1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/helper-proto.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/timer.h" 17 #include "qemu/bitops.h" 18 #include "qemu/crc32c.h" 19 #include "qemu/qemu-print.h" 20 #include "exec/exec-all.h" 21 #include <zlib.h> /* For crc32 */ 22 #include "hw/irq.h" 23 #include "sysemu/cpu-timers.h" 24 #include "sysemu/kvm.h" 25 #include "qapi/qapi-commands-machine-target.h" 26 #include "qapi/error.h" 27 #include "qemu/guest-random.h" 28 #ifdef CONFIG_TCG 29 #include "semihosting/common-semi.h" 30 #endif 31 #include "cpregs.h" 32 33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 34 35 static void switch_mode(CPUARMState *env, int mode); 36 37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 38 { 39 assert(ri->fieldoffset); 40 if (cpreg_field_is_64bit(ri)) { 41 return CPREG_FIELD64(env, ri); 42 } else { 43 return CPREG_FIELD32(env, ri); 44 } 45 } 46 47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 48 { 49 assert(ri->fieldoffset); 50 if (cpreg_field_is_64bit(ri)) { 51 CPREG_FIELD64(env, ri) = value; 52 } else { 53 CPREG_FIELD32(env, ri) = value; 54 } 55 } 56 57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 return (char *)env + ri->fieldoffset; 60 } 61 62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 63 { 64 /* Raw read of a coprocessor register (as needed for migration, etc). */ 65 if (ri->type & ARM_CP_CONST) { 66 return ri->resetvalue; 67 } else if (ri->raw_readfn) { 68 return ri->raw_readfn(env, ri); 69 } else if (ri->readfn) { 70 return ri->readfn(env, ri); 71 } else { 72 return raw_read(env, ri); 73 } 74 } 75 76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 77 uint64_t v) 78 { 79 /* 80 * Raw write of a coprocessor register (as needed for migration, etc). 81 * Note that constant registers are treated as write-ignored; the 82 * caller should check for success by whether a readback gives the 83 * value written. 84 */ 85 if (ri->type & ARM_CP_CONST) { 86 return; 87 } else if (ri->raw_writefn) { 88 ri->raw_writefn(env, ri, v); 89 } else if (ri->writefn) { 90 ri->writefn(env, ri, v); 91 } else { 92 raw_write(env, ri, v); 93 } 94 } 95 96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 97 { 98 /* 99 * Return true if the regdef would cause an assertion if you called 100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 101 * program bug for it not to have the NO_RAW flag). 102 * NB that returning false here doesn't necessarily mean that calling 103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 104 * read/write access functions which are safe for raw use" from "has 105 * read/write access functions which have side effects but has forgotten 106 * to provide raw access functions". 107 * The tests here line up with the conditions in read/write_raw_cp_reg() 108 * and assertions in raw_read()/raw_write(). 109 */ 110 if ((ri->type & ARM_CP_CONST) || 111 ri->fieldoffset || 112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 113 return false; 114 } 115 return true; 116 } 117 118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 119 { 120 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 121 int i; 122 bool ok = true; 123 124 for (i = 0; i < cpu->cpreg_array_len; i++) { 125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 126 const ARMCPRegInfo *ri; 127 uint64_t newval; 128 129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 130 if (!ri) { 131 ok = false; 132 continue; 133 } 134 if (ri->type & ARM_CP_NO_RAW) { 135 continue; 136 } 137 138 newval = read_raw_cp_reg(&cpu->env, ri); 139 if (kvm_sync) { 140 /* 141 * Only sync if the previous list->cpustate sync succeeded. 142 * Rather than tracking the success/failure state for every 143 * item in the list, we just recheck "does the raw write we must 144 * have made in write_list_to_cpustate() read back OK" here. 145 */ 146 uint64_t oldval = cpu->cpreg_values[i]; 147 148 if (oldval == newval) { 149 continue; 150 } 151 152 write_raw_cp_reg(&cpu->env, ri, oldval); 153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, newval); 158 } 159 cpu->cpreg_values[i] = newval; 160 } 161 return ok; 162 } 163 164 bool write_list_to_cpustate(ARMCPU *cpu) 165 { 166 int i; 167 bool ok = true; 168 169 for (i = 0; i < cpu->cpreg_array_len; i++) { 170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 171 uint64_t v = cpu->cpreg_values[i]; 172 const ARMCPRegInfo *ri; 173 174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 175 if (!ri) { 176 ok = false; 177 continue; 178 } 179 if (ri->type & ARM_CP_NO_RAW) { 180 continue; 181 } 182 /* 183 * Write value and confirm it reads back as written 184 * (to catch read-only registers and partially read-only 185 * registers where the incoming migration value doesn't match) 186 */ 187 write_raw_cp_reg(&cpu->env, ri, v); 188 if (read_raw_cp_reg(&cpu->env, ri) != v) { 189 ok = false; 190 } 191 } 192 return ok; 193 } 194 195 static void add_cpreg_to_list(gpointer key, gpointer opaque) 196 { 197 ARMCPU *cpu = opaque; 198 uint32_t regidx = (uintptr_t)key; 199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 200 201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 203 /* The value array need not be initialized at this point */ 204 cpu->cpreg_array_len++; 205 } 206 } 207 208 static void count_cpreg(gpointer key, gpointer opaque) 209 { 210 ARMCPU *cpu = opaque; 211 const ARMCPRegInfo *ri; 212 213 ri = g_hash_table_lookup(cpu->cp_regs, key); 214 215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 216 cpu->cpreg_array_len++; 217 } 218 } 219 220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 221 { 222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 224 225 if (aidx > bidx) { 226 return 1; 227 } 228 if (aidx < bidx) { 229 return -1; 230 } 231 return 0; 232 } 233 234 void init_cpreg_list(ARMCPU *cpu) 235 { 236 /* 237 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 238 * Note that we require cpreg_tuples[] to be sorted by key ID. 239 */ 240 GList *keys; 241 int arraylen; 242 243 keys = g_hash_table_get_keys(cpu->cp_regs); 244 keys = g_list_sort(keys, cpreg_key_compare); 245 246 cpu->cpreg_array_len = 0; 247 248 g_list_foreach(keys, count_cpreg, cpu); 249 250 arraylen = cpu->cpreg_array_len; 251 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 252 cpu->cpreg_values = g_new(uint64_t, arraylen); 253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 256 cpu->cpreg_array_len = 0; 257 258 g_list_foreach(keys, add_cpreg_to_list, cpu); 259 260 assert(cpu->cpreg_array_len == arraylen); 261 262 g_list_free(keys); 263 } 264 265 /* 266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 267 */ 268 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 269 const ARMCPRegInfo *ri, 270 bool isread) 271 { 272 if (!is_a64(env) && arm_current_el(env) == 3 && 273 arm_is_secure_below_el3(env)) { 274 return CP_ACCESS_TRAP_UNCATEGORIZED; 275 } 276 return CP_ACCESS_OK; 277 } 278 279 /* 280 * Some secure-only AArch32 registers trap to EL3 if used from 281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 283 * We assume that the .access field is set to PL1_RW. 284 */ 285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 286 const ARMCPRegInfo *ri, 287 bool isread) 288 { 289 if (arm_current_el(env) == 3) { 290 return CP_ACCESS_OK; 291 } 292 if (arm_is_secure_below_el3(env)) { 293 if (env->cp15.scr_el3 & SCR_EEL2) { 294 return CP_ACCESS_TRAP_EL2; 295 } 296 return CP_ACCESS_TRAP_EL3; 297 } 298 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 299 return CP_ACCESS_TRAP_UNCATEGORIZED; 300 } 301 302 /* 303 * Check for traps to performance monitor registers, which are controlled 304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 305 */ 306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 307 bool isread) 308 { 309 int el = arm_current_el(env); 310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 311 312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 313 return CP_ACCESS_TRAP_EL2; 314 } 315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 316 return CP_ACCESS_TRAP_EL3; 317 } 318 return CP_ACCESS_OK; 319 } 320 321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 323 bool isread) 324 { 325 if (arm_current_el(env) == 1) { 326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 327 if (arm_hcr_el2_eff(env) & trap) { 328 return CP_ACCESS_TRAP_EL2; 329 } 330 } 331 return CP_ACCESS_OK; 332 } 333 334 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 336 bool isread) 337 { 338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 339 return CP_ACCESS_TRAP_EL2; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 346 bool isread) 347 { 348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 349 return CP_ACCESS_TRAP_EL2; 350 } 351 return CP_ACCESS_OK; 352 } 353 354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 356 bool isread) 357 { 358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 359 return CP_ACCESS_TRAP_EL2; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 366 bool isread) 367 { 368 if (arm_current_el(env) == 1 && 369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 370 return CP_ACCESS_TRAP_EL2; 371 } 372 return CP_ACCESS_OK; 373 } 374 375 #ifdef TARGET_AARCH64 376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 1 && 381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 382 return CP_ACCESS_TRAP_EL2; 383 } 384 return CP_ACCESS_OK; 385 } 386 #endif 387 388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 389 { 390 ARMCPU *cpu = env_archcpu(env); 391 392 raw_write(env, ri, value); 393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 394 } 395 396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 397 { 398 ARMCPU *cpu = env_archcpu(env); 399 400 if (raw_read(env, ri) != value) { 401 /* 402 * Unlike real hardware the qemu TLB uses virtual addresses, 403 * not modified virtual addresses, so this causes a TLB flush. 404 */ 405 tlb_flush(CPU(cpu)); 406 raw_write(env, ri, value); 407 } 408 } 409 410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 411 uint64_t value) 412 { 413 ARMCPU *cpu = env_archcpu(env); 414 415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 416 && !extended_addresses_enabled(env)) { 417 /* 418 * For VMSA (when not using the LPAE long descriptor page table 419 * format) this register includes the ASID, so do a TLB flush. 420 * For PMSA it is purely a process ID and no action is needed. 421 */ 422 tlb_flush(CPU(cpu)); 423 } 424 raw_write(env, ri, value); 425 } 426 427 static int alle1_tlbmask(CPUARMState *env) 428 { 429 /* 430 * Note that the 'ALL' scope must invalidate both stage 1 and 431 * stage 2 translations, whereas most other scopes only invalidate 432 * stage 1 translations. 433 */ 434 return (ARMMMUIdxBit_E10_1 | 435 ARMMMUIdxBit_E10_1_PAN | 436 ARMMMUIdxBit_E10_0 | 437 ARMMMUIdxBit_Stage2 | 438 ARMMMUIdxBit_Stage2_S); 439 } 440 441 442 /* IS variants of TLB operations must affect all cores */ 443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 444 uint64_t value) 445 { 446 CPUState *cs = env_cpu(env); 447 448 tlb_flush_all_cpus_synced(cs); 449 } 450 451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 452 uint64_t value) 453 { 454 CPUState *cs = env_cpu(env); 455 456 tlb_flush_all_cpus_synced(cs); 457 } 458 459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 460 uint64_t value) 461 { 462 CPUState *cs = env_cpu(env); 463 464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 465 } 466 467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 468 uint64_t value) 469 { 470 CPUState *cs = env_cpu(env); 471 472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 473 } 474 475 /* 476 * Non-IS variants of TLB operations are upgraded to 477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 478 * force broadcast of these operations. 479 */ 480 static bool tlb_force_broadcast(CPUARMState *env) 481 { 482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 483 } 484 485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate all (TLBIALL) */ 489 CPUState *cs = env_cpu(env); 490 491 if (tlb_force_broadcast(env)) { 492 tlb_flush_all_cpus_synced(cs); 493 } else { 494 tlb_flush(cs); 495 } 496 } 497 498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 499 uint64_t value) 500 { 501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 502 CPUState *cs = env_cpu(env); 503 504 value &= TARGET_PAGE_MASK; 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_page_all_cpus_synced(cs, value); 507 } else { 508 tlb_flush_page(cs, value); 509 } 510 } 511 512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate by ASID (TLBIASID) */ 516 CPUState *cs = env_cpu(env); 517 518 if (tlb_force_broadcast(env)) { 519 tlb_flush_all_cpus_synced(cs); 520 } else { 521 tlb_flush(cs); 522 } 523 } 524 525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 529 CPUState *cs = env_cpu(env); 530 531 value &= TARGET_PAGE_MASK; 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_page_all_cpus_synced(cs, value); 534 } else { 535 tlb_flush_page(cs, value); 536 } 537 } 538 539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 CPUState *cs = env_cpu(env); 543 544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 545 } 546 547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 553 } 554 555 556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 562 } 563 564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = env_cpu(env); 568 569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 570 } 571 572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = env_cpu(env); 576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 577 578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 579 } 580 581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 CPUState *cs = env_cpu(env); 585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 586 587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 588 ARMMMUIdxBit_E2); 589 } 590 591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 592 uint64_t value) 593 { 594 CPUState *cs = env_cpu(env); 595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 596 597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 598 } 599 600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = env_cpu(env); 604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 605 606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 607 } 608 609 static const ARMCPRegInfo cp_reginfo[] = { 610 /* 611 * Define the secure and non-secure FCSE identifier CP registers 612 * separately because there is no secure bank in V8 (no _EL3). This allows 613 * the secure register to be properly reset and migrated. There is also no 614 * v8 EL1 version of the register so the non-secure instance stands alone. 615 */ 616 { .name = "FCSEIDR", 617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 621 { .name = "FCSEIDR_S", 622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 626 /* 627 * Define the secure and non-secure context identifier CP registers 628 * separately because there is no secure bank in V8 (no _EL3). This allows 629 * the secure register to be properly reset and migrated. In the 630 * non-secure case, the 32-bit register will have reset and migration 631 * disabled during registration as it is handled by the 64-bit instance. 632 */ 633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 635 .access = PL1_RW, .accessfn = access_tvm_trvm, 636 .fgt = FGT_CONTEXTIDR_EL1, 637 .secure = ARM_CP_SECSTATE_NS, 638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 642 .access = PL1_RW, .accessfn = access_tvm_trvm, 643 .secure = ARM_CP_SECSTATE_S, 644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 646 }; 647 648 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 649 /* 650 * NB: Some of these registers exist in v8 but with more precise 651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 652 */ 653 /* MMU Domain access control / MPU write buffer control */ 654 { .name = "DACR", 655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 657 .writefn = dacr_write, .raw_writefn = raw_write, 658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 659 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 660 /* 661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 662 * For v6 and v5, these mappings are overly broad. 663 */ 664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 672 /* Cache maintenance ops; some of this space may be overridden later. */ 673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 676 }; 677 678 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 679 /* 680 * Not all pre-v6 cores implemented this WFI, so this is slightly 681 * over-broad. 682 */ 683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 684 .access = PL1_W, .type = ARM_CP_WFI }, 685 }; 686 687 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 688 /* 689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 690 * is UNPREDICTABLE; we choose to NOP as most implementations do). 691 */ 692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 693 .access = PL1_W, .type = ARM_CP_WFI }, 694 /* 695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 697 * OMAPCP will override this space. 698 */ 699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 701 .resetvalue = 0 }, 702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 704 .resetvalue = 0 }, 705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 708 .resetvalue = 0 }, 709 /* 710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 711 * implementing it as RAZ means the "debug architecture version" bits 712 * will read as a reserved value, which should cause Linux to not try 713 * to use the debug hardware. 714 */ 715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 717 /* 718 * MMU TLB control. Note that the wildcarding means we cover not just 719 * the unified TLB ops but also the dside/iside/inner-shareable variants. 720 */ 721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 723 .type = ARM_CP_NO_RAW }, 724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 726 .type = ARM_CP_NO_RAW }, 727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 729 .type = ARM_CP_NO_RAW }, 730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 732 .type = ARM_CP_NO_RAW }, 733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 737 }; 738 739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 740 uint64_t value) 741 { 742 uint32_t mask = 0; 743 744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 745 if (!arm_feature(env, ARM_FEATURE_V8)) { 746 /* 747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 750 */ 751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 752 /* VFP coprocessor: cp10 & cp11 [23:20] */ 753 mask |= R_CPACR_ASEDIS_MASK | 754 R_CPACR_D32DIS_MASK | 755 R_CPACR_CP11_MASK | 756 R_CPACR_CP10_MASK; 757 758 if (!arm_feature(env, ARM_FEATURE_NEON)) { 759 /* ASEDIS [31] bit is RAO/WI */ 760 value |= R_CPACR_ASEDIS_MASK; 761 } 762 763 /* 764 * VFPv3 and upwards with NEON implement 32 double precision 765 * registers (D0-D31). 766 */ 767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 769 value |= R_CPACR_D32DIS_MASK; 770 } 771 } 772 value &= mask; 773 } 774 775 /* 776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 778 */ 779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 783 } 784 785 env->cp15.cpacr_el1 = value; 786 } 787 788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 789 { 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 uint64_t value = env->cp15.cpacr_el1; 795 796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 799 } 800 return value; 801 } 802 803 804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 805 { 806 /* 807 * Call cpacr_write() so that we reset with the correct RAO bits set 808 * for our CPU features. 809 */ 810 cpacr_write(env, ri, 0); 811 } 812 813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 814 bool isread) 815 { 816 if (arm_feature(env, ARM_FEATURE_V8)) { 817 /* Check if CPACR accesses are to be trapped to EL2 */ 818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 820 return CP_ACCESS_TRAP_EL2; 821 /* Check if CPACR accesses are to be trapped to EL3 */ 822 } else if (arm_current_el(env) < 3 && 823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 824 return CP_ACCESS_TRAP_EL3; 825 } 826 } 827 828 return CP_ACCESS_OK; 829 } 830 831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 832 bool isread) 833 { 834 /* Check if CPTR accesses are set to trap to EL3 */ 835 if (arm_current_el(env) == 2 && 836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 837 return CP_ACCESS_TRAP_EL3; 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static const ARMCPRegInfo v6_cp_reginfo[] = { 844 /* prefetch by MVA in v6, NOP in v7 */ 845 { .name = "MVA_prefetch", 846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 847 .access = PL1_W, .type = ARM_CP_NOP }, 848 /* 849 * We need to break the TB after ISB to execute self-modifying code 850 * correctly and also to take any pending interrupts immediately. 851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 852 */ 853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 856 .access = PL0_W, .type = ARM_CP_NOP }, 857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 858 .access = PL0_W, .type = ARM_CP_NOP }, 859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 860 .access = PL1_RW, .accessfn = access_tvm_trvm, 861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 862 offsetof(CPUARMState, cp15.ifar_ns) }, 863 .resetvalue = 0, }, 864 /* 865 * Watchpoint Fault Address Register : should actually only be present 866 * for 1136, 1176, 11MPCore. 867 */ 868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 872 .fgt = FGT_CPACR_EL1, 873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 875 }; 876 877 typedef struct pm_event { 878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 880 bool (*supported)(CPUARMState *); 881 /* 882 * Retrieve the current count of the underlying event. The programmed 883 * counters hold a difference from the return value from this function 884 */ 885 uint64_t (*get_count)(CPUARMState *); 886 /* 887 * Return how many nanoseconds it will take (at a minimum) for count events 888 * to occur. A negative value indicates the counter will never overflow, or 889 * that the counter has otherwise arranged for the overflow bit to be set 890 * and the PMU interrupt to be raised on overflow. 891 */ 892 int64_t (*ns_per_count)(uint64_t); 893 } pm_event; 894 895 static bool event_always_supported(CPUARMState *env) 896 { 897 return true; 898 } 899 900 static uint64_t swinc_get_count(CPUARMState *env) 901 { 902 /* 903 * SW_INCR events are written directly to the pmevcntr's by writes to 904 * PMSWINC, so there is no underlying count maintained by the PMU itself 905 */ 906 return 0; 907 } 908 909 static int64_t swinc_ns_per(uint64_t ignored) 910 { 911 return -1; 912 } 913 914 /* 915 * Return the underlying cycle count for the PMU cycle counters. If we're in 916 * usermode, simply return 0. 917 */ 918 static uint64_t cycles_get_count(CPUARMState *env) 919 { 920 #ifndef CONFIG_USER_ONLY 921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 923 #else 924 return cpu_get_host_ticks(); 925 #endif 926 } 927 928 #ifndef CONFIG_USER_ONLY 929 static int64_t cycles_ns_per(uint64_t cycles) 930 { 931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 932 } 933 934 static bool instructions_supported(CPUARMState *env) 935 { 936 return icount_enabled() == 1; /* Precise instruction counting */ 937 } 938 939 static uint64_t instructions_get_count(CPUARMState *env) 940 { 941 return (uint64_t)icount_get_raw(); 942 } 943 944 static int64_t instructions_ns_per(uint64_t icount) 945 { 946 return icount_to_ns((int64_t)icount); 947 } 948 #endif 949 950 static bool pmuv3p1_events_supported(CPUARMState *env) 951 { 952 /* For events which are supported in any v8.1 PMU */ 953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 954 } 955 956 static bool pmuv3p4_events_supported(CPUARMState *env) 957 { 958 /* For events which are supported in any v8.1 PMU */ 959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 960 } 961 962 static uint64_t zero_event_get_count(CPUARMState *env) 963 { 964 /* For events which on QEMU never fire, so their count is always zero */ 965 return 0; 966 } 967 968 static int64_t zero_event_ns_per(uint64_t cycles) 969 { 970 /* An event which never fires can never overflow */ 971 return -1; 972 } 973 974 static const pm_event pm_events[] = { 975 { .number = 0x000, /* SW_INCR */ 976 .supported = event_always_supported, 977 .get_count = swinc_get_count, 978 .ns_per_count = swinc_ns_per, 979 }, 980 #ifndef CONFIG_USER_ONLY 981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 982 .supported = instructions_supported, 983 .get_count = instructions_get_count, 984 .ns_per_count = instructions_ns_per, 985 }, 986 { .number = 0x011, /* CPU_CYCLES, Cycle */ 987 .supported = event_always_supported, 988 .get_count = cycles_get_count, 989 .ns_per_count = cycles_ns_per, 990 }, 991 #endif 992 { .number = 0x023, /* STALL_FRONTEND */ 993 .supported = pmuv3p1_events_supported, 994 .get_count = zero_event_get_count, 995 .ns_per_count = zero_event_ns_per, 996 }, 997 { .number = 0x024, /* STALL_BACKEND */ 998 .supported = pmuv3p1_events_supported, 999 .get_count = zero_event_get_count, 1000 .ns_per_count = zero_event_ns_per, 1001 }, 1002 { .number = 0x03c, /* STALL */ 1003 .supported = pmuv3p4_events_supported, 1004 .get_count = zero_event_get_count, 1005 .ns_per_count = zero_event_ns_per, 1006 }, 1007 }; 1008 1009 /* 1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1011 * events (i.e. the statistical profiling extension), this implementation 1012 * should first be updated to something sparse instead of the current 1013 * supported_event_map[] array. 1014 */ 1015 #define MAX_EVENT_ID 0x3c 1016 #define UNSUPPORTED_EVENT UINT16_MAX 1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1018 1019 /* 1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1021 * of ARM event numbers to indices in our pm_events array. 1022 * 1023 * Note: Events in the 0x40XX range are not currently supported. 1024 */ 1025 void pmu_init(ARMCPU *cpu) 1026 { 1027 unsigned int i; 1028 1029 /* 1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1031 * events to them 1032 */ 1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1034 supported_event_map[i] = UNSUPPORTED_EVENT; 1035 } 1036 cpu->pmceid0 = 0; 1037 cpu->pmceid1 = 0; 1038 1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1040 const pm_event *cnt = &pm_events[i]; 1041 assert(cnt->number <= MAX_EVENT_ID); 1042 /* We do not currently support events in the 0x40xx range */ 1043 assert(cnt->number <= 0x3f); 1044 1045 if (cnt->supported(&cpu->env)) { 1046 supported_event_map[cnt->number] = i; 1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1048 if (cnt->number & 0x20) { 1049 cpu->pmceid1 |= event_mask; 1050 } else { 1051 cpu->pmceid0 |= event_mask; 1052 } 1053 } 1054 } 1055 } 1056 1057 /* 1058 * Check at runtime whether a PMU event is supported for the current machine 1059 */ 1060 static bool event_supported(uint16_t number) 1061 { 1062 if (number > MAX_EVENT_ID) { 1063 return false; 1064 } 1065 return supported_event_map[number] != UNSUPPORTED_EVENT; 1066 } 1067 1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1069 bool isread) 1070 { 1071 /* 1072 * Performance monitor registers user accessibility is controlled 1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1074 * trapping to EL2 or EL3 for other accesses. 1075 */ 1076 int el = arm_current_el(env); 1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1078 1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1080 return CP_ACCESS_TRAP; 1081 } 1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1083 return CP_ACCESS_TRAP_EL2; 1084 } 1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1086 return CP_ACCESS_TRAP_EL3; 1087 } 1088 1089 return CP_ACCESS_OK; 1090 } 1091 1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1093 const ARMCPRegInfo *ri, 1094 bool isread) 1095 { 1096 /* ER: event counter read trap control */ 1097 if (arm_feature(env, ARM_FEATURE_V8) 1098 && arm_current_el(env) == 0 1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1100 && isread) { 1101 return CP_ACCESS_OK; 1102 } 1103 1104 return pmreg_access(env, ri, isread); 1105 } 1106 1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1108 const ARMCPRegInfo *ri, 1109 bool isread) 1110 { 1111 /* SW: software increment write trap control */ 1112 if (arm_feature(env, ARM_FEATURE_V8) 1113 && arm_current_el(env) == 0 1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1115 && !isread) { 1116 return CP_ACCESS_OK; 1117 } 1118 1119 return pmreg_access(env, ri, isread); 1120 } 1121 1122 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1123 const ARMCPRegInfo *ri, 1124 bool isread) 1125 { 1126 /* ER: event counter read trap control */ 1127 if (arm_feature(env, ARM_FEATURE_V8) 1128 && arm_current_el(env) == 0 1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1130 return CP_ACCESS_OK; 1131 } 1132 1133 return pmreg_access(env, ri, isread); 1134 } 1135 1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1137 const ARMCPRegInfo *ri, 1138 bool isread) 1139 { 1140 /* CR: cycle counter read trap control */ 1141 if (arm_feature(env, ARM_FEATURE_V8) 1142 && arm_current_el(env) == 0 1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1144 && isread) { 1145 return CP_ACCESS_OK; 1146 } 1147 1148 return pmreg_access(env, ri, isread); 1149 } 1150 1151 /* 1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1153 * We use these to decide whether we need to wrap a write to MDCR_EL2 1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1155 */ 1156 #define MDCR_EL2_PMU_ENABLE_BITS \ 1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1159 1160 /* 1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1162 * the current EL, security state, and register configuration. 1163 */ 1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1165 { 1166 uint64_t filter; 1167 bool e, p, u, nsk, nsu, nsh, m; 1168 bool enabled, prohibited = false, filtered; 1169 bool secure = arm_is_secure(env); 1170 int el = arm_current_el(env); 1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1173 1174 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1175 return false; 1176 } 1177 1178 if (!arm_feature(env, ARM_FEATURE_EL2) || 1179 (counter < hpmn || counter == 31)) { 1180 e = env->cp15.c9_pmcr & PMCRE; 1181 } else { 1182 e = mdcr_el2 & MDCR_HPME; 1183 } 1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1185 1186 /* Is event counting prohibited? */ 1187 if (el == 2 && (counter < hpmn || counter == 31)) { 1188 prohibited = mdcr_el2 & MDCR_HPMD; 1189 } 1190 if (secure) { 1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (counter == 31) { 1195 /* 1196 * The cycle counter defaults to running. PMCR.DP says "disable 1197 * the cycle counter when event counting is prohibited". 1198 * Some MDCR bits disable the cycle counter specifically. 1199 */ 1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1202 if (secure) { 1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1204 } 1205 if (el == 2) { 1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1207 } 1208 } 1209 } 1210 1211 if (counter == 31) { 1212 filter = env->cp15.pmccfiltr_el0; 1213 } else { 1214 filter = env->cp15.c14_pmevtyper[counter]; 1215 } 1216 1217 p = filter & PMXEVTYPER_P; 1218 u = filter & PMXEVTYPER_U; 1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1222 m = arm_el_is_aa64(env, 1) && 1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1224 1225 if (el == 0) { 1226 filtered = secure ? u : u != nsu; 1227 } else if (el == 1) { 1228 filtered = secure ? p : p != nsk; 1229 } else if (el == 2) { 1230 filtered = !nsh; 1231 } else { /* EL3 */ 1232 filtered = m != p; 1233 } 1234 1235 if (counter != 31) { 1236 /* 1237 * If not checking PMCCNTR, ensure the counter is setup to an event we 1238 * support 1239 */ 1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1241 if (!event_supported(event)) { 1242 return false; 1243 } 1244 } 1245 1246 return enabled && !prohibited && !filtered; 1247 } 1248 1249 static void pmu_update_irq(CPUARMState *env) 1250 { 1251 ARMCPU *cpu = env_archcpu(env); 1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1254 } 1255 1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1257 { 1258 /* 1259 * Return true if the clock divider is enabled and the cycle counter 1260 * is supposed to tick only once every 64 clock cycles. This is 1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1262 * (64-bit) cycle counter PMCR.D has no effect. 1263 */ 1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1265 } 1266 1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1268 { 1269 /* Return true if the specified event counter is configured to be 64 bit */ 1270 1271 /* This isn't intended to be used with the cycle counter */ 1272 assert(counter < 31); 1273 1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1275 return false; 1276 } 1277 1278 if (arm_feature(env, ARM_FEATURE_EL2)) { 1279 /* 1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1281 * current security state, so we don't use arm_mdcr_el2_eff() here. 1282 */ 1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1285 1286 if (hpmn != 0 && counter >= hpmn) { 1287 return hlp; 1288 } 1289 } 1290 return env->cp15.c9_pmcr & PMCRLP; 1291 } 1292 1293 /* 1294 * Ensure c15_ccnt is the guest-visible count so that operations such as 1295 * enabling/disabling the counter or filtering, modifying the count itself, 1296 * etc. can be done logically. This is essentially a no-op if the counter is 1297 * not enabled at the time of the call. 1298 */ 1299 static void pmccntr_op_start(CPUARMState *env) 1300 { 1301 uint64_t cycles = cycles_get_count(env); 1302 1303 if (pmu_counter_enabled(env, 31)) { 1304 uint64_t eff_cycles = cycles; 1305 if (pmccntr_clockdiv_enabled(env)) { 1306 eff_cycles /= 64; 1307 } 1308 1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1310 1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1312 1ull << 63 : 1ull << 31; 1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1314 env->cp15.c9_pmovsr |= (1ULL << 31); 1315 pmu_update_irq(env); 1316 } 1317 1318 env->cp15.c15_ccnt = new_pmccntr; 1319 } 1320 env->cp15.c15_ccnt_delta = cycles; 1321 } 1322 1323 /* 1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1326 * pmccntr_op_start. 1327 */ 1328 static void pmccntr_op_finish(CPUARMState *env) 1329 { 1330 if (pmu_counter_enabled(env, 31)) { 1331 #ifndef CONFIG_USER_ONLY 1332 /* Calculate when the counter will next overflow */ 1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1334 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1335 remaining_cycles = (uint32_t)remaining_cycles; 1336 } 1337 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at; 1341 1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1343 overflow_in, &overflow_at)) { 1344 ARMCPU *cpu = env_archcpu(env); 1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1346 } 1347 } 1348 #endif 1349 1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1351 if (pmccntr_clockdiv_enabled(env)) { 1352 prev_cycles /= 64; 1353 } 1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1355 } 1356 } 1357 1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1359 { 1360 1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1362 uint64_t count = 0; 1363 if (event_supported(event)) { 1364 uint16_t event_idx = supported_event_map[event]; 1365 count = pm_events[event_idx].get_count(env); 1366 } 1367 1368 if (pmu_counter_enabled(env, counter)) { 1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1371 1ULL << 63 : 1ULL << 31; 1372 1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1374 env->cp15.c9_pmovsr |= (1 << counter); 1375 pmu_update_irq(env); 1376 } 1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1378 } 1379 env->cp15.c14_pmevcntr_delta[counter] = count; 1380 } 1381 1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1383 { 1384 if (pmu_counter_enabled(env, counter)) { 1385 #ifndef CONFIG_USER_ONLY 1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1387 uint16_t event_idx = supported_event_map[event]; 1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1389 int64_t overflow_in; 1390 1391 if (!pmevcntr_is_64_bit(env, counter)) { 1392 delta = (uint32_t)delta; 1393 } 1394 overflow_in = pm_events[event_idx].ns_per_count(delta); 1395 1396 if (overflow_in > 0) { 1397 int64_t overflow_at; 1398 1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1400 overflow_in, &overflow_at)) { 1401 ARMCPU *cpu = env_archcpu(env); 1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1403 } 1404 } 1405 #endif 1406 1407 env->cp15.c14_pmevcntr_delta[counter] -= 1408 env->cp15.c14_pmevcntr[counter]; 1409 } 1410 } 1411 1412 void pmu_op_start(CPUARMState *env) 1413 { 1414 unsigned int i; 1415 pmccntr_op_start(env); 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 pmevcntr_op_start(env, i); 1418 } 1419 } 1420 1421 void pmu_op_finish(CPUARMState *env) 1422 { 1423 unsigned int i; 1424 pmccntr_op_finish(env); 1425 for (i = 0; i < pmu_num_counters(env); i++) { 1426 pmevcntr_op_finish(env, i); 1427 } 1428 } 1429 1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1431 { 1432 pmu_op_start(&cpu->env); 1433 } 1434 1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1436 { 1437 pmu_op_finish(&cpu->env); 1438 } 1439 1440 void arm_pmu_timer_cb(void *opaque) 1441 { 1442 ARMCPU *cpu = opaque; 1443 1444 /* 1445 * Update all the counter values based on the current underlying counts, 1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1448 * counter may expire. 1449 */ 1450 pmu_op_start(&cpu->env); 1451 pmu_op_finish(&cpu->env); 1452 } 1453 1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1455 uint64_t value) 1456 { 1457 pmu_op_start(env); 1458 1459 if (value & PMCRC) { 1460 /* The counter has been reset */ 1461 env->cp15.c15_ccnt = 0; 1462 } 1463 1464 if (value & PMCRP) { 1465 unsigned int i; 1466 for (i = 0; i < pmu_num_counters(env); i++) { 1467 env->cp15.c14_pmevcntr[i] = 0; 1468 } 1469 } 1470 1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1473 1474 pmu_op_finish(env); 1475 } 1476 1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1478 uint64_t value) 1479 { 1480 unsigned int i; 1481 uint64_t overflow_mask, new_pmswinc; 1482 1483 for (i = 0; i < pmu_num_counters(env); i++) { 1484 /* Increment a counter's count iff: */ 1485 if ((value & (1 << i)) && /* counter's bit is set */ 1486 /* counter is enabled and not filtered */ 1487 pmu_counter_enabled(env, i) && 1488 /* counter is SW_INCR */ 1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1490 pmevcntr_op_start(env, i); 1491 1492 /* 1493 * Detect if this write causes an overflow since we can't predict 1494 * PMSWINC overflows like we can for other events 1495 */ 1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1497 1498 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1499 1ULL << 63 : 1ULL << 31; 1500 1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1502 env->cp15.c9_pmovsr |= (1 << i); 1503 pmu_update_irq(env); 1504 } 1505 1506 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1507 1508 pmevcntr_op_finish(env, i); 1509 } 1510 } 1511 } 1512 1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1514 { 1515 uint64_t ret; 1516 pmccntr_op_start(env); 1517 ret = env->cp15.c15_ccnt; 1518 pmccntr_op_finish(env); 1519 return ret; 1520 } 1521 1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 /* 1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1529 * accessed. 1530 */ 1531 env->cp15.c9_pmselr = value & 0x1f; 1532 } 1533 1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1535 uint64_t value) 1536 { 1537 pmccntr_op_start(env); 1538 env->cp15.c15_ccnt = value; 1539 pmccntr_op_finish(env); 1540 } 1541 1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1543 uint64_t value) 1544 { 1545 uint64_t cur_val = pmccntr_read(env, NULL); 1546 1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1548 } 1549 1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1551 uint64_t value) 1552 { 1553 pmccntr_op_start(env); 1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1555 pmccntr_op_finish(env); 1556 } 1557 1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1559 uint64_t value) 1560 { 1561 pmccntr_op_start(env); 1562 /* M is not accessible from AArch32 */ 1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1564 (value & PMCCFILTR); 1565 pmccntr_op_finish(env); 1566 } 1567 1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1569 { 1570 /* M is not visible in AArch32 */ 1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1572 } 1573 1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1575 uint64_t value) 1576 { 1577 pmu_op_start(env); 1578 value &= pmu_counter_mask(env); 1579 env->cp15.c9_pmcnten |= value; 1580 pmu_op_finish(env); 1581 } 1582 1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1584 uint64_t value) 1585 { 1586 pmu_op_start(env); 1587 value &= pmu_counter_mask(env); 1588 env->cp15.c9_pmcnten &= ~value; 1589 pmu_op_finish(env); 1590 } 1591 1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1593 uint64_t value) 1594 { 1595 value &= pmu_counter_mask(env); 1596 env->cp15.c9_pmovsr &= ~value; 1597 pmu_update_irq(env); 1598 } 1599 1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1601 uint64_t value) 1602 { 1603 value &= pmu_counter_mask(env); 1604 env->cp15.c9_pmovsr |= value; 1605 pmu_update_irq(env); 1606 } 1607 1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1609 uint64_t value, const uint8_t counter) 1610 { 1611 if (counter == 31) { 1612 pmccfiltr_write(env, ri, value); 1613 } else if (counter < pmu_num_counters(env)) { 1614 pmevcntr_op_start(env, counter); 1615 1616 /* 1617 * If this counter's event type is changing, store the current 1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1619 * pmevcntr_op_finish has the correct baseline when it converts back to 1620 * a delta. 1621 */ 1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1623 PMXEVTYPER_EVTCOUNT; 1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1625 if (old_event != new_event) { 1626 uint64_t count = 0; 1627 if (event_supported(new_event)) { 1628 uint16_t event_idx = supported_event_map[new_event]; 1629 count = pm_events[event_idx].get_count(env); 1630 } 1631 env->cp15.c14_pmevcntr_delta[counter] = count; 1632 } 1633 1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1635 pmevcntr_op_finish(env, counter); 1636 } 1637 /* 1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1639 * PMSELR value is equal to or greater than the number of implemented 1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1641 */ 1642 } 1643 1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1645 const uint8_t counter) 1646 { 1647 if (counter == 31) { 1648 return env->cp15.pmccfiltr_el0; 1649 } else if (counter < pmu_num_counters(env)) { 1650 return env->cp15.c14_pmevtyper[counter]; 1651 } else { 1652 /* 1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1655 */ 1656 return 0; 1657 } 1658 } 1659 1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint64_t value) 1662 { 1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1664 pmevtyper_write(env, ri, value, counter); 1665 } 1666 1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value) 1669 { 1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1671 env->cp15.c14_pmevtyper[counter] = value; 1672 1673 /* 1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1675 * pmu_op_finish calls when loading saved state for a migration. Because 1676 * we're potentially updating the type of event here, the value written to 1677 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1678 * different counter type. Therefore, we need to set this value to the 1679 * current count for the counter type we're writing so that pmu_op_finish 1680 * has the correct count for its calculation. 1681 */ 1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1683 if (event_supported(event)) { 1684 uint16_t event_idx = supported_event_map[event]; 1685 env->cp15.c14_pmevcntr_delta[counter] = 1686 pm_events[event_idx].get_count(env); 1687 } 1688 } 1689 1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 return pmevtyper_read(env, ri, counter); 1694 } 1695 1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1697 uint64_t value) 1698 { 1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1700 } 1701 1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1703 { 1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1705 } 1706 1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1708 uint64_t value, uint8_t counter) 1709 { 1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1712 value &= MAKE_64BIT_MASK(0, 32); 1713 } 1714 if (counter < pmu_num_counters(env)) { 1715 pmevcntr_op_start(env, counter); 1716 env->cp15.c14_pmevcntr[counter] = value; 1717 pmevcntr_op_finish(env, counter); 1718 } 1719 /* 1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1721 * are CONSTRAINED UNPREDICTABLE. 1722 */ 1723 } 1724 1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint8_t counter) 1727 { 1728 if (counter < pmu_num_counters(env)) { 1729 uint64_t ret; 1730 pmevcntr_op_start(env, counter); 1731 ret = env->cp15.c14_pmevcntr[counter]; 1732 pmevcntr_op_finish(env, counter); 1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1735 ret &= MAKE_64BIT_MASK(0, 32); 1736 } 1737 return ret; 1738 } else { 1739 /* 1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1741 * are CONSTRAINED UNPREDICTABLE. 1742 */ 1743 return 0; 1744 } 1745 } 1746 1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1748 uint64_t value) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 pmevcntr_write(env, ri, value, counter); 1752 } 1753 1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1755 { 1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1757 return pmevcntr_read(env, ri, counter); 1758 } 1759 1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1764 assert(counter < pmu_num_counters(env)); 1765 env->cp15.c14_pmevcntr[counter] = value; 1766 pmevcntr_write(env, ri, value, counter); 1767 } 1768 1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1770 { 1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1772 assert(counter < pmu_num_counters(env)); 1773 return env->cp15.c14_pmevcntr[counter]; 1774 } 1775 1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1777 uint64_t value) 1778 { 1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1780 } 1781 1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1783 { 1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1785 } 1786 1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 if (arm_feature(env, ARM_FEATURE_V8)) { 1791 env->cp15.c9_pmuserenr = value & 0xf; 1792 } else { 1793 env->cp15.c9_pmuserenr = value & 1; 1794 } 1795 } 1796 1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1798 uint64_t value) 1799 { 1800 /* We have no event counters so only the C bit can be changed */ 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pminten |= value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pminten &= ~value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 /* 1818 * Note that even though the AArch64 view of this register has bits 1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1820 * architectural requirements for bits which are RES0 only in some 1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1823 */ 1824 raw_write(env, ri, value & ~0x1FULL); 1825 } 1826 1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1828 { 1829 /* Begin with base v8.0 state. */ 1830 uint64_t valid_mask = 0x3fff; 1831 ARMCPU *cpu = env_archcpu(env); 1832 uint64_t changed; 1833 1834 /* 1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1837 * Instead, choose the format based on the mode of EL3. 1838 */ 1839 if (arm_el_is_aa64(env, 3)) { 1840 value |= SCR_FW | SCR_AW; /* RES1 */ 1841 valid_mask &= ~SCR_NET; /* RES0 */ 1842 1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1845 value |= SCR_RW; /* RAO/WI */ 1846 } 1847 if (cpu_isar_feature(aa64_ras, cpu)) { 1848 valid_mask |= SCR_TERR; 1849 } 1850 if (cpu_isar_feature(aa64_lor, cpu)) { 1851 valid_mask |= SCR_TLOR; 1852 } 1853 if (cpu_isar_feature(aa64_pauth, cpu)) { 1854 valid_mask |= SCR_API | SCR_APK; 1855 } 1856 if (cpu_isar_feature(aa64_sel2, cpu)) { 1857 valid_mask |= SCR_EEL2; 1858 } 1859 if (cpu_isar_feature(aa64_mte, cpu)) { 1860 valid_mask |= SCR_ATA; 1861 } 1862 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1863 valid_mask |= SCR_ENSCXT; 1864 } 1865 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1866 valid_mask |= SCR_EASE | SCR_NMEA; 1867 } 1868 if (cpu_isar_feature(aa64_sme, cpu)) { 1869 valid_mask |= SCR_ENTP2; 1870 } 1871 if (cpu_isar_feature(aa64_hcx, cpu)) { 1872 valid_mask |= SCR_HXEN; 1873 } 1874 if (cpu_isar_feature(aa64_fgt, cpu)) { 1875 valid_mask |= SCR_FGTEN; 1876 } 1877 } else { 1878 valid_mask &= ~(SCR_RW | SCR_ST); 1879 if (cpu_isar_feature(aa32_ras, cpu)) { 1880 valid_mask |= SCR_TERR; 1881 } 1882 } 1883 1884 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1885 valid_mask &= ~SCR_HCE; 1886 1887 /* 1888 * On ARMv7, SMD (or SCD as it is called in v7) is only 1889 * supported if EL2 exists. The bit is UNK/SBZP when 1890 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1891 * when EL2 is unavailable. 1892 * On ARMv8, this bit is always available. 1893 */ 1894 if (arm_feature(env, ARM_FEATURE_V7) && 1895 !arm_feature(env, ARM_FEATURE_V8)) { 1896 valid_mask &= ~SCR_SMD; 1897 } 1898 } 1899 1900 /* Clear all-context RES0 bits. */ 1901 value &= valid_mask; 1902 changed = env->cp15.scr_el3 ^ value; 1903 env->cp15.scr_el3 = value; 1904 1905 /* 1906 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then 1907 * we must invalidate all TLBs below EL3. 1908 */ 1909 if (changed & SCR_NS) { 1910 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1911 ARMMMUIdxBit_E20_0 | 1912 ARMMMUIdxBit_E10_1 | 1913 ARMMMUIdxBit_E20_2 | 1914 ARMMMUIdxBit_E10_1_PAN | 1915 ARMMMUIdxBit_E20_2_PAN | 1916 ARMMMUIdxBit_E2)); 1917 } 1918 } 1919 1920 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1921 { 1922 /* 1923 * scr_write will set the RES1 bits on an AArch64-only CPU. 1924 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1925 */ 1926 scr_write(env, ri, 0); 1927 } 1928 1929 static CPAccessResult access_tid4(CPUARMState *env, 1930 const ARMCPRegInfo *ri, 1931 bool isread) 1932 { 1933 if (arm_current_el(env) == 1 && 1934 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1935 return CP_ACCESS_TRAP_EL2; 1936 } 1937 1938 return CP_ACCESS_OK; 1939 } 1940 1941 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1942 { 1943 ARMCPU *cpu = env_archcpu(env); 1944 1945 /* 1946 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1947 * bank 1948 */ 1949 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1950 ri->secure & ARM_CP_SECSTATE_S); 1951 1952 return cpu->ccsidr[index]; 1953 } 1954 1955 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1956 uint64_t value) 1957 { 1958 raw_write(env, ri, value & 0xf); 1959 } 1960 1961 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1962 { 1963 CPUState *cs = env_cpu(env); 1964 bool el1 = arm_current_el(env) == 1; 1965 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1966 uint64_t ret = 0; 1967 1968 if (hcr_el2 & HCR_IMO) { 1969 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1970 ret |= CPSR_I; 1971 } 1972 } else { 1973 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1974 ret |= CPSR_I; 1975 } 1976 } 1977 1978 if (hcr_el2 & HCR_FMO) { 1979 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1980 ret |= CPSR_F; 1981 } 1982 } else { 1983 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1984 ret |= CPSR_F; 1985 } 1986 } 1987 1988 if (hcr_el2 & HCR_AMO) { 1989 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1990 ret |= CPSR_A; 1991 } 1992 } 1993 1994 return ret; 1995 } 1996 1997 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1998 bool isread) 1999 { 2000 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2001 return CP_ACCESS_TRAP_EL2; 2002 } 2003 2004 return CP_ACCESS_OK; 2005 } 2006 2007 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2008 bool isread) 2009 { 2010 if (arm_feature(env, ARM_FEATURE_V8)) { 2011 return access_aa64_tid1(env, ri, isread); 2012 } 2013 2014 return CP_ACCESS_OK; 2015 } 2016 2017 static const ARMCPRegInfo v7_cp_reginfo[] = { 2018 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2019 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2020 .access = PL1_W, .type = ARM_CP_NOP }, 2021 /* 2022 * Performance monitors are implementation defined in v7, 2023 * but with an ARM recommended set of registers, which we 2024 * follow. 2025 * 2026 * Performance registers fall into three categories: 2027 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2028 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2029 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2030 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2031 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2032 */ 2033 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2034 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2035 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2036 .writefn = pmcntenset_write, 2037 .accessfn = pmreg_access, 2038 .fgt = FGT_PMCNTEN, 2039 .raw_writefn = raw_write }, 2040 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2042 .access = PL0_RW, .accessfn = pmreg_access, 2043 .fgt = FGT_PMCNTEN, 2044 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2045 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2046 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2047 .access = PL0_RW, 2048 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2049 .accessfn = pmreg_access, 2050 .fgt = FGT_PMCNTEN, 2051 .writefn = pmcntenclr_write, 2052 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2053 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2054 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2055 .access = PL0_RW, .accessfn = pmreg_access, 2056 .fgt = FGT_PMCNTEN, 2057 .type = ARM_CP_ALIAS | ARM_CP_IO, 2058 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2059 .writefn = pmcntenclr_write }, 2060 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2061 .access = PL0_RW, .type = ARM_CP_IO, 2062 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2063 .accessfn = pmreg_access, 2064 .fgt = FGT_PMOVS, 2065 .writefn = pmovsr_write, 2066 .raw_writefn = raw_write }, 2067 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2068 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2069 .access = PL0_RW, .accessfn = pmreg_access, 2070 .fgt = FGT_PMOVS, 2071 .type = ARM_CP_ALIAS | ARM_CP_IO, 2072 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2073 .writefn = pmovsr_write, 2074 .raw_writefn = raw_write }, 2075 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2076 .access = PL0_W, .accessfn = pmreg_access_swinc, 2077 .fgt = FGT_PMSWINC_EL0, 2078 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2079 .writefn = pmswinc_write }, 2080 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2081 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2082 .access = PL0_W, .accessfn = pmreg_access_swinc, 2083 .fgt = FGT_PMSWINC_EL0, 2084 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2085 .writefn = pmswinc_write }, 2086 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2087 .access = PL0_RW, .type = ARM_CP_ALIAS, 2088 .fgt = FGT_PMSELR_EL0, 2089 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2090 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2091 .raw_writefn = raw_write}, 2092 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2093 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2094 .access = PL0_RW, .accessfn = pmreg_access_selr, 2095 .fgt = FGT_PMSELR_EL0, 2096 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2097 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2098 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2099 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2100 .fgt = FGT_PMCCNTR_EL0, 2101 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2102 .accessfn = pmreg_access_ccntr }, 2103 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2104 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2105 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2106 .fgt = FGT_PMCCNTR_EL0, 2107 .type = ARM_CP_IO, 2108 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2109 .readfn = pmccntr_read, .writefn = pmccntr_write, 2110 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2111 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2112 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2113 .access = PL0_RW, .accessfn = pmreg_access, 2114 .fgt = FGT_PMCCFILTR_EL0, 2115 .type = ARM_CP_ALIAS | ARM_CP_IO, 2116 .resetvalue = 0, }, 2117 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2118 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2119 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2120 .access = PL0_RW, .accessfn = pmreg_access, 2121 .fgt = FGT_PMCCFILTR_EL0, 2122 .type = ARM_CP_IO, 2123 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2124 .resetvalue = 0, }, 2125 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2126 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2127 .accessfn = pmreg_access, 2128 .fgt = FGT_PMEVTYPERN_EL0, 2129 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2130 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2131 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2133 .accessfn = pmreg_access, 2134 .fgt = FGT_PMEVTYPERN_EL0, 2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2136 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2137 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2138 .accessfn = pmreg_access_xevcntr, 2139 .fgt = FGT_PMEVCNTRN_EL0, 2140 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2141 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2142 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .accessfn = pmreg_access_xevcntr, 2145 .fgt = FGT_PMEVCNTRN_EL0, 2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2147 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2148 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2149 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2150 .resetvalue = 0, 2151 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2152 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2153 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2155 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2156 .resetvalue = 0, 2157 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2158 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2159 .access = PL1_RW, .accessfn = access_tpm, 2160 .fgt = FGT_PMINTEN, 2161 .type = ARM_CP_ALIAS | ARM_CP_IO, 2162 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2163 .resetvalue = 0, 2164 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2165 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2166 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2167 .access = PL1_RW, .accessfn = access_tpm, 2168 .fgt = FGT_PMINTEN, 2169 .type = ARM_CP_IO, 2170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2171 .writefn = pmintenset_write, .raw_writefn = raw_write, 2172 .resetvalue = 0x0 }, 2173 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2174 .access = PL1_RW, .accessfn = access_tpm, 2175 .fgt = FGT_PMINTEN, 2176 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2178 .writefn = pmintenclr_write, }, 2179 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2180 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2181 .access = PL1_RW, .accessfn = access_tpm, 2182 .fgt = FGT_PMINTEN, 2183 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2185 .writefn = pmintenclr_write }, 2186 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2187 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2188 .access = PL1_R, 2189 .accessfn = access_tid4, 2190 .fgt = FGT_CCSIDR_EL1, 2191 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2192 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2194 .access = PL1_RW, 2195 .accessfn = access_tid4, 2196 .fgt = FGT_CSSELR_EL1, 2197 .writefn = csselr_write, .resetvalue = 0, 2198 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2199 offsetof(CPUARMState, cp15.csselr_ns) } }, 2200 /* 2201 * Auxiliary ID register: this actually has an IMPDEF value but for now 2202 * just RAZ for all cores: 2203 */ 2204 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2205 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2206 .access = PL1_R, .type = ARM_CP_CONST, 2207 .accessfn = access_aa64_tid1, 2208 .fgt = FGT_AIDR_EL1, 2209 .resetvalue = 0 }, 2210 /* 2211 * Auxiliary fault status registers: these also are IMPDEF, and we 2212 * choose to RAZ/WI for all cores. 2213 */ 2214 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2215 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2216 .access = PL1_RW, .accessfn = access_tvm_trvm, 2217 .fgt = FGT_AFSR0_EL1, 2218 .type = ARM_CP_CONST, .resetvalue = 0 }, 2219 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2220 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2221 .access = PL1_RW, .accessfn = access_tvm_trvm, 2222 .fgt = FGT_AFSR1_EL1, 2223 .type = ARM_CP_CONST, .resetvalue = 0 }, 2224 /* 2225 * MAIR can just read-as-written because we don't implement caches 2226 * and so don't need to care about memory attributes. 2227 */ 2228 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2229 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2230 .access = PL1_RW, .accessfn = access_tvm_trvm, 2231 .fgt = FGT_MAIR_EL1, 2232 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2233 .resetvalue = 0 }, 2234 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2236 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2237 .resetvalue = 0 }, 2238 /* 2239 * For non-long-descriptor page tables these are PRRR and NMRR; 2240 * regardless they still act as reads-as-written for QEMU. 2241 */ 2242 /* 2243 * MAIR0/1 are defined separately from their 64-bit counterpart which 2244 * allows them to assign the correct fieldoffset based on the endianness 2245 * handled in the field definitions. 2246 */ 2247 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2248 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2249 .access = PL1_RW, .accessfn = access_tvm_trvm, 2250 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2251 offsetof(CPUARMState, cp15.mair0_ns) }, 2252 .resetfn = arm_cp_reset_ignore }, 2253 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2255 .access = PL1_RW, .accessfn = access_tvm_trvm, 2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2257 offsetof(CPUARMState, cp15.mair1_ns) }, 2258 .resetfn = arm_cp_reset_ignore }, 2259 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2260 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2261 .fgt = FGT_ISR_EL1, 2262 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2263 /* 32 bit ITLB invalidates */ 2264 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2265 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2266 .writefn = tlbiall_write }, 2267 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2268 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2269 .writefn = tlbimva_write }, 2270 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2272 .writefn = tlbiasid_write }, 2273 /* 32 bit DTLB invalidates */ 2274 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2276 .writefn = tlbiall_write }, 2277 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2279 .writefn = tlbimva_write }, 2280 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2282 .writefn = tlbiasid_write }, 2283 /* 32 bit TLB invalidates */ 2284 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2286 .writefn = tlbiall_write }, 2287 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2289 .writefn = tlbimva_write }, 2290 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2292 .writefn = tlbiasid_write }, 2293 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2295 .writefn = tlbimvaa_write }, 2296 }; 2297 2298 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2299 /* 32 bit TLB invalidates, Inner Shareable */ 2300 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2302 .writefn = tlbiall_is_write }, 2303 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2304 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2305 .writefn = tlbimva_is_write }, 2306 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2308 .writefn = tlbiasid_is_write }, 2309 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2311 .writefn = tlbimvaa_is_write }, 2312 }; 2313 2314 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2315 /* PMOVSSET is not implemented in v7 before v7ve */ 2316 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2317 .access = PL0_RW, .accessfn = pmreg_access, 2318 .fgt = FGT_PMOVS, 2319 .type = ARM_CP_ALIAS | ARM_CP_IO, 2320 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2321 .writefn = pmovsset_write, 2322 .raw_writefn = raw_write }, 2323 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2325 .access = PL0_RW, .accessfn = pmreg_access, 2326 .fgt = FGT_PMOVS, 2327 .type = ARM_CP_ALIAS | ARM_CP_IO, 2328 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2329 .writefn = pmovsset_write, 2330 .raw_writefn = raw_write }, 2331 }; 2332 2333 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2334 uint64_t value) 2335 { 2336 value &= 1; 2337 env->teecr = value; 2338 } 2339 2340 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2341 bool isread) 2342 { 2343 /* 2344 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2345 * at all, so we don't need to check whether we're v8A. 2346 */ 2347 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2348 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2349 return CP_ACCESS_TRAP_EL2; 2350 } 2351 return CP_ACCESS_OK; 2352 } 2353 2354 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2355 bool isread) 2356 { 2357 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2358 return CP_ACCESS_TRAP; 2359 } 2360 return teecr_access(env, ri, isread); 2361 } 2362 2363 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2364 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2365 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2366 .resetvalue = 0, 2367 .writefn = teecr_write, .accessfn = teecr_access }, 2368 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2369 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2370 .accessfn = teehbr_access, .resetvalue = 0 }, 2371 }; 2372 2373 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2374 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2375 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2376 .access = PL0_RW, 2377 .fgt = FGT_TPIDR_EL0, 2378 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2379 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2380 .access = PL0_RW, 2381 .fgt = FGT_TPIDR_EL0, 2382 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2383 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2384 .resetfn = arm_cp_reset_ignore }, 2385 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2386 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2387 .access = PL0_R | PL1_W, 2388 .fgt = FGT_TPIDRRO_EL0, 2389 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2390 .resetvalue = 0}, 2391 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2392 .access = PL0_R | PL1_W, 2393 .fgt = FGT_TPIDRRO_EL0, 2394 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2395 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2396 .resetfn = arm_cp_reset_ignore }, 2397 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2398 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2399 .access = PL1_RW, 2400 .fgt = FGT_TPIDR_EL1, 2401 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2402 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2403 .access = PL1_RW, 2404 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2405 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2406 .resetvalue = 0 }, 2407 }; 2408 2409 #ifndef CONFIG_USER_ONLY 2410 2411 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2412 bool isread) 2413 { 2414 /* 2415 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2416 * Writable only at the highest implemented exception level. 2417 */ 2418 int el = arm_current_el(env); 2419 uint64_t hcr; 2420 uint32_t cntkctl; 2421 2422 switch (el) { 2423 case 0: 2424 hcr = arm_hcr_el2_eff(env); 2425 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2426 cntkctl = env->cp15.cnthctl_el2; 2427 } else { 2428 cntkctl = env->cp15.c14_cntkctl; 2429 } 2430 if (!extract32(cntkctl, 0, 2)) { 2431 return CP_ACCESS_TRAP; 2432 } 2433 break; 2434 case 1: 2435 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2436 arm_is_secure_below_el3(env)) { 2437 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2438 return CP_ACCESS_TRAP_UNCATEGORIZED; 2439 } 2440 break; 2441 case 2: 2442 case 3: 2443 break; 2444 } 2445 2446 if (!isread && el < arm_highest_el(env)) { 2447 return CP_ACCESS_TRAP_UNCATEGORIZED; 2448 } 2449 2450 return CP_ACCESS_OK; 2451 } 2452 2453 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2454 bool isread) 2455 { 2456 unsigned int cur_el = arm_current_el(env); 2457 bool has_el2 = arm_is_el2_enabled(env); 2458 uint64_t hcr = arm_hcr_el2_eff(env); 2459 2460 switch (cur_el) { 2461 case 0: 2462 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2463 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2464 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2465 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2466 } 2467 2468 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2469 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2470 return CP_ACCESS_TRAP; 2471 } 2472 2473 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2474 if (hcr & HCR_E2H) { 2475 if (timeridx == GTIMER_PHYS && 2476 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2477 return CP_ACCESS_TRAP_EL2; 2478 } 2479 } else { 2480 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2481 if (has_el2 && timeridx == GTIMER_PHYS && 2482 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2483 return CP_ACCESS_TRAP_EL2; 2484 } 2485 } 2486 break; 2487 2488 case 1: 2489 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2490 if (has_el2 && timeridx == GTIMER_PHYS && 2491 (hcr & HCR_E2H 2492 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2493 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2494 return CP_ACCESS_TRAP_EL2; 2495 } 2496 break; 2497 } 2498 return CP_ACCESS_OK; 2499 } 2500 2501 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2502 bool isread) 2503 { 2504 unsigned int cur_el = arm_current_el(env); 2505 bool has_el2 = arm_is_el2_enabled(env); 2506 uint64_t hcr = arm_hcr_el2_eff(env); 2507 2508 switch (cur_el) { 2509 case 0: 2510 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2511 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2512 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2513 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2514 } 2515 2516 /* 2517 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2518 * EL0 if EL0[PV]TEN is zero. 2519 */ 2520 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2521 return CP_ACCESS_TRAP; 2522 } 2523 /* fall through */ 2524 2525 case 1: 2526 if (has_el2 && timeridx == GTIMER_PHYS) { 2527 if (hcr & HCR_E2H) { 2528 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2529 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2530 return CP_ACCESS_TRAP_EL2; 2531 } 2532 } else { 2533 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2534 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2535 return CP_ACCESS_TRAP_EL2; 2536 } 2537 } 2538 } 2539 break; 2540 } 2541 return CP_ACCESS_OK; 2542 } 2543 2544 static CPAccessResult gt_pct_access(CPUARMState *env, 2545 const ARMCPRegInfo *ri, 2546 bool isread) 2547 { 2548 return gt_counter_access(env, GTIMER_PHYS, isread); 2549 } 2550 2551 static CPAccessResult gt_vct_access(CPUARMState *env, 2552 const ARMCPRegInfo *ri, 2553 bool isread) 2554 { 2555 return gt_counter_access(env, GTIMER_VIRT, isread); 2556 } 2557 2558 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2559 bool isread) 2560 { 2561 return gt_timer_access(env, GTIMER_PHYS, isread); 2562 } 2563 2564 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2565 bool isread) 2566 { 2567 return gt_timer_access(env, GTIMER_VIRT, isread); 2568 } 2569 2570 static CPAccessResult gt_stimer_access(CPUARMState *env, 2571 const ARMCPRegInfo *ri, 2572 bool isread) 2573 { 2574 /* 2575 * The AArch64 register view of the secure physical timer is 2576 * always accessible from EL3, and configurably accessible from 2577 * Secure EL1. 2578 */ 2579 switch (arm_current_el(env)) { 2580 case 1: 2581 if (!arm_is_secure(env)) { 2582 return CP_ACCESS_TRAP; 2583 } 2584 if (!(env->cp15.scr_el3 & SCR_ST)) { 2585 return CP_ACCESS_TRAP_EL3; 2586 } 2587 return CP_ACCESS_OK; 2588 case 0: 2589 case 2: 2590 return CP_ACCESS_TRAP; 2591 case 3: 2592 return CP_ACCESS_OK; 2593 default: 2594 g_assert_not_reached(); 2595 } 2596 } 2597 2598 static uint64_t gt_get_countervalue(CPUARMState *env) 2599 { 2600 ARMCPU *cpu = env_archcpu(env); 2601 2602 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2603 } 2604 2605 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2606 { 2607 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2608 2609 if (gt->ctl & 1) { 2610 /* 2611 * Timer enabled: calculate and set current ISTATUS, irq, and 2612 * reset timer to when ISTATUS next has to change 2613 */ 2614 uint64_t offset = timeridx == GTIMER_VIRT ? 2615 cpu->env.cp15.cntvoff_el2 : 0; 2616 uint64_t count = gt_get_countervalue(&cpu->env); 2617 /* Note that this must be unsigned 64 bit arithmetic: */ 2618 int istatus = count - offset >= gt->cval; 2619 uint64_t nexttick; 2620 int irqstate; 2621 2622 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2623 2624 irqstate = (istatus && !(gt->ctl & 2)); 2625 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2626 2627 if (istatus) { 2628 /* Next transition is when count rolls back over to zero */ 2629 nexttick = UINT64_MAX; 2630 } else { 2631 /* Next transition is when we hit cval */ 2632 nexttick = gt->cval + offset; 2633 } 2634 /* 2635 * Note that the desired next expiry time might be beyond the 2636 * signed-64-bit range of a QEMUTimer -- in this case we just 2637 * set the timer for as far in the future as possible. When the 2638 * timer expires we will reset the timer for any remaining period. 2639 */ 2640 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2641 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2642 } else { 2643 timer_mod(cpu->gt_timer[timeridx], nexttick); 2644 } 2645 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2646 } else { 2647 /* Timer disabled: ISTATUS and timer output always clear */ 2648 gt->ctl &= ~4; 2649 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2650 timer_del(cpu->gt_timer[timeridx]); 2651 trace_arm_gt_recalc_disabled(timeridx); 2652 } 2653 } 2654 2655 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2656 int timeridx) 2657 { 2658 ARMCPU *cpu = env_archcpu(env); 2659 2660 timer_del(cpu->gt_timer[timeridx]); 2661 } 2662 2663 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2664 { 2665 return gt_get_countervalue(env); 2666 } 2667 2668 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2669 { 2670 uint64_t hcr; 2671 2672 switch (arm_current_el(env)) { 2673 case 2: 2674 hcr = arm_hcr_el2_eff(env); 2675 if (hcr & HCR_E2H) { 2676 return 0; 2677 } 2678 break; 2679 case 0: 2680 hcr = arm_hcr_el2_eff(env); 2681 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2682 return 0; 2683 } 2684 break; 2685 } 2686 2687 return env->cp15.cntvoff_el2; 2688 } 2689 2690 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2691 { 2692 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2693 } 2694 2695 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2696 int timeridx, 2697 uint64_t value) 2698 { 2699 trace_arm_gt_cval_write(timeridx, value); 2700 env->cp15.c14_timer[timeridx].cval = value; 2701 gt_recalc_timer(env_archcpu(env), timeridx); 2702 } 2703 2704 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2705 int timeridx) 2706 { 2707 uint64_t offset = 0; 2708 2709 switch (timeridx) { 2710 case GTIMER_VIRT: 2711 case GTIMER_HYPVIRT: 2712 offset = gt_virt_cnt_offset(env); 2713 break; 2714 } 2715 2716 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2717 (gt_get_countervalue(env) - offset)); 2718 } 2719 2720 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2721 int timeridx, 2722 uint64_t value) 2723 { 2724 uint64_t offset = 0; 2725 2726 switch (timeridx) { 2727 case GTIMER_VIRT: 2728 case GTIMER_HYPVIRT: 2729 offset = gt_virt_cnt_offset(env); 2730 break; 2731 } 2732 2733 trace_arm_gt_tval_write(timeridx, value); 2734 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2735 sextract64(value, 0, 32); 2736 gt_recalc_timer(env_archcpu(env), timeridx); 2737 } 2738 2739 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2740 int timeridx, 2741 uint64_t value) 2742 { 2743 ARMCPU *cpu = env_archcpu(env); 2744 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2745 2746 trace_arm_gt_ctl_write(timeridx, value); 2747 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2748 if ((oldval ^ value) & 1) { 2749 /* Enable toggled */ 2750 gt_recalc_timer(cpu, timeridx); 2751 } else if ((oldval ^ value) & 2) { 2752 /* 2753 * IMASK toggled: don't need to recalculate, 2754 * just set the interrupt line based on ISTATUS 2755 */ 2756 int irqstate = (oldval & 4) && !(value & 2); 2757 2758 trace_arm_gt_imask_toggle(timeridx, irqstate); 2759 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2760 } 2761 } 2762 2763 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2764 { 2765 gt_timer_reset(env, ri, GTIMER_PHYS); 2766 } 2767 2768 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2769 uint64_t value) 2770 { 2771 gt_cval_write(env, ri, GTIMER_PHYS, value); 2772 } 2773 2774 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2775 { 2776 return gt_tval_read(env, ri, GTIMER_PHYS); 2777 } 2778 2779 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2780 uint64_t value) 2781 { 2782 gt_tval_write(env, ri, GTIMER_PHYS, value); 2783 } 2784 2785 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2786 uint64_t value) 2787 { 2788 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2789 } 2790 2791 static int gt_phys_redir_timeridx(CPUARMState *env) 2792 { 2793 switch (arm_mmu_idx(env)) { 2794 case ARMMMUIdx_E20_0: 2795 case ARMMMUIdx_E20_2: 2796 case ARMMMUIdx_E20_2_PAN: 2797 return GTIMER_HYP; 2798 default: 2799 return GTIMER_PHYS; 2800 } 2801 } 2802 2803 static int gt_virt_redir_timeridx(CPUARMState *env) 2804 { 2805 switch (arm_mmu_idx(env)) { 2806 case ARMMMUIdx_E20_0: 2807 case ARMMMUIdx_E20_2: 2808 case ARMMMUIdx_E20_2_PAN: 2809 return GTIMER_HYPVIRT; 2810 default: 2811 return GTIMER_VIRT; 2812 } 2813 } 2814 2815 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2816 const ARMCPRegInfo *ri) 2817 { 2818 int timeridx = gt_phys_redir_timeridx(env); 2819 return env->cp15.c14_timer[timeridx].cval; 2820 } 2821 2822 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2823 uint64_t value) 2824 { 2825 int timeridx = gt_phys_redir_timeridx(env); 2826 gt_cval_write(env, ri, timeridx, value); 2827 } 2828 2829 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2830 const ARMCPRegInfo *ri) 2831 { 2832 int timeridx = gt_phys_redir_timeridx(env); 2833 return gt_tval_read(env, ri, timeridx); 2834 } 2835 2836 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2837 uint64_t value) 2838 { 2839 int timeridx = gt_phys_redir_timeridx(env); 2840 gt_tval_write(env, ri, timeridx, value); 2841 } 2842 2843 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2844 const ARMCPRegInfo *ri) 2845 { 2846 int timeridx = gt_phys_redir_timeridx(env); 2847 return env->cp15.c14_timer[timeridx].ctl; 2848 } 2849 2850 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2851 uint64_t value) 2852 { 2853 int timeridx = gt_phys_redir_timeridx(env); 2854 gt_ctl_write(env, ri, timeridx, value); 2855 } 2856 2857 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2858 { 2859 gt_timer_reset(env, ri, GTIMER_VIRT); 2860 } 2861 2862 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2863 uint64_t value) 2864 { 2865 gt_cval_write(env, ri, GTIMER_VIRT, value); 2866 } 2867 2868 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2869 { 2870 return gt_tval_read(env, ri, GTIMER_VIRT); 2871 } 2872 2873 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2874 uint64_t value) 2875 { 2876 gt_tval_write(env, ri, GTIMER_VIRT, value); 2877 } 2878 2879 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2880 uint64_t value) 2881 { 2882 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2883 } 2884 2885 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2886 uint64_t value) 2887 { 2888 ARMCPU *cpu = env_archcpu(env); 2889 2890 trace_arm_gt_cntvoff_write(value); 2891 raw_write(env, ri, value); 2892 gt_recalc_timer(cpu, GTIMER_VIRT); 2893 } 2894 2895 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2896 const ARMCPRegInfo *ri) 2897 { 2898 int timeridx = gt_virt_redir_timeridx(env); 2899 return env->cp15.c14_timer[timeridx].cval; 2900 } 2901 2902 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2903 uint64_t value) 2904 { 2905 int timeridx = gt_virt_redir_timeridx(env); 2906 gt_cval_write(env, ri, timeridx, value); 2907 } 2908 2909 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2910 const ARMCPRegInfo *ri) 2911 { 2912 int timeridx = gt_virt_redir_timeridx(env); 2913 return gt_tval_read(env, ri, timeridx); 2914 } 2915 2916 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2917 uint64_t value) 2918 { 2919 int timeridx = gt_virt_redir_timeridx(env); 2920 gt_tval_write(env, ri, timeridx, value); 2921 } 2922 2923 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2924 const ARMCPRegInfo *ri) 2925 { 2926 int timeridx = gt_virt_redir_timeridx(env); 2927 return env->cp15.c14_timer[timeridx].ctl; 2928 } 2929 2930 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2931 uint64_t value) 2932 { 2933 int timeridx = gt_virt_redir_timeridx(env); 2934 gt_ctl_write(env, ri, timeridx, value); 2935 } 2936 2937 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2938 { 2939 gt_timer_reset(env, ri, GTIMER_HYP); 2940 } 2941 2942 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2943 uint64_t value) 2944 { 2945 gt_cval_write(env, ri, GTIMER_HYP, value); 2946 } 2947 2948 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2949 { 2950 return gt_tval_read(env, ri, GTIMER_HYP); 2951 } 2952 2953 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2954 uint64_t value) 2955 { 2956 gt_tval_write(env, ri, GTIMER_HYP, value); 2957 } 2958 2959 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2960 uint64_t value) 2961 { 2962 gt_ctl_write(env, ri, GTIMER_HYP, value); 2963 } 2964 2965 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2966 { 2967 gt_timer_reset(env, ri, GTIMER_SEC); 2968 } 2969 2970 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2971 uint64_t value) 2972 { 2973 gt_cval_write(env, ri, GTIMER_SEC, value); 2974 } 2975 2976 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2977 { 2978 return gt_tval_read(env, ri, GTIMER_SEC); 2979 } 2980 2981 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2982 uint64_t value) 2983 { 2984 gt_tval_write(env, ri, GTIMER_SEC, value); 2985 } 2986 2987 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2988 uint64_t value) 2989 { 2990 gt_ctl_write(env, ri, GTIMER_SEC, value); 2991 } 2992 2993 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2994 { 2995 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2996 } 2997 2998 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2999 uint64_t value) 3000 { 3001 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3002 } 3003 3004 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3005 { 3006 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3007 } 3008 3009 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3010 uint64_t value) 3011 { 3012 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3013 } 3014 3015 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3016 uint64_t value) 3017 { 3018 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3019 } 3020 3021 void arm_gt_ptimer_cb(void *opaque) 3022 { 3023 ARMCPU *cpu = opaque; 3024 3025 gt_recalc_timer(cpu, GTIMER_PHYS); 3026 } 3027 3028 void arm_gt_vtimer_cb(void *opaque) 3029 { 3030 ARMCPU *cpu = opaque; 3031 3032 gt_recalc_timer(cpu, GTIMER_VIRT); 3033 } 3034 3035 void arm_gt_htimer_cb(void *opaque) 3036 { 3037 ARMCPU *cpu = opaque; 3038 3039 gt_recalc_timer(cpu, GTIMER_HYP); 3040 } 3041 3042 void arm_gt_stimer_cb(void *opaque) 3043 { 3044 ARMCPU *cpu = opaque; 3045 3046 gt_recalc_timer(cpu, GTIMER_SEC); 3047 } 3048 3049 void arm_gt_hvtimer_cb(void *opaque) 3050 { 3051 ARMCPU *cpu = opaque; 3052 3053 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3054 } 3055 3056 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3057 { 3058 ARMCPU *cpu = env_archcpu(env); 3059 3060 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3061 } 3062 3063 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3064 /* 3065 * Note that CNTFRQ is purely reads-as-written for the benefit 3066 * of software; writing it doesn't actually change the timer frequency. 3067 * Our reset value matches the fixed frequency we implement the timer at. 3068 */ 3069 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3070 .type = ARM_CP_ALIAS, 3071 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3072 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3073 }, 3074 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3075 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3076 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3077 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3078 .resetfn = arm_gt_cntfrq_reset, 3079 }, 3080 /* overall control: mostly access permissions */ 3081 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3082 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3083 .access = PL1_RW, 3084 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3085 .resetvalue = 0, 3086 }, 3087 /* per-timer control */ 3088 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3089 .secure = ARM_CP_SECSTATE_NS, 3090 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3091 .accessfn = gt_ptimer_access, 3092 .fieldoffset = offsetoflow32(CPUARMState, 3093 cp15.c14_timer[GTIMER_PHYS].ctl), 3094 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3095 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3096 }, 3097 { .name = "CNTP_CTL_S", 3098 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3099 .secure = ARM_CP_SECSTATE_S, 3100 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3101 .accessfn = gt_ptimer_access, 3102 .fieldoffset = offsetoflow32(CPUARMState, 3103 cp15.c14_timer[GTIMER_SEC].ctl), 3104 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3105 }, 3106 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3107 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3108 .type = ARM_CP_IO, .access = PL0_RW, 3109 .accessfn = gt_ptimer_access, 3110 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3111 .resetvalue = 0, 3112 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3113 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3114 }, 3115 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3116 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3117 .accessfn = gt_vtimer_access, 3118 .fieldoffset = offsetoflow32(CPUARMState, 3119 cp15.c14_timer[GTIMER_VIRT].ctl), 3120 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3121 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3122 }, 3123 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3125 .type = ARM_CP_IO, .access = PL0_RW, 3126 .accessfn = gt_vtimer_access, 3127 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3128 .resetvalue = 0, 3129 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3130 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3131 }, 3132 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3133 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3134 .secure = ARM_CP_SECSTATE_NS, 3135 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3136 .accessfn = gt_ptimer_access, 3137 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3138 }, 3139 { .name = "CNTP_TVAL_S", 3140 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3141 .secure = ARM_CP_SECSTATE_S, 3142 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3143 .accessfn = gt_ptimer_access, 3144 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3145 }, 3146 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3147 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3148 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3149 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3150 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3151 }, 3152 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3153 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3154 .accessfn = gt_vtimer_access, 3155 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3156 }, 3157 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3159 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3160 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3161 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3162 }, 3163 /* The counter itself */ 3164 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3165 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3166 .accessfn = gt_pct_access, 3167 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3168 }, 3169 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3170 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3171 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3172 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3173 }, 3174 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3175 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3176 .accessfn = gt_vct_access, 3177 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3178 }, 3179 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3180 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3181 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3182 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3183 }, 3184 /* Comparison value, indicating when the timer goes off */ 3185 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3186 .secure = ARM_CP_SECSTATE_NS, 3187 .access = PL0_RW, 3188 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3189 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3190 .accessfn = gt_ptimer_access, 3191 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3192 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3193 }, 3194 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3195 .secure = ARM_CP_SECSTATE_S, 3196 .access = PL0_RW, 3197 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3198 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3199 .accessfn = gt_ptimer_access, 3200 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3201 }, 3202 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3203 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3204 .access = PL0_RW, 3205 .type = ARM_CP_IO, 3206 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3207 .resetvalue = 0, .accessfn = gt_ptimer_access, 3208 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3209 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3210 }, 3211 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3212 .access = PL0_RW, 3213 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3214 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3215 .accessfn = gt_vtimer_access, 3216 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3217 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3218 }, 3219 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3220 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3221 .access = PL0_RW, 3222 .type = ARM_CP_IO, 3223 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3224 .resetvalue = 0, .accessfn = gt_vtimer_access, 3225 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3226 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3227 }, 3228 /* 3229 * Secure timer -- this is actually restricted to only EL3 3230 * and configurably Secure-EL1 via the accessfn. 3231 */ 3232 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3233 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3235 .accessfn = gt_stimer_access, 3236 .readfn = gt_sec_tval_read, 3237 .writefn = gt_sec_tval_write, 3238 .resetfn = gt_sec_timer_reset, 3239 }, 3240 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3241 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3242 .type = ARM_CP_IO, .access = PL1_RW, 3243 .accessfn = gt_stimer_access, 3244 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3245 .resetvalue = 0, 3246 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3247 }, 3248 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3249 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3250 .type = ARM_CP_IO, .access = PL1_RW, 3251 .accessfn = gt_stimer_access, 3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3253 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3254 }, 3255 }; 3256 3257 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3258 bool isread) 3259 { 3260 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3261 return CP_ACCESS_TRAP; 3262 } 3263 return CP_ACCESS_OK; 3264 } 3265 3266 #else 3267 3268 /* 3269 * In user-mode most of the generic timer registers are inaccessible 3270 * however modern kernels (4.12+) allow access to cntvct_el0 3271 */ 3272 3273 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3274 { 3275 ARMCPU *cpu = env_archcpu(env); 3276 3277 /* 3278 * Currently we have no support for QEMUTimer in linux-user so we 3279 * can't call gt_get_countervalue(env), instead we directly 3280 * call the lower level functions. 3281 */ 3282 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3283 } 3284 3285 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3286 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3287 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3288 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3289 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3290 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3291 }, 3292 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3293 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3294 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3295 .readfn = gt_virt_cnt_read, 3296 }, 3297 }; 3298 3299 #endif 3300 3301 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3302 { 3303 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3304 raw_write(env, ri, value); 3305 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3306 raw_write(env, ri, value & 0xfffff6ff); 3307 } else { 3308 raw_write(env, ri, value & 0xfffff1ff); 3309 } 3310 } 3311 3312 #ifndef CONFIG_USER_ONLY 3313 /* get_phys_addr() isn't present for user-mode-only targets */ 3314 3315 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3316 bool isread) 3317 { 3318 if (ri->opc2 & 4) { 3319 /* 3320 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3321 * Secure EL1 (which can only happen if EL3 is AArch64). 3322 * They are simply UNDEF if executed from NS EL1. 3323 * They function normally from EL2 or EL3. 3324 */ 3325 if (arm_current_el(env) == 1) { 3326 if (arm_is_secure_below_el3(env)) { 3327 if (env->cp15.scr_el3 & SCR_EEL2) { 3328 return CP_ACCESS_TRAP_EL2; 3329 } 3330 return CP_ACCESS_TRAP_EL3; 3331 } 3332 return CP_ACCESS_TRAP_UNCATEGORIZED; 3333 } 3334 } 3335 return CP_ACCESS_OK; 3336 } 3337 3338 #ifdef CONFIG_TCG 3339 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3340 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3341 bool is_secure) 3342 { 3343 bool ret; 3344 uint64_t par64; 3345 bool format64 = false; 3346 ARMMMUFaultInfo fi = {}; 3347 GetPhysAddrResult res = {}; 3348 3349 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3350 is_secure, &res, &fi); 3351 3352 /* 3353 * ATS operations only do S1 or S1+S2 translations, so we never 3354 * have to deal with the ARMCacheAttrs format for S2 only. 3355 */ 3356 assert(!res.cacheattrs.is_s2_format); 3357 3358 if (ret) { 3359 /* 3360 * Some kinds of translation fault must cause exceptions rather 3361 * than being reported in the PAR. 3362 */ 3363 int current_el = arm_current_el(env); 3364 int target_el; 3365 uint32_t syn, fsr, fsc; 3366 bool take_exc = false; 3367 3368 if (fi.s1ptw && current_el == 1 3369 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3370 /* 3371 * Synchronous stage 2 fault on an access made as part of the 3372 * translation table walk for AT S1E0* or AT S1E1* insn 3373 * executed from NS EL1. If this is a synchronous external abort 3374 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3375 * to EL3. Otherwise the fault is taken as an exception to EL2, 3376 * and HPFAR_EL2 holds the faulting IPA. 3377 */ 3378 if (fi.type == ARMFault_SyncExternalOnWalk && 3379 (env->cp15.scr_el3 & SCR_EA)) { 3380 target_el = 3; 3381 } else { 3382 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3383 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3384 env->cp15.hpfar_el2 |= HPFAR_NS; 3385 } 3386 target_el = 2; 3387 } 3388 take_exc = true; 3389 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3390 /* 3391 * Synchronous external aborts during a translation table walk 3392 * are taken as Data Abort exceptions. 3393 */ 3394 if (fi.stage2) { 3395 if (current_el == 3) { 3396 target_el = 3; 3397 } else { 3398 target_el = 2; 3399 } 3400 } else { 3401 target_el = exception_target_el(env); 3402 } 3403 take_exc = true; 3404 } 3405 3406 if (take_exc) { 3407 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3408 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3409 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3410 fsr = arm_fi_to_lfsc(&fi); 3411 fsc = extract32(fsr, 0, 6); 3412 } else { 3413 fsr = arm_fi_to_sfsc(&fi); 3414 fsc = 0x3f; 3415 } 3416 /* 3417 * Report exception with ESR indicating a fault due to a 3418 * translation table walk for a cache maintenance instruction. 3419 */ 3420 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3421 fi.ea, 1, fi.s1ptw, 1, fsc); 3422 env->exception.vaddress = value; 3423 env->exception.fsr = fsr; 3424 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3425 } 3426 } 3427 3428 if (is_a64(env)) { 3429 format64 = true; 3430 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3431 /* 3432 * ATS1Cxx: 3433 * * TTBCR.EAE determines whether the result is returned using the 3434 * 32-bit or the 64-bit PAR format 3435 * * Instructions executed in Hyp mode always use the 64bit format 3436 * 3437 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3438 * * The Non-secure TTBCR.EAE bit is set to 1 3439 * * The implementation includes EL2, and the value of HCR.VM is 1 3440 * 3441 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3442 * 3443 * ATS1Hx always uses the 64bit format. 3444 */ 3445 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3446 3447 if (arm_feature(env, ARM_FEATURE_EL2)) { 3448 if (mmu_idx == ARMMMUIdx_E10_0 || 3449 mmu_idx == ARMMMUIdx_E10_1 || 3450 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3451 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3452 } else { 3453 format64 |= arm_current_el(env) == 2; 3454 } 3455 } 3456 } 3457 3458 if (format64) { 3459 /* Create a 64-bit PAR */ 3460 par64 = (1 << 11); /* LPAE bit always set */ 3461 if (!ret) { 3462 par64 |= res.f.phys_addr & ~0xfffULL; 3463 if (!res.f.attrs.secure) { 3464 par64 |= (1 << 9); /* NS */ 3465 } 3466 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3467 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3468 } else { 3469 uint32_t fsr = arm_fi_to_lfsc(&fi); 3470 3471 par64 |= 1; /* F */ 3472 par64 |= (fsr & 0x3f) << 1; /* FS */ 3473 if (fi.stage2) { 3474 par64 |= (1 << 9); /* S */ 3475 } 3476 if (fi.s1ptw) { 3477 par64 |= (1 << 8); /* PTW */ 3478 } 3479 } 3480 } else { 3481 /* 3482 * fsr is a DFSR/IFSR value for the short descriptor 3483 * translation table format (with WnR always clear). 3484 * Convert it to a 32-bit PAR. 3485 */ 3486 if (!ret) { 3487 /* We do not set any attribute bits in the PAR */ 3488 if (res.f.lg_page_size == 24 3489 && arm_feature(env, ARM_FEATURE_V7)) { 3490 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3491 } else { 3492 par64 = res.f.phys_addr & 0xfffff000; 3493 } 3494 if (!res.f.attrs.secure) { 3495 par64 |= (1 << 9); /* NS */ 3496 } 3497 } else { 3498 uint32_t fsr = arm_fi_to_sfsc(&fi); 3499 3500 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3501 ((fsr & 0xf) << 1) | 1; 3502 } 3503 } 3504 return par64; 3505 } 3506 #endif /* CONFIG_TCG */ 3507 3508 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3509 { 3510 #ifdef CONFIG_TCG 3511 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3512 uint64_t par64; 3513 ARMMMUIdx mmu_idx; 3514 int el = arm_current_el(env); 3515 bool secure = arm_is_secure_below_el3(env); 3516 3517 switch (ri->opc2 & 6) { 3518 case 0: 3519 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3520 switch (el) { 3521 case 3: 3522 mmu_idx = ARMMMUIdx_E3; 3523 secure = true; 3524 break; 3525 case 2: 3526 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3527 /* fall through */ 3528 case 1: 3529 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3530 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3531 } else { 3532 mmu_idx = ARMMMUIdx_Stage1_E1; 3533 } 3534 break; 3535 default: 3536 g_assert_not_reached(); 3537 } 3538 break; 3539 case 2: 3540 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3541 switch (el) { 3542 case 3: 3543 mmu_idx = ARMMMUIdx_E10_0; 3544 secure = true; 3545 break; 3546 case 2: 3547 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3548 mmu_idx = ARMMMUIdx_Stage1_E0; 3549 break; 3550 case 1: 3551 mmu_idx = ARMMMUIdx_Stage1_E0; 3552 break; 3553 default: 3554 g_assert_not_reached(); 3555 } 3556 break; 3557 case 4: 3558 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3559 mmu_idx = ARMMMUIdx_E10_1; 3560 secure = false; 3561 break; 3562 case 6: 3563 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3564 mmu_idx = ARMMMUIdx_E10_0; 3565 secure = false; 3566 break; 3567 default: 3568 g_assert_not_reached(); 3569 } 3570 3571 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3572 3573 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3574 #else 3575 /* Handled by hardware accelerator. */ 3576 g_assert_not_reached(); 3577 #endif /* CONFIG_TCG */ 3578 } 3579 3580 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3581 uint64_t value) 3582 { 3583 #ifdef CONFIG_TCG 3584 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3585 uint64_t par64; 3586 3587 /* There is no SecureEL2 for AArch32. */ 3588 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3589 3590 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3591 #else 3592 /* Handled by hardware accelerator. */ 3593 g_assert_not_reached(); 3594 #endif /* CONFIG_TCG */ 3595 } 3596 3597 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3598 bool isread) 3599 { 3600 if (arm_current_el(env) == 3 && 3601 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3602 return CP_ACCESS_TRAP; 3603 } 3604 return CP_ACCESS_OK; 3605 } 3606 3607 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3608 uint64_t value) 3609 { 3610 #ifdef CONFIG_TCG 3611 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3612 ARMMMUIdx mmu_idx; 3613 int secure = arm_is_secure_below_el3(env); 3614 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3615 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3616 3617 switch (ri->opc2 & 6) { 3618 case 0: 3619 switch (ri->opc1) { 3620 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3621 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3622 mmu_idx = regime_e20 ? 3623 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3624 } else { 3625 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3626 } 3627 break; 3628 case 4: /* AT S1E2R, AT S1E2W */ 3629 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3630 break; 3631 case 6: /* AT S1E3R, AT S1E3W */ 3632 mmu_idx = ARMMMUIdx_E3; 3633 secure = true; 3634 break; 3635 default: 3636 g_assert_not_reached(); 3637 } 3638 break; 3639 case 2: /* AT S1E0R, AT S1E0W */ 3640 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3641 break; 3642 case 4: /* AT S12E1R, AT S12E1W */ 3643 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3644 break; 3645 case 6: /* AT S12E0R, AT S12E0W */ 3646 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3647 break; 3648 default: 3649 g_assert_not_reached(); 3650 } 3651 3652 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3653 mmu_idx, secure); 3654 #else 3655 /* Handled by hardware accelerator. */ 3656 g_assert_not_reached(); 3657 #endif /* CONFIG_TCG */ 3658 } 3659 #endif 3660 3661 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3662 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3663 .access = PL1_RW, .resetvalue = 0, 3664 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3665 offsetoflow32(CPUARMState, cp15.par_ns) }, 3666 .writefn = par_write }, 3667 #ifndef CONFIG_USER_ONLY 3668 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3669 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3670 .access = PL1_W, .accessfn = ats_access, 3671 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3672 #endif 3673 }; 3674 3675 /* Return basic MPU access permission bits. */ 3676 static uint32_t simple_mpu_ap_bits(uint32_t val) 3677 { 3678 uint32_t ret; 3679 uint32_t mask; 3680 int i; 3681 ret = 0; 3682 mask = 3; 3683 for (i = 0; i < 16; i += 2) { 3684 ret |= (val >> i) & mask; 3685 mask <<= 2; 3686 } 3687 return ret; 3688 } 3689 3690 /* Pad basic MPU access permission bits to extended format. */ 3691 static uint32_t extended_mpu_ap_bits(uint32_t val) 3692 { 3693 uint32_t ret; 3694 uint32_t mask; 3695 int i; 3696 ret = 0; 3697 mask = 3; 3698 for (i = 0; i < 16; i += 2) { 3699 ret |= (val & mask) << i; 3700 mask <<= 2; 3701 } 3702 return ret; 3703 } 3704 3705 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3706 uint64_t value) 3707 { 3708 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3709 } 3710 3711 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3712 { 3713 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3714 } 3715 3716 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3717 uint64_t value) 3718 { 3719 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3720 } 3721 3722 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3723 { 3724 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3725 } 3726 3727 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3728 { 3729 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3730 3731 if (!u32p) { 3732 return 0; 3733 } 3734 3735 u32p += env->pmsav7.rnr[M_REG_NS]; 3736 return *u32p; 3737 } 3738 3739 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3740 uint64_t value) 3741 { 3742 ARMCPU *cpu = env_archcpu(env); 3743 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3744 3745 if (!u32p) { 3746 return; 3747 } 3748 3749 u32p += env->pmsav7.rnr[M_REG_NS]; 3750 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3751 *u32p = value; 3752 } 3753 3754 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3755 uint64_t value) 3756 { 3757 ARMCPU *cpu = env_archcpu(env); 3758 uint32_t nrgs = cpu->pmsav7_dregion; 3759 3760 if (value >= nrgs) { 3761 qemu_log_mask(LOG_GUEST_ERROR, 3762 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3763 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3764 return; 3765 } 3766 3767 raw_write(env, ri, value); 3768 } 3769 3770 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3771 uint64_t value) 3772 { 3773 ARMCPU *cpu = env_archcpu(env); 3774 3775 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3776 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3777 } 3778 3779 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3780 { 3781 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3782 } 3783 3784 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 ARMCPU *cpu = env_archcpu(env); 3788 3789 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3790 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3791 } 3792 3793 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3794 { 3795 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3796 } 3797 3798 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3799 uint64_t value) 3800 { 3801 ARMCPU *cpu = env_archcpu(env); 3802 3803 /* 3804 * Ignore writes that would select not implemented region. 3805 * This is architecturally UNPREDICTABLE. 3806 */ 3807 if (value >= cpu->pmsav7_dregion) { 3808 return; 3809 } 3810 3811 env->pmsav7.rnr[M_REG_NS] = value; 3812 } 3813 3814 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3815 uint64_t value) 3816 { 3817 ARMCPU *cpu = env_archcpu(env); 3818 3819 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3820 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3821 } 3822 3823 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3824 { 3825 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3826 } 3827 3828 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3829 uint64_t value) 3830 { 3831 ARMCPU *cpu = env_archcpu(env); 3832 3833 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3834 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3835 } 3836 3837 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3838 { 3839 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3840 } 3841 3842 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3843 uint64_t value) 3844 { 3845 uint32_t n; 3846 uint32_t bit; 3847 ARMCPU *cpu = env_archcpu(env); 3848 3849 /* Ignore writes to unimplemented regions */ 3850 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3851 value &= MAKE_64BIT_MASK(0, rmax); 3852 3853 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3854 3855 /* Register alias is only valid for first 32 indexes */ 3856 for (n = 0; n < rmax; ++n) { 3857 bit = extract32(value, n, 1); 3858 env->pmsav8.hprlar[n] = deposit32( 3859 env->pmsav8.hprlar[n], 0, 1, bit); 3860 } 3861 } 3862 3863 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3864 { 3865 uint32_t n; 3866 uint32_t result = 0x0; 3867 ARMCPU *cpu = env_archcpu(env); 3868 3869 /* Register alias is only valid for first 32 indexes */ 3870 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3871 if (env->pmsav8.hprlar[n] & 0x1) { 3872 result |= (0x1 << n); 3873 } 3874 } 3875 return result; 3876 } 3877 3878 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3879 uint64_t value) 3880 { 3881 ARMCPU *cpu = env_archcpu(env); 3882 3883 /* 3884 * Ignore writes that would select not implemented region. 3885 * This is architecturally UNPREDICTABLE. 3886 */ 3887 if (value >= cpu->pmsav8r_hdregion) { 3888 return; 3889 } 3890 3891 env->pmsav8.hprselr = value; 3892 } 3893 3894 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3895 uint64_t value) 3896 { 3897 ARMCPU *cpu = env_archcpu(env); 3898 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3899 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3900 3901 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3902 3903 if (ri->opc1 & 4) { 3904 if (index >= cpu->pmsav8r_hdregion) { 3905 return; 3906 } 3907 if (ri->opc2 & 0x1) { 3908 env->pmsav8.hprlar[index] = value; 3909 } else { 3910 env->pmsav8.hprbar[index] = value; 3911 } 3912 } else { 3913 if (index >= cpu->pmsav7_dregion) { 3914 return; 3915 } 3916 if (ri->opc2 & 0x1) { 3917 env->pmsav8.rlar[M_REG_NS][index] = value; 3918 } else { 3919 env->pmsav8.rbar[M_REG_NS][index] = value; 3920 } 3921 } 3922 } 3923 3924 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3925 { 3926 ARMCPU *cpu = env_archcpu(env); 3927 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3928 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3929 3930 if (ri->opc1 & 4) { 3931 if (index >= cpu->pmsav8r_hdregion) { 3932 return 0x0; 3933 } 3934 if (ri->opc2 & 0x1) { 3935 return env->pmsav8.hprlar[index]; 3936 } else { 3937 return env->pmsav8.hprbar[index]; 3938 } 3939 } else { 3940 if (index >= cpu->pmsav7_dregion) { 3941 return 0x0; 3942 } 3943 if (ri->opc2 & 0x1) { 3944 return env->pmsav8.rlar[M_REG_NS][index]; 3945 } else { 3946 return env->pmsav8.rbar[M_REG_NS][index]; 3947 } 3948 } 3949 } 3950 3951 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 3952 { .name = "PRBAR", 3953 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 3954 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3955 .accessfn = access_tvm_trvm, 3956 .readfn = prbar_read, .writefn = prbar_write }, 3957 { .name = "PRLAR", 3958 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 3959 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3960 .accessfn = access_tvm_trvm, 3961 .readfn = prlar_read, .writefn = prlar_write }, 3962 { .name = "PRSELR", .resetvalue = 0, 3963 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 3964 .access = PL1_RW, .accessfn = access_tvm_trvm, 3965 .writefn = prselr_write, 3966 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 3967 { .name = "HPRBAR", .resetvalue = 0, 3968 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 3969 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3970 .readfn = hprbar_read, .writefn = hprbar_write }, 3971 { .name = "HPRLAR", 3972 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 3973 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3974 .readfn = hprlar_read, .writefn = hprlar_write }, 3975 { .name = "HPRSELR", .resetvalue = 0, 3976 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 3977 .access = PL2_RW, 3978 .writefn = hprselr_write, 3979 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 3980 { .name = "HPRENR", 3981 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 3982 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3983 .readfn = hprenr_read, .writefn = hprenr_write }, 3984 }; 3985 3986 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3987 /* 3988 * Reset for all these registers is handled in arm_cpu_reset(), 3989 * because the PMSAv7 is also used by M-profile CPUs, which do 3990 * not register cpregs but still need the state to be reset. 3991 */ 3992 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3993 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3994 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3995 .readfn = pmsav7_read, .writefn = pmsav7_write, 3996 .resetfn = arm_cp_reset_ignore }, 3997 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3998 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3999 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4000 .readfn = pmsav7_read, .writefn = pmsav7_write, 4001 .resetfn = arm_cp_reset_ignore }, 4002 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4003 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4004 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4005 .readfn = pmsav7_read, .writefn = pmsav7_write, 4006 .resetfn = arm_cp_reset_ignore }, 4007 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4008 .access = PL1_RW, 4009 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4010 .writefn = pmsav7_rgnr_write, 4011 .resetfn = arm_cp_reset_ignore }, 4012 }; 4013 4014 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4015 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4016 .access = PL1_RW, .type = ARM_CP_ALIAS, 4017 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4018 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4019 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4020 .access = PL1_RW, .type = ARM_CP_ALIAS, 4021 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4022 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4023 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4024 .access = PL1_RW, 4025 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4026 .resetvalue = 0, }, 4027 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4028 .access = PL1_RW, 4029 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4030 .resetvalue = 0, }, 4031 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4032 .access = PL1_RW, 4033 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4034 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4035 .access = PL1_RW, 4036 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4037 /* Protection region base and size registers */ 4038 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4039 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4040 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4041 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4042 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4043 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4044 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4045 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4046 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4047 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4048 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4049 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4050 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4051 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4052 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4053 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4054 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4055 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4056 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4057 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4058 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4059 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4060 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4061 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4062 }; 4063 4064 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4065 uint64_t value) 4066 { 4067 ARMCPU *cpu = env_archcpu(env); 4068 4069 if (!arm_feature(env, ARM_FEATURE_V8)) { 4070 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4071 /* 4072 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4073 * using Long-descriptor translation table format 4074 */ 4075 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4076 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4077 /* 4078 * In an implementation that includes the Security Extensions 4079 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4080 * Short-descriptor translation table format. 4081 */ 4082 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4083 } else { 4084 value &= TTBCR_N; 4085 } 4086 } 4087 4088 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4089 /* 4090 * With LPAE the TTBCR could result in a change of ASID 4091 * via the TTBCR.A1 bit, so do a TLB flush. 4092 */ 4093 tlb_flush(CPU(cpu)); 4094 } 4095 raw_write(env, ri, value); 4096 } 4097 4098 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4099 uint64_t value) 4100 { 4101 ARMCPU *cpu = env_archcpu(env); 4102 4103 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4104 tlb_flush(CPU(cpu)); 4105 raw_write(env, ri, value); 4106 } 4107 4108 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4109 uint64_t value) 4110 { 4111 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4112 if (cpreg_field_is_64bit(ri) && 4113 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4114 ARMCPU *cpu = env_archcpu(env); 4115 tlb_flush(CPU(cpu)); 4116 } 4117 raw_write(env, ri, value); 4118 } 4119 4120 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4121 uint64_t value) 4122 { 4123 /* 4124 * If we are running with E2&0 regime, then an ASID is active. 4125 * Flush if that might be changing. Note we're not checking 4126 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4127 * holds the active ASID, only checking the field that might. 4128 */ 4129 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4130 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4131 uint16_t mask = ARMMMUIdxBit_E20_2 | 4132 ARMMMUIdxBit_E20_2_PAN | 4133 ARMMMUIdxBit_E20_0; 4134 tlb_flush_by_mmuidx(env_cpu(env), mask); 4135 } 4136 raw_write(env, ri, value); 4137 } 4138 4139 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4140 uint64_t value) 4141 { 4142 ARMCPU *cpu = env_archcpu(env); 4143 CPUState *cs = CPU(cpu); 4144 4145 /* 4146 * A change in VMID to the stage2 page table (Stage2) invalidates 4147 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4148 */ 4149 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4150 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4151 } 4152 raw_write(env, ri, value); 4153 } 4154 4155 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4156 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4157 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4158 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4159 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4160 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4161 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4162 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4163 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4164 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4165 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4166 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4167 offsetof(CPUARMState, cp15.dfar_ns) } }, 4168 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4169 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4170 .access = PL1_RW, .accessfn = access_tvm_trvm, 4171 .fgt = FGT_FAR_EL1, 4172 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4173 .resetvalue = 0, }, 4174 }; 4175 4176 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4177 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4178 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4179 .access = PL1_RW, .accessfn = access_tvm_trvm, 4180 .fgt = FGT_ESR_EL1, 4181 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4182 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4183 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4184 .access = PL1_RW, .accessfn = access_tvm_trvm, 4185 .fgt = FGT_TTBR0_EL1, 4186 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4187 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4188 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4189 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4190 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4191 .access = PL1_RW, .accessfn = access_tvm_trvm, 4192 .fgt = FGT_TTBR1_EL1, 4193 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4194 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4195 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4196 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4197 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4198 .access = PL1_RW, .accessfn = access_tvm_trvm, 4199 .fgt = FGT_TCR_EL1, 4200 .writefn = vmsa_tcr_el12_write, 4201 .raw_writefn = raw_write, 4202 .resetvalue = 0, 4203 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4204 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4205 .access = PL1_RW, .accessfn = access_tvm_trvm, 4206 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4207 .raw_writefn = raw_write, 4208 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4209 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4210 }; 4211 4212 /* 4213 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4214 * qemu tlbs nor adjusting cached masks. 4215 */ 4216 static const ARMCPRegInfo ttbcr2_reginfo = { 4217 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4218 .access = PL1_RW, .accessfn = access_tvm_trvm, 4219 .type = ARM_CP_ALIAS, 4220 .bank_fieldoffsets = { 4221 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4222 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4223 }, 4224 }; 4225 4226 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4227 uint64_t value) 4228 { 4229 env->cp15.c15_ticonfig = value & 0xe7; 4230 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4231 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4232 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4233 } 4234 4235 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4236 uint64_t value) 4237 { 4238 env->cp15.c15_threadid = value & 0xffff; 4239 } 4240 4241 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4242 uint64_t value) 4243 { 4244 /* Wait-for-interrupt (deprecated) */ 4245 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4246 } 4247 4248 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4249 uint64_t value) 4250 { 4251 /* 4252 * On OMAP there are registers indicating the max/min index of dcache lines 4253 * containing a dirty line; cache flush operations have to reset these. 4254 */ 4255 env->cp15.c15_i_max = 0x000; 4256 env->cp15.c15_i_min = 0xff0; 4257 } 4258 4259 static const ARMCPRegInfo omap_cp_reginfo[] = { 4260 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4261 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4262 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4263 .resetvalue = 0, }, 4264 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4265 .access = PL1_RW, .type = ARM_CP_NOP }, 4266 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4267 .access = PL1_RW, 4268 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4269 .writefn = omap_ticonfig_write }, 4270 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4271 .access = PL1_RW, 4272 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4273 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4274 .access = PL1_RW, .resetvalue = 0xff0, 4275 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4276 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4277 .access = PL1_RW, 4278 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4279 .writefn = omap_threadid_write }, 4280 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4281 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4282 .type = ARM_CP_NO_RAW, 4283 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4284 /* 4285 * TODO: Peripheral port remap register: 4286 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4287 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4288 * when MMU is off. 4289 */ 4290 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4291 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4292 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4293 .writefn = omap_cachemaint_write }, 4294 { .name = "C9", .cp = 15, .crn = 9, 4295 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4296 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4297 }; 4298 4299 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4300 uint64_t value) 4301 { 4302 env->cp15.c15_cpar = value & 0x3fff; 4303 } 4304 4305 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4306 { .name = "XSCALE_CPAR", 4307 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4308 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4309 .writefn = xscale_cpar_write, }, 4310 { .name = "XSCALE_AUXCR", 4311 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4312 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4313 .resetvalue = 0, }, 4314 /* 4315 * XScale specific cache-lockdown: since we have no cache we NOP these 4316 * and hope the guest does not really rely on cache behaviour. 4317 */ 4318 { .name = "XSCALE_LOCK_ICACHE_LINE", 4319 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4320 .access = PL1_W, .type = ARM_CP_NOP }, 4321 { .name = "XSCALE_UNLOCK_ICACHE", 4322 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4323 .access = PL1_W, .type = ARM_CP_NOP }, 4324 { .name = "XSCALE_DCACHE_LOCK", 4325 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4326 .access = PL1_RW, .type = ARM_CP_NOP }, 4327 { .name = "XSCALE_UNLOCK_DCACHE", 4328 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4329 .access = PL1_W, .type = ARM_CP_NOP }, 4330 }; 4331 4332 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4333 /* 4334 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4335 * implementation of this implementation-defined space. 4336 * Ideally this should eventually disappear in favour of actually 4337 * implementing the correct behaviour for all cores. 4338 */ 4339 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4340 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4341 .access = PL1_RW, 4342 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4343 .resetvalue = 0 }, 4344 }; 4345 4346 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4347 /* Cache status: RAZ because we have no cache so it's always clean */ 4348 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4349 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4350 .resetvalue = 0 }, 4351 }; 4352 4353 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4354 /* We never have a block transfer operation in progress */ 4355 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4356 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4357 .resetvalue = 0 }, 4358 /* The cache ops themselves: these all NOP for QEMU */ 4359 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4360 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4361 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4362 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4363 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4364 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4365 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4366 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4367 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4368 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4369 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4370 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4371 }; 4372 4373 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4374 /* 4375 * The cache test-and-clean instructions always return (1 << 30) 4376 * to indicate that there are no dirty cache lines. 4377 */ 4378 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4379 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4380 .resetvalue = (1 << 30) }, 4381 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4382 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4383 .resetvalue = (1 << 30) }, 4384 }; 4385 4386 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4387 /* Ignore ReadBuffer accesses */ 4388 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4389 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4390 .access = PL1_RW, .resetvalue = 0, 4391 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4392 }; 4393 4394 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4395 { 4396 unsigned int cur_el = arm_current_el(env); 4397 4398 if (arm_is_el2_enabled(env) && cur_el == 1) { 4399 return env->cp15.vpidr_el2; 4400 } 4401 return raw_read(env, ri); 4402 } 4403 4404 static uint64_t mpidr_read_val(CPUARMState *env) 4405 { 4406 ARMCPU *cpu = env_archcpu(env); 4407 uint64_t mpidr = cpu->mp_affinity; 4408 4409 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4410 mpidr |= (1U << 31); 4411 /* 4412 * Cores which are uniprocessor (non-coherent) 4413 * but still implement the MP extensions set 4414 * bit 30. (For instance, Cortex-R5). 4415 */ 4416 if (cpu->mp_is_up) { 4417 mpidr |= (1u << 30); 4418 } 4419 } 4420 return mpidr; 4421 } 4422 4423 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4424 { 4425 unsigned int cur_el = arm_current_el(env); 4426 4427 if (arm_is_el2_enabled(env) && cur_el == 1) { 4428 return env->cp15.vmpidr_el2; 4429 } 4430 return mpidr_read_val(env); 4431 } 4432 4433 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4434 /* NOP AMAIR0/1 */ 4435 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4436 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4437 .access = PL1_RW, .accessfn = access_tvm_trvm, 4438 .fgt = FGT_AMAIR_EL1, 4439 .type = ARM_CP_CONST, .resetvalue = 0 }, 4440 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4441 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4442 .access = PL1_RW, .accessfn = access_tvm_trvm, 4443 .type = ARM_CP_CONST, .resetvalue = 0 }, 4444 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4445 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4446 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4447 offsetof(CPUARMState, cp15.par_ns)} }, 4448 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4449 .access = PL1_RW, .accessfn = access_tvm_trvm, 4450 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4451 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4452 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4453 .writefn = vmsa_ttbr_write, }, 4454 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4455 .access = PL1_RW, .accessfn = access_tvm_trvm, 4456 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4457 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4458 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4459 .writefn = vmsa_ttbr_write, }, 4460 }; 4461 4462 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4463 { 4464 return vfp_get_fpcr(env); 4465 } 4466 4467 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4468 uint64_t value) 4469 { 4470 vfp_set_fpcr(env, value); 4471 } 4472 4473 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4474 { 4475 return vfp_get_fpsr(env); 4476 } 4477 4478 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4479 uint64_t value) 4480 { 4481 vfp_set_fpsr(env, value); 4482 } 4483 4484 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4485 bool isread) 4486 { 4487 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4488 return CP_ACCESS_TRAP; 4489 } 4490 return CP_ACCESS_OK; 4491 } 4492 4493 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4494 uint64_t value) 4495 { 4496 env->daif = value & PSTATE_DAIF; 4497 } 4498 4499 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4500 { 4501 return env->pstate & PSTATE_PAN; 4502 } 4503 4504 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4505 uint64_t value) 4506 { 4507 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4508 } 4509 4510 static const ARMCPRegInfo pan_reginfo = { 4511 .name = "PAN", .state = ARM_CP_STATE_AA64, 4512 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4513 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4514 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4515 }; 4516 4517 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4518 { 4519 return env->pstate & PSTATE_UAO; 4520 } 4521 4522 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4523 uint64_t value) 4524 { 4525 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4526 } 4527 4528 static const ARMCPRegInfo uao_reginfo = { 4529 .name = "UAO", .state = ARM_CP_STATE_AA64, 4530 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4531 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4532 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4533 }; 4534 4535 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4536 { 4537 return env->pstate & PSTATE_DIT; 4538 } 4539 4540 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4541 uint64_t value) 4542 { 4543 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4544 } 4545 4546 static const ARMCPRegInfo dit_reginfo = { 4547 .name = "DIT", .state = ARM_CP_STATE_AA64, 4548 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4549 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4550 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4551 }; 4552 4553 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4554 { 4555 return env->pstate & PSTATE_SSBS; 4556 } 4557 4558 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4559 uint64_t value) 4560 { 4561 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4562 } 4563 4564 static const ARMCPRegInfo ssbs_reginfo = { 4565 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4566 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4567 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4568 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4569 }; 4570 4571 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4572 const ARMCPRegInfo *ri, 4573 bool isread) 4574 { 4575 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4576 switch (arm_current_el(env)) { 4577 case 0: 4578 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4579 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4580 return CP_ACCESS_TRAP; 4581 } 4582 /* fall through */ 4583 case 1: 4584 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4585 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4586 return CP_ACCESS_TRAP_EL2; 4587 } 4588 break; 4589 } 4590 return CP_ACCESS_OK; 4591 } 4592 4593 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4594 { 4595 /* Cache invalidate/clean to Point of Unification... */ 4596 switch (arm_current_el(env)) { 4597 case 0: 4598 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4599 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4600 return CP_ACCESS_TRAP; 4601 } 4602 /* fall through */ 4603 case 1: 4604 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4605 if (arm_hcr_el2_eff(env) & hcrflags) { 4606 return CP_ACCESS_TRAP_EL2; 4607 } 4608 break; 4609 } 4610 return CP_ACCESS_OK; 4611 } 4612 4613 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4614 bool isread) 4615 { 4616 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4617 } 4618 4619 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4620 bool isread) 4621 { 4622 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4623 } 4624 4625 /* 4626 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4627 * Page D4-1736 (DDI0487A.b) 4628 */ 4629 4630 static int vae1_tlbmask(CPUARMState *env) 4631 { 4632 uint64_t hcr = arm_hcr_el2_eff(env); 4633 uint16_t mask; 4634 4635 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4636 mask = ARMMMUIdxBit_E20_2 | 4637 ARMMMUIdxBit_E20_2_PAN | 4638 ARMMMUIdxBit_E20_0; 4639 } else { 4640 mask = ARMMMUIdxBit_E10_1 | 4641 ARMMMUIdxBit_E10_1_PAN | 4642 ARMMMUIdxBit_E10_0; 4643 } 4644 return mask; 4645 } 4646 4647 /* Return 56 if TBI is enabled, 64 otherwise. */ 4648 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4649 uint64_t addr) 4650 { 4651 uint64_t tcr = regime_tcr(env, mmu_idx); 4652 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4653 int select = extract64(addr, 55, 1); 4654 4655 return (tbi >> select) & 1 ? 56 : 64; 4656 } 4657 4658 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4659 { 4660 uint64_t hcr = arm_hcr_el2_eff(env); 4661 ARMMMUIdx mmu_idx; 4662 4663 /* Only the regime of the mmu_idx below is significant. */ 4664 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4665 mmu_idx = ARMMMUIdx_E20_0; 4666 } else { 4667 mmu_idx = ARMMMUIdx_E10_0; 4668 } 4669 4670 return tlbbits_for_regime(env, mmu_idx, addr); 4671 } 4672 4673 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4674 uint64_t value) 4675 { 4676 CPUState *cs = env_cpu(env); 4677 int mask = vae1_tlbmask(env); 4678 4679 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4680 } 4681 4682 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4683 uint64_t value) 4684 { 4685 CPUState *cs = env_cpu(env); 4686 int mask = vae1_tlbmask(env); 4687 4688 if (tlb_force_broadcast(env)) { 4689 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4690 } else { 4691 tlb_flush_by_mmuidx(cs, mask); 4692 } 4693 } 4694 4695 static int e2_tlbmask(CPUARMState *env) 4696 { 4697 return (ARMMMUIdxBit_E20_0 | 4698 ARMMMUIdxBit_E20_2 | 4699 ARMMMUIdxBit_E20_2_PAN | 4700 ARMMMUIdxBit_E2); 4701 } 4702 4703 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4704 uint64_t value) 4705 { 4706 CPUState *cs = env_cpu(env); 4707 int mask = alle1_tlbmask(env); 4708 4709 tlb_flush_by_mmuidx(cs, mask); 4710 } 4711 4712 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4713 uint64_t value) 4714 { 4715 CPUState *cs = env_cpu(env); 4716 int mask = e2_tlbmask(env); 4717 4718 tlb_flush_by_mmuidx(cs, mask); 4719 } 4720 4721 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4722 uint64_t value) 4723 { 4724 ARMCPU *cpu = env_archcpu(env); 4725 CPUState *cs = CPU(cpu); 4726 4727 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4728 } 4729 4730 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4731 uint64_t value) 4732 { 4733 CPUState *cs = env_cpu(env); 4734 int mask = alle1_tlbmask(env); 4735 4736 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4737 } 4738 4739 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4740 uint64_t value) 4741 { 4742 CPUState *cs = env_cpu(env); 4743 int mask = e2_tlbmask(env); 4744 4745 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4746 } 4747 4748 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4749 uint64_t value) 4750 { 4751 CPUState *cs = env_cpu(env); 4752 4753 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4754 } 4755 4756 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4757 uint64_t value) 4758 { 4759 /* 4760 * Invalidate by VA, EL2 4761 * Currently handles both VAE2 and VALE2, since we don't support 4762 * flush-last-level-only. 4763 */ 4764 CPUState *cs = env_cpu(env); 4765 int mask = e2_tlbmask(env); 4766 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4767 4768 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4769 } 4770 4771 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4772 uint64_t value) 4773 { 4774 /* 4775 * Invalidate by VA, EL3 4776 * Currently handles both VAE3 and VALE3, since we don't support 4777 * flush-last-level-only. 4778 */ 4779 ARMCPU *cpu = env_archcpu(env); 4780 CPUState *cs = CPU(cpu); 4781 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4782 4783 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4784 } 4785 4786 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4787 uint64_t value) 4788 { 4789 CPUState *cs = env_cpu(env); 4790 int mask = vae1_tlbmask(env); 4791 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4792 int bits = vae1_tlbbits(env, pageaddr); 4793 4794 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4795 } 4796 4797 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4798 uint64_t value) 4799 { 4800 /* 4801 * Invalidate by VA, EL1&0 (AArch64 version). 4802 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4803 * since we don't support flush-for-specific-ASID-only or 4804 * flush-last-level-only. 4805 */ 4806 CPUState *cs = env_cpu(env); 4807 int mask = vae1_tlbmask(env); 4808 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4809 int bits = vae1_tlbbits(env, pageaddr); 4810 4811 if (tlb_force_broadcast(env)) { 4812 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4813 } else { 4814 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4815 } 4816 } 4817 4818 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4819 uint64_t value) 4820 { 4821 CPUState *cs = env_cpu(env); 4822 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4823 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4824 4825 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4826 ARMMMUIdxBit_E2, bits); 4827 } 4828 4829 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4830 uint64_t value) 4831 { 4832 CPUState *cs = env_cpu(env); 4833 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4834 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4835 4836 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4837 ARMMMUIdxBit_E3, bits); 4838 } 4839 4840 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4841 { 4842 /* 4843 * The MSB of value is the NS field, which only applies if SEL2 4844 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4845 */ 4846 return (value >= 0 4847 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4848 && arm_is_secure_below_el3(env) 4849 ? ARMMMUIdxBit_Stage2_S 4850 : ARMMMUIdxBit_Stage2); 4851 } 4852 4853 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4854 uint64_t value) 4855 { 4856 CPUState *cs = env_cpu(env); 4857 int mask = ipas2e1_tlbmask(env, value); 4858 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4859 4860 if (tlb_force_broadcast(env)) { 4861 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4862 } else { 4863 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4864 } 4865 } 4866 4867 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4868 uint64_t value) 4869 { 4870 CPUState *cs = env_cpu(env); 4871 int mask = ipas2e1_tlbmask(env, value); 4872 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4873 4874 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4875 } 4876 4877 #ifdef TARGET_AARCH64 4878 typedef struct { 4879 uint64_t base; 4880 uint64_t length; 4881 } TLBIRange; 4882 4883 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4884 { 4885 /* 4886 * Note that the TLBI range TG field encoding differs from both 4887 * TG0 and TG1 encodings. 4888 */ 4889 switch (tg) { 4890 case 1: 4891 return Gran4K; 4892 case 2: 4893 return Gran16K; 4894 case 3: 4895 return Gran64K; 4896 default: 4897 return GranInvalid; 4898 } 4899 } 4900 4901 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4902 uint64_t value) 4903 { 4904 unsigned int page_size_granule, page_shift, num, scale, exponent; 4905 /* Extract one bit to represent the va selector in use. */ 4906 uint64_t select = sextract64(value, 36, 1); 4907 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4908 TLBIRange ret = { }; 4909 ARMGranuleSize gran; 4910 4911 page_size_granule = extract64(value, 46, 2); 4912 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4913 4914 /* The granule encoded in value must match the granule in use. */ 4915 if (gran != param.gran) { 4916 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4917 page_size_granule); 4918 return ret; 4919 } 4920 4921 page_shift = arm_granule_bits(gran); 4922 num = extract64(value, 39, 5); 4923 scale = extract64(value, 44, 2); 4924 exponent = (5 * scale) + 1; 4925 4926 ret.length = (num + 1) << (exponent + page_shift); 4927 4928 if (param.select) { 4929 ret.base = sextract64(value, 0, 37); 4930 } else { 4931 ret.base = extract64(value, 0, 37); 4932 } 4933 if (param.ds) { 4934 /* 4935 * With DS=1, BaseADDR is always shifted 16 so that it is able 4936 * to address all 52 va bits. The input address is perforce 4937 * aligned on a 64k boundary regardless of translation granule. 4938 */ 4939 page_shift = 16; 4940 } 4941 ret.base <<= page_shift; 4942 4943 return ret; 4944 } 4945 4946 static void do_rvae_write(CPUARMState *env, uint64_t value, 4947 int idxmap, bool synced) 4948 { 4949 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4950 TLBIRange range; 4951 int bits; 4952 4953 range = tlbi_aa64_get_range(env, one_idx, value); 4954 bits = tlbbits_for_regime(env, one_idx, range.base); 4955 4956 if (synced) { 4957 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4958 range.base, 4959 range.length, 4960 idxmap, 4961 bits); 4962 } else { 4963 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4964 range.length, idxmap, bits); 4965 } 4966 } 4967 4968 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4969 const ARMCPRegInfo *ri, 4970 uint64_t value) 4971 { 4972 /* 4973 * Invalidate by VA range, EL1&0. 4974 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4975 * since we don't support flush-for-specific-ASID-only or 4976 * flush-last-level-only. 4977 */ 4978 4979 do_rvae_write(env, value, vae1_tlbmask(env), 4980 tlb_force_broadcast(env)); 4981 } 4982 4983 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4984 const ARMCPRegInfo *ri, 4985 uint64_t value) 4986 { 4987 /* 4988 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4989 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4990 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4991 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4992 * shareable specific flushes. 4993 */ 4994 4995 do_rvae_write(env, value, vae1_tlbmask(env), true); 4996 } 4997 4998 static int vae2_tlbmask(CPUARMState *env) 4999 { 5000 return ARMMMUIdxBit_E2; 5001 } 5002 5003 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5004 const ARMCPRegInfo *ri, 5005 uint64_t value) 5006 { 5007 /* 5008 * Invalidate by VA range, EL2. 5009 * Currently handles all of RVAE2 and RVALE2, 5010 * since we don't support flush-for-specific-ASID-only or 5011 * flush-last-level-only. 5012 */ 5013 5014 do_rvae_write(env, value, vae2_tlbmask(env), 5015 tlb_force_broadcast(env)); 5016 5017 5018 } 5019 5020 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5021 const ARMCPRegInfo *ri, 5022 uint64_t value) 5023 { 5024 /* 5025 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5026 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5027 * since we don't support flush-for-specific-ASID-only, 5028 * flush-last-level-only or inner/outer shareable specific flushes. 5029 */ 5030 5031 do_rvae_write(env, value, vae2_tlbmask(env), true); 5032 5033 } 5034 5035 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5036 const ARMCPRegInfo *ri, 5037 uint64_t value) 5038 { 5039 /* 5040 * Invalidate by VA range, EL3. 5041 * Currently handles all of RVAE3 and RVALE3, 5042 * since we don't support flush-for-specific-ASID-only or 5043 * flush-last-level-only. 5044 */ 5045 5046 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5047 } 5048 5049 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5050 const ARMCPRegInfo *ri, 5051 uint64_t value) 5052 { 5053 /* 5054 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5055 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5056 * since we don't support flush-for-specific-ASID-only, 5057 * flush-last-level-only or inner/outer specific flushes. 5058 */ 5059 5060 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5061 } 5062 5063 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5064 uint64_t value) 5065 { 5066 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5067 tlb_force_broadcast(env)); 5068 } 5069 5070 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5071 const ARMCPRegInfo *ri, 5072 uint64_t value) 5073 { 5074 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5075 } 5076 #endif 5077 5078 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5079 bool isread) 5080 { 5081 int cur_el = arm_current_el(env); 5082 5083 if (cur_el < 2) { 5084 uint64_t hcr = arm_hcr_el2_eff(env); 5085 5086 if (cur_el == 0) { 5087 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5088 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5089 return CP_ACCESS_TRAP_EL2; 5090 } 5091 } else { 5092 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5093 return CP_ACCESS_TRAP; 5094 } 5095 if (hcr & HCR_TDZ) { 5096 return CP_ACCESS_TRAP_EL2; 5097 } 5098 } 5099 } else if (hcr & HCR_TDZ) { 5100 return CP_ACCESS_TRAP_EL2; 5101 } 5102 } 5103 return CP_ACCESS_OK; 5104 } 5105 5106 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5107 { 5108 ARMCPU *cpu = env_archcpu(env); 5109 int dzp_bit = 1 << 4; 5110 5111 /* DZP indicates whether DC ZVA access is allowed */ 5112 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5113 dzp_bit = 0; 5114 } 5115 return cpu->dcz_blocksize | dzp_bit; 5116 } 5117 5118 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5119 bool isread) 5120 { 5121 if (!(env->pstate & PSTATE_SP)) { 5122 /* 5123 * Access to SP_EL0 is undefined if it's being used as 5124 * the stack pointer. 5125 */ 5126 return CP_ACCESS_TRAP_UNCATEGORIZED; 5127 } 5128 return CP_ACCESS_OK; 5129 } 5130 5131 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5132 { 5133 return env->pstate & PSTATE_SP; 5134 } 5135 5136 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5137 { 5138 update_spsel(env, val); 5139 } 5140 5141 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5142 uint64_t value) 5143 { 5144 ARMCPU *cpu = env_archcpu(env); 5145 5146 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5147 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5148 value &= ~SCTLR_M; 5149 } 5150 5151 /* ??? Lots of these bits are not implemented. */ 5152 5153 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5154 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5155 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5156 } else { 5157 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5158 SCTLR_ATA0 | SCTLR_ATA); 5159 } 5160 } 5161 5162 if (raw_read(env, ri) == value) { 5163 /* 5164 * Skip the TLB flush if nothing actually changed; Linux likes 5165 * to do a lot of pointless SCTLR writes. 5166 */ 5167 return; 5168 } 5169 5170 raw_write(env, ri, value); 5171 5172 /* This may enable/disable the MMU, so do a TLB flush. */ 5173 tlb_flush(CPU(cpu)); 5174 5175 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 5176 /* 5177 * Normally we would always end the TB on an SCTLR write; see the 5178 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5179 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5180 * of hflags from the translator, so do it here. 5181 */ 5182 arm_rebuild_hflags(env); 5183 } 5184 } 5185 5186 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5187 uint64_t value) 5188 { 5189 /* 5190 * Some MDCR_EL3 bits affect whether PMU counters are running: 5191 * if we are trying to change any of those then we must 5192 * bracket this update with PMU start/finish calls. 5193 */ 5194 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5195 5196 if (pmu_op) { 5197 pmu_op_start(env); 5198 } 5199 env->cp15.mdcr_el3 = value; 5200 if (pmu_op) { 5201 pmu_op_finish(env); 5202 } 5203 } 5204 5205 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5206 uint64_t value) 5207 { 5208 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5209 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5210 } 5211 5212 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5213 uint64_t value) 5214 { 5215 /* 5216 * Some MDCR_EL2 bits affect whether PMU counters are running: 5217 * if we are trying to change any of those then we must 5218 * bracket this update with PMU start/finish calls. 5219 */ 5220 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5221 5222 if (pmu_op) { 5223 pmu_op_start(env); 5224 } 5225 env->cp15.mdcr_el2 = value; 5226 if (pmu_op) { 5227 pmu_op_finish(env); 5228 } 5229 } 5230 5231 static const ARMCPRegInfo v8_cp_reginfo[] = { 5232 /* 5233 * Minimal set of EL0-visible registers. This will need to be expanded 5234 * significantly for system emulation of AArch64 CPUs. 5235 */ 5236 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5237 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5238 .access = PL0_RW, .type = ARM_CP_NZCV }, 5239 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5240 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5241 .type = ARM_CP_NO_RAW, 5242 .access = PL0_RW, .accessfn = aa64_daif_access, 5243 .fieldoffset = offsetof(CPUARMState, daif), 5244 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5245 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5246 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5247 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5248 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5249 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5250 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5251 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5252 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5253 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5254 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5255 .access = PL0_R, .type = ARM_CP_NO_RAW, 5256 .fgt = FGT_DCZID_EL0, 5257 .readfn = aa64_dczid_read }, 5258 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5259 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5260 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5261 #ifndef CONFIG_USER_ONLY 5262 /* Avoid overhead of an access check that always passes in user-mode */ 5263 .accessfn = aa64_zva_access, 5264 .fgt = FGT_DCZVA, 5265 #endif 5266 }, 5267 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5268 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5269 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5270 /* Cache ops: all NOPs since we don't emulate caches */ 5271 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5272 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5273 .access = PL1_W, .type = ARM_CP_NOP, 5274 .fgt = FGT_ICIALLUIS, 5275 .accessfn = access_ticab }, 5276 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5277 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5278 .access = PL1_W, .type = ARM_CP_NOP, 5279 .fgt = FGT_ICIALLU, 5280 .accessfn = access_tocu }, 5281 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5282 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5283 .access = PL0_W, .type = ARM_CP_NOP, 5284 .fgt = FGT_ICIVAU, 5285 .accessfn = access_tocu }, 5286 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5287 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5288 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5289 .fgt = FGT_DCIVAC, 5290 .type = ARM_CP_NOP }, 5291 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5292 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5293 .fgt = FGT_DCISW, 5294 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5295 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5296 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5297 .access = PL0_W, .type = ARM_CP_NOP, 5298 .fgt = FGT_DCCVAC, 5299 .accessfn = aa64_cacheop_poc_access }, 5300 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5301 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5302 .fgt = FGT_DCCSW, 5303 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5304 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5305 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5306 .access = PL0_W, .type = ARM_CP_NOP, 5307 .fgt = FGT_DCCVAU, 5308 .accessfn = access_tocu }, 5309 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5311 .access = PL0_W, .type = ARM_CP_NOP, 5312 .fgt = FGT_DCCIVAC, 5313 .accessfn = aa64_cacheop_poc_access }, 5314 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5315 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5316 .fgt = FGT_DCCISW, 5317 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5318 /* TLBI operations */ 5319 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5321 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5322 .fgt = FGT_TLBIVMALLE1IS, 5323 .writefn = tlbi_aa64_vmalle1is_write }, 5324 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5325 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5326 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5327 .fgt = FGT_TLBIVAE1IS, 5328 .writefn = tlbi_aa64_vae1is_write }, 5329 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5330 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5331 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5332 .fgt = FGT_TLBIASIDE1IS, 5333 .writefn = tlbi_aa64_vmalle1is_write }, 5334 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5335 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5336 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5337 .fgt = FGT_TLBIVAAE1IS, 5338 .writefn = tlbi_aa64_vae1is_write }, 5339 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5340 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5341 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5342 .fgt = FGT_TLBIVALE1IS, 5343 .writefn = tlbi_aa64_vae1is_write }, 5344 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5345 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5346 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5347 .fgt = FGT_TLBIVAALE1IS, 5348 .writefn = tlbi_aa64_vae1is_write }, 5349 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5350 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5351 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5352 .fgt = FGT_TLBIVMALLE1, 5353 .writefn = tlbi_aa64_vmalle1_write }, 5354 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5355 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5356 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5357 .fgt = FGT_TLBIVAE1, 5358 .writefn = tlbi_aa64_vae1_write }, 5359 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5361 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5362 .fgt = FGT_TLBIASIDE1, 5363 .writefn = tlbi_aa64_vmalle1_write }, 5364 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5365 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5366 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5367 .fgt = FGT_TLBIVAAE1, 5368 .writefn = tlbi_aa64_vae1_write }, 5369 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5370 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5371 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5372 .fgt = FGT_TLBIVALE1, 5373 .writefn = tlbi_aa64_vae1_write }, 5374 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5375 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5376 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5377 .fgt = FGT_TLBIVAALE1, 5378 .writefn = tlbi_aa64_vae1_write }, 5379 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5380 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5381 .access = PL2_W, .type = ARM_CP_NO_RAW, 5382 .writefn = tlbi_aa64_ipas2e1is_write }, 5383 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5384 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5385 .access = PL2_W, .type = ARM_CP_NO_RAW, 5386 .writefn = tlbi_aa64_ipas2e1is_write }, 5387 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5388 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5389 .access = PL2_W, .type = ARM_CP_NO_RAW, 5390 .writefn = tlbi_aa64_alle1is_write }, 5391 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5392 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5393 .access = PL2_W, .type = ARM_CP_NO_RAW, 5394 .writefn = tlbi_aa64_alle1is_write }, 5395 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5396 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5397 .access = PL2_W, .type = ARM_CP_NO_RAW, 5398 .writefn = tlbi_aa64_ipas2e1_write }, 5399 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5400 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5401 .access = PL2_W, .type = ARM_CP_NO_RAW, 5402 .writefn = tlbi_aa64_ipas2e1_write }, 5403 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5404 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5405 .access = PL2_W, .type = ARM_CP_NO_RAW, 5406 .writefn = tlbi_aa64_alle1_write }, 5407 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5408 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5409 .access = PL2_W, .type = ARM_CP_NO_RAW, 5410 .writefn = tlbi_aa64_alle1is_write }, 5411 #ifndef CONFIG_USER_ONLY 5412 /* 64 bit address translation operations */ 5413 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5414 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5415 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5416 .fgt = FGT_ATS1E1R, 5417 .writefn = ats_write64 }, 5418 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5419 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5420 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5421 .fgt = FGT_ATS1E1W, 5422 .writefn = ats_write64 }, 5423 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5424 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5425 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5426 .fgt = FGT_ATS1E0R, 5427 .writefn = ats_write64 }, 5428 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5429 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5430 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5431 .fgt = FGT_ATS1E0W, 5432 .writefn = ats_write64 }, 5433 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5434 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5435 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5436 .writefn = ats_write64 }, 5437 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5438 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5439 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5440 .writefn = ats_write64 }, 5441 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5442 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5443 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5444 .writefn = ats_write64 }, 5445 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5446 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5447 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5448 .writefn = ats_write64 }, 5449 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5450 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5451 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5452 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5453 .writefn = ats_write64 }, 5454 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5455 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5456 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5457 .writefn = ats_write64 }, 5458 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5459 .type = ARM_CP_ALIAS, 5460 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5461 .access = PL1_RW, .resetvalue = 0, 5462 .fgt = FGT_PAR_EL1, 5463 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5464 .writefn = par_write }, 5465 #endif 5466 /* TLB invalidate last level of translation table walk */ 5467 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5468 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5469 .writefn = tlbimva_is_write }, 5470 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5471 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5472 .writefn = tlbimvaa_is_write }, 5473 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5474 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5475 .writefn = tlbimva_write }, 5476 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5477 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5478 .writefn = tlbimvaa_write }, 5479 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5480 .type = ARM_CP_NO_RAW, .access = PL2_W, 5481 .writefn = tlbimva_hyp_write }, 5482 { .name = "TLBIMVALHIS", 5483 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5484 .type = ARM_CP_NO_RAW, .access = PL2_W, 5485 .writefn = tlbimva_hyp_is_write }, 5486 { .name = "TLBIIPAS2", 5487 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5488 .type = ARM_CP_NO_RAW, .access = PL2_W, 5489 .writefn = tlbiipas2_hyp_write }, 5490 { .name = "TLBIIPAS2IS", 5491 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5492 .type = ARM_CP_NO_RAW, .access = PL2_W, 5493 .writefn = tlbiipas2is_hyp_write }, 5494 { .name = "TLBIIPAS2L", 5495 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5496 .type = ARM_CP_NO_RAW, .access = PL2_W, 5497 .writefn = tlbiipas2_hyp_write }, 5498 { .name = "TLBIIPAS2LIS", 5499 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5500 .type = ARM_CP_NO_RAW, .access = PL2_W, 5501 .writefn = tlbiipas2is_hyp_write }, 5502 /* 32 bit cache operations */ 5503 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5504 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5505 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5506 .type = ARM_CP_NOP, .access = PL1_W }, 5507 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5508 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5509 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5510 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5511 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5512 .type = ARM_CP_NOP, .access = PL1_W }, 5513 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5514 .type = ARM_CP_NOP, .access = PL1_W }, 5515 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5516 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5517 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5518 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5519 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5520 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5521 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5522 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5523 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5524 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5525 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5526 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5527 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5528 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5529 /* MMU Domain access control / MPU write buffer control */ 5530 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5531 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5532 .writefn = dacr_write, .raw_writefn = raw_write, 5533 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5534 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5535 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5536 .type = ARM_CP_ALIAS, 5537 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5538 .access = PL1_RW, 5539 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5540 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5541 .type = ARM_CP_ALIAS, 5542 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5543 .access = PL1_RW, 5544 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5545 /* 5546 * We rely on the access checks not allowing the guest to write to the 5547 * state field when SPSel indicates that it's being used as the stack 5548 * pointer. 5549 */ 5550 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5551 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5552 .access = PL1_RW, .accessfn = sp_el0_access, 5553 .type = ARM_CP_ALIAS, 5554 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5555 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5556 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5557 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5558 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5559 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5560 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5561 .type = ARM_CP_NO_RAW, 5562 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5563 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5564 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5565 .access = PL2_RW, 5566 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5567 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5568 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5569 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5570 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5571 .writefn = dacr_write, .raw_writefn = raw_write, 5572 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5573 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5574 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5575 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5576 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5577 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5578 .type = ARM_CP_ALIAS, 5579 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5580 .access = PL2_RW, 5581 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5582 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5583 .type = ARM_CP_ALIAS, 5584 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5585 .access = PL2_RW, 5586 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5587 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5588 .type = ARM_CP_ALIAS, 5589 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5590 .access = PL2_RW, 5591 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5592 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5593 .type = ARM_CP_ALIAS, 5594 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5595 .access = PL2_RW, 5596 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5597 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5598 .type = ARM_CP_IO, 5599 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5600 .resetvalue = 0, 5601 .access = PL3_RW, 5602 .writefn = mdcr_el3_write, 5603 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5604 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5605 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5606 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5607 .writefn = sdcr_write, 5608 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5609 }; 5610 5611 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5612 { 5613 ARMCPU *cpu = env_archcpu(env); 5614 5615 if (arm_feature(env, ARM_FEATURE_V8)) { 5616 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5617 } else { 5618 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5619 } 5620 5621 if (arm_feature(env, ARM_FEATURE_EL3)) { 5622 valid_mask &= ~HCR_HCD; 5623 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5624 /* 5625 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5626 * However, if we're using the SMC PSCI conduit then QEMU is 5627 * effectively acting like EL3 firmware and so the guest at 5628 * EL2 should retain the ability to prevent EL1 from being 5629 * able to make SMC calls into the ersatz firmware, so in 5630 * that case HCR.TSC should be read/write. 5631 */ 5632 valid_mask &= ~HCR_TSC; 5633 } 5634 5635 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5636 if (cpu_isar_feature(aa64_vh, cpu)) { 5637 valid_mask |= HCR_E2H; 5638 } 5639 if (cpu_isar_feature(aa64_ras, cpu)) { 5640 valid_mask |= HCR_TERR | HCR_TEA; 5641 } 5642 if (cpu_isar_feature(aa64_lor, cpu)) { 5643 valid_mask |= HCR_TLOR; 5644 } 5645 if (cpu_isar_feature(aa64_pauth, cpu)) { 5646 valid_mask |= HCR_API | HCR_APK; 5647 } 5648 if (cpu_isar_feature(aa64_mte, cpu)) { 5649 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5650 } 5651 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5652 valid_mask |= HCR_ENSCXT; 5653 } 5654 if (cpu_isar_feature(aa64_fwb, cpu)) { 5655 valid_mask |= HCR_FWB; 5656 } 5657 } 5658 5659 if (cpu_isar_feature(any_evt, cpu)) { 5660 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5661 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5662 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5663 } 5664 5665 /* Clear RES0 bits. */ 5666 value &= valid_mask; 5667 5668 /* 5669 * These bits change the MMU setup: 5670 * HCR_VM enables stage 2 translation 5671 * HCR_PTW forbids certain page-table setups 5672 * HCR_DC disables stage1 and enables stage2 translation 5673 * HCR_DCT enables tagging on (disabled) stage1 translation 5674 * HCR_FWB changes the interpretation of stage2 descriptor bits 5675 */ 5676 if ((env->cp15.hcr_el2 ^ value) & 5677 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5678 tlb_flush(CPU(cpu)); 5679 } 5680 env->cp15.hcr_el2 = value; 5681 5682 /* 5683 * Updates to VI and VF require us to update the status of 5684 * virtual interrupts, which are the logical OR of these bits 5685 * and the state of the input lines from the GIC. (This requires 5686 * that we have the iothread lock, which is done by marking the 5687 * reginfo structs as ARM_CP_IO.) 5688 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5689 * possible for it to be taken immediately, because VIRQ and 5690 * VFIQ are masked unless running at EL0 or EL1, and HCR 5691 * can only be written at EL2. 5692 */ 5693 g_assert(qemu_mutex_iothread_locked()); 5694 arm_cpu_update_virq(cpu); 5695 arm_cpu_update_vfiq(cpu); 5696 arm_cpu_update_vserr(cpu); 5697 } 5698 5699 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5700 { 5701 do_hcr_write(env, value, 0); 5702 } 5703 5704 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5705 uint64_t value) 5706 { 5707 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5708 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5709 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5710 } 5711 5712 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5713 uint64_t value) 5714 { 5715 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5716 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5717 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5718 } 5719 5720 /* 5721 * Return the effective value of HCR_EL2, at the given security state. 5722 * Bits that are not included here: 5723 * RW (read from SCR_EL3.RW as needed) 5724 */ 5725 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5726 { 5727 uint64_t ret = env->cp15.hcr_el2; 5728 5729 if (!arm_is_el2_enabled_secstate(env, secure)) { 5730 /* 5731 * "This register has no effect if EL2 is not enabled in the 5732 * current Security state". This is ARMv8.4-SecEL2 speak for 5733 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5734 * 5735 * Prior to that, the language was "In an implementation that 5736 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5737 * as if this field is 0 for all purposes other than a direct 5738 * read or write access of HCR_EL2". With lots of enumeration 5739 * on a per-field basis. In current QEMU, this is condition 5740 * is arm_is_secure_below_el3. 5741 * 5742 * Since the v8.4 language applies to the entire register, and 5743 * appears to be backward compatible, use that. 5744 */ 5745 return 0; 5746 } 5747 5748 /* 5749 * For a cpu that supports both aarch64 and aarch32, we can set bits 5750 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5751 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5752 */ 5753 if (!arm_el_is_aa64(env, 2)) { 5754 uint64_t aa32_valid; 5755 5756 /* 5757 * These bits are up-to-date as of ARMv8.6. 5758 * For HCR, it's easiest to list just the 2 bits that are invalid. 5759 * For HCR2, list those that are valid. 5760 */ 5761 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5762 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5763 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5764 ret &= aa32_valid; 5765 } 5766 5767 if (ret & HCR_TGE) { 5768 /* These bits are up-to-date as of ARMv8.6. */ 5769 if (ret & HCR_E2H) { 5770 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5771 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5772 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5773 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5774 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5775 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5776 } else { 5777 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5778 } 5779 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5780 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5781 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5782 HCR_TLOR); 5783 } 5784 5785 return ret; 5786 } 5787 5788 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5789 { 5790 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5791 } 5792 5793 /* 5794 * Corresponds to ARM pseudocode function ELIsInHost(). 5795 */ 5796 bool el_is_in_host(CPUARMState *env, int el) 5797 { 5798 uint64_t mask; 5799 5800 /* 5801 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5802 * Perform the simplest bit tests first, and validate EL2 afterward. 5803 */ 5804 if (el & 1) { 5805 return false; /* EL1 or EL3 */ 5806 } 5807 5808 /* 5809 * Note that hcr_write() checks isar_feature_aa64_vh(), 5810 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5811 */ 5812 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5813 if ((env->cp15.hcr_el2 & mask) != mask) { 5814 return false; 5815 } 5816 5817 /* TGE and/or E2H set: double check those bits are currently legal. */ 5818 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5819 } 5820 5821 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5822 uint64_t value) 5823 { 5824 uint64_t valid_mask = 0; 5825 5826 /* No features adding bits to HCRX are implemented. */ 5827 5828 /* Clear RES0 bits. */ 5829 env->cp15.hcrx_el2 = value & valid_mask; 5830 } 5831 5832 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5833 bool isread) 5834 { 5835 if (arm_current_el(env) < 3 5836 && arm_feature(env, ARM_FEATURE_EL3) 5837 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5838 return CP_ACCESS_TRAP_EL3; 5839 } 5840 return CP_ACCESS_OK; 5841 } 5842 5843 static const ARMCPRegInfo hcrx_el2_reginfo = { 5844 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5845 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5846 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5847 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5848 }; 5849 5850 /* Return the effective value of HCRX_EL2. */ 5851 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5852 { 5853 /* 5854 * The bits in this register behave as 0 for all purposes other than 5855 * direct reads of the register if: 5856 * - EL2 is not enabled in the current security state, 5857 * - SCR_EL3.HXEn is 0. 5858 */ 5859 if (!arm_is_el2_enabled(env) 5860 || (arm_feature(env, ARM_FEATURE_EL3) 5861 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5862 return 0; 5863 } 5864 return env->cp15.hcrx_el2; 5865 } 5866 5867 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5868 uint64_t value) 5869 { 5870 /* 5871 * For A-profile AArch32 EL3, if NSACR.CP10 5872 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5873 */ 5874 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5875 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5876 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5877 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5878 } 5879 env->cp15.cptr_el[2] = value; 5880 } 5881 5882 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5883 { 5884 /* 5885 * For A-profile AArch32 EL3, if NSACR.CP10 5886 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5887 */ 5888 uint64_t value = env->cp15.cptr_el[2]; 5889 5890 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5891 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5892 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5893 } 5894 return value; 5895 } 5896 5897 static const ARMCPRegInfo el2_cp_reginfo[] = { 5898 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5899 .type = ARM_CP_IO, 5900 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5901 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5902 .writefn = hcr_write }, 5903 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5904 .type = ARM_CP_ALIAS | ARM_CP_IO, 5905 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5906 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5907 .writefn = hcr_writelow }, 5908 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5909 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5910 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5911 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5912 .type = ARM_CP_ALIAS, 5913 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5914 .access = PL2_RW, 5915 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5916 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5917 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5918 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5919 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5920 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5921 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5922 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5923 .type = ARM_CP_ALIAS, 5924 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5925 .access = PL2_RW, 5926 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5927 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5928 .type = ARM_CP_ALIAS, 5929 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5930 .access = PL2_RW, 5931 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5932 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5933 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5934 .access = PL2_RW, .writefn = vbar_write, 5935 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5936 .resetvalue = 0 }, 5937 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5938 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5939 .access = PL3_RW, .type = ARM_CP_ALIAS, 5940 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5941 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5942 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5943 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5944 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5945 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5946 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5947 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5948 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5949 .resetvalue = 0 }, 5950 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5951 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5952 .access = PL2_RW, .type = ARM_CP_ALIAS, 5953 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5954 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5955 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5956 .access = PL2_RW, .type = ARM_CP_CONST, 5957 .resetvalue = 0 }, 5958 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5959 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5960 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5961 .access = PL2_RW, .type = ARM_CP_CONST, 5962 .resetvalue = 0 }, 5963 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5964 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5965 .access = PL2_RW, .type = ARM_CP_CONST, 5966 .resetvalue = 0 }, 5967 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5968 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5969 .access = PL2_RW, .type = ARM_CP_CONST, 5970 .resetvalue = 0 }, 5971 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5972 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5973 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5974 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5975 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5976 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5977 .type = ARM_CP_ALIAS, 5978 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5979 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5980 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5981 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5982 .access = PL2_RW, 5983 /* no .writefn needed as this can't cause an ASID change */ 5984 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5985 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5986 .cp = 15, .opc1 = 6, .crm = 2, 5987 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5988 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5989 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5990 .writefn = vttbr_write }, 5991 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5992 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5993 .access = PL2_RW, .writefn = vttbr_write, 5994 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5995 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5996 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5997 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5998 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5999 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6000 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6001 .access = PL2_RW, .resetvalue = 0, 6002 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6003 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6004 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6005 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 6006 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6007 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6008 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6009 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6010 { .name = "TLBIALLNSNH", 6011 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6012 .type = ARM_CP_NO_RAW, .access = PL2_W, 6013 .writefn = tlbiall_nsnh_write }, 6014 { .name = "TLBIALLNSNHIS", 6015 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6016 .type = ARM_CP_NO_RAW, .access = PL2_W, 6017 .writefn = tlbiall_nsnh_is_write }, 6018 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6019 .type = ARM_CP_NO_RAW, .access = PL2_W, 6020 .writefn = tlbiall_hyp_write }, 6021 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6022 .type = ARM_CP_NO_RAW, .access = PL2_W, 6023 .writefn = tlbiall_hyp_is_write }, 6024 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6025 .type = ARM_CP_NO_RAW, .access = PL2_W, 6026 .writefn = tlbimva_hyp_write }, 6027 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6028 .type = ARM_CP_NO_RAW, .access = PL2_W, 6029 .writefn = tlbimva_hyp_is_write }, 6030 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6031 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6032 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6033 .writefn = tlbi_aa64_alle2_write }, 6034 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6035 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6036 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6037 .writefn = tlbi_aa64_vae2_write }, 6038 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6039 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6040 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6041 .writefn = tlbi_aa64_vae2_write }, 6042 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6043 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6044 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6045 .writefn = tlbi_aa64_alle2is_write }, 6046 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6047 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6048 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6049 .writefn = tlbi_aa64_vae2is_write }, 6050 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6051 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6052 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6053 .writefn = tlbi_aa64_vae2is_write }, 6054 #ifndef CONFIG_USER_ONLY 6055 /* 6056 * Unlike the other EL2-related AT operations, these must 6057 * UNDEF from EL3 if EL2 is not implemented, which is why we 6058 * define them here rather than with the rest of the AT ops. 6059 */ 6060 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6061 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6062 .access = PL2_W, .accessfn = at_s1e2_access, 6063 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6064 .writefn = ats_write64 }, 6065 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6066 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6067 .access = PL2_W, .accessfn = at_s1e2_access, 6068 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6069 .writefn = ats_write64 }, 6070 /* 6071 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6072 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6073 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6074 * to behave as if SCR.NS was 1. 6075 */ 6076 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6077 .access = PL2_W, 6078 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6079 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6080 .access = PL2_W, 6081 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6082 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6083 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6084 /* 6085 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6086 * reset values as IMPDEF. We choose to reset to 3 to comply with 6087 * both ARMv7 and ARMv8. 6088 */ 6089 .access = PL2_RW, .resetvalue = 3, 6090 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6091 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6092 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6093 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6094 .writefn = gt_cntvoff_write, 6095 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6096 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6097 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6098 .writefn = gt_cntvoff_write, 6099 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6100 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6101 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6102 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6103 .type = ARM_CP_IO, .access = PL2_RW, 6104 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6105 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6106 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6107 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6108 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6109 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6110 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6111 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6112 .resetfn = gt_hyp_timer_reset, 6113 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6114 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6115 .type = ARM_CP_IO, 6116 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6117 .access = PL2_RW, 6118 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6119 .resetvalue = 0, 6120 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6121 #endif 6122 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6123 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6124 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6125 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6126 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6127 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6128 .access = PL2_RW, 6129 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6130 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6131 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6132 .access = PL2_RW, 6133 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6134 }; 6135 6136 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6137 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6138 .type = ARM_CP_ALIAS | ARM_CP_IO, 6139 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6140 .access = PL2_RW, 6141 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6142 .writefn = hcr_writehigh }, 6143 }; 6144 6145 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6146 bool isread) 6147 { 6148 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6149 return CP_ACCESS_OK; 6150 } 6151 return CP_ACCESS_TRAP_UNCATEGORIZED; 6152 } 6153 6154 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6155 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6156 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6157 .access = PL2_RW, .accessfn = sel2_access, 6158 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6159 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6160 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6161 .access = PL2_RW, .accessfn = sel2_access, 6162 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6163 }; 6164 6165 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6166 bool isread) 6167 { 6168 /* 6169 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6170 * At Secure EL1 it traps to EL3 or EL2. 6171 */ 6172 if (arm_current_el(env) == 3) { 6173 return CP_ACCESS_OK; 6174 } 6175 if (arm_is_secure_below_el3(env)) { 6176 if (env->cp15.scr_el3 & SCR_EEL2) { 6177 return CP_ACCESS_TRAP_EL2; 6178 } 6179 return CP_ACCESS_TRAP_EL3; 6180 } 6181 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6182 if (isread) { 6183 return CP_ACCESS_OK; 6184 } 6185 return CP_ACCESS_TRAP_UNCATEGORIZED; 6186 } 6187 6188 static const ARMCPRegInfo el3_cp_reginfo[] = { 6189 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6190 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6191 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6192 .resetfn = scr_reset, .writefn = scr_write }, 6193 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6194 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6195 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6196 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6197 .writefn = scr_write }, 6198 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6199 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6200 .access = PL3_RW, .resetvalue = 0, 6201 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6202 { .name = "SDER", 6203 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6204 .access = PL3_RW, .resetvalue = 0, 6205 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6206 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6207 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6208 .writefn = vbar_write, .resetvalue = 0, 6209 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6210 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6211 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6212 .access = PL3_RW, .resetvalue = 0, 6213 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6214 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6215 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6216 .access = PL3_RW, 6217 /* no .writefn needed as this can't cause an ASID change */ 6218 .resetvalue = 0, 6219 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6220 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6221 .type = ARM_CP_ALIAS, 6222 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6223 .access = PL3_RW, 6224 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6225 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6226 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6227 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6228 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6229 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6230 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6231 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6232 .type = ARM_CP_ALIAS, 6233 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6234 .access = PL3_RW, 6235 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6236 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6237 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6238 .access = PL3_RW, .writefn = vbar_write, 6239 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6240 .resetvalue = 0 }, 6241 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6242 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6243 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6244 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6245 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6246 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6247 .access = PL3_RW, .resetvalue = 0, 6248 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6249 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6250 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6251 .access = PL3_RW, .type = ARM_CP_CONST, 6252 .resetvalue = 0 }, 6253 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6254 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6255 .access = PL3_RW, .type = ARM_CP_CONST, 6256 .resetvalue = 0 }, 6257 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6258 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6259 .access = PL3_RW, .type = ARM_CP_CONST, 6260 .resetvalue = 0 }, 6261 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6262 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6263 .access = PL3_W, .type = ARM_CP_NO_RAW, 6264 .writefn = tlbi_aa64_alle3is_write }, 6265 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6266 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6267 .access = PL3_W, .type = ARM_CP_NO_RAW, 6268 .writefn = tlbi_aa64_vae3is_write }, 6269 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6270 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6271 .access = PL3_W, .type = ARM_CP_NO_RAW, 6272 .writefn = tlbi_aa64_vae3is_write }, 6273 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6274 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6275 .access = PL3_W, .type = ARM_CP_NO_RAW, 6276 .writefn = tlbi_aa64_alle3_write }, 6277 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6278 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6279 .access = PL3_W, .type = ARM_CP_NO_RAW, 6280 .writefn = tlbi_aa64_vae3_write }, 6281 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6282 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6283 .access = PL3_W, .type = ARM_CP_NO_RAW, 6284 .writefn = tlbi_aa64_vae3_write }, 6285 }; 6286 6287 #ifndef CONFIG_USER_ONLY 6288 /* Test if system register redirection is to occur in the current state. */ 6289 static bool redirect_for_e2h(CPUARMState *env) 6290 { 6291 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6292 } 6293 6294 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6295 { 6296 CPReadFn *readfn; 6297 6298 if (redirect_for_e2h(env)) { 6299 /* Switch to the saved EL2 version of the register. */ 6300 ri = ri->opaque; 6301 readfn = ri->readfn; 6302 } else { 6303 readfn = ri->orig_readfn; 6304 } 6305 if (readfn == NULL) { 6306 readfn = raw_read; 6307 } 6308 return readfn(env, ri); 6309 } 6310 6311 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6312 uint64_t value) 6313 { 6314 CPWriteFn *writefn; 6315 6316 if (redirect_for_e2h(env)) { 6317 /* Switch to the saved EL2 version of the register. */ 6318 ri = ri->opaque; 6319 writefn = ri->writefn; 6320 } else { 6321 writefn = ri->orig_writefn; 6322 } 6323 if (writefn == NULL) { 6324 writefn = raw_write; 6325 } 6326 writefn(env, ri, value); 6327 } 6328 6329 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6330 { 6331 struct E2HAlias { 6332 uint32_t src_key, dst_key, new_key; 6333 const char *src_name, *dst_name, *new_name; 6334 bool (*feature)(const ARMISARegisters *id); 6335 }; 6336 6337 #define K(op0, op1, crn, crm, op2) \ 6338 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6339 6340 static const struct E2HAlias aliases[] = { 6341 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6342 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6343 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6344 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6345 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6346 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6347 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6348 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6349 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6350 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6351 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6352 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6353 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6354 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6355 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6356 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6357 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6358 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6359 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6360 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6361 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6362 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6363 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6364 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6365 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6366 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6367 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6368 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6369 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6370 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6371 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6372 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6373 6374 /* 6375 * Note that redirection of ZCR is mentioned in the description 6376 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6377 * not in the summary table. 6378 */ 6379 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6380 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6381 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6382 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6383 6384 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6385 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6386 6387 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6388 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6389 isar_feature_aa64_scxtnum }, 6390 6391 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6392 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6393 }; 6394 #undef K 6395 6396 size_t i; 6397 6398 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6399 const struct E2HAlias *a = &aliases[i]; 6400 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6401 bool ok; 6402 6403 if (a->feature && !a->feature(&cpu->isar)) { 6404 continue; 6405 } 6406 6407 src_reg = g_hash_table_lookup(cpu->cp_regs, 6408 (gpointer)(uintptr_t)a->src_key); 6409 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6410 (gpointer)(uintptr_t)a->dst_key); 6411 g_assert(src_reg != NULL); 6412 g_assert(dst_reg != NULL); 6413 6414 /* Cross-compare names to detect typos in the keys. */ 6415 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6416 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6417 6418 /* None of the core system registers use opaque; we will. */ 6419 g_assert(src_reg->opaque == NULL); 6420 6421 /* Create alias before redirection so we dup the right data. */ 6422 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6423 6424 new_reg->name = a->new_name; 6425 new_reg->type |= ARM_CP_ALIAS; 6426 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6427 new_reg->access &= PL2_RW | PL3_RW; 6428 6429 ok = g_hash_table_insert(cpu->cp_regs, 6430 (gpointer)(uintptr_t)a->new_key, new_reg); 6431 g_assert(ok); 6432 6433 src_reg->opaque = dst_reg; 6434 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6435 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6436 if (!src_reg->raw_readfn) { 6437 src_reg->raw_readfn = raw_read; 6438 } 6439 if (!src_reg->raw_writefn) { 6440 src_reg->raw_writefn = raw_write; 6441 } 6442 src_reg->readfn = el2_e2h_read; 6443 src_reg->writefn = el2_e2h_write; 6444 } 6445 } 6446 #endif 6447 6448 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6449 bool isread) 6450 { 6451 int cur_el = arm_current_el(env); 6452 6453 if (cur_el < 2) { 6454 uint64_t hcr = arm_hcr_el2_eff(env); 6455 6456 if (cur_el == 0) { 6457 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6458 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6459 return CP_ACCESS_TRAP_EL2; 6460 } 6461 } else { 6462 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6463 return CP_ACCESS_TRAP; 6464 } 6465 if (hcr & HCR_TID2) { 6466 return CP_ACCESS_TRAP_EL2; 6467 } 6468 } 6469 } else if (hcr & HCR_TID2) { 6470 return CP_ACCESS_TRAP_EL2; 6471 } 6472 } 6473 6474 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6475 return CP_ACCESS_TRAP_EL2; 6476 } 6477 6478 return CP_ACCESS_OK; 6479 } 6480 6481 /* 6482 * Check for traps to RAS registers, which are controlled 6483 * by HCR_EL2.TERR and SCR_EL3.TERR. 6484 */ 6485 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6486 bool isread) 6487 { 6488 int el = arm_current_el(env); 6489 6490 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6491 return CP_ACCESS_TRAP_EL2; 6492 } 6493 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6494 return CP_ACCESS_TRAP_EL3; 6495 } 6496 return CP_ACCESS_OK; 6497 } 6498 6499 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6500 { 6501 int el = arm_current_el(env); 6502 6503 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6504 return env->cp15.vdisr_el2; 6505 } 6506 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6507 return 0; /* RAZ/WI */ 6508 } 6509 return env->cp15.disr_el1; 6510 } 6511 6512 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6513 { 6514 int el = arm_current_el(env); 6515 6516 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6517 env->cp15.vdisr_el2 = val; 6518 return; 6519 } 6520 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6521 return; /* RAZ/WI */ 6522 } 6523 env->cp15.disr_el1 = val; 6524 } 6525 6526 /* 6527 * Minimal RAS implementation with no Error Records. 6528 * Which means that all of the Error Record registers: 6529 * ERXADDR_EL1 6530 * ERXCTLR_EL1 6531 * ERXFR_EL1 6532 * ERXMISC0_EL1 6533 * ERXMISC1_EL1 6534 * ERXMISC2_EL1 6535 * ERXMISC3_EL1 6536 * ERXPFGCDN_EL1 (RASv1p1) 6537 * ERXPFGCTL_EL1 (RASv1p1) 6538 * ERXPFGF_EL1 (RASv1p1) 6539 * ERXSTATUS_EL1 6540 * and 6541 * ERRSELR_EL1 6542 * may generate UNDEFINED, which is the effect we get by not 6543 * listing them at all. 6544 * 6545 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6546 * is higher priority than FGT-to-EL2 so we do not need to list them 6547 * in order to check for an FGT. 6548 */ 6549 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6550 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6551 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6552 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6553 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6554 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6555 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6556 .access = PL1_R, .accessfn = access_terr, 6557 .fgt = FGT_ERRIDR_EL1, 6558 .type = ARM_CP_CONST, .resetvalue = 0 }, 6559 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6560 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6561 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6562 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6563 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6564 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6565 }; 6566 6567 /* 6568 * Return the exception level to which exceptions should be taken 6569 * via SVEAccessTrap. This excludes the check for whether the exception 6570 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6571 * be found by testing 0 < fp_exception_el < sve_exception_el. 6572 * 6573 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6574 * pseudocode does *not* separate out the FP trap checks, but has them 6575 * all in one function. 6576 */ 6577 int sve_exception_el(CPUARMState *env, int el) 6578 { 6579 #ifndef CONFIG_USER_ONLY 6580 if (el <= 1 && !el_is_in_host(env, el)) { 6581 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6582 case 1: 6583 if (el != 0) { 6584 break; 6585 } 6586 /* fall through */ 6587 case 0: 6588 case 2: 6589 return 1; 6590 } 6591 } 6592 6593 if (el <= 2 && arm_is_el2_enabled(env)) { 6594 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6595 if (env->cp15.hcr_el2 & HCR_E2H) { 6596 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6597 case 1: 6598 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6599 break; 6600 } 6601 /* fall through */ 6602 case 0: 6603 case 2: 6604 return 2; 6605 } 6606 } else { 6607 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6608 return 2; 6609 } 6610 } 6611 } 6612 6613 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6614 if (arm_feature(env, ARM_FEATURE_EL3) 6615 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6616 return 3; 6617 } 6618 #endif 6619 return 0; 6620 } 6621 6622 /* 6623 * Return the exception level to which exceptions should be taken for SME. 6624 * C.f. the ARM pseudocode function CheckSMEAccess. 6625 */ 6626 int sme_exception_el(CPUARMState *env, int el) 6627 { 6628 #ifndef CONFIG_USER_ONLY 6629 if (el <= 1 && !el_is_in_host(env, el)) { 6630 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6631 case 1: 6632 if (el != 0) { 6633 break; 6634 } 6635 /* fall through */ 6636 case 0: 6637 case 2: 6638 return 1; 6639 } 6640 } 6641 6642 if (el <= 2 && arm_is_el2_enabled(env)) { 6643 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6644 if (env->cp15.hcr_el2 & HCR_E2H) { 6645 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6646 case 1: 6647 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6648 break; 6649 } 6650 /* fall through */ 6651 case 0: 6652 case 2: 6653 return 2; 6654 } 6655 } else { 6656 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6657 return 2; 6658 } 6659 } 6660 } 6661 6662 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6663 if (arm_feature(env, ARM_FEATURE_EL3) 6664 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6665 return 3; 6666 } 6667 #endif 6668 return 0; 6669 } 6670 6671 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ 6672 static bool sme_fa64(CPUARMState *env, int el) 6673 { 6674 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { 6675 return false; 6676 } 6677 6678 if (el <= 1 && !el_is_in_host(env, el)) { 6679 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { 6680 return false; 6681 } 6682 } 6683 if (el <= 2 && arm_is_el2_enabled(env)) { 6684 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { 6685 return false; 6686 } 6687 } 6688 if (arm_feature(env, ARM_FEATURE_EL3)) { 6689 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { 6690 return false; 6691 } 6692 } 6693 6694 return true; 6695 } 6696 6697 /* 6698 * Given that SVE is enabled, return the vector length for EL. 6699 */ 6700 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6701 { 6702 ARMCPU *cpu = env_archcpu(env); 6703 uint64_t *cr = env->vfp.zcr_el; 6704 uint32_t map = cpu->sve_vq.map; 6705 uint32_t len = ARM_MAX_VQ - 1; 6706 6707 if (sm) { 6708 cr = env->vfp.smcr_el; 6709 map = cpu->sme_vq.map; 6710 } 6711 6712 if (el <= 1 && !el_is_in_host(env, el)) { 6713 len = MIN(len, 0xf & (uint32_t)cr[1]); 6714 } 6715 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6716 len = MIN(len, 0xf & (uint32_t)cr[2]); 6717 } 6718 if (arm_feature(env, ARM_FEATURE_EL3)) { 6719 len = MIN(len, 0xf & (uint32_t)cr[3]); 6720 } 6721 6722 map &= MAKE_64BIT_MASK(0, len + 1); 6723 if (map != 0) { 6724 return 31 - clz32(map); 6725 } 6726 6727 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6728 assert(sm); 6729 return ctz32(cpu->sme_vq.map); 6730 } 6731 6732 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6733 { 6734 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6735 } 6736 6737 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6738 uint64_t value) 6739 { 6740 int cur_el = arm_current_el(env); 6741 int old_len = sve_vqm1_for_el(env, cur_el); 6742 int new_len; 6743 6744 /* Bits other than [3:0] are RAZ/WI. */ 6745 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6746 raw_write(env, ri, value & 0xf); 6747 6748 /* 6749 * Because we arrived here, we know both FP and SVE are enabled; 6750 * otherwise we would have trapped access to the ZCR_ELn register. 6751 */ 6752 new_len = sve_vqm1_for_el(env, cur_el); 6753 if (new_len < old_len) { 6754 aarch64_sve_narrow_vq(env, new_len + 1); 6755 } 6756 } 6757 6758 static const ARMCPRegInfo zcr_reginfo[] = { 6759 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6760 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6761 .access = PL1_RW, .type = ARM_CP_SVE, 6762 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6763 .writefn = zcr_write, .raw_writefn = raw_write }, 6764 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6765 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6766 .access = PL2_RW, .type = ARM_CP_SVE, 6767 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6768 .writefn = zcr_write, .raw_writefn = raw_write }, 6769 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6770 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6771 .access = PL3_RW, .type = ARM_CP_SVE, 6772 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6773 .writefn = zcr_write, .raw_writefn = raw_write }, 6774 }; 6775 6776 #ifdef TARGET_AARCH64 6777 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6778 bool isread) 6779 { 6780 int el = arm_current_el(env); 6781 6782 if (el == 0) { 6783 uint64_t sctlr = arm_sctlr(env, el); 6784 if (!(sctlr & SCTLR_EnTP2)) { 6785 return CP_ACCESS_TRAP; 6786 } 6787 } 6788 /* TODO: FEAT_FGT */ 6789 if (el < 3 6790 && arm_feature(env, ARM_FEATURE_EL3) 6791 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6792 return CP_ACCESS_TRAP_EL3; 6793 } 6794 return CP_ACCESS_OK; 6795 } 6796 6797 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6798 bool isread) 6799 { 6800 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6801 if (arm_current_el(env) < 3 6802 && arm_feature(env, ARM_FEATURE_EL3) 6803 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6804 return CP_ACCESS_TRAP_EL3; 6805 } 6806 return CP_ACCESS_OK; 6807 } 6808 6809 /* ResetSVEState */ 6810 static void arm_reset_sve_state(CPUARMState *env) 6811 { 6812 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6813 /* Recall that FFR is stored as pregs[16]. */ 6814 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6815 vfp_set_fpcr(env, 0x0800009f); 6816 } 6817 6818 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6819 { 6820 uint64_t change = (env->svcr ^ new) & mask; 6821 6822 if (change == 0) { 6823 return; 6824 } 6825 env->svcr ^= change; 6826 6827 if (change & R_SVCR_SM_MASK) { 6828 arm_reset_sve_state(env); 6829 } 6830 6831 /* 6832 * ResetSMEState. 6833 * 6834 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6835 * on enable: while disabled, the storage is inaccessible and the 6836 * value does not matter. We're not saving the storage in vmstate 6837 * when disabled either. 6838 */ 6839 if (change & new & R_SVCR_ZA_MASK) { 6840 memset(env->zarray, 0, sizeof(env->zarray)); 6841 } 6842 6843 arm_rebuild_hflags(env); 6844 } 6845 6846 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6847 uint64_t value) 6848 { 6849 aarch64_set_svcr(env, value, -1); 6850 } 6851 6852 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6853 uint64_t value) 6854 { 6855 int cur_el = arm_current_el(env); 6856 int old_len = sve_vqm1_for_el(env, cur_el); 6857 int new_len; 6858 6859 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6860 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6861 raw_write(env, ri, value); 6862 6863 /* 6864 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6865 * when SVL is widened (old values kept, or zeros). Choose to keep the 6866 * current values for simplicity. But for QEMU internals, we must still 6867 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6868 * above aarch64_sve_narrow_vq. 6869 */ 6870 new_len = sve_vqm1_for_el(env, cur_el); 6871 if (new_len < old_len) { 6872 aarch64_sve_narrow_vq(env, new_len + 1); 6873 } 6874 } 6875 6876 static const ARMCPRegInfo sme_reginfo[] = { 6877 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6878 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6879 .access = PL0_RW, .accessfn = access_tpidr2, 6880 .fgt = FGT_NTPIDR2_EL0, 6881 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6882 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6883 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6884 .access = PL0_RW, .type = ARM_CP_SME, 6885 .fieldoffset = offsetof(CPUARMState, svcr), 6886 .writefn = svcr_write, .raw_writefn = raw_write }, 6887 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6888 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6889 .access = PL1_RW, .type = ARM_CP_SME, 6890 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6891 .writefn = smcr_write, .raw_writefn = raw_write }, 6892 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6893 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6894 .access = PL2_RW, .type = ARM_CP_SME, 6895 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6896 .writefn = smcr_write, .raw_writefn = raw_write }, 6897 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6898 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6899 .access = PL3_RW, .type = ARM_CP_SME, 6900 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6901 .writefn = smcr_write, .raw_writefn = raw_write }, 6902 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6903 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6904 .access = PL1_R, .accessfn = access_aa64_tid1, 6905 /* 6906 * IMPLEMENTOR = 0 (software) 6907 * REVISION = 0 (implementation defined) 6908 * SMPS = 0 (no streaming execution priority in QEMU) 6909 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6910 */ 6911 .type = ARM_CP_CONST, .resetvalue = 0, }, 6912 /* 6913 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6914 */ 6915 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6916 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6917 .access = PL1_RW, .accessfn = access_esm, 6918 .fgt = FGT_NSMPRI_EL1, 6919 .type = ARM_CP_CONST, .resetvalue = 0 }, 6920 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6921 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6922 .access = PL2_RW, .accessfn = access_esm, 6923 .type = ARM_CP_CONST, .resetvalue = 0 }, 6924 }; 6925 #endif /* TARGET_AARCH64 */ 6926 6927 static void define_pmu_regs(ARMCPU *cpu) 6928 { 6929 /* 6930 * v7 performance monitor control register: same implementor 6931 * field as main ID register, and we implement four counters in 6932 * addition to the cycle count register. 6933 */ 6934 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6935 ARMCPRegInfo pmcr = { 6936 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6937 .access = PL0_RW, 6938 .fgt = FGT_PMCR_EL0, 6939 .type = ARM_CP_IO | ARM_CP_ALIAS, 6940 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6941 .accessfn = pmreg_access, .writefn = pmcr_write, 6942 .raw_writefn = raw_write, 6943 }; 6944 ARMCPRegInfo pmcr64 = { 6945 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6946 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6947 .access = PL0_RW, .accessfn = pmreg_access, 6948 .fgt = FGT_PMCR_EL0, 6949 .type = ARM_CP_IO, 6950 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6951 .resetvalue = cpu->isar.reset_pmcr_el0, 6952 .writefn = pmcr_write, .raw_writefn = raw_write, 6953 }; 6954 6955 define_one_arm_cp_reg(cpu, &pmcr); 6956 define_one_arm_cp_reg(cpu, &pmcr64); 6957 for (i = 0; i < pmcrn; i++) { 6958 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6959 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6960 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6961 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6962 ARMCPRegInfo pmev_regs[] = { 6963 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6964 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6965 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6966 .fgt = FGT_PMEVCNTRN_EL0, 6967 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6968 .accessfn = pmreg_access_xevcntr }, 6969 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6971 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6972 .type = ARM_CP_IO, 6973 .fgt = FGT_PMEVCNTRN_EL0, 6974 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6975 .raw_readfn = pmevcntr_rawread, 6976 .raw_writefn = pmevcntr_rawwrite }, 6977 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6978 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6979 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6980 .fgt = FGT_PMEVTYPERN_EL0, 6981 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6982 .accessfn = pmreg_access }, 6983 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6984 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6985 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6986 .fgt = FGT_PMEVTYPERN_EL0, 6987 .type = ARM_CP_IO, 6988 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6989 .raw_writefn = pmevtyper_rawwrite }, 6990 }; 6991 define_arm_cp_regs(cpu, pmev_regs); 6992 g_free(pmevcntr_name); 6993 g_free(pmevcntr_el0_name); 6994 g_free(pmevtyper_name); 6995 g_free(pmevtyper_el0_name); 6996 } 6997 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6998 ARMCPRegInfo v81_pmu_regs[] = { 6999 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7000 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7001 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7002 .fgt = FGT_PMCEIDN_EL0, 7003 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7004 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7005 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7006 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7007 .fgt = FGT_PMCEIDN_EL0, 7008 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7009 }; 7010 define_arm_cp_regs(cpu, v81_pmu_regs); 7011 } 7012 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7013 static const ARMCPRegInfo v84_pmmir = { 7014 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7015 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7016 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7017 .fgt = FGT_PMMIR_EL1, 7018 .resetvalue = 0 7019 }; 7020 define_one_arm_cp_reg(cpu, &v84_pmmir); 7021 } 7022 } 7023 7024 /* 7025 * We don't know until after realize whether there's a GICv3 7026 * attached, and that is what registers the gicv3 sysregs. 7027 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7028 * at runtime. 7029 */ 7030 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7031 { 7032 ARMCPU *cpu = env_archcpu(env); 7033 uint64_t pfr1 = cpu->isar.id_pfr1; 7034 7035 if (env->gicv3state) { 7036 pfr1 |= 1 << 28; 7037 } 7038 return pfr1; 7039 } 7040 7041 #ifndef CONFIG_USER_ONLY 7042 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7043 { 7044 ARMCPU *cpu = env_archcpu(env); 7045 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7046 7047 if (env->gicv3state) { 7048 pfr0 |= 1 << 24; 7049 } 7050 return pfr0; 7051 } 7052 #endif 7053 7054 /* 7055 * Shared logic between LORID and the rest of the LOR* registers. 7056 * Secure state exclusion has already been dealt with. 7057 */ 7058 static CPAccessResult access_lor_ns(CPUARMState *env, 7059 const ARMCPRegInfo *ri, bool isread) 7060 { 7061 int el = arm_current_el(env); 7062 7063 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7064 return CP_ACCESS_TRAP_EL2; 7065 } 7066 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7067 return CP_ACCESS_TRAP_EL3; 7068 } 7069 return CP_ACCESS_OK; 7070 } 7071 7072 static CPAccessResult access_lor_other(CPUARMState *env, 7073 const ARMCPRegInfo *ri, bool isread) 7074 { 7075 if (arm_is_secure_below_el3(env)) { 7076 /* Access denied in secure mode. */ 7077 return CP_ACCESS_TRAP; 7078 } 7079 return access_lor_ns(env, ri, isread); 7080 } 7081 7082 /* 7083 * A trivial implementation of ARMv8.1-LOR leaves all of these 7084 * registers fixed at 0, which indicates that there are zero 7085 * supported Limited Ordering regions. 7086 */ 7087 static const ARMCPRegInfo lor_reginfo[] = { 7088 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7089 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7090 .access = PL1_RW, .accessfn = access_lor_other, 7091 .fgt = FGT_LORSA_EL1, 7092 .type = ARM_CP_CONST, .resetvalue = 0 }, 7093 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7094 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7095 .access = PL1_RW, .accessfn = access_lor_other, 7096 .fgt = FGT_LOREA_EL1, 7097 .type = ARM_CP_CONST, .resetvalue = 0 }, 7098 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7099 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7100 .access = PL1_RW, .accessfn = access_lor_other, 7101 .fgt = FGT_LORN_EL1, 7102 .type = ARM_CP_CONST, .resetvalue = 0 }, 7103 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7104 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7105 .access = PL1_RW, .accessfn = access_lor_other, 7106 .fgt = FGT_LORC_EL1, 7107 .type = ARM_CP_CONST, .resetvalue = 0 }, 7108 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7109 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7110 .access = PL1_R, .accessfn = access_lor_ns, 7111 .fgt = FGT_LORID_EL1, 7112 .type = ARM_CP_CONST, .resetvalue = 0 }, 7113 }; 7114 7115 #ifdef TARGET_AARCH64 7116 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7117 bool isread) 7118 { 7119 int el = arm_current_el(env); 7120 7121 if (el < 2 && 7122 arm_is_el2_enabled(env) && 7123 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7124 return CP_ACCESS_TRAP_EL2; 7125 } 7126 if (el < 3 && 7127 arm_feature(env, ARM_FEATURE_EL3) && 7128 !(env->cp15.scr_el3 & SCR_APK)) { 7129 return CP_ACCESS_TRAP_EL3; 7130 } 7131 return CP_ACCESS_OK; 7132 } 7133 7134 static const ARMCPRegInfo pauth_reginfo[] = { 7135 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7136 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7137 .access = PL1_RW, .accessfn = access_pauth, 7138 .fgt = FGT_APDAKEY, 7139 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7140 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7141 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7142 .access = PL1_RW, .accessfn = access_pauth, 7143 .fgt = FGT_APDAKEY, 7144 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7145 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7146 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7147 .access = PL1_RW, .accessfn = access_pauth, 7148 .fgt = FGT_APDBKEY, 7149 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7150 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7151 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7152 .access = PL1_RW, .accessfn = access_pauth, 7153 .fgt = FGT_APDBKEY, 7154 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7155 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7156 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7157 .access = PL1_RW, .accessfn = access_pauth, 7158 .fgt = FGT_APGAKEY, 7159 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7160 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7161 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7162 .access = PL1_RW, .accessfn = access_pauth, 7163 .fgt = FGT_APGAKEY, 7164 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7165 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7166 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7167 .access = PL1_RW, .accessfn = access_pauth, 7168 .fgt = FGT_APIAKEY, 7169 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7170 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7171 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7172 .access = PL1_RW, .accessfn = access_pauth, 7173 .fgt = FGT_APIAKEY, 7174 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7175 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7176 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7177 .access = PL1_RW, .accessfn = access_pauth, 7178 .fgt = FGT_APIBKEY, 7179 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7180 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7181 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7182 .access = PL1_RW, .accessfn = access_pauth, 7183 .fgt = FGT_APIBKEY, 7184 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7185 }; 7186 7187 static const ARMCPRegInfo tlbirange_reginfo[] = { 7188 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7189 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7190 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7191 .fgt = FGT_TLBIRVAE1IS, 7192 .writefn = tlbi_aa64_rvae1is_write }, 7193 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7194 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7195 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7196 .fgt = FGT_TLBIRVAAE1IS, 7197 .writefn = tlbi_aa64_rvae1is_write }, 7198 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7199 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7200 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7201 .fgt = FGT_TLBIRVALE1IS, 7202 .writefn = tlbi_aa64_rvae1is_write }, 7203 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7204 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7205 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7206 .fgt = FGT_TLBIRVAALE1IS, 7207 .writefn = tlbi_aa64_rvae1is_write }, 7208 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7209 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7210 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7211 .fgt = FGT_TLBIRVAE1OS, 7212 .writefn = tlbi_aa64_rvae1is_write }, 7213 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7214 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7215 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7216 .fgt = FGT_TLBIRVAAE1OS, 7217 .writefn = tlbi_aa64_rvae1is_write }, 7218 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7219 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7220 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7221 .fgt = FGT_TLBIRVALE1OS, 7222 .writefn = tlbi_aa64_rvae1is_write }, 7223 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7224 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7225 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7226 .fgt = FGT_TLBIRVAALE1OS, 7227 .writefn = tlbi_aa64_rvae1is_write }, 7228 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7229 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7230 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7231 .fgt = FGT_TLBIRVAE1, 7232 .writefn = tlbi_aa64_rvae1_write }, 7233 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7234 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7235 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7236 .fgt = FGT_TLBIRVAAE1, 7237 .writefn = tlbi_aa64_rvae1_write }, 7238 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7239 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7240 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7241 .fgt = FGT_TLBIRVALE1, 7242 .writefn = tlbi_aa64_rvae1_write }, 7243 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7245 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7246 .fgt = FGT_TLBIRVAALE1, 7247 .writefn = tlbi_aa64_rvae1_write }, 7248 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7249 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7250 .access = PL2_W, .type = ARM_CP_NO_RAW, 7251 .writefn = tlbi_aa64_ripas2e1is_write }, 7252 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7253 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7254 .access = PL2_W, .type = ARM_CP_NO_RAW, 7255 .writefn = tlbi_aa64_ripas2e1is_write }, 7256 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7257 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7258 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7259 .writefn = tlbi_aa64_rvae2is_write }, 7260 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7261 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7262 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7263 .writefn = tlbi_aa64_rvae2is_write }, 7264 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7265 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7266 .access = PL2_W, .type = ARM_CP_NO_RAW, 7267 .writefn = tlbi_aa64_ripas2e1_write }, 7268 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7269 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7270 .access = PL2_W, .type = ARM_CP_NO_RAW, 7271 .writefn = tlbi_aa64_ripas2e1_write }, 7272 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7273 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7274 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7275 .writefn = tlbi_aa64_rvae2is_write }, 7276 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7277 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7278 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7279 .writefn = tlbi_aa64_rvae2is_write }, 7280 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7281 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7282 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7283 .writefn = tlbi_aa64_rvae2_write }, 7284 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7285 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7286 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7287 .writefn = tlbi_aa64_rvae2_write }, 7288 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7290 .access = PL3_W, .type = ARM_CP_NO_RAW, 7291 .writefn = tlbi_aa64_rvae3is_write }, 7292 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7293 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7294 .access = PL3_W, .type = ARM_CP_NO_RAW, 7295 .writefn = tlbi_aa64_rvae3is_write }, 7296 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7297 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7298 .access = PL3_W, .type = ARM_CP_NO_RAW, 7299 .writefn = tlbi_aa64_rvae3is_write }, 7300 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7301 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7302 .access = PL3_W, .type = ARM_CP_NO_RAW, 7303 .writefn = tlbi_aa64_rvae3is_write }, 7304 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7305 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7306 .access = PL3_W, .type = ARM_CP_NO_RAW, 7307 .writefn = tlbi_aa64_rvae3_write }, 7308 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7309 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7310 .access = PL3_W, .type = ARM_CP_NO_RAW, 7311 .writefn = tlbi_aa64_rvae3_write }, 7312 }; 7313 7314 static const ARMCPRegInfo tlbios_reginfo[] = { 7315 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7316 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7317 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7318 .fgt = FGT_TLBIVMALLE1OS, 7319 .writefn = tlbi_aa64_vmalle1is_write }, 7320 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7321 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7322 .fgt = FGT_TLBIVAE1OS, 7323 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7324 .writefn = tlbi_aa64_vae1is_write }, 7325 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7326 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7327 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7328 .fgt = FGT_TLBIASIDE1OS, 7329 .writefn = tlbi_aa64_vmalle1is_write }, 7330 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7331 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7332 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7333 .fgt = FGT_TLBIVAAE1OS, 7334 .writefn = tlbi_aa64_vae1is_write }, 7335 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7337 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7338 .fgt = FGT_TLBIVALE1OS, 7339 .writefn = tlbi_aa64_vae1is_write }, 7340 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7341 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7342 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7343 .fgt = FGT_TLBIVAALE1OS, 7344 .writefn = tlbi_aa64_vae1is_write }, 7345 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7346 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7347 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7348 .writefn = tlbi_aa64_alle2is_write }, 7349 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7350 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7351 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7352 .writefn = tlbi_aa64_vae2is_write }, 7353 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7354 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7355 .access = PL2_W, .type = ARM_CP_NO_RAW, 7356 .writefn = tlbi_aa64_alle1is_write }, 7357 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7358 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7359 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7360 .writefn = tlbi_aa64_vae2is_write }, 7361 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7362 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7363 .access = PL2_W, .type = ARM_CP_NO_RAW, 7364 .writefn = tlbi_aa64_alle1is_write }, 7365 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7366 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7367 .access = PL2_W, .type = ARM_CP_NOP }, 7368 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7369 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7370 .access = PL2_W, .type = ARM_CP_NOP }, 7371 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7372 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7373 .access = PL2_W, .type = ARM_CP_NOP }, 7374 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7375 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7376 .access = PL2_W, .type = ARM_CP_NOP }, 7377 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7378 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7379 .access = PL3_W, .type = ARM_CP_NO_RAW, 7380 .writefn = tlbi_aa64_alle3is_write }, 7381 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7382 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7383 .access = PL3_W, .type = ARM_CP_NO_RAW, 7384 .writefn = tlbi_aa64_vae3is_write }, 7385 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7386 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7387 .access = PL3_W, .type = ARM_CP_NO_RAW, 7388 .writefn = tlbi_aa64_vae3is_write }, 7389 }; 7390 7391 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7392 { 7393 Error *err = NULL; 7394 uint64_t ret; 7395 7396 /* Success sets NZCV = 0000. */ 7397 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7398 7399 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7400 /* 7401 * ??? Failed, for unknown reasons in the crypto subsystem. 7402 * The best we can do is log the reason and return the 7403 * timed-out indication to the guest. There is no reason 7404 * we know to expect this failure to be transitory, so the 7405 * guest may well hang retrying the operation. 7406 */ 7407 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7408 ri->name, error_get_pretty(err)); 7409 error_free(err); 7410 7411 env->ZF = 0; /* NZCF = 0100 */ 7412 return 0; 7413 } 7414 return ret; 7415 } 7416 7417 /* We do not support re-seeding, so the two registers operate the same. */ 7418 static const ARMCPRegInfo rndr_reginfo[] = { 7419 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7420 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7421 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7422 .access = PL0_R, .readfn = rndr_readfn }, 7423 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7424 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7425 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7426 .access = PL0_R, .readfn = rndr_readfn }, 7427 }; 7428 7429 #ifndef CONFIG_USER_ONLY 7430 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7431 uint64_t value) 7432 { 7433 ARMCPU *cpu = env_archcpu(env); 7434 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7435 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7436 uint64_t vaddr_in = (uint64_t) value; 7437 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7438 void *haddr; 7439 int mem_idx = cpu_mmu_index(env, false); 7440 7441 /* This won't be crossing page boundaries */ 7442 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7443 if (haddr) { 7444 7445 ram_addr_t offset; 7446 MemoryRegion *mr; 7447 7448 /* RCU lock is already being held */ 7449 mr = memory_region_from_host(haddr, &offset); 7450 7451 if (mr) { 7452 memory_region_writeback(mr, offset, dline_size); 7453 } 7454 } 7455 } 7456 7457 static const ARMCPRegInfo dcpop_reg[] = { 7458 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7459 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7460 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7461 .fgt = FGT_DCCVAP, 7462 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7463 }; 7464 7465 static const ARMCPRegInfo dcpodp_reg[] = { 7466 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7467 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7468 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7469 .fgt = FGT_DCCVADP, 7470 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7471 }; 7472 #endif /*CONFIG_USER_ONLY*/ 7473 7474 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7475 bool isread) 7476 { 7477 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7478 return CP_ACCESS_TRAP_EL2; 7479 } 7480 7481 return CP_ACCESS_OK; 7482 } 7483 7484 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7485 bool isread) 7486 { 7487 int el = arm_current_el(env); 7488 7489 if (el < 2 && arm_is_el2_enabled(env)) { 7490 uint64_t hcr = arm_hcr_el2_eff(env); 7491 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7492 return CP_ACCESS_TRAP_EL2; 7493 } 7494 } 7495 if (el < 3 && 7496 arm_feature(env, ARM_FEATURE_EL3) && 7497 !(env->cp15.scr_el3 & SCR_ATA)) { 7498 return CP_ACCESS_TRAP_EL3; 7499 } 7500 return CP_ACCESS_OK; 7501 } 7502 7503 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7504 { 7505 return env->pstate & PSTATE_TCO; 7506 } 7507 7508 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7509 { 7510 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7511 } 7512 7513 static const ARMCPRegInfo mte_reginfo[] = { 7514 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7515 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7516 .access = PL1_RW, .accessfn = access_mte, 7517 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7518 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7519 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7520 .access = PL1_RW, .accessfn = access_mte, 7521 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7522 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7523 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7524 .access = PL2_RW, .accessfn = access_mte, 7525 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7526 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7527 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7528 .access = PL3_RW, 7529 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7530 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7531 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7532 .access = PL1_RW, .accessfn = access_mte, 7533 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7534 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7535 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7536 .access = PL1_RW, .accessfn = access_mte, 7537 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7538 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7539 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7540 .access = PL1_R, .accessfn = access_aa64_tid5, 7541 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7542 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7543 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7544 .type = ARM_CP_NO_RAW, 7545 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7546 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7547 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7548 .type = ARM_CP_NOP, .access = PL1_W, 7549 .fgt = FGT_DCIVAC, 7550 .accessfn = aa64_cacheop_poc_access }, 7551 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7552 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7553 .fgt = FGT_DCISW, 7554 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7555 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7556 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7557 .type = ARM_CP_NOP, .access = PL1_W, 7558 .fgt = FGT_DCIVAC, 7559 .accessfn = aa64_cacheop_poc_access }, 7560 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7562 .fgt = FGT_DCISW, 7563 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7564 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7565 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7566 .fgt = FGT_DCCSW, 7567 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7568 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7569 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7570 .fgt = FGT_DCCSW, 7571 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7572 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7573 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7574 .fgt = FGT_DCCISW, 7575 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7576 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7577 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7578 .fgt = FGT_DCCISW, 7579 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7580 }; 7581 7582 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7583 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7584 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7585 .type = ARM_CP_CONST, .access = PL0_RW, }, 7586 }; 7587 7588 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7589 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7590 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7591 .type = ARM_CP_NOP, .access = PL0_W, 7592 .fgt = FGT_DCCVAC, 7593 .accessfn = aa64_cacheop_poc_access }, 7594 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7595 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7596 .type = ARM_CP_NOP, .access = PL0_W, 7597 .fgt = FGT_DCCVAC, 7598 .accessfn = aa64_cacheop_poc_access }, 7599 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7600 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7601 .type = ARM_CP_NOP, .access = PL0_W, 7602 .fgt = FGT_DCCVAP, 7603 .accessfn = aa64_cacheop_poc_access }, 7604 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7605 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7606 .type = ARM_CP_NOP, .access = PL0_W, 7607 .fgt = FGT_DCCVAP, 7608 .accessfn = aa64_cacheop_poc_access }, 7609 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7610 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7611 .type = ARM_CP_NOP, .access = PL0_W, 7612 .fgt = FGT_DCCVADP, 7613 .accessfn = aa64_cacheop_poc_access }, 7614 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7615 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7616 .type = ARM_CP_NOP, .access = PL0_W, 7617 .fgt = FGT_DCCVADP, 7618 .accessfn = aa64_cacheop_poc_access }, 7619 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7620 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7621 .type = ARM_CP_NOP, .access = PL0_W, 7622 .fgt = FGT_DCCIVAC, 7623 .accessfn = aa64_cacheop_poc_access }, 7624 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7625 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7626 .type = ARM_CP_NOP, .access = PL0_W, 7627 .fgt = FGT_DCCIVAC, 7628 .accessfn = aa64_cacheop_poc_access }, 7629 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7630 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7631 .access = PL0_W, .type = ARM_CP_DC_GVA, 7632 #ifndef CONFIG_USER_ONLY 7633 /* Avoid overhead of an access check that always passes in user-mode */ 7634 .accessfn = aa64_zva_access, 7635 .fgt = FGT_DCZVA, 7636 #endif 7637 }, 7638 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7639 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7640 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7641 #ifndef CONFIG_USER_ONLY 7642 /* Avoid overhead of an access check that always passes in user-mode */ 7643 .accessfn = aa64_zva_access, 7644 .fgt = FGT_DCZVA, 7645 #endif 7646 }, 7647 }; 7648 7649 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7650 bool isread) 7651 { 7652 uint64_t hcr = arm_hcr_el2_eff(env); 7653 int el = arm_current_el(env); 7654 7655 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7656 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7657 if (hcr & HCR_TGE) { 7658 return CP_ACCESS_TRAP_EL2; 7659 } 7660 return CP_ACCESS_TRAP; 7661 } 7662 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7663 return CP_ACCESS_TRAP_EL2; 7664 } 7665 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7666 return CP_ACCESS_TRAP_EL2; 7667 } 7668 if (el < 3 7669 && arm_feature(env, ARM_FEATURE_EL3) 7670 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7671 return CP_ACCESS_TRAP_EL3; 7672 } 7673 return CP_ACCESS_OK; 7674 } 7675 7676 static const ARMCPRegInfo scxtnum_reginfo[] = { 7677 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7678 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7679 .access = PL0_RW, .accessfn = access_scxtnum, 7680 .fgt = FGT_SCXTNUM_EL0, 7681 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7682 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7683 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7684 .access = PL1_RW, .accessfn = access_scxtnum, 7685 .fgt = FGT_SCXTNUM_EL1, 7686 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7687 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7688 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7689 .access = PL2_RW, .accessfn = access_scxtnum, 7690 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7691 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7692 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7693 .access = PL3_RW, 7694 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7695 }; 7696 7697 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7698 bool isread) 7699 { 7700 if (arm_current_el(env) == 2 && 7701 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7702 return CP_ACCESS_TRAP_EL3; 7703 } 7704 return CP_ACCESS_OK; 7705 } 7706 7707 static const ARMCPRegInfo fgt_reginfo[] = { 7708 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7709 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7710 .access = PL2_RW, .accessfn = access_fgt, 7711 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7712 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7713 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7714 .access = PL2_RW, .accessfn = access_fgt, 7715 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7716 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7717 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7718 .access = PL2_RW, .accessfn = access_fgt, 7719 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7720 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7721 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7722 .access = PL2_RW, .accessfn = access_fgt, 7723 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7724 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7725 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7726 .access = PL2_RW, .accessfn = access_fgt, 7727 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7728 }; 7729 #endif /* TARGET_AARCH64 */ 7730 7731 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7732 bool isread) 7733 { 7734 int el = arm_current_el(env); 7735 7736 if (el == 0) { 7737 uint64_t sctlr = arm_sctlr(env, el); 7738 if (!(sctlr & SCTLR_EnRCTX)) { 7739 return CP_ACCESS_TRAP; 7740 } 7741 } else if (el == 1) { 7742 uint64_t hcr = arm_hcr_el2_eff(env); 7743 if (hcr & HCR_NV) { 7744 return CP_ACCESS_TRAP_EL2; 7745 } 7746 } 7747 return CP_ACCESS_OK; 7748 } 7749 7750 static const ARMCPRegInfo predinv_reginfo[] = { 7751 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7752 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7753 .fgt = FGT_CFPRCTX, 7754 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7755 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7756 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7757 .fgt = FGT_DVPRCTX, 7758 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7759 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7760 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7761 .fgt = FGT_CPPRCTX, 7762 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7763 /* 7764 * Note the AArch32 opcodes have a different OPC1. 7765 */ 7766 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7767 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7768 .fgt = FGT_CFPRCTX, 7769 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7770 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7771 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7772 .fgt = FGT_DVPRCTX, 7773 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7774 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7775 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7776 .fgt = FGT_CPPRCTX, 7777 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7778 }; 7779 7780 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7781 { 7782 /* Read the high 32 bits of the current CCSIDR */ 7783 return extract64(ccsidr_read(env, ri), 32, 32); 7784 } 7785 7786 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7787 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7788 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7789 .access = PL1_R, 7790 .accessfn = access_tid4, 7791 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7792 }; 7793 7794 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7795 bool isread) 7796 { 7797 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7798 return CP_ACCESS_TRAP_EL2; 7799 } 7800 7801 return CP_ACCESS_OK; 7802 } 7803 7804 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7805 bool isread) 7806 { 7807 if (arm_feature(env, ARM_FEATURE_V8)) { 7808 return access_aa64_tid3(env, ri, isread); 7809 } 7810 7811 return CP_ACCESS_OK; 7812 } 7813 7814 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7815 bool isread) 7816 { 7817 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7818 return CP_ACCESS_TRAP_EL2; 7819 } 7820 7821 return CP_ACCESS_OK; 7822 } 7823 7824 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7825 const ARMCPRegInfo *ri, bool isread) 7826 { 7827 /* 7828 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7829 * in v7A, not in v8A. 7830 */ 7831 if (!arm_feature(env, ARM_FEATURE_V8) && 7832 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7833 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7834 return CP_ACCESS_TRAP_EL2; 7835 } 7836 return CP_ACCESS_OK; 7837 } 7838 7839 static const ARMCPRegInfo jazelle_regs[] = { 7840 { .name = "JIDR", 7841 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7842 .access = PL1_R, .accessfn = access_jazelle, 7843 .type = ARM_CP_CONST, .resetvalue = 0 }, 7844 { .name = "JOSCR", 7845 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7846 .accessfn = access_joscr_jmcr, 7847 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7848 { .name = "JMCR", 7849 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7850 .accessfn = access_joscr_jmcr, 7851 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7852 }; 7853 7854 static const ARMCPRegInfo contextidr_el2 = { 7855 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7856 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7857 .access = PL2_RW, 7858 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7859 }; 7860 7861 static const ARMCPRegInfo vhe_reginfo[] = { 7862 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7863 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7864 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7865 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7866 #ifndef CONFIG_USER_ONLY 7867 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7868 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7869 .fieldoffset = 7870 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7871 .type = ARM_CP_IO, .access = PL2_RW, 7872 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7873 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7874 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7875 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7876 .resetfn = gt_hv_timer_reset, 7877 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7878 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7879 .type = ARM_CP_IO, 7880 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7881 .access = PL2_RW, 7882 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7883 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7884 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7885 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7886 .type = ARM_CP_IO | ARM_CP_ALIAS, 7887 .access = PL2_RW, .accessfn = e2h_access, 7888 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7889 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7890 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7891 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7892 .type = ARM_CP_IO | ARM_CP_ALIAS, 7893 .access = PL2_RW, .accessfn = e2h_access, 7894 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7895 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7896 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7897 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7898 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7899 .access = PL2_RW, .accessfn = e2h_access, 7900 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7901 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7902 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7903 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7904 .access = PL2_RW, .accessfn = e2h_access, 7905 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7906 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7907 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7908 .type = ARM_CP_IO | ARM_CP_ALIAS, 7909 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7910 .access = PL2_RW, .accessfn = e2h_access, 7911 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7912 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7913 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7914 .type = ARM_CP_IO | ARM_CP_ALIAS, 7915 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7916 .access = PL2_RW, .accessfn = e2h_access, 7917 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7918 #endif 7919 }; 7920 7921 #ifndef CONFIG_USER_ONLY 7922 static const ARMCPRegInfo ats1e1_reginfo[] = { 7923 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7924 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7925 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7926 .fgt = FGT_ATS1E1RP, 7927 .writefn = ats_write64 }, 7928 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7929 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7930 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7931 .fgt = FGT_ATS1E1WP, 7932 .writefn = ats_write64 }, 7933 }; 7934 7935 static const ARMCPRegInfo ats1cp_reginfo[] = { 7936 { .name = "ATS1CPRP", 7937 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7938 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7939 .writefn = ats_write }, 7940 { .name = "ATS1CPWP", 7941 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7942 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7943 .writefn = ats_write }, 7944 }; 7945 #endif 7946 7947 /* 7948 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7949 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7950 * is non-zero, which is never for ARMv7, optionally in ARMv8 7951 * and mandatorily for ARMv8.2 and up. 7952 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7953 * implementation is RAZ/WI we can ignore this detail, as we 7954 * do for ACTLR. 7955 */ 7956 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7957 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7958 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7959 .access = PL1_RW, .accessfn = access_tacr, 7960 .type = ARM_CP_CONST, .resetvalue = 0 }, 7961 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7962 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7963 .access = PL2_RW, .type = ARM_CP_CONST, 7964 .resetvalue = 0 }, 7965 }; 7966 7967 void register_cp_regs_for_features(ARMCPU *cpu) 7968 { 7969 /* Register all the coprocessor registers based on feature bits */ 7970 CPUARMState *env = &cpu->env; 7971 if (arm_feature(env, ARM_FEATURE_M)) { 7972 /* M profile has no coprocessor registers */ 7973 return; 7974 } 7975 7976 define_arm_cp_regs(cpu, cp_reginfo); 7977 if (!arm_feature(env, ARM_FEATURE_V8)) { 7978 /* 7979 * Must go early as it is full of wildcards that may be 7980 * overridden by later definitions. 7981 */ 7982 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7983 } 7984 7985 if (arm_feature(env, ARM_FEATURE_V6)) { 7986 /* The ID registers all have impdef reset values */ 7987 ARMCPRegInfo v6_idregs[] = { 7988 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7990 .access = PL1_R, .type = ARM_CP_CONST, 7991 .accessfn = access_aa32_tid3, 7992 .resetvalue = cpu->isar.id_pfr0 }, 7993 /* 7994 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7995 * the value of the GIC field until after we define these regs. 7996 */ 7997 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7999 .access = PL1_R, .type = ARM_CP_NO_RAW, 8000 .accessfn = access_aa32_tid3, 8001 .readfn = id_pfr1_read, 8002 .writefn = arm_cp_write_ignore }, 8003 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8005 .access = PL1_R, .type = ARM_CP_CONST, 8006 .accessfn = access_aa32_tid3, 8007 .resetvalue = cpu->isar.id_dfr0 }, 8008 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8010 .access = PL1_R, .type = ARM_CP_CONST, 8011 .accessfn = access_aa32_tid3, 8012 .resetvalue = cpu->id_afr0 }, 8013 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8015 .access = PL1_R, .type = ARM_CP_CONST, 8016 .accessfn = access_aa32_tid3, 8017 .resetvalue = cpu->isar.id_mmfr0 }, 8018 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8020 .access = PL1_R, .type = ARM_CP_CONST, 8021 .accessfn = access_aa32_tid3, 8022 .resetvalue = cpu->isar.id_mmfr1 }, 8023 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8025 .access = PL1_R, .type = ARM_CP_CONST, 8026 .accessfn = access_aa32_tid3, 8027 .resetvalue = cpu->isar.id_mmfr2 }, 8028 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8030 .access = PL1_R, .type = ARM_CP_CONST, 8031 .accessfn = access_aa32_tid3, 8032 .resetvalue = cpu->isar.id_mmfr3 }, 8033 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8035 .access = PL1_R, .type = ARM_CP_CONST, 8036 .accessfn = access_aa32_tid3, 8037 .resetvalue = cpu->isar.id_isar0 }, 8038 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8040 .access = PL1_R, .type = ARM_CP_CONST, 8041 .accessfn = access_aa32_tid3, 8042 .resetvalue = cpu->isar.id_isar1 }, 8043 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8045 .access = PL1_R, .type = ARM_CP_CONST, 8046 .accessfn = access_aa32_tid3, 8047 .resetvalue = cpu->isar.id_isar2 }, 8048 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8050 .access = PL1_R, .type = ARM_CP_CONST, 8051 .accessfn = access_aa32_tid3, 8052 .resetvalue = cpu->isar.id_isar3 }, 8053 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8055 .access = PL1_R, .type = ARM_CP_CONST, 8056 .accessfn = access_aa32_tid3, 8057 .resetvalue = cpu->isar.id_isar4 }, 8058 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8059 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8060 .access = PL1_R, .type = ARM_CP_CONST, 8061 .accessfn = access_aa32_tid3, 8062 .resetvalue = cpu->isar.id_isar5 }, 8063 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8064 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8065 .access = PL1_R, .type = ARM_CP_CONST, 8066 .accessfn = access_aa32_tid3, 8067 .resetvalue = cpu->isar.id_mmfr4 }, 8068 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8069 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8070 .access = PL1_R, .type = ARM_CP_CONST, 8071 .accessfn = access_aa32_tid3, 8072 .resetvalue = cpu->isar.id_isar6 }, 8073 }; 8074 define_arm_cp_regs(cpu, v6_idregs); 8075 define_arm_cp_regs(cpu, v6_cp_reginfo); 8076 } else { 8077 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8078 } 8079 if (arm_feature(env, ARM_FEATURE_V6K)) { 8080 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8081 } 8082 if (arm_feature(env, ARM_FEATURE_V7MP) && 8083 !arm_feature(env, ARM_FEATURE_PMSA)) { 8084 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8085 } 8086 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8087 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8088 } 8089 if (arm_feature(env, ARM_FEATURE_V7)) { 8090 ARMCPRegInfo clidr = { 8091 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8092 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8093 .access = PL1_R, .type = ARM_CP_CONST, 8094 .accessfn = access_tid4, 8095 .fgt = FGT_CLIDR_EL1, 8096 .resetvalue = cpu->clidr 8097 }; 8098 define_one_arm_cp_reg(cpu, &clidr); 8099 define_arm_cp_regs(cpu, v7_cp_reginfo); 8100 define_debug_regs(cpu); 8101 define_pmu_regs(cpu); 8102 } else { 8103 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8104 } 8105 if (arm_feature(env, ARM_FEATURE_V8)) { 8106 /* 8107 * v8 ID registers, which all have impdef reset values. 8108 * Note that within the ID register ranges the unused slots 8109 * must all RAZ, not UNDEF; future architecture versions may 8110 * define new registers here. 8111 * ID registers which are AArch64 views of the AArch32 ID registers 8112 * which already existed in v6 and v7 are handled elsewhere, 8113 * in v6_idregs[]. 8114 */ 8115 int i; 8116 ARMCPRegInfo v8_idregs[] = { 8117 /* 8118 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8119 * emulation because we don't know the right value for the 8120 * GIC field until after we define these regs. 8121 */ 8122 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8123 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8124 .access = PL1_R, 8125 #ifdef CONFIG_USER_ONLY 8126 .type = ARM_CP_CONST, 8127 .resetvalue = cpu->isar.id_aa64pfr0 8128 #else 8129 .type = ARM_CP_NO_RAW, 8130 .accessfn = access_aa64_tid3, 8131 .readfn = id_aa64pfr0_read, 8132 .writefn = arm_cp_write_ignore 8133 #endif 8134 }, 8135 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8136 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8137 .access = PL1_R, .type = ARM_CP_CONST, 8138 .accessfn = access_aa64_tid3, 8139 .resetvalue = cpu->isar.id_aa64pfr1}, 8140 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8141 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8142 .access = PL1_R, .type = ARM_CP_CONST, 8143 .accessfn = access_aa64_tid3, 8144 .resetvalue = 0 }, 8145 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8147 .access = PL1_R, .type = ARM_CP_CONST, 8148 .accessfn = access_aa64_tid3, 8149 .resetvalue = 0 }, 8150 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8151 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8152 .access = PL1_R, .type = ARM_CP_CONST, 8153 .accessfn = access_aa64_tid3, 8154 .resetvalue = cpu->isar.id_aa64zfr0 }, 8155 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8156 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8157 .access = PL1_R, .type = ARM_CP_CONST, 8158 .accessfn = access_aa64_tid3, 8159 .resetvalue = cpu->isar.id_aa64smfr0 }, 8160 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8161 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8162 .access = PL1_R, .type = ARM_CP_CONST, 8163 .accessfn = access_aa64_tid3, 8164 .resetvalue = 0 }, 8165 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8167 .access = PL1_R, .type = ARM_CP_CONST, 8168 .accessfn = access_aa64_tid3, 8169 .resetvalue = 0 }, 8170 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8172 .access = PL1_R, .type = ARM_CP_CONST, 8173 .accessfn = access_aa64_tid3, 8174 .resetvalue = cpu->isar.id_aa64dfr0 }, 8175 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8176 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8177 .access = PL1_R, .type = ARM_CP_CONST, 8178 .accessfn = access_aa64_tid3, 8179 .resetvalue = cpu->isar.id_aa64dfr1 }, 8180 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8181 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8182 .access = PL1_R, .type = ARM_CP_CONST, 8183 .accessfn = access_aa64_tid3, 8184 .resetvalue = 0 }, 8185 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8186 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8187 .access = PL1_R, .type = ARM_CP_CONST, 8188 .accessfn = access_aa64_tid3, 8189 .resetvalue = 0 }, 8190 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8191 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8192 .access = PL1_R, .type = ARM_CP_CONST, 8193 .accessfn = access_aa64_tid3, 8194 .resetvalue = cpu->id_aa64afr0 }, 8195 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8196 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8197 .access = PL1_R, .type = ARM_CP_CONST, 8198 .accessfn = access_aa64_tid3, 8199 .resetvalue = cpu->id_aa64afr1 }, 8200 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8201 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8202 .access = PL1_R, .type = ARM_CP_CONST, 8203 .accessfn = access_aa64_tid3, 8204 .resetvalue = 0 }, 8205 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8206 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8207 .access = PL1_R, .type = ARM_CP_CONST, 8208 .accessfn = access_aa64_tid3, 8209 .resetvalue = 0 }, 8210 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8211 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8212 .access = PL1_R, .type = ARM_CP_CONST, 8213 .accessfn = access_aa64_tid3, 8214 .resetvalue = cpu->isar.id_aa64isar0 }, 8215 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8216 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8217 .access = PL1_R, .type = ARM_CP_CONST, 8218 .accessfn = access_aa64_tid3, 8219 .resetvalue = cpu->isar.id_aa64isar1 }, 8220 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8221 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8222 .access = PL1_R, .type = ARM_CP_CONST, 8223 .accessfn = access_aa64_tid3, 8224 .resetvalue = 0 }, 8225 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8226 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8227 .access = PL1_R, .type = ARM_CP_CONST, 8228 .accessfn = access_aa64_tid3, 8229 .resetvalue = 0 }, 8230 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8231 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8232 .access = PL1_R, .type = ARM_CP_CONST, 8233 .accessfn = access_aa64_tid3, 8234 .resetvalue = 0 }, 8235 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8236 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8237 .access = PL1_R, .type = ARM_CP_CONST, 8238 .accessfn = access_aa64_tid3, 8239 .resetvalue = 0 }, 8240 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8241 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8242 .access = PL1_R, .type = ARM_CP_CONST, 8243 .accessfn = access_aa64_tid3, 8244 .resetvalue = 0 }, 8245 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8246 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8247 .access = PL1_R, .type = ARM_CP_CONST, 8248 .accessfn = access_aa64_tid3, 8249 .resetvalue = 0 }, 8250 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8251 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8252 .access = PL1_R, .type = ARM_CP_CONST, 8253 .accessfn = access_aa64_tid3, 8254 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8255 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8256 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8257 .access = PL1_R, .type = ARM_CP_CONST, 8258 .accessfn = access_aa64_tid3, 8259 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8260 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8261 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8262 .access = PL1_R, .type = ARM_CP_CONST, 8263 .accessfn = access_aa64_tid3, 8264 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8265 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8266 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8267 .access = PL1_R, .type = ARM_CP_CONST, 8268 .accessfn = access_aa64_tid3, 8269 .resetvalue = 0 }, 8270 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8271 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8272 .access = PL1_R, .type = ARM_CP_CONST, 8273 .accessfn = access_aa64_tid3, 8274 .resetvalue = 0 }, 8275 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8277 .access = PL1_R, .type = ARM_CP_CONST, 8278 .accessfn = access_aa64_tid3, 8279 .resetvalue = 0 }, 8280 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8282 .access = PL1_R, .type = ARM_CP_CONST, 8283 .accessfn = access_aa64_tid3, 8284 .resetvalue = 0 }, 8285 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8286 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8287 .access = PL1_R, .type = ARM_CP_CONST, 8288 .accessfn = access_aa64_tid3, 8289 .resetvalue = 0 }, 8290 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8291 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8292 .access = PL1_R, .type = ARM_CP_CONST, 8293 .accessfn = access_aa64_tid3, 8294 .resetvalue = cpu->isar.mvfr0 }, 8295 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8297 .access = PL1_R, .type = ARM_CP_CONST, 8298 .accessfn = access_aa64_tid3, 8299 .resetvalue = cpu->isar.mvfr1 }, 8300 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8301 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8302 .access = PL1_R, .type = ARM_CP_CONST, 8303 .accessfn = access_aa64_tid3, 8304 .resetvalue = cpu->isar.mvfr2 }, 8305 /* 8306 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8307 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8308 * as RAZ, since it is in the "reserved for future ID 8309 * registers, RAZ" part of the AArch32 encoding space. 8310 */ 8311 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8312 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8313 .access = PL1_R, .type = ARM_CP_CONST, 8314 .accessfn = access_aa64_tid3, 8315 .resetvalue = 0 }, 8316 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8317 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8318 .access = PL1_R, .type = ARM_CP_CONST, 8319 .accessfn = access_aa64_tid3, 8320 .resetvalue = 0 }, 8321 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8322 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8323 .access = PL1_R, .type = ARM_CP_CONST, 8324 .accessfn = access_aa64_tid3, 8325 .resetvalue = 0 }, 8326 /* 8327 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8328 * they're also RAZ for AArch64, and in v8 are gradually 8329 * being filled with AArch64-view-of-AArch32-ID-register 8330 * for new ID registers. 8331 */ 8332 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8334 .access = PL1_R, .type = ARM_CP_CONST, 8335 .accessfn = access_aa64_tid3, 8336 .resetvalue = 0 }, 8337 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8338 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8339 .access = PL1_R, .type = ARM_CP_CONST, 8340 .accessfn = access_aa64_tid3, 8341 .resetvalue = cpu->isar.id_pfr2 }, 8342 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8343 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8344 .access = PL1_R, .type = ARM_CP_CONST, 8345 .accessfn = access_aa64_tid3, 8346 .resetvalue = cpu->isar.id_dfr1 }, 8347 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8348 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8349 .access = PL1_R, .type = ARM_CP_CONST, 8350 .accessfn = access_aa64_tid3, 8351 .resetvalue = cpu->isar.id_mmfr5 }, 8352 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8354 .access = PL1_R, .type = ARM_CP_CONST, 8355 .accessfn = access_aa64_tid3, 8356 .resetvalue = 0 }, 8357 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8358 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8359 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8360 .fgt = FGT_PMCEIDN_EL0, 8361 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8362 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8363 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8364 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8365 .fgt = FGT_PMCEIDN_EL0, 8366 .resetvalue = cpu->pmceid0 }, 8367 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8368 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8369 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8370 .fgt = FGT_PMCEIDN_EL0, 8371 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8372 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8373 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8374 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8375 .fgt = FGT_PMCEIDN_EL0, 8376 .resetvalue = cpu->pmceid1 }, 8377 }; 8378 #ifdef CONFIG_USER_ONLY 8379 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8380 { .name = "ID_AA64PFR0_EL1", 8381 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8382 R_ID_AA64PFR0_ADVSIMD_MASK | 8383 R_ID_AA64PFR0_SVE_MASK | 8384 R_ID_AA64PFR0_DIT_MASK, 8385 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8386 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8387 { .name = "ID_AA64PFR1_EL1", 8388 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8389 R_ID_AA64PFR1_SSBS_MASK | 8390 R_ID_AA64PFR1_MTE_MASK | 8391 R_ID_AA64PFR1_SME_MASK }, 8392 { .name = "ID_AA64PFR*_EL1_RESERVED", 8393 .is_glob = true }, 8394 { .name = "ID_AA64ZFR0_EL1", 8395 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8396 R_ID_AA64ZFR0_AES_MASK | 8397 R_ID_AA64ZFR0_BITPERM_MASK | 8398 R_ID_AA64ZFR0_BFLOAT16_MASK | 8399 R_ID_AA64ZFR0_SHA3_MASK | 8400 R_ID_AA64ZFR0_SM4_MASK | 8401 R_ID_AA64ZFR0_I8MM_MASK | 8402 R_ID_AA64ZFR0_F32MM_MASK | 8403 R_ID_AA64ZFR0_F64MM_MASK }, 8404 { .name = "ID_AA64SMFR0_EL1", 8405 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8406 R_ID_AA64SMFR0_B16F32_MASK | 8407 R_ID_AA64SMFR0_F16F32_MASK | 8408 R_ID_AA64SMFR0_I8I32_MASK | 8409 R_ID_AA64SMFR0_F64F64_MASK | 8410 R_ID_AA64SMFR0_I16I64_MASK | 8411 R_ID_AA64SMFR0_FA64_MASK }, 8412 { .name = "ID_AA64MMFR0_EL1", 8413 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8414 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8415 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8416 { .name = "ID_AA64MMFR1_EL1", 8417 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8418 { .name = "ID_AA64MMFR2_EL1", 8419 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8420 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8421 .is_glob = true }, 8422 { .name = "ID_AA64DFR0_EL1", 8423 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8424 { .name = "ID_AA64DFR1_EL1" }, 8425 { .name = "ID_AA64DFR*_EL1_RESERVED", 8426 .is_glob = true }, 8427 { .name = "ID_AA64AFR*", 8428 .is_glob = true }, 8429 { .name = "ID_AA64ISAR0_EL1", 8430 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8431 R_ID_AA64ISAR0_SHA1_MASK | 8432 R_ID_AA64ISAR0_SHA2_MASK | 8433 R_ID_AA64ISAR0_CRC32_MASK | 8434 R_ID_AA64ISAR0_ATOMIC_MASK | 8435 R_ID_AA64ISAR0_RDM_MASK | 8436 R_ID_AA64ISAR0_SHA3_MASK | 8437 R_ID_AA64ISAR0_SM3_MASK | 8438 R_ID_AA64ISAR0_SM4_MASK | 8439 R_ID_AA64ISAR0_DP_MASK | 8440 R_ID_AA64ISAR0_FHM_MASK | 8441 R_ID_AA64ISAR0_TS_MASK | 8442 R_ID_AA64ISAR0_RNDR_MASK }, 8443 { .name = "ID_AA64ISAR1_EL1", 8444 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8445 R_ID_AA64ISAR1_APA_MASK | 8446 R_ID_AA64ISAR1_API_MASK | 8447 R_ID_AA64ISAR1_JSCVT_MASK | 8448 R_ID_AA64ISAR1_FCMA_MASK | 8449 R_ID_AA64ISAR1_LRCPC_MASK | 8450 R_ID_AA64ISAR1_GPA_MASK | 8451 R_ID_AA64ISAR1_GPI_MASK | 8452 R_ID_AA64ISAR1_FRINTTS_MASK | 8453 R_ID_AA64ISAR1_SB_MASK | 8454 R_ID_AA64ISAR1_BF16_MASK | 8455 R_ID_AA64ISAR1_DGH_MASK | 8456 R_ID_AA64ISAR1_I8MM_MASK }, 8457 { .name = "ID_AA64ISAR2_EL1", 8458 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8459 R_ID_AA64ISAR2_RPRES_MASK | 8460 R_ID_AA64ISAR2_GPA3_MASK | 8461 R_ID_AA64ISAR2_APA3_MASK }, 8462 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8463 .is_glob = true }, 8464 }; 8465 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8466 #endif 8467 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8468 if (!arm_feature(env, ARM_FEATURE_EL3) && 8469 !arm_feature(env, ARM_FEATURE_EL2)) { 8470 ARMCPRegInfo rvbar = { 8471 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8472 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8473 .access = PL1_R, 8474 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8475 }; 8476 define_one_arm_cp_reg(cpu, &rvbar); 8477 } 8478 define_arm_cp_regs(cpu, v8_idregs); 8479 define_arm_cp_regs(cpu, v8_cp_reginfo); 8480 8481 for (i = 4; i < 16; i++) { 8482 /* 8483 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8484 * For pre-v8 cores there are RAZ patterns for these in 8485 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8486 * v8 extends the "must RAZ" part of the ID register space 8487 * to also cover c0, 0, c{8-15}, {0-7}. 8488 * These are STATE_AA32 because in the AArch64 sysreg space 8489 * c4-c7 is where the AArch64 ID registers live (and we've 8490 * already defined those in v8_idregs[]), and c8-c15 are not 8491 * "must RAZ" for AArch64. 8492 */ 8493 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8494 ARMCPRegInfo v8_aa32_raz_idregs = { 8495 .name = name, 8496 .state = ARM_CP_STATE_AA32, 8497 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8498 .access = PL1_R, .type = ARM_CP_CONST, 8499 .accessfn = access_aa64_tid3, 8500 .resetvalue = 0 }; 8501 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8502 } 8503 } 8504 8505 /* 8506 * Register the base EL2 cpregs. 8507 * Pre v8, these registers are implemented only as part of the 8508 * Virtualization Extensions (EL2 present). Beginning with v8, 8509 * if EL2 is missing but EL3 is enabled, mostly these become 8510 * RES0 from EL3, with some specific exceptions. 8511 */ 8512 if (arm_feature(env, ARM_FEATURE_EL2) 8513 || (arm_feature(env, ARM_FEATURE_EL3) 8514 && arm_feature(env, ARM_FEATURE_V8))) { 8515 uint64_t vmpidr_def = mpidr_read_val(env); 8516 ARMCPRegInfo vpidr_regs[] = { 8517 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8518 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8519 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8520 .resetvalue = cpu->midr, 8521 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8522 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8523 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8524 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8525 .access = PL2_RW, .resetvalue = cpu->midr, 8526 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8527 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8528 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8529 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8530 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8531 .resetvalue = vmpidr_def, 8532 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8533 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8534 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8535 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8536 .access = PL2_RW, .resetvalue = vmpidr_def, 8537 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8538 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8539 }; 8540 /* 8541 * The only field of MDCR_EL2 that has a defined architectural reset 8542 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8543 */ 8544 ARMCPRegInfo mdcr_el2 = { 8545 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8546 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8547 .writefn = mdcr_el2_write, 8548 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8549 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8550 }; 8551 define_one_arm_cp_reg(cpu, &mdcr_el2); 8552 define_arm_cp_regs(cpu, vpidr_regs); 8553 define_arm_cp_regs(cpu, el2_cp_reginfo); 8554 if (arm_feature(env, ARM_FEATURE_V8)) { 8555 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8556 } 8557 if (cpu_isar_feature(aa64_sel2, cpu)) { 8558 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8559 } 8560 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8561 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8562 ARMCPRegInfo rvbar[] = { 8563 { 8564 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8565 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8566 .access = PL2_R, 8567 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8568 }, 8569 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8570 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8571 .access = PL2_R, 8572 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8573 }, 8574 }; 8575 define_arm_cp_regs(cpu, rvbar); 8576 } 8577 } 8578 8579 /* Register the base EL3 cpregs. */ 8580 if (arm_feature(env, ARM_FEATURE_EL3)) { 8581 define_arm_cp_regs(cpu, el3_cp_reginfo); 8582 ARMCPRegInfo el3_regs[] = { 8583 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8584 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8585 .access = PL3_R, 8586 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8587 }, 8588 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8589 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8590 .access = PL3_RW, 8591 .raw_writefn = raw_write, .writefn = sctlr_write, 8592 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8593 .resetvalue = cpu->reset_sctlr }, 8594 }; 8595 8596 define_arm_cp_regs(cpu, el3_regs); 8597 } 8598 /* 8599 * The behaviour of NSACR is sufficiently various that we don't 8600 * try to describe it in a single reginfo: 8601 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8602 * reads as constant 0xc00 from NS EL1 and NS EL2 8603 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8604 * if v7 without EL3, register doesn't exist 8605 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8606 */ 8607 if (arm_feature(env, ARM_FEATURE_EL3)) { 8608 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8609 static const ARMCPRegInfo nsacr = { 8610 .name = "NSACR", .type = ARM_CP_CONST, 8611 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8612 .access = PL1_RW, .accessfn = nsacr_access, 8613 .resetvalue = 0xc00 8614 }; 8615 define_one_arm_cp_reg(cpu, &nsacr); 8616 } else { 8617 static const ARMCPRegInfo nsacr = { 8618 .name = "NSACR", 8619 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8620 .access = PL3_RW | PL1_R, 8621 .resetvalue = 0, 8622 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8623 }; 8624 define_one_arm_cp_reg(cpu, &nsacr); 8625 } 8626 } else { 8627 if (arm_feature(env, ARM_FEATURE_V8)) { 8628 static const ARMCPRegInfo nsacr = { 8629 .name = "NSACR", .type = ARM_CP_CONST, 8630 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8631 .access = PL1_R, 8632 .resetvalue = 0xc00 8633 }; 8634 define_one_arm_cp_reg(cpu, &nsacr); 8635 } 8636 } 8637 8638 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8639 if (arm_feature(env, ARM_FEATURE_V6)) { 8640 /* PMSAv6 not implemented */ 8641 assert(arm_feature(env, ARM_FEATURE_V7)); 8642 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8643 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8644 } else { 8645 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8646 } 8647 } else { 8648 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8649 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8650 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8651 if (cpu_isar_feature(aa32_hpd, cpu)) { 8652 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8653 } 8654 } 8655 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8656 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8657 } 8658 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8659 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8660 } 8661 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8662 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8663 } 8664 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8665 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8666 } 8667 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8668 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8669 } 8670 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8671 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8672 } 8673 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8674 define_arm_cp_regs(cpu, omap_cp_reginfo); 8675 } 8676 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8677 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8678 } 8679 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8680 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8681 } 8682 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8683 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8684 } 8685 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8686 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8687 } 8688 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8689 define_arm_cp_regs(cpu, jazelle_regs); 8690 } 8691 /* 8692 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8693 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8694 * be read-only (ie write causes UNDEF exception). 8695 */ 8696 { 8697 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8698 /* 8699 * Pre-v8 MIDR space. 8700 * Note that the MIDR isn't a simple constant register because 8701 * of the TI925 behaviour where writes to another register can 8702 * cause the MIDR value to change. 8703 * 8704 * Unimplemented registers in the c15 0 0 0 space default to 8705 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8706 * and friends override accordingly. 8707 */ 8708 { .name = "MIDR", 8709 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8710 .access = PL1_R, .resetvalue = cpu->midr, 8711 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8712 .readfn = midr_read, 8713 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8714 .type = ARM_CP_OVERRIDE }, 8715 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8716 { .name = "DUMMY", 8717 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8718 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8719 { .name = "DUMMY", 8720 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8721 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8722 { .name = "DUMMY", 8723 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8724 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8725 { .name = "DUMMY", 8726 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8727 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8728 { .name = "DUMMY", 8729 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8730 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8731 }; 8732 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8733 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8735 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8736 .fgt = FGT_MIDR_EL1, 8737 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8738 .readfn = midr_read }, 8739 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8740 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8741 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8742 .access = PL1_R, .resetvalue = cpu->midr }, 8743 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8745 .access = PL1_R, 8746 .accessfn = access_aa64_tid1, 8747 .fgt = FGT_REVIDR_EL1, 8748 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8749 }; 8750 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8751 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8752 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8753 .access = PL1_R, .resetvalue = cpu->midr 8754 }; 8755 ARMCPRegInfo id_cp_reginfo[] = { 8756 /* These are common to v8 and pre-v8 */ 8757 { .name = "CTR", 8758 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8759 .access = PL1_R, .accessfn = ctr_el0_access, 8760 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8761 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8762 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8763 .access = PL0_R, .accessfn = ctr_el0_access, 8764 .fgt = FGT_CTR_EL0, 8765 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8766 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8767 { .name = "TCMTR", 8768 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8769 .access = PL1_R, 8770 .accessfn = access_aa32_tid1, 8771 .type = ARM_CP_CONST, .resetvalue = 0 }, 8772 }; 8773 /* TLBTR is specific to VMSA */ 8774 ARMCPRegInfo id_tlbtr_reginfo = { 8775 .name = "TLBTR", 8776 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8777 .access = PL1_R, 8778 .accessfn = access_aa32_tid1, 8779 .type = ARM_CP_CONST, .resetvalue = 0, 8780 }; 8781 /* MPUIR is specific to PMSA V6+ */ 8782 ARMCPRegInfo id_mpuir_reginfo = { 8783 .name = "MPUIR", 8784 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8785 .access = PL1_R, .type = ARM_CP_CONST, 8786 .resetvalue = cpu->pmsav7_dregion << 8 8787 }; 8788 /* HMPUIR is specific to PMSA V8 */ 8789 ARMCPRegInfo id_hmpuir_reginfo = { 8790 .name = "HMPUIR", 8791 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8792 .access = PL2_R, .type = ARM_CP_CONST, 8793 .resetvalue = cpu->pmsav8r_hdregion 8794 }; 8795 static const ARMCPRegInfo crn0_wi_reginfo = { 8796 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8797 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8798 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8799 }; 8800 #ifdef CONFIG_USER_ONLY 8801 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8802 { .name = "MIDR_EL1", 8803 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8804 R_MIDR_EL1_PARTNUM_MASK | 8805 R_MIDR_EL1_ARCHITECTURE_MASK | 8806 R_MIDR_EL1_VARIANT_MASK | 8807 R_MIDR_EL1_IMPLEMENTER_MASK }, 8808 { .name = "REVIDR_EL1" }, 8809 }; 8810 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8811 #endif 8812 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8813 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8814 size_t i; 8815 /* 8816 * Register the blanket "writes ignored" value first to cover the 8817 * whole space. Then update the specific ID registers to allow write 8818 * access, so that they ignore writes rather than causing them to 8819 * UNDEF. 8820 */ 8821 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8822 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8823 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8824 } 8825 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8826 id_cp_reginfo[i].access = PL1_RW; 8827 } 8828 id_mpuir_reginfo.access = PL1_RW; 8829 id_tlbtr_reginfo.access = PL1_RW; 8830 } 8831 if (arm_feature(env, ARM_FEATURE_V8)) { 8832 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8833 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8834 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8835 } 8836 } else { 8837 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8838 } 8839 define_arm_cp_regs(cpu, id_cp_reginfo); 8840 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8841 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8842 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8843 arm_feature(env, ARM_FEATURE_V8)) { 8844 uint32_t i = 0; 8845 char *tmp_string; 8846 8847 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8848 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8849 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8850 8851 /* Register alias is only valid for first 32 indexes */ 8852 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8853 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8854 uint8_t opc1 = extract32(i, 4, 1); 8855 uint8_t opc2 = extract32(i, 0, 1) << 2; 8856 8857 tmp_string = g_strdup_printf("PRBAR%u", i); 8858 ARMCPRegInfo tmp_prbarn_reginfo = { 8859 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8860 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8861 .access = PL1_RW, .resetvalue = 0, 8862 .accessfn = access_tvm_trvm, 8863 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8864 }; 8865 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8866 g_free(tmp_string); 8867 8868 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8869 tmp_string = g_strdup_printf("PRLAR%u", i); 8870 ARMCPRegInfo tmp_prlarn_reginfo = { 8871 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8872 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8873 .access = PL1_RW, .resetvalue = 0, 8874 .accessfn = access_tvm_trvm, 8875 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8876 }; 8877 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8878 g_free(tmp_string); 8879 } 8880 8881 /* Register alias is only valid for first 32 indexes */ 8882 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8883 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8884 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8885 uint8_t opc2 = extract32(i, 0, 1) << 2; 8886 8887 tmp_string = g_strdup_printf("HPRBAR%u", i); 8888 ARMCPRegInfo tmp_hprbarn_reginfo = { 8889 .name = tmp_string, 8890 .type = ARM_CP_NO_RAW, 8891 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8892 .access = PL2_RW, .resetvalue = 0, 8893 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8894 }; 8895 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8896 g_free(tmp_string); 8897 8898 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8899 tmp_string = g_strdup_printf("HPRLAR%u", i); 8900 ARMCPRegInfo tmp_hprlarn_reginfo = { 8901 .name = tmp_string, 8902 .type = ARM_CP_NO_RAW, 8903 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8904 .access = PL2_RW, .resetvalue = 0, 8905 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8906 }; 8907 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8908 g_free(tmp_string); 8909 } 8910 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8911 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8912 } 8913 } 8914 8915 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8916 ARMCPRegInfo mpidr_cp_reginfo[] = { 8917 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8918 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8919 .fgt = FGT_MPIDR_EL1, 8920 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8921 }; 8922 #ifdef CONFIG_USER_ONLY 8923 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8924 { .name = "MPIDR_EL1", 8925 .fixed_bits = 0x0000000080000000 }, 8926 }; 8927 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8928 #endif 8929 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8930 } 8931 8932 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8933 ARMCPRegInfo auxcr_reginfo[] = { 8934 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8935 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8936 .access = PL1_RW, .accessfn = access_tacr, 8937 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8938 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8939 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8940 .access = PL2_RW, .type = ARM_CP_CONST, 8941 .resetvalue = 0 }, 8942 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8943 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8944 .access = PL3_RW, .type = ARM_CP_CONST, 8945 .resetvalue = 0 }, 8946 }; 8947 define_arm_cp_regs(cpu, auxcr_reginfo); 8948 if (cpu_isar_feature(aa32_ac2, cpu)) { 8949 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8950 } 8951 } 8952 8953 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8954 /* 8955 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8956 * There are two flavours: 8957 * (1) older 32-bit only cores have a simple 32-bit CBAR 8958 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8959 * 32-bit register visible to AArch32 at a different encoding 8960 * to the "flavour 1" register and with the bits rearranged to 8961 * be able to squash a 64-bit address into the 32-bit view. 8962 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8963 * in future if we support AArch32-only configs of some of the 8964 * AArch64 cores we might need to add a specific feature flag 8965 * to indicate cores with "flavour 2" CBAR. 8966 */ 8967 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8968 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8969 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8970 | extract64(cpu->reset_cbar, 32, 12); 8971 ARMCPRegInfo cbar_reginfo[] = { 8972 { .name = "CBAR", 8973 .type = ARM_CP_CONST, 8974 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8975 .access = PL1_R, .resetvalue = cbar32 }, 8976 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8977 .type = ARM_CP_CONST, 8978 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8979 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8980 }; 8981 /* We don't implement a r/w 64 bit CBAR currently */ 8982 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8983 define_arm_cp_regs(cpu, cbar_reginfo); 8984 } else { 8985 ARMCPRegInfo cbar = { 8986 .name = "CBAR", 8987 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8988 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 8989 .fieldoffset = offsetof(CPUARMState, 8990 cp15.c15_config_base_address) 8991 }; 8992 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8993 cbar.access = PL1_R; 8994 cbar.fieldoffset = 0; 8995 cbar.type = ARM_CP_CONST; 8996 } 8997 define_one_arm_cp_reg(cpu, &cbar); 8998 } 8999 } 9000 9001 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9002 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9003 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9004 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9005 .access = PL1_RW, .writefn = vbar_write, 9006 .fgt = FGT_VBAR_EL1, 9007 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9008 offsetof(CPUARMState, cp15.vbar_ns) }, 9009 .resetvalue = 0 }, 9010 }; 9011 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9012 } 9013 9014 /* Generic registers whose values depend on the implementation */ 9015 { 9016 ARMCPRegInfo sctlr = { 9017 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9018 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9019 .access = PL1_RW, .accessfn = access_tvm_trvm, 9020 .fgt = FGT_SCTLR_EL1, 9021 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9022 offsetof(CPUARMState, cp15.sctlr_ns) }, 9023 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9024 .raw_writefn = raw_write, 9025 }; 9026 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9027 /* 9028 * Normally we would always end the TB on an SCTLR write, but Linux 9029 * arch/arm/mach-pxa/sleep.S expects two instructions following 9030 * an MMU enable to execute from cache. Imitate this behaviour. 9031 */ 9032 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9033 } 9034 define_one_arm_cp_reg(cpu, &sctlr); 9035 9036 if (arm_feature(env, ARM_FEATURE_PMSA) && 9037 arm_feature(env, ARM_FEATURE_V8)) { 9038 ARMCPRegInfo vsctlr = { 9039 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9040 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9041 .access = PL2_RW, .resetvalue = 0x0, 9042 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9043 }; 9044 define_one_arm_cp_reg(cpu, &vsctlr); 9045 } 9046 } 9047 9048 if (cpu_isar_feature(aa64_lor, cpu)) { 9049 define_arm_cp_regs(cpu, lor_reginfo); 9050 } 9051 if (cpu_isar_feature(aa64_pan, cpu)) { 9052 define_one_arm_cp_reg(cpu, &pan_reginfo); 9053 } 9054 #ifndef CONFIG_USER_ONLY 9055 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9056 define_arm_cp_regs(cpu, ats1e1_reginfo); 9057 } 9058 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9059 define_arm_cp_regs(cpu, ats1cp_reginfo); 9060 } 9061 #endif 9062 if (cpu_isar_feature(aa64_uao, cpu)) { 9063 define_one_arm_cp_reg(cpu, &uao_reginfo); 9064 } 9065 9066 if (cpu_isar_feature(aa64_dit, cpu)) { 9067 define_one_arm_cp_reg(cpu, &dit_reginfo); 9068 } 9069 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9070 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9071 } 9072 if (cpu_isar_feature(any_ras, cpu)) { 9073 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9074 } 9075 9076 if (cpu_isar_feature(aa64_vh, cpu) || 9077 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9078 define_one_arm_cp_reg(cpu, &contextidr_el2); 9079 } 9080 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9081 define_arm_cp_regs(cpu, vhe_reginfo); 9082 } 9083 9084 if (cpu_isar_feature(aa64_sve, cpu)) { 9085 define_arm_cp_regs(cpu, zcr_reginfo); 9086 } 9087 9088 if (cpu_isar_feature(aa64_hcx, cpu)) { 9089 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9090 } 9091 9092 #ifdef TARGET_AARCH64 9093 if (cpu_isar_feature(aa64_sme, cpu)) { 9094 define_arm_cp_regs(cpu, sme_reginfo); 9095 } 9096 if (cpu_isar_feature(aa64_pauth, cpu)) { 9097 define_arm_cp_regs(cpu, pauth_reginfo); 9098 } 9099 if (cpu_isar_feature(aa64_rndr, cpu)) { 9100 define_arm_cp_regs(cpu, rndr_reginfo); 9101 } 9102 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9103 define_arm_cp_regs(cpu, tlbirange_reginfo); 9104 } 9105 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9106 define_arm_cp_regs(cpu, tlbios_reginfo); 9107 } 9108 #ifndef CONFIG_USER_ONLY 9109 /* Data Cache clean instructions up to PoP */ 9110 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9111 define_one_arm_cp_reg(cpu, dcpop_reg); 9112 9113 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9114 define_one_arm_cp_reg(cpu, dcpodp_reg); 9115 } 9116 } 9117 #endif /*CONFIG_USER_ONLY*/ 9118 9119 /* 9120 * If full MTE is enabled, add all of the system registers. 9121 * If only "instructions available at EL0" are enabled, 9122 * then define only a RAZ/WI version of PSTATE.TCO. 9123 */ 9124 if (cpu_isar_feature(aa64_mte, cpu)) { 9125 define_arm_cp_regs(cpu, mte_reginfo); 9126 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9127 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9128 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9129 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9130 } 9131 9132 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9133 define_arm_cp_regs(cpu, scxtnum_reginfo); 9134 } 9135 9136 if (cpu_isar_feature(aa64_fgt, cpu)) { 9137 define_arm_cp_regs(cpu, fgt_reginfo); 9138 } 9139 #endif 9140 9141 if (cpu_isar_feature(any_predinv, cpu)) { 9142 define_arm_cp_regs(cpu, predinv_reginfo); 9143 } 9144 9145 if (cpu_isar_feature(any_ccidx, cpu)) { 9146 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9147 } 9148 9149 #ifndef CONFIG_USER_ONLY 9150 /* 9151 * Register redirections and aliases must be done last, 9152 * after the registers from the other extensions have been defined. 9153 */ 9154 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9155 define_arm_vh_e2h_redirects_aliases(cpu); 9156 } 9157 #endif 9158 } 9159 9160 /* Sort alphabetically by type name, except for "any". */ 9161 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9162 { 9163 ObjectClass *class_a = (ObjectClass *)a; 9164 ObjectClass *class_b = (ObjectClass *)b; 9165 const char *name_a, *name_b; 9166 9167 name_a = object_class_get_name(class_a); 9168 name_b = object_class_get_name(class_b); 9169 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9170 return 1; 9171 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9172 return -1; 9173 } else { 9174 return strcmp(name_a, name_b); 9175 } 9176 } 9177 9178 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9179 { 9180 ObjectClass *oc = data; 9181 CPUClass *cc = CPU_CLASS(oc); 9182 const char *typename; 9183 char *name; 9184 9185 typename = object_class_get_name(oc); 9186 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9187 if (cc->deprecation_note) { 9188 qemu_printf(" %s (deprecated)\n", name); 9189 } else { 9190 qemu_printf(" %s\n", name); 9191 } 9192 g_free(name); 9193 } 9194 9195 void arm_cpu_list(void) 9196 { 9197 GSList *list; 9198 9199 list = object_class_get_list(TYPE_ARM_CPU, false); 9200 list = g_slist_sort(list, arm_cpu_list_compare); 9201 qemu_printf("Available CPUs:\n"); 9202 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9203 g_slist_free(list); 9204 } 9205 9206 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 9207 { 9208 ObjectClass *oc = data; 9209 CpuDefinitionInfoList **cpu_list = user_data; 9210 CpuDefinitionInfo *info; 9211 const char *typename; 9212 9213 typename = object_class_get_name(oc); 9214 info = g_malloc0(sizeof(*info)); 9215 info->name = g_strndup(typename, 9216 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9217 info->q_typename = g_strdup(typename); 9218 9219 QAPI_LIST_PREPEND(*cpu_list, info); 9220 } 9221 9222 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 9223 { 9224 CpuDefinitionInfoList *cpu_list = NULL; 9225 GSList *list; 9226 9227 list = object_class_get_list(TYPE_ARM_CPU, false); 9228 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 9229 g_slist_free(list); 9230 9231 return cpu_list; 9232 } 9233 9234 /* 9235 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9236 * add a single reginfo struct to the hash table. 9237 */ 9238 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9239 void *opaque, CPState state, 9240 CPSecureState secstate, 9241 int crm, int opc1, int opc2, 9242 const char *name) 9243 { 9244 CPUARMState *env = &cpu->env; 9245 uint32_t key; 9246 ARMCPRegInfo *r2; 9247 bool is64 = r->type & ARM_CP_64BIT; 9248 bool ns = secstate & ARM_CP_SECSTATE_NS; 9249 int cp = r->cp; 9250 size_t name_len; 9251 bool make_const; 9252 9253 switch (state) { 9254 case ARM_CP_STATE_AA32: 9255 /* We assume it is a cp15 register if the .cp field is left unset. */ 9256 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9257 cp = 15; 9258 } 9259 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9260 break; 9261 case ARM_CP_STATE_AA64: 9262 /* 9263 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9264 * cp == 0 as equivalent to the value for "standard guest-visible 9265 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9266 * in their AArch64 view (the .cp value may be non-zero for the 9267 * benefit of the AArch32 view). 9268 */ 9269 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9270 cp = CP_REG_ARM64_SYSREG_CP; 9271 } 9272 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9273 break; 9274 default: 9275 g_assert_not_reached(); 9276 } 9277 9278 /* Overriding of an existing definition must be explicitly requested. */ 9279 if (!(r->type & ARM_CP_OVERRIDE)) { 9280 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9281 if (oldreg) { 9282 assert(oldreg->type & ARM_CP_OVERRIDE); 9283 } 9284 } 9285 9286 /* 9287 * Eliminate registers that are not present because the EL is missing. 9288 * Doing this here makes it easier to put all registers for a given 9289 * feature into the same ARMCPRegInfo array and define them all at once. 9290 */ 9291 make_const = false; 9292 if (arm_feature(env, ARM_FEATURE_EL3)) { 9293 /* 9294 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9295 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9296 */ 9297 int min_el = ctz32(r->access) / 2; 9298 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9299 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9300 return; 9301 } 9302 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9303 } 9304 } else { 9305 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9306 ? PL2_RW : PL1_RW); 9307 if ((r->access & max_el) == 0) { 9308 return; 9309 } 9310 } 9311 9312 /* Combine cpreg and name into one allocation. */ 9313 name_len = strlen(name) + 1; 9314 r2 = g_malloc(sizeof(*r2) + name_len); 9315 *r2 = *r; 9316 r2->name = memcpy(r2 + 1, name, name_len); 9317 9318 /* 9319 * Update fields to match the instantiation, overwiting wildcards 9320 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9321 */ 9322 r2->cp = cp; 9323 r2->crm = crm; 9324 r2->opc1 = opc1; 9325 r2->opc2 = opc2; 9326 r2->state = state; 9327 r2->secure = secstate; 9328 if (opaque) { 9329 r2->opaque = opaque; 9330 } 9331 9332 if (make_const) { 9333 /* This should not have been a very special register to begin. */ 9334 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9335 assert(old_special == 0 || old_special == ARM_CP_NOP); 9336 /* 9337 * Set the special function to CONST, retaining the other flags. 9338 * This is important for e.g. ARM_CP_SVE so that we still 9339 * take the SVE trap if CPTR_EL3.EZ == 0. 9340 */ 9341 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9342 /* 9343 * Usually, these registers become RES0, but there are a few 9344 * special cases like VPIDR_EL2 which have a constant non-zero 9345 * value with writes ignored. 9346 */ 9347 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9348 r2->resetvalue = 0; 9349 } 9350 /* 9351 * ARM_CP_CONST has precedence, so removing the callbacks and 9352 * offsets are not strictly necessary, but it is potentially 9353 * less confusing to debug later. 9354 */ 9355 r2->readfn = NULL; 9356 r2->writefn = NULL; 9357 r2->raw_readfn = NULL; 9358 r2->raw_writefn = NULL; 9359 r2->resetfn = NULL; 9360 r2->fieldoffset = 0; 9361 r2->bank_fieldoffsets[0] = 0; 9362 r2->bank_fieldoffsets[1] = 0; 9363 } else { 9364 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9365 9366 if (isbanked) { 9367 /* 9368 * Register is banked (using both entries in array). 9369 * Overwriting fieldoffset as the array is only used to define 9370 * banked registers but later only fieldoffset is used. 9371 */ 9372 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9373 } 9374 if (state == ARM_CP_STATE_AA32) { 9375 if (isbanked) { 9376 /* 9377 * If the register is banked then we don't need to migrate or 9378 * reset the 32-bit instance in certain cases: 9379 * 9380 * 1) If the register has both 32-bit and 64-bit instances 9381 * then we can count on the 64-bit instance taking care 9382 * of the non-secure bank. 9383 * 2) If ARMv8 is enabled then we can count on a 64-bit 9384 * version taking care of the secure bank. This requires 9385 * that separate 32 and 64-bit definitions are provided. 9386 */ 9387 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9388 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9389 r2->type |= ARM_CP_ALIAS; 9390 } 9391 } else if ((secstate != r->secure) && !ns) { 9392 /* 9393 * The register is not banked so we only want to allow 9394 * migration of the non-secure instance. 9395 */ 9396 r2->type |= ARM_CP_ALIAS; 9397 } 9398 9399 if (HOST_BIG_ENDIAN && 9400 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9401 r2->fieldoffset += sizeof(uint32_t); 9402 } 9403 } 9404 } 9405 9406 /* 9407 * By convention, for wildcarded registers only the first 9408 * entry is used for migration; the others are marked as 9409 * ALIAS so we don't try to transfer the register 9410 * multiple times. Special registers (ie NOP/WFI) are 9411 * never migratable and not even raw-accessible. 9412 */ 9413 if (r2->type & ARM_CP_SPECIAL_MASK) { 9414 r2->type |= ARM_CP_NO_RAW; 9415 } 9416 if (((r->crm == CP_ANY) && crm != 0) || 9417 ((r->opc1 == CP_ANY) && opc1 != 0) || 9418 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9419 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9420 } 9421 9422 /* 9423 * Check that raw accesses are either forbidden or handled. Note that 9424 * we can't assert this earlier because the setup of fieldoffset for 9425 * banked registers has to be done first. 9426 */ 9427 if (!(r2->type & ARM_CP_NO_RAW)) { 9428 assert(!raw_accessors_invalid(r2)); 9429 } 9430 9431 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9432 } 9433 9434 9435 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9436 const ARMCPRegInfo *r, void *opaque) 9437 { 9438 /* 9439 * Define implementations of coprocessor registers. 9440 * We store these in a hashtable because typically 9441 * there are less than 150 registers in a space which 9442 * is 16*16*16*8*8 = 262144 in size. 9443 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9444 * If a register is defined twice then the second definition is 9445 * used, so this can be used to define some generic registers and 9446 * then override them with implementation specific variations. 9447 * At least one of the original and the second definition should 9448 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9449 * against accidental use. 9450 * 9451 * The state field defines whether the register is to be 9452 * visible in the AArch32 or AArch64 execution state. If the 9453 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9454 * reginfo structure for the AArch32 view, which sees the lower 9455 * 32 bits of the 64 bit register. 9456 * 9457 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9458 * be wildcarded. AArch64 registers are always considered to be 64 9459 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9460 * the register, if any. 9461 */ 9462 int crm, opc1, opc2; 9463 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9464 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9465 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9466 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9467 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9468 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9469 CPState state; 9470 9471 /* 64 bit registers have only CRm and Opc1 fields */ 9472 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9473 /* op0 only exists in the AArch64 encodings */ 9474 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9475 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9476 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9477 /* 9478 * This API is only for Arm's system coprocessors (14 and 15) or 9479 * (M-profile or v7A-and-earlier only) for implementation defined 9480 * coprocessors in the range 0..7. Our decode assumes this, since 9481 * 8..13 can be used for other insns including VFP and Neon. See 9482 * valid_cp() in translate.c. Assert here that we haven't tried 9483 * to use an invalid coprocessor number. 9484 */ 9485 switch (r->state) { 9486 case ARM_CP_STATE_BOTH: 9487 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9488 if (r->cp == 0) { 9489 break; 9490 } 9491 /* fall through */ 9492 case ARM_CP_STATE_AA32: 9493 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9494 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9495 assert(r->cp >= 14 && r->cp <= 15); 9496 } else { 9497 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9498 } 9499 break; 9500 case ARM_CP_STATE_AA64: 9501 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9502 break; 9503 default: 9504 g_assert_not_reached(); 9505 } 9506 /* 9507 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9508 * encodes a minimum access level for the register. We roll this 9509 * runtime check into our general permission check code, so check 9510 * here that the reginfo's specified permissions are strict enough 9511 * to encompass the generic architectural permission check. 9512 */ 9513 if (r->state != ARM_CP_STATE_AA32) { 9514 CPAccessRights mask; 9515 switch (r->opc1) { 9516 case 0: 9517 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9518 mask = PL0U_R | PL1_RW; 9519 break; 9520 case 1: case 2: 9521 /* min_EL EL1 */ 9522 mask = PL1_RW; 9523 break; 9524 case 3: 9525 /* min_EL EL0 */ 9526 mask = PL0_RW; 9527 break; 9528 case 4: 9529 case 5: 9530 /* min_EL EL2 */ 9531 mask = PL2_RW; 9532 break; 9533 case 6: 9534 /* min_EL EL3 */ 9535 mask = PL3_RW; 9536 break; 9537 case 7: 9538 /* min_EL EL1, secure mode only (we don't check the latter) */ 9539 mask = PL1_RW; 9540 break; 9541 default: 9542 /* broken reginfo with out-of-range opc1 */ 9543 g_assert_not_reached(); 9544 } 9545 /* assert our permissions are not too lax (stricter is fine) */ 9546 assert((r->access & ~mask) == 0); 9547 } 9548 9549 /* 9550 * Check that the register definition has enough info to handle 9551 * reads and writes if they are permitted. 9552 */ 9553 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9554 if (r->access & PL3_R) { 9555 assert((r->fieldoffset || 9556 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9557 r->readfn); 9558 } 9559 if (r->access & PL3_W) { 9560 assert((r->fieldoffset || 9561 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9562 r->writefn); 9563 } 9564 } 9565 9566 for (crm = crmmin; crm <= crmmax; crm++) { 9567 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9568 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9569 for (state = ARM_CP_STATE_AA32; 9570 state <= ARM_CP_STATE_AA64; state++) { 9571 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9572 continue; 9573 } 9574 if (state == ARM_CP_STATE_AA32) { 9575 /* 9576 * Under AArch32 CP registers can be common 9577 * (same for secure and non-secure world) or banked. 9578 */ 9579 char *name; 9580 9581 switch (r->secure) { 9582 case ARM_CP_SECSTATE_S: 9583 case ARM_CP_SECSTATE_NS: 9584 add_cpreg_to_hashtable(cpu, r, opaque, state, 9585 r->secure, crm, opc1, opc2, 9586 r->name); 9587 break; 9588 case ARM_CP_SECSTATE_BOTH: 9589 name = g_strdup_printf("%s_S", r->name); 9590 add_cpreg_to_hashtable(cpu, r, opaque, state, 9591 ARM_CP_SECSTATE_S, 9592 crm, opc1, opc2, name); 9593 g_free(name); 9594 add_cpreg_to_hashtable(cpu, r, opaque, state, 9595 ARM_CP_SECSTATE_NS, 9596 crm, opc1, opc2, r->name); 9597 break; 9598 default: 9599 g_assert_not_reached(); 9600 } 9601 } else { 9602 /* 9603 * AArch64 registers get mapped to non-secure instance 9604 * of AArch32 9605 */ 9606 add_cpreg_to_hashtable(cpu, r, opaque, state, 9607 ARM_CP_SECSTATE_NS, 9608 crm, opc1, opc2, r->name); 9609 } 9610 } 9611 } 9612 } 9613 } 9614 } 9615 9616 /* Define a whole list of registers */ 9617 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9618 void *opaque, size_t len) 9619 { 9620 size_t i; 9621 for (i = 0; i < len; ++i) { 9622 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9623 } 9624 } 9625 9626 /* 9627 * Modify ARMCPRegInfo for access from userspace. 9628 * 9629 * This is a data driven modification directed by 9630 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9631 * user-space cannot alter any values and dynamic values pertaining to 9632 * execution state are hidden from user space view anyway. 9633 */ 9634 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9635 const ARMCPRegUserSpaceInfo *mods, 9636 size_t mods_len) 9637 { 9638 for (size_t mi = 0; mi < mods_len; ++mi) { 9639 const ARMCPRegUserSpaceInfo *m = mods + mi; 9640 GPatternSpec *pat = NULL; 9641 9642 if (m->is_glob) { 9643 pat = g_pattern_spec_new(m->name); 9644 } 9645 for (size_t ri = 0; ri < regs_len; ++ri) { 9646 ARMCPRegInfo *r = regs + ri; 9647 9648 if (pat && g_pattern_match_string(pat, r->name)) { 9649 r->type = ARM_CP_CONST; 9650 r->access = PL0U_R; 9651 r->resetvalue = 0; 9652 /* continue */ 9653 } else if (strcmp(r->name, m->name) == 0) { 9654 r->type = ARM_CP_CONST; 9655 r->access = PL0U_R; 9656 r->resetvalue &= m->exported_bits; 9657 r->resetvalue |= m->fixed_bits; 9658 break; 9659 } 9660 } 9661 if (pat) { 9662 g_pattern_spec_free(pat); 9663 } 9664 } 9665 } 9666 9667 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9668 { 9669 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9670 } 9671 9672 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9673 uint64_t value) 9674 { 9675 /* Helper coprocessor write function for write-ignore registers */ 9676 } 9677 9678 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9679 { 9680 /* Helper coprocessor write function for read-as-zero registers */ 9681 return 0; 9682 } 9683 9684 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9685 { 9686 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9687 } 9688 9689 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9690 { 9691 /* 9692 * Return true if it is not valid for us to switch to 9693 * this CPU mode (ie all the UNPREDICTABLE cases in 9694 * the ARM ARM CPSRWriteByInstr pseudocode). 9695 */ 9696 9697 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9698 if (write_type == CPSRWriteByInstr && 9699 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9700 mode == ARM_CPU_MODE_HYP)) { 9701 return 1; 9702 } 9703 9704 switch (mode) { 9705 case ARM_CPU_MODE_USR: 9706 return 0; 9707 case ARM_CPU_MODE_SYS: 9708 case ARM_CPU_MODE_SVC: 9709 case ARM_CPU_MODE_ABT: 9710 case ARM_CPU_MODE_UND: 9711 case ARM_CPU_MODE_IRQ: 9712 case ARM_CPU_MODE_FIQ: 9713 /* 9714 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9715 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9716 */ 9717 /* 9718 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9719 * and CPS are treated as illegal mode changes. 9720 */ 9721 if (write_type == CPSRWriteByInstr && 9722 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9723 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9724 return 1; 9725 } 9726 return 0; 9727 case ARM_CPU_MODE_HYP: 9728 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9729 case ARM_CPU_MODE_MON: 9730 return arm_current_el(env) < 3; 9731 default: 9732 return 1; 9733 } 9734 } 9735 9736 uint32_t cpsr_read(CPUARMState *env) 9737 { 9738 int ZF; 9739 ZF = (env->ZF == 0); 9740 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9741 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9742 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9743 | ((env->condexec_bits & 0xfc) << 8) 9744 | (env->GE << 16) | (env->daif & CPSR_AIF); 9745 } 9746 9747 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9748 CPSRWriteType write_type) 9749 { 9750 uint32_t changed_daif; 9751 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9752 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9753 9754 if (mask & CPSR_NZCV) { 9755 env->ZF = (~val) & CPSR_Z; 9756 env->NF = val; 9757 env->CF = (val >> 29) & 1; 9758 env->VF = (val << 3) & 0x80000000; 9759 } 9760 if (mask & CPSR_Q) { 9761 env->QF = ((val & CPSR_Q) != 0); 9762 } 9763 if (mask & CPSR_T) { 9764 env->thumb = ((val & CPSR_T) != 0); 9765 } 9766 if (mask & CPSR_IT_0_1) { 9767 env->condexec_bits &= ~3; 9768 env->condexec_bits |= (val >> 25) & 3; 9769 } 9770 if (mask & CPSR_IT_2_7) { 9771 env->condexec_bits &= 3; 9772 env->condexec_bits |= (val >> 8) & 0xfc; 9773 } 9774 if (mask & CPSR_GE) { 9775 env->GE = (val >> 16) & 0xf; 9776 } 9777 9778 /* 9779 * In a V7 implementation that includes the security extensions but does 9780 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9781 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9782 * bits respectively. 9783 * 9784 * In a V8 implementation, it is permitted for privileged software to 9785 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9786 */ 9787 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9788 arm_feature(env, ARM_FEATURE_EL3) && 9789 !arm_feature(env, ARM_FEATURE_EL2) && 9790 !arm_is_secure(env)) { 9791 9792 changed_daif = (env->daif ^ val) & mask; 9793 9794 if (changed_daif & CPSR_A) { 9795 /* 9796 * Check to see if we are allowed to change the masking of async 9797 * abort exceptions from a non-secure state. 9798 */ 9799 if (!(env->cp15.scr_el3 & SCR_AW)) { 9800 qemu_log_mask(LOG_GUEST_ERROR, 9801 "Ignoring attempt to switch CPSR_A flag from " 9802 "non-secure world with SCR.AW bit clear\n"); 9803 mask &= ~CPSR_A; 9804 } 9805 } 9806 9807 if (changed_daif & CPSR_F) { 9808 /* 9809 * Check to see if we are allowed to change the masking of FIQ 9810 * exceptions from a non-secure state. 9811 */ 9812 if (!(env->cp15.scr_el3 & SCR_FW)) { 9813 qemu_log_mask(LOG_GUEST_ERROR, 9814 "Ignoring attempt to switch CPSR_F flag from " 9815 "non-secure world with SCR.FW bit clear\n"); 9816 mask &= ~CPSR_F; 9817 } 9818 9819 /* 9820 * Check whether non-maskable FIQ (NMFI) support is enabled. 9821 * If this bit is set software is not allowed to mask 9822 * FIQs, but is allowed to set CPSR_F to 0. 9823 */ 9824 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9825 (val & CPSR_F)) { 9826 qemu_log_mask(LOG_GUEST_ERROR, 9827 "Ignoring attempt to enable CPSR_F flag " 9828 "(non-maskable FIQ [NMFI] support enabled)\n"); 9829 mask &= ~CPSR_F; 9830 } 9831 } 9832 } 9833 9834 env->daif &= ~(CPSR_AIF & mask); 9835 env->daif |= val & CPSR_AIF & mask; 9836 9837 if (write_type != CPSRWriteRaw && 9838 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9839 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9840 /* 9841 * Note that we can only get here in USR mode if this is a 9842 * gdb stub write; for this case we follow the architectural 9843 * behaviour for guest writes in USR mode of ignoring an attempt 9844 * to switch mode. (Those are caught by translate.c for writes 9845 * triggered by guest instructions.) 9846 */ 9847 mask &= ~CPSR_M; 9848 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9849 /* 9850 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9851 * v7, and has defined behaviour in v8: 9852 * + leave CPSR.M untouched 9853 * + allow changes to the other CPSR fields 9854 * + set PSTATE.IL 9855 * For user changes via the GDB stub, we don't set PSTATE.IL, 9856 * as this would be unnecessarily harsh for a user error. 9857 */ 9858 mask &= ~CPSR_M; 9859 if (write_type != CPSRWriteByGDBStub && 9860 arm_feature(env, ARM_FEATURE_V8)) { 9861 mask |= CPSR_IL; 9862 val |= CPSR_IL; 9863 } 9864 qemu_log_mask(LOG_GUEST_ERROR, 9865 "Illegal AArch32 mode switch attempt from %s to %s\n", 9866 aarch32_mode_name(env->uncached_cpsr), 9867 aarch32_mode_name(val)); 9868 } else { 9869 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9870 write_type == CPSRWriteExceptionReturn ? 9871 "Exception return from AArch32" : 9872 "AArch32 mode switch from", 9873 aarch32_mode_name(env->uncached_cpsr), 9874 aarch32_mode_name(val), env->regs[15]); 9875 switch_mode(env, val & CPSR_M); 9876 } 9877 } 9878 mask &= ~CACHED_CPSR_BITS; 9879 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9880 if (rebuild_hflags) { 9881 arm_rebuild_hflags(env); 9882 } 9883 } 9884 9885 /* Sign/zero extend */ 9886 uint32_t HELPER(sxtb16)(uint32_t x) 9887 { 9888 uint32_t res; 9889 res = (uint16_t)(int8_t)x; 9890 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9891 return res; 9892 } 9893 9894 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9895 { 9896 /* 9897 * Take a division-by-zero exception if necessary; otherwise return 9898 * to get the usual non-trapping division behaviour (result of 0) 9899 */ 9900 if (arm_feature(env, ARM_FEATURE_M) 9901 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9902 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9903 } 9904 } 9905 9906 uint32_t HELPER(uxtb16)(uint32_t x) 9907 { 9908 uint32_t res; 9909 res = (uint16_t)(uint8_t)x; 9910 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9911 return res; 9912 } 9913 9914 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9915 { 9916 if (den == 0) { 9917 handle_possible_div0_trap(env, GETPC()); 9918 return 0; 9919 } 9920 if (num == INT_MIN && den == -1) { 9921 return INT_MIN; 9922 } 9923 return num / den; 9924 } 9925 9926 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9927 { 9928 if (den == 0) { 9929 handle_possible_div0_trap(env, GETPC()); 9930 return 0; 9931 } 9932 return num / den; 9933 } 9934 9935 uint32_t HELPER(rbit)(uint32_t x) 9936 { 9937 return revbit32(x); 9938 } 9939 9940 #ifdef CONFIG_USER_ONLY 9941 9942 static void switch_mode(CPUARMState *env, int mode) 9943 { 9944 ARMCPU *cpu = env_archcpu(env); 9945 9946 if (mode != ARM_CPU_MODE_USR) { 9947 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9948 } 9949 } 9950 9951 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9952 uint32_t cur_el, bool secure) 9953 { 9954 return 1; 9955 } 9956 9957 void aarch64_sync_64_to_32(CPUARMState *env) 9958 { 9959 g_assert_not_reached(); 9960 } 9961 9962 #else 9963 9964 static void switch_mode(CPUARMState *env, int mode) 9965 { 9966 int old_mode; 9967 int i; 9968 9969 old_mode = env->uncached_cpsr & CPSR_M; 9970 if (mode == old_mode) { 9971 return; 9972 } 9973 9974 if (old_mode == ARM_CPU_MODE_FIQ) { 9975 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9976 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9977 } else if (mode == ARM_CPU_MODE_FIQ) { 9978 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9979 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9980 } 9981 9982 i = bank_number(old_mode); 9983 env->banked_r13[i] = env->regs[13]; 9984 env->banked_spsr[i] = env->spsr; 9985 9986 i = bank_number(mode); 9987 env->regs[13] = env->banked_r13[i]; 9988 env->spsr = env->banked_spsr[i]; 9989 9990 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9991 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9992 } 9993 9994 /* 9995 * Physical Interrupt Target EL Lookup Table 9996 * 9997 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9998 * 9999 * The below multi-dimensional table is used for looking up the target 10000 * exception level given numerous condition criteria. Specifically, the 10001 * target EL is based on SCR and HCR routing controls as well as the 10002 * currently executing EL and secure state. 10003 * 10004 * Dimensions: 10005 * target_el_table[2][2][2][2][2][4] 10006 * | | | | | +--- Current EL 10007 * | | | | +------ Non-secure(0)/Secure(1) 10008 * | | | +--------- HCR mask override 10009 * | | +------------ SCR exec state control 10010 * | +--------------- SCR mask override 10011 * +------------------ 32-bit(0)/64-bit(1) EL3 10012 * 10013 * The table values are as such: 10014 * 0-3 = EL0-EL3 10015 * -1 = Cannot occur 10016 * 10017 * The ARM ARM target EL table includes entries indicating that an "exception 10018 * is not taken". The two cases where this is applicable are: 10019 * 1) An exception is taken from EL3 but the SCR does not have the exception 10020 * routed to EL3. 10021 * 2) An exception is taken from EL2 but the HCR does not have the exception 10022 * routed to EL2. 10023 * In these two cases, the below table contain a target of EL1. This value is 10024 * returned as it is expected that the consumer of the table data will check 10025 * for "target EL >= current EL" to ensure the exception is not taken. 10026 * 10027 * SCR HCR 10028 * 64 EA AMO From 10029 * BIT IRQ IMO Non-secure Secure 10030 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10031 */ 10032 static const int8_t target_el_table[2][2][2][2][2][4] = { 10033 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10034 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10035 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10036 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10037 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10038 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10039 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10040 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10041 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10042 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10043 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10044 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10045 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10046 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10047 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10048 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10049 }; 10050 10051 /* 10052 * Determine the target EL for physical exceptions 10053 */ 10054 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10055 uint32_t cur_el, bool secure) 10056 { 10057 CPUARMState *env = cs->env_ptr; 10058 bool rw; 10059 bool scr; 10060 bool hcr; 10061 int target_el; 10062 /* Is the highest EL AArch64? */ 10063 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10064 uint64_t hcr_el2; 10065 10066 if (arm_feature(env, ARM_FEATURE_EL3)) { 10067 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10068 } else { 10069 /* 10070 * Either EL2 is the highest EL (and so the EL2 register width 10071 * is given by is64); or there is no EL2 or EL3, in which case 10072 * the value of 'rw' does not affect the table lookup anyway. 10073 */ 10074 rw = is64; 10075 } 10076 10077 hcr_el2 = arm_hcr_el2_eff(env); 10078 switch (excp_idx) { 10079 case EXCP_IRQ: 10080 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10081 hcr = hcr_el2 & HCR_IMO; 10082 break; 10083 case EXCP_FIQ: 10084 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10085 hcr = hcr_el2 & HCR_FMO; 10086 break; 10087 default: 10088 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10089 hcr = hcr_el2 & HCR_AMO; 10090 break; 10091 }; 10092 10093 /* 10094 * For these purposes, TGE and AMO/IMO/FMO both force the 10095 * interrupt to EL2. Fold TGE into the bit extracted above. 10096 */ 10097 hcr |= (hcr_el2 & HCR_TGE) != 0; 10098 10099 /* Perform a table-lookup for the target EL given the current state */ 10100 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10101 10102 assert(target_el > 0); 10103 10104 return target_el; 10105 } 10106 10107 void arm_log_exception(CPUState *cs) 10108 { 10109 int idx = cs->exception_index; 10110 10111 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10112 const char *exc = NULL; 10113 static const char * const excnames[] = { 10114 [EXCP_UDEF] = "Undefined Instruction", 10115 [EXCP_SWI] = "SVC", 10116 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10117 [EXCP_DATA_ABORT] = "Data Abort", 10118 [EXCP_IRQ] = "IRQ", 10119 [EXCP_FIQ] = "FIQ", 10120 [EXCP_BKPT] = "Breakpoint", 10121 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10122 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10123 [EXCP_HVC] = "Hypervisor Call", 10124 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10125 [EXCP_SMC] = "Secure Monitor Call", 10126 [EXCP_VIRQ] = "Virtual IRQ", 10127 [EXCP_VFIQ] = "Virtual FIQ", 10128 [EXCP_SEMIHOST] = "Semihosting call", 10129 [EXCP_NOCP] = "v7M NOCP UsageFault", 10130 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10131 [EXCP_STKOF] = "v8M STKOF UsageFault", 10132 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10133 [EXCP_LSERR] = "v8M LSERR UsageFault", 10134 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10135 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10136 [EXCP_VSERR] = "Virtual SERR", 10137 }; 10138 10139 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10140 exc = excnames[idx]; 10141 } 10142 if (!exc) { 10143 exc = "unknown"; 10144 } 10145 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10146 idx, exc, cs->cpu_index); 10147 } 10148 } 10149 10150 /* 10151 * Function used to synchronize QEMU's AArch64 register set with AArch32 10152 * register set. This is necessary when switching between AArch32 and AArch64 10153 * execution state. 10154 */ 10155 void aarch64_sync_32_to_64(CPUARMState *env) 10156 { 10157 int i; 10158 uint32_t mode = env->uncached_cpsr & CPSR_M; 10159 10160 /* We can blanket copy R[0:7] to X[0:7] */ 10161 for (i = 0; i < 8; i++) { 10162 env->xregs[i] = env->regs[i]; 10163 } 10164 10165 /* 10166 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10167 * Otherwise, they come from the banked user regs. 10168 */ 10169 if (mode == ARM_CPU_MODE_FIQ) { 10170 for (i = 8; i < 13; i++) { 10171 env->xregs[i] = env->usr_regs[i - 8]; 10172 } 10173 } else { 10174 for (i = 8; i < 13; i++) { 10175 env->xregs[i] = env->regs[i]; 10176 } 10177 } 10178 10179 /* 10180 * Registers x13-x23 are the various mode SP and FP registers. Registers 10181 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10182 * from the mode banked register. 10183 */ 10184 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10185 env->xregs[13] = env->regs[13]; 10186 env->xregs[14] = env->regs[14]; 10187 } else { 10188 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10189 /* HYP is an exception in that it is copied from r14 */ 10190 if (mode == ARM_CPU_MODE_HYP) { 10191 env->xregs[14] = env->regs[14]; 10192 } else { 10193 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10194 } 10195 } 10196 10197 if (mode == ARM_CPU_MODE_HYP) { 10198 env->xregs[15] = env->regs[13]; 10199 } else { 10200 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10201 } 10202 10203 if (mode == ARM_CPU_MODE_IRQ) { 10204 env->xregs[16] = env->regs[14]; 10205 env->xregs[17] = env->regs[13]; 10206 } else { 10207 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10208 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10209 } 10210 10211 if (mode == ARM_CPU_MODE_SVC) { 10212 env->xregs[18] = env->regs[14]; 10213 env->xregs[19] = env->regs[13]; 10214 } else { 10215 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10216 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10217 } 10218 10219 if (mode == ARM_CPU_MODE_ABT) { 10220 env->xregs[20] = env->regs[14]; 10221 env->xregs[21] = env->regs[13]; 10222 } else { 10223 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10224 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10225 } 10226 10227 if (mode == ARM_CPU_MODE_UND) { 10228 env->xregs[22] = env->regs[14]; 10229 env->xregs[23] = env->regs[13]; 10230 } else { 10231 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10232 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10233 } 10234 10235 /* 10236 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10237 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10238 * FIQ bank for r8-r14. 10239 */ 10240 if (mode == ARM_CPU_MODE_FIQ) { 10241 for (i = 24; i < 31; i++) { 10242 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10243 } 10244 } else { 10245 for (i = 24; i < 29; i++) { 10246 env->xregs[i] = env->fiq_regs[i - 24]; 10247 } 10248 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10249 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10250 } 10251 10252 env->pc = env->regs[15]; 10253 } 10254 10255 /* 10256 * Function used to synchronize QEMU's AArch32 register set with AArch64 10257 * register set. This is necessary when switching between AArch32 and AArch64 10258 * execution state. 10259 */ 10260 void aarch64_sync_64_to_32(CPUARMState *env) 10261 { 10262 int i; 10263 uint32_t mode = env->uncached_cpsr & CPSR_M; 10264 10265 /* We can blanket copy X[0:7] to R[0:7] */ 10266 for (i = 0; i < 8; i++) { 10267 env->regs[i] = env->xregs[i]; 10268 } 10269 10270 /* 10271 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10272 * Otherwise, we copy x8-x12 into the banked user regs. 10273 */ 10274 if (mode == ARM_CPU_MODE_FIQ) { 10275 for (i = 8; i < 13; i++) { 10276 env->usr_regs[i - 8] = env->xregs[i]; 10277 } 10278 } else { 10279 for (i = 8; i < 13; i++) { 10280 env->regs[i] = env->xregs[i]; 10281 } 10282 } 10283 10284 /* 10285 * Registers r13 & r14 depend on the current mode. 10286 * If we are in a given mode, we copy the corresponding x registers to r13 10287 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10288 * for the mode. 10289 */ 10290 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10291 env->regs[13] = env->xregs[13]; 10292 env->regs[14] = env->xregs[14]; 10293 } else { 10294 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10295 10296 /* 10297 * HYP is an exception in that it does not have its own banked r14 but 10298 * shares the USR r14 10299 */ 10300 if (mode == ARM_CPU_MODE_HYP) { 10301 env->regs[14] = env->xregs[14]; 10302 } else { 10303 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10304 } 10305 } 10306 10307 if (mode == ARM_CPU_MODE_HYP) { 10308 env->regs[13] = env->xregs[15]; 10309 } else { 10310 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10311 } 10312 10313 if (mode == ARM_CPU_MODE_IRQ) { 10314 env->regs[14] = env->xregs[16]; 10315 env->regs[13] = env->xregs[17]; 10316 } else { 10317 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10318 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10319 } 10320 10321 if (mode == ARM_CPU_MODE_SVC) { 10322 env->regs[14] = env->xregs[18]; 10323 env->regs[13] = env->xregs[19]; 10324 } else { 10325 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10326 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10327 } 10328 10329 if (mode == ARM_CPU_MODE_ABT) { 10330 env->regs[14] = env->xregs[20]; 10331 env->regs[13] = env->xregs[21]; 10332 } else { 10333 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10334 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10335 } 10336 10337 if (mode == ARM_CPU_MODE_UND) { 10338 env->regs[14] = env->xregs[22]; 10339 env->regs[13] = env->xregs[23]; 10340 } else { 10341 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10342 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10343 } 10344 10345 /* 10346 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10347 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10348 * FIQ bank for r8-r14. 10349 */ 10350 if (mode == ARM_CPU_MODE_FIQ) { 10351 for (i = 24; i < 31; i++) { 10352 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10353 } 10354 } else { 10355 for (i = 24; i < 29; i++) { 10356 env->fiq_regs[i - 24] = env->xregs[i]; 10357 } 10358 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10359 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10360 } 10361 10362 env->regs[15] = env->pc; 10363 } 10364 10365 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10366 uint32_t mask, uint32_t offset, 10367 uint32_t newpc) 10368 { 10369 int new_el; 10370 10371 /* Change the CPU state so as to actually take the exception. */ 10372 switch_mode(env, new_mode); 10373 10374 /* 10375 * For exceptions taken to AArch32 we must clear the SS bit in both 10376 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10377 */ 10378 env->pstate &= ~PSTATE_SS; 10379 env->spsr = cpsr_read(env); 10380 /* Clear IT bits. */ 10381 env->condexec_bits = 0; 10382 /* Switch to the new mode, and to the correct instruction set. */ 10383 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10384 10385 /* This must be after mode switching. */ 10386 new_el = arm_current_el(env); 10387 10388 /* Set new mode endianness */ 10389 env->uncached_cpsr &= ~CPSR_E; 10390 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10391 env->uncached_cpsr |= CPSR_E; 10392 } 10393 /* J and IL must always be cleared for exception entry */ 10394 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10395 env->daif |= mask; 10396 10397 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10398 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10399 env->uncached_cpsr |= CPSR_SSBS; 10400 } else { 10401 env->uncached_cpsr &= ~CPSR_SSBS; 10402 } 10403 } 10404 10405 if (new_mode == ARM_CPU_MODE_HYP) { 10406 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10407 env->elr_el[2] = env->regs[15]; 10408 } else { 10409 /* CPSR.PAN is normally preserved preserved unless... */ 10410 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10411 switch (new_el) { 10412 case 3: 10413 if (!arm_is_secure_below_el3(env)) { 10414 /* ... the target is EL3, from non-secure state. */ 10415 env->uncached_cpsr &= ~CPSR_PAN; 10416 break; 10417 } 10418 /* ... the target is EL3, from secure state ... */ 10419 /* fall through */ 10420 case 1: 10421 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10422 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10423 env->uncached_cpsr |= CPSR_PAN; 10424 } 10425 break; 10426 } 10427 } 10428 /* 10429 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10430 * and we should just guard the thumb mode on V4 10431 */ 10432 if (arm_feature(env, ARM_FEATURE_V4T)) { 10433 env->thumb = 10434 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10435 } 10436 env->regs[14] = env->regs[15] + offset; 10437 } 10438 env->regs[15] = newpc; 10439 arm_rebuild_hflags(env); 10440 } 10441 10442 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10443 { 10444 /* 10445 * Handle exception entry to Hyp mode; this is sufficiently 10446 * different to entry to other AArch32 modes that we handle it 10447 * separately here. 10448 * 10449 * The vector table entry used is always the 0x14 Hyp mode entry point, 10450 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10451 * The offset applied to the preferred return address is always zero 10452 * (see DDI0487C.a section G1.12.3). 10453 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10454 */ 10455 uint32_t addr, mask; 10456 ARMCPU *cpu = ARM_CPU(cs); 10457 CPUARMState *env = &cpu->env; 10458 10459 switch (cs->exception_index) { 10460 case EXCP_UDEF: 10461 addr = 0x04; 10462 break; 10463 case EXCP_SWI: 10464 addr = 0x08; 10465 break; 10466 case EXCP_BKPT: 10467 /* Fall through to prefetch abort. */ 10468 case EXCP_PREFETCH_ABORT: 10469 env->cp15.ifar_s = env->exception.vaddress; 10470 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10471 (uint32_t)env->exception.vaddress); 10472 addr = 0x0c; 10473 break; 10474 case EXCP_DATA_ABORT: 10475 env->cp15.dfar_s = env->exception.vaddress; 10476 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10477 (uint32_t)env->exception.vaddress); 10478 addr = 0x10; 10479 break; 10480 case EXCP_IRQ: 10481 addr = 0x18; 10482 break; 10483 case EXCP_FIQ: 10484 addr = 0x1c; 10485 break; 10486 case EXCP_HVC: 10487 addr = 0x08; 10488 break; 10489 case EXCP_HYP_TRAP: 10490 addr = 0x14; 10491 break; 10492 default: 10493 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10494 } 10495 10496 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10497 if (!arm_feature(env, ARM_FEATURE_V8)) { 10498 /* 10499 * QEMU syndrome values are v8-style. v7 has the IL bit 10500 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10501 * If this is a v7 CPU, squash the IL bit in those cases. 10502 */ 10503 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10504 (cs->exception_index == EXCP_DATA_ABORT && 10505 !(env->exception.syndrome & ARM_EL_ISV)) || 10506 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10507 env->exception.syndrome &= ~ARM_EL_IL; 10508 } 10509 } 10510 env->cp15.esr_el[2] = env->exception.syndrome; 10511 } 10512 10513 if (arm_current_el(env) != 2 && addr < 0x14) { 10514 addr = 0x14; 10515 } 10516 10517 mask = 0; 10518 if (!(env->cp15.scr_el3 & SCR_EA)) { 10519 mask |= CPSR_A; 10520 } 10521 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10522 mask |= CPSR_I; 10523 } 10524 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10525 mask |= CPSR_F; 10526 } 10527 10528 addr += env->cp15.hvbar; 10529 10530 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10531 } 10532 10533 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10534 { 10535 ARMCPU *cpu = ARM_CPU(cs); 10536 CPUARMState *env = &cpu->env; 10537 uint32_t addr; 10538 uint32_t mask; 10539 int new_mode; 10540 uint32_t offset; 10541 uint32_t moe; 10542 10543 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10544 switch (syn_get_ec(env->exception.syndrome)) { 10545 case EC_BREAKPOINT: 10546 case EC_BREAKPOINT_SAME_EL: 10547 moe = 1; 10548 break; 10549 case EC_WATCHPOINT: 10550 case EC_WATCHPOINT_SAME_EL: 10551 moe = 10; 10552 break; 10553 case EC_AA32_BKPT: 10554 moe = 3; 10555 break; 10556 case EC_VECTORCATCH: 10557 moe = 5; 10558 break; 10559 default: 10560 moe = 0; 10561 break; 10562 } 10563 10564 if (moe) { 10565 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10566 } 10567 10568 if (env->exception.target_el == 2) { 10569 arm_cpu_do_interrupt_aarch32_hyp(cs); 10570 return; 10571 } 10572 10573 switch (cs->exception_index) { 10574 case EXCP_UDEF: 10575 new_mode = ARM_CPU_MODE_UND; 10576 addr = 0x04; 10577 mask = CPSR_I; 10578 if (env->thumb) { 10579 offset = 2; 10580 } else { 10581 offset = 4; 10582 } 10583 break; 10584 case EXCP_SWI: 10585 new_mode = ARM_CPU_MODE_SVC; 10586 addr = 0x08; 10587 mask = CPSR_I; 10588 /* The PC already points to the next instruction. */ 10589 offset = 0; 10590 break; 10591 case EXCP_BKPT: 10592 /* Fall through to prefetch abort. */ 10593 case EXCP_PREFETCH_ABORT: 10594 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10595 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10596 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10597 env->exception.fsr, (uint32_t)env->exception.vaddress); 10598 new_mode = ARM_CPU_MODE_ABT; 10599 addr = 0x0c; 10600 mask = CPSR_A | CPSR_I; 10601 offset = 4; 10602 break; 10603 case EXCP_DATA_ABORT: 10604 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10605 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10606 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10607 env->exception.fsr, 10608 (uint32_t)env->exception.vaddress); 10609 new_mode = ARM_CPU_MODE_ABT; 10610 addr = 0x10; 10611 mask = CPSR_A | CPSR_I; 10612 offset = 8; 10613 break; 10614 case EXCP_IRQ: 10615 new_mode = ARM_CPU_MODE_IRQ; 10616 addr = 0x18; 10617 /* Disable IRQ and imprecise data aborts. */ 10618 mask = CPSR_A | CPSR_I; 10619 offset = 4; 10620 if (env->cp15.scr_el3 & SCR_IRQ) { 10621 /* IRQ routed to monitor mode */ 10622 new_mode = ARM_CPU_MODE_MON; 10623 mask |= CPSR_F; 10624 } 10625 break; 10626 case EXCP_FIQ: 10627 new_mode = ARM_CPU_MODE_FIQ; 10628 addr = 0x1c; 10629 /* Disable FIQ, IRQ and imprecise data aborts. */ 10630 mask = CPSR_A | CPSR_I | CPSR_F; 10631 if (env->cp15.scr_el3 & SCR_FIQ) { 10632 /* FIQ routed to monitor mode */ 10633 new_mode = ARM_CPU_MODE_MON; 10634 } 10635 offset = 4; 10636 break; 10637 case EXCP_VIRQ: 10638 new_mode = ARM_CPU_MODE_IRQ; 10639 addr = 0x18; 10640 /* Disable IRQ and imprecise data aborts. */ 10641 mask = CPSR_A | CPSR_I; 10642 offset = 4; 10643 break; 10644 case EXCP_VFIQ: 10645 new_mode = ARM_CPU_MODE_FIQ; 10646 addr = 0x1c; 10647 /* Disable FIQ, IRQ and imprecise data aborts. */ 10648 mask = CPSR_A | CPSR_I | CPSR_F; 10649 offset = 4; 10650 break; 10651 case EXCP_VSERR: 10652 { 10653 /* 10654 * Note that this is reported as a data abort, but the DFAR 10655 * has an UNKNOWN value. Construct the SError syndrome from 10656 * AET and ExT fields. 10657 */ 10658 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10659 10660 if (extended_addresses_enabled(env)) { 10661 env->exception.fsr = arm_fi_to_lfsc(&fi); 10662 } else { 10663 env->exception.fsr = arm_fi_to_sfsc(&fi); 10664 } 10665 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10666 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10667 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10668 env->exception.fsr); 10669 10670 new_mode = ARM_CPU_MODE_ABT; 10671 addr = 0x10; 10672 mask = CPSR_A | CPSR_I; 10673 offset = 8; 10674 } 10675 break; 10676 case EXCP_SMC: 10677 new_mode = ARM_CPU_MODE_MON; 10678 addr = 0x08; 10679 mask = CPSR_A | CPSR_I | CPSR_F; 10680 offset = 0; 10681 break; 10682 default: 10683 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10684 return; /* Never happens. Keep compiler happy. */ 10685 } 10686 10687 if (new_mode == ARM_CPU_MODE_MON) { 10688 addr += env->cp15.mvbar; 10689 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10690 /* High vectors. When enabled, base address cannot be remapped. */ 10691 addr += 0xffff0000; 10692 } else { 10693 /* 10694 * ARM v7 architectures provide a vector base address register to remap 10695 * the interrupt vector table. 10696 * This register is only followed in non-monitor mode, and is banked. 10697 * Note: only bits 31:5 are valid. 10698 */ 10699 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10700 } 10701 10702 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10703 env->cp15.scr_el3 &= ~SCR_NS; 10704 } 10705 10706 take_aarch32_exception(env, new_mode, mask, offset, addr); 10707 } 10708 10709 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10710 { 10711 /* 10712 * Return the register number of the AArch64 view of the AArch32 10713 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10714 * be that of the AArch32 mode the exception came from. 10715 */ 10716 int mode = env->uncached_cpsr & CPSR_M; 10717 10718 switch (aarch32_reg) { 10719 case 0 ... 7: 10720 return aarch32_reg; 10721 case 8 ... 12: 10722 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10723 case 13: 10724 switch (mode) { 10725 case ARM_CPU_MODE_USR: 10726 case ARM_CPU_MODE_SYS: 10727 return 13; 10728 case ARM_CPU_MODE_HYP: 10729 return 15; 10730 case ARM_CPU_MODE_IRQ: 10731 return 17; 10732 case ARM_CPU_MODE_SVC: 10733 return 19; 10734 case ARM_CPU_MODE_ABT: 10735 return 21; 10736 case ARM_CPU_MODE_UND: 10737 return 23; 10738 case ARM_CPU_MODE_FIQ: 10739 return 29; 10740 default: 10741 g_assert_not_reached(); 10742 } 10743 case 14: 10744 switch (mode) { 10745 case ARM_CPU_MODE_USR: 10746 case ARM_CPU_MODE_SYS: 10747 case ARM_CPU_MODE_HYP: 10748 return 14; 10749 case ARM_CPU_MODE_IRQ: 10750 return 16; 10751 case ARM_CPU_MODE_SVC: 10752 return 18; 10753 case ARM_CPU_MODE_ABT: 10754 return 20; 10755 case ARM_CPU_MODE_UND: 10756 return 22; 10757 case ARM_CPU_MODE_FIQ: 10758 return 30; 10759 default: 10760 g_assert_not_reached(); 10761 } 10762 case 15: 10763 return 31; 10764 default: 10765 g_assert_not_reached(); 10766 } 10767 } 10768 10769 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10770 { 10771 uint32_t ret = cpsr_read(env); 10772 10773 /* Move DIT to the correct location for SPSR_ELx */ 10774 if (ret & CPSR_DIT) { 10775 ret &= ~CPSR_DIT; 10776 ret |= PSTATE_DIT; 10777 } 10778 /* Merge PSTATE.SS into SPSR_ELx */ 10779 ret |= env->pstate & PSTATE_SS; 10780 10781 return ret; 10782 } 10783 10784 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10785 { 10786 /* Return true if this syndrome value is a synchronous external abort */ 10787 switch (syn_get_ec(syndrome)) { 10788 case EC_INSNABORT: 10789 case EC_INSNABORT_SAME_EL: 10790 case EC_DATAABORT: 10791 case EC_DATAABORT_SAME_EL: 10792 /* Look at fault status code for all the synchronous ext abort cases */ 10793 switch (syndrome & 0x3f) { 10794 case 0x10: 10795 case 0x13: 10796 case 0x14: 10797 case 0x15: 10798 case 0x16: 10799 case 0x17: 10800 return true; 10801 default: 10802 return false; 10803 } 10804 default: 10805 return false; 10806 } 10807 } 10808 10809 /* Handle exception entry to a target EL which is using AArch64 */ 10810 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10811 { 10812 ARMCPU *cpu = ARM_CPU(cs); 10813 CPUARMState *env = &cpu->env; 10814 unsigned int new_el = env->exception.target_el; 10815 target_ulong addr = env->cp15.vbar_el[new_el]; 10816 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10817 unsigned int old_mode; 10818 unsigned int cur_el = arm_current_el(env); 10819 int rt; 10820 10821 /* 10822 * Note that new_el can never be 0. If cur_el is 0, then 10823 * el0_a64 is is_a64(), else el0_a64 is ignored. 10824 */ 10825 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10826 10827 if (cur_el < new_el) { 10828 /* 10829 * Entry vector offset depends on whether the implemented EL 10830 * immediately lower than the target level is using AArch32 or AArch64 10831 */ 10832 bool is_aa64; 10833 uint64_t hcr; 10834 10835 switch (new_el) { 10836 case 3: 10837 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10838 break; 10839 case 2: 10840 hcr = arm_hcr_el2_eff(env); 10841 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10842 is_aa64 = (hcr & HCR_RW) != 0; 10843 break; 10844 } 10845 /* fall through */ 10846 case 1: 10847 is_aa64 = is_a64(env); 10848 break; 10849 default: 10850 g_assert_not_reached(); 10851 } 10852 10853 if (is_aa64) { 10854 addr += 0x400; 10855 } else { 10856 addr += 0x600; 10857 } 10858 } else if (pstate_read(env) & PSTATE_SP) { 10859 addr += 0x200; 10860 } 10861 10862 switch (cs->exception_index) { 10863 case EXCP_PREFETCH_ABORT: 10864 case EXCP_DATA_ABORT: 10865 /* 10866 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10867 * to be taken to the SError vector entrypoint. 10868 */ 10869 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10870 syndrome_is_sync_extabt(env->exception.syndrome)) { 10871 addr += 0x180; 10872 } 10873 env->cp15.far_el[new_el] = env->exception.vaddress; 10874 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10875 env->cp15.far_el[new_el]); 10876 /* fall through */ 10877 case EXCP_BKPT: 10878 case EXCP_UDEF: 10879 case EXCP_SWI: 10880 case EXCP_HVC: 10881 case EXCP_HYP_TRAP: 10882 case EXCP_SMC: 10883 switch (syn_get_ec(env->exception.syndrome)) { 10884 case EC_ADVSIMDFPACCESSTRAP: 10885 /* 10886 * QEMU internal FP/SIMD syndromes from AArch32 include the 10887 * TA and coproc fields which are only exposed if the exception 10888 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10889 * AArch64 format syndrome. 10890 */ 10891 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10892 break; 10893 case EC_CP14RTTRAP: 10894 case EC_CP15RTTRAP: 10895 case EC_CP14DTTRAP: 10896 /* 10897 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10898 * the raw register field from the insn; when taking this to 10899 * AArch64 we must convert it to the AArch64 view of the register 10900 * number. Notice that we read a 4-bit AArch32 register number and 10901 * write back a 5-bit AArch64 one. 10902 */ 10903 rt = extract32(env->exception.syndrome, 5, 4); 10904 rt = aarch64_regnum(env, rt); 10905 env->exception.syndrome = deposit32(env->exception.syndrome, 10906 5, 5, rt); 10907 break; 10908 case EC_CP15RRTTRAP: 10909 case EC_CP14RRTTRAP: 10910 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10911 rt = extract32(env->exception.syndrome, 5, 4); 10912 rt = aarch64_regnum(env, rt); 10913 env->exception.syndrome = deposit32(env->exception.syndrome, 10914 5, 5, rt); 10915 rt = extract32(env->exception.syndrome, 10, 4); 10916 rt = aarch64_regnum(env, rt); 10917 env->exception.syndrome = deposit32(env->exception.syndrome, 10918 10, 5, rt); 10919 break; 10920 } 10921 env->cp15.esr_el[new_el] = env->exception.syndrome; 10922 break; 10923 case EXCP_IRQ: 10924 case EXCP_VIRQ: 10925 addr += 0x80; 10926 break; 10927 case EXCP_FIQ: 10928 case EXCP_VFIQ: 10929 addr += 0x100; 10930 break; 10931 case EXCP_VSERR: 10932 addr += 0x180; 10933 /* Construct the SError syndrome from IDS and ISS fields. */ 10934 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10935 env->cp15.esr_el[new_el] = env->exception.syndrome; 10936 break; 10937 default: 10938 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10939 } 10940 10941 if (is_a64(env)) { 10942 old_mode = pstate_read(env); 10943 aarch64_save_sp(env, arm_current_el(env)); 10944 env->elr_el[new_el] = env->pc; 10945 } else { 10946 old_mode = cpsr_read_for_spsr_elx(env); 10947 env->elr_el[new_el] = env->regs[15]; 10948 10949 aarch64_sync_32_to_64(env); 10950 10951 env->condexec_bits = 0; 10952 } 10953 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10954 10955 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10956 env->elr_el[new_el]); 10957 10958 if (cpu_isar_feature(aa64_pan, cpu)) { 10959 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10960 new_mode |= old_mode & PSTATE_PAN; 10961 switch (new_el) { 10962 case 2: 10963 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10964 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10965 != (HCR_E2H | HCR_TGE)) { 10966 break; 10967 } 10968 /* fall through */ 10969 case 1: 10970 /* ... the target is EL1 ... */ 10971 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10972 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10973 new_mode |= PSTATE_PAN; 10974 } 10975 break; 10976 } 10977 } 10978 if (cpu_isar_feature(aa64_mte, cpu)) { 10979 new_mode |= PSTATE_TCO; 10980 } 10981 10982 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10983 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10984 new_mode |= PSTATE_SSBS; 10985 } else { 10986 new_mode &= ~PSTATE_SSBS; 10987 } 10988 } 10989 10990 pstate_write(env, PSTATE_DAIF | new_mode); 10991 env->aarch64 = true; 10992 aarch64_restore_sp(env, new_el); 10993 helper_rebuild_hflags_a64(env, new_el); 10994 10995 env->pc = addr; 10996 10997 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10998 new_el, env->pc, pstate_read(env)); 10999 } 11000 11001 /* 11002 * Do semihosting call and set the appropriate return value. All the 11003 * permission and validity checks have been done at translate time. 11004 * 11005 * We only see semihosting exceptions in TCG only as they are not 11006 * trapped to the hypervisor in KVM. 11007 */ 11008 #ifdef CONFIG_TCG 11009 static void handle_semihosting(CPUState *cs) 11010 { 11011 ARMCPU *cpu = ARM_CPU(cs); 11012 CPUARMState *env = &cpu->env; 11013 11014 if (is_a64(env)) { 11015 qemu_log_mask(CPU_LOG_INT, 11016 "...handling as semihosting call 0x%" PRIx64 "\n", 11017 env->xregs[0]); 11018 do_common_semihosting(cs); 11019 env->pc += 4; 11020 } else { 11021 qemu_log_mask(CPU_LOG_INT, 11022 "...handling as semihosting call 0x%x\n", 11023 env->regs[0]); 11024 do_common_semihosting(cs); 11025 env->regs[15] += env->thumb ? 2 : 4; 11026 } 11027 } 11028 #endif 11029 11030 /* 11031 * Handle a CPU exception for A and R profile CPUs. 11032 * Do any appropriate logging, handle PSCI calls, and then hand off 11033 * to the AArch64-entry or AArch32-entry function depending on the 11034 * target exception level's register width. 11035 * 11036 * Note: this is used for both TCG (as the do_interrupt tcg op), 11037 * and KVM to re-inject guest debug exceptions, and to 11038 * inject a Synchronous-External-Abort. 11039 */ 11040 void arm_cpu_do_interrupt(CPUState *cs) 11041 { 11042 ARMCPU *cpu = ARM_CPU(cs); 11043 CPUARMState *env = &cpu->env; 11044 unsigned int new_el = env->exception.target_el; 11045 11046 assert(!arm_feature(env, ARM_FEATURE_M)); 11047 11048 arm_log_exception(cs); 11049 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11050 new_el); 11051 if (qemu_loglevel_mask(CPU_LOG_INT) 11052 && !excp_is_internal(cs->exception_index)) { 11053 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11054 syn_get_ec(env->exception.syndrome), 11055 env->exception.syndrome); 11056 } 11057 11058 if (arm_is_psci_call(cpu, cs->exception_index)) { 11059 arm_handle_psci_call(cpu); 11060 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11061 return; 11062 } 11063 11064 /* 11065 * Semihosting semantics depend on the register width of the code 11066 * that caused the exception, not the target exception level, so 11067 * must be handled here. 11068 */ 11069 #ifdef CONFIG_TCG 11070 if (cs->exception_index == EXCP_SEMIHOST) { 11071 handle_semihosting(cs); 11072 return; 11073 } 11074 #endif 11075 11076 /* 11077 * Hooks may change global state so BQL should be held, also the 11078 * BQL needs to be held for any modification of 11079 * cs->interrupt_request. 11080 */ 11081 g_assert(qemu_mutex_iothread_locked()); 11082 11083 arm_call_pre_el_change_hook(cpu); 11084 11085 assert(!excp_is_internal(cs->exception_index)); 11086 if (arm_el_is_aa64(env, new_el)) { 11087 arm_cpu_do_interrupt_aarch64(cs); 11088 } else { 11089 arm_cpu_do_interrupt_aarch32(cs); 11090 } 11091 11092 arm_call_el_change_hook(cpu); 11093 11094 if (!kvm_enabled()) { 11095 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11096 } 11097 } 11098 #endif /* !CONFIG_USER_ONLY */ 11099 11100 uint64_t arm_sctlr(CPUARMState *env, int el) 11101 { 11102 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11103 if (el == 0) { 11104 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11105 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11106 } 11107 return env->cp15.sctlr_el[el]; 11108 } 11109 11110 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11111 { 11112 if (regime_has_2_ranges(mmu_idx)) { 11113 return extract64(tcr, 37, 2); 11114 } else if (regime_is_stage2(mmu_idx)) { 11115 return 0; /* VTCR_EL2 */ 11116 } else { 11117 /* Replicate the single TBI bit so we always have 2 bits. */ 11118 return extract32(tcr, 20, 1) * 3; 11119 } 11120 } 11121 11122 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11123 { 11124 if (regime_has_2_ranges(mmu_idx)) { 11125 return extract64(tcr, 51, 2); 11126 } else if (regime_is_stage2(mmu_idx)) { 11127 return 0; /* VTCR_EL2 */ 11128 } else { 11129 /* Replicate the single TBID bit so we always have 2 bits. */ 11130 return extract32(tcr, 29, 1) * 3; 11131 } 11132 } 11133 11134 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11135 { 11136 if (regime_has_2_ranges(mmu_idx)) { 11137 return extract64(tcr, 57, 2); 11138 } else { 11139 /* Replicate the single TCMA bit so we always have 2 bits. */ 11140 return extract32(tcr, 30, 1) * 3; 11141 } 11142 } 11143 11144 static ARMGranuleSize tg0_to_gran_size(int tg) 11145 { 11146 switch (tg) { 11147 case 0: 11148 return Gran4K; 11149 case 1: 11150 return Gran64K; 11151 case 2: 11152 return Gran16K; 11153 default: 11154 return GranInvalid; 11155 } 11156 } 11157 11158 static ARMGranuleSize tg1_to_gran_size(int tg) 11159 { 11160 switch (tg) { 11161 case 1: 11162 return Gran16K; 11163 case 2: 11164 return Gran4K; 11165 case 3: 11166 return Gran64K; 11167 default: 11168 return GranInvalid; 11169 } 11170 } 11171 11172 static inline bool have4k(ARMCPU *cpu, bool stage2) 11173 { 11174 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11175 : cpu_isar_feature(aa64_tgran4, cpu); 11176 } 11177 11178 static inline bool have16k(ARMCPU *cpu, bool stage2) 11179 { 11180 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11181 : cpu_isar_feature(aa64_tgran16, cpu); 11182 } 11183 11184 static inline bool have64k(ARMCPU *cpu, bool stage2) 11185 { 11186 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11187 : cpu_isar_feature(aa64_tgran64, cpu); 11188 } 11189 11190 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11191 bool stage2) 11192 { 11193 switch (gran) { 11194 case Gran4K: 11195 if (have4k(cpu, stage2)) { 11196 return gran; 11197 } 11198 break; 11199 case Gran16K: 11200 if (have16k(cpu, stage2)) { 11201 return gran; 11202 } 11203 break; 11204 case Gran64K: 11205 if (have64k(cpu, stage2)) { 11206 return gran; 11207 } 11208 break; 11209 case GranInvalid: 11210 break; 11211 } 11212 /* 11213 * If the guest selects a granule size that isn't implemented, 11214 * the architecture requires that we behave as if it selected one 11215 * that is (with an IMPDEF choice of which one to pick). We choose 11216 * to implement the smallest supported granule size. 11217 */ 11218 if (have4k(cpu, stage2)) { 11219 return Gran4K; 11220 } 11221 if (have16k(cpu, stage2)) { 11222 return Gran16K; 11223 } 11224 assert(have64k(cpu, stage2)); 11225 return Gran64K; 11226 } 11227 11228 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11229 ARMMMUIdx mmu_idx, bool data) 11230 { 11231 uint64_t tcr = regime_tcr(env, mmu_idx); 11232 bool epd, hpd, tsz_oob, ds, ha, hd; 11233 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11234 ARMGranuleSize gran; 11235 ARMCPU *cpu = env_archcpu(env); 11236 bool stage2 = regime_is_stage2(mmu_idx); 11237 11238 if (!regime_has_2_ranges(mmu_idx)) { 11239 select = 0; 11240 tsz = extract32(tcr, 0, 6); 11241 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11242 if (stage2) { 11243 /* VTCR_EL2 */ 11244 hpd = false; 11245 } else { 11246 hpd = extract32(tcr, 24, 1); 11247 } 11248 epd = false; 11249 sh = extract32(tcr, 12, 2); 11250 ps = extract32(tcr, 16, 3); 11251 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11252 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11253 ds = extract64(tcr, 32, 1); 11254 } else { 11255 bool e0pd; 11256 11257 /* 11258 * Bit 55 is always between the two regions, and is canonical for 11259 * determining if address tagging is enabled. 11260 */ 11261 select = extract64(va, 55, 1); 11262 if (!select) { 11263 tsz = extract32(tcr, 0, 6); 11264 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11265 epd = extract32(tcr, 7, 1); 11266 sh = extract32(tcr, 12, 2); 11267 hpd = extract64(tcr, 41, 1); 11268 e0pd = extract64(tcr, 55, 1); 11269 } else { 11270 tsz = extract32(tcr, 16, 6); 11271 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11272 epd = extract32(tcr, 23, 1); 11273 sh = extract32(tcr, 28, 2); 11274 hpd = extract64(tcr, 42, 1); 11275 e0pd = extract64(tcr, 56, 1); 11276 } 11277 ps = extract64(tcr, 32, 3); 11278 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11279 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11280 ds = extract64(tcr, 59, 1); 11281 11282 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11283 regime_is_user(env, mmu_idx)) { 11284 epd = true; 11285 } 11286 } 11287 11288 gran = sanitize_gran_size(cpu, gran, stage2); 11289 11290 if (cpu_isar_feature(aa64_st, cpu)) { 11291 max_tsz = 48 - (gran == Gran64K); 11292 } else { 11293 max_tsz = 39; 11294 } 11295 11296 /* 11297 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11298 * adjust the effective value of DS, as documented. 11299 */ 11300 min_tsz = 16; 11301 if (gran == Gran64K) { 11302 if (cpu_isar_feature(aa64_lva, cpu)) { 11303 min_tsz = 12; 11304 } 11305 ds = false; 11306 } else if (ds) { 11307 if (regime_is_stage2(mmu_idx)) { 11308 if (gran == Gran16K) { 11309 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11310 } else { 11311 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11312 } 11313 } else { 11314 if (gran == Gran16K) { 11315 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11316 } else { 11317 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11318 } 11319 } 11320 if (ds) { 11321 min_tsz = 12; 11322 } 11323 } 11324 11325 if (tsz > max_tsz) { 11326 tsz = max_tsz; 11327 tsz_oob = true; 11328 } else if (tsz < min_tsz) { 11329 tsz = min_tsz; 11330 tsz_oob = true; 11331 } else { 11332 tsz_oob = false; 11333 } 11334 11335 /* Present TBI as a composite with TBID. */ 11336 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11337 if (!data) { 11338 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11339 } 11340 tbi = (tbi >> select) & 1; 11341 11342 return (ARMVAParameters) { 11343 .tsz = tsz, 11344 .ps = ps, 11345 .sh = sh, 11346 .select = select, 11347 .tbi = tbi, 11348 .epd = epd, 11349 .hpd = hpd, 11350 .tsz_oob = tsz_oob, 11351 .ds = ds, 11352 .ha = ha, 11353 .hd = ha && hd, 11354 .gran = gran, 11355 }; 11356 } 11357 11358 /* 11359 * Note that signed overflow is undefined in C. The following routines are 11360 * careful to use unsigned types where modulo arithmetic is required. 11361 * Failure to do so _will_ break on newer gcc. 11362 */ 11363 11364 /* Signed saturating arithmetic. */ 11365 11366 /* Perform 16-bit signed saturating addition. */ 11367 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11368 { 11369 uint16_t res; 11370 11371 res = a + b; 11372 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11373 if (a & 0x8000) { 11374 res = 0x8000; 11375 } else { 11376 res = 0x7fff; 11377 } 11378 } 11379 return res; 11380 } 11381 11382 /* Perform 8-bit signed saturating addition. */ 11383 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11384 { 11385 uint8_t res; 11386 11387 res = a + b; 11388 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11389 if (a & 0x80) { 11390 res = 0x80; 11391 } else { 11392 res = 0x7f; 11393 } 11394 } 11395 return res; 11396 } 11397 11398 /* Perform 16-bit signed saturating subtraction. */ 11399 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11400 { 11401 uint16_t res; 11402 11403 res = a - b; 11404 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11405 if (a & 0x8000) { 11406 res = 0x8000; 11407 } else { 11408 res = 0x7fff; 11409 } 11410 } 11411 return res; 11412 } 11413 11414 /* Perform 8-bit signed saturating subtraction. */ 11415 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11416 { 11417 uint8_t res; 11418 11419 res = a - b; 11420 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11421 if (a & 0x80) { 11422 res = 0x80; 11423 } else { 11424 res = 0x7f; 11425 } 11426 } 11427 return res; 11428 } 11429 11430 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11431 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11432 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11433 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11434 #define PFX q 11435 11436 #include "op_addsub.h" 11437 11438 /* Unsigned saturating arithmetic. */ 11439 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11440 { 11441 uint16_t res; 11442 res = a + b; 11443 if (res < a) { 11444 res = 0xffff; 11445 } 11446 return res; 11447 } 11448 11449 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11450 { 11451 if (a > b) { 11452 return a - b; 11453 } else { 11454 return 0; 11455 } 11456 } 11457 11458 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11459 { 11460 uint8_t res; 11461 res = a + b; 11462 if (res < a) { 11463 res = 0xff; 11464 } 11465 return res; 11466 } 11467 11468 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11469 { 11470 if (a > b) { 11471 return a - b; 11472 } else { 11473 return 0; 11474 } 11475 } 11476 11477 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11478 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11479 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11480 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11481 #define PFX uq 11482 11483 #include "op_addsub.h" 11484 11485 /* Signed modulo arithmetic. */ 11486 #define SARITH16(a, b, n, op) do { \ 11487 int32_t sum; \ 11488 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11489 RESULT(sum, n, 16); \ 11490 if (sum >= 0) \ 11491 ge |= 3 << (n * 2); \ 11492 } while (0) 11493 11494 #define SARITH8(a, b, n, op) do { \ 11495 int32_t sum; \ 11496 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11497 RESULT(sum, n, 8); \ 11498 if (sum >= 0) \ 11499 ge |= 1 << n; \ 11500 } while (0) 11501 11502 11503 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11504 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11505 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11506 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11507 #define PFX s 11508 #define ARITH_GE 11509 11510 #include "op_addsub.h" 11511 11512 /* Unsigned modulo arithmetic. */ 11513 #define ADD16(a, b, n) do { \ 11514 uint32_t sum; \ 11515 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11516 RESULT(sum, n, 16); \ 11517 if ((sum >> 16) == 1) \ 11518 ge |= 3 << (n * 2); \ 11519 } while (0) 11520 11521 #define ADD8(a, b, n) do { \ 11522 uint32_t sum; \ 11523 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11524 RESULT(sum, n, 8); \ 11525 if ((sum >> 8) == 1) \ 11526 ge |= 1 << n; \ 11527 } while (0) 11528 11529 #define SUB16(a, b, n) do { \ 11530 uint32_t sum; \ 11531 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11532 RESULT(sum, n, 16); \ 11533 if ((sum >> 16) == 0) \ 11534 ge |= 3 << (n * 2); \ 11535 } while (0) 11536 11537 #define SUB8(a, b, n) do { \ 11538 uint32_t sum; \ 11539 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11540 RESULT(sum, n, 8); \ 11541 if ((sum >> 8) == 0) \ 11542 ge |= 1 << n; \ 11543 } while (0) 11544 11545 #define PFX u 11546 #define ARITH_GE 11547 11548 #include "op_addsub.h" 11549 11550 /* Halved signed arithmetic. */ 11551 #define ADD16(a, b, n) \ 11552 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11553 #define SUB16(a, b, n) \ 11554 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11555 #define ADD8(a, b, n) \ 11556 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11557 #define SUB8(a, b, n) \ 11558 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11559 #define PFX sh 11560 11561 #include "op_addsub.h" 11562 11563 /* Halved unsigned arithmetic. */ 11564 #define ADD16(a, b, n) \ 11565 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11566 #define SUB16(a, b, n) \ 11567 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11568 #define ADD8(a, b, n) \ 11569 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11570 #define SUB8(a, b, n) \ 11571 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11572 #define PFX uh 11573 11574 #include "op_addsub.h" 11575 11576 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11577 { 11578 if (a > b) { 11579 return a - b; 11580 } else { 11581 return b - a; 11582 } 11583 } 11584 11585 /* Unsigned sum of absolute byte differences. */ 11586 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11587 { 11588 uint32_t sum; 11589 sum = do_usad(a, b); 11590 sum += do_usad(a >> 8, b >> 8); 11591 sum += do_usad(a >> 16, b >> 16); 11592 sum += do_usad(a >> 24, b >> 24); 11593 return sum; 11594 } 11595 11596 /* For ARMv6 SEL instruction. */ 11597 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11598 { 11599 uint32_t mask; 11600 11601 mask = 0; 11602 if (flags & 1) { 11603 mask |= 0xff; 11604 } 11605 if (flags & 2) { 11606 mask |= 0xff00; 11607 } 11608 if (flags & 4) { 11609 mask |= 0xff0000; 11610 } 11611 if (flags & 8) { 11612 mask |= 0xff000000; 11613 } 11614 return (a & mask) | (b & ~mask); 11615 } 11616 11617 /* 11618 * CRC helpers. 11619 * The upper bytes of val (above the number specified by 'bytes') must have 11620 * been zeroed out by the caller. 11621 */ 11622 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11623 { 11624 uint8_t buf[4]; 11625 11626 stl_le_p(buf, val); 11627 11628 /* zlib crc32 converts the accumulator and output to one's complement. */ 11629 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11630 } 11631 11632 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11633 { 11634 uint8_t buf[4]; 11635 11636 stl_le_p(buf, val); 11637 11638 /* Linux crc32c converts the output to one's complement. */ 11639 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11640 } 11641 11642 /* 11643 * Return the exception level to which FP-disabled exceptions should 11644 * be taken, or 0 if FP is enabled. 11645 */ 11646 int fp_exception_el(CPUARMState *env, int cur_el) 11647 { 11648 #ifndef CONFIG_USER_ONLY 11649 uint64_t hcr_el2; 11650 11651 /* 11652 * CPACR and the CPTR registers don't exist before v6, so FP is 11653 * always accessible 11654 */ 11655 if (!arm_feature(env, ARM_FEATURE_V6)) { 11656 return 0; 11657 } 11658 11659 if (arm_feature(env, ARM_FEATURE_M)) { 11660 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11661 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11662 return 1; 11663 } 11664 11665 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11666 if (!extract32(env->v7m.nsacr, 10, 1)) { 11667 /* FP insns cause a NOCP UsageFault taken to Secure */ 11668 return 3; 11669 } 11670 } 11671 11672 return 0; 11673 } 11674 11675 hcr_el2 = arm_hcr_el2_eff(env); 11676 11677 /* 11678 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11679 * 0, 2 : trap EL0 and EL1/PL1 accesses 11680 * 1 : trap only EL0 accesses 11681 * 3 : trap no accesses 11682 * This register is ignored if E2H+TGE are both set. 11683 */ 11684 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11685 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11686 11687 switch (fpen) { 11688 case 1: 11689 if (cur_el != 0) { 11690 break; 11691 } 11692 /* fall through */ 11693 case 0: 11694 case 2: 11695 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11696 if (!arm_el_is_aa64(env, 3) 11697 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11698 return 3; 11699 } 11700 if (cur_el <= 1) { 11701 return 1; 11702 } 11703 break; 11704 } 11705 } 11706 11707 /* 11708 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11709 * to control non-secure access to the FPU. It doesn't have any 11710 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11711 */ 11712 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11713 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11714 if (!extract32(env->cp15.nsacr, 10, 1)) { 11715 /* FP insns act as UNDEF */ 11716 return cur_el == 2 ? 2 : 1; 11717 } 11718 } 11719 11720 /* 11721 * CPTR_EL2 is present in v7VE or v8, and changes format 11722 * with HCR_EL2.E2H (regardless of TGE). 11723 */ 11724 if (cur_el <= 2) { 11725 if (hcr_el2 & HCR_E2H) { 11726 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11727 case 1: 11728 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11729 break; 11730 } 11731 /* fall through */ 11732 case 0: 11733 case 2: 11734 return 2; 11735 } 11736 } else if (arm_is_el2_enabled(env)) { 11737 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11738 return 2; 11739 } 11740 } 11741 } 11742 11743 /* CPTR_EL3 : present in v8 */ 11744 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11745 /* Trap all FP ops to EL3 */ 11746 return 3; 11747 } 11748 #endif 11749 return 0; 11750 } 11751 11752 /* Return the exception level we're running at if this is our mmu_idx */ 11753 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11754 { 11755 if (mmu_idx & ARM_MMU_IDX_M) { 11756 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11757 } 11758 11759 switch (mmu_idx) { 11760 case ARMMMUIdx_E10_0: 11761 case ARMMMUIdx_E20_0: 11762 return 0; 11763 case ARMMMUIdx_E10_1: 11764 case ARMMMUIdx_E10_1_PAN: 11765 return 1; 11766 case ARMMMUIdx_E2: 11767 case ARMMMUIdx_E20_2: 11768 case ARMMMUIdx_E20_2_PAN: 11769 return 2; 11770 case ARMMMUIdx_E3: 11771 return 3; 11772 default: 11773 g_assert_not_reached(); 11774 } 11775 } 11776 11777 #ifndef CONFIG_TCG 11778 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11779 { 11780 g_assert_not_reached(); 11781 } 11782 #endif 11783 11784 static bool arm_pan_enabled(CPUARMState *env) 11785 { 11786 if (is_a64(env)) { 11787 return env->pstate & PSTATE_PAN; 11788 } else { 11789 return env->uncached_cpsr & CPSR_PAN; 11790 } 11791 } 11792 11793 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11794 { 11795 ARMMMUIdx idx; 11796 uint64_t hcr; 11797 11798 if (arm_feature(env, ARM_FEATURE_M)) { 11799 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11800 } 11801 11802 /* See ARM pseudo-function ELIsInHost. */ 11803 switch (el) { 11804 case 0: 11805 hcr = arm_hcr_el2_eff(env); 11806 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11807 idx = ARMMMUIdx_E20_0; 11808 } else { 11809 idx = ARMMMUIdx_E10_0; 11810 } 11811 break; 11812 case 1: 11813 if (arm_pan_enabled(env)) { 11814 idx = ARMMMUIdx_E10_1_PAN; 11815 } else { 11816 idx = ARMMMUIdx_E10_1; 11817 } 11818 break; 11819 case 2: 11820 /* Note that TGE does not apply at EL2. */ 11821 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11822 if (arm_pan_enabled(env)) { 11823 idx = ARMMMUIdx_E20_2_PAN; 11824 } else { 11825 idx = ARMMMUIdx_E20_2; 11826 } 11827 } else { 11828 idx = ARMMMUIdx_E2; 11829 } 11830 break; 11831 case 3: 11832 return ARMMMUIdx_E3; 11833 default: 11834 g_assert_not_reached(); 11835 } 11836 11837 return idx; 11838 } 11839 11840 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11841 { 11842 return arm_mmu_idx_el(env, arm_current_el(env)); 11843 } 11844 11845 static inline bool fgt_svc(CPUARMState *env, int el) 11846 { 11847 /* 11848 * Assuming fine-grained-traps are active, return true if we 11849 * should be trapping on SVC instructions. Only AArch64 can 11850 * trap on an SVC at EL1, but we don't need to special-case this 11851 * because if this is AArch32 EL1 then arm_fgt_active() is false. 11852 * We also know el is 0 or 1. 11853 */ 11854 return el == 0 ? 11855 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) : 11856 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1); 11857 } 11858 11859 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 11860 ARMMMUIdx mmu_idx, 11861 CPUARMTBFlags flags) 11862 { 11863 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 11864 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 11865 11866 if (arm_singlestep_active(env)) { 11867 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 11868 } 11869 11870 return flags; 11871 } 11872 11873 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11874 ARMMMUIdx mmu_idx, 11875 CPUARMTBFlags flags) 11876 { 11877 bool sctlr_b = arm_sctlr_b(env); 11878 11879 if (sctlr_b) { 11880 DP_TBFLAG_A32(flags, SCTLR__B, 1); 11881 } 11882 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11883 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11884 } 11885 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 11886 11887 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11888 } 11889 11890 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 11891 ARMMMUIdx mmu_idx) 11892 { 11893 CPUARMTBFlags flags = {}; 11894 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 11895 11896 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 11897 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 11898 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11899 } 11900 11901 if (arm_v7m_is_handler_mode(env)) { 11902 DP_TBFLAG_M32(flags, HANDLER, 1); 11903 } 11904 11905 /* 11906 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11907 * is suppressing them because the requested execution priority 11908 * is less than 0. 11909 */ 11910 if (arm_feature(env, ARM_FEATURE_V8) && 11911 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11912 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11913 DP_TBFLAG_M32(flags, STACKCHECK, 1); 11914 } 11915 11916 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) { 11917 DP_TBFLAG_M32(flags, SECURE, 1); 11918 } 11919 11920 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11921 } 11922 11923 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 11924 ARMMMUIdx mmu_idx) 11925 { 11926 CPUARMTBFlags flags = {}; 11927 int el = arm_current_el(env); 11928 11929 if (arm_sctlr(env, el) & SCTLR_A) { 11930 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11931 } 11932 11933 if (arm_el_is_aa64(env, 1)) { 11934 DP_TBFLAG_A32(flags, VFPEN, 1); 11935 } 11936 11937 if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) && 11938 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11939 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 11940 } 11941 11942 if (arm_fgt_active(env, el)) { 11943 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); 11944 if (fgt_svc(env, el)) { 11945 DP_TBFLAG_ANY(flags, FGT_SVC, 1); 11946 } 11947 } 11948 11949 if (env->uncached_cpsr & CPSR_IL) { 11950 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11951 } 11952 11953 /* 11954 * The SME exception we are testing for is raised via 11955 * AArch64.CheckFPAdvSIMDEnabled(), as called from 11956 * AArch32.CheckAdvSIMDOrFPEnabled(). 11957 */ 11958 if (el == 0 11959 && FIELD_EX64(env->svcr, SVCR, SM) 11960 && (!arm_is_el2_enabled(env) 11961 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) 11962 && arm_el_is_aa64(env, 1) 11963 && !sme_fa64(env, el)) { 11964 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); 11965 } 11966 11967 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11968 } 11969 11970 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11971 ARMMMUIdx mmu_idx) 11972 { 11973 CPUARMTBFlags flags = {}; 11974 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11975 uint64_t tcr = regime_tcr(env, mmu_idx); 11976 uint64_t sctlr; 11977 int tbii, tbid; 11978 11979 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 11980 11981 /* Get control bits for tagged addresses. */ 11982 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 11983 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 11984 11985 DP_TBFLAG_A64(flags, TBII, tbii); 11986 DP_TBFLAG_A64(flags, TBID, tbid); 11987 11988 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11989 int sve_el = sve_exception_el(env, el); 11990 11991 /* 11992 * If either FP or SVE are disabled, translator does not need len. 11993 * If SVE EL > FP EL, FP exception has precedence, and translator 11994 * does not need SVE EL. Save potential re-translations by forcing 11995 * the unneeded data to zero. 11996 */ 11997 if (fp_el != 0) { 11998 if (sve_el > fp_el) { 11999 sve_el = 0; 12000 } 12001 } else if (sve_el == 0) { 12002 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 12003 } 12004 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 12005 } 12006 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 12007 int sme_el = sme_exception_el(env, el); 12008 bool sm = FIELD_EX64(env->svcr, SVCR, SM); 12009 12010 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); 12011 if (sme_el == 0) { 12012 /* Similarly, do not compute SVL if SME is disabled. */ 12013 int svl = sve_vqm1_for_el_sm(env, el, true); 12014 DP_TBFLAG_A64(flags, SVL, svl); 12015 if (sm) { 12016 /* If SVE is disabled, we will not have set VL above. */ 12017 DP_TBFLAG_A64(flags, VL, svl); 12018 } 12019 } 12020 if (sm) { 12021 DP_TBFLAG_A64(flags, PSTATE_SM, 1); 12022 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); 12023 } 12024 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); 12025 } 12026 12027 sctlr = regime_sctlr(env, stage1); 12028 12029 if (sctlr & SCTLR_A) { 12030 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 12031 } 12032 12033 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12034 DP_TBFLAG_ANY(flags, BE_DATA, 1); 12035 } 12036 12037 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12038 /* 12039 * In order to save space in flags, we record only whether 12040 * pauth is "inactive", meaning all insns are implemented as 12041 * a nop, or "active" when some action must be performed. 12042 * The decision of which action to take is left to a helper. 12043 */ 12044 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12045 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 12046 } 12047 } 12048 12049 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12050 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12051 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12052 DP_TBFLAG_A64(flags, BT, 1); 12053 } 12054 } 12055 12056 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12057 if (!(env->pstate & PSTATE_UAO)) { 12058 switch (mmu_idx) { 12059 case ARMMMUIdx_E10_1: 12060 case ARMMMUIdx_E10_1_PAN: 12061 /* TODO: ARMv8.3-NV */ 12062 DP_TBFLAG_A64(flags, UNPRIV, 1); 12063 break; 12064 case ARMMMUIdx_E20_2: 12065 case ARMMMUIdx_E20_2_PAN: 12066 /* 12067 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12068 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12069 */ 12070 if (env->cp15.hcr_el2 & HCR_TGE) { 12071 DP_TBFLAG_A64(flags, UNPRIV, 1); 12072 } 12073 break; 12074 default: 12075 break; 12076 } 12077 } 12078 12079 if (env->pstate & PSTATE_IL) { 12080 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 12081 } 12082 12083 if (arm_fgt_active(env, el)) { 12084 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); 12085 if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) { 12086 DP_TBFLAG_A64(flags, FGT_ERET, 1); 12087 } 12088 if (fgt_svc(env, el)) { 12089 DP_TBFLAG_ANY(flags, FGT_SVC, 1); 12090 } 12091 } 12092 12093 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 12094 /* 12095 * Set MTE_ACTIVE if any access may be Checked, and leave clear 12096 * if all accesses must be Unchecked: 12097 * 1) If no TBI, then there are no tags in the address to check, 12098 * 2) If Tag Check Override, then all accesses are Unchecked, 12099 * 3) If Tag Check Fail == 0, then Checked access have no effect, 12100 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 12101 */ 12102 if (allocation_tag_access_enabled(env, el, sctlr)) { 12103 DP_TBFLAG_A64(flags, ATA, 1); 12104 if (tbid 12105 && !(env->pstate & PSTATE_TCO) 12106 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 12107 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 12108 } 12109 } 12110 /* And again for unprivileged accesses, if required. */ 12111 if (EX_TBFLAG_A64(flags, UNPRIV) 12112 && tbid 12113 && !(env->pstate & PSTATE_TCO) 12114 && (sctlr & SCTLR_TCF0) 12115 && allocation_tag_access_enabled(env, 0, sctlr)) { 12116 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 12117 } 12118 /* Cache TCMA as well as TBI. */ 12119 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 12120 } 12121 12122 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12123 } 12124 12125 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 12126 { 12127 int el = arm_current_el(env); 12128 int fp_el = fp_exception_el(env, el); 12129 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12130 12131 if (is_a64(env)) { 12132 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12133 } else if (arm_feature(env, ARM_FEATURE_M)) { 12134 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12135 } else { 12136 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12137 } 12138 } 12139 12140 void arm_rebuild_hflags(CPUARMState *env) 12141 { 12142 env->hflags = rebuild_hflags_internal(env); 12143 } 12144 12145 /* 12146 * If we have triggered a EL state change we can't rely on the 12147 * translator having passed it to us, we need to recompute. 12148 */ 12149 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 12150 { 12151 int el = arm_current_el(env); 12152 int fp_el = fp_exception_el(env, el); 12153 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12154 12155 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12156 } 12157 12158 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12159 { 12160 int fp_el = fp_exception_el(env, el); 12161 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12162 12163 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12164 } 12165 12166 /* 12167 * If we have triggered a EL state change we can't rely on the 12168 * translator having passed it to us, we need to recompute. 12169 */ 12170 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12171 { 12172 int el = arm_current_el(env); 12173 int fp_el = fp_exception_el(env, el); 12174 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12175 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12176 } 12177 12178 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 12179 { 12180 int fp_el = fp_exception_el(env, el); 12181 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12182 12183 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12184 } 12185 12186 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 12187 { 12188 int fp_el = fp_exception_el(env, el); 12189 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12190 12191 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12192 } 12193 12194 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 12195 { 12196 #ifdef CONFIG_DEBUG_TCG 12197 CPUARMTBFlags c = env->hflags; 12198 CPUARMTBFlags r = rebuild_hflags_internal(env); 12199 12200 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 12201 fprintf(stderr, "TCG hflags mismatch " 12202 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 12203 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 12204 c.flags, c.flags2, r.flags, r.flags2); 12205 abort(); 12206 } 12207 #endif 12208 } 12209 12210 static bool mve_no_pred(CPUARMState *env) 12211 { 12212 /* 12213 * Return true if there is definitely no predication of MVE 12214 * instructions by VPR or LTPSIZE. (Returning false even if there 12215 * isn't any predication is OK; generated code will just be 12216 * a little worse.) 12217 * If the CPU does not implement MVE then this TB flag is always 0. 12218 * 12219 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12220 * logic in gen_update_fp_context() needs to be updated to match. 12221 * 12222 * We do not include the effect of the ECI bits here -- they are 12223 * tracked in other TB flags. This simplifies the logic for 12224 * "when did we emit code that changes the MVE_NO_PRED TB flag 12225 * and thus need to end the TB?". 12226 */ 12227 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12228 return false; 12229 } 12230 if (env->v7m.vpr) { 12231 return false; 12232 } 12233 if (env->v7m.ltpsize < 4) { 12234 return false; 12235 } 12236 return true; 12237 } 12238 12239 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12240 target_ulong *cs_base, uint32_t *pflags) 12241 { 12242 CPUARMTBFlags flags; 12243 12244 assert_hflags_rebuild_correctly(env); 12245 flags = env->hflags; 12246 12247 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12248 *pc = env->pc; 12249 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12250 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12251 } 12252 } else { 12253 *pc = env->regs[15]; 12254 12255 if (arm_feature(env, ARM_FEATURE_M)) { 12256 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12257 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12258 != env->v7m.secure) { 12259 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12260 } 12261 12262 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12263 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12264 (env->v7m.secure && 12265 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12266 /* 12267 * ASPEN is set, but FPCA/SFPA indicate that there is no 12268 * active FP context; we must create a new FP context before 12269 * executing any FP insn. 12270 */ 12271 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12272 } 12273 12274 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12275 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12276 DP_TBFLAG_M32(flags, LSPACT, 1); 12277 } 12278 12279 if (mve_no_pred(env)) { 12280 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12281 } 12282 } else { 12283 /* 12284 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12285 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12286 */ 12287 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12288 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12289 } else { 12290 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12291 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12292 } 12293 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12294 DP_TBFLAG_A32(flags, VFPEN, 1); 12295 } 12296 } 12297 12298 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12299 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12300 } 12301 12302 /* 12303 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12304 * states defined in the ARM ARM for software singlestep: 12305 * SS_ACTIVE PSTATE.SS State 12306 * 0 x Inactive (the TB flag for SS is always 0) 12307 * 1 0 Active-pending 12308 * 1 1 Active-not-pending 12309 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12310 */ 12311 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12312 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12313 } 12314 12315 *pflags = flags.flags; 12316 *cs_base = flags.flags2; 12317 } 12318 12319 #ifdef TARGET_AARCH64 12320 /* 12321 * The manual says that when SVE is enabled and VQ is widened the 12322 * implementation is allowed to zero the previously inaccessible 12323 * portion of the registers. The corollary to that is that when 12324 * SVE is enabled and VQ is narrowed we are also allowed to zero 12325 * the now inaccessible portion of the registers. 12326 * 12327 * The intent of this is that no predicate bit beyond VQ is ever set. 12328 * Which means that some operations on predicate registers themselves 12329 * may operate on full uint64_t or even unrolled across the maximum 12330 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12331 * may well be cheaper than conditionals to restrict the operation 12332 * to the relevant portion of a uint16_t[16]. 12333 */ 12334 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12335 { 12336 int i, j; 12337 uint64_t pmask; 12338 12339 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12340 assert(vq <= env_archcpu(env)->sve_max_vq); 12341 12342 /* Zap the high bits of the zregs. */ 12343 for (i = 0; i < 32; i++) { 12344 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12345 } 12346 12347 /* Zap the high bits of the pregs and ffr. */ 12348 pmask = 0; 12349 if (vq & 3) { 12350 pmask = ~(-1ULL << (16 * (vq & 3))); 12351 } 12352 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12353 for (i = 0; i < 17; ++i) { 12354 env->vfp.pregs[i].p[j] &= pmask; 12355 } 12356 pmask = 0; 12357 } 12358 } 12359 12360 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12361 { 12362 int exc_el; 12363 12364 if (sm) { 12365 exc_el = sme_exception_el(env, el); 12366 } else { 12367 exc_el = sve_exception_el(env, el); 12368 } 12369 if (exc_el) { 12370 return 0; /* disabled */ 12371 } 12372 return sve_vqm1_for_el_sm(env, el, sm); 12373 } 12374 12375 /* 12376 * Notice a change in SVE vector size when changing EL. 12377 */ 12378 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12379 int new_el, bool el0_a64) 12380 { 12381 ARMCPU *cpu = env_archcpu(env); 12382 int old_len, new_len; 12383 bool old_a64, new_a64, sm; 12384 12385 /* Nothing to do if no SVE. */ 12386 if (!cpu_isar_feature(aa64_sve, cpu)) { 12387 return; 12388 } 12389 12390 /* Nothing to do if FP is disabled in either EL. */ 12391 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12392 return; 12393 } 12394 12395 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12396 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12397 12398 /* 12399 * Both AArch64.TakeException and AArch64.ExceptionReturn 12400 * invoke ResetSVEState when taking an exception from, or 12401 * returning to, AArch32 state when PSTATE.SM is enabled. 12402 */ 12403 sm = FIELD_EX64(env->svcr, SVCR, SM); 12404 if (old_a64 != new_a64 && sm) { 12405 arm_reset_sve_state(env); 12406 return; 12407 } 12408 12409 /* 12410 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12411 * at ELx, or not available because the EL is in AArch32 state, then 12412 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12413 * has an effective value of 0". 12414 * 12415 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12416 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12417 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12418 * we already have the correct register contents when encountering the 12419 * vq0->vq0 transition between EL0->EL1. 12420 */ 12421 old_len = new_len = 0; 12422 if (old_a64) { 12423 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12424 } 12425 if (new_a64) { 12426 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12427 } 12428 12429 /* When changing vector length, clear inaccessible state. */ 12430 if (new_len < old_len) { 12431 aarch64_sve_narrow_vq(env, new_len + 1); 12432 } 12433 } 12434 #endif 12435