %d bit " 8892 "crn=%d crm=%d opc1=%d opc2=%d, " 8893 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8894 r2->crn, r2->crm, r2->opc1, r2->opc2, 8895 oldreg->name, r2->name); 8896 g_assert_not_reached(); 8897 } 8898 } 8899 g_hash_table_insert(cpu->cp_regs, key, r2); 8900 } 8901 8902 8903 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8904 const ARMCPRegInfo *r, void *opaque) 8905 { 8906 /* Define implementations of coprocessor registers. 8907 * We store these in a hashtable because typically 8908 * there are less than 150 registers in a space which 8909 * is 16*16*16*8*8 = 262144 in size. 8910 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8911 * If a register is defined twice then the second definition is 8912 * used, so this can be used to define some generic registers and 8913 * then override them with implementation specific variations. 8914 * At least one of the original and the second definition should 8915 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8916 * against accidental use. 8917 * 8918 * The state field defines whether the register is to be 8919 * visible in the AArch32 or AArch64 execution state. If the 8920 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8921 * reginfo structure for the AArch32 view, which sees the lower 8922 * 32 bits of the 64 bit register. 8923 * 8924 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8925 * be wildcarded. AArch64 registers are always considered to be 64 8926 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8927 * the register, if any. 8928 */ 8929 int crm, opc1, opc2, state; 8930 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8931 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8932 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8933 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8934 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8935 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8936 /* 64 bit registers have only CRm and Opc1 fields */ 8937 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8938 /* op0 only exists in the AArch64 encodings */ 8939 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8940 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8941 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8942 /* 8943 * This API is only for Arm's system coprocessors (14 and 15) or 8944 * (M-profile or v7A-and-earlier only) for implementation defined 8945 * coprocessors in the range 0..7. Our decode assumes this, since 8946 * 8..13 can be used for other insns including VFP and Neon. See 8947 * valid_cp() in translate.c. Assert here that we haven't tried 8948 * to use an invalid coprocessor number. 8949 */ 8950 switch (r->state) { 8951 case ARM_CP_STATE_BOTH: 8952 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8953 if (r->cp == 0) { 8954 break; 8955 } 8956 /* fall through */ 8957 case ARM_CP_STATE_AA32: 8958 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8959 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8960 assert(r->cp >= 14 && r->cp <= 15); 8961 } else { 8962 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8963 } 8964 break; 8965 case ARM_CP_STATE_AA64: 8966 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8967 break; 8968 default: 8969 g_assert_not_reached(); 8970 } 8971 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8972 * encodes a minimum access level for the register. We roll this 8973 * runtime check into our general permission check code, so check 8974 * here that the reginfo's specified permissions are strict enough 8975 * to encompass the generic architectural permission check. 8976 */ 8977 if (r->state != ARM_CP_STATE_AA32) { 8978 int mask = 0; 8979 switch (r->opc1) { 8980 case 0: 8981 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8982 mask = PL0U_R | PL1_RW; 8983 break; 8984 case 1: case 2: 8985 /* min_EL EL1 */ 8986 mask = PL1_RW; 8987 break; 8988 case 3: 8989 /* min_EL EL0 */ 8990 mask = PL0_RW; 8991 break; 8992 case 4: 8993 case 5: 8994 /* min_EL EL2 */ 8995 mask = PL2_RW; 8996 break; 8997 case 6: 8998 /* min_EL EL3 */ 8999 mask = PL3_RW; 9000 break; 9001 case 7: 9002 /* min_EL EL1, secure mode only (we don't check the latter) */ 9003 mask = PL1_RW; 9004 break; 9005 default: 9006 /* broken reginfo with out-of-range opc1 */ 9007 assert(false); 9008 break; 9009 } 9010 /* assert our permissions are not too lax (stricter is fine) */ 9011 assert((r->access & ~mask) == 0); 9012 } 9013 9014 /* Check that the register definition has enough info to handle 9015 * reads and writes if they are permitted. 9016 */ 9017 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 9018 if (r->access & PL3_R) { 9019 assert((r->fieldoffset || 9020 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9021 r->readfn); 9022 } 9023 if (r->access & PL3_W) { 9024 assert((r->fieldoffset || 9025 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9026 r->writefn); 9027 } 9028 } 9029 /* Bad type field probably means missing sentinel at end of reg list */ 9030 assert(cptype_valid(r->type)); 9031 for (crm = crmmin; crm <= crmmax; crm++) { 9032 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9033 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9034 for (state = ARM_CP_STATE_AA32; 9035 state <= ARM_CP_STATE_AA64; state++) { 9036 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9037 continue; 9038 } 9039 if (state == ARM_CP_STATE_AA32) { 9040 /* Under AArch32 CP registers can be common 9041 * (same for secure and non-secure world) or banked. 9042 */ 9043 char *name; 9044 9045 switch (r->secure) { 9046 case ARM_CP_SECSTATE_S: 9047 case ARM_CP_SECSTATE_NS: 9048 add_cpreg_to_hashtable(cpu, r, opaque, state, 9049 r->secure, crm, opc1, opc2, 9050 r->name); 9051 break; 9052 default: 9053 name = g_strdup_printf("%s_S", r->name); 9054 add_cpreg_to_hashtable(cpu, r, opaque, state, 9055 ARM_CP_SECSTATE_S, 9056 crm, opc1, opc2, name); 9057 g_free(name); 9058 add_cpreg_to_hashtable(cpu, r, opaque, state, 9059 ARM_CP_SECSTATE_NS, 9060 crm, opc1, opc2, r->name); 9061 break; 9062 } 9063 } else { 9064 /* AArch64 registers get mapped to non-secure instance 9065 * of AArch32 */ 9066 add_cpreg_to_hashtable(cpu, r, opaque, state, 9067 ARM_CP_SECSTATE_NS, 9068 crm, opc1, opc2, r->name); 9069 } 9070 } 9071 } 9072 } 9073 } 9074 } 9075 9076 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 9077 const ARMCPRegInfo *regs, void *opaque) 9078 { 9079 /* Define a whole list of registers */ 9080 const ARMCPRegInfo *r; 9081 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 9082 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 9083 } 9084 } 9085 9086 /* 9087 * Modify ARMCPRegInfo for access from userspace. 9088 * 9089 * This is a data driven modification directed by 9090 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9091 * user-space cannot alter any values and dynamic values pertaining to 9092 * execution state are hidden from user space view anyway. 9093 */ 9094 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 9095 { 9096 const ARMCPRegUserSpaceInfo *m; 9097 ARMCPRegInfo *r; 9098 9099 for (m = mods; m->name; m++) { 9100 GPatternSpec *pat = NULL; 9101 if (m->is_glob) { 9102 pat = g_pattern_spec_new(m->name); 9103 } 9104 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 9105 if (pat && g_pattern_match_string(pat, r->name)) { 9106 r->type = ARM_CP_CONST; 9107 r->access = PL0U_R; 9108 r->resetvalue = 0; 9109 /* continue */ 9110 } else if (strcmp(r->name, m->name) == 0) { 9111 r->type = ARM_CP_CONST; 9112 r->access = PL0U_R; 9113 r->resetvalue &= m->exported_bits; 9114 r->resetvalue |= m->fixed_bits; 9115 break; 9116 } 9117 } 9118 if (pat) { 9119 g_pattern_spec_free(pat); 9120 } 9121 } 9122 } 9123 9124 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9125 { 9126 return g_hash_table_lookup(cpregs, &encoded_cp); 9127 } 9128 9129 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9130 uint64_t value) 9131 { 9132 /* Helper coprocessor write function for write-ignore registers */ 9133 } 9134 9135 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9136 { 9137 /* Helper coprocessor write function for read-as-zero registers */ 9138 return 0; 9139 } 9140 9141 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9142 { 9143 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9144 } 9145 9146 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9147 { 9148 /* Return true if it is not valid for us to switch to 9149 * this CPU mode (ie all the UNPREDICTABLE cases in 9150 * the ARM ARM CPSRWriteByInstr pseudocode). 9151 */ 9152 9153 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9154 if (write_type == CPSRWriteByInstr && 9155 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9156 mode == ARM_CPU_MODE_HYP)) { 9157 return 1; 9158 } 9159 9160 switch (mode) { 9161 case ARM_CPU_MODE_USR: 9162 return 0; 9163 case ARM_CPU_MODE_SYS: 9164 case ARM_CPU_MODE_SVC: 9165 case ARM_CPU_MODE_ABT: 9166 case ARM_CPU_MODE_UND: 9167 case ARM_CPU_MODE_IRQ: 9168 case ARM_CPU_MODE_FIQ: 9169 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 9170 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9171 */ 9172 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9173 * and CPS are treated as illegal mode changes. 9174 */ 9175 if (write_type == CPSRWriteByInstr && 9176 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9177 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9178 return 1; 9179 } 9180 return 0; 9181 case ARM_CPU_MODE_HYP: 9182 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9183 case ARM_CPU_MODE_MON: 9184 return arm_current_el(env) < 3; 9185 default: 9186 return 1; 9187 } 9188 } 9189 9190 uint32_t cpsr_read(CPUARMState *env) 9191 { 9192 int ZF; 9193 ZF = (env->ZF == 0); 9194 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9195 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9196 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9197 | ((env->condexec_bits & 0xfc) << 8) 9198 | (env->GE << 16) | (env->daif & CPSR_AIF); 9199 } 9200 9201 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9202 CPSRWriteType write_type) 9203 { 9204 uint32_t changed_daif; 9205 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9206 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9207 9208 if (mask & CPSR_NZCV) { 9209 env->ZF = (~val) & CPSR_Z; 9210 env->NF = val; 9211 env->CF = (val >> 29) & 1; 9212 env->VF = (val << 3) & 0x80000000; 9213 } 9214 if (mask & CPSR_Q) 9215 env->QF = ((val & CPSR_Q) != 0); 9216 if (mask & CPSR_T) 9217 env->thumb = ((val & CPSR_T) != 0); 9218 if (mask & CPSR_IT_0_1) { 9219 env->condexec_bits &= ~3; 9220 env->condexec_bits |= (val >> 25) & 3; 9221 } 9222 if (mask & CPSR_IT_2_7) { 9223 env->condexec_bits &= 3; 9224 env->condexec_bits |= (val >> 8) & 0xfc; 9225 } 9226 if (mask & CPSR_GE) { 9227 env->GE = (val >> 16) & 0xf; 9228 } 9229 9230 /* In a V7 implementation that includes the security extensions but does 9231 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9232 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9233 * bits respectively. 9234 * 9235 * In a V8 implementation, it is permitted for privileged software to 9236 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9237 */ 9238 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9239 arm_feature(env, ARM_FEATURE_EL3) && 9240 !arm_feature(env, ARM_FEATURE_EL2) && 9241 !arm_is_secure(env)) { 9242 9243 changed_daif = (env->daif ^ val) & mask; 9244 9245 if (changed_daif & CPSR_A) { 9246 /* Check to see if we are allowed to change the masking of async 9247 * abort exceptions from a non-secure state. 9248 */ 9249 if (!(env->cp15.scr_el3 & SCR_AW)) { 9250 qemu_log_mask(LOG_GUEST_ERROR, 9251 "Ignoring attempt to switch CPSR_A flag from " 9252 "non-secure world with SCR.AW bit clear\n"); 9253 mask &= ~CPSR_A; 9254 } 9255 } 9256 9257 if (changed_daif & CPSR_F) { 9258 /* Check to see if we are allowed to change the masking of FIQ 9259 * exceptions from a non-secure state. 9260 */ 9261 if (!(env->cp15.scr_el3 & SCR_FW)) { 9262 qemu_log_mask(LOG_GUEST_ERROR, 9263 "Ignoring attempt to switch CPSR_F flag from " 9264 "non-secure world with SCR.FW bit clear\n"); 9265 mask &= ~CPSR_F; 9266 } 9267 9268 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9269 * If this bit is set software is not allowed to mask 9270 * FIQs, but is allowed to set CPSR_F to 0. 9271 */ 9272 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9273 (val & CPSR_F)) { 9274 qemu_log_mask(LOG_GUEST_ERROR, 9275 "Ignoring attempt to enable CPSR_F flag " 9276 "(non-maskable FIQ [NMFI] support enabled)\n"); 9277 mask &= ~CPSR_F; 9278 } 9279 } 9280 } 9281 9282 env->daif &= ~(CPSR_AIF & mask); 9283 env->daif |= val & CPSR_AIF & mask; 9284 9285 if (write_type != CPSRWriteRaw && 9286 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9287 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9288 /* Note that we can only get here in USR mode if this is a 9289 * gdb stub write; for this case we follow the architectural 9290 * behaviour for guest writes in USR mode of ignoring an attempt 9291 * to switch mode. (Those are caught by translate.c for writes 9292 * triggered by guest instructions.) 9293 */ 9294 mask &= ~CPSR_M; 9295 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9296 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9297 * v7, and has defined behaviour in v8: 9298 * + leave CPSR.M untouched 9299 * + allow changes to the other CPSR fields 9300 * + set PSTATE.IL 9301 * For user changes via the GDB stub, we don't set PSTATE.IL, 9302 * as this would be unnecessarily harsh for a user error. 9303 */ 9304 mask &= ~CPSR_M; 9305 if (write_type != CPSRWriteByGDBStub && 9306 arm_feature(env, ARM_FEATURE_V8)) { 9307 mask |= CPSR_IL; 9308 val |= CPSR_IL; 9309 } 9310 qemu_log_mask(LOG_GUEST_ERROR, 9311 "Illegal AArch32 mode switch attempt from %s to %s\n", 9312 aarch32_mode_name(env->uncached_cpsr), 9313 aarch32_mode_name(val)); 9314 } else { 9315 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9316 write_type == CPSRWriteExceptionReturn ? 9317 "Exception return from AArch32" : 9318 "AArch32 mode switch from", 9319 aarch32_mode_name(env->uncached_cpsr), 9320 aarch32_mode_name(val), env->regs[15]); 9321 switch_mode(env, val & CPSR_M); 9322 } 9323 } 9324 mask &= ~CACHED_CPSR_BITS; 9325 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9326 if (rebuild_hflags) { 9327 arm_rebuild_hflags(env); 9328 } 9329 } 9330 9331 /* Sign/zero extend */ 9332 uint32_t HELPER(sxtb16)(uint32_t x) 9333 { 9334 uint32_t res; 9335 res = (uint16_t)(int8_t)x; 9336 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9337 return res; 9338 } 9339 9340 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9341 { 9342 /* 9343 * Take a division-by-zero exception if necessary; otherwise return 9344 * to get the usual non-trapping division behaviour (result of 0) 9345 */ 9346 if (arm_feature(env, ARM_FEATURE_M) 9347 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9348 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9349 } 9350 } 9351 9352 uint32_t HELPER(uxtb16)(uint32_t x) 9353 { 9354 uint32_t res; 9355 res = (uint16_t)(uint8_t)x; 9356 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9357 return res; 9358 } 9359 9360 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9361 { 9362 if (den == 0) { 9363 handle_possible_div0_trap(env, GETPC()); 9364 return 0; 9365 } 9366 if (num == INT_MIN && den == -1) { 9367 return INT_MIN; 9368 } 9369 return num / den; 9370 } 9371 9372 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9373 { 9374 if (den == 0) { 9375 handle_possible_div0_trap(env, GETPC()); 9376 return 0; 9377 } 9378 return num / den; 9379 } 9380 9381 uint32_t HELPER(rbit)(uint32_t x) 9382 { 9383 return revbit32(x); 9384 } 9385 9386 #ifdef CONFIG_USER_ONLY 9387 9388 static void switch_mode(CPUARMState *env, int mode) 9389 { 9390 ARMCPU *cpu = env_archcpu(env); 9391 9392 if (mode != ARM_CPU_MODE_USR) { 9393 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9394 } 9395 } 9396 9397 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9398 uint32_t cur_el, bool secure) 9399 { 9400 return 1; 9401 } 9402 9403 void aarch64_sync_64_to_32(CPUARMState *env) 9404 { 9405 g_assert_not_reached(); 9406 } 9407 9408 #else 9409 9410 static void switch_mode(CPUARMState *env, int mode) 9411 { 9412 int old_mode; 9413 int i; 9414 9415 old_mode = env->uncached_cpsr & CPSR_M; 9416 if (mode == old_mode) 9417 return; 9418 9419 if (old_mode == ARM_CPU_MODE_FIQ) { 9420 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9421 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9422 } else if (mode == ARM_CPU_MODE_FIQ) { 9423 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9424 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9425 } 9426 9427 i = bank_number(old_mode); 9428 env->banked_r13[i] = env->regs[13]; 9429 env->banked_spsr[i] = env->spsr; 9430 9431 i = bank_number(mode); 9432 env->regs[13] = env->banked_r13[i]; 9433 env->spsr = env->banked_spsr[i]; 9434 9435 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9436 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9437 } 9438 9439 /* Physical Interrupt Target EL Lookup Table 9440 * 9441 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9442 * 9443 * The below multi-dimensional table is used for looking up the target 9444 * exception level given numerous condition criteria. Specifically, the 9445 * target EL is based on SCR and HCR routing controls as well as the 9446 * currently executing EL and secure state. 9447 * 9448 * Dimensions: 9449 * target_el_table[2][2][2][2][2][4] 9450 * | | | | | +--- Current EL 9451 * | | | | +------ Non-secure(0)/Secure(1) 9452 * | | | +--------- HCR mask override 9453 * | | +------------ SCR exec state control 9454 * | +--------------- SCR mask override 9455 * +------------------ 32-bit(0)/64-bit(1) EL3 9456 * 9457 * The table values are as such: 9458 * 0-3 = EL0-EL3 9459 * -1 = Cannot occur 9460 * 9461 * The ARM ARM target EL table includes entries indicating that an "exception 9462 * is not taken". The two cases where this is applicable are: 9463 * 1) An exception is taken from EL3 but the SCR does not have the exception 9464 * routed to EL3. 9465 * 2) An exception is taken from EL2 but the HCR does not have the exception 9466 * routed to EL2. 9467 * In these two cases, the below table contain a target of EL1. This value is 9468 * returned as it is expected that the consumer of the table data will check 9469 * for "target EL >= current EL" to ensure the exception is not taken. 9470 * 9471 * SCR HCR 9472 * 64 EA AMO From 9473 * BIT IRQ IMO Non-secure Secure 9474 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9475 */ 9476 static const int8_t target_el_table[2][2][2][2][2][4] = { 9477 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9478 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9479 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9480 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9481 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9482 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9483 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9484 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9485 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9486 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9487 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9488 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9489 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9490 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9491 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9492 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9493 }; 9494 9495 /* 9496 * Determine the target EL for physical exceptions 9497 */ 9498 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9499 uint32_t cur_el, bool secure) 9500 { 9501 CPUARMState *env = cs->env_ptr; 9502 bool rw; 9503 bool scr; 9504 bool hcr; 9505 int target_el; 9506 /* Is the highest EL AArch64? */ 9507 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9508 uint64_t hcr_el2; 9509 9510 if (arm_feature(env, ARM_FEATURE_EL3)) { 9511 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9512 } else { 9513 /* Either EL2 is the highest EL (and so the EL2 register width 9514 * is given by is64); or there is no EL2 or EL3, in which case 9515 * the value of 'rw' does not affect the table lookup anyway. 9516 */ 9517 rw = is64; 9518 } 9519 9520 hcr_el2 = arm_hcr_el2_eff(env); 9521 switch (excp_idx) { 9522 case EXCP_IRQ: 9523 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9524 hcr = hcr_el2 & HCR_IMO; 9525 break; 9526 case EXCP_FIQ: 9527 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9528 hcr = hcr_el2 & HCR_FMO; 9529 break; 9530 default: 9531 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9532 hcr = hcr_el2 & HCR_AMO; 9533 break; 9534 }; 9535 9536 /* 9537 * For these purposes, TGE and AMO/IMO/FMO both force the 9538 * interrupt to EL2. Fold TGE into the bit extracted above. 9539 */ 9540 hcr |= (hcr_el2 & HCR_TGE) != 0; 9541 9542 /* Perform a table-lookup for the target EL given the current state */ 9543 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9544 9545 assert(target_el > 0); 9546 9547 return target_el; 9548 } 9549 9550 void arm_log_exception(int idx) 9551 { 9552 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9553 const char *exc = NULL; 9554 static const char * const excnames[] = { 9555 [EXCP_UDEF] = "Undefined Instruction", 9556 [EXCP_SWI] = "SVC", 9557 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9558 [EXCP_DATA_ABORT] = "Data Abort", 9559 [EXCP_IRQ] = "IRQ", 9560 [EXCP_FIQ] = "FIQ", 9561 [EXCP_BKPT] = "Breakpoint", 9562 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9563 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9564 [EXCP_HVC] = "Hypervisor Call", 9565 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9566 [EXCP_SMC] = "Secure Monitor Call", 9567 [EXCP_VIRQ] = "Virtual IRQ", 9568 [EXCP_VFIQ] = "Virtual FIQ", 9569 [EXCP_SEMIHOST] = "Semihosting call", 9570 [EXCP_NOCP] = "v7M NOCP UsageFault", 9571 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9572 [EXCP_STKOF] = "v8M STKOF UsageFault", 9573 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9574 [EXCP_LSERR] = "v8M LSERR UsageFault", 9575 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9576 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9577 }; 9578 9579 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9580 exc = excnames[idx]; 9581 } 9582 if (!exc) { 9583 exc = "unknown"; 9584 } 9585 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9586 } 9587 } 9588 9589 /* 9590 * Function used to synchronize QEMU's AArch64 register set with AArch32 9591 * register set. This is necessary when switching between AArch32 and AArch64 9592 * execution state. 9593 */ 9594 void aarch64_sync_32_to_64(CPUARMState *env) 9595 { 9596 int i; 9597 uint32_t mode = env->uncached_cpsr & CPSR_M; 9598 9599 /* We can blanket copy R[0:7] to X[0:7] */ 9600 for (i = 0; i < 8; i++) { 9601 env->xregs[i] = env->regs[i]; 9602 } 9603 9604 /* 9605 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9606 * Otherwise, they come from the banked user regs. 9607 */ 9608 if (mode == ARM_CPU_MODE_FIQ) { 9609 for (i = 8; i < 13; i++) { 9610 env->xregs[i] = env->usr_regs[i - 8]; 9611 } 9612 } else { 9613 for (i = 8; i < 13; i++) { 9614 env->xregs[i] = env->regs[i]; 9615 } 9616 } 9617 9618 /* 9619 * Registers x13-x23 are the various mode SP and FP registers. Registers 9620 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9621 * from the mode banked register. 9622 */ 9623 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9624 env->xregs[13] = env->regs[13]; 9625 env->xregs[14] = env->regs[14]; 9626 } else { 9627 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9628 /* HYP is an exception in that it is copied from r14 */ 9629 if (mode == ARM_CPU_MODE_HYP) { 9630 env->xregs[14] = env->regs[14]; 9631 } else { 9632 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9633 } 9634 } 9635 9636 if (mode == ARM_CPU_MODE_HYP) { 9637 env->xregs[15] = env->regs[13]; 9638 } else { 9639 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9640 } 9641 9642 if (mode == ARM_CPU_MODE_IRQ) { 9643 env->xregs[16] = env->regs[14]; 9644 env->xregs[17] = env->regs[13]; 9645 } else { 9646 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9647 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9648 } 9649 9650 if (mode == ARM_CPU_MODE_SVC) { 9651 env->xregs[18] = env->regs[14]; 9652 env->xregs[19] = env->regs[13]; 9653 } else { 9654 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9655 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9656 } 9657 9658 if (mode == ARM_CPU_MODE_ABT) { 9659 env->xregs[20] = env->regs[14]; 9660 env->xregs[21] = env->regs[13]; 9661 } else { 9662 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9663 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9664 } 9665 9666 if (mode == ARM_CPU_MODE_UND) { 9667 env->xregs[22] = env->regs[14]; 9668 env->xregs[23] = env->regs[13]; 9669 } else { 9670 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9671 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9672 } 9673 9674 /* 9675 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9676 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9677 * FIQ bank for r8-r14. 9678 */ 9679 if (mode == ARM_CPU_MODE_FIQ) { 9680 for (i = 24; i < 31; i++) { 9681 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9682 } 9683 } else { 9684 for (i = 24; i < 29; i++) { 9685 env->xregs[i] = env->fiq_regs[i - 24]; 9686 } 9687 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9688 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9689 } 9690 9691 env->pc = env->regs[15]; 9692 } 9693 9694 /* 9695 * Function used to synchronize QEMU's AArch32 register set with AArch64 9696 * register set. This is necessary when switching between AArch32 and AArch64 9697 * execution state. 9698 */ 9699 void aarch64_sync_64_to_32(CPUARMState *env) 9700 { 9701 int i; 9702 uint32_t mode = env->uncached_cpsr & CPSR_M; 9703 9704 /* We can blanket copy X[0:7] to R[0:7] */ 9705 for (i = 0; i < 8; i++) { 9706 env->regs[i] = env->xregs[i]; 9707 } 9708 9709 /* 9710 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9711 * Otherwise, we copy x8-x12 into the banked user regs. 9712 */ 9713 if (mode == ARM_CPU_MODE_FIQ) { 9714 for (i = 8; i < 13; i++) { 9715 env->usr_regs[i - 8] = env->xregs[i]; 9716 } 9717 } else { 9718 for (i = 8; i < 13; i++) { 9719 env->regs[i] = env->xregs[i]; 9720 } 9721 } 9722 9723 /* 9724 * Registers r13 & r14 depend on the current mode. 9725 * If we are in a given mode, we copy the corresponding x registers to r13 9726 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9727 * for the mode. 9728 */ 9729 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9730 env->regs[13] = env->xregs[13]; 9731 env->regs[14] = env->xregs[14]; 9732 } else { 9733 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9734 9735 /* 9736 * HYP is an exception in that it does not have its own banked r14 but 9737 * shares the USR r14 9738 */ 9739 if (mode == ARM_CPU_MODE_HYP) { 9740 env->regs[14] = env->xregs[14]; 9741 } else { 9742 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9743 } 9744 } 9745 9746 if (mode == ARM_CPU_MODE_HYP) { 9747 env->regs[13] = env->xregs[15]; 9748 } else { 9749 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9750 } 9751 9752 if (mode == ARM_CPU_MODE_IRQ) { 9753 env->regs[14] = env->xregs[16]; 9754 env->regs[13] = env->xregs[17]; 9755 } else { 9756 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9757 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9758 } 9759 9760 if (mode == ARM_CPU_MODE_SVC) { 9761 env->regs[14] = env->xregs[18]; 9762 env->regs[13] = env->xregs[19]; 9763 } else { 9764 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9765 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9766 } 9767 9768 if (mode == ARM_CPU_MODE_ABT) { 9769 env->regs[14] = env->xregs[20]; 9770 env->regs[13] = env->xregs[21]; 9771 } else { 9772 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9773 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9774 } 9775 9776 if (mode == ARM_CPU_MODE_UND) { 9777 env->regs[14] = env->xregs[22]; 9778 env->regs[13] = env->xregs[23]; 9779 } else { 9780 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9781 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9782 } 9783 9784 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9785 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9786 * FIQ bank for r8-r14. 9787 */ 9788 if (mode == ARM_CPU_MODE_FIQ) { 9789 for (i = 24; i < 31; i++) { 9790 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9791 } 9792 } else { 9793 for (i = 24; i < 29; i++) { 9794 env->fiq_regs[i - 24] = env->xregs[i]; 9795 } 9796 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9797 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9798 } 9799 9800 env->regs[15] = env->pc; 9801 } 9802 9803 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9804 uint32_t mask, uint32_t offset, 9805 uint32_t newpc) 9806 { 9807 int new_el; 9808 9809 /* Change the CPU state so as to actually take the exception. */ 9810 switch_mode(env, new_mode); 9811 9812 /* 9813 * For exceptions taken to AArch32 we must clear the SS bit in both 9814 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9815 */ 9816 env->pstate &= ~PSTATE_SS; 9817 env->spsr = cpsr_read(env); 9818 /* Clear IT bits. */ 9819 env->condexec_bits = 0; 9820 /* Switch to the new mode, and to the correct instruction set. */ 9821 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9822 9823 /* This must be after mode switching. */ 9824 new_el = arm_current_el(env); 9825 9826 /* Set new mode endianness */ 9827 env->uncached_cpsr &= ~CPSR_E; 9828 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9829 env->uncached_cpsr |= CPSR_E; 9830 } 9831 /* J and IL must always be cleared for exception entry */ 9832 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9833 env->daif |= mask; 9834 9835 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9836 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9837 env->uncached_cpsr |= CPSR_SSBS; 9838 } else { 9839 env->uncached_cpsr &= ~CPSR_SSBS; 9840 } 9841 } 9842 9843 if (new_mode == ARM_CPU_MODE_HYP) { 9844 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9845 env->elr_el[2] = env->regs[15]; 9846 } else { 9847 /* CPSR.PAN is normally preserved preserved unless... */ 9848 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9849 switch (new_el) { 9850 case 3: 9851 if (!arm_is_secure_below_el3(env)) { 9852 /* ... the target is EL3, from non-secure state. */ 9853 env->uncached_cpsr &= ~CPSR_PAN; 9854 break; 9855 } 9856 /* ... the target is EL3, from secure state ... */ 9857 /* fall through */ 9858 case 1: 9859 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9860 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9861 env->uncached_cpsr |= CPSR_PAN; 9862 } 9863 break; 9864 } 9865 } 9866 /* 9867 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9868 * and we should just guard the thumb mode on V4 9869 */ 9870 if (arm_feature(env, ARM_FEATURE_V4T)) { 9871 env->thumb = 9872 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9873 } 9874 env->regs[14] = env->regs[15] + offset; 9875 } 9876 env->regs[15] = newpc; 9877 arm_rebuild_hflags(env); 9878 } 9879 9880 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9881 { 9882 /* 9883 * Handle exception entry to Hyp mode; this is sufficiently 9884 * different to entry to other AArch32 modes that we handle it 9885 * separately here. 9886 * 9887 * The vector table entry used is always the 0x14 Hyp mode entry point, 9888 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9889 * The offset applied to the preferred return address is always zero 9890 * (see DDI0487C.a section G1.12.3). 9891 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9892 */ 9893 uint32_t addr, mask; 9894 ARMCPU *cpu = ARM_CPU(cs); 9895 CPUARMState *env = &cpu->env; 9896 9897 switch (cs->exception_index) { 9898 case EXCP_UDEF: 9899 addr = 0x04; 9900 break; 9901 case EXCP_SWI: 9902 addr = 0x14; 9903 break; 9904 case EXCP_BKPT: 9905 /* Fall through to prefetch abort. */ 9906 case EXCP_PREFETCH_ABORT: 9907 env->cp15.ifar_s = env->exception.vaddress; 9908 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9909 (uint32_t)env->exception.vaddress); 9910 addr = 0x0c; 9911 break; 9912 case EXCP_DATA_ABORT: 9913 env->cp15.dfar_s = env->exception.vaddress; 9914 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9915 (uint32_t)env->exception.vaddress); 9916 addr = 0x10; 9917 break; 9918 case EXCP_IRQ: 9919 addr = 0x18; 9920 break; 9921 case EXCP_FIQ: 9922 addr = 0x1c; 9923 break; 9924 case EXCP_HVC: 9925 addr = 0x08; 9926 break; 9927 case EXCP_HYP_TRAP: 9928 addr = 0x14; 9929 break; 9930 default: 9931 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9932 } 9933 9934 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9935 if (!arm_feature(env, ARM_FEATURE_V8)) { 9936 /* 9937 * QEMU syndrome values are v8-style. v7 has the IL bit 9938 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9939 * If this is a v7 CPU, squash the IL bit in those cases. 9940 */ 9941 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9942 (cs->exception_index == EXCP_DATA_ABORT && 9943 !(env->exception.syndrome & ARM_EL_ISV)) || 9944 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9945 env->exception.syndrome &= ~ARM_EL_IL; 9946 } 9947 } 9948 env->cp15.esr_el[2] = env->exception.syndrome; 9949 } 9950 9951 if (arm_current_el(env) != 2 && addr < 0x14) { 9952 addr = 0x14; 9953 } 9954 9955 mask = 0; 9956 if (!(env->cp15.scr_el3 & SCR_EA)) { 9957 mask |= CPSR_A; 9958 } 9959 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9960 mask |= CPSR_I; 9961 } 9962 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9963 mask |= CPSR_F; 9964 } 9965 9966 addr += env->cp15.hvbar; 9967 9968 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9969 } 9970 9971 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9972 { 9973 ARMCPU *cpu = ARM_CPU(cs); 9974 CPUARMState *env = &cpu->env; 9975 uint32_t addr; 9976 uint32_t mask; 9977 int new_mode; 9978 uint32_t offset; 9979 uint32_t moe; 9980 9981 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9982 switch (syn_get_ec(env->exception.syndrome)) { 9983 case EC_BREAKPOINT: 9984 case EC_BREAKPOINT_SAME_EL: 9985 moe = 1; 9986 break; 9987 case EC_WATCHPOINT: 9988 case EC_WATCHPOINT_SAME_EL: 9989 moe = 10; 9990 break; 9991 case EC_AA32_BKPT: 9992 moe = 3; 9993 break; 9994 case EC_VECTORCATCH: 9995 moe = 5; 9996 break; 9997 default: 9998 moe = 0; 9999 break; 10000 } 10001 10002 if (moe) { 10003 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10004 } 10005 10006 if (env->exception.target_el == 2) { 10007 arm_cpu_do_interrupt_aarch32_hyp(cs); 10008 return; 10009 } 10010 10011 switch (cs->exception_index) { 10012 case EXCP_UDEF: 10013 new_mode = ARM_CPU_MODE_UND; 10014 addr = 0x04; 10015 mask = CPSR_I; 10016 if (env->thumb) 10017 offset = 2; 10018 else 10019 offset = 4; 10020 break; 10021 case EXCP_SWI: 10022 new_mode = ARM_CPU_MODE_SVC; 10023 addr = 0x08; 10024 mask = CPSR_I; 10025 /* The PC already points to the next instruction. */ 10026 offset = 0; 10027 break; 10028 case EXCP_BKPT: 10029 /* Fall through to prefetch abort. */ 10030 case EXCP_PREFETCH_ABORT: 10031 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10032 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10033 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10034 env->exception.fsr, (uint32_t)env->exception.vaddress); 10035 new_mode = ARM_CPU_MODE_ABT; 10036 addr = 0x0c; 10037 mask = CPSR_A | CPSR_I; 10038 offset = 4; 10039 break; 10040 case EXCP_DATA_ABORT: 10041 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10042 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10043 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10044 env->exception.fsr, 10045 (uint32_t)env->exception.vaddress); 10046 new_mode = ARM_CPU_MODE_ABT; 10047 addr = 0x10; 10048 mask = CPSR_A | CPSR_I; 10049 offset = 8; 10050 break; 10051 case EXCP_IRQ: 10052 new_mode = ARM_CPU_MODE_IRQ; 10053 addr = 0x18; 10054 /* Disable IRQ and imprecise data aborts. */ 10055 mask = CPSR_A | CPSR_I; 10056 offset = 4; 10057 if (env->cp15.scr_el3 & SCR_IRQ) { 10058 /* IRQ routed to monitor mode */ 10059 new_mode = ARM_CPU_MODE_MON; 10060 mask |= CPSR_F; 10061 } 10062 break; 10063 case EXCP_FIQ: 10064 new_mode = ARM_CPU_MODE_FIQ; 10065 addr = 0x1c; 10066 /* Disable FIQ, IRQ and imprecise data aborts. */ 10067 mask = CPSR_A | CPSR_I | CPSR_F; 10068 if (env->cp15.scr_el3 & SCR_FIQ) { 10069 /* FIQ routed to monitor mode */ 10070 new_mode = ARM_CPU_MODE_MON; 10071 } 10072 offset = 4; 10073 break; 10074 case EXCP_VIRQ: 10075 new_mode = ARM_CPU_MODE_IRQ; 10076 addr = 0x18; 10077 /* Disable IRQ and imprecise data aborts. */ 10078 mask = CPSR_A | CPSR_I; 10079 offset = 4; 10080 break; 10081 case EXCP_VFIQ: 10082 new_mode = ARM_CPU_MODE_FIQ; 10083 addr = 0x1c; 10084 /* Disable FIQ, IRQ and imprecise data aborts. */ 10085 mask = CPSR_A | CPSR_I | CPSR_F; 10086 offset = 4; 10087 break; 10088 case EXCP_SMC: 10089 new_mode = ARM_CPU_MODE_MON; 10090 addr = 0x08; 10091 mask = CPSR_A | CPSR_I | CPSR_F; 10092 offset = 0; 10093 break; 10094 default: 10095 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10096 return; /* Never happens. Keep compiler happy. */ 10097 } 10098 10099 if (new_mode == ARM_CPU_MODE_MON) { 10100 addr += env->cp15.mvbar; 10101 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10102 /* High vectors. When enabled, base address cannot be remapped. */ 10103 addr += 0xffff0000; 10104 } else { 10105 /* ARM v7 architectures provide a vector base address register to remap 10106 * the interrupt vector table. 10107 * This register is only followed in non-monitor mode, and is banked. 10108 * Note: only bits 31:5 are valid. 10109 */ 10110 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10111 } 10112 10113 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10114 env->cp15.scr_el3 &= ~SCR_NS; 10115 } 10116 10117 take_aarch32_exception(env, new_mode, mask, offset, addr); 10118 } 10119 10120 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10121 { 10122 /* 10123 * Return the register number of the AArch64 view of the AArch32 10124 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10125 * be that of the AArch32 mode the exception came from. 10126 */ 10127 int mode = env->uncached_cpsr & CPSR_M; 10128 10129 switch (aarch32_reg) { 10130 case 0 ... 7: 10131 return aarch32_reg; 10132 case 8 ... 12: 10133 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10134 case 13: 10135 switch (mode) { 10136 case ARM_CPU_MODE_USR: 10137 case ARM_CPU_MODE_SYS: 10138 return 13; 10139 case ARM_CPU_MODE_HYP: 10140 return 15; 10141 case ARM_CPU_MODE_IRQ: 10142 return 17; 10143 case ARM_CPU_MODE_SVC: 10144 return 19; 10145 case ARM_CPU_MODE_ABT: 10146 return 21; 10147 case ARM_CPU_MODE_UND: 10148 return 23; 10149 case ARM_CPU_MODE_FIQ: 10150 return 29; 10151 default: 10152 g_assert_not_reached(); 10153 } 10154 case 14: 10155 switch (mode) { 10156 case ARM_CPU_MODE_USR: 10157 case ARM_CPU_MODE_SYS: 10158 case ARM_CPU_MODE_HYP: 10159 return 14; 10160 case ARM_CPU_MODE_IRQ: 10161 return 16; 10162 case ARM_CPU_MODE_SVC: 10163 return 18; 10164 case ARM_CPU_MODE_ABT: 10165 return 20; 10166 case ARM_CPU_MODE_UND: 10167 return 22; 10168 case ARM_CPU_MODE_FIQ: 10169 return 30; 10170 default: 10171 g_assert_not_reached(); 10172 } 10173 case 15: 10174 return 31; 10175 default: 10176 g_assert_not_reached(); 10177 } 10178 } 10179 10180 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10181 { 10182 uint32_t ret = cpsr_read(env); 10183 10184 /* Move DIT to the correct location for SPSR_ELx */ 10185 if (ret & CPSR_DIT) { 10186 ret &= ~CPSR_DIT; 10187 ret |= PSTATE_DIT; 10188 } 10189 /* Merge PSTATE.SS into SPSR_ELx */ 10190 ret |= env->pstate & PSTATE_SS; 10191 10192 return ret; 10193 } 10194 10195 /* Handle exception entry to a target EL which is using AArch64 */ 10196 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10197 { 10198 ARMCPU *cpu = ARM_CPU(cs); 10199 CPUARMState *env = &cpu->env; 10200 unsigned int new_el = env->exception.target_el; 10201 target_ulong addr = env->cp15.vbar_el[new_el]; 10202 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10203 unsigned int old_mode; 10204 unsigned int cur_el = arm_current_el(env); 10205 int rt; 10206 10207 /* 10208 * Note that new_el can never be 0. If cur_el is 0, then 10209 * el0_a64 is is_a64(), else el0_a64 is ignored. 10210 */ 10211 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10212 10213 if (cur_el < new_el) { 10214 /* Entry vector offset depends on whether the implemented EL 10215 * immediately lower than the target level is using AArch32 or AArch64 10216 */ 10217 bool is_aa64; 10218 uint64_t hcr; 10219 10220 switch (new_el) { 10221 case 3: 10222 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10223 break; 10224 case 2: 10225 hcr = arm_hcr_el2_eff(env); 10226 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10227 is_aa64 = (hcr & HCR_RW) != 0; 10228 break; 10229 } 10230 /* fall through */ 10231 case 1: 10232 is_aa64 = is_a64(env); 10233 break; 10234 default: 10235 g_assert_not_reached(); 10236 } 10237 10238 if (is_aa64) { 10239 addr += 0x400; 10240 } else { 10241 addr += 0x600; 10242 } 10243 } else if (pstate_read(env) & PSTATE_SP) { 10244 addr += 0x200; 10245 } 10246 10247 switch (cs->exception_index) { 10248 case EXCP_PREFETCH_ABORT: 10249 case EXCP_DATA_ABORT: 10250 env->cp15.far_el[new_el] = env->exception.vaddress; 10251 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10252 env->cp15.far_el[new_el]); 10253 /* fall through */ 10254 case EXCP_BKPT: 10255 case EXCP_UDEF: 10256 case EXCP_SWI: 10257 case EXCP_HVC: 10258 case EXCP_HYP_TRAP: 10259 case EXCP_SMC: 10260 switch (syn_get_ec(env->exception.syndrome)) { 10261 case EC_ADVSIMDFPACCESSTRAP: 10262 /* 10263 * QEMU internal FP/SIMD syndromes from AArch32 include the 10264 * TA and coproc fields which are only exposed if the exception 10265 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10266 * AArch64 format syndrome. 10267 */ 10268 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10269 break; 10270 case EC_CP14RTTRAP: 10271 case EC_CP15RTTRAP: 10272 case EC_CP14DTTRAP: 10273 /* 10274 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10275 * the raw register field from the insn; when taking this to 10276 * AArch64 we must convert it to the AArch64 view of the register 10277 * number. Notice that we read a 4-bit AArch32 register number and 10278 * write back a 5-bit AArch64 one. 10279 */ 10280 rt = extract32(env->exception.syndrome, 5, 4); 10281 rt = aarch64_regnum(env, rt); 10282 env->exception.syndrome = deposit32(env->exception.syndrome, 10283 5, 5, rt); 10284 break; 10285 case EC_CP15RRTTRAP: 10286 case EC_CP14RRTTRAP: 10287 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10288 rt = extract32(env->exception.syndrome, 5, 4); 10289 rt = aarch64_regnum(env, rt); 10290 env->exception.syndrome = deposit32(env->exception.syndrome, 10291 5, 5, rt); 10292 rt = extract32(env->exception.syndrome, 10, 4); 10293 rt = aarch64_regnum(env, rt); 10294 env->exception.syndrome = deposit32(env->exception.syndrome, 10295 10, 5, rt); 10296 break; 10297 } 10298 env->cp15.esr_el[new_el] = env->exception.syndrome; 10299 break; 10300 case EXCP_IRQ: 10301 case EXCP_VIRQ: 10302 addr += 0x80; 10303 break; 10304 case EXCP_FIQ: 10305 case EXCP_VFIQ: 10306 addr += 0x100; 10307 break; 10308 default: 10309 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10310 } 10311 10312 if (is_a64(env)) { 10313 old_mode = pstate_read(env); 10314 aarch64_save_sp(env, arm_current_el(env)); 10315 env->elr_el[new_el] = env->pc; 10316 } else { 10317 old_mode = cpsr_read_for_spsr_elx(env); 10318 env->elr_el[new_el] = env->regs[15]; 10319 10320 aarch64_sync_32_to_64(env); 10321 10322 env->condexec_bits = 0; 10323 } 10324 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10325 10326 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10327 env->elr_el[new_el]); 10328 10329 if (cpu_isar_feature(aa64_pan, cpu)) { 10330 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10331 new_mode |= old_mode & PSTATE_PAN; 10332 switch (new_el) { 10333 case 2: 10334 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10335 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10336 != (HCR_E2H | HCR_TGE)) { 10337 break; 10338 } 10339 /* fall through */ 10340 case 1: 10341 /* ... the target is EL1 ... */ 10342 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10343 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10344 new_mode |= PSTATE_PAN; 10345 } 10346 break; 10347 } 10348 } 10349 if (cpu_isar_feature(aa64_mte, cpu)) { 10350 new_mode |= PSTATE_TCO; 10351 } 10352 10353 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10354 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10355 new_mode |= PSTATE_SSBS; 10356 } else { 10357 new_mode &= ~PSTATE_SSBS; 10358 } 10359 } 10360 10361 pstate_write(env, PSTATE_DAIF | new_mode); 10362 env->aarch64 = 1; 10363 aarch64_restore_sp(env, new_el); 10364 helper_rebuild_hflags_a64(env, new_el); 10365 10366 env->pc = addr; 10367 10368 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10369 new_el, env->pc, pstate_read(env)); 10370 } 10371 10372 /* 10373 * Do semihosting call and set the appropriate return value. All the 10374 * permission and validity checks have been done at translate time. 10375 * 10376 * We only see semihosting exceptions in TCG only as they are not 10377 * trapped to the hypervisor in KVM. 10378 */ 10379 #ifdef CONFIG_TCG 10380 static void handle_semihosting(CPUState *cs) 10381 { 10382 ARMCPU *cpu = ARM_CPU(cs); 10383 CPUARMState *env = &cpu->env; 10384 10385 if (is_a64(env)) { 10386 qemu_log_mask(CPU_LOG_INT, 10387 "...handling as semihosting call 0x%" PRIx64 "\n", 10388 env->xregs[0]); 10389 env->xregs[0] = do_common_semihosting(cs); 10390 env->pc += 4; 10391 } else { 10392 qemu_log_mask(CPU_LOG_INT, 10393 "...handling as semihosting call 0x%x\n", 10394 env->regs[0]); 10395 env->regs[0] = do_common_semihosting(cs); 10396 env->regs[15] += env->thumb ? 2 : 4; 10397 } 10398 } 10399 #endif 10400 10401 /* Handle a CPU exception for A and R profile CPUs. 10402 * Do any appropriate logging, handle PSCI calls, and then hand off 10403 * to the AArch64-entry or AArch32-entry function depending on the 10404 * target exception level's register width. 10405 * 10406 * Note: this is used for both TCG (as the do_interrupt tcg op), 10407 * and KVM to re-inject guest debug exceptions, and to 10408 * inject a Synchronous-External-Abort. 10409 */ 10410 void arm_cpu_do_interrupt(CPUState *cs) 10411 { 10412 ARMCPU *cpu = ARM_CPU(cs); 10413 CPUARMState *env = &cpu->env; 10414 unsigned int new_el = env->exception.target_el; 10415 10416 assert(!arm_feature(env, ARM_FEATURE_M)); 10417 10418 arm_log_exception(cs->exception_index); 10419 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10420 new_el); 10421 if (qemu_loglevel_mask(CPU_LOG_INT) 10422 && !excp_is_internal(cs->exception_index)) { 10423 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10424 syn_get_ec(env->exception.syndrome), 10425 env->exception.syndrome); 10426 } 10427 10428 if (arm_is_psci_call(cpu, cs->exception_index)) { 10429 arm_handle_psci_call(cpu); 10430 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10431 return; 10432 } 10433 10434 /* 10435 * Semihosting semantics depend on the register width of the code 10436 * that caused the exception, not the target exception level, so 10437 * must be handled here. 10438 */ 10439 #ifdef CONFIG_TCG 10440 if (cs->exception_index == EXCP_SEMIHOST) { 10441 handle_semihosting(cs); 10442 return; 10443 } 10444 #endif 10445 10446 /* Hooks may change global state so BQL should be held, also the 10447 * BQL needs to be held for any modification of 10448 * cs->interrupt_request. 10449 */ 10450 g_assert(qemu_mutex_iothread_locked()); 10451 10452 arm_call_pre_el_change_hook(cpu); 10453 10454 assert(!excp_is_internal(cs->exception_index)); 10455 if (arm_el_is_aa64(env, new_el)) { 10456 arm_cpu_do_interrupt_aarch64(cs); 10457 } else { 10458 arm_cpu_do_interrupt_aarch32(cs); 10459 } 10460 10461 arm_call_el_change_hook(cpu); 10462 10463 if (!kvm_enabled()) { 10464 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10465 } 10466 } 10467 #endif /* !CONFIG_USER_ONLY */ 10468 10469 uint64_t arm_sctlr(CPUARMState *env, int el) 10470 { 10471 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10472 if (el == 0) { 10473 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10474 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10475 ? 2 : 1; 10476 } 10477 return env->cp15.sctlr_el[el]; 10478 } 10479 10480 /* Return the SCTLR value which controls this address translation regime */ 10481 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10482 { 10483 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10484 } 10485 10486 #ifndef CONFIG_USER_ONLY 10487 10488 /* Return true if the specified stage of address translation is disabled */ 10489 static inline bool regime_translation_disabled(CPUARMState *env, 10490 ARMMMUIdx mmu_idx) 10491 { 10492 uint64_t hcr_el2; 10493 10494 if (arm_feature(env, ARM_FEATURE_M)) { 10495 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10496 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10497 case R_V7M_MPU_CTRL_ENABLE_MASK: 10498 /* Enabled, but not for HardFault and NMI */ 10499 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10500 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10501 /* Enabled for all cases */ 10502 return false; 10503 case 0: 10504 default: 10505 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10506 * we warned about that in armv7m_nvic.c when the guest set it. 10507 */ 10508 return true; 10509 } 10510 } 10511 10512 hcr_el2 = arm_hcr_el2_eff(env); 10513 10514 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10515 /* HCR.DC means HCR.VM behaves as 1 */ 10516 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10517 } 10518 10519 if (hcr_el2 & HCR_TGE) { 10520 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10521 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10522 return true; 10523 } 10524 } 10525 10526 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10527 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10528 return true; 10529 } 10530 10531 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10532 } 10533 10534 static inline bool regime_translation_big_endian(CPUARMState *env, 10535 ARMMMUIdx mmu_idx) 10536 { 10537 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10538 } 10539 10540 /* Return the TTBR associated with this translation regime */ 10541 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10542 int ttbrn) 10543 { 10544 if (mmu_idx == ARMMMUIdx_Stage2) { 10545 return env->cp15.vttbr_el2; 10546 } 10547 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10548 return env->cp15.vsttbr_el2; 10549 } 10550 if (ttbrn == 0) { 10551 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10552 } else { 10553 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10554 } 10555 } 10556 10557 #endif /* !CONFIG_USER_ONLY */ 10558 10559 /* Convert a possible stage1+2 MMU index into the appropriate 10560 * stage 1 MMU index 10561 */ 10562 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10563 { 10564 switch (mmu_idx) { 10565 case ARMMMUIdx_SE10_0: 10566 return ARMMMUIdx_Stage1_SE0; 10567 case ARMMMUIdx_SE10_1: 10568 return ARMMMUIdx_Stage1_SE1; 10569 case ARMMMUIdx_SE10_1_PAN: 10570 return ARMMMUIdx_Stage1_SE1_PAN; 10571 case ARMMMUIdx_E10_0: 10572 return ARMMMUIdx_Stage1_E0; 10573 case ARMMMUIdx_E10_1: 10574 return ARMMMUIdx_Stage1_E1; 10575 case ARMMMUIdx_E10_1_PAN: 10576 return ARMMMUIdx_Stage1_E1_PAN; 10577 default: 10578 return mmu_idx; 10579 } 10580 } 10581 10582 /* Return true if the translation regime is using LPAE format page tables */ 10583 static inline bool regime_using_lpae_format(CPUARMState *env, 10584 ARMMMUIdx mmu_idx) 10585 { 10586 int el = regime_el(env, mmu_idx); 10587 if (el == 2 || arm_el_is_aa64(env, el)) { 10588 return true; 10589 } 10590 if (arm_feature(env, ARM_FEATURE_LPAE) 10591 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10592 return true; 10593 } 10594 return false; 10595 } 10596 10597 /* Returns true if the stage 1 translation regime is using LPAE format page 10598 * tables. Used when raising alignment exceptions, whose FSR changes depending 10599 * on whether the long or short descriptor format is in use. */ 10600 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10601 { 10602 mmu_idx = stage_1_mmu_idx(mmu_idx); 10603 10604 return regime_using_lpae_format(env, mmu_idx); 10605 } 10606 10607 #ifndef CONFIG_USER_ONLY 10608 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10609 { 10610 switch (mmu_idx) { 10611 case ARMMMUIdx_SE10_0: 10612 case ARMMMUIdx_E20_0: 10613 case ARMMMUIdx_SE20_0: 10614 case ARMMMUIdx_Stage1_E0: 10615 case ARMMMUIdx_Stage1_SE0: 10616 case ARMMMUIdx_MUser: 10617 case ARMMMUIdx_MSUser: 10618 case ARMMMUIdx_MUserNegPri: 10619 case ARMMMUIdx_MSUserNegPri: 10620 return true; 10621 default: 10622 return false; 10623 case ARMMMUIdx_E10_0: 10624 case ARMMMUIdx_E10_1: 10625 case ARMMMUIdx_E10_1_PAN: 10626 g_assert_not_reached(); 10627 } 10628 } 10629 10630 /* Translate section/page access permissions to page 10631 * R/W protection flags 10632 * 10633 * @env: CPUARMState 10634 * @mmu_idx: MMU index indicating required translation regime 10635 * @ap: The 3-bit access permissions (AP[2:0]) 10636 * @domain_prot: The 2-bit domain access permissions 10637 */ 10638 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10639 int ap, int domain_prot) 10640 { 10641 bool is_user = regime_is_user(env, mmu_idx); 10642 10643 if (domain_prot == 3) { 10644 return PAGE_READ | PAGE_WRITE; 10645 } 10646 10647 switch (ap) { 10648 case 0: 10649 if (arm_feature(env, ARM_FEATURE_V7)) { 10650 return 0; 10651 } 10652 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10653 case SCTLR_S: 10654 return is_user ? 0 : PAGE_READ; 10655 case SCTLR_R: 10656 return PAGE_READ; 10657 default: 10658 return 0; 10659 } 10660 case 1: 10661 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10662 case 2: 10663 if (is_user) { 10664 return PAGE_READ; 10665 } else { 10666 return PAGE_READ | PAGE_WRITE; 10667 } 10668 case 3: 10669 return PAGE_READ | PAGE_WRITE; 10670 case 4: /* Reserved. */ 10671 return 0; 10672 case 5: 10673 return is_user ? 0 : PAGE_READ; 10674 case 6: 10675 return PAGE_READ; 10676 case 7: 10677 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10678 return 0; 10679 } 10680 return PAGE_READ; 10681 default: 10682 g_assert_not_reached(); 10683 } 10684 } 10685 10686 /* Translate section/page access permissions to page 10687 * R/W protection flags. 10688 * 10689 * @ap: The 2-bit simple AP (AP[2:1]) 10690 * @is_user: TRUE if accessing from PL0 10691 */ 10692 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10693 { 10694 switch (ap) { 10695 case 0: 10696 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10697 case 1: 10698 return PAGE_READ | PAGE_WRITE; 10699 case 2: 10700 return is_user ? 0 : PAGE_READ; 10701 case 3: 10702 return PAGE_READ; 10703 default: 10704 g_assert_not_reached(); 10705 } 10706 } 10707 10708 static inline int 10709 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10710 { 10711 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10712 } 10713 10714 /* Translate S2 section/page access permissions to protection flags 10715 * 10716 * @env: CPUARMState 10717 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10718 * @xn: XN (execute-never) bits 10719 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10720 */ 10721 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10722 { 10723 int prot = 0; 10724 10725 if (s2ap & 1) { 10726 prot |= PAGE_READ; 10727 } 10728 if (s2ap & 2) { 10729 prot |= PAGE_WRITE; 10730 } 10731 10732 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10733 switch (xn) { 10734 case 0: 10735 prot |= PAGE_EXEC; 10736 break; 10737 case 1: 10738 if (s1_is_el0) { 10739 prot |= PAGE_EXEC; 10740 } 10741 break; 10742 case 2: 10743 break; 10744 case 3: 10745 if (!s1_is_el0) { 10746 prot |= PAGE_EXEC; 10747 } 10748 break; 10749 default: 10750 g_assert_not_reached(); 10751 } 10752 } else { 10753 if (!extract32(xn, 1, 1)) { 10754 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10755 prot |= PAGE_EXEC; 10756 } 10757 } 10758 } 10759 return prot; 10760 } 10761 10762 /* Translate section/page access permissions to protection flags 10763 * 10764 * @env: CPUARMState 10765 * @mmu_idx: MMU index indicating required translation regime 10766 * @is_aa64: TRUE if AArch64 10767 * @ap: The 2-bit simple AP (AP[2:1]) 10768 * @ns: NS (non-secure) bit 10769 * @xn: XN (execute-never) bit 10770 * @pxn: PXN (privileged execute-never) bit 10771 */ 10772 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10773 int ap, int ns, int xn, int pxn) 10774 { 10775 bool is_user = regime_is_user(env, mmu_idx); 10776 int prot_rw, user_rw; 10777 bool have_wxn; 10778 int wxn = 0; 10779 10780 assert(mmu_idx != ARMMMUIdx_Stage2); 10781 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10782 10783 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10784 if (is_user) { 10785 prot_rw = user_rw; 10786 } else { 10787 if (user_rw && regime_is_pan(env, mmu_idx)) { 10788 /* PAN forbids data accesses but doesn't affect insn fetch */ 10789 prot_rw = 0; 10790 } else { 10791 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10792 } 10793 } 10794 10795 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10796 return prot_rw; 10797 } 10798 10799 /* TODO have_wxn should be replaced with 10800 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10801 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10802 * compatible processors have EL2, which is required for [U]WXN. 10803 */ 10804 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10805 10806 if (have_wxn) { 10807 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10808 } 10809 10810 if (is_aa64) { 10811 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10812 xn = pxn || (user_rw & PAGE_WRITE); 10813 } 10814 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10815 switch (regime_el(env, mmu_idx)) { 10816 case 1: 10817 case 3: 10818 if (is_user) { 10819 xn = xn || !(user_rw & PAGE_READ); 10820 } else { 10821 int uwxn = 0; 10822 if (have_wxn) { 10823 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10824 } 10825 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10826 (uwxn && (user_rw & PAGE_WRITE)); 10827 } 10828 break; 10829 case 2: 10830 break; 10831 } 10832 } else { 10833 xn = wxn = 0; 10834 } 10835 10836 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10837 return prot_rw; 10838 } 10839 return prot_rw | PAGE_EXEC; 10840 } 10841 10842 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10843 uint32_t *table, uint32_t address) 10844 { 10845 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10846 TCR *tcr = regime_tcr(env, mmu_idx); 10847 10848 if (address & tcr->mask) { 10849 if (tcr->raw_tcr & TTBCR_PD1) { 10850 /* Translation table walk disabled for TTBR1 */ 10851 return false; 10852 } 10853 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10854 } else { 10855 if (tcr->raw_tcr & TTBCR_PD0) { 10856 /* Translation table walk disabled for TTBR0 */ 10857 return false; 10858 } 10859 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10860 } 10861 *table |= (address >> 18) & 0x3ffc; 10862 return true; 10863 } 10864 10865 /* Translate a S1 pagetable walk through S2 if needed. */ 10866 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10867 hwaddr addr, bool *is_secure, 10868 ARMMMUFaultInfo *fi) 10869 { 10870 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10871 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10872 target_ulong s2size; 10873 hwaddr s2pa; 10874 int s2prot; 10875 int ret; 10876 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10877 : ARMMMUIdx_Stage2; 10878 ARMCacheAttrs cacheattrs = {}; 10879 MemTxAttrs txattrs = {}; 10880 10881 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10882 &s2pa, &txattrs, &s2prot, &s2size, fi, 10883 &cacheattrs); 10884 if (ret) { 10885 assert(fi->type != ARMFault_None); 10886 fi->s2addr = addr; 10887 fi->stage2 = true; 10888 fi->s1ptw = true; 10889 fi->s1ns = !*is_secure; 10890 return ~0; 10891 } 10892 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10893 (cacheattrs.attrs & 0xf0) == 0) { 10894 /* 10895 * PTW set and S1 walk touched S2 Device memory: 10896 * generate Permission fault. 10897 */ 10898 fi->type = ARMFault_Permission; 10899 fi->s2addr = addr; 10900 fi->stage2 = true; 10901 fi->s1ptw = true; 10902 fi->s1ns = !*is_secure; 10903 return ~0; 10904 } 10905 10906 if (arm_is_secure_below_el3(env)) { 10907 /* Check if page table walk is to secure or non-secure PA space. */ 10908 if (*is_secure) { 10909 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10910 } else { 10911 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10912 } 10913 } else { 10914 assert(!*is_secure); 10915 } 10916 10917 addr = s2pa; 10918 } 10919 return addr; 10920 } 10921 10922 /* All loads done in the course of a page table walk go through here. */ 10923 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10924 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10925 { 10926 ARMCPU *cpu = ARM_CPU(cs); 10927 CPUARMState *env = &cpu->env; 10928 MemTxAttrs attrs = {}; 10929 MemTxResult result = MEMTX_OK; 10930 AddressSpace *as; 10931 uint32_t data; 10932 10933 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10934 attrs.secure = is_secure; 10935 as = arm_addressspace(cs, attrs); 10936 if (fi->s1ptw) { 10937 return 0; 10938 } 10939 if (regime_translation_big_endian(env, mmu_idx)) { 10940 data = address_space_ldl_be(as, addr, attrs, &result); 10941 } else { 10942 data = address_space_ldl_le(as, addr, attrs, &result); 10943 } 10944 if (result == MEMTX_OK) { 10945 return data; 10946 } 10947 fi->type = ARMFault_SyncExternalOnWalk; 10948 fi->ea = arm_extabort_type(result); 10949 return 0; 10950 } 10951 10952 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10953 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10954 { 10955 ARMCPU *cpu = ARM_CPU(cs); 10956 CPUARMState *env = &cpu->env; 10957 MemTxAttrs attrs = {}; 10958 MemTxResult result = MEMTX_OK; 10959 AddressSpace *as; 10960 uint64_t data; 10961 10962 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10963 attrs.secure = is_secure; 10964 as = arm_addressspace(cs, attrs); 10965 if (fi->s1ptw) { 10966 return 0; 10967 } 10968 if (regime_translation_big_endian(env, mmu_idx)) { 10969 data = address_space_ldq_be(as, addr, attrs, &result); 10970 } else { 10971 data = address_space_ldq_le(as, addr, attrs, &result); 10972 } 10973 if (result == MEMTX_OK) { 10974 return data; 10975 } 10976 fi->type = ARMFault_SyncExternalOnWalk; 10977 fi->ea = arm_extabort_type(result); 10978 return 0; 10979 } 10980 10981 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10982 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10983 hwaddr *phys_ptr, int *prot, 10984 target_ulong *page_size, 10985 ARMMMUFaultInfo *fi) 10986 { 10987 CPUState *cs = env_cpu(env); 10988 int level = 1; 10989 uint32_t table; 10990 uint32_t desc; 10991 int type; 10992 int ap; 10993 int domain = 0; 10994 int domain_prot; 10995 hwaddr phys_addr; 10996 uint32_t dacr; 10997 10998 /* Pagetable walk. */ 10999 /* Lookup l1 descriptor. */ 11000 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11001 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11002 fi->type = ARMFault_Translation; 11003 goto do_fault; 11004 } 11005 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11006 mmu_idx, fi); 11007 if (fi->type != ARMFault_None) { 11008 goto do_fault; 11009 } 11010 type = (desc & 3); 11011 domain = (desc >> 5) & 0x0f; 11012 if (regime_el(env, mmu_idx) == 1) { 11013 dacr = env->cp15.dacr_ns; 11014 } else { 11015 dacr = env->cp15.dacr_s; 11016 } 11017 domain_prot = (dacr >> (domain * 2)) & 3; 11018 if (type == 0) { 11019 /* Section translation fault. */ 11020 fi->type = ARMFault_Translation; 11021 goto do_fault; 11022 } 11023 if (type != 2) { 11024 level = 2; 11025 } 11026 if (domain_prot == 0 || domain_prot == 2) { 11027 fi->type = ARMFault_Domain; 11028 goto do_fault; 11029 } 11030 if (type == 2) { 11031 /* 1Mb section. */ 11032 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11033 ap = (desc >> 10) & 3; 11034 *page_size = 1024 * 1024; 11035 } else { 11036 /* Lookup l2 entry. */ 11037 if (type == 1) { 11038 /* Coarse pagetable. */ 11039 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11040 } else { 11041 /* Fine pagetable. */ 11042 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 11043 } 11044 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11045 mmu_idx, fi); 11046 if (fi->type != ARMFault_None) { 11047 goto do_fault; 11048 } 11049 switch (desc & 3) { 11050 case 0: /* Page translation fault. */ 11051 fi->type = ARMFault_Translation; 11052 goto do_fault; 11053 case 1: /* 64k page. */ 11054 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11055 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 11056 *page_size = 0x10000; 11057 break; 11058 case 2: /* 4k page. */ 11059 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11060 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 11061 *page_size = 0x1000; 11062 break; 11063 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 11064 if (type == 1) { 11065 /* ARMv6/XScale extended small page format */ 11066 if (arm_feature(env, ARM_FEATURE_XSCALE) 11067 || arm_feature(env, ARM_FEATURE_V6)) { 11068 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11069 *page_size = 0x1000; 11070 } else { 11071 /* UNPREDICTABLE in ARMv5; we choose to take a 11072 * page translation fault. 11073 */ 11074 fi->type = ARMFault_Translation; 11075 goto do_fault; 11076 } 11077 } else { 11078 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 11079 *page_size = 0x400; 11080 } 11081 ap = (desc >> 4) & 3; 11082 break; 11083 default: 11084 /* Never happens, but compiler isn't smart enough to tell. */ 11085 abort(); 11086 } 11087 } 11088 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11089 *prot |= *prot ? PAGE_EXEC : 0; 11090 if (!(*prot & (1 << access_type))) { 11091 /* Access permission fault. */ 11092 fi->type = ARMFault_Permission; 11093 goto do_fault; 11094 } 11095 *phys_ptr = phys_addr; 11096 return false; 11097 do_fault: 11098 fi->domain = domain; 11099 fi->level = level; 11100 return true; 11101 } 11102 11103 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 11104 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11105 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11106 target_ulong *page_size, ARMMMUFaultInfo *fi) 11107 { 11108 CPUState *cs = env_cpu(env); 11109 ARMCPU *cpu = env_archcpu(env); 11110 int level = 1; 11111 uint32_t table; 11112 uint32_t desc; 11113 uint32_t xn; 11114 uint32_t pxn = 0; 11115 int type; 11116 int ap; 11117 int domain = 0; 11118 int domain_prot; 11119 hwaddr phys_addr; 11120 uint32_t dacr; 11121 bool ns; 11122 11123 /* Pagetable walk. */ 11124 /* Lookup l1 descriptor. */ 11125 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11126 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11127 fi->type = ARMFault_Translation; 11128 goto do_fault; 11129 } 11130 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11131 mmu_idx, fi); 11132 if (fi->type != ARMFault_None) { 11133 goto do_fault; 11134 } 11135 type = (desc & 3); 11136 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 11137 /* Section translation fault, or attempt to use the encoding 11138 * which is Reserved on implementations without PXN. 11139 */ 11140 fi->type = ARMFault_Translation; 11141 goto do_fault; 11142 } 11143 if ((type == 1) || !(desc & (1 << 18))) { 11144 /* Page or Section. */ 11145 domain = (desc >> 5) & 0x0f; 11146 } 11147 if (regime_el(env, mmu_idx) == 1) { 11148 dacr = env->cp15.dacr_ns; 11149 } else { 11150 dacr = env->cp15.dacr_s; 11151 } 11152 if (type == 1) { 11153 level = 2; 11154 } 11155 domain_prot = (dacr >> (domain * 2)) & 3; 11156 if (domain_prot == 0 || domain_prot == 2) { 11157 /* Section or Page domain fault */ 11158 fi->type = ARMFault_Domain; 11159 goto do_fault; 11160 } 11161 if (type != 1) { 11162 if (desc & (1 << 18)) { 11163 /* Supersection. */ 11164 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 11165 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 11166 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 11167 *page_size = 0x1000000; 11168 } else { 11169 /* Section. */ 11170 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11171 *page_size = 0x100000; 11172 } 11173 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 11174 xn = desc & (1 << 4); 11175 pxn = desc & 1; 11176 ns = extract32(desc, 19, 1); 11177 } else { 11178 if (cpu_isar_feature(aa32_pxn, cpu)) { 11179 pxn = (desc >> 2) & 1; 11180 } 11181 ns = extract32(desc, 3, 1); 11182 /* Lookup l2 entry. */ 11183 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11184 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11185 mmu_idx, fi); 11186 if (fi->type != ARMFault_None) { 11187 goto do_fault; 11188 } 11189 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11190 switch (desc & 3) { 11191 case 0: /* Page translation fault. */ 11192 fi->type = ARMFault_Translation; 11193 goto do_fault; 11194 case 1: /* 64k page. */ 11195 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11196 xn = desc & (1 << 15); 11197 *page_size = 0x10000; 11198 break; 11199 case 2: case 3: /* 4k page. */ 11200 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11201 xn = desc & 1; 11202 *page_size = 0x1000; 11203 break; 11204 default: 11205 /* Never happens, but compiler isn't smart enough to tell. */ 11206 abort(); 11207 } 11208 } 11209 if (domain_prot == 3) { 11210 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11211 } else { 11212 if (pxn && !regime_is_user(env, mmu_idx)) { 11213 xn = 1; 11214 } 11215 if (xn && access_type == MMU_INST_FETCH) { 11216 fi->type = ARMFault_Permission; 11217 goto do_fault; 11218 } 11219 11220 if (arm_feature(env, ARM_FEATURE_V6K) && 11221 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11222 /* The simplified model uses AP[0] as an access control bit. */ 11223 if ((ap & 1) == 0) { 11224 /* Access flag fault. */ 11225 fi->type = ARMFault_AccessFlag; 11226 goto do_fault; 11227 } 11228 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11229 } else { 11230 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11231 } 11232 if (*prot && !xn) { 11233 *prot |= PAGE_EXEC; 11234 } 11235 if (!(*prot & (1 << access_type))) { 11236 /* Access permission fault. */ 11237 fi->type = ARMFault_Permission; 11238 goto do_fault; 11239 } 11240 } 11241 if (ns) { 11242 /* The NS bit will (as required by the architecture) have no effect if 11243 * the CPU doesn't support TZ or this is a non-secure translation 11244 * regime, because the attribute will already be non-secure. 11245 */ 11246 attrs->secure = false; 11247 } 11248 *phys_ptr = phys_addr; 11249 return false; 11250 do_fault: 11251 fi->domain = domain; 11252 fi->level = level; 11253 return true; 11254 } 11255 11256 /* 11257 * check_s2_mmu_setup 11258 * @cpu: ARMCPU 11259 * @is_aa64: True if the translation regime is in AArch64 state 11260 * @startlevel: Suggested starting level 11261 * @inputsize: Bitsize of IPAs 11262 * @stride: Page-table stride (See the ARM ARM) 11263 * 11264 * Returns true if the suggested S2 translation parameters are OK and 11265 * false otherwise. 11266 */ 11267 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11268 int inputsize, int stride) 11269 { 11270 const int grainsize = stride + 3; 11271 int startsizecheck; 11272 11273 /* Negative levels are never allowed. */ 11274 if (level < 0) { 11275 return false; 11276 } 11277 11278 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11279 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11280 return false; 11281 } 11282 11283 if (is_aa64) { 11284 CPUARMState *env = &cpu->env; 11285 unsigned int pamax = arm_pamax(cpu); 11286 11287 switch (stride) { 11288 case 13: /* 64KB Pages. */ 11289 if (level == 0 || (level == 1 && pamax <= 42)) { 11290 return false; 11291 } 11292 break; 11293 case 11: /* 16KB Pages. */ 11294 if (level == 0 || (level == 1 && pamax <= 40)) { 11295 return false; 11296 } 11297 break; 11298 case 9: /* 4KB Pages. */ 11299 if (level == 0 && pamax <= 42) { 11300 return false; 11301 } 11302 break; 11303 default: 11304 g_assert_not_reached(); 11305 } 11306 11307 /* Inputsize checks. */ 11308 if (inputsize > pamax && 11309 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 11310 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11311 return false; 11312 } 11313 } else { 11314 /* AArch32 only supports 4KB pages. Assert on that. */ 11315 assert(stride == 9); 11316 11317 if (level == 0) { 11318 return false; 11319 } 11320 } 11321 return true; 11322 } 11323 11324 /* Translate from the 4-bit stage 2 representation of 11325 * memory attributes (without cache-allocation hints) to 11326 * the 8-bit representation of the stage 1 MAIR registers 11327 * (which includes allocation hints). 11328 * 11329 * ref: shared/translation/attrs/S2AttrDecode() 11330 * .../S2ConvertAttrsHints() 11331 */ 11332 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11333 { 11334 uint8_t hiattr = extract32(s2attrs, 2, 2); 11335 uint8_t loattr = extract32(s2attrs, 0, 2); 11336 uint8_t hihint = 0, lohint = 0; 11337 11338 if (hiattr != 0) { /* normal memory */ 11339 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11340 hiattr = loattr = 1; /* non-cacheable */ 11341 } else { 11342 if (hiattr != 1) { /* Write-through or write-back */ 11343 hihint = 3; /* RW allocate */ 11344 } 11345 if (loattr != 1) { /* Write-through or write-back */ 11346 lohint = 3; /* RW allocate */ 11347 } 11348 } 11349 } 11350 11351 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11352 } 11353 #endif /* !CONFIG_USER_ONLY */ 11354 11355 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11356 { 11357 if (regime_has_2_ranges(mmu_idx)) { 11358 return extract64(tcr, 37, 2); 11359 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11360 return 0; /* VTCR_EL2 */ 11361 } else { 11362 /* Replicate the single TBI bit so we always have 2 bits. */ 11363 return extract32(tcr, 20, 1) * 3; 11364 } 11365 } 11366 11367 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11368 { 11369 if (regime_has_2_ranges(mmu_idx)) { 11370 return extract64(tcr, 51, 2); 11371 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11372 return 0; /* VTCR_EL2 */ 11373 } else { 11374 /* Replicate the single TBID bit so we always have 2 bits. */ 11375 return extract32(tcr, 29, 1) * 3; 11376 } 11377 } 11378 11379 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11380 { 11381 if (regime_has_2_ranges(mmu_idx)) { 11382 return extract64(tcr, 57, 2); 11383 } else { 11384 /* Replicate the single TCMA bit so we always have 2 bits. */ 11385 return extract32(tcr, 30, 1) * 3; 11386 } 11387 } 11388 11389 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11390 ARMMMUIdx mmu_idx, bool data) 11391 { 11392 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11393 bool epd, hpd, using16k, using64k; 11394 int select, tsz, tbi, max_tsz; 11395 11396 if (!regime_has_2_ranges(mmu_idx)) { 11397 select = 0; 11398 tsz = extract32(tcr, 0, 6); 11399 using64k = extract32(tcr, 14, 1); 11400 using16k = extract32(tcr, 15, 1); 11401 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11402 /* VTCR_EL2 */ 11403 hpd = false; 11404 } else { 11405 hpd = extract32(tcr, 24, 1); 11406 } 11407 epd = false; 11408 } else { 11409 /* 11410 * Bit 55 is always between the two regions, and is canonical for 11411 * determining if address tagging is enabled. 11412 */ 11413 select = extract64(va, 55, 1); 11414 if (!select) { 11415 tsz = extract32(tcr, 0, 6); 11416 epd = extract32(tcr, 7, 1); 11417 using64k = extract32(tcr, 14, 1); 11418 using16k = extract32(tcr, 15, 1); 11419 hpd = extract64(tcr, 41, 1); 11420 } else { 11421 int tg = extract32(tcr, 30, 2); 11422 using16k = tg == 1; 11423 using64k = tg == 3; 11424 tsz = extract32(tcr, 16, 6); 11425 epd = extract32(tcr, 23, 1); 11426 hpd = extract64(tcr, 42, 1); 11427 } 11428 } 11429 11430 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11431 max_tsz = 48 - using64k; 11432 } else { 11433 max_tsz = 39; 11434 } 11435 11436 tsz = MIN(tsz, max_tsz); 11437 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11438 11439 /* Present TBI as a composite with TBID. */ 11440 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11441 if (!data) { 11442 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11443 } 11444 tbi = (tbi >> select) & 1; 11445 11446 return (ARMVAParameters) { 11447 .tsz = tsz, 11448 .select = select, 11449 .tbi = tbi, 11450 .epd = epd, 11451 .hpd = hpd, 11452 .using16k = using16k, 11453 .using64k = using64k, 11454 }; 11455 } 11456 11457 #ifndef CONFIG_USER_ONLY 11458 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11459 ARMMMUIdx mmu_idx) 11460 { 11461 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11462 uint32_t el = regime_el(env, mmu_idx); 11463 int select, tsz; 11464 bool epd, hpd; 11465 11466 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11467 11468 if (mmu_idx == ARMMMUIdx_Stage2) { 11469 /* VTCR */ 11470 bool sext = extract32(tcr, 4, 1); 11471 bool sign = extract32(tcr, 3, 1); 11472 11473 /* 11474 * If the sign-extend bit is not the same as t0sz[3], the result 11475 * is unpredictable. Flag this as a guest error. 11476 */ 11477 if (sign != sext) { 11478 qemu_log_mask(LOG_GUEST_ERROR, 11479 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11480 } 11481 tsz = sextract32(tcr, 0, 4) + 8; 11482 select = 0; 11483 hpd = false; 11484 epd = false; 11485 } else if (el == 2) { 11486 /* HTCR */ 11487 tsz = extract32(tcr, 0, 3); 11488 select = 0; 11489 hpd = extract64(tcr, 24, 1); 11490 epd = false; 11491 } else { 11492 int t0sz = extract32(tcr, 0, 3); 11493 int t1sz = extract32(tcr, 16, 3); 11494 11495 if (t1sz == 0) { 11496 select = va > (0xffffffffu >> t0sz); 11497 } else { 11498 /* Note that we will detect errors later. */ 11499 select = va >= ~(0xffffffffu >> t1sz); 11500 } 11501 if (!select) { 11502 tsz = t0sz; 11503 epd = extract32(tcr, 7, 1); 11504 hpd = extract64(tcr, 41, 1); 11505 } else { 11506 tsz = t1sz; 11507 epd = extract32(tcr, 23, 1); 11508 hpd = extract64(tcr, 42, 1); 11509 } 11510 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11511 hpd &= extract32(tcr, 6, 1); 11512 } 11513 11514 return (ARMVAParameters) { 11515 .tsz = tsz, 11516 .select = select, 11517 .epd = epd, 11518 .hpd = hpd, 11519 }; 11520 } 11521 11522 /** 11523 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11524 * 11525 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11526 * prot and page_size may not be filled in, and the populated fsr value provides 11527 * information on why the translation aborted, in the format of a long-format 11528 * DFSR/IFSR fault register, with the following caveats: 11529 * * the WnR bit is never set (the caller must do this). 11530 * 11531 * @env: CPUARMState 11532 * @address: virtual address to get physical address for 11533 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11534 * @mmu_idx: MMU index indicating required translation regime 11535 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11536 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11537 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11538 * @phys_ptr: set to the physical address corresponding to the virtual address 11539 * @attrs: set to the memory transaction attributes to use 11540 * @prot: set to the permissions for the page containing phys_ptr 11541 * @page_size_ptr: set to the size of the page containing phys_ptr 11542 * @fi: set to fault info if the translation fails 11543 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11544 */ 11545 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11546 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11547 bool s1_is_el0, 11548 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11549 target_ulong *page_size_ptr, 11550 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11551 { 11552 ARMCPU *cpu = env_archcpu(env); 11553 CPUState *cs = CPU(cpu); 11554 /* Read an LPAE long-descriptor translation table. */ 11555 ARMFaultType fault_type = ARMFault_Translation; 11556 uint32_t level; 11557 ARMVAParameters param; 11558 uint64_t ttbr; 11559 hwaddr descaddr, indexmask, indexmask_grainsize; 11560 uint32_t tableattrs; 11561 target_ulong page_size; 11562 uint32_t attrs; 11563 int32_t stride; 11564 int addrsize, inputsize; 11565 TCR *tcr = regime_tcr(env, mmu_idx); 11566 int ap, ns, xn, pxn; 11567 uint32_t el = regime_el(env, mmu_idx); 11568 uint64_t descaddrmask; 11569 bool aarch64 = arm_el_is_aa64(env, el); 11570 bool guarded = false; 11571 11572 /* TODO: This code does not support shareability levels. */ 11573 if (aarch64) { 11574 param = aa64_va_parameters(env, address, mmu_idx, 11575 access_type != MMU_INST_FETCH); 11576 level = 0; 11577 addrsize = 64 - 8 * param.tbi; 11578 inputsize = 64 - param.tsz; 11579 } else { 11580 param = aa32_va_parameters(env, address, mmu_idx); 11581 level = 1; 11582 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11583 inputsize = addrsize - param.tsz; 11584 } 11585 11586 /* 11587 * We determined the region when collecting the parameters, but we 11588 * have not yet validated that the address is valid for the region. 11589 * Extract the top bits and verify that they all match select. 11590 * 11591 * For aa32, if inputsize == addrsize, then we have selected the 11592 * region by exclusion in aa32_va_parameters and there is no more 11593 * validation to do here. 11594 */ 11595 if (inputsize < addrsize) { 11596 target_ulong top_bits = sextract64(address, inputsize, 11597 addrsize - inputsize); 11598 if (-top_bits != param.select) { 11599 /* The gap between the two regions is a Translation fault */ 11600 fault_type = ARMFault_Translation; 11601 goto do_fault; 11602 } 11603 } 11604 11605 if (param.using64k) { 11606 stride = 13; 11607 } else if (param.using16k) { 11608 stride = 11; 11609 } else { 11610 stride = 9; 11611 } 11612 11613 /* Note that QEMU ignores shareability and cacheability attributes, 11614 * so we don't need to do anything with the SH, ORGN, IRGN fields 11615 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11616 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11617 * implement any ASID-like capability so we can ignore it (instead 11618 * we will always flush the TLB any time the ASID is changed). 11619 */ 11620 ttbr = regime_ttbr(env, mmu_idx, param.select); 11621 11622 /* Here we should have set up all the parameters for the translation: 11623 * inputsize, ttbr, epd, stride, tbi 11624 */ 11625 11626 if (param.epd) { 11627 /* Translation table walk disabled => Translation fault on TLB miss 11628 * Note: This is always 0 on 64-bit EL2 and EL3. 11629 */ 11630 goto do_fault; 11631 } 11632 11633 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11634 /* The starting level depends on the virtual address size (which can 11635 * be up to 48 bits) and the translation granule size. It indicates 11636 * the number of strides (stride bits at a time) needed to 11637 * consume the bits of the input address. In the pseudocode this is: 11638 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11639 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11640 * our 'stride + 3' and 'stride' is our 'stride'. 11641 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11642 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11643 * = 4 - (inputsize - 4) / stride; 11644 */ 11645 level = 4 - (inputsize - 4) / stride; 11646 } else { 11647 /* For stage 2 translations the starting level is specified by the 11648 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11649 */ 11650 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11651 uint32_t startlevel; 11652 bool ok; 11653 11654 if (!aarch64 || stride == 9) { 11655 /* AArch32 or 4KB pages */ 11656 startlevel = 2 - sl0; 11657 11658 if (cpu_isar_feature(aa64_st, cpu)) { 11659 startlevel &= 3; 11660 } 11661 } else { 11662 /* 16KB or 64KB pages */ 11663 startlevel = 3 - sl0; 11664 } 11665 11666 /* Check that the starting level is valid. */ 11667 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11668 inputsize, stride); 11669 if (!ok) { 11670 fault_type = ARMFault_Translation; 11671 goto do_fault; 11672 } 11673 level = startlevel; 11674 } 11675 11676 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11677 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11678 11679 /* Now we can extract the actual base address from the TTBR */ 11680 descaddr = extract64(ttbr, 0, 48); 11681 /* 11682 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11683 * and also to mask out CnP (bit 0) which could validly be non-zero. 11684 */ 11685 descaddr &= ~indexmask; 11686 11687 /* The address field in the descriptor goes up to bit 39 for ARMv7 11688 * but up to bit 47 for ARMv8, but we use the descaddrmask 11689 * up to bit 39 for AArch32, because we don't need other bits in that case 11690 * to construct next descriptor address (anyway they should be all zeroes). 11691 */ 11692 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11693 ~indexmask_grainsize; 11694 11695 /* Secure accesses start with the page table in secure memory and 11696 * can be downgraded to non-secure at any step. Non-secure accesses 11697 * remain non-secure. We implement this by just ORing in the NSTable/NS 11698 * bits at each step. 11699 */ 11700 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11701 for (;;) { 11702 uint64_t descriptor; 11703 bool nstable; 11704 11705 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11706 descaddr &= ~7ULL; 11707 nstable = extract32(tableattrs, 4, 1); 11708 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11709 if (fi->type != ARMFault_None) { 11710 goto do_fault; 11711 } 11712 11713 if (!(descriptor & 1) || 11714 (!(descriptor & 2) && (level == 3))) { 11715 /* Invalid, or the Reserved level 3 encoding */ 11716 goto do_fault; 11717 } 11718 descaddr = descriptor & descaddrmask; 11719 11720 if ((descriptor & 2) && (level < 3)) { 11721 /* Table entry. The top five bits are attributes which may 11722 * propagate down through lower levels of the table (and 11723 * which are all arranged so that 0 means "no effect", so 11724 * we can gather them up by ORing in the bits at each level). 11725 */ 11726 tableattrs |= extract64(descriptor, 59, 5); 11727 level++; 11728 indexmask = indexmask_grainsize; 11729 continue; 11730 } 11731 /* Block entry at level 1 or 2, or page entry at level 3. 11732 * These are basically the same thing, although the number 11733 * of bits we pull in from the vaddr varies. 11734 */ 11735 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11736 descaddr |= (address & (page_size - 1)); 11737 /* Extract attributes from the descriptor */ 11738 attrs = extract64(descriptor, 2, 10) 11739 | (extract64(descriptor, 52, 12) << 10); 11740 11741 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11742 /* Stage 2 table descriptors do not include any attribute fields */ 11743 break; 11744 } 11745 /* Merge in attributes from table descriptors */ 11746 attrs |= nstable << 3; /* NS */ 11747 guarded = extract64(descriptor, 50, 1); /* GP */ 11748 if (param.hpd) { 11749 /* HPD disables all the table attributes except NSTable. */ 11750 break; 11751 } 11752 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11753 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11754 * means "force PL1 access only", which means forcing AP[1] to 0. 11755 */ 11756 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11757 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11758 break; 11759 } 11760 /* Here descaddr is the final physical address, and attributes 11761 * are all in attrs. 11762 */ 11763 fault_type = ARMFault_AccessFlag; 11764 if ((attrs & (1 << 8)) == 0) { 11765 /* Access flag */ 11766 goto do_fault; 11767 } 11768 11769 ap = extract32(attrs, 4, 2); 11770 11771 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11772 ns = mmu_idx == ARMMMUIdx_Stage2; 11773 xn = extract32(attrs, 11, 2); 11774 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11775 } else { 11776 ns = extract32(attrs, 3, 1); 11777 xn = extract32(attrs, 12, 1); 11778 pxn = extract32(attrs, 11, 1); 11779 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11780 } 11781 11782 fault_type = ARMFault_Permission; 11783 if (!(*prot & (1 << access_type))) { 11784 goto do_fault; 11785 } 11786 11787 if (ns) { 11788 /* The NS bit will (as required by the architecture) have no effect if 11789 * the CPU doesn't support TZ or this is a non-secure translation 11790 * regime, because the attribute will already be non-secure. 11791 */ 11792 txattrs->secure = false; 11793 } 11794 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11795 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11796 arm_tlb_bti_gp(txattrs) = true; 11797 } 11798 11799 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11800 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11801 } else { 11802 /* Index into MAIR registers for cache attributes */ 11803 uint8_t attrindx = extract32(attrs, 0, 3); 11804 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11805 assert(attrindx <= 7); 11806 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11807 } 11808 cacheattrs->shareability = extract32(attrs, 6, 2); 11809 11810 *phys_ptr = descaddr; 11811 *page_size_ptr = page_size; 11812 return false; 11813 11814 do_fault: 11815 fi->type = fault_type; 11816 fi->level = level; 11817 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11818 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11819 mmu_idx == ARMMMUIdx_Stage2_S); 11820 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11821 return true; 11822 } 11823 11824 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11825 ARMMMUIdx mmu_idx, 11826 int32_t address, int *prot) 11827 { 11828 if (!arm_feature(env, ARM_FEATURE_M)) { 11829 *prot = PAGE_READ | PAGE_WRITE; 11830 switch (address) { 11831 case 0xF0000000 ... 0xFFFFFFFF: 11832 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11833 /* hivecs execing is ok */ 11834 *prot |= PAGE_EXEC; 11835 } 11836 break; 11837 case 0x00000000 ... 0x7FFFFFFF: 11838 *prot |= PAGE_EXEC; 11839 break; 11840 } 11841 } else { 11842 /* Default system address map for M profile cores. 11843 * The architecture specifies which regions are execute-never; 11844 * at the MPU level no other checks are defined. 11845 */ 11846 switch (address) { 11847 case 0x00000000 ... 0x1fffffff: /* ROM */ 11848 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11849 case 0x60000000 ... 0x7fffffff: /* RAM */ 11850 case 0x80000000 ... 0x9fffffff: /* RAM */ 11851 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11852 break; 11853 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11854 case 0xa0000000 ... 0xbfffffff: /* Device */ 11855 case 0xc0000000 ... 0xdfffffff: /* Device */ 11856 case 0xe0000000 ... 0xffffffff: /* System */ 11857 *prot = PAGE_READ | PAGE_WRITE; 11858 break; 11859 default: 11860 g_assert_not_reached(); 11861 } 11862 } 11863 } 11864 11865 static bool pmsav7_use_background_region(ARMCPU *cpu, 11866 ARMMMUIdx mmu_idx, bool is_user) 11867 { 11868 /* Return true if we should use the default memory map as a 11869 * "background" region if there are no hits against any MPU regions. 11870 */ 11871 CPUARMState *env = &cpu->env; 11872 11873 if (is_user) { 11874 return false; 11875 } 11876 11877 if (arm_feature(env, ARM_FEATURE_M)) { 11878 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11879 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11880 } else { 11881 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11882 } 11883 } 11884 11885 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11886 { 11887 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11888 return arm_feature(env, ARM_FEATURE_M) && 11889 extract32(address, 20, 12) == 0xe00; 11890 } 11891 11892 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11893 { 11894 /* True if address is in the M profile system region 11895 * 0xe0000000 - 0xffffffff 11896 */ 11897 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11898 } 11899 11900 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11901 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11902 hwaddr *phys_ptr, int *prot, 11903 target_ulong *page_size, 11904 ARMMMUFaultInfo *fi) 11905 { 11906 ARMCPU *cpu = env_archcpu(env); 11907 int n; 11908 bool is_user = regime_is_user(env, mmu_idx); 11909 11910 *phys_ptr = address; 11911 *page_size = TARGET_PAGE_SIZE; 11912 *prot = 0; 11913 11914 if (regime_translation_disabled(env, mmu_idx) || 11915 m_is_ppb_region(env, address)) { 11916 /* MPU disabled or M profile PPB access: use default memory map. 11917 * The other case which uses the default memory map in the 11918 * v7M ARM ARM pseudocode is exception vector reads from the vector 11919 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11920 * which always does a direct read using address_space_ldl(), rather 11921 * than going via this function, so we don't need to check that here. 11922 */ 11923 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11924 } else { /* MPU enabled */ 11925 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11926 /* region search */ 11927 uint32_t base = env->pmsav7.drbar[n]; 11928 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11929 uint32_t rmask; 11930 bool srdis = false; 11931 11932 if (!(env->pmsav7.drsr[n] & 0x1)) { 11933 continue; 11934 } 11935 11936 if (!rsize) { 11937 qemu_log_mask(LOG_GUEST_ERROR, 11938 "DRSR[%d]: Rsize field cannot be 0\n", n); 11939 continue; 11940 } 11941 rsize++; 11942 rmask = (1ull << rsize) - 1; 11943 11944 if (base & rmask) { 11945 qemu_log_mask(LOG_GUEST_ERROR, 11946 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11947 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11948 n, base, rmask); 11949 continue; 11950 } 11951 11952 if (address < base || address > base + rmask) { 11953 /* 11954 * Address not in this region. We must check whether the 11955 * region covers addresses in the same page as our address. 11956 * In that case we must not report a size that covers the 11957 * whole page for a subsequent hit against a different MPU 11958 * region or the background region, because it would result in 11959 * incorrect TLB hits for subsequent accesses to addresses that 11960 * are in this MPU region. 11961 */ 11962 if (ranges_overlap(base, rmask, 11963 address & TARGET_PAGE_MASK, 11964 TARGET_PAGE_SIZE)) { 11965 *page_size = 1; 11966 } 11967 continue; 11968 } 11969 11970 /* Region matched */ 11971 11972 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11973 int i, snd; 11974 uint32_t srdis_mask; 11975 11976 rsize -= 3; /* sub region size (power of 2) */ 11977 snd = ((address - base) >> rsize) & 0x7; 11978 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11979 11980 srdis_mask = srdis ? 0x3 : 0x0; 11981 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11982 /* This will check in groups of 2, 4 and then 8, whether 11983 * the subregion bits are consistent. rsize is incremented 11984 * back up to give the region size, considering consistent 11985 * adjacent subregions as one region. Stop testing if rsize 11986 * is already big enough for an entire QEMU page. 11987 */ 11988 int snd_rounded = snd & ~(i - 1); 11989 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11990 snd_rounded + 8, i); 11991 if (srdis_mask ^ srdis_multi) { 11992 break; 11993 } 11994 srdis_mask = (srdis_mask << i) | srdis_mask; 11995 rsize++; 11996 } 11997 } 11998 if (srdis) { 11999 continue; 12000 } 12001 if (rsize < TARGET_PAGE_BITS) { 12002 *page_size = 1 << rsize; 12003 } 12004 break; 12005 } 12006 12007 if (n == -1) { /* no hits */ 12008 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12009 /* background fault */ 12010 fi->type = ARMFault_Background; 12011 return true; 12012 } 12013 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12014 } else { /* a MPU hit! */ 12015 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12016 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12017 12018 if (m_is_system_region(env, address)) { 12019 /* System space is always execute never */ 12020 xn = 1; 12021 } 12022 12023 if (is_user) { /* User mode AP bit decoding */ 12024 switch (ap) { 12025 case 0: 12026 case 1: 12027 case 5: 12028 break; /* no access */ 12029 case 3: 12030 *prot |= PAGE_WRITE; 12031 /* fall through */ 12032 case 2: 12033 case 6: 12034 *prot |= PAGE_READ | PAGE_EXEC; 12035 break; 12036 case 7: 12037 /* for v7M, same as 6; for R profile a reserved value */ 12038 if (arm_feature(env, ARM_FEATURE_M)) { 12039 *prot |= PAGE_READ | PAGE_EXEC; 12040 break; 12041 } 12042 /* fall through */ 12043 default: 12044 qemu_log_mask(LOG_GUEST_ERROR, 12045 "DRACR[%d]: Bad value for AP bits: 0x%" 12046 PRIx32 "\n", n, ap); 12047 } 12048 } else { /* Priv. mode AP bits decoding */ 12049 switch (ap) { 12050 case 0: 12051 break; /* no access */ 12052 case 1: 12053 case 2: 12054 case 3: 12055 *prot |= PAGE_WRITE; 12056 /* fall through */ 12057 case 5: 12058 case 6: 12059 *prot |= PAGE_READ | PAGE_EXEC; 12060 break; 12061 case 7: 12062 /* for v7M, same as 6; for R profile a reserved value */ 12063 if (arm_feature(env, ARM_FEATURE_M)) { 12064 *prot |= PAGE_READ | PAGE_EXEC; 12065 break; 12066 } 12067 /* fall through */ 12068 default: 12069 qemu_log_mask(LOG_GUEST_ERROR, 12070 "DRACR[%d]: Bad value for AP bits: 0x%" 12071 PRIx32 "\n", n, ap); 12072 } 12073 } 12074 12075 /* execute never */ 12076 if (xn) { 12077 *prot &= ~PAGE_EXEC; 12078 } 12079 } 12080 } 12081 12082 fi->type = ARMFault_Permission; 12083 fi->level = 1; 12084 return !(*prot & (1 << access_type)); 12085 } 12086 12087 static bool v8m_is_sau_exempt(CPUARMState *env, 12088 uint32_t address, MMUAccessType access_type) 12089 { 12090 /* The architecture specifies that certain address ranges are 12091 * exempt from v8M SAU/IDAU checks. 12092 */ 12093 return 12094 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12095 (address >= 0xe0000000 && address <= 0xe0002fff) || 12096 (address >= 0xe000e000 && address <= 0xe000efff) || 12097 (address >= 0xe002e000 && address <= 0xe002efff) || 12098 (address >= 0xe0040000 && address <= 0xe0041fff) || 12099 (address >= 0xe00ff000 && address <= 0xe00fffff); 12100 } 12101 12102 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12103 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12104 V8M_SAttributes *sattrs) 12105 { 12106 /* Look up the security attributes for this address. Compare the 12107 * pseudocode SecurityCheck() function. 12108 * We assume the caller has zero-initialized *sattrs. 12109 */ 12110 ARMCPU *cpu = env_archcpu(env); 12111 int r; 12112 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12113 int idau_region = IREGION_NOTVALID; 12114 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12115 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12116 12117 if (cpu->idau) { 12118 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12119 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12120 12121 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12122 &idau_nsc); 12123 } 12124 12125 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12126 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12127 return; 12128 } 12129 12130 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12131 sattrs->ns = !regime_is_secure(env, mmu_idx); 12132 return; 12133 } 12134 12135 if (idau_region != IREGION_NOTVALID) { 12136 sattrs->irvalid = true; 12137 sattrs->iregion = idau_region; 12138 } 12139 12140 switch (env->sau.ctrl & 3) { 12141 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12142 break; 12143 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12144 sattrs->ns = true; 12145 break; 12146 default: /* SAU.ENABLE == 1 */ 12147 for (r = 0; r < cpu->sau_sregion; r++) { 12148 if (env->sau.rlar[r] & 1) { 12149 uint32_t base = env->sau.rbar[r] & ~0x1f; 12150 uint32_t limit = env->sau.rlar[r] | 0x1f; 12151 12152 if (base <= address && limit >= address) { 12153 if (base > addr_page_base || limit < addr_page_limit) { 12154 sattrs->subpage = true; 12155 } 12156 if (sattrs->srvalid) { 12157 /* If we hit in more than one region then we must report 12158 * as Secure, not NS-Callable, with no valid region 12159 * number info. 12160 */ 12161 sattrs->ns = false; 12162 sattrs->nsc = false; 12163 sattrs->sregion = 0; 12164 sattrs->srvalid = false; 12165 break; 12166 } else { 12167 if (env->sau.rlar[r] & 2) { 12168 sattrs->nsc = true; 12169 } else { 12170 sattrs->ns = true; 12171 } 12172 sattrs->srvalid = true; 12173 sattrs->sregion = r; 12174 } 12175 } else { 12176 /* 12177 * Address not in this region. We must check whether the 12178 * region covers addresses in the same page as our address. 12179 * In that case we must not report a size that covers the 12180 * whole page for a subsequent hit against a different MPU 12181 * region or the background region, because it would result 12182 * in incorrect TLB hits for subsequent accesses to 12183 * addresses that are in this MPU region. 12184 */ 12185 if (limit >= base && 12186 ranges_overlap(base, limit - base + 1, 12187 addr_page_base, 12188 TARGET_PAGE_SIZE)) { 12189 sattrs->subpage = true; 12190 } 12191 } 12192 } 12193 } 12194 break; 12195 } 12196 12197 /* 12198 * The IDAU will override the SAU lookup results if it specifies 12199 * higher security than the SAU does. 12200 */ 12201 if (!idau_ns) { 12202 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12203 sattrs->ns = false; 12204 sattrs->nsc = idau_nsc; 12205 } 12206 } 12207 } 12208 12209 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12210 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12211 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12212 int *prot, bool *is_subpage, 12213 ARMMMUFaultInfo *fi, uint32_t *mregion) 12214 { 12215 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12216 * that a full phys-to-virt translation does). 12217 * mregion is (if not NULL) set to the region number which matched, 12218 * or -1 if no region number is returned (MPU off, address did not 12219 * hit a region, address hit in multiple regions). 12220 * We set is_subpage to true if the region hit doesn't cover the 12221 * entire TARGET_PAGE the address is within. 12222 */ 12223 ARMCPU *cpu = env_archcpu(env); 12224 bool is_user = regime_is_user(env, mmu_idx); 12225 uint32_t secure = regime_is_secure(env, mmu_idx); 12226 int n; 12227 int matchregion = -1; 12228 bool hit = false; 12229 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12230 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12231 12232 *is_subpage = false; 12233 *phys_ptr = address; 12234 *prot = 0; 12235 if (mregion) { 12236 *mregion = -1; 12237 } 12238 12239 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12240 * was an exception vector read from the vector table (which is always 12241 * done using the default system address map), because those accesses 12242 * are done in arm_v7m_load_vector(), which always does a direct 12243 * read using address_space_ldl(), rather than going via this function. 12244 */ 12245 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12246 hit = true; 12247 } else if (m_is_ppb_region(env, address)) { 12248 hit = true; 12249 } else { 12250 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12251 hit = true; 12252 } 12253 12254 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12255 /* region search */ 12256 /* Note that the base address is bits [31:5] from the register 12257 * with bits [4:0] all zeroes, but the limit address is bits 12258 * [31:5] from the register with bits [4:0] all ones. 12259 */ 12260 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12261 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12262 12263 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12264 /* Region disabled */ 12265 continue; 12266 } 12267 12268 if (address < base || address > limit) { 12269 /* 12270 * Address not in this region. We must check whether the 12271 * region covers addresses in the same page as our address. 12272 * In that case we must not report a size that covers the 12273 * whole page for a subsequent hit against a different MPU 12274 * region or the background region, because it would result in 12275 * incorrect TLB hits for subsequent accesses to addresses that 12276 * are in this MPU region. 12277 */ 12278 if (limit >= base && 12279 ranges_overlap(base, limit - base + 1, 12280 addr_page_base, 12281 TARGET_PAGE_SIZE)) { 12282 *is_subpage = true; 12283 } 12284 continue; 12285 } 12286 12287 if (base > addr_page_base || limit < addr_page_limit) { 12288 *is_subpage = true; 12289 } 12290 12291 if (matchregion != -1) { 12292 /* Multiple regions match -- always a failure (unlike 12293 * PMSAv7 where highest-numbered-region wins) 12294 */ 12295 fi->type = ARMFault_Permission; 12296 fi->level = 1; 12297 return true; 12298 } 12299 12300 matchregion = n; 12301 hit = true; 12302 } 12303 } 12304 12305 if (!hit) { 12306 /* background fault */ 12307 fi->type = ARMFault_Background; 12308 return true; 12309 } 12310 12311 if (matchregion == -1) { 12312 /* hit using the background region */ 12313 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12314 } else { 12315 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12316 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12317 bool pxn = false; 12318 12319 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12320 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12321 } 12322 12323 if (m_is_system_region(env, address)) { 12324 /* System space is always execute never */ 12325 xn = 1; 12326 } 12327 12328 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12329 if (*prot && !xn && !(pxn && !is_user)) { 12330 *prot |= PAGE_EXEC; 12331 } 12332 /* We don't need to look the attribute up in the MAIR0/MAIR1 12333 * registers because that only tells us about cacheability. 12334 */ 12335 if (mregion) { 12336 *mregion = matchregion; 12337 } 12338 } 12339 12340 fi->type = ARMFault_Permission; 12341 fi->level = 1; 12342 return !(*prot & (1 << access_type)); 12343 } 12344 12345 12346 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12347 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12348 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12349 int *prot, target_ulong *page_size, 12350 ARMMMUFaultInfo *fi) 12351 { 12352 uint32_t secure = regime_is_secure(env, mmu_idx); 12353 V8M_SAttributes sattrs = {}; 12354 bool ret; 12355 bool mpu_is_subpage; 12356 12357 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12358 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12359 if (access_type == MMU_INST_FETCH) { 12360 /* Instruction fetches always use the MMU bank and the 12361 * transaction attribute determined by the fetch address, 12362 * regardless of CPU state. This is painful for QEMU 12363 * to handle, because it would mean we need to encode 12364 * into the mmu_idx not just the (user, negpri) information 12365 * for the current security state but also that for the 12366 * other security state, which would balloon the number 12367 * of mmu_idx values needed alarmingly. 12368 * Fortunately we can avoid this because it's not actually 12369 * possible to arbitrarily execute code from memory with 12370 * the wrong security attribute: it will always generate 12371 * an exception of some kind or another, apart from the 12372 * special case of an NS CPU executing an SG instruction 12373 * in S&NSC memory. So we always just fail the translation 12374 * here and sort things out in the exception handler 12375 * (including possibly emulating an SG instruction). 12376 */ 12377 if (sattrs.ns != !secure) { 12378 if (sattrs.nsc) { 12379 fi->type = ARMFault_QEMU_NSCExec; 12380 } else { 12381 fi->type = ARMFault_QEMU_SFault; 12382 } 12383 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12384 *phys_ptr = address; 12385 *prot = 0; 12386 return true; 12387 } 12388 } else { 12389 /* For data accesses we always use the MMU bank indicated 12390 * by the current CPU state, but the security attributes 12391 * might downgrade a secure access to nonsecure. 12392 */ 12393 if (sattrs.ns) { 12394 txattrs->secure = false; 12395 } else if (!secure) { 12396 /* NS access to S memory must fault. 12397 * Architecturally we should first check whether the 12398 * MPU information for this address indicates that we 12399 * are doing an unaligned access to Device memory, which 12400 * should generate a UsageFault instead. QEMU does not 12401 * currently check for that kind of unaligned access though. 12402 * If we added it we would need to do so as a special case 12403 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12404 */ 12405 fi->type = ARMFault_QEMU_SFault; 12406 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12407 *phys_ptr = address; 12408 *prot = 0; 12409 return true; 12410 } 12411 } 12412 } 12413 12414 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12415 txattrs, prot, &mpu_is_subpage, fi, NULL); 12416 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12417 return ret; 12418 } 12419 12420 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12421 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12422 hwaddr *phys_ptr, int *prot, 12423 ARMMMUFaultInfo *fi) 12424 { 12425 int n; 12426 uint32_t mask; 12427 uint32_t base; 12428 bool is_user = regime_is_user(env, mmu_idx); 12429 12430 if (regime_translation_disabled(env, mmu_idx)) { 12431 /* MPU disabled. */ 12432 *phys_ptr = address; 12433 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12434 return false; 12435 } 12436 12437 *phys_ptr = address; 12438 for (n = 7; n >= 0; n--) { 12439 base = env->cp15.c6_region[n]; 12440 if ((base & 1) == 0) { 12441 continue; 12442 } 12443 mask = 1 << ((base >> 1) & 0x1f); 12444 /* Keep this shift separate from the above to avoid an 12445 (undefined) << 32. */ 12446 mask = (mask << 1) - 1; 12447 if (((base ^ address) & ~mask) == 0) { 12448 break; 12449 } 12450 } 12451 if (n < 0) { 12452 fi->type = ARMFault_Background; 12453 return true; 12454 } 12455 12456 if (access_type == MMU_INST_FETCH) { 12457 mask = env->cp15.pmsav5_insn_ap; 12458 } else { 12459 mask = env->cp15.pmsav5_data_ap; 12460 } 12461 mask = (mask >> (n * 4)) & 0xf; 12462 switch (mask) { 12463 case 0: 12464 fi->type = ARMFault_Permission; 12465 fi->level = 1; 12466 return true; 12467 case 1: 12468 if (is_user) { 12469 fi->type = ARMFault_Permission; 12470 fi->level = 1; 12471 return true; 12472 } 12473 *prot = PAGE_READ | PAGE_WRITE; 12474 break; 12475 case 2: 12476 *prot = PAGE_READ; 12477 if (!is_user) { 12478 *prot |= PAGE_WRITE; 12479 } 12480 break; 12481 case 3: 12482 *prot = PAGE_READ | PAGE_WRITE; 12483 break; 12484 case 5: 12485 if (is_user) { 12486 fi->type = ARMFault_Permission; 12487 fi->level = 1; 12488 return true; 12489 } 12490 *prot = PAGE_READ; 12491 break; 12492 case 6: 12493 *prot = PAGE_READ; 12494 break; 12495 default: 12496 /* Bad permission. */ 12497 fi->type = ARMFault_Permission; 12498 fi->level = 1; 12499 return true; 12500 } 12501 *prot |= PAGE_EXEC; 12502 return false; 12503 } 12504 12505 /* Combine either inner or outer cacheability attributes for normal 12506 * memory, according to table D4-42 and pseudocode procedure 12507 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12508 * 12509 * NB: only stage 1 includes allocation hints (RW bits), leading to 12510 * some asymmetry. 12511 */ 12512 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12513 { 12514 if (s1 == 4 || s2 == 4) { 12515 /* non-cacheable has precedence */ 12516 return 4; 12517 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12518 /* stage 1 write-through takes precedence */ 12519 return s1; 12520 } else if (extract32(s2, 2, 2) == 2) { 12521 /* stage 2 write-through takes precedence, but the allocation hint 12522 * is still taken from stage 1 12523 */ 12524 return (2 << 2) | extract32(s1, 0, 2); 12525 } else { /* write-back */ 12526 return s1; 12527 } 12528 } 12529 12530 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12531 * and CombineS1S2Desc() 12532 * 12533 * @s1: Attributes from stage 1 walk 12534 * @s2: Attributes from stage 2 walk 12535 */ 12536 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12537 { 12538 uint8_t s1lo, s2lo, s1hi, s2hi; 12539 ARMCacheAttrs ret; 12540 bool tagged = false; 12541 12542 if (s1.attrs == 0xf0) { 12543 tagged = true; 12544 s1.attrs = 0xff; 12545 } 12546 12547 s1lo = extract32(s1.attrs, 0, 4); 12548 s2lo = extract32(s2.attrs, 0, 4); 12549 s1hi = extract32(s1.attrs, 4, 4); 12550 s2hi = extract32(s2.attrs, 4, 4); 12551 12552 /* Combine shareability attributes (table D4-43) */ 12553 if (s1.shareability == 2 || s2.shareability == 2) { 12554 /* if either are outer-shareable, the result is outer-shareable */ 12555 ret.shareability = 2; 12556 } else if (s1.shareability == 3 || s2.shareability == 3) { 12557 /* if either are inner-shareable, the result is inner-shareable */ 12558 ret.shareability = 3; 12559 } else { 12560 /* both non-shareable */ 12561 ret.shareability = 0; 12562 } 12563 12564 /* Combine memory type and cacheability attributes */ 12565 if (s1hi == 0 || s2hi == 0) { 12566 /* Device has precedence over normal */ 12567 if (s1lo == 0 || s2lo == 0) { 12568 /* nGnRnE has precedence over anything */ 12569 ret.attrs = 0; 12570 } else if (s1lo == 4 || s2lo == 4) { 12571 /* non-Reordering has precedence over Reordering */ 12572 ret.attrs = 4; /* nGnRE */ 12573 } else if (s1lo == 8 || s2lo == 8) { 12574 /* non-Gathering has precedence over Gathering */ 12575 ret.attrs = 8; /* nGRE */ 12576 } else { 12577 ret.attrs = 0xc; /* GRE */ 12578 } 12579 12580 /* Any location for which the resultant memory type is any 12581 * type of Device memory is always treated as Outer Shareable. 12582 */ 12583 ret.shareability = 2; 12584 } else { /* Normal memory */ 12585 /* Outer/inner cacheability combine independently */ 12586 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12587 | combine_cacheattr_nibble(s1lo, s2lo); 12588 12589 if (ret.attrs == 0x44) { 12590 /* Any location for which the resultant memory type is Normal 12591 * Inner Non-cacheable, Outer Non-cacheable is always treated 12592 * as Outer Shareable. 12593 */ 12594 ret.shareability = 2; 12595 } 12596 } 12597 12598 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12599 if (tagged && ret.attrs == 0xff) { 12600 ret.attrs = 0xf0; 12601 } 12602 12603 return ret; 12604 } 12605 12606 12607 /* get_phys_addr - get the physical address for this virtual address 12608 * 12609 * Find the physical address corresponding to the given virtual address, 12610 * by doing a translation table walk on MMU based systems or using the 12611 * MPU state on MPU based systems. 12612 * 12613 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12614 * prot and page_size may not be filled in, and the populated fsr value provides 12615 * information on why the translation aborted, in the format of a 12616 * DFSR/IFSR fault register, with the following caveats: 12617 * * we honour the short vs long DFSR format differences. 12618 * * the WnR bit is never set (the caller must do this). 12619 * * for PSMAv5 based systems we don't bother to return a full FSR format 12620 * value. 12621 * 12622 * @env: CPUARMState 12623 * @address: virtual address to get physical address for 12624 * @access_type: 0 for read, 1 for write, 2 for execute 12625 * @mmu_idx: MMU index indicating required translation regime 12626 * @phys_ptr: set to the physical address corresponding to the virtual address 12627 * @attrs: set to the memory transaction attributes to use 12628 * @prot: set to the permissions for the page containing phys_ptr 12629 * @page_size: set to the size of the page containing phys_ptr 12630 * @fi: set to fault info if the translation fails 12631 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12632 */ 12633 bool get_phys_addr(CPUARMState *env, target_ulong address, 12634 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12635 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12636 target_ulong *page_size, 12637 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12638 { 12639 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12640 12641 if (mmu_idx != s1_mmu_idx) { 12642 /* Call ourselves recursively to do the stage 1 and then stage 2 12643 * translations if mmu_idx is a two-stage regime. 12644 */ 12645 if (arm_feature(env, ARM_FEATURE_EL2)) { 12646 hwaddr ipa; 12647 int s2_prot; 12648 int ret; 12649 ARMCacheAttrs cacheattrs2 = {}; 12650 ARMMMUIdx s2_mmu_idx; 12651 bool is_el0; 12652 12653 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12654 attrs, prot, page_size, fi, cacheattrs); 12655 12656 /* If S1 fails or S2 is disabled, return early. */ 12657 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12658 *phys_ptr = ipa; 12659 return ret; 12660 } 12661 12662 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12663 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12664 12665 /* S1 is done. Now do S2 translation. */ 12666 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12667 phys_ptr, attrs, &s2_prot, 12668 page_size, fi, &cacheattrs2); 12669 fi->s2addr = ipa; 12670 /* Combine the S1 and S2 perms. */ 12671 *prot &= s2_prot; 12672 12673 /* If S2 fails, return early. */ 12674 if (ret) { 12675 return ret; 12676 } 12677 12678 /* Combine the S1 and S2 cache attributes. */ 12679 if (arm_hcr_el2_eff(env) & HCR_DC) { 12680 /* 12681 * HCR.DC forces the first stage attributes to 12682 * Normal Non-Shareable, 12683 * Inner Write-Back Read-Allocate Write-Allocate, 12684 * Outer Write-Back Read-Allocate Write-Allocate. 12685 * Do not overwrite Tagged within attrs. 12686 */ 12687 if (cacheattrs->attrs != 0xf0) { 12688 cacheattrs->attrs = 0xff; 12689 } 12690 cacheattrs->shareability = 0; 12691 } 12692 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12693 12694 /* Check if IPA translates to secure or non-secure PA space. */ 12695 if (arm_is_secure_below_el3(env)) { 12696 if (attrs->secure) { 12697 attrs->secure = 12698 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12699 } else { 12700 attrs->secure = 12701 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12702 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12703 } 12704 } 12705 return 0; 12706 } else { 12707 /* 12708 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12709 */ 12710 mmu_idx = stage_1_mmu_idx(mmu_idx); 12711 } 12712 } 12713 12714 /* The page table entries may downgrade secure to non-secure, but 12715 * cannot upgrade an non-secure translation regime's attributes 12716 * to secure. 12717 */ 12718 attrs->secure = regime_is_secure(env, mmu_idx); 12719 attrs->user = regime_is_user(env, mmu_idx); 12720 12721 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12722 * In v7 and earlier it affects all stage 1 translations. 12723 */ 12724 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12725 && !arm_feature(env, ARM_FEATURE_V8)) { 12726 if (regime_el(env, mmu_idx) == 3) { 12727 address += env->cp15.fcseidr_s; 12728 } else { 12729 address += env->cp15.fcseidr_ns; 12730 } 12731 } 12732 12733 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12734 bool ret; 12735 *page_size = TARGET_PAGE_SIZE; 12736 12737 if (arm_feature(env, ARM_FEATURE_V8)) { 12738 /* PMSAv8 */ 12739 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12740 phys_ptr, attrs, prot, page_size, fi); 12741 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12742 /* PMSAv7 */ 12743 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12744 phys_ptr, prot, page_size, fi); 12745 } else { 12746 /* Pre-v7 MPU */ 12747 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12748 phys_ptr, prot, fi); 12749 } 12750 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12751 " mmu_idx %u -> %s (prot %c%c%c)\n", 12752 access_type == MMU_DATA_LOAD ? "reading" : 12753 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12754 (uint32_t)address, mmu_idx, 12755 ret ? "Miss" : "Hit", 12756 *prot & PAGE_READ ? 'r' : '-', 12757 *prot & PAGE_WRITE ? 'w' : '-', 12758 *prot & PAGE_EXEC ? 'x' : '-'); 12759 12760 return ret; 12761 } 12762 12763 /* Definitely a real MMU, not an MPU */ 12764 12765 if (regime_translation_disabled(env, mmu_idx)) { 12766 uint64_t hcr; 12767 uint8_t memattr; 12768 12769 /* 12770 * MMU disabled. S1 addresses within aa64 translation regimes are 12771 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12772 */ 12773 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12774 int r_el = regime_el(env, mmu_idx); 12775 if (arm_el_is_aa64(env, r_el)) { 12776 int pamax = arm_pamax(env_archcpu(env)); 12777 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12778 int addrtop, tbi; 12779 12780 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12781 if (access_type == MMU_INST_FETCH) { 12782 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12783 } 12784 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12785 addrtop = (tbi ? 55 : 63); 12786 12787 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12788 fi->type = ARMFault_AddressSize; 12789 fi->level = 0; 12790 fi->stage2 = false; 12791 return 1; 12792 } 12793 12794 /* 12795 * When TBI is disabled, we've just validated that all of the 12796 * bits above PAMax are zero, so logically we only need to 12797 * clear the top byte for TBI. But it's clearer to follow 12798 * the pseudocode set of addrdesc.paddress. 12799 */ 12800 address = extract64(address, 0, 52); 12801 } 12802 } 12803 *phys_ptr = address; 12804 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12805 *page_size = TARGET_PAGE_SIZE; 12806 12807 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12808 hcr = arm_hcr_el2_eff(env); 12809 cacheattrs->shareability = 0; 12810 if (hcr & HCR_DC) { 12811 if (hcr & HCR_DCT) { 12812 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12813 } else { 12814 memattr = 0xff; /* Normal, WB, RWA */ 12815 } 12816 } else if (access_type == MMU_INST_FETCH) { 12817 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12818 memattr = 0xee; /* Normal, WT, RA, NT */ 12819 } else { 12820 memattr = 0x44; /* Normal, NC, No */ 12821 } 12822 cacheattrs->shareability = 2; /* outer sharable */ 12823 } else { 12824 memattr = 0x00; /* Device, nGnRnE */ 12825 } 12826 cacheattrs->attrs = memattr; 12827 return 0; 12828 } 12829 12830 if (regime_using_lpae_format(env, mmu_idx)) { 12831 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12832 phys_ptr, attrs, prot, page_size, 12833 fi, cacheattrs); 12834 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12835 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12836 phys_ptr, attrs, prot, page_size, fi); 12837 } else { 12838 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12839 phys_ptr, prot, page_size, fi); 12840 } 12841 } 12842 12843 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12844 MemTxAttrs *attrs) 12845 { 12846 ARMCPU *cpu = ARM_CPU(cs); 12847 CPUARMState *env = &cpu->env; 12848 hwaddr phys_addr; 12849 target_ulong page_size; 12850 int prot; 12851 bool ret; 12852 ARMMMUFaultInfo fi = {}; 12853 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12854 ARMCacheAttrs cacheattrs = {}; 12855 12856 *attrs = (MemTxAttrs) {}; 12857 12858 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12859 attrs, &prot, &page_size, &fi, &cacheattrs); 12860 12861 if (ret) { 12862 return -1; 12863 } 12864 return phys_addr; 12865 } 12866 12867 #endif 12868 12869 /* Note that signed overflow is undefined in C. The following routines are 12870 careful to use unsigned types where modulo arithmetic is required. 12871 Failure to do so _will_ break on newer gcc. */ 12872 12873 /* Signed saturating arithmetic. */ 12874 12875 /* Perform 16-bit signed saturating addition. */ 12876 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12877 { 12878 uint16_t res; 12879 12880 res = a + b; 12881 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12882 if (a & 0x8000) 12883 res = 0x8000; 12884 else 12885 res = 0x7fff; 12886 } 12887 return res; 12888 } 12889 12890 /* Perform 8-bit signed saturating addition. */ 12891 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12892 { 12893 uint8_t res; 12894 12895 res = a + b; 12896 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12897 if (a & 0x80) 12898 res = 0x80; 12899 else 12900 res = 0x7f; 12901 } 12902 return res; 12903 } 12904 12905 /* Perform 16-bit signed saturating subtraction. */ 12906 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12907 { 12908 uint16_t res; 12909 12910 res = a - b; 12911 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12912 if (a & 0x8000) 12913 res = 0x8000; 12914 else 12915 res = 0x7fff; 12916 } 12917 return res; 12918 } 12919 12920 /* Perform 8-bit signed saturating subtraction. */ 12921 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12922 { 12923 uint8_t res; 12924 12925 res = a - b; 12926 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12927 if (a & 0x80) 12928 res = 0x80; 12929 else 12930 res = 0x7f; 12931 } 12932 return res; 12933 } 12934 12935 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12936 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12937 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12938 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12939 #define PFX q 12940 12941 #include "op_addsub.h" 12942 12943 /* Unsigned saturating arithmetic. */ 12944 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12945 { 12946 uint16_t res; 12947 res = a + b; 12948 if (res < a) 12949 res = 0xffff; 12950 return res; 12951 } 12952 12953 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12954 { 12955 if (a > b) 12956 return a - b; 12957 else 12958 return 0; 12959 } 12960 12961 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12962 { 12963 uint8_t res; 12964 res = a + b; 12965 if (res < a) 12966 res = 0xff; 12967 return res; 12968 } 12969 12970 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12971 { 12972 if (a > b) 12973 return a - b; 12974 else 12975 return 0; 12976 } 12977 12978 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12979 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12980 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12981 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12982 #define PFX uq 12983 12984 #include "op_addsub.h" 12985 12986 /* Signed modulo arithmetic. */ 12987 #define SARITH16(a, b, n, op) do { \ 12988 int32_t sum; \ 12989 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12990 RESULT(sum, n, 16); \ 12991 if (sum >= 0) \ 12992 ge |= 3 << (n * 2); \ 12993 } while(0) 12994 12995 #define SARITH8(a, b, n, op) do { \ 12996 int32_t sum; \ 12997 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12998 RESULT(sum, n, 8); \ 12999 if (sum >= 0) \ 13000 ge |= 1 << n; \ 13001 } while(0) 13002 13003 13004 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13005 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13006 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13007 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13008 #define PFX s 13009 #define ARITH_GE 13010 13011 #include "op_addsub.h" 13012 13013 /* Unsigned modulo arithmetic. */ 13014 #define ADD16(a, b, n) do { \ 13015 uint32_t sum; \ 13016 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13017 RESULT(sum, n, 16); \ 13018 if ((sum >> 16) == 1) \ 13019 ge |= 3 << (n * 2); \ 13020 } while(0) 13021 13022 #define ADD8(a, b, n) do { \ 13023 uint32_t sum; \ 13024 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13025 RESULT(sum, n, 8); \ 13026 if ((sum >> 8) == 1) \ 13027 ge |= 1 << n; \ 13028 } while(0) 13029 13030 #define SUB16(a, b, n) do { \ 13031 uint32_t sum; \ 13032 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13033 RESULT(sum, n, 16); \ 13034 if ((sum >> 16) == 0) \ 13035 ge |= 3 << (n * 2); \ 13036 } while(0) 13037 13038 #define SUB8(a, b, n) do { \ 13039 uint32_t sum; \ 13040 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13041 RESULT(sum, n, 8); \ 13042 if ((sum >> 8) == 0) \ 13043 ge |= 1 << n; \ 13044 } while(0) 13045 13046 #define PFX u 13047 #define ARITH_GE 13048 13049 #include "op_addsub.h" 13050 13051 /* Halved signed arithmetic. */ 13052 #define ADD16(a, b, n) \ 13053 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13054 #define SUB16(a, b, n) \ 13055 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13056 #define ADD8(a, b, n) \ 13057 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13058 #define SUB8(a, b, n) \ 13059 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13060 #define PFX sh 13061 13062 #include "op_addsub.h" 13063 13064 /* Halved unsigned arithmetic. */ 13065 #define ADD16(a, b, n) \ 13066 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13067 #define SUB16(a, b, n) \ 13068 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13069 #define ADD8(a, b, n) \ 13070 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13071 #define SUB8(a, b, n) \ 13072 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13073 #define PFX uh 13074 13075 #include "op_addsub.h" 13076 13077 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13078 { 13079 if (a > b) 13080 return a - b; 13081 else 13082 return b - a; 13083 } 13084 13085 /* Unsigned sum of absolute byte differences. */ 13086 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13087 { 13088 uint32_t sum; 13089 sum = do_usad(a, b); 13090 sum += do_usad(a >> 8, b >> 8); 13091 sum += do_usad(a >> 16, b >> 16); 13092 sum += do_usad(a >> 24, b >> 24); 13093 return sum; 13094 } 13095 13096 /* For ARMv6 SEL instruction. */ 13097 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13098 { 13099 uint32_t mask; 13100 13101 mask = 0; 13102 if (flags & 1) 13103 mask |= 0xff; 13104 if (flags & 2) 13105 mask |= 0xff00; 13106 if (flags & 4) 13107 mask |= 0xff0000; 13108 if (flags & 8) 13109 mask |= 0xff000000; 13110 return (a & mask) | (b & ~mask); 13111 } 13112 13113 /* CRC helpers. 13114 * The upper bytes of val (above the number specified by 'bytes') must have 13115 * been zeroed out by the caller. 13116 */ 13117 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13118 { 13119 uint8_t buf[4]; 13120 13121 stl_le_p(buf, val); 13122 13123 /* zlib crc32 converts the accumulator and output to one's complement. */ 13124 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13125 } 13126 13127 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13128 { 13129 uint8_t buf[4]; 13130 13131 stl_le_p(buf, val); 13132 13133 /* Linux crc32c converts the output to one's complement. */ 13134 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13135 } 13136 13137 /* Return the exception level to which FP-disabled exceptions should 13138 * be taken, or 0 if FP is enabled. 13139 */ 13140 int fp_exception_el(CPUARMState *env, int cur_el) 13141 { 13142 #ifndef CONFIG_USER_ONLY 13143 /* CPACR and the CPTR registers don't exist before v6, so FP is 13144 * always accessible 13145 */ 13146 if (!arm_feature(env, ARM_FEATURE_V6)) { 13147 return 0; 13148 } 13149 13150 if (arm_feature(env, ARM_FEATURE_M)) { 13151 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13152 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13153 return 1; 13154 } 13155 13156 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13157 if (!extract32(env->v7m.nsacr, 10, 1)) { 13158 /* FP insns cause a NOCP UsageFault taken to Secure */ 13159 return 3; 13160 } 13161 } 13162 13163 return 0; 13164 } 13165 13166 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13167 * 0, 2 : trap EL0 and EL1/PL1 accesses 13168 * 1 : trap only EL0 accesses 13169 * 3 : trap no accesses 13170 * This register is ignored if E2H+TGE are both set. 13171 */ 13172 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13173 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13174 13175 switch (fpen) { 13176 case 0: 13177 case 2: 13178 if (cur_el == 0 || cur_el == 1) { 13179 /* Trap to PL1, which might be EL1 or EL3 */ 13180 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13181 return 3; 13182 } 13183 return 1; 13184 } 13185 if (cur_el == 3 && !is_a64(env)) { 13186 /* Secure PL1 running at EL3 */ 13187 return 3; 13188 } 13189 break; 13190 case 1: 13191 if (cur_el == 0) { 13192 return 1; 13193 } 13194 break; 13195 case 3: 13196 break; 13197 } 13198 } 13199 13200 /* 13201 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13202 * to control non-secure access to the FPU. It doesn't have any 13203 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13204 */ 13205 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13206 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13207 if (!extract32(env->cp15.nsacr, 10, 1)) { 13208 /* FP insns act as UNDEF */ 13209 return cur_el == 2 ? 2 : 1; 13210 } 13211 } 13212 13213 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 13214 * check because zero bits in the registers mean "don't trap". 13215 */ 13216 13217 /* CPTR_EL2 : present in v7VE or v8 */ 13218 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 13219 && arm_is_el2_enabled(env)) { 13220 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 13221 return 2; 13222 } 13223 13224 /* CPTR_EL3 : present in v8 */ 13225 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 13226 /* Trap all FP ops to EL3 */ 13227 return 3; 13228 } 13229 #endif 13230 return 0; 13231 } 13232 13233 /* Return the exception level we're running at if this is our mmu_idx */ 13234 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13235 { 13236 if (mmu_idx & ARM_MMU_IDX_M) { 13237 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13238 } 13239 13240 switch (mmu_idx) { 13241 case ARMMMUIdx_E10_0: 13242 case ARMMMUIdx_E20_0: 13243 case ARMMMUIdx_SE10_0: 13244 case ARMMMUIdx_SE20_0: 13245 return 0; 13246 case ARMMMUIdx_E10_1: 13247 case ARMMMUIdx_E10_1_PAN: 13248 case ARMMMUIdx_SE10_1: 13249 case ARMMMUIdx_SE10_1_PAN: 13250 return 1; 13251 case ARMMMUIdx_E2: 13252 case ARMMMUIdx_E20_2: 13253 case ARMMMUIdx_E20_2_PAN: 13254 case ARMMMUIdx_SE2: 13255 case ARMMMUIdx_SE20_2: 13256 case ARMMMUIdx_SE20_2_PAN: 13257 return 2; 13258 case ARMMMUIdx_SE3: 13259 return 3; 13260 default: 13261 g_assert_not_reached(); 13262 } 13263 } 13264 13265 #ifndef CONFIG_TCG 13266 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13267 { 13268 g_assert_not_reached(); 13269 } 13270 #endif 13271 13272 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13273 { 13274 ARMMMUIdx idx; 13275 uint64_t hcr; 13276 13277 if (arm_feature(env, ARM_FEATURE_M)) { 13278 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13279 } 13280 13281 /* See ARM pseudo-function ELIsInHost. */ 13282 switch (el) { 13283 case 0: 13284 hcr = arm_hcr_el2_eff(env); 13285 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13286 idx = ARMMMUIdx_E20_0; 13287 } else { 13288 idx = ARMMMUIdx_E10_0; 13289 } 13290 break; 13291 case 1: 13292 if (env->pstate & PSTATE_PAN) { 13293 idx = ARMMMUIdx_E10_1_PAN; 13294 } else { 13295 idx = ARMMMUIdx_E10_1; 13296 } 13297 break; 13298 case 2: 13299 /* Note that TGE does not apply at EL2. */ 13300 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13301 if (env->pstate & PSTATE_PAN) { 13302 idx = ARMMMUIdx_E20_2_PAN; 13303 } else { 13304 idx = ARMMMUIdx_E20_2; 13305 } 13306 } else { 13307 idx = ARMMMUIdx_E2; 13308 } 13309 break; 13310 case 3: 13311 return ARMMMUIdx_SE3; 13312 default: 13313 g_assert_not_reached(); 13314 } 13315 13316 if (arm_is_secure_below_el3(env)) { 13317 idx &= ~ARM_MMU_IDX_A_NS; 13318 } 13319 13320 return idx; 13321 } 13322 13323 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13324 { 13325 return arm_mmu_idx_el(env, arm_current_el(env)); 13326 } 13327 13328 #ifndef CONFIG_USER_ONLY 13329 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13330 { 13331 return stage_1_mmu_idx(arm_mmu_idx(env)); 13332 } 13333 #endif 13334 13335 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13336 ARMMMUIdx mmu_idx, 13337 CPUARMTBFlags flags) 13338 { 13339 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13340 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13341 13342 if (arm_singlestep_active(env)) { 13343 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13344 } 13345 return flags; 13346 } 13347 13348 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13349 ARMMMUIdx mmu_idx, 13350 CPUARMTBFlags flags) 13351 { 13352 bool sctlr_b = arm_sctlr_b(env); 13353 13354 if (sctlr_b) { 13355 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13356 } 13357 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13358 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13359 } 13360 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13361 13362 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13363 } 13364 13365 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13366 ARMMMUIdx mmu_idx) 13367 { 13368 CPUARMTBFlags flags = {}; 13369 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13370 13371 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13372 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13373 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13374 } 13375 13376 if (arm_v7m_is_handler_mode(env)) { 13377 DP_TBFLAG_M32(flags, HANDLER, 1); 13378 } 13379 13380 /* 13381 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13382 * is suppressing them because the requested execution priority 13383 * is less than 0. 13384 */ 13385 if (arm_feature(env, ARM_FEATURE_V8) && 13386 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13387 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13388 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13389 } 13390 13391 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13392 } 13393 13394 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13395 { 13396 CPUARMTBFlags flags = {}; 13397 13398 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13399 return flags; 13400 } 13401 13402 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13403 ARMMMUIdx mmu_idx) 13404 { 13405 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13406 int el = arm_current_el(env); 13407 13408 if (arm_sctlr(env, el) & SCTLR_A) { 13409 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13410 } 13411 13412 if (arm_el_is_aa64(env, 1)) { 13413 DP_TBFLAG_A32(flags, VFPEN, 1); 13414 } 13415 13416 if (el < 2 && env->cp15.hstr_el2 && 13417 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13418 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13419 } 13420 13421 if (env->uncached_cpsr & CPSR_IL) { 13422 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13423 } 13424 13425 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13426 } 13427 13428 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13429 ARMMMUIdx mmu_idx) 13430 { 13431 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13432 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13433 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13434 uint64_t sctlr; 13435 int tbii, tbid; 13436 13437 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13438 13439 /* Get control bits for tagged addresses. */ 13440 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13441 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13442 13443 DP_TBFLAG_A64(flags, TBII, tbii); 13444 DP_TBFLAG_A64(flags, TBID, tbid); 13445 13446 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13447 int sve_el = sve_exception_el(env, el); 13448 uint32_t zcr_len; 13449 13450 /* 13451 * If SVE is disabled, but FP is enabled, 13452 * then the effective len is 0. 13453 */ 13454 if (sve_el != 0 && fp_el == 0) { 13455 zcr_len = 0; 13456 } else { 13457 zcr_len = sve_zcr_len_for_el(env, el); 13458 } 13459 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13460 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13461 } 13462 13463 sctlr = regime_sctlr(env, stage1); 13464 13465 if (sctlr & SCTLR_A) { 13466 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13467 } 13468 13469 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13470 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13471 } 13472 13473 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13474 /* 13475 * In order to save space in flags, we record only whether 13476 * pauth is "inactive", meaning all insns are implemented as 13477 * a nop, or "active" when some action must be performed. 13478 * The decision of which action to take is left to a helper. 13479 */ 13480 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13481 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13482 } 13483 } 13484 13485 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13486 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13487 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13488 DP_TBFLAG_A64(flags, BT, 1); 13489 } 13490 } 13491 13492 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13493 if (!(env->pstate & PSTATE_UAO)) { 13494 switch (mmu_idx) { 13495 case ARMMMUIdx_E10_1: 13496 case ARMMMUIdx_E10_1_PAN: 13497 case ARMMMUIdx_SE10_1: 13498 case ARMMMUIdx_SE10_1_PAN: 13499 /* TODO: ARMv8.3-NV */ 13500 DP_TBFLAG_A64(flags, UNPRIV, 1); 13501 break; 13502 case ARMMMUIdx_E20_2: 13503 case ARMMMUIdx_E20_2_PAN: 13504 case ARMMMUIdx_SE20_2: 13505 case ARMMMUIdx_SE20_2_PAN: 13506 /* 13507 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13508 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13509 */ 13510 if (env->cp15.hcr_el2 & HCR_TGE) { 13511 DP_TBFLAG_A64(flags, UNPRIV, 1); 13512 } 13513 break; 13514 default: 13515 break; 13516 } 13517 } 13518 13519 if (env->pstate & PSTATE_IL) { 13520 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13521 } 13522 13523 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13524 /* 13525 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13526 * if all accesses must be Unchecked: 13527 * 1) If no TBI, then there are no tags in the address to check, 13528 * 2) If Tag Check Override, then all accesses are Unchecked, 13529 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13530 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13531 */ 13532 if (allocation_tag_access_enabled(env, el, sctlr)) { 13533 DP_TBFLAG_A64(flags, ATA, 1); 13534 if (tbid 13535 && !(env->pstate & PSTATE_TCO) 13536 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13537 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13538 } 13539 } 13540 /* And again for unprivileged accesses, if required. */ 13541 if (EX_TBFLAG_A64(flags, UNPRIV) 13542 && tbid 13543 && !(env->pstate & PSTATE_TCO) 13544 && (sctlr & SCTLR_TCF0) 13545 && allocation_tag_access_enabled(env, 0, sctlr)) { 13546 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13547 } 13548 /* Cache TCMA as well as TBI. */ 13549 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13550 } 13551 13552 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13553 } 13554 13555 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13556 { 13557 int el = arm_current_el(env); 13558 int fp_el = fp_exception_el(env, el); 13559 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13560 13561 if (is_a64(env)) { 13562 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13563 } else if (arm_feature(env, ARM_FEATURE_M)) { 13564 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13565 } else { 13566 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13567 } 13568 } 13569 13570 void arm_rebuild_hflags(CPUARMState *env) 13571 { 13572 env->hflags = rebuild_hflags_internal(env); 13573 } 13574 13575 /* 13576 * If we have triggered a EL state change we can't rely on the 13577 * translator having passed it to us, we need to recompute. 13578 */ 13579 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13580 { 13581 int el = arm_current_el(env); 13582 int fp_el = fp_exception_el(env, el); 13583 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13584 13585 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13586 } 13587 13588 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13589 { 13590 int fp_el = fp_exception_el(env, el); 13591 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13592 13593 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13594 } 13595 13596 /* 13597 * If we have triggered a EL state change we can't rely on the 13598 * translator having passed it to us, we need to recompute. 13599 */ 13600 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13601 { 13602 int el = arm_current_el(env); 13603 int fp_el = fp_exception_el(env, el); 13604 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13605 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13606 } 13607 13608 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13609 { 13610 int fp_el = fp_exception_el(env, el); 13611 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13612 13613 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13614 } 13615 13616 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13617 { 13618 int fp_el = fp_exception_el(env, el); 13619 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13620 13621 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13622 } 13623 13624 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13625 { 13626 #ifdef CONFIG_DEBUG_TCG 13627 CPUARMTBFlags c = env->hflags; 13628 CPUARMTBFlags r = rebuild_hflags_internal(env); 13629 13630 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13631 fprintf(stderr, "TCG hflags mismatch " 13632 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13633 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13634 c.flags, c.flags2, r.flags, r.flags2); 13635 abort(); 13636 } 13637 #endif 13638 } 13639 13640 static bool mve_no_pred(CPUARMState *env) 13641 { 13642 /* 13643 * Return true if there is definitely no predication of MVE 13644 * instructions by VPR or LTPSIZE. (Returning false even if there 13645 * isn't any predication is OK; generated code will just be 13646 * a little worse.) 13647 * If the CPU does not implement MVE then this TB flag is always 0. 13648 * 13649 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13650 * logic in gen_update_fp_context() needs to be updated to match. 13651 * 13652 * We do not include the effect of the ECI bits here -- they are 13653 * tracked in other TB flags. This simplifies the logic for 13654 * "when did we emit code that changes the MVE_NO_PRED TB flag 13655 * and thus need to end the TB?". 13656 */ 13657 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13658 return false; 13659 } 13660 if (env->v7m.vpr) { 13661 return false; 13662 } 13663 if (env->v7m.ltpsize < 4) { 13664 return false; 13665 } 13666 return true; 13667 } 13668 13669 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13670 target_ulong *cs_base, uint32_t *pflags) 13671 { 13672 CPUARMTBFlags flags; 13673 13674 assert_hflags_rebuild_correctly(env); 13675 flags = env->hflags; 13676 13677 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13678 *pc = env->pc; 13679 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13680 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13681 } 13682 } else { 13683 *pc = env->regs[15]; 13684 13685 if (arm_feature(env, ARM_FEATURE_M)) { 13686 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13687 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13688 != env->v7m.secure) { 13689 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13690 } 13691 13692 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13693 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13694 (env->v7m.secure && 13695 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13696 /* 13697 * ASPEN is set, but FPCA/SFPA indicate that there is no 13698 * active FP context; we must create a new FP context before 13699 * executing any FP insn. 13700 */ 13701 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13702 } 13703 13704 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13705 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13706 DP_TBFLAG_M32(flags, LSPACT, 1); 13707 } 13708 13709 if (mve_no_pred(env)) { 13710 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13711 } 13712 } else { 13713 /* 13714 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13715 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13716 */ 13717 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13718 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13719 } else { 13720 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13721 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13722 } 13723 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13724 DP_TBFLAG_A32(flags, VFPEN, 1); 13725 } 13726 } 13727 13728 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13729 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13730 } 13731 13732 /* 13733 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13734 * states defined in the ARM ARM for software singlestep: 13735 * SS_ACTIVE PSTATE.SS State 13736 * 0 x Inactive (the TB flag for SS is always 0) 13737 * 1 0 Active-pending 13738 * 1 1 Active-not-pending 13739 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13740 */ 13741 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13742 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13743 } 13744 13745 *pflags = flags.flags; 13746 *cs_base = flags.flags2; 13747 } 13748 13749 #ifdef TARGET_AARCH64 13750 /* 13751 * The manual says that when SVE is enabled and VQ is widened the 13752 * implementation is allowed to zero the previously inaccessible 13753 * portion of the registers. The corollary to that is that when 13754 * SVE is enabled and VQ is narrowed we are also allowed to zero 13755 * the now inaccessible portion of the registers. 13756 * 13757 * The intent of this is that no predicate bit beyond VQ is ever set. 13758 * Which means that some operations on predicate registers themselves 13759 * may operate on full uint64_t or even unrolled across the maximum 13760 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13761 * may well be cheaper than conditionals to restrict the operation 13762 * to the relevant portion of a uint16_t[16]. 13763 */ 13764 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13765 { 13766 int i, j; 13767 uint64_t pmask; 13768 13769 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13770 assert(vq <= env_archcpu(env)->sve_max_vq); 13771 13772 /* Zap the high bits of the zregs. */ 13773 for (i = 0; i < 32; i++) { 13774 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13775 } 13776 13777 /* Zap the high bits of the pregs and ffr. */ 13778 pmask = 0; 13779 if (vq & 3) { 13780 pmask = ~(-1ULL << (16 * (vq & 3))); 13781 } 13782 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13783 for (i = 0; i < 17; ++i) { 13784 env->vfp.pregs[i].p[j] &= pmask; 13785 } 13786 pmask = 0; 13787 } 13788 } 13789 13790 /* 13791 * Notice a change in SVE vector size when changing EL. 13792 */ 13793 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13794 int new_el, bool el0_a64) 13795 { 13796 ARMCPU *cpu = env_archcpu(env); 13797 int old_len, new_len; 13798 bool old_a64, new_a64; 13799 13800 /* Nothing to do if no SVE. */ 13801 if (!cpu_isar_feature(aa64_sve, cpu)) { 13802 return; 13803 } 13804 13805 /* Nothing to do if FP is disabled in either EL. */ 13806 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13807 return; 13808 } 13809 13810 /* 13811 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13812 * at ELx, or not available because the EL is in AArch32 state, then 13813 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13814 * has an effective value of 0". 13815 * 13816 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13817 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13818 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13819 * we already have the correct register contents when encountering the 13820 * vq0->vq0 transition between EL0->EL1. 13821 */ 13822 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13823 old_len = (old_a64 && !sve_exception_el(env, old_el) 13824 ? sve_zcr_len_for_el(env, old_el) : 0); 13825 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13826 new_len = (new_a64 && !sve_exception_el(env, new_el) 13827 ? sve_zcr_len_for_el(env, new_el) : 0); 13828 13829 /* When changing vector length, clear inaccessible state. */ 13830 if (new_len < old_len) { 13831 aarch64_sve_narrow_vq(env, new_len + 1); 13832 } 13833 } 13834 #endif 13835