xref: /openbmc/qemu/target/arm/helper.c (revision 8ab5e8a5)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "qapi/qapi-commands-machine-target.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32 
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34 
35 static void switch_mode(CPUARMState *env, int mode);
36 
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39     assert(ri->fieldoffset);
40     if (cpreg_field_is_64bit(ri)) {
41         return CPREG_FIELD64(env, ri);
42     } else {
43         return CPREG_FIELD32(env, ri);
44     }
45 }
46 
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49     assert(ri->fieldoffset);
50     if (cpreg_field_is_64bit(ri)) {
51         CPREG_FIELD64(env, ri) = value;
52     } else {
53         CPREG_FIELD32(env, ri) = value;
54     }
55 }
56 
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59     return (char *)env + ri->fieldoffset;
60 }
61 
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64     /* Raw read of a coprocessor register (as needed for migration, etc). */
65     if (ri->type & ARM_CP_CONST) {
66         return ri->resetvalue;
67     } else if (ri->raw_readfn) {
68         return ri->raw_readfn(env, ri);
69     } else if (ri->readfn) {
70         return ri->readfn(env, ri);
71     } else {
72         return raw_read(env, ri);
73     }
74 }
75 
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77                              uint64_t v)
78 {
79     /*
80      * Raw write of a coprocessor register (as needed for migration, etc).
81      * Note that constant registers are treated as write-ignored; the
82      * caller should check for success by whether a readback gives the
83      * value written.
84      */
85     if (ri->type & ARM_CP_CONST) {
86         return;
87     } else if (ri->raw_writefn) {
88         ri->raw_writefn(env, ri, v);
89     } else if (ri->writefn) {
90         ri->writefn(env, ri, v);
91     } else {
92         raw_write(env, ri, v);
93     }
94 }
95 
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98    /*
99     * Return true if the regdef would cause an assertion if you called
100     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101     * program bug for it not to have the NO_RAW flag).
102     * NB that returning false here doesn't necessarily mean that calling
103     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104     * read/write access functions which are safe for raw use" from "has
105     * read/write access functions which have side effects but has forgotten
106     * to provide raw access functions".
107     * The tests here line up with the conditions in read/write_raw_cp_reg()
108     * and assertions in raw_read()/raw_write().
109     */
110     if ((ri->type & ARM_CP_CONST) ||
111         ri->fieldoffset ||
112         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113         return false;
114     }
115     return true;
116 }
117 
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120     /* Write the coprocessor state from cpu->env to the (index,value) list. */
121     int i;
122     bool ok = true;
123 
124     for (i = 0; i < cpu->cpreg_array_len; i++) {
125         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126         const ARMCPRegInfo *ri;
127         uint64_t newval;
128 
129         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130         if (!ri) {
131             ok = false;
132             continue;
133         }
134         if (ri->type & ARM_CP_NO_RAW) {
135             continue;
136         }
137 
138         newval = read_raw_cp_reg(&cpu->env, ri);
139         if (kvm_sync) {
140             /*
141              * Only sync if the previous list->cpustate sync succeeded.
142              * Rather than tracking the success/failure state for every
143              * item in the list, we just recheck "does the raw write we must
144              * have made in write_list_to_cpustate() read back OK" here.
145              */
146             uint64_t oldval = cpu->cpreg_values[i];
147 
148             if (oldval == newval) {
149                 continue;
150             }
151 
152             write_raw_cp_reg(&cpu->env, ri, oldval);
153             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154                 continue;
155             }
156 
157             write_raw_cp_reg(&cpu->env, ri, newval);
158         }
159         cpu->cpreg_values[i] = newval;
160     }
161     return ok;
162 }
163 
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166     int i;
167     bool ok = true;
168 
169     for (i = 0; i < cpu->cpreg_array_len; i++) {
170         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171         uint64_t v = cpu->cpreg_values[i];
172         const ARMCPRegInfo *ri;
173 
174         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175         if (!ri) {
176             ok = false;
177             continue;
178         }
179         if (ri->type & ARM_CP_NO_RAW) {
180             continue;
181         }
182         /*
183          * Write value and confirm it reads back as written
184          * (to catch read-only registers and partially read-only
185          * registers where the incoming migration value doesn't match)
186          */
187         write_raw_cp_reg(&cpu->env, ri, v);
188         if (read_raw_cp_reg(&cpu->env, ri) != v) {
189             ok = false;
190         }
191     }
192     return ok;
193 }
194 
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197     ARMCPU *cpu = opaque;
198     uint32_t regidx = (uintptr_t)key;
199     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200 
201     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203         /* The value array need not be initialized at this point */
204         cpu->cpreg_array_len++;
205     }
206 }
207 
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210     ARMCPU *cpu = opaque;
211     const ARMCPRegInfo *ri;
212 
213     ri = g_hash_table_lookup(cpu->cp_regs, key);
214 
215     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216         cpu->cpreg_array_len++;
217     }
218 }
219 
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224 
225     if (aidx > bidx) {
226         return 1;
227     }
228     if (aidx < bidx) {
229         return -1;
230     }
231     return 0;
232 }
233 
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236     /*
237      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238      * Note that we require cpreg_tuples[] to be sorted by key ID.
239      */
240     GList *keys;
241     int arraylen;
242 
243     keys = g_hash_table_get_keys(cpu->cp_regs);
244     keys = g_list_sort(keys, cpreg_key_compare);
245 
246     cpu->cpreg_array_len = 0;
247 
248     g_list_foreach(keys, count_cpreg, cpu);
249 
250     arraylen = cpu->cpreg_array_len;
251     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252     cpu->cpreg_values = g_new(uint64_t, arraylen);
253     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256     cpu->cpreg_array_len = 0;
257 
258     g_list_foreach(keys, add_cpreg_to_list, cpu);
259 
260     assert(cpu->cpreg_array_len == arraylen);
261 
262     g_list_free(keys);
263 }
264 
265 /*
266  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267  */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269                                         const ARMCPRegInfo *ri,
270                                         bool isread)
271 {
272     if (!is_a64(env) && arm_current_el(env) == 3 &&
273         arm_is_secure_below_el3(env)) {
274         return CP_ACCESS_TRAP_UNCATEGORIZED;
275     }
276     return CP_ACCESS_OK;
277 }
278 
279 /*
280  * Some secure-only AArch32 registers trap to EL3 if used from
281  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283  * We assume that the .access field is set to PL1_RW.
284  */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286                                             const ARMCPRegInfo *ri,
287                                             bool isread)
288 {
289     if (arm_current_el(env) == 3) {
290         return CP_ACCESS_OK;
291     }
292     if (arm_is_secure_below_el3(env)) {
293         if (env->cp15.scr_el3 & SCR_EEL2) {
294             return CP_ACCESS_TRAP_EL2;
295         }
296         return CP_ACCESS_TRAP_EL3;
297     }
298     /* This will be EL1 NS and EL2 NS, which just UNDEF */
299     return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301 
302 /*
303  * Check for traps to performance monitor registers, which are controlled
304  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305  */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307                                  bool isread)
308 {
309     int el = arm_current_el(env);
310     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311 
312     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313         return CP_ACCESS_TRAP_EL2;
314     }
315     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316         return CP_ACCESS_TRAP_EL3;
317     }
318     return CP_ACCESS_OK;
319 }
320 
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323                                       bool isread)
324 {
325     if (arm_current_el(env) == 1) {
326         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327         if (arm_hcr_el2_eff(env) & trap) {
328             return CP_ACCESS_TRAP_EL2;
329         }
330     }
331     return CP_ACCESS_OK;
332 }
333 
334 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336                                  bool isread)
337 {
338     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339         return CP_ACCESS_TRAP_EL2;
340     }
341     return CP_ACCESS_OK;
342 }
343 
344 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346                                   bool isread)
347 {
348     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349         return CP_ACCESS_TRAP_EL2;
350     }
351     return CP_ACCESS_OK;
352 }
353 
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356                                   bool isread)
357 {
358     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359         return CP_ACCESS_TRAP_EL2;
360     }
361     return CP_ACCESS_OK;
362 }
363 
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366                                     bool isread)
367 {
368     if (arm_current_el(env) == 1 &&
369         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370         return CP_ACCESS_TRAP_EL2;
371     }
372     return CP_ACCESS_OK;
373 }
374 
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378                                     bool isread)
379 {
380     if (arm_current_el(env) == 1 &&
381         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382         return CP_ACCESS_TRAP_EL2;
383     }
384     return CP_ACCESS_OK;
385 }
386 #endif
387 
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390     ARMCPU *cpu = env_archcpu(env);
391 
392     raw_write(env, ri, value);
393     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395 
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398     ARMCPU *cpu = env_archcpu(env);
399 
400     if (raw_read(env, ri) != value) {
401         /*
402          * Unlike real hardware the qemu TLB uses virtual addresses,
403          * not modified virtual addresses, so this causes a TLB flush.
404          */
405         tlb_flush(CPU(cpu));
406         raw_write(env, ri, value);
407     }
408 }
409 
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411                              uint64_t value)
412 {
413     ARMCPU *cpu = env_archcpu(env);
414 
415     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416         && !extended_addresses_enabled(env)) {
417         /*
418          * For VMSA (when not using the LPAE long descriptor page table
419          * format) this register includes the ASID, so do a TLB flush.
420          * For PMSA it is purely a process ID and no action is needed.
421          */
422         tlb_flush(CPU(cpu));
423     }
424     raw_write(env, ri, value);
425 }
426 
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429     /*
430      * Note that the 'ALL' scope must invalidate both stage 1 and
431      * stage 2 translations, whereas most other scopes only invalidate
432      * stage 1 translations.
433      */
434     return (ARMMMUIdxBit_E10_1 |
435             ARMMMUIdxBit_E10_1_PAN |
436             ARMMMUIdxBit_E10_0 |
437             ARMMMUIdxBit_Stage2 |
438             ARMMMUIdxBit_Stage2_S);
439 }
440 
441 
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444                              uint64_t value)
445 {
446     CPUState *cs = env_cpu(env);
447 
448     tlb_flush_all_cpus_synced(cs);
449 }
450 
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452                              uint64_t value)
453 {
454     CPUState *cs = env_cpu(env);
455 
456     tlb_flush_all_cpus_synced(cs);
457 }
458 
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460                              uint64_t value)
461 {
462     CPUState *cs = env_cpu(env);
463 
464     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466 
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468                              uint64_t value)
469 {
470     CPUState *cs = env_cpu(env);
471 
472     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474 
475 /*
476  * Non-IS variants of TLB operations are upgraded to
477  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478  * force broadcast of these operations.
479  */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484 
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486                           uint64_t value)
487 {
488     /* Invalidate all (TLBIALL) */
489     CPUState *cs = env_cpu(env);
490 
491     if (tlb_force_broadcast(env)) {
492         tlb_flush_all_cpus_synced(cs);
493     } else {
494         tlb_flush(cs);
495     }
496 }
497 
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499                           uint64_t value)
500 {
501     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502     CPUState *cs = env_cpu(env);
503 
504     value &= TARGET_PAGE_MASK;
505     if (tlb_force_broadcast(env)) {
506         tlb_flush_page_all_cpus_synced(cs, value);
507     } else {
508         tlb_flush_page(cs, value);
509     }
510 }
511 
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                            uint64_t value)
514 {
515     /* Invalidate by ASID (TLBIASID) */
516     CPUState *cs = env_cpu(env);
517 
518     if (tlb_force_broadcast(env)) {
519         tlb_flush_all_cpus_synced(cs);
520     } else {
521         tlb_flush(cs);
522     }
523 }
524 
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526                            uint64_t value)
527 {
528     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529     CPUState *cs = env_cpu(env);
530 
531     value &= TARGET_PAGE_MASK;
532     if (tlb_force_broadcast(env)) {
533         tlb_flush_page_all_cpus_synced(cs, value);
534     } else {
535         tlb_flush_page(cs, value);
536     }
537 }
538 
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                                uint64_t value)
541 {
542     CPUState *cs = env_cpu(env);
543 
544     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546 
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548                                   uint64_t value)
549 {
550     CPUState *cs = env_cpu(env);
551 
552     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554 
555 
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                               uint64_t value)
558 {
559     CPUState *cs = env_cpu(env);
560 
561     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563 
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                                  uint64_t value)
566 {
567     CPUState *cs = env_cpu(env);
568 
569     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571 
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                               uint64_t value)
574 {
575     CPUState *cs = env_cpu(env);
576     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577 
578     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580 
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582                                  uint64_t value)
583 {
584     CPUState *cs = env_cpu(env);
585     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586 
587     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588                                              ARMMMUIdxBit_E2);
589 }
590 
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592                                 uint64_t value)
593 {
594     CPUState *cs = env_cpu(env);
595     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596 
597     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599 
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601                                 uint64_t value)
602 {
603     CPUState *cs = env_cpu(env);
604     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605 
606     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608 
609 static const ARMCPRegInfo cp_reginfo[] = {
610     /*
611      * Define the secure and non-secure FCSE identifier CP registers
612      * separately because there is no secure bank in V8 (no _EL3).  This allows
613      * the secure register to be properly reset and migrated. There is also no
614      * v8 EL1 version of the register so the non-secure instance stands alone.
615      */
616     { .name = "FCSEIDR",
617       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621     { .name = "FCSEIDR_S",
622       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626     /*
627      * Define the secure and non-secure context identifier CP registers
628      * separately because there is no secure bank in V8 (no _EL3).  This allows
629      * the secure register to be properly reset and migrated.  In the
630      * non-secure case, the 32-bit register will have reset and migration
631      * disabled during registration as it is handled by the 64-bit instance.
632      */
633     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635       .access = PL1_RW, .accessfn = access_tvm_trvm,
636       .fgt = FGT_CONTEXTIDR_EL1,
637       .secure = ARM_CP_SECSTATE_NS,
638       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
640     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
641       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
642       .access = PL1_RW, .accessfn = access_tvm_trvm,
643       .secure = ARM_CP_SECSTATE_S,
644       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
645       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
646 };
647 
648 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
649     /*
650      * NB: Some of these registers exist in v8 but with more precise
651      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652      */
653     /* MMU Domain access control / MPU write buffer control */
654     { .name = "DACR",
655       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
656       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
657       .writefn = dacr_write, .raw_writefn = raw_write,
658       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
660     /*
661      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
662      * For v6 and v5, these mappings are overly broad.
663      */
664     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
671       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
672     /* Cache maintenance ops; some of this space may be overridden later. */
673     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
676 };
677 
678 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
679     /*
680      * Not all pre-v6 cores implemented this WFI, so this is slightly
681      * over-broad.
682      */
683     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684       .access = PL1_W, .type = ARM_CP_WFI },
685 };
686 
687 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
688     /*
689      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
690      * is UNPREDICTABLE; we choose to NOP as most implementations do).
691      */
692     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693       .access = PL1_W, .type = ARM_CP_WFI },
694     /*
695      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
696      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697      * OMAPCP will override this space.
698      */
699     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701       .resetvalue = 0 },
702     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704       .resetvalue = 0 },
705     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
707       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
708       .resetvalue = 0 },
709     /*
710      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
711      * implementing it as RAZ means the "debug architecture version" bits
712      * will read as a reserved value, which should cause Linux to not try
713      * to use the debug hardware.
714      */
715     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
717     /*
718      * MMU TLB control. Note that the wildcarding means we cover not just
719      * the unified TLB ops but also the dside/iside/inner-shareable variants.
720      */
721     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
723       .type = ARM_CP_NO_RAW },
724     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
726       .type = ARM_CP_NO_RAW },
727     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
729       .type = ARM_CP_NO_RAW },
730     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
732       .type = ARM_CP_NO_RAW },
733     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
737 };
738 
739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740                         uint64_t value)
741 {
742     uint32_t mask = 0;
743 
744     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745     if (!arm_feature(env, ARM_FEATURE_V8)) {
746         /*
747          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
748          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750          */
751         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
752             /* VFP coprocessor: cp10 & cp11 [23:20] */
753             mask |= R_CPACR_ASEDIS_MASK |
754                     R_CPACR_D32DIS_MASK |
755                     R_CPACR_CP11_MASK |
756                     R_CPACR_CP10_MASK;
757 
758             if (!arm_feature(env, ARM_FEATURE_NEON)) {
759                 /* ASEDIS [31] bit is RAO/WI */
760                 value |= R_CPACR_ASEDIS_MASK;
761             }
762 
763             /*
764              * VFPv3 and upwards with NEON implement 32 double precision
765              * registers (D0-D31).
766              */
767             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
768                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
769                 value |= R_CPACR_D32DIS_MASK;
770             }
771         }
772         value &= mask;
773     }
774 
775     /*
776      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778      */
779     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
781         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
783     }
784 
785     env->cp15.cpacr_el1 = value;
786 }
787 
788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789 {
790     /*
791      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793      */
794     uint64_t value = env->cp15.cpacr_el1;
795 
796     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
798         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
799     }
800     return value;
801 }
802 
803 
804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805 {
806     /*
807      * Call cpacr_write() so that we reset with the correct RAO bits set
808      * for our CPU features.
809      */
810     cpacr_write(env, ri, 0);
811 }
812 
813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814                                    bool isread)
815 {
816     if (arm_feature(env, ARM_FEATURE_V8)) {
817         /* Check if CPACR accesses are to be trapped to EL2 */
818         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
819             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
820             return CP_ACCESS_TRAP_EL2;
821         /* Check if CPACR accesses are to be trapped to EL3 */
822         } else if (arm_current_el(env) < 3 &&
823                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
824             return CP_ACCESS_TRAP_EL3;
825         }
826     }
827 
828     return CP_ACCESS_OK;
829 }
830 
831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832                                   bool isread)
833 {
834     /* Check if CPTR accesses are set to trap to EL3 */
835     if (arm_current_el(env) == 2 &&
836         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
837         return CP_ACCESS_TRAP_EL3;
838     }
839 
840     return CP_ACCESS_OK;
841 }
842 
843 static const ARMCPRegInfo v6_cp_reginfo[] = {
844     /* prefetch by MVA in v6, NOP in v7 */
845     { .name = "MVA_prefetch",
846       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847       .access = PL1_W, .type = ARM_CP_NOP },
848     /*
849      * We need to break the TB after ISB to execute self-modifying code
850      * correctly and also to take any pending interrupts immediately.
851      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852      */
853     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
854       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
855     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
856       .access = PL0_W, .type = ARM_CP_NOP },
857     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
858       .access = PL0_W, .type = ARM_CP_NOP },
859     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
860       .access = PL1_RW, .accessfn = access_tvm_trvm,
861       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862                              offsetof(CPUARMState, cp15.ifar_ns) },
863       .resetvalue = 0, },
864     /*
865      * Watchpoint Fault Address Register : should actually only be present
866      * for 1136, 1176, 11MPCore.
867      */
868     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
870     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
871       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
872       .fgt = FGT_CPACR_EL1,
873       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
875 };
876 
877 typedef struct pm_event {
878     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880     bool (*supported)(CPUARMState *);
881     /*
882      * Retrieve the current count of the underlying event. The programmed
883      * counters hold a difference from the return value from this function
884      */
885     uint64_t (*get_count)(CPUARMState *);
886     /*
887      * Return how many nanoseconds it will take (at a minimum) for count events
888      * to occur. A negative value indicates the counter will never overflow, or
889      * that the counter has otherwise arranged for the overflow bit to be set
890      * and the PMU interrupt to be raised on overflow.
891      */
892     int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
894 
895 static bool event_always_supported(CPUARMState *env)
896 {
897     return true;
898 }
899 
900 static uint64_t swinc_get_count(CPUARMState *env)
901 {
902     /*
903      * SW_INCR events are written directly to the pmevcntr's by writes to
904      * PMSWINC, so there is no underlying count maintained by the PMU itself
905      */
906     return 0;
907 }
908 
909 static int64_t swinc_ns_per(uint64_t ignored)
910 {
911     return -1;
912 }
913 
914 /*
915  * Return the underlying cycle count for the PMU cycle counters. If we're in
916  * usermode, simply return 0.
917  */
918 static uint64_t cycles_get_count(CPUARMState *env)
919 {
920 #ifndef CONFIG_USER_ONLY
921     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924     return cpu_get_host_ticks();
925 #endif
926 }
927 
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
930 {
931     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932 }
933 
934 static bool instructions_supported(CPUARMState *env)
935 {
936     return icount_enabled() == 1; /* Precise instruction counting */
937 }
938 
939 static uint64_t instructions_get_count(CPUARMState *env)
940 {
941     return (uint64_t)icount_get_raw();
942 }
943 
944 static int64_t instructions_ns_per(uint64_t icount)
945 {
946     return icount_to_ns((int64_t)icount);
947 }
948 #endif
949 
950 static bool pmuv3p1_events_supported(CPUARMState *env)
951 {
952     /* For events which are supported in any v8.1 PMU */
953     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
954 }
955 
956 static bool pmuv3p4_events_supported(CPUARMState *env)
957 {
958     /* For events which are supported in any v8.1 PMU */
959     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
960 }
961 
962 static uint64_t zero_event_get_count(CPUARMState *env)
963 {
964     /* For events which on QEMU never fire, so their count is always zero */
965     return 0;
966 }
967 
968 static int64_t zero_event_ns_per(uint64_t cycles)
969 {
970     /* An event which never fires can never overflow */
971     return -1;
972 }
973 
974 static const pm_event pm_events[] = {
975     { .number = 0x000, /* SW_INCR */
976       .supported = event_always_supported,
977       .get_count = swinc_get_count,
978       .ns_per_count = swinc_ns_per,
979     },
980 #ifndef CONFIG_USER_ONLY
981     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982       .supported = instructions_supported,
983       .get_count = instructions_get_count,
984       .ns_per_count = instructions_ns_per,
985     },
986     { .number = 0x011, /* CPU_CYCLES, Cycle */
987       .supported = event_always_supported,
988       .get_count = cycles_get_count,
989       .ns_per_count = cycles_ns_per,
990     },
991 #endif
992     { .number = 0x023, /* STALL_FRONTEND */
993       .supported = pmuv3p1_events_supported,
994       .get_count = zero_event_get_count,
995       .ns_per_count = zero_event_ns_per,
996     },
997     { .number = 0x024, /* STALL_BACKEND */
998       .supported = pmuv3p1_events_supported,
999       .get_count = zero_event_get_count,
1000       .ns_per_count = zero_event_ns_per,
1001     },
1002     { .number = 0x03c, /* STALL */
1003       .supported = pmuv3p4_events_supported,
1004       .get_count = zero_event_get_count,
1005       .ns_per_count = zero_event_ns_per,
1006     },
1007 };
1008 
1009 /*
1010  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011  * events (i.e. the statistical profiling extension), this implementation
1012  * should first be updated to something sparse instead of the current
1013  * supported_event_map[] array.
1014  */
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018 
1019 /*
1020  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021  * of ARM event numbers to indices in our pm_events array.
1022  *
1023  * Note: Events in the 0x40XX range are not currently supported.
1024  */
1025 void pmu_init(ARMCPU *cpu)
1026 {
1027     unsigned int i;
1028 
1029     /*
1030      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031      * events to them
1032      */
1033     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034         supported_event_map[i] = UNSUPPORTED_EVENT;
1035     }
1036     cpu->pmceid0 = 0;
1037     cpu->pmceid1 = 0;
1038 
1039     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040         const pm_event *cnt = &pm_events[i];
1041         assert(cnt->number <= MAX_EVENT_ID);
1042         /* We do not currently support events in the 0x40xx range */
1043         assert(cnt->number <= 0x3f);
1044 
1045         if (cnt->supported(&cpu->env)) {
1046             supported_event_map[cnt->number] = i;
1047             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048             if (cnt->number & 0x20) {
1049                 cpu->pmceid1 |= event_mask;
1050             } else {
1051                 cpu->pmceid0 |= event_mask;
1052             }
1053         }
1054     }
1055 }
1056 
1057 /*
1058  * Check at runtime whether a PMU event is supported for the current machine
1059  */
1060 static bool event_supported(uint16_t number)
1061 {
1062     if (number > MAX_EVENT_ID) {
1063         return false;
1064     }
1065     return supported_event_map[number] != UNSUPPORTED_EVENT;
1066 }
1067 
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069                                    bool isread)
1070 {
1071     /*
1072      * Performance monitor registers user accessibility is controlled
1073      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074      * trapping to EL2 or EL3 for other accesses.
1075      */
1076     int el = arm_current_el(env);
1077     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078 
1079     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080         return CP_ACCESS_TRAP;
1081     }
1082     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083         return CP_ACCESS_TRAP_EL2;
1084     }
1085     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086         return CP_ACCESS_TRAP_EL3;
1087     }
1088 
1089     return CP_ACCESS_OK;
1090 }
1091 
1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093                                            const ARMCPRegInfo *ri,
1094                                            bool isread)
1095 {
1096     /* ER: event counter read trap control */
1097     if (arm_feature(env, ARM_FEATURE_V8)
1098         && arm_current_el(env) == 0
1099         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100         && isread) {
1101         return CP_ACCESS_OK;
1102     }
1103 
1104     return pmreg_access(env, ri, isread);
1105 }
1106 
1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108                                          const ARMCPRegInfo *ri,
1109                                          bool isread)
1110 {
1111     /* SW: software increment write trap control */
1112     if (arm_feature(env, ARM_FEATURE_V8)
1113         && arm_current_el(env) == 0
1114         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115         && !isread) {
1116         return CP_ACCESS_OK;
1117     }
1118 
1119     return pmreg_access(env, ri, isread);
1120 }
1121 
1122 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123                                         const ARMCPRegInfo *ri,
1124                                         bool isread)
1125 {
1126     /* ER: event counter read trap control */
1127     if (arm_feature(env, ARM_FEATURE_V8)
1128         && arm_current_el(env) == 0
1129         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130         return CP_ACCESS_OK;
1131     }
1132 
1133     return pmreg_access(env, ri, isread);
1134 }
1135 
1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137                                          const ARMCPRegInfo *ri,
1138                                          bool isread)
1139 {
1140     /* CR: cycle counter read trap control */
1141     if (arm_feature(env, ARM_FEATURE_V8)
1142         && arm_current_el(env) == 0
1143         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144         && isread) {
1145         return CP_ACCESS_OK;
1146     }
1147 
1148     return pmreg_access(env, ri, isread);
1149 }
1150 
1151 /*
1152  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153  * We use these to decide whether we need to wrap a write to MDCR_EL2
1154  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155  */
1156 #define MDCR_EL2_PMU_ENABLE_BITS \
1157     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159 
1160 /*
1161  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162  * the current EL, security state, and register configuration.
1163  */
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165 {
1166     uint64_t filter;
1167     bool e, p, u, nsk, nsu, nsh, m;
1168     bool enabled, prohibited = false, filtered;
1169     bool secure = arm_is_secure(env);
1170     int el = arm_current_el(env);
1171     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173 
1174     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175         return false;
1176     }
1177 
1178     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179             (counter < hpmn || counter == 31)) {
1180         e = env->cp15.c9_pmcr & PMCRE;
1181     } else {
1182         e = mdcr_el2 & MDCR_HPME;
1183     }
1184     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185 
1186     /* Is event counting prohibited? */
1187     if (el == 2 && (counter < hpmn || counter == 31)) {
1188         prohibited = mdcr_el2 & MDCR_HPMD;
1189     }
1190     if (secure) {
1191         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192     }
1193 
1194     if (counter == 31) {
1195         /*
1196          * The cycle counter defaults to running. PMCR.DP says "disable
1197          * the cycle counter when event counting is prohibited".
1198          * Some MDCR bits disable the cycle counter specifically.
1199          */
1200         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202             if (secure) {
1203                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204             }
1205             if (el == 2) {
1206                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207             }
1208         }
1209     }
1210 
1211     if (counter == 31) {
1212         filter = env->cp15.pmccfiltr_el0;
1213     } else {
1214         filter = env->cp15.c14_pmevtyper[counter];
1215     }
1216 
1217     p   = filter & PMXEVTYPER_P;
1218     u   = filter & PMXEVTYPER_U;
1219     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222     m   = arm_el_is_aa64(env, 1) &&
1223               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224 
1225     if (el == 0) {
1226         filtered = secure ? u : u != nsu;
1227     } else if (el == 1) {
1228         filtered = secure ? p : p != nsk;
1229     } else if (el == 2) {
1230         filtered = !nsh;
1231     } else { /* EL3 */
1232         filtered = m != p;
1233     }
1234 
1235     if (counter != 31) {
1236         /*
1237          * If not checking PMCCNTR, ensure the counter is setup to an event we
1238          * support
1239          */
1240         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241         if (!event_supported(event)) {
1242             return false;
1243         }
1244     }
1245 
1246     return enabled && !prohibited && !filtered;
1247 }
1248 
1249 static void pmu_update_irq(CPUARMState *env)
1250 {
1251     ARMCPU *cpu = env_archcpu(env);
1252     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254 }
1255 
1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257 {
1258     /*
1259      * Return true if the clock divider is enabled and the cycle counter
1260      * is supposed to tick only once every 64 clock cycles. This is
1261      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262      * (64-bit) cycle counter PMCR.D has no effect.
1263      */
1264     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265 }
1266 
1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268 {
1269     /* Return true if the specified event counter is configured to be 64 bit */
1270 
1271     /* This isn't intended to be used with the cycle counter */
1272     assert(counter < 31);
1273 
1274     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275         return false;
1276     }
1277 
1278     if (arm_feature(env, ARM_FEATURE_EL2)) {
1279         /*
1280          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281          * current security state, so we don't use arm_mdcr_el2_eff() here.
1282          */
1283         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285 
1286         if (hpmn != 0 && counter >= hpmn) {
1287             return hlp;
1288         }
1289     }
1290     return env->cp15.c9_pmcr & PMCRLP;
1291 }
1292 
1293 /*
1294  * Ensure c15_ccnt is the guest-visible count so that operations such as
1295  * enabling/disabling the counter or filtering, modifying the count itself,
1296  * etc. can be done logically. This is essentially a no-op if the counter is
1297  * not enabled at the time of the call.
1298  */
1299 static void pmccntr_op_start(CPUARMState *env)
1300 {
1301     uint64_t cycles = cycles_get_count(env);
1302 
1303     if (pmu_counter_enabled(env, 31)) {
1304         uint64_t eff_cycles = cycles;
1305         if (pmccntr_clockdiv_enabled(env)) {
1306             eff_cycles /= 64;
1307         }
1308 
1309         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310 
1311         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312                                  1ull << 63 : 1ull << 31;
1313         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314             env->cp15.c9_pmovsr |= (1ULL << 31);
1315             pmu_update_irq(env);
1316         }
1317 
1318         env->cp15.c15_ccnt = new_pmccntr;
1319     }
1320     env->cp15.c15_ccnt_delta = cycles;
1321 }
1322 
1323 /*
1324  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326  * pmccntr_op_start.
1327  */
1328 static void pmccntr_op_finish(CPUARMState *env)
1329 {
1330     if (pmu_counter_enabled(env, 31)) {
1331 #ifndef CONFIG_USER_ONLY
1332         /* Calculate when the counter will next overflow */
1333         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335             remaining_cycles = (uint32_t)remaining_cycles;
1336         }
1337         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338 
1339         if (overflow_in > 0) {
1340             int64_t overflow_at;
1341 
1342             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343                                  overflow_in, &overflow_at)) {
1344                 ARMCPU *cpu = env_archcpu(env);
1345                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346             }
1347         }
1348 #endif
1349 
1350         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351         if (pmccntr_clockdiv_enabled(env)) {
1352             prev_cycles /= 64;
1353         }
1354         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355     }
1356 }
1357 
1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359 {
1360 
1361     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362     uint64_t count = 0;
1363     if (event_supported(event)) {
1364         uint16_t event_idx = supported_event_map[event];
1365         count = pm_events[event_idx].get_count(env);
1366     }
1367 
1368     if (pmu_counter_enabled(env, counter)) {
1369         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371             1ULL << 63 : 1ULL << 31;
1372 
1373         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374             env->cp15.c9_pmovsr |= (1 << counter);
1375             pmu_update_irq(env);
1376         }
1377         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378     }
1379     env->cp15.c14_pmevcntr_delta[counter] = count;
1380 }
1381 
1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383 {
1384     if (pmu_counter_enabled(env, counter)) {
1385 #ifndef CONFIG_USER_ONLY
1386         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387         uint16_t event_idx = supported_event_map[event];
1388         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389         int64_t overflow_in;
1390 
1391         if (!pmevcntr_is_64_bit(env, counter)) {
1392             delta = (uint32_t)delta;
1393         }
1394         overflow_in = pm_events[event_idx].ns_per_count(delta);
1395 
1396         if (overflow_in > 0) {
1397             int64_t overflow_at;
1398 
1399             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400                                  overflow_in, &overflow_at)) {
1401                 ARMCPU *cpu = env_archcpu(env);
1402                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403             }
1404         }
1405 #endif
1406 
1407         env->cp15.c14_pmevcntr_delta[counter] -=
1408             env->cp15.c14_pmevcntr[counter];
1409     }
1410 }
1411 
1412 void pmu_op_start(CPUARMState *env)
1413 {
1414     unsigned int i;
1415     pmccntr_op_start(env);
1416     for (i = 0; i < pmu_num_counters(env); i++) {
1417         pmevcntr_op_start(env, i);
1418     }
1419 }
1420 
1421 void pmu_op_finish(CPUARMState *env)
1422 {
1423     unsigned int i;
1424     pmccntr_op_finish(env);
1425     for (i = 0; i < pmu_num_counters(env); i++) {
1426         pmevcntr_op_finish(env, i);
1427     }
1428 }
1429 
1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431 {
1432     pmu_op_start(&cpu->env);
1433 }
1434 
1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436 {
1437     pmu_op_finish(&cpu->env);
1438 }
1439 
1440 void arm_pmu_timer_cb(void *opaque)
1441 {
1442     ARMCPU *cpu = opaque;
1443 
1444     /*
1445      * Update all the counter values based on the current underlying counts,
1446      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448      * counter may expire.
1449      */
1450     pmu_op_start(&cpu->env);
1451     pmu_op_finish(&cpu->env);
1452 }
1453 
1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455                        uint64_t value)
1456 {
1457     pmu_op_start(env);
1458 
1459     if (value & PMCRC) {
1460         /* The counter has been reset */
1461         env->cp15.c15_ccnt = 0;
1462     }
1463 
1464     if (value & PMCRP) {
1465         unsigned int i;
1466         for (i = 0; i < pmu_num_counters(env); i++) {
1467             env->cp15.c14_pmevcntr[i] = 0;
1468         }
1469     }
1470 
1471     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473 
1474     pmu_op_finish(env);
1475 }
1476 
1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478                           uint64_t value)
1479 {
1480     unsigned int i;
1481     uint64_t overflow_mask, new_pmswinc;
1482 
1483     for (i = 0; i < pmu_num_counters(env); i++) {
1484         /* Increment a counter's count iff: */
1485         if ((value & (1 << i)) && /* counter's bit is set */
1486                 /* counter is enabled and not filtered */
1487                 pmu_counter_enabled(env, i) &&
1488                 /* counter is SW_INCR */
1489                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490             pmevcntr_op_start(env, i);
1491 
1492             /*
1493              * Detect if this write causes an overflow since we can't predict
1494              * PMSWINC overflows like we can for other events
1495              */
1496             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497 
1498             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499                 1ULL << 63 : 1ULL << 31;
1500 
1501             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502                 env->cp15.c9_pmovsr |= (1 << i);
1503                 pmu_update_irq(env);
1504             }
1505 
1506             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507 
1508             pmevcntr_op_finish(env, i);
1509         }
1510     }
1511 }
1512 
1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514 {
1515     uint64_t ret;
1516     pmccntr_op_start(env);
1517     ret = env->cp15.c15_ccnt;
1518     pmccntr_op_finish(env);
1519     return ret;
1520 }
1521 
1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523                          uint64_t value)
1524 {
1525     /*
1526      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529      * accessed.
1530      */
1531     env->cp15.c9_pmselr = value & 0x1f;
1532 }
1533 
1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535                         uint64_t value)
1536 {
1537     pmccntr_op_start(env);
1538     env->cp15.c15_ccnt = value;
1539     pmccntr_op_finish(env);
1540 }
1541 
1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543                             uint64_t value)
1544 {
1545     uint64_t cur_val = pmccntr_read(env, NULL);
1546 
1547     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548 }
1549 
1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551                             uint64_t value)
1552 {
1553     pmccntr_op_start(env);
1554     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555     pmccntr_op_finish(env);
1556 }
1557 
1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559                             uint64_t value)
1560 {
1561     pmccntr_op_start(env);
1562     /* M is not accessible from AArch32 */
1563     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564         (value & PMCCFILTR);
1565     pmccntr_op_finish(env);
1566 }
1567 
1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569 {
1570     /* M is not visible in AArch32 */
1571     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572 }
1573 
1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575                             uint64_t value)
1576 {
1577     pmu_op_start(env);
1578     value &= pmu_counter_mask(env);
1579     env->cp15.c9_pmcnten |= value;
1580     pmu_op_finish(env);
1581 }
1582 
1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584                              uint64_t value)
1585 {
1586     pmu_op_start(env);
1587     value &= pmu_counter_mask(env);
1588     env->cp15.c9_pmcnten &= ~value;
1589     pmu_op_finish(env);
1590 }
1591 
1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593                          uint64_t value)
1594 {
1595     value &= pmu_counter_mask(env);
1596     env->cp15.c9_pmovsr &= ~value;
1597     pmu_update_irq(env);
1598 }
1599 
1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601                          uint64_t value)
1602 {
1603     value &= pmu_counter_mask(env);
1604     env->cp15.c9_pmovsr |= value;
1605     pmu_update_irq(env);
1606 }
1607 
1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609                              uint64_t value, const uint8_t counter)
1610 {
1611     if (counter == 31) {
1612         pmccfiltr_write(env, ri, value);
1613     } else if (counter < pmu_num_counters(env)) {
1614         pmevcntr_op_start(env, counter);
1615 
1616         /*
1617          * If this counter's event type is changing, store the current
1618          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619          * pmevcntr_op_finish has the correct baseline when it converts back to
1620          * a delta.
1621          */
1622         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623             PMXEVTYPER_EVTCOUNT;
1624         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625         if (old_event != new_event) {
1626             uint64_t count = 0;
1627             if (event_supported(new_event)) {
1628                 uint16_t event_idx = supported_event_map[new_event];
1629                 count = pm_events[event_idx].get_count(env);
1630             }
1631             env->cp15.c14_pmevcntr_delta[counter] = count;
1632         }
1633 
1634         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635         pmevcntr_op_finish(env, counter);
1636     }
1637     /*
1638      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639      * PMSELR value is equal to or greater than the number of implemented
1640      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641      */
1642 }
1643 
1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645                                const uint8_t counter)
1646 {
1647     if (counter == 31) {
1648         return env->cp15.pmccfiltr_el0;
1649     } else if (counter < pmu_num_counters(env)) {
1650         return env->cp15.c14_pmevtyper[counter];
1651     } else {
1652       /*
1653        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655        */
1656         return 0;
1657     }
1658 }
1659 
1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661                               uint64_t value)
1662 {
1663     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664     pmevtyper_write(env, ri, value, counter);
1665 }
1666 
1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668                                uint64_t value)
1669 {
1670     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671     env->cp15.c14_pmevtyper[counter] = value;
1672 
1673     /*
1674      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675      * pmu_op_finish calls when loading saved state for a migration. Because
1676      * we're potentially updating the type of event here, the value written to
1677      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1678      * different counter type. Therefore, we need to set this value to the
1679      * current count for the counter type we're writing so that pmu_op_finish
1680      * has the correct count for its calculation.
1681      */
1682     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683     if (event_supported(event)) {
1684         uint16_t event_idx = supported_event_map[event];
1685         env->cp15.c14_pmevcntr_delta[counter] =
1686             pm_events[event_idx].get_count(env);
1687     }
1688 }
1689 
1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     return pmevtyper_read(env, ri, counter);
1694 }
1695 
1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697                              uint64_t value)
1698 {
1699     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700 }
1701 
1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 {
1704     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705 }
1706 
1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708                              uint64_t value, uint8_t counter)
1709 {
1710     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712         value &= MAKE_64BIT_MASK(0, 32);
1713     }
1714     if (counter < pmu_num_counters(env)) {
1715         pmevcntr_op_start(env, counter);
1716         env->cp15.c14_pmevcntr[counter] = value;
1717         pmevcntr_op_finish(env, counter);
1718     }
1719     /*
1720      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721      * are CONSTRAINED UNPREDICTABLE.
1722      */
1723 }
1724 
1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726                               uint8_t counter)
1727 {
1728     if (counter < pmu_num_counters(env)) {
1729         uint64_t ret;
1730         pmevcntr_op_start(env, counter);
1731         ret = env->cp15.c14_pmevcntr[counter];
1732         pmevcntr_op_finish(env, counter);
1733         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735             ret &= MAKE_64BIT_MASK(0, 32);
1736         }
1737         return ret;
1738     } else {
1739       /*
1740        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741        * are CONSTRAINED UNPREDICTABLE.
1742        */
1743         return 0;
1744     }
1745 }
1746 
1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748                              uint64_t value)
1749 {
1750     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751     pmevcntr_write(env, ri, value, counter);
1752 }
1753 
1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755 {
1756     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757     return pmevcntr_read(env, ri, counter);
1758 }
1759 
1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761                              uint64_t value)
1762 {
1763     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764     assert(counter < pmu_num_counters(env));
1765     env->cp15.c14_pmevcntr[counter] = value;
1766     pmevcntr_write(env, ri, value, counter);
1767 }
1768 
1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772     assert(counter < pmu_num_counters(env));
1773     return env->cp15.c14_pmevcntr[counter];
1774 }
1775 
1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777                              uint64_t value)
1778 {
1779     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780 }
1781 
1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785 }
1786 
1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788                             uint64_t value)
1789 {
1790     if (arm_feature(env, ARM_FEATURE_V8)) {
1791         env->cp15.c9_pmuserenr = value & 0xf;
1792     } else {
1793         env->cp15.c9_pmuserenr = value & 1;
1794     }
1795 }
1796 
1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798                              uint64_t value)
1799 {
1800     /* We have no event counters so only the C bit can be changed */
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pminten |= value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pminten &= ~value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                        uint64_t value)
1816 {
1817     /*
1818      * Note that even though the AArch64 view of this register has bits
1819      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820      * architectural requirements for bits which are RES0 only in some
1821      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823      */
1824     raw_write(env, ri, value & ~0x1FULL);
1825 }
1826 
1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828 {
1829     /* Begin with base v8.0 state.  */
1830     uint64_t valid_mask = 0x3fff;
1831     ARMCPU *cpu = env_archcpu(env);
1832     uint64_t changed;
1833 
1834     /*
1835      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837      * Instead, choose the format based on the mode of EL3.
1838      */
1839     if (arm_el_is_aa64(env, 3)) {
1840         value |= SCR_FW | SCR_AW;      /* RES1 */
1841         valid_mask &= ~SCR_NET;        /* RES0 */
1842 
1843         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845             value |= SCR_RW;           /* RAO/WI */
1846         }
1847         if (cpu_isar_feature(aa64_ras, cpu)) {
1848             valid_mask |= SCR_TERR;
1849         }
1850         if (cpu_isar_feature(aa64_lor, cpu)) {
1851             valid_mask |= SCR_TLOR;
1852         }
1853         if (cpu_isar_feature(aa64_pauth, cpu)) {
1854             valid_mask |= SCR_API | SCR_APK;
1855         }
1856         if (cpu_isar_feature(aa64_sel2, cpu)) {
1857             valid_mask |= SCR_EEL2;
1858         }
1859         if (cpu_isar_feature(aa64_mte, cpu)) {
1860             valid_mask |= SCR_ATA;
1861         }
1862         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1863             valid_mask |= SCR_ENSCXT;
1864         }
1865         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1866             valid_mask |= SCR_EASE | SCR_NMEA;
1867         }
1868         if (cpu_isar_feature(aa64_sme, cpu)) {
1869             valid_mask |= SCR_ENTP2;
1870         }
1871         if (cpu_isar_feature(aa64_hcx, cpu)) {
1872             valid_mask |= SCR_HXEN;
1873         }
1874         if (cpu_isar_feature(aa64_fgt, cpu)) {
1875             valid_mask |= SCR_FGTEN;
1876         }
1877     } else {
1878         valid_mask &= ~(SCR_RW | SCR_ST);
1879         if (cpu_isar_feature(aa32_ras, cpu)) {
1880             valid_mask |= SCR_TERR;
1881         }
1882     }
1883 
1884     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1885         valid_mask &= ~SCR_HCE;
1886 
1887         /*
1888          * On ARMv7, SMD (or SCD as it is called in v7) is only
1889          * supported if EL2 exists. The bit is UNK/SBZP when
1890          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1891          * when EL2 is unavailable.
1892          * On ARMv8, this bit is always available.
1893          */
1894         if (arm_feature(env, ARM_FEATURE_V7) &&
1895             !arm_feature(env, ARM_FEATURE_V8)) {
1896             valid_mask &= ~SCR_SMD;
1897         }
1898     }
1899 
1900     /* Clear all-context RES0 bits.  */
1901     value &= valid_mask;
1902     changed = env->cp15.scr_el3 ^ value;
1903     env->cp15.scr_el3 = value;
1904 
1905     /*
1906      * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then
1907      * we must invalidate all TLBs below EL3.
1908      */
1909     if (changed & SCR_NS) {
1910         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1911                                            ARMMMUIdxBit_E20_0 |
1912                                            ARMMMUIdxBit_E10_1 |
1913                                            ARMMMUIdxBit_E20_2 |
1914                                            ARMMMUIdxBit_E10_1_PAN |
1915                                            ARMMMUIdxBit_E20_2_PAN |
1916                                            ARMMMUIdxBit_E2));
1917     }
1918 }
1919 
1920 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1921 {
1922     /*
1923      * scr_write will set the RES1 bits on an AArch64-only CPU.
1924      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1925      */
1926     scr_write(env, ri, 0);
1927 }
1928 
1929 static CPAccessResult access_tid4(CPUARMState *env,
1930                                   const ARMCPRegInfo *ri,
1931                                   bool isread)
1932 {
1933     if (arm_current_el(env) == 1 &&
1934         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1935         return CP_ACCESS_TRAP_EL2;
1936     }
1937 
1938     return CP_ACCESS_OK;
1939 }
1940 
1941 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1942 {
1943     ARMCPU *cpu = env_archcpu(env);
1944 
1945     /*
1946      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1947      * bank
1948      */
1949     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1950                                         ri->secure & ARM_CP_SECSTATE_S);
1951 
1952     return cpu->ccsidr[index];
1953 }
1954 
1955 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1956                          uint64_t value)
1957 {
1958     raw_write(env, ri, value & 0xf);
1959 }
1960 
1961 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1962 {
1963     CPUState *cs = env_cpu(env);
1964     bool el1 = arm_current_el(env) == 1;
1965     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1966     uint64_t ret = 0;
1967 
1968     if (hcr_el2 & HCR_IMO) {
1969         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1970             ret |= CPSR_I;
1971         }
1972     } else {
1973         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1974             ret |= CPSR_I;
1975         }
1976     }
1977 
1978     if (hcr_el2 & HCR_FMO) {
1979         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1980             ret |= CPSR_F;
1981         }
1982     } else {
1983         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1984             ret |= CPSR_F;
1985         }
1986     }
1987 
1988     if (hcr_el2 & HCR_AMO) {
1989         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1990             ret |= CPSR_A;
1991         }
1992     }
1993 
1994     return ret;
1995 }
1996 
1997 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1998                                        bool isread)
1999 {
2000     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2001         return CP_ACCESS_TRAP_EL2;
2002     }
2003 
2004     return CP_ACCESS_OK;
2005 }
2006 
2007 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2008                                        bool isread)
2009 {
2010     if (arm_feature(env, ARM_FEATURE_V8)) {
2011         return access_aa64_tid1(env, ri, isread);
2012     }
2013 
2014     return CP_ACCESS_OK;
2015 }
2016 
2017 static const ARMCPRegInfo v7_cp_reginfo[] = {
2018     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2019     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2020       .access = PL1_W, .type = ARM_CP_NOP },
2021     /*
2022      * Performance monitors are implementation defined in v7,
2023      * but with an ARM recommended set of registers, which we
2024      * follow.
2025      *
2026      * Performance registers fall into three categories:
2027      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2028      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2029      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2030      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2031      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2032      */
2033     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2034       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2035       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2036       .writefn = pmcntenset_write,
2037       .accessfn = pmreg_access,
2038       .fgt = FGT_PMCNTEN,
2039       .raw_writefn = raw_write },
2040     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2041       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2042       .access = PL0_RW, .accessfn = pmreg_access,
2043       .fgt = FGT_PMCNTEN,
2044       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2045       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2046     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2047       .access = PL0_RW,
2048       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2049       .accessfn = pmreg_access,
2050       .fgt = FGT_PMCNTEN,
2051       .writefn = pmcntenclr_write,
2052       .type = ARM_CP_ALIAS | ARM_CP_IO },
2053     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2054       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2055       .access = PL0_RW, .accessfn = pmreg_access,
2056       .fgt = FGT_PMCNTEN,
2057       .type = ARM_CP_ALIAS | ARM_CP_IO,
2058       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2059       .writefn = pmcntenclr_write },
2060     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2061       .access = PL0_RW, .type = ARM_CP_IO,
2062       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2063       .accessfn = pmreg_access,
2064       .fgt = FGT_PMOVS,
2065       .writefn = pmovsr_write,
2066       .raw_writefn = raw_write },
2067     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2068       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2069       .access = PL0_RW, .accessfn = pmreg_access,
2070       .fgt = FGT_PMOVS,
2071       .type = ARM_CP_ALIAS | ARM_CP_IO,
2072       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2073       .writefn = pmovsr_write,
2074       .raw_writefn = raw_write },
2075     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2076       .access = PL0_W, .accessfn = pmreg_access_swinc,
2077       .fgt = FGT_PMSWINC_EL0,
2078       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2079       .writefn = pmswinc_write },
2080     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2081       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2082       .access = PL0_W, .accessfn = pmreg_access_swinc,
2083       .fgt = FGT_PMSWINC_EL0,
2084       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2085       .writefn = pmswinc_write },
2086     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2087       .access = PL0_RW, .type = ARM_CP_ALIAS,
2088       .fgt = FGT_PMSELR_EL0,
2089       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2090       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2091       .raw_writefn = raw_write},
2092     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2093       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2094       .access = PL0_RW, .accessfn = pmreg_access_selr,
2095       .fgt = FGT_PMSELR_EL0,
2096       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2097       .writefn = pmselr_write, .raw_writefn = raw_write, },
2098     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2099       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2100       .fgt = FGT_PMCCNTR_EL0,
2101       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2102       .accessfn = pmreg_access_ccntr },
2103     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2104       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2105       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2106       .fgt = FGT_PMCCNTR_EL0,
2107       .type = ARM_CP_IO,
2108       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2109       .readfn = pmccntr_read, .writefn = pmccntr_write,
2110       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2111     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2112       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2113       .access = PL0_RW, .accessfn = pmreg_access,
2114       .fgt = FGT_PMCCFILTR_EL0,
2115       .type = ARM_CP_ALIAS | ARM_CP_IO,
2116       .resetvalue = 0, },
2117     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2118       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2119       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2120       .access = PL0_RW, .accessfn = pmreg_access,
2121       .fgt = FGT_PMCCFILTR_EL0,
2122       .type = ARM_CP_IO,
2123       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2124       .resetvalue = 0, },
2125     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2126       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2127       .accessfn = pmreg_access,
2128       .fgt = FGT_PMEVTYPERN_EL0,
2129       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2130     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2131       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2132       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133       .accessfn = pmreg_access,
2134       .fgt = FGT_PMEVTYPERN_EL0,
2135       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2136     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2137       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2138       .accessfn = pmreg_access_xevcntr,
2139       .fgt = FGT_PMEVCNTRN_EL0,
2140       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2141     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2142       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2143       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144       .accessfn = pmreg_access_xevcntr,
2145       .fgt = FGT_PMEVCNTRN_EL0,
2146       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2147     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2148       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2149       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2150       .resetvalue = 0,
2151       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2152     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2153       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2154       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2155       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2156       .resetvalue = 0,
2157       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2158     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2159       .access = PL1_RW, .accessfn = access_tpm,
2160       .fgt = FGT_PMINTEN,
2161       .type = ARM_CP_ALIAS | ARM_CP_IO,
2162       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2163       .resetvalue = 0,
2164       .writefn = pmintenset_write, .raw_writefn = raw_write },
2165     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2166       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2167       .access = PL1_RW, .accessfn = access_tpm,
2168       .fgt = FGT_PMINTEN,
2169       .type = ARM_CP_IO,
2170       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2171       .writefn = pmintenset_write, .raw_writefn = raw_write,
2172       .resetvalue = 0x0 },
2173     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2174       .access = PL1_RW, .accessfn = access_tpm,
2175       .fgt = FGT_PMINTEN,
2176       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2177       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2178       .writefn = pmintenclr_write, },
2179     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2180       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2181       .access = PL1_RW, .accessfn = access_tpm,
2182       .fgt = FGT_PMINTEN,
2183       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2184       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2185       .writefn = pmintenclr_write },
2186     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2187       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2188       .access = PL1_R,
2189       .accessfn = access_tid4,
2190       .fgt = FGT_CCSIDR_EL1,
2191       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2192     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2193       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2194       .access = PL1_RW,
2195       .accessfn = access_tid4,
2196       .fgt = FGT_CSSELR_EL1,
2197       .writefn = csselr_write, .resetvalue = 0,
2198       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2199                              offsetof(CPUARMState, cp15.csselr_ns) } },
2200     /*
2201      * Auxiliary ID register: this actually has an IMPDEF value but for now
2202      * just RAZ for all cores:
2203      */
2204     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2205       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2206       .access = PL1_R, .type = ARM_CP_CONST,
2207       .accessfn = access_aa64_tid1,
2208       .fgt = FGT_AIDR_EL1,
2209       .resetvalue = 0 },
2210     /*
2211      * Auxiliary fault status registers: these also are IMPDEF, and we
2212      * choose to RAZ/WI for all cores.
2213      */
2214     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2215       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2216       .access = PL1_RW, .accessfn = access_tvm_trvm,
2217       .fgt = FGT_AFSR0_EL1,
2218       .type = ARM_CP_CONST, .resetvalue = 0 },
2219     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2220       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2221       .access = PL1_RW, .accessfn = access_tvm_trvm,
2222       .fgt = FGT_AFSR1_EL1,
2223       .type = ARM_CP_CONST, .resetvalue = 0 },
2224     /*
2225      * MAIR can just read-as-written because we don't implement caches
2226      * and so don't need to care about memory attributes.
2227      */
2228     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2229       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2230       .access = PL1_RW, .accessfn = access_tvm_trvm,
2231       .fgt = FGT_MAIR_EL1,
2232       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2233       .resetvalue = 0 },
2234     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2236       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2237       .resetvalue = 0 },
2238     /*
2239      * For non-long-descriptor page tables these are PRRR and NMRR;
2240      * regardless they still act as reads-as-written for QEMU.
2241      */
2242      /*
2243       * MAIR0/1 are defined separately from their 64-bit counterpart which
2244       * allows them to assign the correct fieldoffset based on the endianness
2245       * handled in the field definitions.
2246       */
2247     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2248       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2249       .access = PL1_RW, .accessfn = access_tvm_trvm,
2250       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2251                              offsetof(CPUARMState, cp15.mair0_ns) },
2252       .resetfn = arm_cp_reset_ignore },
2253     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2254       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2255       .access = PL1_RW, .accessfn = access_tvm_trvm,
2256       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2257                              offsetof(CPUARMState, cp15.mair1_ns) },
2258       .resetfn = arm_cp_reset_ignore },
2259     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2260       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2261       .fgt = FGT_ISR_EL1,
2262       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2263     /* 32 bit ITLB invalidates */
2264     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2265       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2266       .writefn = tlbiall_write },
2267     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2268       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2269       .writefn = tlbimva_write },
2270     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2271       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272       .writefn = tlbiasid_write },
2273     /* 32 bit DTLB invalidates */
2274     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2275       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2276       .writefn = tlbiall_write },
2277     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2278       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2279       .writefn = tlbimva_write },
2280     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2281       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282       .writefn = tlbiasid_write },
2283     /* 32 bit TLB invalidates */
2284     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2285       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2286       .writefn = tlbiall_write },
2287     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2288       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289       .writefn = tlbimva_write },
2290     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2291       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292       .writefn = tlbiasid_write },
2293     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2294       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295       .writefn = tlbimvaa_write },
2296 };
2297 
2298 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2299     /* 32 bit TLB invalidates, Inner Shareable */
2300     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2301       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2302       .writefn = tlbiall_is_write },
2303     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2304       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2305       .writefn = tlbimva_is_write },
2306     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2307       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2308       .writefn = tlbiasid_is_write },
2309     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2310       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2311       .writefn = tlbimvaa_is_write },
2312 };
2313 
2314 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2315     /* PMOVSSET is not implemented in v7 before v7ve */
2316     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2317       .access = PL0_RW, .accessfn = pmreg_access,
2318       .fgt = FGT_PMOVS,
2319       .type = ARM_CP_ALIAS | ARM_CP_IO,
2320       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2321       .writefn = pmovsset_write,
2322       .raw_writefn = raw_write },
2323     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2324       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2325       .access = PL0_RW, .accessfn = pmreg_access,
2326       .fgt = FGT_PMOVS,
2327       .type = ARM_CP_ALIAS | ARM_CP_IO,
2328       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2329       .writefn = pmovsset_write,
2330       .raw_writefn = raw_write },
2331 };
2332 
2333 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2334                         uint64_t value)
2335 {
2336     value &= 1;
2337     env->teecr = value;
2338 }
2339 
2340 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2341                                    bool isread)
2342 {
2343     /*
2344      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2345      * at all, so we don't need to check whether we're v8A.
2346      */
2347     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2348         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2349         return CP_ACCESS_TRAP_EL2;
2350     }
2351     return CP_ACCESS_OK;
2352 }
2353 
2354 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2355                                     bool isread)
2356 {
2357     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2358         return CP_ACCESS_TRAP;
2359     }
2360     return teecr_access(env, ri, isread);
2361 }
2362 
2363 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2364     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2365       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2366       .resetvalue = 0,
2367       .writefn = teecr_write, .accessfn = teecr_access },
2368     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2369       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2370       .accessfn = teehbr_access, .resetvalue = 0 },
2371 };
2372 
2373 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2374     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2375       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2376       .access = PL0_RW,
2377       .fgt = FGT_TPIDR_EL0,
2378       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2379     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2380       .access = PL0_RW,
2381       .fgt = FGT_TPIDR_EL0,
2382       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2383                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2384       .resetfn = arm_cp_reset_ignore },
2385     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2386       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2387       .access = PL0_R | PL1_W,
2388       .fgt = FGT_TPIDRRO_EL0,
2389       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2390       .resetvalue = 0},
2391     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2392       .access = PL0_R | PL1_W,
2393       .fgt = FGT_TPIDRRO_EL0,
2394       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2395                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2396       .resetfn = arm_cp_reset_ignore },
2397     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2398       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2399       .access = PL1_RW,
2400       .fgt = FGT_TPIDR_EL1,
2401       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2402     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2403       .access = PL1_RW,
2404       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2405                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2406       .resetvalue = 0 },
2407 };
2408 
2409 #ifndef CONFIG_USER_ONLY
2410 
2411 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2412                                        bool isread)
2413 {
2414     /*
2415      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2416      * Writable only at the highest implemented exception level.
2417      */
2418     int el = arm_current_el(env);
2419     uint64_t hcr;
2420     uint32_t cntkctl;
2421 
2422     switch (el) {
2423     case 0:
2424         hcr = arm_hcr_el2_eff(env);
2425         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2426             cntkctl = env->cp15.cnthctl_el2;
2427         } else {
2428             cntkctl = env->cp15.c14_cntkctl;
2429         }
2430         if (!extract32(cntkctl, 0, 2)) {
2431             return CP_ACCESS_TRAP;
2432         }
2433         break;
2434     case 1:
2435         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2436             arm_is_secure_below_el3(env)) {
2437             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2438             return CP_ACCESS_TRAP_UNCATEGORIZED;
2439         }
2440         break;
2441     case 2:
2442     case 3:
2443         break;
2444     }
2445 
2446     if (!isread && el < arm_highest_el(env)) {
2447         return CP_ACCESS_TRAP_UNCATEGORIZED;
2448     }
2449 
2450     return CP_ACCESS_OK;
2451 }
2452 
2453 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2454                                         bool isread)
2455 {
2456     unsigned int cur_el = arm_current_el(env);
2457     bool has_el2 = arm_is_el2_enabled(env);
2458     uint64_t hcr = arm_hcr_el2_eff(env);
2459 
2460     switch (cur_el) {
2461     case 0:
2462         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2463         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2464             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2465                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2466         }
2467 
2468         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2469         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2470             return CP_ACCESS_TRAP;
2471         }
2472 
2473         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2474         if (hcr & HCR_E2H) {
2475             if (timeridx == GTIMER_PHYS &&
2476                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2477                 return CP_ACCESS_TRAP_EL2;
2478             }
2479         } else {
2480             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2481             if (has_el2 && timeridx == GTIMER_PHYS &&
2482                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2483                 return CP_ACCESS_TRAP_EL2;
2484             }
2485         }
2486         break;
2487 
2488     case 1:
2489         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2490         if (has_el2 && timeridx == GTIMER_PHYS &&
2491             (hcr & HCR_E2H
2492              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2493              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2494             return CP_ACCESS_TRAP_EL2;
2495         }
2496         break;
2497     }
2498     return CP_ACCESS_OK;
2499 }
2500 
2501 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2502                                       bool isread)
2503 {
2504     unsigned int cur_el = arm_current_el(env);
2505     bool has_el2 = arm_is_el2_enabled(env);
2506     uint64_t hcr = arm_hcr_el2_eff(env);
2507 
2508     switch (cur_el) {
2509     case 0:
2510         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2511             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2512             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2513                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2514         }
2515 
2516         /*
2517          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2518          * EL0 if EL0[PV]TEN is zero.
2519          */
2520         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2521             return CP_ACCESS_TRAP;
2522         }
2523         /* fall through */
2524 
2525     case 1:
2526         if (has_el2 && timeridx == GTIMER_PHYS) {
2527             if (hcr & HCR_E2H) {
2528                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2529                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2530                     return CP_ACCESS_TRAP_EL2;
2531                 }
2532             } else {
2533                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2534                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2535                     return CP_ACCESS_TRAP_EL2;
2536                 }
2537             }
2538         }
2539         break;
2540     }
2541     return CP_ACCESS_OK;
2542 }
2543 
2544 static CPAccessResult gt_pct_access(CPUARMState *env,
2545                                     const ARMCPRegInfo *ri,
2546                                     bool isread)
2547 {
2548     return gt_counter_access(env, GTIMER_PHYS, isread);
2549 }
2550 
2551 static CPAccessResult gt_vct_access(CPUARMState *env,
2552                                     const ARMCPRegInfo *ri,
2553                                     bool isread)
2554 {
2555     return gt_counter_access(env, GTIMER_VIRT, isread);
2556 }
2557 
2558 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2559                                        bool isread)
2560 {
2561     return gt_timer_access(env, GTIMER_PHYS, isread);
2562 }
2563 
2564 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565                                        bool isread)
2566 {
2567     return gt_timer_access(env, GTIMER_VIRT, isread);
2568 }
2569 
2570 static CPAccessResult gt_stimer_access(CPUARMState *env,
2571                                        const ARMCPRegInfo *ri,
2572                                        bool isread)
2573 {
2574     /*
2575      * The AArch64 register view of the secure physical timer is
2576      * always accessible from EL3, and configurably accessible from
2577      * Secure EL1.
2578      */
2579     switch (arm_current_el(env)) {
2580     case 1:
2581         if (!arm_is_secure(env)) {
2582             return CP_ACCESS_TRAP;
2583         }
2584         if (!(env->cp15.scr_el3 & SCR_ST)) {
2585             return CP_ACCESS_TRAP_EL3;
2586         }
2587         return CP_ACCESS_OK;
2588     case 0:
2589     case 2:
2590         return CP_ACCESS_TRAP;
2591     case 3:
2592         return CP_ACCESS_OK;
2593     default:
2594         g_assert_not_reached();
2595     }
2596 }
2597 
2598 static uint64_t gt_get_countervalue(CPUARMState *env)
2599 {
2600     ARMCPU *cpu = env_archcpu(env);
2601 
2602     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2603 }
2604 
2605 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2606 {
2607     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2608 
2609     if (gt->ctl & 1) {
2610         /*
2611          * Timer enabled: calculate and set current ISTATUS, irq, and
2612          * reset timer to when ISTATUS next has to change
2613          */
2614         uint64_t offset = timeridx == GTIMER_VIRT ?
2615                                       cpu->env.cp15.cntvoff_el2 : 0;
2616         uint64_t count = gt_get_countervalue(&cpu->env);
2617         /* Note that this must be unsigned 64 bit arithmetic: */
2618         int istatus = count - offset >= gt->cval;
2619         uint64_t nexttick;
2620         int irqstate;
2621 
2622         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2623 
2624         irqstate = (istatus && !(gt->ctl & 2));
2625         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2626 
2627         if (istatus) {
2628             /* Next transition is when count rolls back over to zero */
2629             nexttick = UINT64_MAX;
2630         } else {
2631             /* Next transition is when we hit cval */
2632             nexttick = gt->cval + offset;
2633         }
2634         /*
2635          * Note that the desired next expiry time might be beyond the
2636          * signed-64-bit range of a QEMUTimer -- in this case we just
2637          * set the timer for as far in the future as possible. When the
2638          * timer expires we will reset the timer for any remaining period.
2639          */
2640         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2641             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2642         } else {
2643             timer_mod(cpu->gt_timer[timeridx], nexttick);
2644         }
2645         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2646     } else {
2647         /* Timer disabled: ISTATUS and timer output always clear */
2648         gt->ctl &= ~4;
2649         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2650         timer_del(cpu->gt_timer[timeridx]);
2651         trace_arm_gt_recalc_disabled(timeridx);
2652     }
2653 }
2654 
2655 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2656                            int timeridx)
2657 {
2658     ARMCPU *cpu = env_archcpu(env);
2659 
2660     timer_del(cpu->gt_timer[timeridx]);
2661 }
2662 
2663 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2664 {
2665     return gt_get_countervalue(env);
2666 }
2667 
2668 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2669 {
2670     uint64_t hcr;
2671 
2672     switch (arm_current_el(env)) {
2673     case 2:
2674         hcr = arm_hcr_el2_eff(env);
2675         if (hcr & HCR_E2H) {
2676             return 0;
2677         }
2678         break;
2679     case 0:
2680         hcr = arm_hcr_el2_eff(env);
2681         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2682             return 0;
2683         }
2684         break;
2685     }
2686 
2687     return env->cp15.cntvoff_el2;
2688 }
2689 
2690 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2691 {
2692     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2693 }
2694 
2695 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2696                           int timeridx,
2697                           uint64_t value)
2698 {
2699     trace_arm_gt_cval_write(timeridx, value);
2700     env->cp15.c14_timer[timeridx].cval = value;
2701     gt_recalc_timer(env_archcpu(env), timeridx);
2702 }
2703 
2704 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2705                              int timeridx)
2706 {
2707     uint64_t offset = 0;
2708 
2709     switch (timeridx) {
2710     case GTIMER_VIRT:
2711     case GTIMER_HYPVIRT:
2712         offset = gt_virt_cnt_offset(env);
2713         break;
2714     }
2715 
2716     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2717                       (gt_get_countervalue(env) - offset));
2718 }
2719 
2720 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721                           int timeridx,
2722                           uint64_t value)
2723 {
2724     uint64_t offset = 0;
2725 
2726     switch (timeridx) {
2727     case GTIMER_VIRT:
2728     case GTIMER_HYPVIRT:
2729         offset = gt_virt_cnt_offset(env);
2730         break;
2731     }
2732 
2733     trace_arm_gt_tval_write(timeridx, value);
2734     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2735                                          sextract64(value, 0, 32);
2736     gt_recalc_timer(env_archcpu(env), timeridx);
2737 }
2738 
2739 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2740                          int timeridx,
2741                          uint64_t value)
2742 {
2743     ARMCPU *cpu = env_archcpu(env);
2744     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2745 
2746     trace_arm_gt_ctl_write(timeridx, value);
2747     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2748     if ((oldval ^ value) & 1) {
2749         /* Enable toggled */
2750         gt_recalc_timer(cpu, timeridx);
2751     } else if ((oldval ^ value) & 2) {
2752         /*
2753          * IMASK toggled: don't need to recalculate,
2754          * just set the interrupt line based on ISTATUS
2755          */
2756         int irqstate = (oldval & 4) && !(value & 2);
2757 
2758         trace_arm_gt_imask_toggle(timeridx, irqstate);
2759         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2760     }
2761 }
2762 
2763 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2764 {
2765     gt_timer_reset(env, ri, GTIMER_PHYS);
2766 }
2767 
2768 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2769                                uint64_t value)
2770 {
2771     gt_cval_write(env, ri, GTIMER_PHYS, value);
2772 }
2773 
2774 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2775 {
2776     return gt_tval_read(env, ri, GTIMER_PHYS);
2777 }
2778 
2779 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2780                                uint64_t value)
2781 {
2782     gt_tval_write(env, ri, GTIMER_PHYS, value);
2783 }
2784 
2785 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786                               uint64_t value)
2787 {
2788     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2789 }
2790 
2791 static int gt_phys_redir_timeridx(CPUARMState *env)
2792 {
2793     switch (arm_mmu_idx(env)) {
2794     case ARMMMUIdx_E20_0:
2795     case ARMMMUIdx_E20_2:
2796     case ARMMMUIdx_E20_2_PAN:
2797         return GTIMER_HYP;
2798     default:
2799         return GTIMER_PHYS;
2800     }
2801 }
2802 
2803 static int gt_virt_redir_timeridx(CPUARMState *env)
2804 {
2805     switch (arm_mmu_idx(env)) {
2806     case ARMMMUIdx_E20_0:
2807     case ARMMMUIdx_E20_2:
2808     case ARMMMUIdx_E20_2_PAN:
2809         return GTIMER_HYPVIRT;
2810     default:
2811         return GTIMER_VIRT;
2812     }
2813 }
2814 
2815 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2816                                         const ARMCPRegInfo *ri)
2817 {
2818     int timeridx = gt_phys_redir_timeridx(env);
2819     return env->cp15.c14_timer[timeridx].cval;
2820 }
2821 
2822 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823                                      uint64_t value)
2824 {
2825     int timeridx = gt_phys_redir_timeridx(env);
2826     gt_cval_write(env, ri, timeridx, value);
2827 }
2828 
2829 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2830                                         const ARMCPRegInfo *ri)
2831 {
2832     int timeridx = gt_phys_redir_timeridx(env);
2833     return gt_tval_read(env, ri, timeridx);
2834 }
2835 
2836 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2837                                      uint64_t value)
2838 {
2839     int timeridx = gt_phys_redir_timeridx(env);
2840     gt_tval_write(env, ri, timeridx, value);
2841 }
2842 
2843 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2844                                        const ARMCPRegInfo *ri)
2845 {
2846     int timeridx = gt_phys_redir_timeridx(env);
2847     return env->cp15.c14_timer[timeridx].ctl;
2848 }
2849 
2850 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2851                                     uint64_t value)
2852 {
2853     int timeridx = gt_phys_redir_timeridx(env);
2854     gt_ctl_write(env, ri, timeridx, value);
2855 }
2856 
2857 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2858 {
2859     gt_timer_reset(env, ri, GTIMER_VIRT);
2860 }
2861 
2862 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2863                                uint64_t value)
2864 {
2865     gt_cval_write(env, ri, GTIMER_VIRT, value);
2866 }
2867 
2868 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2869 {
2870     return gt_tval_read(env, ri, GTIMER_VIRT);
2871 }
2872 
2873 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2874                                uint64_t value)
2875 {
2876     gt_tval_write(env, ri, GTIMER_VIRT, value);
2877 }
2878 
2879 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2880                               uint64_t value)
2881 {
2882     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2883 }
2884 
2885 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2886                               uint64_t value)
2887 {
2888     ARMCPU *cpu = env_archcpu(env);
2889 
2890     trace_arm_gt_cntvoff_write(value);
2891     raw_write(env, ri, value);
2892     gt_recalc_timer(cpu, GTIMER_VIRT);
2893 }
2894 
2895 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2896                                         const ARMCPRegInfo *ri)
2897 {
2898     int timeridx = gt_virt_redir_timeridx(env);
2899     return env->cp15.c14_timer[timeridx].cval;
2900 }
2901 
2902 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2903                                      uint64_t value)
2904 {
2905     int timeridx = gt_virt_redir_timeridx(env);
2906     gt_cval_write(env, ri, timeridx, value);
2907 }
2908 
2909 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2910                                         const ARMCPRegInfo *ri)
2911 {
2912     int timeridx = gt_virt_redir_timeridx(env);
2913     return gt_tval_read(env, ri, timeridx);
2914 }
2915 
2916 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2917                                      uint64_t value)
2918 {
2919     int timeridx = gt_virt_redir_timeridx(env);
2920     gt_tval_write(env, ri, timeridx, value);
2921 }
2922 
2923 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2924                                        const ARMCPRegInfo *ri)
2925 {
2926     int timeridx = gt_virt_redir_timeridx(env);
2927     return env->cp15.c14_timer[timeridx].ctl;
2928 }
2929 
2930 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931                                     uint64_t value)
2932 {
2933     int timeridx = gt_virt_redir_timeridx(env);
2934     gt_ctl_write(env, ri, timeridx, value);
2935 }
2936 
2937 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2938 {
2939     gt_timer_reset(env, ri, GTIMER_HYP);
2940 }
2941 
2942 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2943                               uint64_t value)
2944 {
2945     gt_cval_write(env, ri, GTIMER_HYP, value);
2946 }
2947 
2948 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2949 {
2950     return gt_tval_read(env, ri, GTIMER_HYP);
2951 }
2952 
2953 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954                               uint64_t value)
2955 {
2956     gt_tval_write(env, ri, GTIMER_HYP, value);
2957 }
2958 
2959 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960                               uint64_t value)
2961 {
2962     gt_ctl_write(env, ri, GTIMER_HYP, value);
2963 }
2964 
2965 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2966 {
2967     gt_timer_reset(env, ri, GTIMER_SEC);
2968 }
2969 
2970 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2971                               uint64_t value)
2972 {
2973     gt_cval_write(env, ri, GTIMER_SEC, value);
2974 }
2975 
2976 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2977 {
2978     return gt_tval_read(env, ri, GTIMER_SEC);
2979 }
2980 
2981 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2982                               uint64_t value)
2983 {
2984     gt_tval_write(env, ri, GTIMER_SEC, value);
2985 }
2986 
2987 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988                               uint64_t value)
2989 {
2990     gt_ctl_write(env, ri, GTIMER_SEC, value);
2991 }
2992 
2993 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2994 {
2995     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2996 }
2997 
2998 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2999                              uint64_t value)
3000 {
3001     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3002 }
3003 
3004 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3005 {
3006     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3007 }
3008 
3009 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                              uint64_t value)
3011 {
3012     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3013 }
3014 
3015 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016                             uint64_t value)
3017 {
3018     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3019 }
3020 
3021 void arm_gt_ptimer_cb(void *opaque)
3022 {
3023     ARMCPU *cpu = opaque;
3024 
3025     gt_recalc_timer(cpu, GTIMER_PHYS);
3026 }
3027 
3028 void arm_gt_vtimer_cb(void *opaque)
3029 {
3030     ARMCPU *cpu = opaque;
3031 
3032     gt_recalc_timer(cpu, GTIMER_VIRT);
3033 }
3034 
3035 void arm_gt_htimer_cb(void *opaque)
3036 {
3037     ARMCPU *cpu = opaque;
3038 
3039     gt_recalc_timer(cpu, GTIMER_HYP);
3040 }
3041 
3042 void arm_gt_stimer_cb(void *opaque)
3043 {
3044     ARMCPU *cpu = opaque;
3045 
3046     gt_recalc_timer(cpu, GTIMER_SEC);
3047 }
3048 
3049 void arm_gt_hvtimer_cb(void *opaque)
3050 {
3051     ARMCPU *cpu = opaque;
3052 
3053     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3054 }
3055 
3056 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3057 {
3058     ARMCPU *cpu = env_archcpu(env);
3059 
3060     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3061 }
3062 
3063 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3064     /*
3065      * Note that CNTFRQ is purely reads-as-written for the benefit
3066      * of software; writing it doesn't actually change the timer frequency.
3067      * Our reset value matches the fixed frequency we implement the timer at.
3068      */
3069     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3070       .type = ARM_CP_ALIAS,
3071       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3072       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3073     },
3074     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3075       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3076       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3077       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3078       .resetfn = arm_gt_cntfrq_reset,
3079     },
3080     /* overall control: mostly access permissions */
3081     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3082       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3083       .access = PL1_RW,
3084       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3085       .resetvalue = 0,
3086     },
3087     /* per-timer control */
3088     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3089       .secure = ARM_CP_SECSTATE_NS,
3090       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3091       .accessfn = gt_ptimer_access,
3092       .fieldoffset = offsetoflow32(CPUARMState,
3093                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3094       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3095       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3096     },
3097     { .name = "CNTP_CTL_S",
3098       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3099       .secure = ARM_CP_SECSTATE_S,
3100       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3101       .accessfn = gt_ptimer_access,
3102       .fieldoffset = offsetoflow32(CPUARMState,
3103                                    cp15.c14_timer[GTIMER_SEC].ctl),
3104       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3105     },
3106     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3107       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3108       .type = ARM_CP_IO, .access = PL0_RW,
3109       .accessfn = gt_ptimer_access,
3110       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3111       .resetvalue = 0,
3112       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3113       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3114     },
3115     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3116       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3117       .accessfn = gt_vtimer_access,
3118       .fieldoffset = offsetoflow32(CPUARMState,
3119                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3120       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3121       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3122     },
3123     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3124       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3125       .type = ARM_CP_IO, .access = PL0_RW,
3126       .accessfn = gt_vtimer_access,
3127       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3128       .resetvalue = 0,
3129       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3130       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3131     },
3132     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3133     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3134       .secure = ARM_CP_SECSTATE_NS,
3135       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3136       .accessfn = gt_ptimer_access,
3137       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3138     },
3139     { .name = "CNTP_TVAL_S",
3140       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3141       .secure = ARM_CP_SECSTATE_S,
3142       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3143       .accessfn = gt_ptimer_access,
3144       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3145     },
3146     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3147       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3148       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3149       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3150       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3151     },
3152     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3153       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3154       .accessfn = gt_vtimer_access,
3155       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3156     },
3157     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3158       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3159       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3160       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3161       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3162     },
3163     /* The counter itself */
3164     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3165       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3166       .accessfn = gt_pct_access,
3167       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3168     },
3169     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3170       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3171       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3172       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3173     },
3174     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3175       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3176       .accessfn = gt_vct_access,
3177       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3178     },
3179     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3180       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3181       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3182       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3183     },
3184     /* Comparison value, indicating when the timer goes off */
3185     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3186       .secure = ARM_CP_SECSTATE_NS,
3187       .access = PL0_RW,
3188       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3189       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3190       .accessfn = gt_ptimer_access,
3191       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3192       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3193     },
3194     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3195       .secure = ARM_CP_SECSTATE_S,
3196       .access = PL0_RW,
3197       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3198       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3199       .accessfn = gt_ptimer_access,
3200       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3201     },
3202     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3203       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3204       .access = PL0_RW,
3205       .type = ARM_CP_IO,
3206       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3207       .resetvalue = 0, .accessfn = gt_ptimer_access,
3208       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3209       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3210     },
3211     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3212       .access = PL0_RW,
3213       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3214       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3215       .accessfn = gt_vtimer_access,
3216       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3217       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3218     },
3219     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3220       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3221       .access = PL0_RW,
3222       .type = ARM_CP_IO,
3223       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3224       .resetvalue = 0, .accessfn = gt_vtimer_access,
3225       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3226       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3227     },
3228     /*
3229      * Secure timer -- this is actually restricted to only EL3
3230      * and configurably Secure-EL1 via the accessfn.
3231      */
3232     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3233       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3234       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3235       .accessfn = gt_stimer_access,
3236       .readfn = gt_sec_tval_read,
3237       .writefn = gt_sec_tval_write,
3238       .resetfn = gt_sec_timer_reset,
3239     },
3240     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3241       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3242       .type = ARM_CP_IO, .access = PL1_RW,
3243       .accessfn = gt_stimer_access,
3244       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3245       .resetvalue = 0,
3246       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3247     },
3248     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3249       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3250       .type = ARM_CP_IO, .access = PL1_RW,
3251       .accessfn = gt_stimer_access,
3252       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3253       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3254     },
3255 };
3256 
3257 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3258                                  bool isread)
3259 {
3260     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3261         return CP_ACCESS_TRAP;
3262     }
3263     return CP_ACCESS_OK;
3264 }
3265 
3266 #else
3267 
3268 /*
3269  * In user-mode most of the generic timer registers are inaccessible
3270  * however modern kernels (4.12+) allow access to cntvct_el0
3271  */
3272 
3273 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3274 {
3275     ARMCPU *cpu = env_archcpu(env);
3276 
3277     /*
3278      * Currently we have no support for QEMUTimer in linux-user so we
3279      * can't call gt_get_countervalue(env), instead we directly
3280      * call the lower level functions.
3281      */
3282     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3283 }
3284 
3285 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3286     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3287       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3288       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3289       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3290       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3291     },
3292     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3293       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3294       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3295       .readfn = gt_virt_cnt_read,
3296     },
3297 };
3298 
3299 #endif
3300 
3301 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3302 {
3303     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3304         raw_write(env, ri, value);
3305     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3306         raw_write(env, ri, value & 0xfffff6ff);
3307     } else {
3308         raw_write(env, ri, value & 0xfffff1ff);
3309     }
3310 }
3311 
3312 #ifndef CONFIG_USER_ONLY
3313 /* get_phys_addr() isn't present for user-mode-only targets */
3314 
3315 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3316                                  bool isread)
3317 {
3318     if (ri->opc2 & 4) {
3319         /*
3320          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3321          * Secure EL1 (which can only happen if EL3 is AArch64).
3322          * They are simply UNDEF if executed from NS EL1.
3323          * They function normally from EL2 or EL3.
3324          */
3325         if (arm_current_el(env) == 1) {
3326             if (arm_is_secure_below_el3(env)) {
3327                 if (env->cp15.scr_el3 & SCR_EEL2) {
3328                     return CP_ACCESS_TRAP_EL2;
3329                 }
3330                 return CP_ACCESS_TRAP_EL3;
3331             }
3332             return CP_ACCESS_TRAP_UNCATEGORIZED;
3333         }
3334     }
3335     return CP_ACCESS_OK;
3336 }
3337 
3338 #ifdef CONFIG_TCG
3339 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3340                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3341                              bool is_secure)
3342 {
3343     bool ret;
3344     uint64_t par64;
3345     bool format64 = false;
3346     ARMMMUFaultInfo fi = {};
3347     GetPhysAddrResult res = {};
3348 
3349     ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3350                                     is_secure, &res, &fi);
3351 
3352     /*
3353      * ATS operations only do S1 or S1+S2 translations, so we never
3354      * have to deal with the ARMCacheAttrs format for S2 only.
3355      */
3356     assert(!res.cacheattrs.is_s2_format);
3357 
3358     if (ret) {
3359         /*
3360          * Some kinds of translation fault must cause exceptions rather
3361          * than being reported in the PAR.
3362          */
3363         int current_el = arm_current_el(env);
3364         int target_el;
3365         uint32_t syn, fsr, fsc;
3366         bool take_exc = false;
3367 
3368         if (fi.s1ptw && current_el == 1
3369             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3370             /*
3371              * Synchronous stage 2 fault on an access made as part of the
3372              * translation table walk for AT S1E0* or AT S1E1* insn
3373              * executed from NS EL1. If this is a synchronous external abort
3374              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3375              * to EL3. Otherwise the fault is taken as an exception to EL2,
3376              * and HPFAR_EL2 holds the faulting IPA.
3377              */
3378             if (fi.type == ARMFault_SyncExternalOnWalk &&
3379                 (env->cp15.scr_el3 & SCR_EA)) {
3380                 target_el = 3;
3381             } else {
3382                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3383                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3384                     env->cp15.hpfar_el2 |= HPFAR_NS;
3385                 }
3386                 target_el = 2;
3387             }
3388             take_exc = true;
3389         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3390             /*
3391              * Synchronous external aborts during a translation table walk
3392              * are taken as Data Abort exceptions.
3393              */
3394             if (fi.stage2) {
3395                 if (current_el == 3) {
3396                     target_el = 3;
3397                 } else {
3398                     target_el = 2;
3399                 }
3400             } else {
3401                 target_el = exception_target_el(env);
3402             }
3403             take_exc = true;
3404         }
3405 
3406         if (take_exc) {
3407             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3408             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3409                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3410                 fsr = arm_fi_to_lfsc(&fi);
3411                 fsc = extract32(fsr, 0, 6);
3412             } else {
3413                 fsr = arm_fi_to_sfsc(&fi);
3414                 fsc = 0x3f;
3415             }
3416             /*
3417              * Report exception with ESR indicating a fault due to a
3418              * translation table walk for a cache maintenance instruction.
3419              */
3420             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3421                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3422             env->exception.vaddress = value;
3423             env->exception.fsr = fsr;
3424             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3425         }
3426     }
3427 
3428     if (is_a64(env)) {
3429         format64 = true;
3430     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3431         /*
3432          * ATS1Cxx:
3433          * * TTBCR.EAE determines whether the result is returned using the
3434          *   32-bit or the 64-bit PAR format
3435          * * Instructions executed in Hyp mode always use the 64bit format
3436          *
3437          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3438          * * The Non-secure TTBCR.EAE bit is set to 1
3439          * * The implementation includes EL2, and the value of HCR.VM is 1
3440          *
3441          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3442          *
3443          * ATS1Hx always uses the 64bit format.
3444          */
3445         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3446 
3447         if (arm_feature(env, ARM_FEATURE_EL2)) {
3448             if (mmu_idx == ARMMMUIdx_E10_0 ||
3449                 mmu_idx == ARMMMUIdx_E10_1 ||
3450                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3451                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3452             } else {
3453                 format64 |= arm_current_el(env) == 2;
3454             }
3455         }
3456     }
3457 
3458     if (format64) {
3459         /* Create a 64-bit PAR */
3460         par64 = (1 << 11); /* LPAE bit always set */
3461         if (!ret) {
3462             par64 |= res.f.phys_addr & ~0xfffULL;
3463             if (!res.f.attrs.secure) {
3464                 par64 |= (1 << 9); /* NS */
3465             }
3466             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3467             par64 |= res.cacheattrs.shareability << 7; /* SH */
3468         } else {
3469             uint32_t fsr = arm_fi_to_lfsc(&fi);
3470 
3471             par64 |= 1; /* F */
3472             par64 |= (fsr & 0x3f) << 1; /* FS */
3473             if (fi.stage2) {
3474                 par64 |= (1 << 9); /* S */
3475             }
3476             if (fi.s1ptw) {
3477                 par64 |= (1 << 8); /* PTW */
3478             }
3479         }
3480     } else {
3481         /*
3482          * fsr is a DFSR/IFSR value for the short descriptor
3483          * translation table format (with WnR always clear).
3484          * Convert it to a 32-bit PAR.
3485          */
3486         if (!ret) {
3487             /* We do not set any attribute bits in the PAR */
3488             if (res.f.lg_page_size == 24
3489                 && arm_feature(env, ARM_FEATURE_V7)) {
3490                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3491             } else {
3492                 par64 = res.f.phys_addr & 0xfffff000;
3493             }
3494             if (!res.f.attrs.secure) {
3495                 par64 |= (1 << 9); /* NS */
3496             }
3497         } else {
3498             uint32_t fsr = arm_fi_to_sfsc(&fi);
3499 
3500             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3501                     ((fsr & 0xf) << 1) | 1;
3502         }
3503     }
3504     return par64;
3505 }
3506 #endif /* CONFIG_TCG */
3507 
3508 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3509 {
3510 #ifdef CONFIG_TCG
3511     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3512     uint64_t par64;
3513     ARMMMUIdx mmu_idx;
3514     int el = arm_current_el(env);
3515     bool secure = arm_is_secure_below_el3(env);
3516 
3517     switch (ri->opc2 & 6) {
3518     case 0:
3519         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3520         switch (el) {
3521         case 3:
3522             mmu_idx = ARMMMUIdx_E3;
3523             secure = true;
3524             break;
3525         case 2:
3526             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3527             /* fall through */
3528         case 1:
3529             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3530                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3531             } else {
3532                 mmu_idx = ARMMMUIdx_Stage1_E1;
3533             }
3534             break;
3535         default:
3536             g_assert_not_reached();
3537         }
3538         break;
3539     case 2:
3540         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3541         switch (el) {
3542         case 3:
3543             mmu_idx = ARMMMUIdx_E10_0;
3544             secure = true;
3545             break;
3546         case 2:
3547             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3548             mmu_idx = ARMMMUIdx_Stage1_E0;
3549             break;
3550         case 1:
3551             mmu_idx = ARMMMUIdx_Stage1_E0;
3552             break;
3553         default:
3554             g_assert_not_reached();
3555         }
3556         break;
3557     case 4:
3558         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3559         mmu_idx = ARMMMUIdx_E10_1;
3560         secure = false;
3561         break;
3562     case 6:
3563         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3564         mmu_idx = ARMMMUIdx_E10_0;
3565         secure = false;
3566         break;
3567     default:
3568         g_assert_not_reached();
3569     }
3570 
3571     par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3572 
3573     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3574 #else
3575     /* Handled by hardware accelerator. */
3576     g_assert_not_reached();
3577 #endif /* CONFIG_TCG */
3578 }
3579 
3580 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3581                         uint64_t value)
3582 {
3583 #ifdef CONFIG_TCG
3584     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3585     uint64_t par64;
3586 
3587     /* There is no SecureEL2 for AArch32. */
3588     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3589 
3590     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3591 #else
3592     /* Handled by hardware accelerator. */
3593     g_assert_not_reached();
3594 #endif /* CONFIG_TCG */
3595 }
3596 
3597 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3598                                      bool isread)
3599 {
3600     if (arm_current_el(env) == 3 &&
3601         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3602         return CP_ACCESS_TRAP;
3603     }
3604     return CP_ACCESS_OK;
3605 }
3606 
3607 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3608                         uint64_t value)
3609 {
3610 #ifdef CONFIG_TCG
3611     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3612     ARMMMUIdx mmu_idx;
3613     int secure = arm_is_secure_below_el3(env);
3614     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3615     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3616 
3617     switch (ri->opc2 & 6) {
3618     case 0:
3619         switch (ri->opc1) {
3620         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3621             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3622                 mmu_idx = regime_e20 ?
3623                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3624             } else {
3625                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3626             }
3627             break;
3628         case 4: /* AT S1E2R, AT S1E2W */
3629             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3630             break;
3631         case 6: /* AT S1E3R, AT S1E3W */
3632             mmu_idx = ARMMMUIdx_E3;
3633             secure = true;
3634             break;
3635         default:
3636             g_assert_not_reached();
3637         }
3638         break;
3639     case 2: /* AT S1E0R, AT S1E0W */
3640         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3641         break;
3642     case 4: /* AT S12E1R, AT S12E1W */
3643         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3644         break;
3645     case 6: /* AT S12E0R, AT S12E0W */
3646         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3647         break;
3648     default:
3649         g_assert_not_reached();
3650     }
3651 
3652     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3653                                        mmu_idx, secure);
3654 #else
3655     /* Handled by hardware accelerator. */
3656     g_assert_not_reached();
3657 #endif /* CONFIG_TCG */
3658 }
3659 #endif
3660 
3661 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3662     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3663       .access = PL1_RW, .resetvalue = 0,
3664       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3665                              offsetoflow32(CPUARMState, cp15.par_ns) },
3666       .writefn = par_write },
3667 #ifndef CONFIG_USER_ONLY
3668     /* This underdecoding is safe because the reginfo is NO_RAW. */
3669     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3670       .access = PL1_W, .accessfn = ats_access,
3671       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3672 #endif
3673 };
3674 
3675 /* Return basic MPU access permission bits.  */
3676 static uint32_t simple_mpu_ap_bits(uint32_t val)
3677 {
3678     uint32_t ret;
3679     uint32_t mask;
3680     int i;
3681     ret = 0;
3682     mask = 3;
3683     for (i = 0; i < 16; i += 2) {
3684         ret |= (val >> i) & mask;
3685         mask <<= 2;
3686     }
3687     return ret;
3688 }
3689 
3690 /* Pad basic MPU access permission bits to extended format.  */
3691 static uint32_t extended_mpu_ap_bits(uint32_t val)
3692 {
3693     uint32_t ret;
3694     uint32_t mask;
3695     int i;
3696     ret = 0;
3697     mask = 3;
3698     for (i = 0; i < 16; i += 2) {
3699         ret |= (val & mask) << i;
3700         mask <<= 2;
3701     }
3702     return ret;
3703 }
3704 
3705 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3706                                  uint64_t value)
3707 {
3708     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3709 }
3710 
3711 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3712 {
3713     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3714 }
3715 
3716 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3717                                  uint64_t value)
3718 {
3719     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3720 }
3721 
3722 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3723 {
3724     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3725 }
3726 
3727 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3728 {
3729     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3730 
3731     if (!u32p) {
3732         return 0;
3733     }
3734 
3735     u32p += env->pmsav7.rnr[M_REG_NS];
3736     return *u32p;
3737 }
3738 
3739 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3740                          uint64_t value)
3741 {
3742     ARMCPU *cpu = env_archcpu(env);
3743     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3744 
3745     if (!u32p) {
3746         return;
3747     }
3748 
3749     u32p += env->pmsav7.rnr[M_REG_NS];
3750     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3751     *u32p = value;
3752 }
3753 
3754 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3755                               uint64_t value)
3756 {
3757     ARMCPU *cpu = env_archcpu(env);
3758     uint32_t nrgs = cpu->pmsav7_dregion;
3759 
3760     if (value >= nrgs) {
3761         qemu_log_mask(LOG_GUEST_ERROR,
3762                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3763                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3764         return;
3765     }
3766 
3767     raw_write(env, ri, value);
3768 }
3769 
3770 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3771                           uint64_t value)
3772 {
3773     ARMCPU *cpu = env_archcpu(env);
3774 
3775     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3776     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3777 }
3778 
3779 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3780 {
3781     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3782 }
3783 
3784 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785                           uint64_t value)
3786 {
3787     ARMCPU *cpu = env_archcpu(env);
3788 
3789     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3790     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3791 }
3792 
3793 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3794 {
3795     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3796 }
3797 
3798 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799                            uint64_t value)
3800 {
3801     ARMCPU *cpu = env_archcpu(env);
3802 
3803     /*
3804      * Ignore writes that would select not implemented region.
3805      * This is architecturally UNPREDICTABLE.
3806      */
3807     if (value >= cpu->pmsav7_dregion) {
3808         return;
3809     }
3810 
3811     env->pmsav7.rnr[M_REG_NS] = value;
3812 }
3813 
3814 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3815                           uint64_t value)
3816 {
3817     ARMCPU *cpu = env_archcpu(env);
3818 
3819     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3820     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3821 }
3822 
3823 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3824 {
3825     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3826 }
3827 
3828 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3829                           uint64_t value)
3830 {
3831     ARMCPU *cpu = env_archcpu(env);
3832 
3833     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3834     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3835 }
3836 
3837 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3838 {
3839     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3840 }
3841 
3842 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3843                           uint64_t value)
3844 {
3845     uint32_t n;
3846     uint32_t bit;
3847     ARMCPU *cpu = env_archcpu(env);
3848 
3849     /* Ignore writes to unimplemented regions */
3850     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3851     value &= MAKE_64BIT_MASK(0, rmax);
3852 
3853     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3854 
3855     /* Register alias is only valid for first 32 indexes */
3856     for (n = 0; n < rmax; ++n) {
3857         bit = extract32(value, n, 1);
3858         env->pmsav8.hprlar[n] = deposit32(
3859                     env->pmsav8.hprlar[n], 0, 1, bit);
3860     }
3861 }
3862 
3863 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3864 {
3865     uint32_t n;
3866     uint32_t result = 0x0;
3867     ARMCPU *cpu = env_archcpu(env);
3868 
3869     /* Register alias is only valid for first 32 indexes */
3870     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3871         if (env->pmsav8.hprlar[n] & 0x1) {
3872             result |= (0x1 << n);
3873         }
3874     }
3875     return result;
3876 }
3877 
3878 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3879                            uint64_t value)
3880 {
3881     ARMCPU *cpu = env_archcpu(env);
3882 
3883     /*
3884      * Ignore writes that would select not implemented region.
3885      * This is architecturally UNPREDICTABLE.
3886      */
3887     if (value >= cpu->pmsav8r_hdregion) {
3888         return;
3889     }
3890 
3891     env->pmsav8.hprselr = value;
3892 }
3893 
3894 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3895                           uint64_t value)
3896 {
3897     ARMCPU *cpu = env_archcpu(env);
3898     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3899                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3900 
3901     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3902 
3903     if (ri->opc1 & 4) {
3904         if (index >= cpu->pmsav8r_hdregion) {
3905             return;
3906         }
3907         if (ri->opc2 & 0x1) {
3908             env->pmsav8.hprlar[index] = value;
3909         } else {
3910             env->pmsav8.hprbar[index] = value;
3911         }
3912     } else {
3913         if (index >= cpu->pmsav7_dregion) {
3914             return;
3915         }
3916         if (ri->opc2 & 0x1) {
3917             env->pmsav8.rlar[M_REG_NS][index] = value;
3918         } else {
3919             env->pmsav8.rbar[M_REG_NS][index] = value;
3920         }
3921     }
3922 }
3923 
3924 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3925 {
3926     ARMCPU *cpu = env_archcpu(env);
3927     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3928                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3929 
3930     if (ri->opc1 & 4) {
3931         if (index >= cpu->pmsav8r_hdregion) {
3932             return 0x0;
3933         }
3934         if (ri->opc2 & 0x1) {
3935             return env->pmsav8.hprlar[index];
3936         } else {
3937             return env->pmsav8.hprbar[index];
3938         }
3939     } else {
3940         if (index >= cpu->pmsav7_dregion) {
3941             return 0x0;
3942         }
3943         if (ri->opc2 & 0x1) {
3944             return env->pmsav8.rlar[M_REG_NS][index];
3945         } else {
3946             return env->pmsav8.rbar[M_REG_NS][index];
3947         }
3948     }
3949 }
3950 
3951 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3952     { .name = "PRBAR",
3953       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3954       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3955       .accessfn = access_tvm_trvm,
3956       .readfn = prbar_read, .writefn = prbar_write },
3957     { .name = "PRLAR",
3958       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3959       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3960       .accessfn = access_tvm_trvm,
3961       .readfn = prlar_read, .writefn = prlar_write },
3962     { .name = "PRSELR", .resetvalue = 0,
3963       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3964       .access = PL1_RW, .accessfn = access_tvm_trvm,
3965       .writefn = prselr_write,
3966       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3967     { .name = "HPRBAR", .resetvalue = 0,
3968       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3969       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3970       .readfn = hprbar_read, .writefn = hprbar_write },
3971     { .name = "HPRLAR",
3972       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3973       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3974       .readfn = hprlar_read, .writefn = hprlar_write },
3975     { .name = "HPRSELR", .resetvalue = 0,
3976       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3977       .access = PL2_RW,
3978       .writefn = hprselr_write,
3979       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3980     { .name = "HPRENR",
3981       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3982       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3983       .readfn = hprenr_read, .writefn = hprenr_write },
3984 };
3985 
3986 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3987     /*
3988      * Reset for all these registers is handled in arm_cpu_reset(),
3989      * because the PMSAv7 is also used by M-profile CPUs, which do
3990      * not register cpregs but still need the state to be reset.
3991      */
3992     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3993       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3994       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3995       .readfn = pmsav7_read, .writefn = pmsav7_write,
3996       .resetfn = arm_cp_reset_ignore },
3997     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3998       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3999       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4000       .readfn = pmsav7_read, .writefn = pmsav7_write,
4001       .resetfn = arm_cp_reset_ignore },
4002     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4003       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4004       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4005       .readfn = pmsav7_read, .writefn = pmsav7_write,
4006       .resetfn = arm_cp_reset_ignore },
4007     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4008       .access = PL1_RW,
4009       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4010       .writefn = pmsav7_rgnr_write,
4011       .resetfn = arm_cp_reset_ignore },
4012 };
4013 
4014 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4015     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4016       .access = PL1_RW, .type = ARM_CP_ALIAS,
4017       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4018       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4019     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4020       .access = PL1_RW, .type = ARM_CP_ALIAS,
4021       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4022       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4023     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4024       .access = PL1_RW,
4025       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4026       .resetvalue = 0, },
4027     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4028       .access = PL1_RW,
4029       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4030       .resetvalue = 0, },
4031     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4032       .access = PL1_RW,
4033       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4034     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4035       .access = PL1_RW,
4036       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4037     /* Protection region base and size registers */
4038     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4039       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4040       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4041     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4042       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4043       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4044     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4045       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4046       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4047     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4048       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4049       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4050     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4051       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4052       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4053     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4054       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4055       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4056     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4057       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4058       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4059     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4060       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4061       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4062 };
4063 
4064 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4065                              uint64_t value)
4066 {
4067     ARMCPU *cpu = env_archcpu(env);
4068 
4069     if (!arm_feature(env, ARM_FEATURE_V8)) {
4070         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4071             /*
4072              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4073              * using Long-descriptor translation table format
4074              */
4075             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4076         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4077             /*
4078              * In an implementation that includes the Security Extensions
4079              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4080              * Short-descriptor translation table format.
4081              */
4082             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4083         } else {
4084             value &= TTBCR_N;
4085         }
4086     }
4087 
4088     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4089         /*
4090          * With LPAE the TTBCR could result in a change of ASID
4091          * via the TTBCR.A1 bit, so do a TLB flush.
4092          */
4093         tlb_flush(CPU(cpu));
4094     }
4095     raw_write(env, ri, value);
4096 }
4097 
4098 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4099                                uint64_t value)
4100 {
4101     ARMCPU *cpu = env_archcpu(env);
4102 
4103     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4104     tlb_flush(CPU(cpu));
4105     raw_write(env, ri, value);
4106 }
4107 
4108 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4109                             uint64_t value)
4110 {
4111     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4112     if (cpreg_field_is_64bit(ri) &&
4113         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4114         ARMCPU *cpu = env_archcpu(env);
4115         tlb_flush(CPU(cpu));
4116     }
4117     raw_write(env, ri, value);
4118 }
4119 
4120 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4121                                     uint64_t value)
4122 {
4123     /*
4124      * If we are running with E2&0 regime, then an ASID is active.
4125      * Flush if that might be changing.  Note we're not checking
4126      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4127      * holds the active ASID, only checking the field that might.
4128      */
4129     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4130         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4131         uint16_t mask = ARMMMUIdxBit_E20_2 |
4132                         ARMMMUIdxBit_E20_2_PAN |
4133                         ARMMMUIdxBit_E20_0;
4134         tlb_flush_by_mmuidx(env_cpu(env), mask);
4135     }
4136     raw_write(env, ri, value);
4137 }
4138 
4139 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4140                         uint64_t value)
4141 {
4142     ARMCPU *cpu = env_archcpu(env);
4143     CPUState *cs = CPU(cpu);
4144 
4145     /*
4146      * A change in VMID to the stage2 page table (Stage2) invalidates
4147      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4148      */
4149     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4150         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4151     }
4152     raw_write(env, ri, value);
4153 }
4154 
4155 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4156     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4157       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4158       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4159                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4160     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4161       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4162       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4163                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4164     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4165       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4166       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4167                              offsetof(CPUARMState, cp15.dfar_ns) } },
4168     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4169       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4170       .access = PL1_RW, .accessfn = access_tvm_trvm,
4171       .fgt = FGT_FAR_EL1,
4172       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4173       .resetvalue = 0, },
4174 };
4175 
4176 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4177     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4178       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4179       .access = PL1_RW, .accessfn = access_tvm_trvm,
4180       .fgt = FGT_ESR_EL1,
4181       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4182     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4183       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4184       .access = PL1_RW, .accessfn = access_tvm_trvm,
4185       .fgt = FGT_TTBR0_EL1,
4186       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4187       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4188                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4189     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4190       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4191       .access = PL1_RW, .accessfn = access_tvm_trvm,
4192       .fgt = FGT_TTBR1_EL1,
4193       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4194       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4195                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4196     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4197       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4198       .access = PL1_RW, .accessfn = access_tvm_trvm,
4199       .fgt = FGT_TCR_EL1,
4200       .writefn = vmsa_tcr_el12_write,
4201       .raw_writefn = raw_write,
4202       .resetvalue = 0,
4203       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4204     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4205       .access = PL1_RW, .accessfn = access_tvm_trvm,
4206       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4207       .raw_writefn = raw_write,
4208       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4209                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4210 };
4211 
4212 /*
4213  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4214  * qemu tlbs nor adjusting cached masks.
4215  */
4216 static const ARMCPRegInfo ttbcr2_reginfo = {
4217     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4218     .access = PL1_RW, .accessfn = access_tvm_trvm,
4219     .type = ARM_CP_ALIAS,
4220     .bank_fieldoffsets = {
4221         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4222         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4223     },
4224 };
4225 
4226 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4227                                 uint64_t value)
4228 {
4229     env->cp15.c15_ticonfig = value & 0xe7;
4230     /* The OS_TYPE bit in this register changes the reported CPUID! */
4231     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4232         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4233 }
4234 
4235 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4236                                 uint64_t value)
4237 {
4238     env->cp15.c15_threadid = value & 0xffff;
4239 }
4240 
4241 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4242                            uint64_t value)
4243 {
4244     /* Wait-for-interrupt (deprecated) */
4245     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4246 }
4247 
4248 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4249                                   uint64_t value)
4250 {
4251     /*
4252      * On OMAP there are registers indicating the max/min index of dcache lines
4253      * containing a dirty line; cache flush operations have to reset these.
4254      */
4255     env->cp15.c15_i_max = 0x000;
4256     env->cp15.c15_i_min = 0xff0;
4257 }
4258 
4259 static const ARMCPRegInfo omap_cp_reginfo[] = {
4260     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4261       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4262       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4263       .resetvalue = 0, },
4264     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4265       .access = PL1_RW, .type = ARM_CP_NOP },
4266     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4267       .access = PL1_RW,
4268       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4269       .writefn = omap_ticonfig_write },
4270     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4271       .access = PL1_RW,
4272       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4273     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4274       .access = PL1_RW, .resetvalue = 0xff0,
4275       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4276     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4277       .access = PL1_RW,
4278       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4279       .writefn = omap_threadid_write },
4280     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4281       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4282       .type = ARM_CP_NO_RAW,
4283       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4284     /*
4285      * TODO: Peripheral port remap register:
4286      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4287      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4288      * when MMU is off.
4289      */
4290     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4291       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4292       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4293       .writefn = omap_cachemaint_write },
4294     { .name = "C9", .cp = 15, .crn = 9,
4295       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4296       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4297 };
4298 
4299 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4300                               uint64_t value)
4301 {
4302     env->cp15.c15_cpar = value & 0x3fff;
4303 }
4304 
4305 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4306     { .name = "XSCALE_CPAR",
4307       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4308       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4309       .writefn = xscale_cpar_write, },
4310     { .name = "XSCALE_AUXCR",
4311       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4312       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4313       .resetvalue = 0, },
4314     /*
4315      * XScale specific cache-lockdown: since we have no cache we NOP these
4316      * and hope the guest does not really rely on cache behaviour.
4317      */
4318     { .name = "XSCALE_LOCK_ICACHE_LINE",
4319       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4320       .access = PL1_W, .type = ARM_CP_NOP },
4321     { .name = "XSCALE_UNLOCK_ICACHE",
4322       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4323       .access = PL1_W, .type = ARM_CP_NOP },
4324     { .name = "XSCALE_DCACHE_LOCK",
4325       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4326       .access = PL1_RW, .type = ARM_CP_NOP },
4327     { .name = "XSCALE_UNLOCK_DCACHE",
4328       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4329       .access = PL1_W, .type = ARM_CP_NOP },
4330 };
4331 
4332 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4333     /*
4334      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4335      * implementation of this implementation-defined space.
4336      * Ideally this should eventually disappear in favour of actually
4337      * implementing the correct behaviour for all cores.
4338      */
4339     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4340       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4341       .access = PL1_RW,
4342       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4343       .resetvalue = 0 },
4344 };
4345 
4346 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4347     /* Cache status: RAZ because we have no cache so it's always clean */
4348     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4349       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4350       .resetvalue = 0 },
4351 };
4352 
4353 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4354     /* We never have a block transfer operation in progress */
4355     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4356       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4357       .resetvalue = 0 },
4358     /* The cache ops themselves: these all NOP for QEMU */
4359     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4360       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4361     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4362       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4363     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4364       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4365     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4366       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4367     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4368       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4369     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4370       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4371 };
4372 
4373 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4374     /*
4375      * The cache test-and-clean instructions always return (1 << 30)
4376      * to indicate that there are no dirty cache lines.
4377      */
4378     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4379       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4380       .resetvalue = (1 << 30) },
4381     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4382       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4383       .resetvalue = (1 << 30) },
4384 };
4385 
4386 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4387     /* Ignore ReadBuffer accesses */
4388     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4389       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4390       .access = PL1_RW, .resetvalue = 0,
4391       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4392 };
4393 
4394 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4395 {
4396     unsigned int cur_el = arm_current_el(env);
4397 
4398     if (arm_is_el2_enabled(env) && cur_el == 1) {
4399         return env->cp15.vpidr_el2;
4400     }
4401     return raw_read(env, ri);
4402 }
4403 
4404 static uint64_t mpidr_read_val(CPUARMState *env)
4405 {
4406     ARMCPU *cpu = env_archcpu(env);
4407     uint64_t mpidr = cpu->mp_affinity;
4408 
4409     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4410         mpidr |= (1U << 31);
4411         /*
4412          * Cores which are uniprocessor (non-coherent)
4413          * but still implement the MP extensions set
4414          * bit 30. (For instance, Cortex-R5).
4415          */
4416         if (cpu->mp_is_up) {
4417             mpidr |= (1u << 30);
4418         }
4419     }
4420     return mpidr;
4421 }
4422 
4423 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4424 {
4425     unsigned int cur_el = arm_current_el(env);
4426 
4427     if (arm_is_el2_enabled(env) && cur_el == 1) {
4428         return env->cp15.vmpidr_el2;
4429     }
4430     return mpidr_read_val(env);
4431 }
4432 
4433 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4434     /* NOP AMAIR0/1 */
4435     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4436       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4437       .access = PL1_RW, .accessfn = access_tvm_trvm,
4438       .fgt = FGT_AMAIR_EL1,
4439       .type = ARM_CP_CONST, .resetvalue = 0 },
4440     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4441     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4442       .access = PL1_RW, .accessfn = access_tvm_trvm,
4443       .type = ARM_CP_CONST, .resetvalue = 0 },
4444     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4445       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4446       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4447                              offsetof(CPUARMState, cp15.par_ns)} },
4448     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4449       .access = PL1_RW, .accessfn = access_tvm_trvm,
4450       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4451       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4452                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4453       .writefn = vmsa_ttbr_write, },
4454     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4455       .access = PL1_RW, .accessfn = access_tvm_trvm,
4456       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4457       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4458                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4459       .writefn = vmsa_ttbr_write, },
4460 };
4461 
4462 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4463 {
4464     return vfp_get_fpcr(env);
4465 }
4466 
4467 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4468                             uint64_t value)
4469 {
4470     vfp_set_fpcr(env, value);
4471 }
4472 
4473 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4474 {
4475     return vfp_get_fpsr(env);
4476 }
4477 
4478 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4479                             uint64_t value)
4480 {
4481     vfp_set_fpsr(env, value);
4482 }
4483 
4484 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4485                                        bool isread)
4486 {
4487     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4488         return CP_ACCESS_TRAP;
4489     }
4490     return CP_ACCESS_OK;
4491 }
4492 
4493 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4494                             uint64_t value)
4495 {
4496     env->daif = value & PSTATE_DAIF;
4497 }
4498 
4499 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4500 {
4501     return env->pstate & PSTATE_PAN;
4502 }
4503 
4504 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4505                            uint64_t value)
4506 {
4507     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4508 }
4509 
4510 static const ARMCPRegInfo pan_reginfo = {
4511     .name = "PAN", .state = ARM_CP_STATE_AA64,
4512     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4513     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4514     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4515 };
4516 
4517 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4518 {
4519     return env->pstate & PSTATE_UAO;
4520 }
4521 
4522 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4523                            uint64_t value)
4524 {
4525     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4526 }
4527 
4528 static const ARMCPRegInfo uao_reginfo = {
4529     .name = "UAO", .state = ARM_CP_STATE_AA64,
4530     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4531     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4532     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4533 };
4534 
4535 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4536 {
4537     return env->pstate & PSTATE_DIT;
4538 }
4539 
4540 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4541                            uint64_t value)
4542 {
4543     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4544 }
4545 
4546 static const ARMCPRegInfo dit_reginfo = {
4547     .name = "DIT", .state = ARM_CP_STATE_AA64,
4548     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4549     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4550     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4551 };
4552 
4553 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4554 {
4555     return env->pstate & PSTATE_SSBS;
4556 }
4557 
4558 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4559                            uint64_t value)
4560 {
4561     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4562 }
4563 
4564 static const ARMCPRegInfo ssbs_reginfo = {
4565     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4566     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4567     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4568     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4569 };
4570 
4571 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4572                                               const ARMCPRegInfo *ri,
4573                                               bool isread)
4574 {
4575     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4576     switch (arm_current_el(env)) {
4577     case 0:
4578         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4579         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4580             return CP_ACCESS_TRAP;
4581         }
4582         /* fall through */
4583     case 1:
4584         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4585         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4586             return CP_ACCESS_TRAP_EL2;
4587         }
4588         break;
4589     }
4590     return CP_ACCESS_OK;
4591 }
4592 
4593 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4594 {
4595     /* Cache invalidate/clean to Point of Unification... */
4596     switch (arm_current_el(env)) {
4597     case 0:
4598         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4599         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4600             return CP_ACCESS_TRAP;
4601         }
4602         /* fall through */
4603     case 1:
4604         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4605         if (arm_hcr_el2_eff(env) & hcrflags) {
4606             return CP_ACCESS_TRAP_EL2;
4607         }
4608         break;
4609     }
4610     return CP_ACCESS_OK;
4611 }
4612 
4613 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4614                                    bool isread)
4615 {
4616     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4617 }
4618 
4619 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4620                                   bool isread)
4621 {
4622     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4623 }
4624 
4625 /*
4626  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4627  * Page D4-1736 (DDI0487A.b)
4628  */
4629 
4630 static int vae1_tlbmask(CPUARMState *env)
4631 {
4632     uint64_t hcr = arm_hcr_el2_eff(env);
4633     uint16_t mask;
4634 
4635     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4636         mask = ARMMMUIdxBit_E20_2 |
4637                ARMMMUIdxBit_E20_2_PAN |
4638                ARMMMUIdxBit_E20_0;
4639     } else {
4640         mask = ARMMMUIdxBit_E10_1 |
4641                ARMMMUIdxBit_E10_1_PAN |
4642                ARMMMUIdxBit_E10_0;
4643     }
4644     return mask;
4645 }
4646 
4647 /* Return 56 if TBI is enabled, 64 otherwise. */
4648 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4649                               uint64_t addr)
4650 {
4651     uint64_t tcr = regime_tcr(env, mmu_idx);
4652     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4653     int select = extract64(addr, 55, 1);
4654 
4655     return (tbi >> select) & 1 ? 56 : 64;
4656 }
4657 
4658 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4659 {
4660     uint64_t hcr = arm_hcr_el2_eff(env);
4661     ARMMMUIdx mmu_idx;
4662 
4663     /* Only the regime of the mmu_idx below is significant. */
4664     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4665         mmu_idx = ARMMMUIdx_E20_0;
4666     } else {
4667         mmu_idx = ARMMMUIdx_E10_0;
4668     }
4669 
4670     return tlbbits_for_regime(env, mmu_idx, addr);
4671 }
4672 
4673 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4674                                       uint64_t value)
4675 {
4676     CPUState *cs = env_cpu(env);
4677     int mask = vae1_tlbmask(env);
4678 
4679     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4680 }
4681 
4682 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683                                     uint64_t value)
4684 {
4685     CPUState *cs = env_cpu(env);
4686     int mask = vae1_tlbmask(env);
4687 
4688     if (tlb_force_broadcast(env)) {
4689         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4690     } else {
4691         tlb_flush_by_mmuidx(cs, mask);
4692     }
4693 }
4694 
4695 static int e2_tlbmask(CPUARMState *env)
4696 {
4697     return (ARMMMUIdxBit_E20_0 |
4698             ARMMMUIdxBit_E20_2 |
4699             ARMMMUIdxBit_E20_2_PAN |
4700             ARMMMUIdxBit_E2);
4701 }
4702 
4703 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4704                                   uint64_t value)
4705 {
4706     CPUState *cs = env_cpu(env);
4707     int mask = alle1_tlbmask(env);
4708 
4709     tlb_flush_by_mmuidx(cs, mask);
4710 }
4711 
4712 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4713                                   uint64_t value)
4714 {
4715     CPUState *cs = env_cpu(env);
4716     int mask = e2_tlbmask(env);
4717 
4718     tlb_flush_by_mmuidx(cs, mask);
4719 }
4720 
4721 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4722                                   uint64_t value)
4723 {
4724     ARMCPU *cpu = env_archcpu(env);
4725     CPUState *cs = CPU(cpu);
4726 
4727     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4728 }
4729 
4730 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4731                                     uint64_t value)
4732 {
4733     CPUState *cs = env_cpu(env);
4734     int mask = alle1_tlbmask(env);
4735 
4736     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4737 }
4738 
4739 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4740                                     uint64_t value)
4741 {
4742     CPUState *cs = env_cpu(env);
4743     int mask = e2_tlbmask(env);
4744 
4745     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4746 }
4747 
4748 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4749                                     uint64_t value)
4750 {
4751     CPUState *cs = env_cpu(env);
4752 
4753     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4754 }
4755 
4756 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4757                                  uint64_t value)
4758 {
4759     /*
4760      * Invalidate by VA, EL2
4761      * Currently handles both VAE2 and VALE2, since we don't support
4762      * flush-last-level-only.
4763      */
4764     CPUState *cs = env_cpu(env);
4765     int mask = e2_tlbmask(env);
4766     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4767 
4768     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4769 }
4770 
4771 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4772                                  uint64_t value)
4773 {
4774     /*
4775      * Invalidate by VA, EL3
4776      * Currently handles both VAE3 and VALE3, since we don't support
4777      * flush-last-level-only.
4778      */
4779     ARMCPU *cpu = env_archcpu(env);
4780     CPUState *cs = CPU(cpu);
4781     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4782 
4783     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4784 }
4785 
4786 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4787                                    uint64_t value)
4788 {
4789     CPUState *cs = env_cpu(env);
4790     int mask = vae1_tlbmask(env);
4791     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4792     int bits = vae1_tlbbits(env, pageaddr);
4793 
4794     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4795 }
4796 
4797 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4798                                  uint64_t value)
4799 {
4800     /*
4801      * Invalidate by VA, EL1&0 (AArch64 version).
4802      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4803      * since we don't support flush-for-specific-ASID-only or
4804      * flush-last-level-only.
4805      */
4806     CPUState *cs = env_cpu(env);
4807     int mask = vae1_tlbmask(env);
4808     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4809     int bits = vae1_tlbbits(env, pageaddr);
4810 
4811     if (tlb_force_broadcast(env)) {
4812         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4813     } else {
4814         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4815     }
4816 }
4817 
4818 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4819                                    uint64_t value)
4820 {
4821     CPUState *cs = env_cpu(env);
4822     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4823     int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4824 
4825     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4826                                                   ARMMMUIdxBit_E2, bits);
4827 }
4828 
4829 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4830                                    uint64_t value)
4831 {
4832     CPUState *cs = env_cpu(env);
4833     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4834     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4835 
4836     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4837                                                   ARMMMUIdxBit_E3, bits);
4838 }
4839 
4840 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4841 {
4842     /*
4843      * The MSB of value is the NS field, which only applies if SEL2
4844      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4845      */
4846     return (value >= 0
4847             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4848             && arm_is_secure_below_el3(env)
4849             ? ARMMMUIdxBit_Stage2_S
4850             : ARMMMUIdxBit_Stage2);
4851 }
4852 
4853 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4854                                     uint64_t value)
4855 {
4856     CPUState *cs = env_cpu(env);
4857     int mask = ipas2e1_tlbmask(env, value);
4858     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4859 
4860     if (tlb_force_broadcast(env)) {
4861         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4862     } else {
4863         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4864     }
4865 }
4866 
4867 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4868                                       uint64_t value)
4869 {
4870     CPUState *cs = env_cpu(env);
4871     int mask = ipas2e1_tlbmask(env, value);
4872     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4873 
4874     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4875 }
4876 
4877 #ifdef TARGET_AARCH64
4878 typedef struct {
4879     uint64_t base;
4880     uint64_t length;
4881 } TLBIRange;
4882 
4883 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4884 {
4885     /*
4886      * Note that the TLBI range TG field encoding differs from both
4887      * TG0 and TG1 encodings.
4888      */
4889     switch (tg) {
4890     case 1:
4891         return Gran4K;
4892     case 2:
4893         return Gran16K;
4894     case 3:
4895         return Gran64K;
4896     default:
4897         return GranInvalid;
4898     }
4899 }
4900 
4901 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4902                                      uint64_t value)
4903 {
4904     unsigned int page_size_granule, page_shift, num, scale, exponent;
4905     /* Extract one bit to represent the va selector in use. */
4906     uint64_t select = sextract64(value, 36, 1);
4907     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4908     TLBIRange ret = { };
4909     ARMGranuleSize gran;
4910 
4911     page_size_granule = extract64(value, 46, 2);
4912     gran = tlbi_range_tg_to_gran_size(page_size_granule);
4913 
4914     /* The granule encoded in value must match the granule in use. */
4915     if (gran != param.gran) {
4916         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4917                       page_size_granule);
4918         return ret;
4919     }
4920 
4921     page_shift = arm_granule_bits(gran);
4922     num = extract64(value, 39, 5);
4923     scale = extract64(value, 44, 2);
4924     exponent = (5 * scale) + 1;
4925 
4926     ret.length = (num + 1) << (exponent + page_shift);
4927 
4928     if (param.select) {
4929         ret.base = sextract64(value, 0, 37);
4930     } else {
4931         ret.base = extract64(value, 0, 37);
4932     }
4933     if (param.ds) {
4934         /*
4935          * With DS=1, BaseADDR is always shifted 16 so that it is able
4936          * to address all 52 va bits.  The input address is perforce
4937          * aligned on a 64k boundary regardless of translation granule.
4938          */
4939         page_shift = 16;
4940     }
4941     ret.base <<= page_shift;
4942 
4943     return ret;
4944 }
4945 
4946 static void do_rvae_write(CPUARMState *env, uint64_t value,
4947                           int idxmap, bool synced)
4948 {
4949     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4950     TLBIRange range;
4951     int bits;
4952 
4953     range = tlbi_aa64_get_range(env, one_idx, value);
4954     bits = tlbbits_for_regime(env, one_idx, range.base);
4955 
4956     if (synced) {
4957         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4958                                                   range.base,
4959                                                   range.length,
4960                                                   idxmap,
4961                                                   bits);
4962     } else {
4963         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4964                                   range.length, idxmap, bits);
4965     }
4966 }
4967 
4968 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4969                                   const ARMCPRegInfo *ri,
4970                                   uint64_t value)
4971 {
4972     /*
4973      * Invalidate by VA range, EL1&0.
4974      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4975      * since we don't support flush-for-specific-ASID-only or
4976      * flush-last-level-only.
4977      */
4978 
4979     do_rvae_write(env, value, vae1_tlbmask(env),
4980                   tlb_force_broadcast(env));
4981 }
4982 
4983 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4984                                     const ARMCPRegInfo *ri,
4985                                     uint64_t value)
4986 {
4987     /*
4988      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4989      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4990      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4991      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4992      * shareable specific flushes.
4993      */
4994 
4995     do_rvae_write(env, value, vae1_tlbmask(env), true);
4996 }
4997 
4998 static int vae2_tlbmask(CPUARMState *env)
4999 {
5000     return ARMMMUIdxBit_E2;
5001 }
5002 
5003 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5004                                   const ARMCPRegInfo *ri,
5005                                   uint64_t value)
5006 {
5007     /*
5008      * Invalidate by VA range, EL2.
5009      * Currently handles all of RVAE2 and RVALE2,
5010      * since we don't support flush-for-specific-ASID-only or
5011      * flush-last-level-only.
5012      */
5013 
5014     do_rvae_write(env, value, vae2_tlbmask(env),
5015                   tlb_force_broadcast(env));
5016 
5017 
5018 }
5019 
5020 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5021                                     const ARMCPRegInfo *ri,
5022                                     uint64_t value)
5023 {
5024     /*
5025      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5026      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5027      * since we don't support flush-for-specific-ASID-only,
5028      * flush-last-level-only or inner/outer shareable specific flushes.
5029      */
5030 
5031     do_rvae_write(env, value, vae2_tlbmask(env), true);
5032 
5033 }
5034 
5035 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5036                                   const ARMCPRegInfo *ri,
5037                                   uint64_t value)
5038 {
5039     /*
5040      * Invalidate by VA range, EL3.
5041      * Currently handles all of RVAE3 and RVALE3,
5042      * since we don't support flush-for-specific-ASID-only or
5043      * flush-last-level-only.
5044      */
5045 
5046     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5047 }
5048 
5049 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5050                                     const ARMCPRegInfo *ri,
5051                                     uint64_t value)
5052 {
5053     /*
5054      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5055      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5056      * since we don't support flush-for-specific-ASID-only,
5057      * flush-last-level-only or inner/outer specific flushes.
5058      */
5059 
5060     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5061 }
5062 
5063 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5064                                      uint64_t value)
5065 {
5066     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5067                   tlb_force_broadcast(env));
5068 }
5069 
5070 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5071                                        const ARMCPRegInfo *ri,
5072                                        uint64_t value)
5073 {
5074     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5075 }
5076 #endif
5077 
5078 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5079                                       bool isread)
5080 {
5081     int cur_el = arm_current_el(env);
5082 
5083     if (cur_el < 2) {
5084         uint64_t hcr = arm_hcr_el2_eff(env);
5085 
5086         if (cur_el == 0) {
5087             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5088                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5089                     return CP_ACCESS_TRAP_EL2;
5090                 }
5091             } else {
5092                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5093                     return CP_ACCESS_TRAP;
5094                 }
5095                 if (hcr & HCR_TDZ) {
5096                     return CP_ACCESS_TRAP_EL2;
5097                 }
5098             }
5099         } else if (hcr & HCR_TDZ) {
5100             return CP_ACCESS_TRAP_EL2;
5101         }
5102     }
5103     return CP_ACCESS_OK;
5104 }
5105 
5106 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5107 {
5108     ARMCPU *cpu = env_archcpu(env);
5109     int dzp_bit = 1 << 4;
5110 
5111     /* DZP indicates whether DC ZVA access is allowed */
5112     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5113         dzp_bit = 0;
5114     }
5115     return cpu->dcz_blocksize | dzp_bit;
5116 }
5117 
5118 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5119                                     bool isread)
5120 {
5121     if (!(env->pstate & PSTATE_SP)) {
5122         /*
5123          * Access to SP_EL0 is undefined if it's being used as
5124          * the stack pointer.
5125          */
5126         return CP_ACCESS_TRAP_UNCATEGORIZED;
5127     }
5128     return CP_ACCESS_OK;
5129 }
5130 
5131 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5132 {
5133     return env->pstate & PSTATE_SP;
5134 }
5135 
5136 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5137 {
5138     update_spsel(env, val);
5139 }
5140 
5141 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5142                         uint64_t value)
5143 {
5144     ARMCPU *cpu = env_archcpu(env);
5145 
5146     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5147         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5148         value &= ~SCTLR_M;
5149     }
5150 
5151     /* ??? Lots of these bits are not implemented.  */
5152 
5153     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5154         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5155             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5156         } else {
5157             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5158                        SCTLR_ATA0 | SCTLR_ATA);
5159         }
5160     }
5161 
5162     if (raw_read(env, ri) == value) {
5163         /*
5164          * Skip the TLB flush if nothing actually changed; Linux likes
5165          * to do a lot of pointless SCTLR writes.
5166          */
5167         return;
5168     }
5169 
5170     raw_write(env, ri, value);
5171 
5172     /* This may enable/disable the MMU, so do a TLB flush.  */
5173     tlb_flush(CPU(cpu));
5174 
5175     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5176         /*
5177          * Normally we would always end the TB on an SCTLR write; see the
5178          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5179          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5180          * of hflags from the translator, so do it here.
5181          */
5182         arm_rebuild_hflags(env);
5183     }
5184 }
5185 
5186 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5187                            uint64_t value)
5188 {
5189     /*
5190      * Some MDCR_EL3 bits affect whether PMU counters are running:
5191      * if we are trying to change any of those then we must
5192      * bracket this update with PMU start/finish calls.
5193      */
5194     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5195 
5196     if (pmu_op) {
5197         pmu_op_start(env);
5198     }
5199     env->cp15.mdcr_el3 = value;
5200     if (pmu_op) {
5201         pmu_op_finish(env);
5202     }
5203 }
5204 
5205 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5206                        uint64_t value)
5207 {
5208     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5209     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5210 }
5211 
5212 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5213                            uint64_t value)
5214 {
5215     /*
5216      * Some MDCR_EL2 bits affect whether PMU counters are running:
5217      * if we are trying to change any of those then we must
5218      * bracket this update with PMU start/finish calls.
5219      */
5220     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5221 
5222     if (pmu_op) {
5223         pmu_op_start(env);
5224     }
5225     env->cp15.mdcr_el2 = value;
5226     if (pmu_op) {
5227         pmu_op_finish(env);
5228     }
5229 }
5230 
5231 static const ARMCPRegInfo v8_cp_reginfo[] = {
5232     /*
5233      * Minimal set of EL0-visible registers. This will need to be expanded
5234      * significantly for system emulation of AArch64 CPUs.
5235      */
5236     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5237       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5238       .access = PL0_RW, .type = ARM_CP_NZCV },
5239     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5240       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5241       .type = ARM_CP_NO_RAW,
5242       .access = PL0_RW, .accessfn = aa64_daif_access,
5243       .fieldoffset = offsetof(CPUARMState, daif),
5244       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5245     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5246       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5247       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5248       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5249     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5250       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5251       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5252       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5253     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5254       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5255       .access = PL0_R, .type = ARM_CP_NO_RAW,
5256       .fgt = FGT_DCZID_EL0,
5257       .readfn = aa64_dczid_read },
5258     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5259       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5260       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5261 #ifndef CONFIG_USER_ONLY
5262       /* Avoid overhead of an access check that always passes in user-mode */
5263       .accessfn = aa64_zva_access,
5264       .fgt = FGT_DCZVA,
5265 #endif
5266     },
5267     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5268       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5269       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5270     /* Cache ops: all NOPs since we don't emulate caches */
5271     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5272       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5273       .access = PL1_W, .type = ARM_CP_NOP,
5274       .fgt = FGT_ICIALLUIS,
5275       .accessfn = access_ticab },
5276     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5277       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5278       .access = PL1_W, .type = ARM_CP_NOP,
5279       .fgt = FGT_ICIALLU,
5280       .accessfn = access_tocu },
5281     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5282       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5283       .access = PL0_W, .type = ARM_CP_NOP,
5284       .fgt = FGT_ICIVAU,
5285       .accessfn = access_tocu },
5286     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5287       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5288       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5289       .fgt = FGT_DCIVAC,
5290       .type = ARM_CP_NOP },
5291     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5292       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5293       .fgt = FGT_DCISW,
5294       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5295     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5296       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5297       .access = PL0_W, .type = ARM_CP_NOP,
5298       .fgt = FGT_DCCVAC,
5299       .accessfn = aa64_cacheop_poc_access },
5300     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5301       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5302       .fgt = FGT_DCCSW,
5303       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5304     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5305       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5306       .access = PL0_W, .type = ARM_CP_NOP,
5307       .fgt = FGT_DCCVAU,
5308       .accessfn = access_tocu },
5309     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5310       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5311       .access = PL0_W, .type = ARM_CP_NOP,
5312       .fgt = FGT_DCCIVAC,
5313       .accessfn = aa64_cacheop_poc_access },
5314     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5315       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5316       .fgt = FGT_DCCISW,
5317       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5318     /* TLBI operations */
5319     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5320       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5321       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5322       .fgt = FGT_TLBIVMALLE1IS,
5323       .writefn = tlbi_aa64_vmalle1is_write },
5324     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5325       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5326       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5327       .fgt = FGT_TLBIVAE1IS,
5328       .writefn = tlbi_aa64_vae1is_write },
5329     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5330       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5331       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5332       .fgt = FGT_TLBIASIDE1IS,
5333       .writefn = tlbi_aa64_vmalle1is_write },
5334     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5335       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5336       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5337       .fgt = FGT_TLBIVAAE1IS,
5338       .writefn = tlbi_aa64_vae1is_write },
5339     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5340       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5341       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5342       .fgt = FGT_TLBIVALE1IS,
5343       .writefn = tlbi_aa64_vae1is_write },
5344     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5345       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5346       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5347       .fgt = FGT_TLBIVAALE1IS,
5348       .writefn = tlbi_aa64_vae1is_write },
5349     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5350       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5351       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5352       .fgt = FGT_TLBIVMALLE1,
5353       .writefn = tlbi_aa64_vmalle1_write },
5354     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5355       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5356       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5357       .fgt = FGT_TLBIVAE1,
5358       .writefn = tlbi_aa64_vae1_write },
5359     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5360       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5361       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5362       .fgt = FGT_TLBIASIDE1,
5363       .writefn = tlbi_aa64_vmalle1_write },
5364     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5365       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5366       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5367       .fgt = FGT_TLBIVAAE1,
5368       .writefn = tlbi_aa64_vae1_write },
5369     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5370       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5371       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5372       .fgt = FGT_TLBIVALE1,
5373       .writefn = tlbi_aa64_vae1_write },
5374     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5375       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5376       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5377       .fgt = FGT_TLBIVAALE1,
5378       .writefn = tlbi_aa64_vae1_write },
5379     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5380       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5381       .access = PL2_W, .type = ARM_CP_NO_RAW,
5382       .writefn = tlbi_aa64_ipas2e1is_write },
5383     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5384       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5385       .access = PL2_W, .type = ARM_CP_NO_RAW,
5386       .writefn = tlbi_aa64_ipas2e1is_write },
5387     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5388       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5389       .access = PL2_W, .type = ARM_CP_NO_RAW,
5390       .writefn = tlbi_aa64_alle1is_write },
5391     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5392       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5393       .access = PL2_W, .type = ARM_CP_NO_RAW,
5394       .writefn = tlbi_aa64_alle1is_write },
5395     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5396       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5397       .access = PL2_W, .type = ARM_CP_NO_RAW,
5398       .writefn = tlbi_aa64_ipas2e1_write },
5399     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5400       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5401       .access = PL2_W, .type = ARM_CP_NO_RAW,
5402       .writefn = tlbi_aa64_ipas2e1_write },
5403     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5404       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5405       .access = PL2_W, .type = ARM_CP_NO_RAW,
5406       .writefn = tlbi_aa64_alle1_write },
5407     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5408       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5409       .access = PL2_W, .type = ARM_CP_NO_RAW,
5410       .writefn = tlbi_aa64_alle1is_write },
5411 #ifndef CONFIG_USER_ONLY
5412     /* 64 bit address translation operations */
5413     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5414       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5415       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5416       .fgt = FGT_ATS1E1R,
5417       .writefn = ats_write64 },
5418     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5419       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5420       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5421       .fgt = FGT_ATS1E1W,
5422       .writefn = ats_write64 },
5423     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5424       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5425       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5426       .fgt = FGT_ATS1E0R,
5427       .writefn = ats_write64 },
5428     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5429       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5430       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5431       .fgt = FGT_ATS1E0W,
5432       .writefn = ats_write64 },
5433     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5434       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5435       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5436       .writefn = ats_write64 },
5437     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5438       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5439       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5440       .writefn = ats_write64 },
5441     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5442       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5443       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5444       .writefn = ats_write64 },
5445     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5446       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5447       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5448       .writefn = ats_write64 },
5449     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5450     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5451       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5452       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5453       .writefn = ats_write64 },
5454     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5455       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5456       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5457       .writefn = ats_write64 },
5458     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5459       .type = ARM_CP_ALIAS,
5460       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5461       .access = PL1_RW, .resetvalue = 0,
5462       .fgt = FGT_PAR_EL1,
5463       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5464       .writefn = par_write },
5465 #endif
5466     /* TLB invalidate last level of translation table walk */
5467     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5468       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5469       .writefn = tlbimva_is_write },
5470     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5471       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5472       .writefn = tlbimvaa_is_write },
5473     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5474       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5475       .writefn = tlbimva_write },
5476     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5477       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5478       .writefn = tlbimvaa_write },
5479     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5480       .type = ARM_CP_NO_RAW, .access = PL2_W,
5481       .writefn = tlbimva_hyp_write },
5482     { .name = "TLBIMVALHIS",
5483       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5484       .type = ARM_CP_NO_RAW, .access = PL2_W,
5485       .writefn = tlbimva_hyp_is_write },
5486     { .name = "TLBIIPAS2",
5487       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5488       .type = ARM_CP_NO_RAW, .access = PL2_W,
5489       .writefn = tlbiipas2_hyp_write },
5490     { .name = "TLBIIPAS2IS",
5491       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5492       .type = ARM_CP_NO_RAW, .access = PL2_W,
5493       .writefn = tlbiipas2is_hyp_write },
5494     { .name = "TLBIIPAS2L",
5495       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5496       .type = ARM_CP_NO_RAW, .access = PL2_W,
5497       .writefn = tlbiipas2_hyp_write },
5498     { .name = "TLBIIPAS2LIS",
5499       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5500       .type = ARM_CP_NO_RAW, .access = PL2_W,
5501       .writefn = tlbiipas2is_hyp_write },
5502     /* 32 bit cache operations */
5503     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5504       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5505     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5506       .type = ARM_CP_NOP, .access = PL1_W },
5507     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5508       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5509     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5510       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5511     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5512       .type = ARM_CP_NOP, .access = PL1_W },
5513     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5514       .type = ARM_CP_NOP, .access = PL1_W },
5515     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5516       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5517     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5518       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5519     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5520       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5521     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5522       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5523     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5524       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5525     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5526       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5527     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5528       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5529     /* MMU Domain access control / MPU write buffer control */
5530     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5531       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5532       .writefn = dacr_write, .raw_writefn = raw_write,
5533       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5534                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5535     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5536       .type = ARM_CP_ALIAS,
5537       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5538       .access = PL1_RW,
5539       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5540     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5541       .type = ARM_CP_ALIAS,
5542       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5543       .access = PL1_RW,
5544       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5545     /*
5546      * We rely on the access checks not allowing the guest to write to the
5547      * state field when SPSel indicates that it's being used as the stack
5548      * pointer.
5549      */
5550     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5551       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5552       .access = PL1_RW, .accessfn = sp_el0_access,
5553       .type = ARM_CP_ALIAS,
5554       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5555     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5556       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5557       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5558       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5559     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5560       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5561       .type = ARM_CP_NO_RAW,
5562       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5563     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5564       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5565       .access = PL2_RW,
5566       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5567       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5568     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5569       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5570       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5571       .writefn = dacr_write, .raw_writefn = raw_write,
5572       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5573     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5574       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5575       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5576       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5577     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5578       .type = ARM_CP_ALIAS,
5579       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5580       .access = PL2_RW,
5581       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5582     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5583       .type = ARM_CP_ALIAS,
5584       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5585       .access = PL2_RW,
5586       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5587     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5588       .type = ARM_CP_ALIAS,
5589       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5590       .access = PL2_RW,
5591       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5592     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5593       .type = ARM_CP_ALIAS,
5594       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5595       .access = PL2_RW,
5596       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5597     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5598       .type = ARM_CP_IO,
5599       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5600       .resetvalue = 0,
5601       .access = PL3_RW,
5602       .writefn = mdcr_el3_write,
5603       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5604     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5605       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5606       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5607       .writefn = sdcr_write,
5608       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5609 };
5610 
5611 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5612 {
5613     ARMCPU *cpu = env_archcpu(env);
5614 
5615     if (arm_feature(env, ARM_FEATURE_V8)) {
5616         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5617     } else {
5618         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5619     }
5620 
5621     if (arm_feature(env, ARM_FEATURE_EL3)) {
5622         valid_mask &= ~HCR_HCD;
5623     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5624         /*
5625          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5626          * However, if we're using the SMC PSCI conduit then QEMU is
5627          * effectively acting like EL3 firmware and so the guest at
5628          * EL2 should retain the ability to prevent EL1 from being
5629          * able to make SMC calls into the ersatz firmware, so in
5630          * that case HCR.TSC should be read/write.
5631          */
5632         valid_mask &= ~HCR_TSC;
5633     }
5634 
5635     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5636         if (cpu_isar_feature(aa64_vh, cpu)) {
5637             valid_mask |= HCR_E2H;
5638         }
5639         if (cpu_isar_feature(aa64_ras, cpu)) {
5640             valid_mask |= HCR_TERR | HCR_TEA;
5641         }
5642         if (cpu_isar_feature(aa64_lor, cpu)) {
5643             valid_mask |= HCR_TLOR;
5644         }
5645         if (cpu_isar_feature(aa64_pauth, cpu)) {
5646             valid_mask |= HCR_API | HCR_APK;
5647         }
5648         if (cpu_isar_feature(aa64_mte, cpu)) {
5649             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5650         }
5651         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5652             valid_mask |= HCR_ENSCXT;
5653         }
5654         if (cpu_isar_feature(aa64_fwb, cpu)) {
5655             valid_mask |= HCR_FWB;
5656         }
5657     }
5658 
5659     if (cpu_isar_feature(any_evt, cpu)) {
5660         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5661     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5662         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5663     }
5664 
5665     /* Clear RES0 bits.  */
5666     value &= valid_mask;
5667 
5668     /*
5669      * These bits change the MMU setup:
5670      * HCR_VM enables stage 2 translation
5671      * HCR_PTW forbids certain page-table setups
5672      * HCR_DC disables stage1 and enables stage2 translation
5673      * HCR_DCT enables tagging on (disabled) stage1 translation
5674      * HCR_FWB changes the interpretation of stage2 descriptor bits
5675      */
5676     if ((env->cp15.hcr_el2 ^ value) &
5677         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5678         tlb_flush(CPU(cpu));
5679     }
5680     env->cp15.hcr_el2 = value;
5681 
5682     /*
5683      * Updates to VI and VF require us to update the status of
5684      * virtual interrupts, which are the logical OR of these bits
5685      * and the state of the input lines from the GIC. (This requires
5686      * that we have the iothread lock, which is done by marking the
5687      * reginfo structs as ARM_CP_IO.)
5688      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5689      * possible for it to be taken immediately, because VIRQ and
5690      * VFIQ are masked unless running at EL0 or EL1, and HCR
5691      * can only be written at EL2.
5692      */
5693     g_assert(qemu_mutex_iothread_locked());
5694     arm_cpu_update_virq(cpu);
5695     arm_cpu_update_vfiq(cpu);
5696     arm_cpu_update_vserr(cpu);
5697 }
5698 
5699 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5700 {
5701     do_hcr_write(env, value, 0);
5702 }
5703 
5704 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5705                           uint64_t value)
5706 {
5707     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5708     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5709     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5710 }
5711 
5712 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5713                          uint64_t value)
5714 {
5715     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5716     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5717     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5718 }
5719 
5720 /*
5721  * Return the effective value of HCR_EL2, at the given security state.
5722  * Bits that are not included here:
5723  * RW       (read from SCR_EL3.RW as needed)
5724  */
5725 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
5726 {
5727     uint64_t ret = env->cp15.hcr_el2;
5728 
5729     if (!arm_is_el2_enabled_secstate(env, secure)) {
5730         /*
5731          * "This register has no effect if EL2 is not enabled in the
5732          * current Security state".  This is ARMv8.4-SecEL2 speak for
5733          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5734          *
5735          * Prior to that, the language was "In an implementation that
5736          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5737          * as if this field is 0 for all purposes other than a direct
5738          * read or write access of HCR_EL2".  With lots of enumeration
5739          * on a per-field basis.  In current QEMU, this is condition
5740          * is arm_is_secure_below_el3.
5741          *
5742          * Since the v8.4 language applies to the entire register, and
5743          * appears to be backward compatible, use that.
5744          */
5745         return 0;
5746     }
5747 
5748     /*
5749      * For a cpu that supports both aarch64 and aarch32, we can set bits
5750      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5751      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5752      */
5753     if (!arm_el_is_aa64(env, 2)) {
5754         uint64_t aa32_valid;
5755 
5756         /*
5757          * These bits are up-to-date as of ARMv8.6.
5758          * For HCR, it's easiest to list just the 2 bits that are invalid.
5759          * For HCR2, list those that are valid.
5760          */
5761         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5762         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5763                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5764         ret &= aa32_valid;
5765     }
5766 
5767     if (ret & HCR_TGE) {
5768         /* These bits are up-to-date as of ARMv8.6.  */
5769         if (ret & HCR_E2H) {
5770             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5771                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5772                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5773                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5774                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5775                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5776         } else {
5777             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5778         }
5779         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5780                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5781                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5782                  HCR_TLOR);
5783     }
5784 
5785     return ret;
5786 }
5787 
5788 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5789 {
5790     return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5791 }
5792 
5793 /*
5794  * Corresponds to ARM pseudocode function ELIsInHost().
5795  */
5796 bool el_is_in_host(CPUARMState *env, int el)
5797 {
5798     uint64_t mask;
5799 
5800     /*
5801      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5802      * Perform the simplest bit tests first, and validate EL2 afterward.
5803      */
5804     if (el & 1) {
5805         return false; /* EL1 or EL3 */
5806     }
5807 
5808     /*
5809      * Note that hcr_write() checks isar_feature_aa64_vh(),
5810      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5811      */
5812     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5813     if ((env->cp15.hcr_el2 & mask) != mask) {
5814         return false;
5815     }
5816 
5817     /* TGE and/or E2H set: double check those bits are currently legal. */
5818     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5819 }
5820 
5821 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5822                        uint64_t value)
5823 {
5824     uint64_t valid_mask = 0;
5825 
5826     /* No features adding bits to HCRX are implemented. */
5827 
5828     /* Clear RES0 bits.  */
5829     env->cp15.hcrx_el2 = value & valid_mask;
5830 }
5831 
5832 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5833                                   bool isread)
5834 {
5835     if (arm_current_el(env) < 3
5836         && arm_feature(env, ARM_FEATURE_EL3)
5837         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5838         return CP_ACCESS_TRAP_EL3;
5839     }
5840     return CP_ACCESS_OK;
5841 }
5842 
5843 static const ARMCPRegInfo hcrx_el2_reginfo = {
5844     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5845     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5846     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5847     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5848 };
5849 
5850 /* Return the effective value of HCRX_EL2.  */
5851 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5852 {
5853     /*
5854      * The bits in this register behave as 0 for all purposes other than
5855      * direct reads of the register if:
5856      *   - EL2 is not enabled in the current security state,
5857      *   - SCR_EL3.HXEn is 0.
5858      */
5859     if (!arm_is_el2_enabled(env)
5860         || (arm_feature(env, ARM_FEATURE_EL3)
5861             && !(env->cp15.scr_el3 & SCR_HXEN))) {
5862         return 0;
5863     }
5864     return env->cp15.hcrx_el2;
5865 }
5866 
5867 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5868                            uint64_t value)
5869 {
5870     /*
5871      * For A-profile AArch32 EL3, if NSACR.CP10
5872      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5873      */
5874     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5875         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5876         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5877         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5878     }
5879     env->cp15.cptr_el[2] = value;
5880 }
5881 
5882 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5883 {
5884     /*
5885      * For A-profile AArch32 EL3, if NSACR.CP10
5886      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5887      */
5888     uint64_t value = env->cp15.cptr_el[2];
5889 
5890     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5891         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5892         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5893     }
5894     return value;
5895 }
5896 
5897 static const ARMCPRegInfo el2_cp_reginfo[] = {
5898     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5899       .type = ARM_CP_IO,
5900       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5901       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5902       .writefn = hcr_write },
5903     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5904       .type = ARM_CP_ALIAS | ARM_CP_IO,
5905       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5906       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5907       .writefn = hcr_writelow },
5908     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5909       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5910       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5911     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5912       .type = ARM_CP_ALIAS,
5913       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5914       .access = PL2_RW,
5915       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5916     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5917       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5918       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5919     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5920       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5921       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5922     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5923       .type = ARM_CP_ALIAS,
5924       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5925       .access = PL2_RW,
5926       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5927     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5928       .type = ARM_CP_ALIAS,
5929       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5930       .access = PL2_RW,
5931       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5932     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5933       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5934       .access = PL2_RW, .writefn = vbar_write,
5935       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5936       .resetvalue = 0 },
5937     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5938       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5939       .access = PL3_RW, .type = ARM_CP_ALIAS,
5940       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5941     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5942       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5943       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5944       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5945       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5946     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5947       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5948       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5949       .resetvalue = 0 },
5950     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5951       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5952       .access = PL2_RW, .type = ARM_CP_ALIAS,
5953       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5954     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5955       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5956       .access = PL2_RW, .type = ARM_CP_CONST,
5957       .resetvalue = 0 },
5958     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5959     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5960       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5961       .access = PL2_RW, .type = ARM_CP_CONST,
5962       .resetvalue = 0 },
5963     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5964       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5965       .access = PL2_RW, .type = ARM_CP_CONST,
5966       .resetvalue = 0 },
5967     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5968       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5969       .access = PL2_RW, .type = ARM_CP_CONST,
5970       .resetvalue = 0 },
5971     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5972       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5973       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5974       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5975     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5976       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5977       .type = ARM_CP_ALIAS,
5978       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5979       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5980     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5981       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5982       .access = PL2_RW,
5983       /* no .writefn needed as this can't cause an ASID change */
5984       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5985     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5986       .cp = 15, .opc1 = 6, .crm = 2,
5987       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5988       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5989       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5990       .writefn = vttbr_write },
5991     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5992       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5993       .access = PL2_RW, .writefn = vttbr_write,
5994       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5995     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5996       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5997       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5998       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5999     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6000       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6001       .access = PL2_RW, .resetvalue = 0,
6002       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6003     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6004       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6005       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
6006       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6007     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6008       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6009       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6010     { .name = "TLBIALLNSNH",
6011       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6012       .type = ARM_CP_NO_RAW, .access = PL2_W,
6013       .writefn = tlbiall_nsnh_write },
6014     { .name = "TLBIALLNSNHIS",
6015       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6016       .type = ARM_CP_NO_RAW, .access = PL2_W,
6017       .writefn = tlbiall_nsnh_is_write },
6018     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6019       .type = ARM_CP_NO_RAW, .access = PL2_W,
6020       .writefn = tlbiall_hyp_write },
6021     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6022       .type = ARM_CP_NO_RAW, .access = PL2_W,
6023       .writefn = tlbiall_hyp_is_write },
6024     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6025       .type = ARM_CP_NO_RAW, .access = PL2_W,
6026       .writefn = tlbimva_hyp_write },
6027     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6028       .type = ARM_CP_NO_RAW, .access = PL2_W,
6029       .writefn = tlbimva_hyp_is_write },
6030     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6031       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6032       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6033       .writefn = tlbi_aa64_alle2_write },
6034     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6035       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6036       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6037       .writefn = tlbi_aa64_vae2_write },
6038     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6039       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6040       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6041       .writefn = tlbi_aa64_vae2_write },
6042     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6043       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6044       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6045       .writefn = tlbi_aa64_alle2is_write },
6046     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6047       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6048       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6049       .writefn = tlbi_aa64_vae2is_write },
6050     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6051       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6052       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6053       .writefn = tlbi_aa64_vae2is_write },
6054 #ifndef CONFIG_USER_ONLY
6055     /*
6056      * Unlike the other EL2-related AT operations, these must
6057      * UNDEF from EL3 if EL2 is not implemented, which is why we
6058      * define them here rather than with the rest of the AT ops.
6059      */
6060     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6061       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6062       .access = PL2_W, .accessfn = at_s1e2_access,
6063       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6064       .writefn = ats_write64 },
6065     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6066       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6067       .access = PL2_W, .accessfn = at_s1e2_access,
6068       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6069       .writefn = ats_write64 },
6070     /*
6071      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6072      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6073      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6074      * to behave as if SCR.NS was 1.
6075      */
6076     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6077       .access = PL2_W,
6078       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6079     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6080       .access = PL2_W,
6081       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6082     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6083       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6084       /*
6085        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6086        * reset values as IMPDEF. We choose to reset to 3 to comply with
6087        * both ARMv7 and ARMv8.
6088        */
6089       .access = PL2_RW, .resetvalue = 3,
6090       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6091     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6092       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6093       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6094       .writefn = gt_cntvoff_write,
6095       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6096     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6097       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6098       .writefn = gt_cntvoff_write,
6099       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6100     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6101       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6102       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6103       .type = ARM_CP_IO, .access = PL2_RW,
6104       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6105     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6106       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6107       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6108       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6109     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6110       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6111       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6112       .resetfn = gt_hyp_timer_reset,
6113       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6114     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6115       .type = ARM_CP_IO,
6116       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6117       .access = PL2_RW,
6118       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6119       .resetvalue = 0,
6120       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6121 #endif
6122     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6123       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6124       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6125       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6126     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6127       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6128       .access = PL2_RW,
6129       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6130     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6131       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6132       .access = PL2_RW,
6133       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6134 };
6135 
6136 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6137     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6138       .type = ARM_CP_ALIAS | ARM_CP_IO,
6139       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6140       .access = PL2_RW,
6141       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6142       .writefn = hcr_writehigh },
6143 };
6144 
6145 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6146                                   bool isread)
6147 {
6148     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6149         return CP_ACCESS_OK;
6150     }
6151     return CP_ACCESS_TRAP_UNCATEGORIZED;
6152 }
6153 
6154 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6155     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6156       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6157       .access = PL2_RW, .accessfn = sel2_access,
6158       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6159     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6160       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6161       .access = PL2_RW, .accessfn = sel2_access,
6162       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6163 };
6164 
6165 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6166                                    bool isread)
6167 {
6168     /*
6169      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6170      * At Secure EL1 it traps to EL3 or EL2.
6171      */
6172     if (arm_current_el(env) == 3) {
6173         return CP_ACCESS_OK;
6174     }
6175     if (arm_is_secure_below_el3(env)) {
6176         if (env->cp15.scr_el3 & SCR_EEL2) {
6177             return CP_ACCESS_TRAP_EL2;
6178         }
6179         return CP_ACCESS_TRAP_EL3;
6180     }
6181     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6182     if (isread) {
6183         return CP_ACCESS_OK;
6184     }
6185     return CP_ACCESS_TRAP_UNCATEGORIZED;
6186 }
6187 
6188 static const ARMCPRegInfo el3_cp_reginfo[] = {
6189     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6190       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6191       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6192       .resetfn = scr_reset, .writefn = scr_write },
6193     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6194       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6195       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6196       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6197       .writefn = scr_write },
6198     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6199       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6200       .access = PL3_RW, .resetvalue = 0,
6201       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6202     { .name = "SDER",
6203       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6204       .access = PL3_RW, .resetvalue = 0,
6205       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6206     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6207       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6208       .writefn = vbar_write, .resetvalue = 0,
6209       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6210     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6211       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6212       .access = PL3_RW, .resetvalue = 0,
6213       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6214     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6215       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6216       .access = PL3_RW,
6217       /* no .writefn needed as this can't cause an ASID change */
6218       .resetvalue = 0,
6219       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6220     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6221       .type = ARM_CP_ALIAS,
6222       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6223       .access = PL3_RW,
6224       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6225     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6226       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6227       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6228     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6229       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6230       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6231     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6232       .type = ARM_CP_ALIAS,
6233       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6234       .access = PL3_RW,
6235       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6236     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6237       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6238       .access = PL3_RW, .writefn = vbar_write,
6239       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6240       .resetvalue = 0 },
6241     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6242       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6243       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6244       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6245     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6246       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6247       .access = PL3_RW, .resetvalue = 0,
6248       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6249     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6250       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6251       .access = PL3_RW, .type = ARM_CP_CONST,
6252       .resetvalue = 0 },
6253     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6254       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6255       .access = PL3_RW, .type = ARM_CP_CONST,
6256       .resetvalue = 0 },
6257     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6258       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6259       .access = PL3_RW, .type = ARM_CP_CONST,
6260       .resetvalue = 0 },
6261     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6262       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6263       .access = PL3_W, .type = ARM_CP_NO_RAW,
6264       .writefn = tlbi_aa64_alle3is_write },
6265     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6266       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6267       .access = PL3_W, .type = ARM_CP_NO_RAW,
6268       .writefn = tlbi_aa64_vae3is_write },
6269     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6270       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6271       .access = PL3_W, .type = ARM_CP_NO_RAW,
6272       .writefn = tlbi_aa64_vae3is_write },
6273     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6274       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6275       .access = PL3_W, .type = ARM_CP_NO_RAW,
6276       .writefn = tlbi_aa64_alle3_write },
6277     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6278       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6279       .access = PL3_W, .type = ARM_CP_NO_RAW,
6280       .writefn = tlbi_aa64_vae3_write },
6281     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6282       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6283       .access = PL3_W, .type = ARM_CP_NO_RAW,
6284       .writefn = tlbi_aa64_vae3_write },
6285 };
6286 
6287 #ifndef CONFIG_USER_ONLY
6288 /* Test if system register redirection is to occur in the current state.  */
6289 static bool redirect_for_e2h(CPUARMState *env)
6290 {
6291     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6292 }
6293 
6294 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6295 {
6296     CPReadFn *readfn;
6297 
6298     if (redirect_for_e2h(env)) {
6299         /* Switch to the saved EL2 version of the register.  */
6300         ri = ri->opaque;
6301         readfn = ri->readfn;
6302     } else {
6303         readfn = ri->orig_readfn;
6304     }
6305     if (readfn == NULL) {
6306         readfn = raw_read;
6307     }
6308     return readfn(env, ri);
6309 }
6310 
6311 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6312                           uint64_t value)
6313 {
6314     CPWriteFn *writefn;
6315 
6316     if (redirect_for_e2h(env)) {
6317         /* Switch to the saved EL2 version of the register.  */
6318         ri = ri->opaque;
6319         writefn = ri->writefn;
6320     } else {
6321         writefn = ri->orig_writefn;
6322     }
6323     if (writefn == NULL) {
6324         writefn = raw_write;
6325     }
6326     writefn(env, ri, value);
6327 }
6328 
6329 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6330 {
6331     struct E2HAlias {
6332         uint32_t src_key, dst_key, new_key;
6333         const char *src_name, *dst_name, *new_name;
6334         bool (*feature)(const ARMISARegisters *id);
6335     };
6336 
6337 #define K(op0, op1, crn, crm, op2) \
6338     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6339 
6340     static const struct E2HAlias aliases[] = {
6341         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6342           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6343         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6344           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6345         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6346           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6347         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6348           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6349         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6350           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6351         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6352           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6353         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6354           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6355         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6356           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6357         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6358           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6359         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6360           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6361         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6362           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6363         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6364           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6365         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6366           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6367         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6368           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6369         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6370           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6371         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6372           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6373 
6374         /*
6375          * Note that redirection of ZCR is mentioned in the description
6376          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6377          * not in the summary table.
6378          */
6379         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6380           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6381         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6382           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6383 
6384         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6385           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6386 
6387         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6388           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6389           isar_feature_aa64_scxtnum },
6390 
6391         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6392         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6393     };
6394 #undef K
6395 
6396     size_t i;
6397 
6398     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6399         const struct E2HAlias *a = &aliases[i];
6400         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6401         bool ok;
6402 
6403         if (a->feature && !a->feature(&cpu->isar)) {
6404             continue;
6405         }
6406 
6407         src_reg = g_hash_table_lookup(cpu->cp_regs,
6408                                       (gpointer)(uintptr_t)a->src_key);
6409         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6410                                       (gpointer)(uintptr_t)a->dst_key);
6411         g_assert(src_reg != NULL);
6412         g_assert(dst_reg != NULL);
6413 
6414         /* Cross-compare names to detect typos in the keys.  */
6415         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6416         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6417 
6418         /* None of the core system registers use opaque; we will.  */
6419         g_assert(src_reg->opaque == NULL);
6420 
6421         /* Create alias before redirection so we dup the right data. */
6422         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6423 
6424         new_reg->name = a->new_name;
6425         new_reg->type |= ARM_CP_ALIAS;
6426         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6427         new_reg->access &= PL2_RW | PL3_RW;
6428 
6429         ok = g_hash_table_insert(cpu->cp_regs,
6430                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6431         g_assert(ok);
6432 
6433         src_reg->opaque = dst_reg;
6434         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6435         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6436         if (!src_reg->raw_readfn) {
6437             src_reg->raw_readfn = raw_read;
6438         }
6439         if (!src_reg->raw_writefn) {
6440             src_reg->raw_writefn = raw_write;
6441         }
6442         src_reg->readfn = el2_e2h_read;
6443         src_reg->writefn = el2_e2h_write;
6444     }
6445 }
6446 #endif
6447 
6448 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6449                                      bool isread)
6450 {
6451     int cur_el = arm_current_el(env);
6452 
6453     if (cur_el < 2) {
6454         uint64_t hcr = arm_hcr_el2_eff(env);
6455 
6456         if (cur_el == 0) {
6457             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6458                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6459                     return CP_ACCESS_TRAP_EL2;
6460                 }
6461             } else {
6462                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6463                     return CP_ACCESS_TRAP;
6464                 }
6465                 if (hcr & HCR_TID2) {
6466                     return CP_ACCESS_TRAP_EL2;
6467                 }
6468             }
6469         } else if (hcr & HCR_TID2) {
6470             return CP_ACCESS_TRAP_EL2;
6471         }
6472     }
6473 
6474     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6475         return CP_ACCESS_TRAP_EL2;
6476     }
6477 
6478     return CP_ACCESS_OK;
6479 }
6480 
6481 /*
6482  * Check for traps to RAS registers, which are controlled
6483  * by HCR_EL2.TERR and SCR_EL3.TERR.
6484  */
6485 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6486                                   bool isread)
6487 {
6488     int el = arm_current_el(env);
6489 
6490     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6491         return CP_ACCESS_TRAP_EL2;
6492     }
6493     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6494         return CP_ACCESS_TRAP_EL3;
6495     }
6496     return CP_ACCESS_OK;
6497 }
6498 
6499 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6500 {
6501     int el = arm_current_el(env);
6502 
6503     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6504         return env->cp15.vdisr_el2;
6505     }
6506     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6507         return 0; /* RAZ/WI */
6508     }
6509     return env->cp15.disr_el1;
6510 }
6511 
6512 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6513 {
6514     int el = arm_current_el(env);
6515 
6516     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6517         env->cp15.vdisr_el2 = val;
6518         return;
6519     }
6520     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6521         return; /* RAZ/WI */
6522     }
6523     env->cp15.disr_el1 = val;
6524 }
6525 
6526 /*
6527  * Minimal RAS implementation with no Error Records.
6528  * Which means that all of the Error Record registers:
6529  *   ERXADDR_EL1
6530  *   ERXCTLR_EL1
6531  *   ERXFR_EL1
6532  *   ERXMISC0_EL1
6533  *   ERXMISC1_EL1
6534  *   ERXMISC2_EL1
6535  *   ERXMISC3_EL1
6536  *   ERXPFGCDN_EL1  (RASv1p1)
6537  *   ERXPFGCTL_EL1  (RASv1p1)
6538  *   ERXPFGF_EL1    (RASv1p1)
6539  *   ERXSTATUS_EL1
6540  * and
6541  *   ERRSELR_EL1
6542  * may generate UNDEFINED, which is the effect we get by not
6543  * listing them at all.
6544  *
6545  * These registers have fine-grained trap bits, but UNDEF-to-EL1
6546  * is higher priority than FGT-to-EL2 so we do not need to list them
6547  * in order to check for an FGT.
6548  */
6549 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6550     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6551       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6552       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6553       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6554     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6555       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6556       .access = PL1_R, .accessfn = access_terr,
6557       .fgt = FGT_ERRIDR_EL1,
6558       .type = ARM_CP_CONST, .resetvalue = 0 },
6559     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6560       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6561       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6562     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6563       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6564       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6565 };
6566 
6567 /*
6568  * Return the exception level to which exceptions should be taken
6569  * via SVEAccessTrap.  This excludes the check for whether the exception
6570  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6571  * be found by testing 0 < fp_exception_el < sve_exception_el.
6572  *
6573  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6574  * pseudocode does *not* separate out the FP trap checks, but has them
6575  * all in one function.
6576  */
6577 int sve_exception_el(CPUARMState *env, int el)
6578 {
6579 #ifndef CONFIG_USER_ONLY
6580     if (el <= 1 && !el_is_in_host(env, el)) {
6581         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6582         case 1:
6583             if (el != 0) {
6584                 break;
6585             }
6586             /* fall through */
6587         case 0:
6588         case 2:
6589             return 1;
6590         }
6591     }
6592 
6593     if (el <= 2 && arm_is_el2_enabled(env)) {
6594         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6595         if (env->cp15.hcr_el2 & HCR_E2H) {
6596             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6597             case 1:
6598                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6599                     break;
6600                 }
6601                 /* fall through */
6602             case 0:
6603             case 2:
6604                 return 2;
6605             }
6606         } else {
6607             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6608                 return 2;
6609             }
6610         }
6611     }
6612 
6613     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6614     if (arm_feature(env, ARM_FEATURE_EL3)
6615         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6616         return 3;
6617     }
6618 #endif
6619     return 0;
6620 }
6621 
6622 /*
6623  * Return the exception level to which exceptions should be taken for SME.
6624  * C.f. the ARM pseudocode function CheckSMEAccess.
6625  */
6626 int sme_exception_el(CPUARMState *env, int el)
6627 {
6628 #ifndef CONFIG_USER_ONLY
6629     if (el <= 1 && !el_is_in_host(env, el)) {
6630         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6631         case 1:
6632             if (el != 0) {
6633                 break;
6634             }
6635             /* fall through */
6636         case 0:
6637         case 2:
6638             return 1;
6639         }
6640     }
6641 
6642     if (el <= 2 && arm_is_el2_enabled(env)) {
6643         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6644         if (env->cp15.hcr_el2 & HCR_E2H) {
6645             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6646             case 1:
6647                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6648                     break;
6649                 }
6650                 /* fall through */
6651             case 0:
6652             case 2:
6653                 return 2;
6654             }
6655         } else {
6656             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6657                 return 2;
6658             }
6659         }
6660     }
6661 
6662     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6663     if (arm_feature(env, ARM_FEATURE_EL3)
6664         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6665         return 3;
6666     }
6667 #endif
6668     return 0;
6669 }
6670 
6671 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
6672 static bool sme_fa64(CPUARMState *env, int el)
6673 {
6674     if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
6675         return false;
6676     }
6677 
6678     if (el <= 1 && !el_is_in_host(env, el)) {
6679         if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
6680             return false;
6681         }
6682     }
6683     if (el <= 2 && arm_is_el2_enabled(env)) {
6684         if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
6685             return false;
6686         }
6687     }
6688     if (arm_feature(env, ARM_FEATURE_EL3)) {
6689         if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
6690             return false;
6691         }
6692     }
6693 
6694     return true;
6695 }
6696 
6697 /*
6698  * Given that SVE is enabled, return the vector length for EL.
6699  */
6700 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6701 {
6702     ARMCPU *cpu = env_archcpu(env);
6703     uint64_t *cr = env->vfp.zcr_el;
6704     uint32_t map = cpu->sve_vq.map;
6705     uint32_t len = ARM_MAX_VQ - 1;
6706 
6707     if (sm) {
6708         cr = env->vfp.smcr_el;
6709         map = cpu->sme_vq.map;
6710     }
6711 
6712     if (el <= 1 && !el_is_in_host(env, el)) {
6713         len = MIN(len, 0xf & (uint32_t)cr[1]);
6714     }
6715     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6716         len = MIN(len, 0xf & (uint32_t)cr[2]);
6717     }
6718     if (arm_feature(env, ARM_FEATURE_EL3)) {
6719         len = MIN(len, 0xf & (uint32_t)cr[3]);
6720     }
6721 
6722     map &= MAKE_64BIT_MASK(0, len + 1);
6723     if (map != 0) {
6724         return 31 - clz32(map);
6725     }
6726 
6727     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6728     assert(sm);
6729     return ctz32(cpu->sme_vq.map);
6730 }
6731 
6732 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6733 {
6734     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6735 }
6736 
6737 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6738                       uint64_t value)
6739 {
6740     int cur_el = arm_current_el(env);
6741     int old_len = sve_vqm1_for_el(env, cur_el);
6742     int new_len;
6743 
6744     /* Bits other than [3:0] are RAZ/WI.  */
6745     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6746     raw_write(env, ri, value & 0xf);
6747 
6748     /*
6749      * Because we arrived here, we know both FP and SVE are enabled;
6750      * otherwise we would have trapped access to the ZCR_ELn register.
6751      */
6752     new_len = sve_vqm1_for_el(env, cur_el);
6753     if (new_len < old_len) {
6754         aarch64_sve_narrow_vq(env, new_len + 1);
6755     }
6756 }
6757 
6758 static const ARMCPRegInfo zcr_reginfo[] = {
6759     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6760       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6761       .access = PL1_RW, .type = ARM_CP_SVE,
6762       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6763       .writefn = zcr_write, .raw_writefn = raw_write },
6764     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6765       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6766       .access = PL2_RW, .type = ARM_CP_SVE,
6767       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6768       .writefn = zcr_write, .raw_writefn = raw_write },
6769     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6770       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6771       .access = PL3_RW, .type = ARM_CP_SVE,
6772       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6773       .writefn = zcr_write, .raw_writefn = raw_write },
6774 };
6775 
6776 #ifdef TARGET_AARCH64
6777 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6778                                     bool isread)
6779 {
6780     int el = arm_current_el(env);
6781 
6782     if (el == 0) {
6783         uint64_t sctlr = arm_sctlr(env, el);
6784         if (!(sctlr & SCTLR_EnTP2)) {
6785             return CP_ACCESS_TRAP;
6786         }
6787     }
6788     /* TODO: FEAT_FGT */
6789     if (el < 3
6790         && arm_feature(env, ARM_FEATURE_EL3)
6791         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6792         return CP_ACCESS_TRAP_EL3;
6793     }
6794     return CP_ACCESS_OK;
6795 }
6796 
6797 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6798                                  bool isread)
6799 {
6800     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6801     if (arm_current_el(env) < 3
6802         && arm_feature(env, ARM_FEATURE_EL3)
6803         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6804         return CP_ACCESS_TRAP_EL3;
6805     }
6806     return CP_ACCESS_OK;
6807 }
6808 
6809 /* ResetSVEState */
6810 static void arm_reset_sve_state(CPUARMState *env)
6811 {
6812     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6813     /* Recall that FFR is stored as pregs[16]. */
6814     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6815     vfp_set_fpcr(env, 0x0800009f);
6816 }
6817 
6818 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6819 {
6820     uint64_t change = (env->svcr ^ new) & mask;
6821 
6822     if (change == 0) {
6823         return;
6824     }
6825     env->svcr ^= change;
6826 
6827     if (change & R_SVCR_SM_MASK) {
6828         arm_reset_sve_state(env);
6829     }
6830 
6831     /*
6832      * ResetSMEState.
6833      *
6834      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
6835      * on enable: while disabled, the storage is inaccessible and the
6836      * value does not matter.  We're not saving the storage in vmstate
6837      * when disabled either.
6838      */
6839     if (change & new & R_SVCR_ZA_MASK) {
6840         memset(env->zarray, 0, sizeof(env->zarray));
6841     }
6842 
6843     arm_rebuild_hflags(env);
6844 }
6845 
6846 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6847                        uint64_t value)
6848 {
6849     aarch64_set_svcr(env, value, -1);
6850 }
6851 
6852 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6853                        uint64_t value)
6854 {
6855     int cur_el = arm_current_el(env);
6856     int old_len = sve_vqm1_for_el(env, cur_el);
6857     int new_len;
6858 
6859     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6860     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6861     raw_write(env, ri, value);
6862 
6863     /*
6864      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6865      * when SVL is widened (old values kept, or zeros).  Choose to keep the
6866      * current values for simplicity.  But for QEMU internals, we must still
6867      * apply the narrower SVL to the Zregs and Pregs -- see the comment
6868      * above aarch64_sve_narrow_vq.
6869      */
6870     new_len = sve_vqm1_for_el(env, cur_el);
6871     if (new_len < old_len) {
6872         aarch64_sve_narrow_vq(env, new_len + 1);
6873     }
6874 }
6875 
6876 static const ARMCPRegInfo sme_reginfo[] = {
6877     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6878       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6879       .access = PL0_RW, .accessfn = access_tpidr2,
6880       .fgt = FGT_NTPIDR2_EL0,
6881       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6882     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6883       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6884       .access = PL0_RW, .type = ARM_CP_SME,
6885       .fieldoffset = offsetof(CPUARMState, svcr),
6886       .writefn = svcr_write, .raw_writefn = raw_write },
6887     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6888       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6889       .access = PL1_RW, .type = ARM_CP_SME,
6890       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6891       .writefn = smcr_write, .raw_writefn = raw_write },
6892     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6893       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6894       .access = PL2_RW, .type = ARM_CP_SME,
6895       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6896       .writefn = smcr_write, .raw_writefn = raw_write },
6897     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6898       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6899       .access = PL3_RW, .type = ARM_CP_SME,
6900       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6901       .writefn = smcr_write, .raw_writefn = raw_write },
6902     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6903       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6904       .access = PL1_R, .accessfn = access_aa64_tid1,
6905       /*
6906        * IMPLEMENTOR = 0 (software)
6907        * REVISION    = 0 (implementation defined)
6908        * SMPS        = 0 (no streaming execution priority in QEMU)
6909        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
6910        */
6911       .type = ARM_CP_CONST, .resetvalue = 0, },
6912     /*
6913      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6914      */
6915     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6916       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6917       .access = PL1_RW, .accessfn = access_esm,
6918       .fgt = FGT_NSMPRI_EL1,
6919       .type = ARM_CP_CONST, .resetvalue = 0 },
6920     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6921       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6922       .access = PL2_RW, .accessfn = access_esm,
6923       .type = ARM_CP_CONST, .resetvalue = 0 },
6924 };
6925 #endif /* TARGET_AARCH64 */
6926 
6927 static void define_pmu_regs(ARMCPU *cpu)
6928 {
6929     /*
6930      * v7 performance monitor control register: same implementor
6931      * field as main ID register, and we implement four counters in
6932      * addition to the cycle count register.
6933      */
6934     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6935     ARMCPRegInfo pmcr = {
6936         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6937         .access = PL0_RW,
6938         .fgt = FGT_PMCR_EL0,
6939         .type = ARM_CP_IO | ARM_CP_ALIAS,
6940         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6941         .accessfn = pmreg_access, .writefn = pmcr_write,
6942         .raw_writefn = raw_write,
6943     };
6944     ARMCPRegInfo pmcr64 = {
6945         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6946         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6947         .access = PL0_RW, .accessfn = pmreg_access,
6948         .fgt = FGT_PMCR_EL0,
6949         .type = ARM_CP_IO,
6950         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6951         .resetvalue = cpu->isar.reset_pmcr_el0,
6952         .writefn = pmcr_write, .raw_writefn = raw_write,
6953     };
6954 
6955     define_one_arm_cp_reg(cpu, &pmcr);
6956     define_one_arm_cp_reg(cpu, &pmcr64);
6957     for (i = 0; i < pmcrn; i++) {
6958         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6959         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6960         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6961         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6962         ARMCPRegInfo pmev_regs[] = {
6963             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6964               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6965               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6966               .fgt = FGT_PMEVCNTRN_EL0,
6967               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6968               .accessfn = pmreg_access_xevcntr },
6969             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6970               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6971               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6972               .type = ARM_CP_IO,
6973               .fgt = FGT_PMEVCNTRN_EL0,
6974               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6975               .raw_readfn = pmevcntr_rawread,
6976               .raw_writefn = pmevcntr_rawwrite },
6977             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6978               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6979               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6980               .fgt = FGT_PMEVTYPERN_EL0,
6981               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6982               .accessfn = pmreg_access },
6983             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6984               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6985               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6986               .fgt = FGT_PMEVTYPERN_EL0,
6987               .type = ARM_CP_IO,
6988               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6989               .raw_writefn = pmevtyper_rawwrite },
6990         };
6991         define_arm_cp_regs(cpu, pmev_regs);
6992         g_free(pmevcntr_name);
6993         g_free(pmevcntr_el0_name);
6994         g_free(pmevtyper_name);
6995         g_free(pmevtyper_el0_name);
6996     }
6997     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6998         ARMCPRegInfo v81_pmu_regs[] = {
6999             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7000               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7001               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7002               .fgt = FGT_PMCEIDN_EL0,
7003               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7004             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7005               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7006               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7007               .fgt = FGT_PMCEIDN_EL0,
7008               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7009         };
7010         define_arm_cp_regs(cpu, v81_pmu_regs);
7011     }
7012     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7013         static const ARMCPRegInfo v84_pmmir = {
7014             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7015             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7016             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7017             .fgt = FGT_PMMIR_EL1,
7018             .resetvalue = 0
7019         };
7020         define_one_arm_cp_reg(cpu, &v84_pmmir);
7021     }
7022 }
7023 
7024 /*
7025  * We don't know until after realize whether there's a GICv3
7026  * attached, and that is what registers the gicv3 sysregs.
7027  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7028  * at runtime.
7029  */
7030 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7031 {
7032     ARMCPU *cpu = env_archcpu(env);
7033     uint64_t pfr1 = cpu->isar.id_pfr1;
7034 
7035     if (env->gicv3state) {
7036         pfr1 |= 1 << 28;
7037     }
7038     return pfr1;
7039 }
7040 
7041 #ifndef CONFIG_USER_ONLY
7042 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7043 {
7044     ARMCPU *cpu = env_archcpu(env);
7045     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7046 
7047     if (env->gicv3state) {
7048         pfr0 |= 1 << 24;
7049     }
7050     return pfr0;
7051 }
7052 #endif
7053 
7054 /*
7055  * Shared logic between LORID and the rest of the LOR* registers.
7056  * Secure state exclusion has already been dealt with.
7057  */
7058 static CPAccessResult access_lor_ns(CPUARMState *env,
7059                                     const ARMCPRegInfo *ri, bool isread)
7060 {
7061     int el = arm_current_el(env);
7062 
7063     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7064         return CP_ACCESS_TRAP_EL2;
7065     }
7066     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7067         return CP_ACCESS_TRAP_EL3;
7068     }
7069     return CP_ACCESS_OK;
7070 }
7071 
7072 static CPAccessResult access_lor_other(CPUARMState *env,
7073                                        const ARMCPRegInfo *ri, bool isread)
7074 {
7075     if (arm_is_secure_below_el3(env)) {
7076         /* Access denied in secure mode.  */
7077         return CP_ACCESS_TRAP;
7078     }
7079     return access_lor_ns(env, ri, isread);
7080 }
7081 
7082 /*
7083  * A trivial implementation of ARMv8.1-LOR leaves all of these
7084  * registers fixed at 0, which indicates that there are zero
7085  * supported Limited Ordering regions.
7086  */
7087 static const ARMCPRegInfo lor_reginfo[] = {
7088     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7089       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7090       .access = PL1_RW, .accessfn = access_lor_other,
7091       .fgt = FGT_LORSA_EL1,
7092       .type = ARM_CP_CONST, .resetvalue = 0 },
7093     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7094       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7095       .access = PL1_RW, .accessfn = access_lor_other,
7096       .fgt = FGT_LOREA_EL1,
7097       .type = ARM_CP_CONST, .resetvalue = 0 },
7098     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7099       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7100       .access = PL1_RW, .accessfn = access_lor_other,
7101       .fgt = FGT_LORN_EL1,
7102       .type = ARM_CP_CONST, .resetvalue = 0 },
7103     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7104       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7105       .access = PL1_RW, .accessfn = access_lor_other,
7106       .fgt = FGT_LORC_EL1,
7107       .type = ARM_CP_CONST, .resetvalue = 0 },
7108     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7109       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7110       .access = PL1_R, .accessfn = access_lor_ns,
7111       .fgt = FGT_LORID_EL1,
7112       .type = ARM_CP_CONST, .resetvalue = 0 },
7113 };
7114 
7115 #ifdef TARGET_AARCH64
7116 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7117                                    bool isread)
7118 {
7119     int el = arm_current_el(env);
7120 
7121     if (el < 2 &&
7122         arm_is_el2_enabled(env) &&
7123         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7124         return CP_ACCESS_TRAP_EL2;
7125     }
7126     if (el < 3 &&
7127         arm_feature(env, ARM_FEATURE_EL3) &&
7128         !(env->cp15.scr_el3 & SCR_APK)) {
7129         return CP_ACCESS_TRAP_EL3;
7130     }
7131     return CP_ACCESS_OK;
7132 }
7133 
7134 static const ARMCPRegInfo pauth_reginfo[] = {
7135     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7136       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7137       .access = PL1_RW, .accessfn = access_pauth,
7138       .fgt = FGT_APDAKEY,
7139       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7140     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7141       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7142       .access = PL1_RW, .accessfn = access_pauth,
7143       .fgt = FGT_APDAKEY,
7144       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7145     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7146       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7147       .access = PL1_RW, .accessfn = access_pauth,
7148       .fgt = FGT_APDBKEY,
7149       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7150     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7151       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7152       .access = PL1_RW, .accessfn = access_pauth,
7153       .fgt = FGT_APDBKEY,
7154       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7155     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7156       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7157       .access = PL1_RW, .accessfn = access_pauth,
7158       .fgt = FGT_APGAKEY,
7159       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7160     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7161       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7162       .access = PL1_RW, .accessfn = access_pauth,
7163       .fgt = FGT_APGAKEY,
7164       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7165     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7166       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7167       .access = PL1_RW, .accessfn = access_pauth,
7168       .fgt = FGT_APIAKEY,
7169       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7170     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7171       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7172       .access = PL1_RW, .accessfn = access_pauth,
7173       .fgt = FGT_APIAKEY,
7174       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7175     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7176       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7177       .access = PL1_RW, .accessfn = access_pauth,
7178       .fgt = FGT_APIBKEY,
7179       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7180     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7181       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7182       .access = PL1_RW, .accessfn = access_pauth,
7183       .fgt = FGT_APIBKEY,
7184       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7185 };
7186 
7187 static const ARMCPRegInfo tlbirange_reginfo[] = {
7188     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7189       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7190       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7191       .fgt = FGT_TLBIRVAE1IS,
7192       .writefn = tlbi_aa64_rvae1is_write },
7193     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7194       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7195       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7196       .fgt = FGT_TLBIRVAAE1IS,
7197       .writefn = tlbi_aa64_rvae1is_write },
7198    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7199       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7200       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7201       .fgt = FGT_TLBIRVALE1IS,
7202       .writefn = tlbi_aa64_rvae1is_write },
7203     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7204       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7205       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7206       .fgt = FGT_TLBIRVAALE1IS,
7207       .writefn = tlbi_aa64_rvae1is_write },
7208     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7209       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7210       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7211       .fgt = FGT_TLBIRVAE1OS,
7212       .writefn = tlbi_aa64_rvae1is_write },
7213     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7214       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7215       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7216       .fgt = FGT_TLBIRVAAE1OS,
7217       .writefn = tlbi_aa64_rvae1is_write },
7218    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7219       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7220       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7221       .fgt = FGT_TLBIRVALE1OS,
7222       .writefn = tlbi_aa64_rvae1is_write },
7223     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7224       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7225       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7226       .fgt = FGT_TLBIRVAALE1OS,
7227       .writefn = tlbi_aa64_rvae1is_write },
7228     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7229       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7230       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7231       .fgt = FGT_TLBIRVAE1,
7232       .writefn = tlbi_aa64_rvae1_write },
7233     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7234       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7235       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7236       .fgt = FGT_TLBIRVAAE1,
7237       .writefn = tlbi_aa64_rvae1_write },
7238    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7239       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7240       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7241       .fgt = FGT_TLBIRVALE1,
7242       .writefn = tlbi_aa64_rvae1_write },
7243     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7244       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7245       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7246       .fgt = FGT_TLBIRVAALE1,
7247       .writefn = tlbi_aa64_rvae1_write },
7248     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7249       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7250       .access = PL2_W, .type = ARM_CP_NO_RAW,
7251       .writefn = tlbi_aa64_ripas2e1is_write },
7252     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7253       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7254       .access = PL2_W, .type = ARM_CP_NO_RAW,
7255       .writefn = tlbi_aa64_ripas2e1is_write },
7256     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7257       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7258       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7259       .writefn = tlbi_aa64_rvae2is_write },
7260    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7261       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7262       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7263       .writefn = tlbi_aa64_rvae2is_write },
7264     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7265       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7266       .access = PL2_W, .type = ARM_CP_NO_RAW,
7267       .writefn = tlbi_aa64_ripas2e1_write },
7268     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7269       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7270       .access = PL2_W, .type = ARM_CP_NO_RAW,
7271       .writefn = tlbi_aa64_ripas2e1_write },
7272    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7273       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7274       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7275       .writefn = tlbi_aa64_rvae2is_write },
7276    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7277       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7278       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7279       .writefn = tlbi_aa64_rvae2is_write },
7280     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7281       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7282       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7283       .writefn = tlbi_aa64_rvae2_write },
7284    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7285       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7286       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7287       .writefn = tlbi_aa64_rvae2_write },
7288    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7289       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7290       .access = PL3_W, .type = ARM_CP_NO_RAW,
7291       .writefn = tlbi_aa64_rvae3is_write },
7292    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7293       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7294       .access = PL3_W, .type = ARM_CP_NO_RAW,
7295       .writefn = tlbi_aa64_rvae3is_write },
7296    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7297       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7298       .access = PL3_W, .type = ARM_CP_NO_RAW,
7299       .writefn = tlbi_aa64_rvae3is_write },
7300    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7301       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7302       .access = PL3_W, .type = ARM_CP_NO_RAW,
7303       .writefn = tlbi_aa64_rvae3is_write },
7304    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7305       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7306       .access = PL3_W, .type = ARM_CP_NO_RAW,
7307       .writefn = tlbi_aa64_rvae3_write },
7308    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7309       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7310       .access = PL3_W, .type = ARM_CP_NO_RAW,
7311       .writefn = tlbi_aa64_rvae3_write },
7312 };
7313 
7314 static const ARMCPRegInfo tlbios_reginfo[] = {
7315     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7316       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7317       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7318       .fgt = FGT_TLBIVMALLE1OS,
7319       .writefn = tlbi_aa64_vmalle1is_write },
7320     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7321       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7322       .fgt = FGT_TLBIVAE1OS,
7323       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7324       .writefn = tlbi_aa64_vae1is_write },
7325     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7326       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7327       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7328       .fgt = FGT_TLBIASIDE1OS,
7329       .writefn = tlbi_aa64_vmalle1is_write },
7330     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7331       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7332       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7333       .fgt = FGT_TLBIVAAE1OS,
7334       .writefn = tlbi_aa64_vae1is_write },
7335     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7336       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7337       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7338       .fgt = FGT_TLBIVALE1OS,
7339       .writefn = tlbi_aa64_vae1is_write },
7340     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7341       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7342       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7343       .fgt = FGT_TLBIVAALE1OS,
7344       .writefn = tlbi_aa64_vae1is_write },
7345     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7346       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7347       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7348       .writefn = tlbi_aa64_alle2is_write },
7349     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7350       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7351       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7352       .writefn = tlbi_aa64_vae2is_write },
7353    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7354       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7355       .access = PL2_W, .type = ARM_CP_NO_RAW,
7356       .writefn = tlbi_aa64_alle1is_write },
7357     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7358       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7359       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7360       .writefn = tlbi_aa64_vae2is_write },
7361     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7362       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7363       .access = PL2_W, .type = ARM_CP_NO_RAW,
7364       .writefn = tlbi_aa64_alle1is_write },
7365     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7366       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7367       .access = PL2_W, .type = ARM_CP_NOP },
7368     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7369       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7370       .access = PL2_W, .type = ARM_CP_NOP },
7371     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7372       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7373       .access = PL2_W, .type = ARM_CP_NOP },
7374     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7375       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7376       .access = PL2_W, .type = ARM_CP_NOP },
7377     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7378       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7379       .access = PL3_W, .type = ARM_CP_NO_RAW,
7380       .writefn = tlbi_aa64_alle3is_write },
7381     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7382       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7383       .access = PL3_W, .type = ARM_CP_NO_RAW,
7384       .writefn = tlbi_aa64_vae3is_write },
7385     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7386       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7387       .access = PL3_W, .type = ARM_CP_NO_RAW,
7388       .writefn = tlbi_aa64_vae3is_write },
7389 };
7390 
7391 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7392 {
7393     Error *err = NULL;
7394     uint64_t ret;
7395 
7396     /* Success sets NZCV = 0000.  */
7397     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7398 
7399     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7400         /*
7401          * ??? Failed, for unknown reasons in the crypto subsystem.
7402          * The best we can do is log the reason and return the
7403          * timed-out indication to the guest.  There is no reason
7404          * we know to expect this failure to be transitory, so the
7405          * guest may well hang retrying the operation.
7406          */
7407         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7408                       ri->name, error_get_pretty(err));
7409         error_free(err);
7410 
7411         env->ZF = 0; /* NZCF = 0100 */
7412         return 0;
7413     }
7414     return ret;
7415 }
7416 
7417 /* We do not support re-seeding, so the two registers operate the same.  */
7418 static const ARMCPRegInfo rndr_reginfo[] = {
7419     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7420       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7421       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7422       .access = PL0_R, .readfn = rndr_readfn },
7423     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7424       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7425       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7426       .access = PL0_R, .readfn = rndr_readfn },
7427 };
7428 
7429 #ifndef CONFIG_USER_ONLY
7430 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7431                           uint64_t value)
7432 {
7433     ARMCPU *cpu = env_archcpu(env);
7434     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7435     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7436     uint64_t vaddr_in = (uint64_t) value;
7437     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7438     void *haddr;
7439     int mem_idx = cpu_mmu_index(env, false);
7440 
7441     /* This won't be crossing page boundaries */
7442     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7443     if (haddr) {
7444 
7445         ram_addr_t offset;
7446         MemoryRegion *mr;
7447 
7448         /* RCU lock is already being held */
7449         mr = memory_region_from_host(haddr, &offset);
7450 
7451         if (mr) {
7452             memory_region_writeback(mr, offset, dline_size);
7453         }
7454     }
7455 }
7456 
7457 static const ARMCPRegInfo dcpop_reg[] = {
7458     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7459       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7460       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7461       .fgt = FGT_DCCVAP,
7462       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7463 };
7464 
7465 static const ARMCPRegInfo dcpodp_reg[] = {
7466     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7467       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7468       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7469       .fgt = FGT_DCCVADP,
7470       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7471 };
7472 #endif /*CONFIG_USER_ONLY*/
7473 
7474 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7475                                        bool isread)
7476 {
7477     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7478         return CP_ACCESS_TRAP_EL2;
7479     }
7480 
7481     return CP_ACCESS_OK;
7482 }
7483 
7484 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7485                                  bool isread)
7486 {
7487     int el = arm_current_el(env);
7488 
7489     if (el < 2 && arm_is_el2_enabled(env)) {
7490         uint64_t hcr = arm_hcr_el2_eff(env);
7491         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7492             return CP_ACCESS_TRAP_EL2;
7493         }
7494     }
7495     if (el < 3 &&
7496         arm_feature(env, ARM_FEATURE_EL3) &&
7497         !(env->cp15.scr_el3 & SCR_ATA)) {
7498         return CP_ACCESS_TRAP_EL3;
7499     }
7500     return CP_ACCESS_OK;
7501 }
7502 
7503 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7504 {
7505     return env->pstate & PSTATE_TCO;
7506 }
7507 
7508 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7509 {
7510     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7511 }
7512 
7513 static const ARMCPRegInfo mte_reginfo[] = {
7514     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7515       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7516       .access = PL1_RW, .accessfn = access_mte,
7517       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7518     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7519       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7520       .access = PL1_RW, .accessfn = access_mte,
7521       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7522     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7523       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7524       .access = PL2_RW, .accessfn = access_mte,
7525       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7526     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7527       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7528       .access = PL3_RW,
7529       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7530     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7531       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7532       .access = PL1_RW, .accessfn = access_mte,
7533       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7534     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7535       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7536       .access = PL1_RW, .accessfn = access_mte,
7537       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7538     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7539       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7540       .access = PL1_R, .accessfn = access_aa64_tid5,
7541       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7542     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7543       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7544       .type = ARM_CP_NO_RAW,
7545       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7546     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7547       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7548       .type = ARM_CP_NOP, .access = PL1_W,
7549       .fgt = FGT_DCIVAC,
7550       .accessfn = aa64_cacheop_poc_access },
7551     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7552       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7553       .fgt = FGT_DCISW,
7554       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7555     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7556       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7557       .type = ARM_CP_NOP, .access = PL1_W,
7558       .fgt = FGT_DCIVAC,
7559       .accessfn = aa64_cacheop_poc_access },
7560     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7561       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7562       .fgt = FGT_DCISW,
7563       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7564     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7565       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7566       .fgt = FGT_DCCSW,
7567       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7568     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7569       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7570       .fgt = FGT_DCCSW,
7571       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7572     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7573       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7574       .fgt = FGT_DCCISW,
7575       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7576     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7577       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7578       .fgt = FGT_DCCISW,
7579       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7580 };
7581 
7582 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7583     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7584       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7585       .type = ARM_CP_CONST, .access = PL0_RW, },
7586 };
7587 
7588 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7589     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7590       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7591       .type = ARM_CP_NOP, .access = PL0_W,
7592       .fgt = FGT_DCCVAC,
7593       .accessfn = aa64_cacheop_poc_access },
7594     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7595       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7596       .type = ARM_CP_NOP, .access = PL0_W,
7597       .fgt = FGT_DCCVAC,
7598       .accessfn = aa64_cacheop_poc_access },
7599     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7600       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7601       .type = ARM_CP_NOP, .access = PL0_W,
7602       .fgt = FGT_DCCVAP,
7603       .accessfn = aa64_cacheop_poc_access },
7604     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7605       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7606       .type = ARM_CP_NOP, .access = PL0_W,
7607       .fgt = FGT_DCCVAP,
7608       .accessfn = aa64_cacheop_poc_access },
7609     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7610       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7611       .type = ARM_CP_NOP, .access = PL0_W,
7612       .fgt = FGT_DCCVADP,
7613       .accessfn = aa64_cacheop_poc_access },
7614     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7615       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7616       .type = ARM_CP_NOP, .access = PL0_W,
7617       .fgt = FGT_DCCVADP,
7618       .accessfn = aa64_cacheop_poc_access },
7619     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7620       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7621       .type = ARM_CP_NOP, .access = PL0_W,
7622       .fgt = FGT_DCCIVAC,
7623       .accessfn = aa64_cacheop_poc_access },
7624     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7625       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7626       .type = ARM_CP_NOP, .access = PL0_W,
7627       .fgt = FGT_DCCIVAC,
7628       .accessfn = aa64_cacheop_poc_access },
7629     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7630       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7631       .access = PL0_W, .type = ARM_CP_DC_GVA,
7632 #ifndef CONFIG_USER_ONLY
7633       /* Avoid overhead of an access check that always passes in user-mode */
7634       .accessfn = aa64_zva_access,
7635       .fgt = FGT_DCZVA,
7636 #endif
7637     },
7638     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7639       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7640       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7641 #ifndef CONFIG_USER_ONLY
7642       /* Avoid overhead of an access check that always passes in user-mode */
7643       .accessfn = aa64_zva_access,
7644       .fgt = FGT_DCZVA,
7645 #endif
7646     },
7647 };
7648 
7649 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7650                                      bool isread)
7651 {
7652     uint64_t hcr = arm_hcr_el2_eff(env);
7653     int el = arm_current_el(env);
7654 
7655     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7656         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7657             if (hcr & HCR_TGE) {
7658                 return CP_ACCESS_TRAP_EL2;
7659             }
7660             return CP_ACCESS_TRAP;
7661         }
7662     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7663         return CP_ACCESS_TRAP_EL2;
7664     }
7665     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7666         return CP_ACCESS_TRAP_EL2;
7667     }
7668     if (el < 3
7669         && arm_feature(env, ARM_FEATURE_EL3)
7670         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7671         return CP_ACCESS_TRAP_EL3;
7672     }
7673     return CP_ACCESS_OK;
7674 }
7675 
7676 static const ARMCPRegInfo scxtnum_reginfo[] = {
7677     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7678       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7679       .access = PL0_RW, .accessfn = access_scxtnum,
7680       .fgt = FGT_SCXTNUM_EL0,
7681       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7682     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7683       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7684       .access = PL1_RW, .accessfn = access_scxtnum,
7685       .fgt = FGT_SCXTNUM_EL1,
7686       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7687     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7688       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7689       .access = PL2_RW, .accessfn = access_scxtnum,
7690       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7691     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7692       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7693       .access = PL3_RW,
7694       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7695 };
7696 
7697 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7698                                  bool isread)
7699 {
7700     if (arm_current_el(env) == 2 &&
7701         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7702         return CP_ACCESS_TRAP_EL3;
7703     }
7704     return CP_ACCESS_OK;
7705 }
7706 
7707 static const ARMCPRegInfo fgt_reginfo[] = {
7708     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7709       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7710       .access = PL2_RW, .accessfn = access_fgt,
7711       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7712     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7713       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7714       .access = PL2_RW, .accessfn = access_fgt,
7715       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7716     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7717       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7718       .access = PL2_RW, .accessfn = access_fgt,
7719       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7720     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7721       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7722       .access = PL2_RW, .accessfn = access_fgt,
7723       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7724     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7725       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7726       .access = PL2_RW, .accessfn = access_fgt,
7727       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7728 };
7729 #endif /* TARGET_AARCH64 */
7730 
7731 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7732                                      bool isread)
7733 {
7734     int el = arm_current_el(env);
7735 
7736     if (el == 0) {
7737         uint64_t sctlr = arm_sctlr(env, el);
7738         if (!(sctlr & SCTLR_EnRCTX)) {
7739             return CP_ACCESS_TRAP;
7740         }
7741     } else if (el == 1) {
7742         uint64_t hcr = arm_hcr_el2_eff(env);
7743         if (hcr & HCR_NV) {
7744             return CP_ACCESS_TRAP_EL2;
7745         }
7746     }
7747     return CP_ACCESS_OK;
7748 }
7749 
7750 static const ARMCPRegInfo predinv_reginfo[] = {
7751     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7752       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7753       .fgt = FGT_CFPRCTX,
7754       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7755     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7756       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7757       .fgt = FGT_DVPRCTX,
7758       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7759     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7760       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7761       .fgt = FGT_CPPRCTX,
7762       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7763     /*
7764      * Note the AArch32 opcodes have a different OPC1.
7765      */
7766     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7767       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7768       .fgt = FGT_CFPRCTX,
7769       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7770     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7771       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7772       .fgt = FGT_DVPRCTX,
7773       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7774     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7775       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7776       .fgt = FGT_CPPRCTX,
7777       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7778 };
7779 
7780 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7781 {
7782     /* Read the high 32 bits of the current CCSIDR */
7783     return extract64(ccsidr_read(env, ri), 32, 32);
7784 }
7785 
7786 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7787     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7788       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7789       .access = PL1_R,
7790       .accessfn = access_tid4,
7791       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7792 };
7793 
7794 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7795                                        bool isread)
7796 {
7797     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7798         return CP_ACCESS_TRAP_EL2;
7799     }
7800 
7801     return CP_ACCESS_OK;
7802 }
7803 
7804 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7805                                        bool isread)
7806 {
7807     if (arm_feature(env, ARM_FEATURE_V8)) {
7808         return access_aa64_tid3(env, ri, isread);
7809     }
7810 
7811     return CP_ACCESS_OK;
7812 }
7813 
7814 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7815                                      bool isread)
7816 {
7817     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7818         return CP_ACCESS_TRAP_EL2;
7819     }
7820 
7821     return CP_ACCESS_OK;
7822 }
7823 
7824 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7825                                         const ARMCPRegInfo *ri, bool isread)
7826 {
7827     /*
7828      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7829      * in v7A, not in v8A.
7830      */
7831     if (!arm_feature(env, ARM_FEATURE_V8) &&
7832         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7833         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7834         return CP_ACCESS_TRAP_EL2;
7835     }
7836     return CP_ACCESS_OK;
7837 }
7838 
7839 static const ARMCPRegInfo jazelle_regs[] = {
7840     { .name = "JIDR",
7841       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7842       .access = PL1_R, .accessfn = access_jazelle,
7843       .type = ARM_CP_CONST, .resetvalue = 0 },
7844     { .name = "JOSCR",
7845       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7846       .accessfn = access_joscr_jmcr,
7847       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7848     { .name = "JMCR",
7849       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7850       .accessfn = access_joscr_jmcr,
7851       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7852 };
7853 
7854 static const ARMCPRegInfo contextidr_el2 = {
7855     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7856     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7857     .access = PL2_RW,
7858     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7859 };
7860 
7861 static const ARMCPRegInfo vhe_reginfo[] = {
7862     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7863       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7864       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7865       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7866 #ifndef CONFIG_USER_ONLY
7867     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7868       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7869       .fieldoffset =
7870         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7871       .type = ARM_CP_IO, .access = PL2_RW,
7872       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7873     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7874       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7875       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7876       .resetfn = gt_hv_timer_reset,
7877       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7878     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7879       .type = ARM_CP_IO,
7880       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7881       .access = PL2_RW,
7882       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7883       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7884     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7885       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7886       .type = ARM_CP_IO | ARM_CP_ALIAS,
7887       .access = PL2_RW, .accessfn = e2h_access,
7888       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7889       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7890     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7891       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7892       .type = ARM_CP_IO | ARM_CP_ALIAS,
7893       .access = PL2_RW, .accessfn = e2h_access,
7894       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7895       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7896     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7897       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7898       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7899       .access = PL2_RW, .accessfn = e2h_access,
7900       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7901     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7902       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7903       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7904       .access = PL2_RW, .accessfn = e2h_access,
7905       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7906     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7907       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7908       .type = ARM_CP_IO | ARM_CP_ALIAS,
7909       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7910       .access = PL2_RW, .accessfn = e2h_access,
7911       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7912     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7913       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7914       .type = ARM_CP_IO | ARM_CP_ALIAS,
7915       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7916       .access = PL2_RW, .accessfn = e2h_access,
7917       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7918 #endif
7919 };
7920 
7921 #ifndef CONFIG_USER_ONLY
7922 static const ARMCPRegInfo ats1e1_reginfo[] = {
7923     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
7924       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7925       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7926       .fgt = FGT_ATS1E1RP,
7927       .writefn = ats_write64 },
7928     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
7929       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7930       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7931       .fgt = FGT_ATS1E1WP,
7932       .writefn = ats_write64 },
7933 };
7934 
7935 static const ARMCPRegInfo ats1cp_reginfo[] = {
7936     { .name = "ATS1CPRP",
7937       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7938       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7939       .writefn = ats_write },
7940     { .name = "ATS1CPWP",
7941       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7942       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7943       .writefn = ats_write },
7944 };
7945 #endif
7946 
7947 /*
7948  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7949  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7950  * is non-zero, which is never for ARMv7, optionally in ARMv8
7951  * and mandatorily for ARMv8.2 and up.
7952  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7953  * implementation is RAZ/WI we can ignore this detail, as we
7954  * do for ACTLR.
7955  */
7956 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7957     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7958       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7959       .access = PL1_RW, .accessfn = access_tacr,
7960       .type = ARM_CP_CONST, .resetvalue = 0 },
7961     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7962       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7963       .access = PL2_RW, .type = ARM_CP_CONST,
7964       .resetvalue = 0 },
7965 };
7966 
7967 void register_cp_regs_for_features(ARMCPU *cpu)
7968 {
7969     /* Register all the coprocessor registers based on feature bits */
7970     CPUARMState *env = &cpu->env;
7971     if (arm_feature(env, ARM_FEATURE_M)) {
7972         /* M profile has no coprocessor registers */
7973         return;
7974     }
7975 
7976     define_arm_cp_regs(cpu, cp_reginfo);
7977     if (!arm_feature(env, ARM_FEATURE_V8)) {
7978         /*
7979          * Must go early as it is full of wildcards that may be
7980          * overridden by later definitions.
7981          */
7982         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7983     }
7984 
7985     if (arm_feature(env, ARM_FEATURE_V6)) {
7986         /* The ID registers all have impdef reset values */
7987         ARMCPRegInfo v6_idregs[] = {
7988             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7989               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7990               .access = PL1_R, .type = ARM_CP_CONST,
7991               .accessfn = access_aa32_tid3,
7992               .resetvalue = cpu->isar.id_pfr0 },
7993             /*
7994              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7995              * the value of the GIC field until after we define these regs.
7996              */
7997             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7998               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7999               .access = PL1_R, .type = ARM_CP_NO_RAW,
8000               .accessfn = access_aa32_tid3,
8001               .readfn = id_pfr1_read,
8002               .writefn = arm_cp_write_ignore },
8003             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8004               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8005               .access = PL1_R, .type = ARM_CP_CONST,
8006               .accessfn = access_aa32_tid3,
8007               .resetvalue = cpu->isar.id_dfr0 },
8008             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8009               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8010               .access = PL1_R, .type = ARM_CP_CONST,
8011               .accessfn = access_aa32_tid3,
8012               .resetvalue = cpu->id_afr0 },
8013             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8014               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8015               .access = PL1_R, .type = ARM_CP_CONST,
8016               .accessfn = access_aa32_tid3,
8017               .resetvalue = cpu->isar.id_mmfr0 },
8018             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8019               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8020               .access = PL1_R, .type = ARM_CP_CONST,
8021               .accessfn = access_aa32_tid3,
8022               .resetvalue = cpu->isar.id_mmfr1 },
8023             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8024               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8025               .access = PL1_R, .type = ARM_CP_CONST,
8026               .accessfn = access_aa32_tid3,
8027               .resetvalue = cpu->isar.id_mmfr2 },
8028             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8029               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8030               .access = PL1_R, .type = ARM_CP_CONST,
8031               .accessfn = access_aa32_tid3,
8032               .resetvalue = cpu->isar.id_mmfr3 },
8033             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8034               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8035               .access = PL1_R, .type = ARM_CP_CONST,
8036               .accessfn = access_aa32_tid3,
8037               .resetvalue = cpu->isar.id_isar0 },
8038             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8039               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8040               .access = PL1_R, .type = ARM_CP_CONST,
8041               .accessfn = access_aa32_tid3,
8042               .resetvalue = cpu->isar.id_isar1 },
8043             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8044               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8045               .access = PL1_R, .type = ARM_CP_CONST,
8046               .accessfn = access_aa32_tid3,
8047               .resetvalue = cpu->isar.id_isar2 },
8048             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8049               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8050               .access = PL1_R, .type = ARM_CP_CONST,
8051               .accessfn = access_aa32_tid3,
8052               .resetvalue = cpu->isar.id_isar3 },
8053             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8054               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8055               .access = PL1_R, .type = ARM_CP_CONST,
8056               .accessfn = access_aa32_tid3,
8057               .resetvalue = cpu->isar.id_isar4 },
8058             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8059               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8060               .access = PL1_R, .type = ARM_CP_CONST,
8061               .accessfn = access_aa32_tid3,
8062               .resetvalue = cpu->isar.id_isar5 },
8063             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8064               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8065               .access = PL1_R, .type = ARM_CP_CONST,
8066               .accessfn = access_aa32_tid3,
8067               .resetvalue = cpu->isar.id_mmfr4 },
8068             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8069               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8070               .access = PL1_R, .type = ARM_CP_CONST,
8071               .accessfn = access_aa32_tid3,
8072               .resetvalue = cpu->isar.id_isar6 },
8073         };
8074         define_arm_cp_regs(cpu, v6_idregs);
8075         define_arm_cp_regs(cpu, v6_cp_reginfo);
8076     } else {
8077         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8078     }
8079     if (arm_feature(env, ARM_FEATURE_V6K)) {
8080         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8081     }
8082     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8083         !arm_feature(env, ARM_FEATURE_PMSA)) {
8084         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8085     }
8086     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8087         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8088     }
8089     if (arm_feature(env, ARM_FEATURE_V7)) {
8090         ARMCPRegInfo clidr = {
8091             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8092             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8093             .access = PL1_R, .type = ARM_CP_CONST,
8094             .accessfn = access_tid4,
8095             .fgt = FGT_CLIDR_EL1,
8096             .resetvalue = cpu->clidr
8097         };
8098         define_one_arm_cp_reg(cpu, &clidr);
8099         define_arm_cp_regs(cpu, v7_cp_reginfo);
8100         define_debug_regs(cpu);
8101         define_pmu_regs(cpu);
8102     } else {
8103         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8104     }
8105     if (arm_feature(env, ARM_FEATURE_V8)) {
8106         /*
8107          * v8 ID registers, which all have impdef reset values.
8108          * Note that within the ID register ranges the unused slots
8109          * must all RAZ, not UNDEF; future architecture versions may
8110          * define new registers here.
8111          * ID registers which are AArch64 views of the AArch32 ID registers
8112          * which already existed in v6 and v7 are handled elsewhere,
8113          * in v6_idregs[].
8114          */
8115         int i;
8116         ARMCPRegInfo v8_idregs[] = {
8117             /*
8118              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8119              * emulation because we don't know the right value for the
8120              * GIC field until after we define these regs.
8121              */
8122             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8123               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8124               .access = PL1_R,
8125 #ifdef CONFIG_USER_ONLY
8126               .type = ARM_CP_CONST,
8127               .resetvalue = cpu->isar.id_aa64pfr0
8128 #else
8129               .type = ARM_CP_NO_RAW,
8130               .accessfn = access_aa64_tid3,
8131               .readfn = id_aa64pfr0_read,
8132               .writefn = arm_cp_write_ignore
8133 #endif
8134             },
8135             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8136               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8137               .access = PL1_R, .type = ARM_CP_CONST,
8138               .accessfn = access_aa64_tid3,
8139               .resetvalue = cpu->isar.id_aa64pfr1},
8140             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8141               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8142               .access = PL1_R, .type = ARM_CP_CONST,
8143               .accessfn = access_aa64_tid3,
8144               .resetvalue = 0 },
8145             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8146               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8147               .access = PL1_R, .type = ARM_CP_CONST,
8148               .accessfn = access_aa64_tid3,
8149               .resetvalue = 0 },
8150             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8151               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8152               .access = PL1_R, .type = ARM_CP_CONST,
8153               .accessfn = access_aa64_tid3,
8154               .resetvalue = cpu->isar.id_aa64zfr0 },
8155             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8156               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8157               .access = PL1_R, .type = ARM_CP_CONST,
8158               .accessfn = access_aa64_tid3,
8159               .resetvalue = cpu->isar.id_aa64smfr0 },
8160             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8161               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8162               .access = PL1_R, .type = ARM_CP_CONST,
8163               .accessfn = access_aa64_tid3,
8164               .resetvalue = 0 },
8165             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8166               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8167               .access = PL1_R, .type = ARM_CP_CONST,
8168               .accessfn = access_aa64_tid3,
8169               .resetvalue = 0 },
8170             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8171               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8172               .access = PL1_R, .type = ARM_CP_CONST,
8173               .accessfn = access_aa64_tid3,
8174               .resetvalue = cpu->isar.id_aa64dfr0 },
8175             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8176               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8177               .access = PL1_R, .type = ARM_CP_CONST,
8178               .accessfn = access_aa64_tid3,
8179               .resetvalue = cpu->isar.id_aa64dfr1 },
8180             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8181               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8182               .access = PL1_R, .type = ARM_CP_CONST,
8183               .accessfn = access_aa64_tid3,
8184               .resetvalue = 0 },
8185             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8186               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8187               .access = PL1_R, .type = ARM_CP_CONST,
8188               .accessfn = access_aa64_tid3,
8189               .resetvalue = 0 },
8190             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8191               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8192               .access = PL1_R, .type = ARM_CP_CONST,
8193               .accessfn = access_aa64_tid3,
8194               .resetvalue = cpu->id_aa64afr0 },
8195             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8196               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8197               .access = PL1_R, .type = ARM_CP_CONST,
8198               .accessfn = access_aa64_tid3,
8199               .resetvalue = cpu->id_aa64afr1 },
8200             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8201               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8202               .access = PL1_R, .type = ARM_CP_CONST,
8203               .accessfn = access_aa64_tid3,
8204               .resetvalue = 0 },
8205             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8206               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8207               .access = PL1_R, .type = ARM_CP_CONST,
8208               .accessfn = access_aa64_tid3,
8209               .resetvalue = 0 },
8210             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8211               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8212               .access = PL1_R, .type = ARM_CP_CONST,
8213               .accessfn = access_aa64_tid3,
8214               .resetvalue = cpu->isar.id_aa64isar0 },
8215             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8216               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8217               .access = PL1_R, .type = ARM_CP_CONST,
8218               .accessfn = access_aa64_tid3,
8219               .resetvalue = cpu->isar.id_aa64isar1 },
8220             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8221               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8222               .access = PL1_R, .type = ARM_CP_CONST,
8223               .accessfn = access_aa64_tid3,
8224               .resetvalue = 0 },
8225             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8226               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8227               .access = PL1_R, .type = ARM_CP_CONST,
8228               .accessfn = access_aa64_tid3,
8229               .resetvalue = 0 },
8230             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8231               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8232               .access = PL1_R, .type = ARM_CP_CONST,
8233               .accessfn = access_aa64_tid3,
8234               .resetvalue = 0 },
8235             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8236               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8237               .access = PL1_R, .type = ARM_CP_CONST,
8238               .accessfn = access_aa64_tid3,
8239               .resetvalue = 0 },
8240             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8241               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8242               .access = PL1_R, .type = ARM_CP_CONST,
8243               .accessfn = access_aa64_tid3,
8244               .resetvalue = 0 },
8245             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8246               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8247               .access = PL1_R, .type = ARM_CP_CONST,
8248               .accessfn = access_aa64_tid3,
8249               .resetvalue = 0 },
8250             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8251               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8252               .access = PL1_R, .type = ARM_CP_CONST,
8253               .accessfn = access_aa64_tid3,
8254               .resetvalue = cpu->isar.id_aa64mmfr0 },
8255             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8256               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8257               .access = PL1_R, .type = ARM_CP_CONST,
8258               .accessfn = access_aa64_tid3,
8259               .resetvalue = cpu->isar.id_aa64mmfr1 },
8260             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8261               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8262               .access = PL1_R, .type = ARM_CP_CONST,
8263               .accessfn = access_aa64_tid3,
8264               .resetvalue = cpu->isar.id_aa64mmfr2 },
8265             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8266               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8267               .access = PL1_R, .type = ARM_CP_CONST,
8268               .accessfn = access_aa64_tid3,
8269               .resetvalue = 0 },
8270             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8271               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8272               .access = PL1_R, .type = ARM_CP_CONST,
8273               .accessfn = access_aa64_tid3,
8274               .resetvalue = 0 },
8275             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8276               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8277               .access = PL1_R, .type = ARM_CP_CONST,
8278               .accessfn = access_aa64_tid3,
8279               .resetvalue = 0 },
8280             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8281               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8282               .access = PL1_R, .type = ARM_CP_CONST,
8283               .accessfn = access_aa64_tid3,
8284               .resetvalue = 0 },
8285             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8286               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8287               .access = PL1_R, .type = ARM_CP_CONST,
8288               .accessfn = access_aa64_tid3,
8289               .resetvalue = 0 },
8290             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8291               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8292               .access = PL1_R, .type = ARM_CP_CONST,
8293               .accessfn = access_aa64_tid3,
8294               .resetvalue = cpu->isar.mvfr0 },
8295             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8296               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8297               .access = PL1_R, .type = ARM_CP_CONST,
8298               .accessfn = access_aa64_tid3,
8299               .resetvalue = cpu->isar.mvfr1 },
8300             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8301               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8302               .access = PL1_R, .type = ARM_CP_CONST,
8303               .accessfn = access_aa64_tid3,
8304               .resetvalue = cpu->isar.mvfr2 },
8305             /*
8306              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8307              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8308              * as RAZ, since it is in the "reserved for future ID
8309              * registers, RAZ" part of the AArch32 encoding space.
8310              */
8311             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8312               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8313               .access = PL1_R, .type = ARM_CP_CONST,
8314               .accessfn = access_aa64_tid3,
8315               .resetvalue = 0 },
8316             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8317               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8318               .access = PL1_R, .type = ARM_CP_CONST,
8319               .accessfn = access_aa64_tid3,
8320               .resetvalue = 0 },
8321             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8322               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8323               .access = PL1_R, .type = ARM_CP_CONST,
8324               .accessfn = access_aa64_tid3,
8325               .resetvalue = 0 },
8326             /*
8327              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8328              * they're also RAZ for AArch64, and in v8 are gradually
8329              * being filled with AArch64-view-of-AArch32-ID-register
8330              * for new ID registers.
8331              */
8332             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8333               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8334               .access = PL1_R, .type = ARM_CP_CONST,
8335               .accessfn = access_aa64_tid3,
8336               .resetvalue = 0 },
8337             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8338               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8339               .access = PL1_R, .type = ARM_CP_CONST,
8340               .accessfn = access_aa64_tid3,
8341               .resetvalue = cpu->isar.id_pfr2 },
8342             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8343               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8344               .access = PL1_R, .type = ARM_CP_CONST,
8345               .accessfn = access_aa64_tid3,
8346               .resetvalue = cpu->isar.id_dfr1 },
8347             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8348               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8349               .access = PL1_R, .type = ARM_CP_CONST,
8350               .accessfn = access_aa64_tid3,
8351               .resetvalue = cpu->isar.id_mmfr5 },
8352             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8353               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8354               .access = PL1_R, .type = ARM_CP_CONST,
8355               .accessfn = access_aa64_tid3,
8356               .resetvalue = 0 },
8357             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8358               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8359               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8360               .fgt = FGT_PMCEIDN_EL0,
8361               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8362             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8363               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8364               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8365               .fgt = FGT_PMCEIDN_EL0,
8366               .resetvalue = cpu->pmceid0 },
8367             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8368               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8369               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8370               .fgt = FGT_PMCEIDN_EL0,
8371               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8372             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8373               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8374               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8375               .fgt = FGT_PMCEIDN_EL0,
8376               .resetvalue = cpu->pmceid1 },
8377         };
8378 #ifdef CONFIG_USER_ONLY
8379         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8380             { .name = "ID_AA64PFR0_EL1",
8381               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8382                                R_ID_AA64PFR0_ADVSIMD_MASK |
8383                                R_ID_AA64PFR0_SVE_MASK |
8384                                R_ID_AA64PFR0_DIT_MASK,
8385               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8386                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8387             { .name = "ID_AA64PFR1_EL1",
8388               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8389                                R_ID_AA64PFR1_SSBS_MASK |
8390                                R_ID_AA64PFR1_MTE_MASK |
8391                                R_ID_AA64PFR1_SME_MASK },
8392             { .name = "ID_AA64PFR*_EL1_RESERVED",
8393               .is_glob = true },
8394             { .name = "ID_AA64ZFR0_EL1",
8395               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8396                                R_ID_AA64ZFR0_AES_MASK |
8397                                R_ID_AA64ZFR0_BITPERM_MASK |
8398                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8399                                R_ID_AA64ZFR0_SHA3_MASK |
8400                                R_ID_AA64ZFR0_SM4_MASK |
8401                                R_ID_AA64ZFR0_I8MM_MASK |
8402                                R_ID_AA64ZFR0_F32MM_MASK |
8403                                R_ID_AA64ZFR0_F64MM_MASK },
8404             { .name = "ID_AA64SMFR0_EL1",
8405               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8406                                R_ID_AA64SMFR0_B16F32_MASK |
8407                                R_ID_AA64SMFR0_F16F32_MASK |
8408                                R_ID_AA64SMFR0_I8I32_MASK |
8409                                R_ID_AA64SMFR0_F64F64_MASK |
8410                                R_ID_AA64SMFR0_I16I64_MASK |
8411                                R_ID_AA64SMFR0_FA64_MASK },
8412             { .name = "ID_AA64MMFR0_EL1",
8413               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8414               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8415                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8416             { .name = "ID_AA64MMFR1_EL1",
8417               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8418             { .name = "ID_AA64MMFR2_EL1",
8419               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8420             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8421               .is_glob = true },
8422             { .name = "ID_AA64DFR0_EL1",
8423               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8424             { .name = "ID_AA64DFR1_EL1" },
8425             { .name = "ID_AA64DFR*_EL1_RESERVED",
8426               .is_glob = true },
8427             { .name = "ID_AA64AFR*",
8428               .is_glob = true },
8429             { .name = "ID_AA64ISAR0_EL1",
8430               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8431                                R_ID_AA64ISAR0_SHA1_MASK |
8432                                R_ID_AA64ISAR0_SHA2_MASK |
8433                                R_ID_AA64ISAR0_CRC32_MASK |
8434                                R_ID_AA64ISAR0_ATOMIC_MASK |
8435                                R_ID_AA64ISAR0_RDM_MASK |
8436                                R_ID_AA64ISAR0_SHA3_MASK |
8437                                R_ID_AA64ISAR0_SM3_MASK |
8438                                R_ID_AA64ISAR0_SM4_MASK |
8439                                R_ID_AA64ISAR0_DP_MASK |
8440                                R_ID_AA64ISAR0_FHM_MASK |
8441                                R_ID_AA64ISAR0_TS_MASK |
8442                                R_ID_AA64ISAR0_RNDR_MASK },
8443             { .name = "ID_AA64ISAR1_EL1",
8444               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8445                                R_ID_AA64ISAR1_APA_MASK |
8446                                R_ID_AA64ISAR1_API_MASK |
8447                                R_ID_AA64ISAR1_JSCVT_MASK |
8448                                R_ID_AA64ISAR1_FCMA_MASK |
8449                                R_ID_AA64ISAR1_LRCPC_MASK |
8450                                R_ID_AA64ISAR1_GPA_MASK |
8451                                R_ID_AA64ISAR1_GPI_MASK |
8452                                R_ID_AA64ISAR1_FRINTTS_MASK |
8453                                R_ID_AA64ISAR1_SB_MASK |
8454                                R_ID_AA64ISAR1_BF16_MASK |
8455                                R_ID_AA64ISAR1_DGH_MASK |
8456                                R_ID_AA64ISAR1_I8MM_MASK },
8457             { .name = "ID_AA64ISAR2_EL1",
8458               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8459                                R_ID_AA64ISAR2_RPRES_MASK |
8460                                R_ID_AA64ISAR2_GPA3_MASK |
8461                                R_ID_AA64ISAR2_APA3_MASK },
8462             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8463               .is_glob = true },
8464         };
8465         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8466 #endif
8467         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8468         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8469             !arm_feature(env, ARM_FEATURE_EL2)) {
8470             ARMCPRegInfo rvbar = {
8471                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8472                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8473                 .access = PL1_R,
8474                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8475             };
8476             define_one_arm_cp_reg(cpu, &rvbar);
8477         }
8478         define_arm_cp_regs(cpu, v8_idregs);
8479         define_arm_cp_regs(cpu, v8_cp_reginfo);
8480 
8481         for (i = 4; i < 16; i++) {
8482             /*
8483              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8484              * For pre-v8 cores there are RAZ patterns for these in
8485              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8486              * v8 extends the "must RAZ" part of the ID register space
8487              * to also cover c0, 0, c{8-15}, {0-7}.
8488              * These are STATE_AA32 because in the AArch64 sysreg space
8489              * c4-c7 is where the AArch64 ID registers live (and we've
8490              * already defined those in v8_idregs[]), and c8-c15 are not
8491              * "must RAZ" for AArch64.
8492              */
8493             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8494             ARMCPRegInfo v8_aa32_raz_idregs = {
8495                 .name = name,
8496                 .state = ARM_CP_STATE_AA32,
8497                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8498                 .access = PL1_R, .type = ARM_CP_CONST,
8499                 .accessfn = access_aa64_tid3,
8500                 .resetvalue = 0 };
8501             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8502         }
8503     }
8504 
8505     /*
8506      * Register the base EL2 cpregs.
8507      * Pre v8, these registers are implemented only as part of the
8508      * Virtualization Extensions (EL2 present).  Beginning with v8,
8509      * if EL2 is missing but EL3 is enabled, mostly these become
8510      * RES0 from EL3, with some specific exceptions.
8511      */
8512     if (arm_feature(env, ARM_FEATURE_EL2)
8513         || (arm_feature(env, ARM_FEATURE_EL3)
8514             && arm_feature(env, ARM_FEATURE_V8))) {
8515         uint64_t vmpidr_def = mpidr_read_val(env);
8516         ARMCPRegInfo vpidr_regs[] = {
8517             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8518               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8519               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8520               .resetvalue = cpu->midr,
8521               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8522               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8523             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8524               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8525               .access = PL2_RW, .resetvalue = cpu->midr,
8526               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8527               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8528             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8529               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8530               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8531               .resetvalue = vmpidr_def,
8532               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8533               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8534             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8535               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8536               .access = PL2_RW, .resetvalue = vmpidr_def,
8537               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8538               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8539         };
8540         /*
8541          * The only field of MDCR_EL2 that has a defined architectural reset
8542          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8543          */
8544         ARMCPRegInfo mdcr_el2 = {
8545             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8546             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8547             .writefn = mdcr_el2_write,
8548             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8549             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8550         };
8551         define_one_arm_cp_reg(cpu, &mdcr_el2);
8552         define_arm_cp_regs(cpu, vpidr_regs);
8553         define_arm_cp_regs(cpu, el2_cp_reginfo);
8554         if (arm_feature(env, ARM_FEATURE_V8)) {
8555             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8556         }
8557         if (cpu_isar_feature(aa64_sel2, cpu)) {
8558             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8559         }
8560         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8561         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8562             ARMCPRegInfo rvbar[] = {
8563                 {
8564                     .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8565                     .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8566                     .access = PL2_R,
8567                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8568                 },
8569                 {   .name = "RVBAR", .type = ARM_CP_ALIAS,
8570                     .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8571                     .access = PL2_R,
8572                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8573                 },
8574             };
8575             define_arm_cp_regs(cpu, rvbar);
8576         }
8577     }
8578 
8579     /* Register the base EL3 cpregs. */
8580     if (arm_feature(env, ARM_FEATURE_EL3)) {
8581         define_arm_cp_regs(cpu, el3_cp_reginfo);
8582         ARMCPRegInfo el3_regs[] = {
8583             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8584               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8585               .access = PL3_R,
8586               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8587             },
8588             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8589               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8590               .access = PL3_RW,
8591               .raw_writefn = raw_write, .writefn = sctlr_write,
8592               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8593               .resetvalue = cpu->reset_sctlr },
8594         };
8595 
8596         define_arm_cp_regs(cpu, el3_regs);
8597     }
8598     /*
8599      * The behaviour of NSACR is sufficiently various that we don't
8600      * try to describe it in a single reginfo:
8601      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8602      *     reads as constant 0xc00 from NS EL1 and NS EL2
8603      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8604      *  if v7 without EL3, register doesn't exist
8605      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8606      */
8607     if (arm_feature(env, ARM_FEATURE_EL3)) {
8608         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8609             static const ARMCPRegInfo nsacr = {
8610                 .name = "NSACR", .type = ARM_CP_CONST,
8611                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8612                 .access = PL1_RW, .accessfn = nsacr_access,
8613                 .resetvalue = 0xc00
8614             };
8615             define_one_arm_cp_reg(cpu, &nsacr);
8616         } else {
8617             static const ARMCPRegInfo nsacr = {
8618                 .name = "NSACR",
8619                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8620                 .access = PL3_RW | PL1_R,
8621                 .resetvalue = 0,
8622                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8623             };
8624             define_one_arm_cp_reg(cpu, &nsacr);
8625         }
8626     } else {
8627         if (arm_feature(env, ARM_FEATURE_V8)) {
8628             static const ARMCPRegInfo nsacr = {
8629                 .name = "NSACR", .type = ARM_CP_CONST,
8630                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8631                 .access = PL1_R,
8632                 .resetvalue = 0xc00
8633             };
8634             define_one_arm_cp_reg(cpu, &nsacr);
8635         }
8636     }
8637 
8638     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8639         if (arm_feature(env, ARM_FEATURE_V6)) {
8640             /* PMSAv6 not implemented */
8641             assert(arm_feature(env, ARM_FEATURE_V7));
8642             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8643             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8644         } else {
8645             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8646         }
8647     } else {
8648         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8649         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8650         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8651         if (cpu_isar_feature(aa32_hpd, cpu)) {
8652             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8653         }
8654     }
8655     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8656         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8657     }
8658     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8659         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8660     }
8661     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8662         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8663     }
8664     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8665         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8666     }
8667     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8668         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8669     }
8670     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8671         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8672     }
8673     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8674         define_arm_cp_regs(cpu, omap_cp_reginfo);
8675     }
8676     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8677         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8678     }
8679     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8680         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8681     }
8682     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8683         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8684     }
8685     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8686         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8687     }
8688     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8689         define_arm_cp_regs(cpu, jazelle_regs);
8690     }
8691     /*
8692      * Slightly awkwardly, the OMAP and StrongARM cores need all of
8693      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8694      * be read-only (ie write causes UNDEF exception).
8695      */
8696     {
8697         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8698             /*
8699              * Pre-v8 MIDR space.
8700              * Note that the MIDR isn't a simple constant register because
8701              * of the TI925 behaviour where writes to another register can
8702              * cause the MIDR value to change.
8703              *
8704              * Unimplemented registers in the c15 0 0 0 space default to
8705              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8706              * and friends override accordingly.
8707              */
8708             { .name = "MIDR",
8709               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8710               .access = PL1_R, .resetvalue = cpu->midr,
8711               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8712               .readfn = midr_read,
8713               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8714               .type = ARM_CP_OVERRIDE },
8715             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8716             { .name = "DUMMY",
8717               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8718               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8719             { .name = "DUMMY",
8720               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8721               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8722             { .name = "DUMMY",
8723               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8724               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8725             { .name = "DUMMY",
8726               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8727               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8728             { .name = "DUMMY",
8729               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8730               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8731         };
8732         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8733             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8734               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8735               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8736               .fgt = FGT_MIDR_EL1,
8737               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8738               .readfn = midr_read },
8739             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8740             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8741               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8742               .access = PL1_R, .resetvalue = cpu->midr },
8743             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8744               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8745               .access = PL1_R,
8746               .accessfn = access_aa64_tid1,
8747               .fgt = FGT_REVIDR_EL1,
8748               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8749         };
8750         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8751             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8752             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8753             .access = PL1_R, .resetvalue = cpu->midr
8754         };
8755         ARMCPRegInfo id_cp_reginfo[] = {
8756             /* These are common to v8 and pre-v8 */
8757             { .name = "CTR",
8758               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8759               .access = PL1_R, .accessfn = ctr_el0_access,
8760               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8761             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8762               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8763               .access = PL0_R, .accessfn = ctr_el0_access,
8764               .fgt = FGT_CTR_EL0,
8765               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8766             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8767             { .name = "TCMTR",
8768               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8769               .access = PL1_R,
8770               .accessfn = access_aa32_tid1,
8771               .type = ARM_CP_CONST, .resetvalue = 0 },
8772         };
8773         /* TLBTR is specific to VMSA */
8774         ARMCPRegInfo id_tlbtr_reginfo = {
8775               .name = "TLBTR",
8776               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8777               .access = PL1_R,
8778               .accessfn = access_aa32_tid1,
8779               .type = ARM_CP_CONST, .resetvalue = 0,
8780         };
8781         /* MPUIR is specific to PMSA V6+ */
8782         ARMCPRegInfo id_mpuir_reginfo = {
8783               .name = "MPUIR",
8784               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8785               .access = PL1_R, .type = ARM_CP_CONST,
8786               .resetvalue = cpu->pmsav7_dregion << 8
8787         };
8788         /* HMPUIR is specific to PMSA V8 */
8789         ARMCPRegInfo id_hmpuir_reginfo = {
8790             .name = "HMPUIR",
8791             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8792             .access = PL2_R, .type = ARM_CP_CONST,
8793             .resetvalue = cpu->pmsav8r_hdregion
8794         };
8795         static const ARMCPRegInfo crn0_wi_reginfo = {
8796             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8797             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8798             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8799         };
8800 #ifdef CONFIG_USER_ONLY
8801         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8802             { .name = "MIDR_EL1",
8803               .exported_bits = R_MIDR_EL1_REVISION_MASK |
8804                                R_MIDR_EL1_PARTNUM_MASK |
8805                                R_MIDR_EL1_ARCHITECTURE_MASK |
8806                                R_MIDR_EL1_VARIANT_MASK |
8807                                R_MIDR_EL1_IMPLEMENTER_MASK },
8808             { .name = "REVIDR_EL1" },
8809         };
8810         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8811 #endif
8812         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8813             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8814             size_t i;
8815             /*
8816              * Register the blanket "writes ignored" value first to cover the
8817              * whole space. Then update the specific ID registers to allow write
8818              * access, so that they ignore writes rather than causing them to
8819              * UNDEF.
8820              */
8821             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8822             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8823                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8824             }
8825             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8826                 id_cp_reginfo[i].access = PL1_RW;
8827             }
8828             id_mpuir_reginfo.access = PL1_RW;
8829             id_tlbtr_reginfo.access = PL1_RW;
8830         }
8831         if (arm_feature(env, ARM_FEATURE_V8)) {
8832             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8833             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8834                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8835             }
8836         } else {
8837             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8838         }
8839         define_arm_cp_regs(cpu, id_cp_reginfo);
8840         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8841             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8842         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8843                    arm_feature(env, ARM_FEATURE_V8)) {
8844             uint32_t i = 0;
8845             char *tmp_string;
8846 
8847             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8848             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8849             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8850 
8851             /* Register alias is only valid for first 32 indexes */
8852             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8853                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8854                 uint8_t opc1 = extract32(i, 4, 1);
8855                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8856 
8857                 tmp_string = g_strdup_printf("PRBAR%u", i);
8858                 ARMCPRegInfo tmp_prbarn_reginfo = {
8859                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8860                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8861                     .access = PL1_RW, .resetvalue = 0,
8862                     .accessfn = access_tvm_trvm,
8863                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8864                 };
8865                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8866                 g_free(tmp_string);
8867 
8868                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8869                 tmp_string = g_strdup_printf("PRLAR%u", i);
8870                 ARMCPRegInfo tmp_prlarn_reginfo = {
8871                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8872                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8873                     .access = PL1_RW, .resetvalue = 0,
8874                     .accessfn = access_tvm_trvm,
8875                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8876                 };
8877                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8878                 g_free(tmp_string);
8879             }
8880 
8881             /* Register alias is only valid for first 32 indexes */
8882             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8883                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8884                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8885                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8886 
8887                 tmp_string = g_strdup_printf("HPRBAR%u", i);
8888                 ARMCPRegInfo tmp_hprbarn_reginfo = {
8889                     .name = tmp_string,
8890                     .type = ARM_CP_NO_RAW,
8891                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8892                     .access = PL2_RW, .resetvalue = 0,
8893                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8894                 };
8895                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8896                 g_free(tmp_string);
8897 
8898                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8899                 tmp_string = g_strdup_printf("HPRLAR%u", i);
8900                 ARMCPRegInfo tmp_hprlarn_reginfo = {
8901                     .name = tmp_string,
8902                     .type = ARM_CP_NO_RAW,
8903                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8904                     .access = PL2_RW, .resetvalue = 0,
8905                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8906                 };
8907                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8908                 g_free(tmp_string);
8909             }
8910         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8911             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8912         }
8913     }
8914 
8915     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8916         ARMCPRegInfo mpidr_cp_reginfo[] = {
8917             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8918               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8919               .fgt = FGT_MPIDR_EL1,
8920               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8921         };
8922 #ifdef CONFIG_USER_ONLY
8923         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8924             { .name = "MPIDR_EL1",
8925               .fixed_bits = 0x0000000080000000 },
8926         };
8927         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8928 #endif
8929         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8930     }
8931 
8932     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8933         ARMCPRegInfo auxcr_reginfo[] = {
8934             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8935               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8936               .access = PL1_RW, .accessfn = access_tacr,
8937               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8938             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8939               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8940               .access = PL2_RW, .type = ARM_CP_CONST,
8941               .resetvalue = 0 },
8942             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8943               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8944               .access = PL3_RW, .type = ARM_CP_CONST,
8945               .resetvalue = 0 },
8946         };
8947         define_arm_cp_regs(cpu, auxcr_reginfo);
8948         if (cpu_isar_feature(aa32_ac2, cpu)) {
8949             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8950         }
8951     }
8952 
8953     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8954         /*
8955          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8956          * There are two flavours:
8957          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8958          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8959          *      32-bit register visible to AArch32 at a different encoding
8960          *      to the "flavour 1" register and with the bits rearranged to
8961          *      be able to squash a 64-bit address into the 32-bit view.
8962          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8963          * in future if we support AArch32-only configs of some of the
8964          * AArch64 cores we might need to add a specific feature flag
8965          * to indicate cores with "flavour 2" CBAR.
8966          */
8967         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8968             /* 32 bit view is [31:18] 0...0 [43:32]. */
8969             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8970                 | extract64(cpu->reset_cbar, 32, 12);
8971             ARMCPRegInfo cbar_reginfo[] = {
8972                 { .name = "CBAR",
8973                   .type = ARM_CP_CONST,
8974                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8975                   .access = PL1_R, .resetvalue = cbar32 },
8976                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8977                   .type = ARM_CP_CONST,
8978                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8979                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8980             };
8981             /* We don't implement a r/w 64 bit CBAR currently */
8982             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8983             define_arm_cp_regs(cpu, cbar_reginfo);
8984         } else {
8985             ARMCPRegInfo cbar = {
8986                 .name = "CBAR",
8987                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8988                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
8989                 .fieldoffset = offsetof(CPUARMState,
8990                                         cp15.c15_config_base_address)
8991             };
8992             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8993                 cbar.access = PL1_R;
8994                 cbar.fieldoffset = 0;
8995                 cbar.type = ARM_CP_CONST;
8996             }
8997             define_one_arm_cp_reg(cpu, &cbar);
8998         }
8999     }
9000 
9001     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9002         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9003             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9004               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9005               .access = PL1_RW, .writefn = vbar_write,
9006               .fgt = FGT_VBAR_EL1,
9007               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9008                                      offsetof(CPUARMState, cp15.vbar_ns) },
9009               .resetvalue = 0 },
9010         };
9011         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9012     }
9013 
9014     /* Generic registers whose values depend on the implementation */
9015     {
9016         ARMCPRegInfo sctlr = {
9017             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9018             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9019             .access = PL1_RW, .accessfn = access_tvm_trvm,
9020             .fgt = FGT_SCTLR_EL1,
9021             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9022                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9023             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9024             .raw_writefn = raw_write,
9025         };
9026         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9027             /*
9028              * Normally we would always end the TB on an SCTLR write, but Linux
9029              * arch/arm/mach-pxa/sleep.S expects two instructions following
9030              * an MMU enable to execute from cache.  Imitate this behaviour.
9031              */
9032             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9033         }
9034         define_one_arm_cp_reg(cpu, &sctlr);
9035 
9036         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9037             arm_feature(env, ARM_FEATURE_V8)) {
9038             ARMCPRegInfo vsctlr = {
9039                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9040                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9041                 .access = PL2_RW, .resetvalue = 0x0,
9042                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9043             };
9044             define_one_arm_cp_reg(cpu, &vsctlr);
9045         }
9046     }
9047 
9048     if (cpu_isar_feature(aa64_lor, cpu)) {
9049         define_arm_cp_regs(cpu, lor_reginfo);
9050     }
9051     if (cpu_isar_feature(aa64_pan, cpu)) {
9052         define_one_arm_cp_reg(cpu, &pan_reginfo);
9053     }
9054 #ifndef CONFIG_USER_ONLY
9055     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9056         define_arm_cp_regs(cpu, ats1e1_reginfo);
9057     }
9058     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9059         define_arm_cp_regs(cpu, ats1cp_reginfo);
9060     }
9061 #endif
9062     if (cpu_isar_feature(aa64_uao, cpu)) {
9063         define_one_arm_cp_reg(cpu, &uao_reginfo);
9064     }
9065 
9066     if (cpu_isar_feature(aa64_dit, cpu)) {
9067         define_one_arm_cp_reg(cpu, &dit_reginfo);
9068     }
9069     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9070         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9071     }
9072     if (cpu_isar_feature(any_ras, cpu)) {
9073         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9074     }
9075 
9076     if (cpu_isar_feature(aa64_vh, cpu) ||
9077         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9078         define_one_arm_cp_reg(cpu, &contextidr_el2);
9079     }
9080     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9081         define_arm_cp_regs(cpu, vhe_reginfo);
9082     }
9083 
9084     if (cpu_isar_feature(aa64_sve, cpu)) {
9085         define_arm_cp_regs(cpu, zcr_reginfo);
9086     }
9087 
9088     if (cpu_isar_feature(aa64_hcx, cpu)) {
9089         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9090     }
9091 
9092 #ifdef TARGET_AARCH64
9093     if (cpu_isar_feature(aa64_sme, cpu)) {
9094         define_arm_cp_regs(cpu, sme_reginfo);
9095     }
9096     if (cpu_isar_feature(aa64_pauth, cpu)) {
9097         define_arm_cp_regs(cpu, pauth_reginfo);
9098     }
9099     if (cpu_isar_feature(aa64_rndr, cpu)) {
9100         define_arm_cp_regs(cpu, rndr_reginfo);
9101     }
9102     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9103         define_arm_cp_regs(cpu, tlbirange_reginfo);
9104     }
9105     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9106         define_arm_cp_regs(cpu, tlbios_reginfo);
9107     }
9108 #ifndef CONFIG_USER_ONLY
9109     /* Data Cache clean instructions up to PoP */
9110     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9111         define_one_arm_cp_reg(cpu, dcpop_reg);
9112 
9113         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9114             define_one_arm_cp_reg(cpu, dcpodp_reg);
9115         }
9116     }
9117 #endif /*CONFIG_USER_ONLY*/
9118 
9119     /*
9120      * If full MTE is enabled, add all of the system registers.
9121      * If only "instructions available at EL0" are enabled,
9122      * then define only a RAZ/WI version of PSTATE.TCO.
9123      */
9124     if (cpu_isar_feature(aa64_mte, cpu)) {
9125         define_arm_cp_regs(cpu, mte_reginfo);
9126         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9127     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9128         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9129         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9130     }
9131 
9132     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9133         define_arm_cp_regs(cpu, scxtnum_reginfo);
9134     }
9135 
9136     if (cpu_isar_feature(aa64_fgt, cpu)) {
9137         define_arm_cp_regs(cpu, fgt_reginfo);
9138     }
9139 #endif
9140 
9141     if (cpu_isar_feature(any_predinv, cpu)) {
9142         define_arm_cp_regs(cpu, predinv_reginfo);
9143     }
9144 
9145     if (cpu_isar_feature(any_ccidx, cpu)) {
9146         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9147     }
9148 
9149 #ifndef CONFIG_USER_ONLY
9150     /*
9151      * Register redirections and aliases must be done last,
9152      * after the registers from the other extensions have been defined.
9153      */
9154     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9155         define_arm_vh_e2h_redirects_aliases(cpu);
9156     }
9157 #endif
9158 }
9159 
9160 /* Sort alphabetically by type name, except for "any". */
9161 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9162 {
9163     ObjectClass *class_a = (ObjectClass *)a;
9164     ObjectClass *class_b = (ObjectClass *)b;
9165     const char *name_a, *name_b;
9166 
9167     name_a = object_class_get_name(class_a);
9168     name_b = object_class_get_name(class_b);
9169     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9170         return 1;
9171     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9172         return -1;
9173     } else {
9174         return strcmp(name_a, name_b);
9175     }
9176 }
9177 
9178 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9179 {
9180     ObjectClass *oc = data;
9181     CPUClass *cc = CPU_CLASS(oc);
9182     const char *typename;
9183     char *name;
9184 
9185     typename = object_class_get_name(oc);
9186     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9187     if (cc->deprecation_note) {
9188         qemu_printf("  %s (deprecated)\n", name);
9189     } else {
9190         qemu_printf("  %s\n", name);
9191     }
9192     g_free(name);
9193 }
9194 
9195 void arm_cpu_list(void)
9196 {
9197     GSList *list;
9198 
9199     list = object_class_get_list(TYPE_ARM_CPU, false);
9200     list = g_slist_sort(list, arm_cpu_list_compare);
9201     qemu_printf("Available CPUs:\n");
9202     g_slist_foreach(list, arm_cpu_list_entry, NULL);
9203     g_slist_free(list);
9204 }
9205 
9206 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
9207 {
9208     ObjectClass *oc = data;
9209     CpuDefinitionInfoList **cpu_list = user_data;
9210     CpuDefinitionInfo *info;
9211     const char *typename;
9212 
9213     typename = object_class_get_name(oc);
9214     info = g_malloc0(sizeof(*info));
9215     info->name = g_strndup(typename,
9216                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
9217     info->q_typename = g_strdup(typename);
9218 
9219     QAPI_LIST_PREPEND(*cpu_list, info);
9220 }
9221 
9222 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
9223 {
9224     CpuDefinitionInfoList *cpu_list = NULL;
9225     GSList *list;
9226 
9227     list = object_class_get_list(TYPE_ARM_CPU, false);
9228     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
9229     g_slist_free(list);
9230 
9231     return cpu_list;
9232 }
9233 
9234 /*
9235  * Private utility function for define_one_arm_cp_reg_with_opaque():
9236  * add a single reginfo struct to the hash table.
9237  */
9238 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9239                                    void *opaque, CPState state,
9240                                    CPSecureState secstate,
9241                                    int crm, int opc1, int opc2,
9242                                    const char *name)
9243 {
9244     CPUARMState *env = &cpu->env;
9245     uint32_t key;
9246     ARMCPRegInfo *r2;
9247     bool is64 = r->type & ARM_CP_64BIT;
9248     bool ns = secstate & ARM_CP_SECSTATE_NS;
9249     int cp = r->cp;
9250     size_t name_len;
9251     bool make_const;
9252 
9253     switch (state) {
9254     case ARM_CP_STATE_AA32:
9255         /* We assume it is a cp15 register if the .cp field is left unset. */
9256         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9257             cp = 15;
9258         }
9259         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9260         break;
9261     case ARM_CP_STATE_AA64:
9262         /*
9263          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9264          * cp == 0 as equivalent to the value for "standard guest-visible
9265          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9266          * in their AArch64 view (the .cp value may be non-zero for the
9267          * benefit of the AArch32 view).
9268          */
9269         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9270             cp = CP_REG_ARM64_SYSREG_CP;
9271         }
9272         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9273         break;
9274     default:
9275         g_assert_not_reached();
9276     }
9277 
9278     /* Overriding of an existing definition must be explicitly requested. */
9279     if (!(r->type & ARM_CP_OVERRIDE)) {
9280         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9281         if (oldreg) {
9282             assert(oldreg->type & ARM_CP_OVERRIDE);
9283         }
9284     }
9285 
9286     /*
9287      * Eliminate registers that are not present because the EL is missing.
9288      * Doing this here makes it easier to put all registers for a given
9289      * feature into the same ARMCPRegInfo array and define them all at once.
9290      */
9291     make_const = false;
9292     if (arm_feature(env, ARM_FEATURE_EL3)) {
9293         /*
9294          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9295          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9296          */
9297         int min_el = ctz32(r->access) / 2;
9298         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9299             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9300                 return;
9301             }
9302             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9303         }
9304     } else {
9305         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9306                                  ? PL2_RW : PL1_RW);
9307         if ((r->access & max_el) == 0) {
9308             return;
9309         }
9310     }
9311 
9312     /* Combine cpreg and name into one allocation. */
9313     name_len = strlen(name) + 1;
9314     r2 = g_malloc(sizeof(*r2) + name_len);
9315     *r2 = *r;
9316     r2->name = memcpy(r2 + 1, name, name_len);
9317 
9318     /*
9319      * Update fields to match the instantiation, overwiting wildcards
9320      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9321      */
9322     r2->cp = cp;
9323     r2->crm = crm;
9324     r2->opc1 = opc1;
9325     r2->opc2 = opc2;
9326     r2->state = state;
9327     r2->secure = secstate;
9328     if (opaque) {
9329         r2->opaque = opaque;
9330     }
9331 
9332     if (make_const) {
9333         /* This should not have been a very special register to begin. */
9334         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9335         assert(old_special == 0 || old_special == ARM_CP_NOP);
9336         /*
9337          * Set the special function to CONST, retaining the other flags.
9338          * This is important for e.g. ARM_CP_SVE so that we still
9339          * take the SVE trap if CPTR_EL3.EZ == 0.
9340          */
9341         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9342         /*
9343          * Usually, these registers become RES0, but there are a few
9344          * special cases like VPIDR_EL2 which have a constant non-zero
9345          * value with writes ignored.
9346          */
9347         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9348             r2->resetvalue = 0;
9349         }
9350         /*
9351          * ARM_CP_CONST has precedence, so removing the callbacks and
9352          * offsets are not strictly necessary, but it is potentially
9353          * less confusing to debug later.
9354          */
9355         r2->readfn = NULL;
9356         r2->writefn = NULL;
9357         r2->raw_readfn = NULL;
9358         r2->raw_writefn = NULL;
9359         r2->resetfn = NULL;
9360         r2->fieldoffset = 0;
9361         r2->bank_fieldoffsets[0] = 0;
9362         r2->bank_fieldoffsets[1] = 0;
9363     } else {
9364         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9365 
9366         if (isbanked) {
9367             /*
9368              * Register is banked (using both entries in array).
9369              * Overwriting fieldoffset as the array is only used to define
9370              * banked registers but later only fieldoffset is used.
9371              */
9372             r2->fieldoffset = r->bank_fieldoffsets[ns];
9373         }
9374         if (state == ARM_CP_STATE_AA32) {
9375             if (isbanked) {
9376                 /*
9377                  * If the register is banked then we don't need to migrate or
9378                  * reset the 32-bit instance in certain cases:
9379                  *
9380                  * 1) If the register has both 32-bit and 64-bit instances
9381                  *    then we can count on the 64-bit instance taking care
9382                  *    of the non-secure bank.
9383                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9384                  *    version taking care of the secure bank.  This requires
9385                  *    that separate 32 and 64-bit definitions are provided.
9386                  */
9387                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9388                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9389                     r2->type |= ARM_CP_ALIAS;
9390                 }
9391             } else if ((secstate != r->secure) && !ns) {
9392                 /*
9393                  * The register is not banked so we only want to allow
9394                  * migration of the non-secure instance.
9395                  */
9396                 r2->type |= ARM_CP_ALIAS;
9397             }
9398 
9399             if (HOST_BIG_ENDIAN &&
9400                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9401                 r2->fieldoffset += sizeof(uint32_t);
9402             }
9403         }
9404     }
9405 
9406     /*
9407      * By convention, for wildcarded registers only the first
9408      * entry is used for migration; the others are marked as
9409      * ALIAS so we don't try to transfer the register
9410      * multiple times. Special registers (ie NOP/WFI) are
9411      * never migratable and not even raw-accessible.
9412      */
9413     if (r2->type & ARM_CP_SPECIAL_MASK) {
9414         r2->type |= ARM_CP_NO_RAW;
9415     }
9416     if (((r->crm == CP_ANY) && crm != 0) ||
9417         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9418         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9419         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9420     }
9421 
9422     /*
9423      * Check that raw accesses are either forbidden or handled. Note that
9424      * we can't assert this earlier because the setup of fieldoffset for
9425      * banked registers has to be done first.
9426      */
9427     if (!(r2->type & ARM_CP_NO_RAW)) {
9428         assert(!raw_accessors_invalid(r2));
9429     }
9430 
9431     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9432 }
9433 
9434 
9435 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9436                                        const ARMCPRegInfo *r, void *opaque)
9437 {
9438     /*
9439      * Define implementations of coprocessor registers.
9440      * We store these in a hashtable because typically
9441      * there are less than 150 registers in a space which
9442      * is 16*16*16*8*8 = 262144 in size.
9443      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9444      * If a register is defined twice then the second definition is
9445      * used, so this can be used to define some generic registers and
9446      * then override them with implementation specific variations.
9447      * At least one of the original and the second definition should
9448      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9449      * against accidental use.
9450      *
9451      * The state field defines whether the register is to be
9452      * visible in the AArch32 or AArch64 execution state. If the
9453      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9454      * reginfo structure for the AArch32 view, which sees the lower
9455      * 32 bits of the 64 bit register.
9456      *
9457      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9458      * be wildcarded. AArch64 registers are always considered to be 64
9459      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9460      * the register, if any.
9461      */
9462     int crm, opc1, opc2;
9463     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9464     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9465     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9466     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9467     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9468     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9469     CPState state;
9470 
9471     /* 64 bit registers have only CRm and Opc1 fields */
9472     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9473     /* op0 only exists in the AArch64 encodings */
9474     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9475     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9476     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9477     /*
9478      * This API is only for Arm's system coprocessors (14 and 15) or
9479      * (M-profile or v7A-and-earlier only) for implementation defined
9480      * coprocessors in the range 0..7.  Our decode assumes this, since
9481      * 8..13 can be used for other insns including VFP and Neon. See
9482      * valid_cp() in translate.c.  Assert here that we haven't tried
9483      * to use an invalid coprocessor number.
9484      */
9485     switch (r->state) {
9486     case ARM_CP_STATE_BOTH:
9487         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9488         if (r->cp == 0) {
9489             break;
9490         }
9491         /* fall through */
9492     case ARM_CP_STATE_AA32:
9493         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9494             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9495             assert(r->cp >= 14 && r->cp <= 15);
9496         } else {
9497             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9498         }
9499         break;
9500     case ARM_CP_STATE_AA64:
9501         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9502         break;
9503     default:
9504         g_assert_not_reached();
9505     }
9506     /*
9507      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9508      * encodes a minimum access level for the register. We roll this
9509      * runtime check into our general permission check code, so check
9510      * here that the reginfo's specified permissions are strict enough
9511      * to encompass the generic architectural permission check.
9512      */
9513     if (r->state != ARM_CP_STATE_AA32) {
9514         CPAccessRights mask;
9515         switch (r->opc1) {
9516         case 0:
9517             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9518             mask = PL0U_R | PL1_RW;
9519             break;
9520         case 1: case 2:
9521             /* min_EL EL1 */
9522             mask = PL1_RW;
9523             break;
9524         case 3:
9525             /* min_EL EL0 */
9526             mask = PL0_RW;
9527             break;
9528         case 4:
9529         case 5:
9530             /* min_EL EL2 */
9531             mask = PL2_RW;
9532             break;
9533         case 6:
9534             /* min_EL EL3 */
9535             mask = PL3_RW;
9536             break;
9537         case 7:
9538             /* min_EL EL1, secure mode only (we don't check the latter) */
9539             mask = PL1_RW;
9540             break;
9541         default:
9542             /* broken reginfo with out-of-range opc1 */
9543             g_assert_not_reached();
9544         }
9545         /* assert our permissions are not too lax (stricter is fine) */
9546         assert((r->access & ~mask) == 0);
9547     }
9548 
9549     /*
9550      * Check that the register definition has enough info to handle
9551      * reads and writes if they are permitted.
9552      */
9553     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9554         if (r->access & PL3_R) {
9555             assert((r->fieldoffset ||
9556                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9557                    r->readfn);
9558         }
9559         if (r->access & PL3_W) {
9560             assert((r->fieldoffset ||
9561                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9562                    r->writefn);
9563         }
9564     }
9565 
9566     for (crm = crmmin; crm <= crmmax; crm++) {
9567         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9568             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9569                 for (state = ARM_CP_STATE_AA32;
9570                      state <= ARM_CP_STATE_AA64; state++) {
9571                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9572                         continue;
9573                     }
9574                     if (state == ARM_CP_STATE_AA32) {
9575                         /*
9576                          * Under AArch32 CP registers can be common
9577                          * (same for secure and non-secure world) or banked.
9578                          */
9579                         char *name;
9580 
9581                         switch (r->secure) {
9582                         case ARM_CP_SECSTATE_S:
9583                         case ARM_CP_SECSTATE_NS:
9584                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9585                                                    r->secure, crm, opc1, opc2,
9586                                                    r->name);
9587                             break;
9588                         case ARM_CP_SECSTATE_BOTH:
9589                             name = g_strdup_printf("%s_S", r->name);
9590                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9591                                                    ARM_CP_SECSTATE_S,
9592                                                    crm, opc1, opc2, name);
9593                             g_free(name);
9594                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9595                                                    ARM_CP_SECSTATE_NS,
9596                                                    crm, opc1, opc2, r->name);
9597                             break;
9598                         default:
9599                             g_assert_not_reached();
9600                         }
9601                     } else {
9602                         /*
9603                          * AArch64 registers get mapped to non-secure instance
9604                          * of AArch32
9605                          */
9606                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9607                                                ARM_CP_SECSTATE_NS,
9608                                                crm, opc1, opc2, r->name);
9609                     }
9610                 }
9611             }
9612         }
9613     }
9614 }
9615 
9616 /* Define a whole list of registers */
9617 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9618                                         void *opaque, size_t len)
9619 {
9620     size_t i;
9621     for (i = 0; i < len; ++i) {
9622         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9623     }
9624 }
9625 
9626 /*
9627  * Modify ARMCPRegInfo for access from userspace.
9628  *
9629  * This is a data driven modification directed by
9630  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9631  * user-space cannot alter any values and dynamic values pertaining to
9632  * execution state are hidden from user space view anyway.
9633  */
9634 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9635                                  const ARMCPRegUserSpaceInfo *mods,
9636                                  size_t mods_len)
9637 {
9638     for (size_t mi = 0; mi < mods_len; ++mi) {
9639         const ARMCPRegUserSpaceInfo *m = mods + mi;
9640         GPatternSpec *pat = NULL;
9641 
9642         if (m->is_glob) {
9643             pat = g_pattern_spec_new(m->name);
9644         }
9645         for (size_t ri = 0; ri < regs_len; ++ri) {
9646             ARMCPRegInfo *r = regs + ri;
9647 
9648             if (pat && g_pattern_match_string(pat, r->name)) {
9649                 r->type = ARM_CP_CONST;
9650                 r->access = PL0U_R;
9651                 r->resetvalue = 0;
9652                 /* continue */
9653             } else if (strcmp(r->name, m->name) == 0) {
9654                 r->type = ARM_CP_CONST;
9655                 r->access = PL0U_R;
9656                 r->resetvalue &= m->exported_bits;
9657                 r->resetvalue |= m->fixed_bits;
9658                 break;
9659             }
9660         }
9661         if (pat) {
9662             g_pattern_spec_free(pat);
9663         }
9664     }
9665 }
9666 
9667 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9668 {
9669     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9670 }
9671 
9672 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9673                          uint64_t value)
9674 {
9675     /* Helper coprocessor write function for write-ignore registers */
9676 }
9677 
9678 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9679 {
9680     /* Helper coprocessor write function for read-as-zero registers */
9681     return 0;
9682 }
9683 
9684 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9685 {
9686     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9687 }
9688 
9689 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9690 {
9691     /*
9692      * Return true if it is not valid for us to switch to
9693      * this CPU mode (ie all the UNPREDICTABLE cases in
9694      * the ARM ARM CPSRWriteByInstr pseudocode).
9695      */
9696 
9697     /* Changes to or from Hyp via MSR and CPS are illegal. */
9698     if (write_type == CPSRWriteByInstr &&
9699         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9700          mode == ARM_CPU_MODE_HYP)) {
9701         return 1;
9702     }
9703 
9704     switch (mode) {
9705     case ARM_CPU_MODE_USR:
9706         return 0;
9707     case ARM_CPU_MODE_SYS:
9708     case ARM_CPU_MODE_SVC:
9709     case ARM_CPU_MODE_ABT:
9710     case ARM_CPU_MODE_UND:
9711     case ARM_CPU_MODE_IRQ:
9712     case ARM_CPU_MODE_FIQ:
9713         /*
9714          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9715          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9716          */
9717         /*
9718          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9719          * and CPS are treated as illegal mode changes.
9720          */
9721         if (write_type == CPSRWriteByInstr &&
9722             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9723             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9724             return 1;
9725         }
9726         return 0;
9727     case ARM_CPU_MODE_HYP:
9728         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9729     case ARM_CPU_MODE_MON:
9730         return arm_current_el(env) < 3;
9731     default:
9732         return 1;
9733     }
9734 }
9735 
9736 uint32_t cpsr_read(CPUARMState *env)
9737 {
9738     int ZF;
9739     ZF = (env->ZF == 0);
9740     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9741         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9742         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9743         | ((env->condexec_bits & 0xfc) << 8)
9744         | (env->GE << 16) | (env->daif & CPSR_AIF);
9745 }
9746 
9747 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9748                 CPSRWriteType write_type)
9749 {
9750     uint32_t changed_daif;
9751     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9752         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9753 
9754     if (mask & CPSR_NZCV) {
9755         env->ZF = (~val) & CPSR_Z;
9756         env->NF = val;
9757         env->CF = (val >> 29) & 1;
9758         env->VF = (val << 3) & 0x80000000;
9759     }
9760     if (mask & CPSR_Q) {
9761         env->QF = ((val & CPSR_Q) != 0);
9762     }
9763     if (mask & CPSR_T) {
9764         env->thumb = ((val & CPSR_T) != 0);
9765     }
9766     if (mask & CPSR_IT_0_1) {
9767         env->condexec_bits &= ~3;
9768         env->condexec_bits |= (val >> 25) & 3;
9769     }
9770     if (mask & CPSR_IT_2_7) {
9771         env->condexec_bits &= 3;
9772         env->condexec_bits |= (val >> 8) & 0xfc;
9773     }
9774     if (mask & CPSR_GE) {
9775         env->GE = (val >> 16) & 0xf;
9776     }
9777 
9778     /*
9779      * In a V7 implementation that includes the security extensions but does
9780      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9781      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9782      * bits respectively.
9783      *
9784      * In a V8 implementation, it is permitted for privileged software to
9785      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9786      */
9787     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9788         arm_feature(env, ARM_FEATURE_EL3) &&
9789         !arm_feature(env, ARM_FEATURE_EL2) &&
9790         !arm_is_secure(env)) {
9791 
9792         changed_daif = (env->daif ^ val) & mask;
9793 
9794         if (changed_daif & CPSR_A) {
9795             /*
9796              * Check to see if we are allowed to change the masking of async
9797              * abort exceptions from a non-secure state.
9798              */
9799             if (!(env->cp15.scr_el3 & SCR_AW)) {
9800                 qemu_log_mask(LOG_GUEST_ERROR,
9801                               "Ignoring attempt to switch CPSR_A flag from "
9802                               "non-secure world with SCR.AW bit clear\n");
9803                 mask &= ~CPSR_A;
9804             }
9805         }
9806 
9807         if (changed_daif & CPSR_F) {
9808             /*
9809              * Check to see if we are allowed to change the masking of FIQ
9810              * exceptions from a non-secure state.
9811              */
9812             if (!(env->cp15.scr_el3 & SCR_FW)) {
9813                 qemu_log_mask(LOG_GUEST_ERROR,
9814                               "Ignoring attempt to switch CPSR_F flag from "
9815                               "non-secure world with SCR.FW bit clear\n");
9816                 mask &= ~CPSR_F;
9817             }
9818 
9819             /*
9820              * Check whether non-maskable FIQ (NMFI) support is enabled.
9821              * If this bit is set software is not allowed to mask
9822              * FIQs, but is allowed to set CPSR_F to 0.
9823              */
9824             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9825                 (val & CPSR_F)) {
9826                 qemu_log_mask(LOG_GUEST_ERROR,
9827                               "Ignoring attempt to enable CPSR_F flag "
9828                               "(non-maskable FIQ [NMFI] support enabled)\n");
9829                 mask &= ~CPSR_F;
9830             }
9831         }
9832     }
9833 
9834     env->daif &= ~(CPSR_AIF & mask);
9835     env->daif |= val & CPSR_AIF & mask;
9836 
9837     if (write_type != CPSRWriteRaw &&
9838         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9839         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9840             /*
9841              * Note that we can only get here in USR mode if this is a
9842              * gdb stub write; for this case we follow the architectural
9843              * behaviour for guest writes in USR mode of ignoring an attempt
9844              * to switch mode. (Those are caught by translate.c for writes
9845              * triggered by guest instructions.)
9846              */
9847             mask &= ~CPSR_M;
9848         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9849             /*
9850              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9851              * v7, and has defined behaviour in v8:
9852              *  + leave CPSR.M untouched
9853              *  + allow changes to the other CPSR fields
9854              *  + set PSTATE.IL
9855              * For user changes via the GDB stub, we don't set PSTATE.IL,
9856              * as this would be unnecessarily harsh for a user error.
9857              */
9858             mask &= ~CPSR_M;
9859             if (write_type != CPSRWriteByGDBStub &&
9860                 arm_feature(env, ARM_FEATURE_V8)) {
9861                 mask |= CPSR_IL;
9862                 val |= CPSR_IL;
9863             }
9864             qemu_log_mask(LOG_GUEST_ERROR,
9865                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9866                           aarch32_mode_name(env->uncached_cpsr),
9867                           aarch32_mode_name(val));
9868         } else {
9869             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9870                           write_type == CPSRWriteExceptionReturn ?
9871                           "Exception return from AArch32" :
9872                           "AArch32 mode switch from",
9873                           aarch32_mode_name(env->uncached_cpsr),
9874                           aarch32_mode_name(val), env->regs[15]);
9875             switch_mode(env, val & CPSR_M);
9876         }
9877     }
9878     mask &= ~CACHED_CPSR_BITS;
9879     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9880     if (rebuild_hflags) {
9881         arm_rebuild_hflags(env);
9882     }
9883 }
9884 
9885 /* Sign/zero extend */
9886 uint32_t HELPER(sxtb16)(uint32_t x)
9887 {
9888     uint32_t res;
9889     res = (uint16_t)(int8_t)x;
9890     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9891     return res;
9892 }
9893 
9894 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9895 {
9896     /*
9897      * Take a division-by-zero exception if necessary; otherwise return
9898      * to get the usual non-trapping division behaviour (result of 0)
9899      */
9900     if (arm_feature(env, ARM_FEATURE_M)
9901         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9902         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9903     }
9904 }
9905 
9906 uint32_t HELPER(uxtb16)(uint32_t x)
9907 {
9908     uint32_t res;
9909     res = (uint16_t)(uint8_t)x;
9910     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9911     return res;
9912 }
9913 
9914 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9915 {
9916     if (den == 0) {
9917         handle_possible_div0_trap(env, GETPC());
9918         return 0;
9919     }
9920     if (num == INT_MIN && den == -1) {
9921         return INT_MIN;
9922     }
9923     return num / den;
9924 }
9925 
9926 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9927 {
9928     if (den == 0) {
9929         handle_possible_div0_trap(env, GETPC());
9930         return 0;
9931     }
9932     return num / den;
9933 }
9934 
9935 uint32_t HELPER(rbit)(uint32_t x)
9936 {
9937     return revbit32(x);
9938 }
9939 
9940 #ifdef CONFIG_USER_ONLY
9941 
9942 static void switch_mode(CPUARMState *env, int mode)
9943 {
9944     ARMCPU *cpu = env_archcpu(env);
9945 
9946     if (mode != ARM_CPU_MODE_USR) {
9947         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9948     }
9949 }
9950 
9951 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9952                                  uint32_t cur_el, bool secure)
9953 {
9954     return 1;
9955 }
9956 
9957 void aarch64_sync_64_to_32(CPUARMState *env)
9958 {
9959     g_assert_not_reached();
9960 }
9961 
9962 #else
9963 
9964 static void switch_mode(CPUARMState *env, int mode)
9965 {
9966     int old_mode;
9967     int i;
9968 
9969     old_mode = env->uncached_cpsr & CPSR_M;
9970     if (mode == old_mode) {
9971         return;
9972     }
9973 
9974     if (old_mode == ARM_CPU_MODE_FIQ) {
9975         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9976         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9977     } else if (mode == ARM_CPU_MODE_FIQ) {
9978         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9979         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9980     }
9981 
9982     i = bank_number(old_mode);
9983     env->banked_r13[i] = env->regs[13];
9984     env->banked_spsr[i] = env->spsr;
9985 
9986     i = bank_number(mode);
9987     env->regs[13] = env->banked_r13[i];
9988     env->spsr = env->banked_spsr[i];
9989 
9990     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9991     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9992 }
9993 
9994 /*
9995  * Physical Interrupt Target EL Lookup Table
9996  *
9997  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9998  *
9999  * The below multi-dimensional table is used for looking up the target
10000  * exception level given numerous condition criteria.  Specifically, the
10001  * target EL is based on SCR and HCR routing controls as well as the
10002  * currently executing EL and secure state.
10003  *
10004  *    Dimensions:
10005  *    target_el_table[2][2][2][2][2][4]
10006  *                    |  |  |  |  |  +--- Current EL
10007  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10008  *                    |  |  |  +--------- HCR mask override
10009  *                    |  |  +------------ SCR exec state control
10010  *                    |  +--------------- SCR mask override
10011  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10012  *
10013  *    The table values are as such:
10014  *    0-3 = EL0-EL3
10015  *     -1 = Cannot occur
10016  *
10017  * The ARM ARM target EL table includes entries indicating that an "exception
10018  * is not taken".  The two cases where this is applicable are:
10019  *    1) An exception is taken from EL3 but the SCR does not have the exception
10020  *    routed to EL3.
10021  *    2) An exception is taken from EL2 but the HCR does not have the exception
10022  *    routed to EL2.
10023  * In these two cases, the below table contain a target of EL1.  This value is
10024  * returned as it is expected that the consumer of the table data will check
10025  * for "target EL >= current EL" to ensure the exception is not taken.
10026  *
10027  *            SCR     HCR
10028  *         64  EA     AMO                 From
10029  *        BIT IRQ     IMO      Non-secure         Secure
10030  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10031  */
10032 static const int8_t target_el_table[2][2][2][2][2][4] = {
10033     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10034        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10035       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10036        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10037      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10038        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10039       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10040        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10041     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10042        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10043       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10044        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10045      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10046        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10047       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10048        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10049 };
10050 
10051 /*
10052  * Determine the target EL for physical exceptions
10053  */
10054 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10055                                  uint32_t cur_el, bool secure)
10056 {
10057     CPUARMState *env = cs->env_ptr;
10058     bool rw;
10059     bool scr;
10060     bool hcr;
10061     int target_el;
10062     /* Is the highest EL AArch64? */
10063     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10064     uint64_t hcr_el2;
10065 
10066     if (arm_feature(env, ARM_FEATURE_EL3)) {
10067         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10068     } else {
10069         /*
10070          * Either EL2 is the highest EL (and so the EL2 register width
10071          * is given by is64); or there is no EL2 or EL3, in which case
10072          * the value of 'rw' does not affect the table lookup anyway.
10073          */
10074         rw = is64;
10075     }
10076 
10077     hcr_el2 = arm_hcr_el2_eff(env);
10078     switch (excp_idx) {
10079     case EXCP_IRQ:
10080         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10081         hcr = hcr_el2 & HCR_IMO;
10082         break;
10083     case EXCP_FIQ:
10084         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10085         hcr = hcr_el2 & HCR_FMO;
10086         break;
10087     default:
10088         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10089         hcr = hcr_el2 & HCR_AMO;
10090         break;
10091     };
10092 
10093     /*
10094      * For these purposes, TGE and AMO/IMO/FMO both force the
10095      * interrupt to EL2.  Fold TGE into the bit extracted above.
10096      */
10097     hcr |= (hcr_el2 & HCR_TGE) != 0;
10098 
10099     /* Perform a table-lookup for the target EL given the current state */
10100     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10101 
10102     assert(target_el > 0);
10103 
10104     return target_el;
10105 }
10106 
10107 void arm_log_exception(CPUState *cs)
10108 {
10109     int idx = cs->exception_index;
10110 
10111     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10112         const char *exc = NULL;
10113         static const char * const excnames[] = {
10114             [EXCP_UDEF] = "Undefined Instruction",
10115             [EXCP_SWI] = "SVC",
10116             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10117             [EXCP_DATA_ABORT] = "Data Abort",
10118             [EXCP_IRQ] = "IRQ",
10119             [EXCP_FIQ] = "FIQ",
10120             [EXCP_BKPT] = "Breakpoint",
10121             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10122             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10123             [EXCP_HVC] = "Hypervisor Call",
10124             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10125             [EXCP_SMC] = "Secure Monitor Call",
10126             [EXCP_VIRQ] = "Virtual IRQ",
10127             [EXCP_VFIQ] = "Virtual FIQ",
10128             [EXCP_SEMIHOST] = "Semihosting call",
10129             [EXCP_NOCP] = "v7M NOCP UsageFault",
10130             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10131             [EXCP_STKOF] = "v8M STKOF UsageFault",
10132             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10133             [EXCP_LSERR] = "v8M LSERR UsageFault",
10134             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10135             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10136             [EXCP_VSERR] = "Virtual SERR",
10137         };
10138 
10139         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10140             exc = excnames[idx];
10141         }
10142         if (!exc) {
10143             exc = "unknown";
10144         }
10145         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10146                       idx, exc, cs->cpu_index);
10147     }
10148 }
10149 
10150 /*
10151  * Function used to synchronize QEMU's AArch64 register set with AArch32
10152  * register set.  This is necessary when switching between AArch32 and AArch64
10153  * execution state.
10154  */
10155 void aarch64_sync_32_to_64(CPUARMState *env)
10156 {
10157     int i;
10158     uint32_t mode = env->uncached_cpsr & CPSR_M;
10159 
10160     /* We can blanket copy R[0:7] to X[0:7] */
10161     for (i = 0; i < 8; i++) {
10162         env->xregs[i] = env->regs[i];
10163     }
10164 
10165     /*
10166      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10167      * Otherwise, they come from the banked user regs.
10168      */
10169     if (mode == ARM_CPU_MODE_FIQ) {
10170         for (i = 8; i < 13; i++) {
10171             env->xregs[i] = env->usr_regs[i - 8];
10172         }
10173     } else {
10174         for (i = 8; i < 13; i++) {
10175             env->xregs[i] = env->regs[i];
10176         }
10177     }
10178 
10179     /*
10180      * Registers x13-x23 are the various mode SP and FP registers. Registers
10181      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10182      * from the mode banked register.
10183      */
10184     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10185         env->xregs[13] = env->regs[13];
10186         env->xregs[14] = env->regs[14];
10187     } else {
10188         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10189         /* HYP is an exception in that it is copied from r14 */
10190         if (mode == ARM_CPU_MODE_HYP) {
10191             env->xregs[14] = env->regs[14];
10192         } else {
10193             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10194         }
10195     }
10196 
10197     if (mode == ARM_CPU_MODE_HYP) {
10198         env->xregs[15] = env->regs[13];
10199     } else {
10200         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10201     }
10202 
10203     if (mode == ARM_CPU_MODE_IRQ) {
10204         env->xregs[16] = env->regs[14];
10205         env->xregs[17] = env->regs[13];
10206     } else {
10207         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10208         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10209     }
10210 
10211     if (mode == ARM_CPU_MODE_SVC) {
10212         env->xregs[18] = env->regs[14];
10213         env->xregs[19] = env->regs[13];
10214     } else {
10215         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10216         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10217     }
10218 
10219     if (mode == ARM_CPU_MODE_ABT) {
10220         env->xregs[20] = env->regs[14];
10221         env->xregs[21] = env->regs[13];
10222     } else {
10223         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10224         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10225     }
10226 
10227     if (mode == ARM_CPU_MODE_UND) {
10228         env->xregs[22] = env->regs[14];
10229         env->xregs[23] = env->regs[13];
10230     } else {
10231         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10232         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10233     }
10234 
10235     /*
10236      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10237      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10238      * FIQ bank for r8-r14.
10239      */
10240     if (mode == ARM_CPU_MODE_FIQ) {
10241         for (i = 24; i < 31; i++) {
10242             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10243         }
10244     } else {
10245         for (i = 24; i < 29; i++) {
10246             env->xregs[i] = env->fiq_regs[i - 24];
10247         }
10248         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10249         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10250     }
10251 
10252     env->pc = env->regs[15];
10253 }
10254 
10255 /*
10256  * Function used to synchronize QEMU's AArch32 register set with AArch64
10257  * register set.  This is necessary when switching between AArch32 and AArch64
10258  * execution state.
10259  */
10260 void aarch64_sync_64_to_32(CPUARMState *env)
10261 {
10262     int i;
10263     uint32_t mode = env->uncached_cpsr & CPSR_M;
10264 
10265     /* We can blanket copy X[0:7] to R[0:7] */
10266     for (i = 0; i < 8; i++) {
10267         env->regs[i] = env->xregs[i];
10268     }
10269 
10270     /*
10271      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10272      * Otherwise, we copy x8-x12 into the banked user regs.
10273      */
10274     if (mode == ARM_CPU_MODE_FIQ) {
10275         for (i = 8; i < 13; i++) {
10276             env->usr_regs[i - 8] = env->xregs[i];
10277         }
10278     } else {
10279         for (i = 8; i < 13; i++) {
10280             env->regs[i] = env->xregs[i];
10281         }
10282     }
10283 
10284     /*
10285      * Registers r13 & r14 depend on the current mode.
10286      * If we are in a given mode, we copy the corresponding x registers to r13
10287      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10288      * for the mode.
10289      */
10290     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10291         env->regs[13] = env->xregs[13];
10292         env->regs[14] = env->xregs[14];
10293     } else {
10294         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10295 
10296         /*
10297          * HYP is an exception in that it does not have its own banked r14 but
10298          * shares the USR r14
10299          */
10300         if (mode == ARM_CPU_MODE_HYP) {
10301             env->regs[14] = env->xregs[14];
10302         } else {
10303             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10304         }
10305     }
10306 
10307     if (mode == ARM_CPU_MODE_HYP) {
10308         env->regs[13] = env->xregs[15];
10309     } else {
10310         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10311     }
10312 
10313     if (mode == ARM_CPU_MODE_IRQ) {
10314         env->regs[14] = env->xregs[16];
10315         env->regs[13] = env->xregs[17];
10316     } else {
10317         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10318         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10319     }
10320 
10321     if (mode == ARM_CPU_MODE_SVC) {
10322         env->regs[14] = env->xregs[18];
10323         env->regs[13] = env->xregs[19];
10324     } else {
10325         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10326         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10327     }
10328 
10329     if (mode == ARM_CPU_MODE_ABT) {
10330         env->regs[14] = env->xregs[20];
10331         env->regs[13] = env->xregs[21];
10332     } else {
10333         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10334         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10335     }
10336 
10337     if (mode == ARM_CPU_MODE_UND) {
10338         env->regs[14] = env->xregs[22];
10339         env->regs[13] = env->xregs[23];
10340     } else {
10341         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10342         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10343     }
10344 
10345     /*
10346      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10347      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10348      * FIQ bank for r8-r14.
10349      */
10350     if (mode == ARM_CPU_MODE_FIQ) {
10351         for (i = 24; i < 31; i++) {
10352             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10353         }
10354     } else {
10355         for (i = 24; i < 29; i++) {
10356             env->fiq_regs[i - 24] = env->xregs[i];
10357         }
10358         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10359         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10360     }
10361 
10362     env->regs[15] = env->pc;
10363 }
10364 
10365 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10366                                    uint32_t mask, uint32_t offset,
10367                                    uint32_t newpc)
10368 {
10369     int new_el;
10370 
10371     /* Change the CPU state so as to actually take the exception. */
10372     switch_mode(env, new_mode);
10373 
10374     /*
10375      * For exceptions taken to AArch32 we must clear the SS bit in both
10376      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10377      */
10378     env->pstate &= ~PSTATE_SS;
10379     env->spsr = cpsr_read(env);
10380     /* Clear IT bits.  */
10381     env->condexec_bits = 0;
10382     /* Switch to the new mode, and to the correct instruction set.  */
10383     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10384 
10385     /* This must be after mode switching. */
10386     new_el = arm_current_el(env);
10387 
10388     /* Set new mode endianness */
10389     env->uncached_cpsr &= ~CPSR_E;
10390     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10391         env->uncached_cpsr |= CPSR_E;
10392     }
10393     /* J and IL must always be cleared for exception entry */
10394     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10395     env->daif |= mask;
10396 
10397     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10398         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10399             env->uncached_cpsr |= CPSR_SSBS;
10400         } else {
10401             env->uncached_cpsr &= ~CPSR_SSBS;
10402         }
10403     }
10404 
10405     if (new_mode == ARM_CPU_MODE_HYP) {
10406         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10407         env->elr_el[2] = env->regs[15];
10408     } else {
10409         /* CPSR.PAN is normally preserved preserved unless...  */
10410         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10411             switch (new_el) {
10412             case 3:
10413                 if (!arm_is_secure_below_el3(env)) {
10414                     /* ... the target is EL3, from non-secure state.  */
10415                     env->uncached_cpsr &= ~CPSR_PAN;
10416                     break;
10417                 }
10418                 /* ... the target is EL3, from secure state ... */
10419                 /* fall through */
10420             case 1:
10421                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10422                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10423                     env->uncached_cpsr |= CPSR_PAN;
10424                 }
10425                 break;
10426             }
10427         }
10428         /*
10429          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10430          * and we should just guard the thumb mode on V4
10431          */
10432         if (arm_feature(env, ARM_FEATURE_V4T)) {
10433             env->thumb =
10434                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10435         }
10436         env->regs[14] = env->regs[15] + offset;
10437     }
10438     env->regs[15] = newpc;
10439     arm_rebuild_hflags(env);
10440 }
10441 
10442 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10443 {
10444     /*
10445      * Handle exception entry to Hyp mode; this is sufficiently
10446      * different to entry to other AArch32 modes that we handle it
10447      * separately here.
10448      *
10449      * The vector table entry used is always the 0x14 Hyp mode entry point,
10450      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10451      * The offset applied to the preferred return address is always zero
10452      * (see DDI0487C.a section G1.12.3).
10453      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10454      */
10455     uint32_t addr, mask;
10456     ARMCPU *cpu = ARM_CPU(cs);
10457     CPUARMState *env = &cpu->env;
10458 
10459     switch (cs->exception_index) {
10460     case EXCP_UDEF:
10461         addr = 0x04;
10462         break;
10463     case EXCP_SWI:
10464         addr = 0x08;
10465         break;
10466     case EXCP_BKPT:
10467         /* Fall through to prefetch abort.  */
10468     case EXCP_PREFETCH_ABORT:
10469         env->cp15.ifar_s = env->exception.vaddress;
10470         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10471                       (uint32_t)env->exception.vaddress);
10472         addr = 0x0c;
10473         break;
10474     case EXCP_DATA_ABORT:
10475         env->cp15.dfar_s = env->exception.vaddress;
10476         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10477                       (uint32_t)env->exception.vaddress);
10478         addr = 0x10;
10479         break;
10480     case EXCP_IRQ:
10481         addr = 0x18;
10482         break;
10483     case EXCP_FIQ:
10484         addr = 0x1c;
10485         break;
10486     case EXCP_HVC:
10487         addr = 0x08;
10488         break;
10489     case EXCP_HYP_TRAP:
10490         addr = 0x14;
10491         break;
10492     default:
10493         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10494     }
10495 
10496     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10497         if (!arm_feature(env, ARM_FEATURE_V8)) {
10498             /*
10499              * QEMU syndrome values are v8-style. v7 has the IL bit
10500              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10501              * If this is a v7 CPU, squash the IL bit in those cases.
10502              */
10503             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10504                 (cs->exception_index == EXCP_DATA_ABORT &&
10505                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10506                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10507                 env->exception.syndrome &= ~ARM_EL_IL;
10508             }
10509         }
10510         env->cp15.esr_el[2] = env->exception.syndrome;
10511     }
10512 
10513     if (arm_current_el(env) != 2 && addr < 0x14) {
10514         addr = 0x14;
10515     }
10516 
10517     mask = 0;
10518     if (!(env->cp15.scr_el3 & SCR_EA)) {
10519         mask |= CPSR_A;
10520     }
10521     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10522         mask |= CPSR_I;
10523     }
10524     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10525         mask |= CPSR_F;
10526     }
10527 
10528     addr += env->cp15.hvbar;
10529 
10530     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10531 }
10532 
10533 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10534 {
10535     ARMCPU *cpu = ARM_CPU(cs);
10536     CPUARMState *env = &cpu->env;
10537     uint32_t addr;
10538     uint32_t mask;
10539     int new_mode;
10540     uint32_t offset;
10541     uint32_t moe;
10542 
10543     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10544     switch (syn_get_ec(env->exception.syndrome)) {
10545     case EC_BREAKPOINT:
10546     case EC_BREAKPOINT_SAME_EL:
10547         moe = 1;
10548         break;
10549     case EC_WATCHPOINT:
10550     case EC_WATCHPOINT_SAME_EL:
10551         moe = 10;
10552         break;
10553     case EC_AA32_BKPT:
10554         moe = 3;
10555         break;
10556     case EC_VECTORCATCH:
10557         moe = 5;
10558         break;
10559     default:
10560         moe = 0;
10561         break;
10562     }
10563 
10564     if (moe) {
10565         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10566     }
10567 
10568     if (env->exception.target_el == 2) {
10569         arm_cpu_do_interrupt_aarch32_hyp(cs);
10570         return;
10571     }
10572 
10573     switch (cs->exception_index) {
10574     case EXCP_UDEF:
10575         new_mode = ARM_CPU_MODE_UND;
10576         addr = 0x04;
10577         mask = CPSR_I;
10578         if (env->thumb) {
10579             offset = 2;
10580         } else {
10581             offset = 4;
10582         }
10583         break;
10584     case EXCP_SWI:
10585         new_mode = ARM_CPU_MODE_SVC;
10586         addr = 0x08;
10587         mask = CPSR_I;
10588         /* The PC already points to the next instruction.  */
10589         offset = 0;
10590         break;
10591     case EXCP_BKPT:
10592         /* Fall through to prefetch abort.  */
10593     case EXCP_PREFETCH_ABORT:
10594         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10595         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10596         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10597                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10598         new_mode = ARM_CPU_MODE_ABT;
10599         addr = 0x0c;
10600         mask = CPSR_A | CPSR_I;
10601         offset = 4;
10602         break;
10603     case EXCP_DATA_ABORT:
10604         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10605         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10606         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10607                       env->exception.fsr,
10608                       (uint32_t)env->exception.vaddress);
10609         new_mode = ARM_CPU_MODE_ABT;
10610         addr = 0x10;
10611         mask = CPSR_A | CPSR_I;
10612         offset = 8;
10613         break;
10614     case EXCP_IRQ:
10615         new_mode = ARM_CPU_MODE_IRQ;
10616         addr = 0x18;
10617         /* Disable IRQ and imprecise data aborts.  */
10618         mask = CPSR_A | CPSR_I;
10619         offset = 4;
10620         if (env->cp15.scr_el3 & SCR_IRQ) {
10621             /* IRQ routed to monitor mode */
10622             new_mode = ARM_CPU_MODE_MON;
10623             mask |= CPSR_F;
10624         }
10625         break;
10626     case EXCP_FIQ:
10627         new_mode = ARM_CPU_MODE_FIQ;
10628         addr = 0x1c;
10629         /* Disable FIQ, IRQ and imprecise data aborts.  */
10630         mask = CPSR_A | CPSR_I | CPSR_F;
10631         if (env->cp15.scr_el3 & SCR_FIQ) {
10632             /* FIQ routed to monitor mode */
10633             new_mode = ARM_CPU_MODE_MON;
10634         }
10635         offset = 4;
10636         break;
10637     case EXCP_VIRQ:
10638         new_mode = ARM_CPU_MODE_IRQ;
10639         addr = 0x18;
10640         /* Disable IRQ and imprecise data aborts.  */
10641         mask = CPSR_A | CPSR_I;
10642         offset = 4;
10643         break;
10644     case EXCP_VFIQ:
10645         new_mode = ARM_CPU_MODE_FIQ;
10646         addr = 0x1c;
10647         /* Disable FIQ, IRQ and imprecise data aborts.  */
10648         mask = CPSR_A | CPSR_I | CPSR_F;
10649         offset = 4;
10650         break;
10651     case EXCP_VSERR:
10652         {
10653             /*
10654              * Note that this is reported as a data abort, but the DFAR
10655              * has an UNKNOWN value.  Construct the SError syndrome from
10656              * AET and ExT fields.
10657              */
10658             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10659 
10660             if (extended_addresses_enabled(env)) {
10661                 env->exception.fsr = arm_fi_to_lfsc(&fi);
10662             } else {
10663                 env->exception.fsr = arm_fi_to_sfsc(&fi);
10664             }
10665             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10666             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10667             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10668                           env->exception.fsr);
10669 
10670             new_mode = ARM_CPU_MODE_ABT;
10671             addr = 0x10;
10672             mask = CPSR_A | CPSR_I;
10673             offset = 8;
10674         }
10675         break;
10676     case EXCP_SMC:
10677         new_mode = ARM_CPU_MODE_MON;
10678         addr = 0x08;
10679         mask = CPSR_A | CPSR_I | CPSR_F;
10680         offset = 0;
10681         break;
10682     default:
10683         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10684         return; /* Never happens.  Keep compiler happy.  */
10685     }
10686 
10687     if (new_mode == ARM_CPU_MODE_MON) {
10688         addr += env->cp15.mvbar;
10689     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10690         /* High vectors. When enabled, base address cannot be remapped. */
10691         addr += 0xffff0000;
10692     } else {
10693         /*
10694          * ARM v7 architectures provide a vector base address register to remap
10695          * the interrupt vector table.
10696          * This register is only followed in non-monitor mode, and is banked.
10697          * Note: only bits 31:5 are valid.
10698          */
10699         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10700     }
10701 
10702     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10703         env->cp15.scr_el3 &= ~SCR_NS;
10704     }
10705 
10706     take_aarch32_exception(env, new_mode, mask, offset, addr);
10707 }
10708 
10709 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10710 {
10711     /*
10712      * Return the register number of the AArch64 view of the AArch32
10713      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10714      * be that of the AArch32 mode the exception came from.
10715      */
10716     int mode = env->uncached_cpsr & CPSR_M;
10717 
10718     switch (aarch32_reg) {
10719     case 0 ... 7:
10720         return aarch32_reg;
10721     case 8 ... 12:
10722         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10723     case 13:
10724         switch (mode) {
10725         case ARM_CPU_MODE_USR:
10726         case ARM_CPU_MODE_SYS:
10727             return 13;
10728         case ARM_CPU_MODE_HYP:
10729             return 15;
10730         case ARM_CPU_MODE_IRQ:
10731             return 17;
10732         case ARM_CPU_MODE_SVC:
10733             return 19;
10734         case ARM_CPU_MODE_ABT:
10735             return 21;
10736         case ARM_CPU_MODE_UND:
10737             return 23;
10738         case ARM_CPU_MODE_FIQ:
10739             return 29;
10740         default:
10741             g_assert_not_reached();
10742         }
10743     case 14:
10744         switch (mode) {
10745         case ARM_CPU_MODE_USR:
10746         case ARM_CPU_MODE_SYS:
10747         case ARM_CPU_MODE_HYP:
10748             return 14;
10749         case ARM_CPU_MODE_IRQ:
10750             return 16;
10751         case ARM_CPU_MODE_SVC:
10752             return 18;
10753         case ARM_CPU_MODE_ABT:
10754             return 20;
10755         case ARM_CPU_MODE_UND:
10756             return 22;
10757         case ARM_CPU_MODE_FIQ:
10758             return 30;
10759         default:
10760             g_assert_not_reached();
10761         }
10762     case 15:
10763         return 31;
10764     default:
10765         g_assert_not_reached();
10766     }
10767 }
10768 
10769 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10770 {
10771     uint32_t ret = cpsr_read(env);
10772 
10773     /* Move DIT to the correct location for SPSR_ELx */
10774     if (ret & CPSR_DIT) {
10775         ret &= ~CPSR_DIT;
10776         ret |= PSTATE_DIT;
10777     }
10778     /* Merge PSTATE.SS into SPSR_ELx */
10779     ret |= env->pstate & PSTATE_SS;
10780 
10781     return ret;
10782 }
10783 
10784 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10785 {
10786     /* Return true if this syndrome value is a synchronous external abort */
10787     switch (syn_get_ec(syndrome)) {
10788     case EC_INSNABORT:
10789     case EC_INSNABORT_SAME_EL:
10790     case EC_DATAABORT:
10791     case EC_DATAABORT_SAME_EL:
10792         /* Look at fault status code for all the synchronous ext abort cases */
10793         switch (syndrome & 0x3f) {
10794         case 0x10:
10795         case 0x13:
10796         case 0x14:
10797         case 0x15:
10798         case 0x16:
10799         case 0x17:
10800             return true;
10801         default:
10802             return false;
10803         }
10804     default:
10805         return false;
10806     }
10807 }
10808 
10809 /* Handle exception entry to a target EL which is using AArch64 */
10810 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10811 {
10812     ARMCPU *cpu = ARM_CPU(cs);
10813     CPUARMState *env = &cpu->env;
10814     unsigned int new_el = env->exception.target_el;
10815     target_ulong addr = env->cp15.vbar_el[new_el];
10816     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10817     unsigned int old_mode;
10818     unsigned int cur_el = arm_current_el(env);
10819     int rt;
10820 
10821     /*
10822      * Note that new_el can never be 0.  If cur_el is 0, then
10823      * el0_a64 is is_a64(), else el0_a64 is ignored.
10824      */
10825     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10826 
10827     if (cur_el < new_el) {
10828         /*
10829          * Entry vector offset depends on whether the implemented EL
10830          * immediately lower than the target level is using AArch32 or AArch64
10831          */
10832         bool is_aa64;
10833         uint64_t hcr;
10834 
10835         switch (new_el) {
10836         case 3:
10837             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10838             break;
10839         case 2:
10840             hcr = arm_hcr_el2_eff(env);
10841             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10842                 is_aa64 = (hcr & HCR_RW) != 0;
10843                 break;
10844             }
10845             /* fall through */
10846         case 1:
10847             is_aa64 = is_a64(env);
10848             break;
10849         default:
10850             g_assert_not_reached();
10851         }
10852 
10853         if (is_aa64) {
10854             addr += 0x400;
10855         } else {
10856             addr += 0x600;
10857         }
10858     } else if (pstate_read(env) & PSTATE_SP) {
10859         addr += 0x200;
10860     }
10861 
10862     switch (cs->exception_index) {
10863     case EXCP_PREFETCH_ABORT:
10864     case EXCP_DATA_ABORT:
10865         /*
10866          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10867          * to be taken to the SError vector entrypoint.
10868          */
10869         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10870             syndrome_is_sync_extabt(env->exception.syndrome)) {
10871             addr += 0x180;
10872         }
10873         env->cp15.far_el[new_el] = env->exception.vaddress;
10874         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10875                       env->cp15.far_el[new_el]);
10876         /* fall through */
10877     case EXCP_BKPT:
10878     case EXCP_UDEF:
10879     case EXCP_SWI:
10880     case EXCP_HVC:
10881     case EXCP_HYP_TRAP:
10882     case EXCP_SMC:
10883         switch (syn_get_ec(env->exception.syndrome)) {
10884         case EC_ADVSIMDFPACCESSTRAP:
10885             /*
10886              * QEMU internal FP/SIMD syndromes from AArch32 include the
10887              * TA and coproc fields which are only exposed if the exception
10888              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10889              * AArch64 format syndrome.
10890              */
10891             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10892             break;
10893         case EC_CP14RTTRAP:
10894         case EC_CP15RTTRAP:
10895         case EC_CP14DTTRAP:
10896             /*
10897              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10898              * the raw register field from the insn; when taking this to
10899              * AArch64 we must convert it to the AArch64 view of the register
10900              * number. Notice that we read a 4-bit AArch32 register number and
10901              * write back a 5-bit AArch64 one.
10902              */
10903             rt = extract32(env->exception.syndrome, 5, 4);
10904             rt = aarch64_regnum(env, rt);
10905             env->exception.syndrome = deposit32(env->exception.syndrome,
10906                                                 5, 5, rt);
10907             break;
10908         case EC_CP15RRTTRAP:
10909         case EC_CP14RRTTRAP:
10910             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10911             rt = extract32(env->exception.syndrome, 5, 4);
10912             rt = aarch64_regnum(env, rt);
10913             env->exception.syndrome = deposit32(env->exception.syndrome,
10914                                                 5, 5, rt);
10915             rt = extract32(env->exception.syndrome, 10, 4);
10916             rt = aarch64_regnum(env, rt);
10917             env->exception.syndrome = deposit32(env->exception.syndrome,
10918                                                 10, 5, rt);
10919             break;
10920         }
10921         env->cp15.esr_el[new_el] = env->exception.syndrome;
10922         break;
10923     case EXCP_IRQ:
10924     case EXCP_VIRQ:
10925         addr += 0x80;
10926         break;
10927     case EXCP_FIQ:
10928     case EXCP_VFIQ:
10929         addr += 0x100;
10930         break;
10931     case EXCP_VSERR:
10932         addr += 0x180;
10933         /* Construct the SError syndrome from IDS and ISS fields. */
10934         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10935         env->cp15.esr_el[new_el] = env->exception.syndrome;
10936         break;
10937     default:
10938         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10939     }
10940 
10941     if (is_a64(env)) {
10942         old_mode = pstate_read(env);
10943         aarch64_save_sp(env, arm_current_el(env));
10944         env->elr_el[new_el] = env->pc;
10945     } else {
10946         old_mode = cpsr_read_for_spsr_elx(env);
10947         env->elr_el[new_el] = env->regs[15];
10948 
10949         aarch64_sync_32_to_64(env);
10950 
10951         env->condexec_bits = 0;
10952     }
10953     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10954 
10955     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10956                   env->elr_el[new_el]);
10957 
10958     if (cpu_isar_feature(aa64_pan, cpu)) {
10959         /* The value of PSTATE.PAN is normally preserved, except when ... */
10960         new_mode |= old_mode & PSTATE_PAN;
10961         switch (new_el) {
10962         case 2:
10963             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10964             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10965                 != (HCR_E2H | HCR_TGE)) {
10966                 break;
10967             }
10968             /* fall through */
10969         case 1:
10970             /* ... the target is EL1 ... */
10971             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10972             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10973                 new_mode |= PSTATE_PAN;
10974             }
10975             break;
10976         }
10977     }
10978     if (cpu_isar_feature(aa64_mte, cpu)) {
10979         new_mode |= PSTATE_TCO;
10980     }
10981 
10982     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10983         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10984             new_mode |= PSTATE_SSBS;
10985         } else {
10986             new_mode &= ~PSTATE_SSBS;
10987         }
10988     }
10989 
10990     pstate_write(env, PSTATE_DAIF | new_mode);
10991     env->aarch64 = true;
10992     aarch64_restore_sp(env, new_el);
10993     helper_rebuild_hflags_a64(env, new_el);
10994 
10995     env->pc = addr;
10996 
10997     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10998                   new_el, env->pc, pstate_read(env));
10999 }
11000 
11001 /*
11002  * Do semihosting call and set the appropriate return value. All the
11003  * permission and validity checks have been done at translate time.
11004  *
11005  * We only see semihosting exceptions in TCG only as they are not
11006  * trapped to the hypervisor in KVM.
11007  */
11008 #ifdef CONFIG_TCG
11009 static void handle_semihosting(CPUState *cs)
11010 {
11011     ARMCPU *cpu = ARM_CPU(cs);
11012     CPUARMState *env = &cpu->env;
11013 
11014     if (is_a64(env)) {
11015         qemu_log_mask(CPU_LOG_INT,
11016                       "...handling as semihosting call 0x%" PRIx64 "\n",
11017                       env->xregs[0]);
11018         do_common_semihosting(cs);
11019         env->pc += 4;
11020     } else {
11021         qemu_log_mask(CPU_LOG_INT,
11022                       "...handling as semihosting call 0x%x\n",
11023                       env->regs[0]);
11024         do_common_semihosting(cs);
11025         env->regs[15] += env->thumb ? 2 : 4;
11026     }
11027 }
11028 #endif
11029 
11030 /*
11031  * Handle a CPU exception for A and R profile CPUs.
11032  * Do any appropriate logging, handle PSCI calls, and then hand off
11033  * to the AArch64-entry or AArch32-entry function depending on the
11034  * target exception level's register width.
11035  *
11036  * Note: this is used for both TCG (as the do_interrupt tcg op),
11037  *       and KVM to re-inject guest debug exceptions, and to
11038  *       inject a Synchronous-External-Abort.
11039  */
11040 void arm_cpu_do_interrupt(CPUState *cs)
11041 {
11042     ARMCPU *cpu = ARM_CPU(cs);
11043     CPUARMState *env = &cpu->env;
11044     unsigned int new_el = env->exception.target_el;
11045 
11046     assert(!arm_feature(env, ARM_FEATURE_M));
11047 
11048     arm_log_exception(cs);
11049     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11050                   new_el);
11051     if (qemu_loglevel_mask(CPU_LOG_INT)
11052         && !excp_is_internal(cs->exception_index)) {
11053         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11054                       syn_get_ec(env->exception.syndrome),
11055                       env->exception.syndrome);
11056     }
11057 
11058     if (arm_is_psci_call(cpu, cs->exception_index)) {
11059         arm_handle_psci_call(cpu);
11060         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11061         return;
11062     }
11063 
11064     /*
11065      * Semihosting semantics depend on the register width of the code
11066      * that caused the exception, not the target exception level, so
11067      * must be handled here.
11068      */
11069 #ifdef CONFIG_TCG
11070     if (cs->exception_index == EXCP_SEMIHOST) {
11071         handle_semihosting(cs);
11072         return;
11073     }
11074 #endif
11075 
11076     /*
11077      * Hooks may change global state so BQL should be held, also the
11078      * BQL needs to be held for any modification of
11079      * cs->interrupt_request.
11080      */
11081     g_assert(qemu_mutex_iothread_locked());
11082 
11083     arm_call_pre_el_change_hook(cpu);
11084 
11085     assert(!excp_is_internal(cs->exception_index));
11086     if (arm_el_is_aa64(env, new_el)) {
11087         arm_cpu_do_interrupt_aarch64(cs);
11088     } else {
11089         arm_cpu_do_interrupt_aarch32(cs);
11090     }
11091 
11092     arm_call_el_change_hook(cpu);
11093 
11094     if (!kvm_enabled()) {
11095         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11096     }
11097 }
11098 #endif /* !CONFIG_USER_ONLY */
11099 
11100 uint64_t arm_sctlr(CPUARMState *env, int el)
11101 {
11102     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11103     if (el == 0) {
11104         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11105         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11106     }
11107     return env->cp15.sctlr_el[el];
11108 }
11109 
11110 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11111 {
11112     if (regime_has_2_ranges(mmu_idx)) {
11113         return extract64(tcr, 37, 2);
11114     } else if (regime_is_stage2(mmu_idx)) {
11115         return 0; /* VTCR_EL2 */
11116     } else {
11117         /* Replicate the single TBI bit so we always have 2 bits.  */
11118         return extract32(tcr, 20, 1) * 3;
11119     }
11120 }
11121 
11122 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11123 {
11124     if (regime_has_2_ranges(mmu_idx)) {
11125         return extract64(tcr, 51, 2);
11126     } else if (regime_is_stage2(mmu_idx)) {
11127         return 0; /* VTCR_EL2 */
11128     } else {
11129         /* Replicate the single TBID bit so we always have 2 bits.  */
11130         return extract32(tcr, 29, 1) * 3;
11131     }
11132 }
11133 
11134 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11135 {
11136     if (regime_has_2_ranges(mmu_idx)) {
11137         return extract64(tcr, 57, 2);
11138     } else {
11139         /* Replicate the single TCMA bit so we always have 2 bits.  */
11140         return extract32(tcr, 30, 1) * 3;
11141     }
11142 }
11143 
11144 static ARMGranuleSize tg0_to_gran_size(int tg)
11145 {
11146     switch (tg) {
11147     case 0:
11148         return Gran4K;
11149     case 1:
11150         return Gran64K;
11151     case 2:
11152         return Gran16K;
11153     default:
11154         return GranInvalid;
11155     }
11156 }
11157 
11158 static ARMGranuleSize tg1_to_gran_size(int tg)
11159 {
11160     switch (tg) {
11161     case 1:
11162         return Gran16K;
11163     case 2:
11164         return Gran4K;
11165     case 3:
11166         return Gran64K;
11167     default:
11168         return GranInvalid;
11169     }
11170 }
11171 
11172 static inline bool have4k(ARMCPU *cpu, bool stage2)
11173 {
11174     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11175         : cpu_isar_feature(aa64_tgran4, cpu);
11176 }
11177 
11178 static inline bool have16k(ARMCPU *cpu, bool stage2)
11179 {
11180     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11181         : cpu_isar_feature(aa64_tgran16, cpu);
11182 }
11183 
11184 static inline bool have64k(ARMCPU *cpu, bool stage2)
11185 {
11186     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11187         : cpu_isar_feature(aa64_tgran64, cpu);
11188 }
11189 
11190 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11191                                          bool stage2)
11192 {
11193     switch (gran) {
11194     case Gran4K:
11195         if (have4k(cpu, stage2)) {
11196             return gran;
11197         }
11198         break;
11199     case Gran16K:
11200         if (have16k(cpu, stage2)) {
11201             return gran;
11202         }
11203         break;
11204     case Gran64K:
11205         if (have64k(cpu, stage2)) {
11206             return gran;
11207         }
11208         break;
11209     case GranInvalid:
11210         break;
11211     }
11212     /*
11213      * If the guest selects a granule size that isn't implemented,
11214      * the architecture requires that we behave as if it selected one
11215      * that is (with an IMPDEF choice of which one to pick). We choose
11216      * to implement the smallest supported granule size.
11217      */
11218     if (have4k(cpu, stage2)) {
11219         return Gran4K;
11220     }
11221     if (have16k(cpu, stage2)) {
11222         return Gran16K;
11223     }
11224     assert(have64k(cpu, stage2));
11225     return Gran64K;
11226 }
11227 
11228 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11229                                    ARMMMUIdx mmu_idx, bool data)
11230 {
11231     uint64_t tcr = regime_tcr(env, mmu_idx);
11232     bool epd, hpd, tsz_oob, ds, ha, hd;
11233     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11234     ARMGranuleSize gran;
11235     ARMCPU *cpu = env_archcpu(env);
11236     bool stage2 = regime_is_stage2(mmu_idx);
11237 
11238     if (!regime_has_2_ranges(mmu_idx)) {
11239         select = 0;
11240         tsz = extract32(tcr, 0, 6);
11241         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11242         if (stage2) {
11243             /* VTCR_EL2 */
11244             hpd = false;
11245         } else {
11246             hpd = extract32(tcr, 24, 1);
11247         }
11248         epd = false;
11249         sh = extract32(tcr, 12, 2);
11250         ps = extract32(tcr, 16, 3);
11251         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11252         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11253         ds = extract64(tcr, 32, 1);
11254     } else {
11255         bool e0pd;
11256 
11257         /*
11258          * Bit 55 is always between the two regions, and is canonical for
11259          * determining if address tagging is enabled.
11260          */
11261         select = extract64(va, 55, 1);
11262         if (!select) {
11263             tsz = extract32(tcr, 0, 6);
11264             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11265             epd = extract32(tcr, 7, 1);
11266             sh = extract32(tcr, 12, 2);
11267             hpd = extract64(tcr, 41, 1);
11268             e0pd = extract64(tcr, 55, 1);
11269         } else {
11270             tsz = extract32(tcr, 16, 6);
11271             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11272             epd = extract32(tcr, 23, 1);
11273             sh = extract32(tcr, 28, 2);
11274             hpd = extract64(tcr, 42, 1);
11275             e0pd = extract64(tcr, 56, 1);
11276         }
11277         ps = extract64(tcr, 32, 3);
11278         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11279         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11280         ds = extract64(tcr, 59, 1);
11281 
11282         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11283             regime_is_user(env, mmu_idx)) {
11284             epd = true;
11285         }
11286     }
11287 
11288     gran = sanitize_gran_size(cpu, gran, stage2);
11289 
11290     if (cpu_isar_feature(aa64_st, cpu)) {
11291         max_tsz = 48 - (gran == Gran64K);
11292     } else {
11293         max_tsz = 39;
11294     }
11295 
11296     /*
11297      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11298      * adjust the effective value of DS, as documented.
11299      */
11300     min_tsz = 16;
11301     if (gran == Gran64K) {
11302         if (cpu_isar_feature(aa64_lva, cpu)) {
11303             min_tsz = 12;
11304         }
11305         ds = false;
11306     } else if (ds) {
11307         if (regime_is_stage2(mmu_idx)) {
11308             if (gran == Gran16K) {
11309                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11310             } else {
11311                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11312             }
11313         } else {
11314             if (gran == Gran16K) {
11315                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11316             } else {
11317                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11318             }
11319         }
11320         if (ds) {
11321             min_tsz = 12;
11322         }
11323     }
11324 
11325     if (tsz > max_tsz) {
11326         tsz = max_tsz;
11327         tsz_oob = true;
11328     } else if (tsz < min_tsz) {
11329         tsz = min_tsz;
11330         tsz_oob = true;
11331     } else {
11332         tsz_oob = false;
11333     }
11334 
11335     /* Present TBI as a composite with TBID.  */
11336     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11337     if (!data) {
11338         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11339     }
11340     tbi = (tbi >> select) & 1;
11341 
11342     return (ARMVAParameters) {
11343         .tsz = tsz,
11344         .ps = ps,
11345         .sh = sh,
11346         .select = select,
11347         .tbi = tbi,
11348         .epd = epd,
11349         .hpd = hpd,
11350         .tsz_oob = tsz_oob,
11351         .ds = ds,
11352         .ha = ha,
11353         .hd = ha && hd,
11354         .gran = gran,
11355     };
11356 }
11357 
11358 /*
11359  * Note that signed overflow is undefined in C.  The following routines are
11360  * careful to use unsigned types where modulo arithmetic is required.
11361  * Failure to do so _will_ break on newer gcc.
11362  */
11363 
11364 /* Signed saturating arithmetic.  */
11365 
11366 /* Perform 16-bit signed saturating addition.  */
11367 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11368 {
11369     uint16_t res;
11370 
11371     res = a + b;
11372     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11373         if (a & 0x8000) {
11374             res = 0x8000;
11375         } else {
11376             res = 0x7fff;
11377         }
11378     }
11379     return res;
11380 }
11381 
11382 /* Perform 8-bit signed saturating addition.  */
11383 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11384 {
11385     uint8_t res;
11386 
11387     res = a + b;
11388     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11389         if (a & 0x80) {
11390             res = 0x80;
11391         } else {
11392             res = 0x7f;
11393         }
11394     }
11395     return res;
11396 }
11397 
11398 /* Perform 16-bit signed saturating subtraction.  */
11399 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11400 {
11401     uint16_t res;
11402 
11403     res = a - b;
11404     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11405         if (a & 0x8000) {
11406             res = 0x8000;
11407         } else {
11408             res = 0x7fff;
11409         }
11410     }
11411     return res;
11412 }
11413 
11414 /* Perform 8-bit signed saturating subtraction.  */
11415 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11416 {
11417     uint8_t res;
11418 
11419     res = a - b;
11420     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11421         if (a & 0x80) {
11422             res = 0x80;
11423         } else {
11424             res = 0x7f;
11425         }
11426     }
11427     return res;
11428 }
11429 
11430 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11431 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11432 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11433 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11434 #define PFX q
11435 
11436 #include "op_addsub.h"
11437 
11438 /* Unsigned saturating arithmetic.  */
11439 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11440 {
11441     uint16_t res;
11442     res = a + b;
11443     if (res < a) {
11444         res = 0xffff;
11445     }
11446     return res;
11447 }
11448 
11449 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11450 {
11451     if (a > b) {
11452         return a - b;
11453     } else {
11454         return 0;
11455     }
11456 }
11457 
11458 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11459 {
11460     uint8_t res;
11461     res = a + b;
11462     if (res < a) {
11463         res = 0xff;
11464     }
11465     return res;
11466 }
11467 
11468 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11469 {
11470     if (a > b) {
11471         return a - b;
11472     } else {
11473         return 0;
11474     }
11475 }
11476 
11477 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11478 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11479 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11480 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11481 #define PFX uq
11482 
11483 #include "op_addsub.h"
11484 
11485 /* Signed modulo arithmetic.  */
11486 #define SARITH16(a, b, n, op) do { \
11487     int32_t sum; \
11488     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11489     RESULT(sum, n, 16); \
11490     if (sum >= 0) \
11491         ge |= 3 << (n * 2); \
11492     } while (0)
11493 
11494 #define SARITH8(a, b, n, op) do { \
11495     int32_t sum; \
11496     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11497     RESULT(sum, n, 8); \
11498     if (sum >= 0) \
11499         ge |= 1 << n; \
11500     } while (0)
11501 
11502 
11503 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11504 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11505 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11506 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11507 #define PFX s
11508 #define ARITH_GE
11509 
11510 #include "op_addsub.h"
11511 
11512 /* Unsigned modulo arithmetic.  */
11513 #define ADD16(a, b, n) do { \
11514     uint32_t sum; \
11515     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11516     RESULT(sum, n, 16); \
11517     if ((sum >> 16) == 1) \
11518         ge |= 3 << (n * 2); \
11519     } while (0)
11520 
11521 #define ADD8(a, b, n) do { \
11522     uint32_t sum; \
11523     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11524     RESULT(sum, n, 8); \
11525     if ((sum >> 8) == 1) \
11526         ge |= 1 << n; \
11527     } while (0)
11528 
11529 #define SUB16(a, b, n) do { \
11530     uint32_t sum; \
11531     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11532     RESULT(sum, n, 16); \
11533     if ((sum >> 16) == 0) \
11534         ge |= 3 << (n * 2); \
11535     } while (0)
11536 
11537 #define SUB8(a, b, n) do { \
11538     uint32_t sum; \
11539     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11540     RESULT(sum, n, 8); \
11541     if ((sum >> 8) == 0) \
11542         ge |= 1 << n; \
11543     } while (0)
11544 
11545 #define PFX u
11546 #define ARITH_GE
11547 
11548 #include "op_addsub.h"
11549 
11550 /* Halved signed arithmetic.  */
11551 #define ADD16(a, b, n) \
11552   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11553 #define SUB16(a, b, n) \
11554   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11555 #define ADD8(a, b, n) \
11556   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11557 #define SUB8(a, b, n) \
11558   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11559 #define PFX sh
11560 
11561 #include "op_addsub.h"
11562 
11563 /* Halved unsigned arithmetic.  */
11564 #define ADD16(a, b, n) \
11565   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11566 #define SUB16(a, b, n) \
11567   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11568 #define ADD8(a, b, n) \
11569   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11570 #define SUB8(a, b, n) \
11571   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11572 #define PFX uh
11573 
11574 #include "op_addsub.h"
11575 
11576 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11577 {
11578     if (a > b) {
11579         return a - b;
11580     } else {
11581         return b - a;
11582     }
11583 }
11584 
11585 /* Unsigned sum of absolute byte differences.  */
11586 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11587 {
11588     uint32_t sum;
11589     sum = do_usad(a, b);
11590     sum += do_usad(a >> 8, b >> 8);
11591     sum += do_usad(a >> 16, b >> 16);
11592     sum += do_usad(a >> 24, b >> 24);
11593     return sum;
11594 }
11595 
11596 /* For ARMv6 SEL instruction.  */
11597 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11598 {
11599     uint32_t mask;
11600 
11601     mask = 0;
11602     if (flags & 1) {
11603         mask |= 0xff;
11604     }
11605     if (flags & 2) {
11606         mask |= 0xff00;
11607     }
11608     if (flags & 4) {
11609         mask |= 0xff0000;
11610     }
11611     if (flags & 8) {
11612         mask |= 0xff000000;
11613     }
11614     return (a & mask) | (b & ~mask);
11615 }
11616 
11617 /*
11618  * CRC helpers.
11619  * The upper bytes of val (above the number specified by 'bytes') must have
11620  * been zeroed out by the caller.
11621  */
11622 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11623 {
11624     uint8_t buf[4];
11625 
11626     stl_le_p(buf, val);
11627 
11628     /* zlib crc32 converts the accumulator and output to one's complement.  */
11629     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11630 }
11631 
11632 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11633 {
11634     uint8_t buf[4];
11635 
11636     stl_le_p(buf, val);
11637 
11638     /* Linux crc32c converts the output to one's complement.  */
11639     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11640 }
11641 
11642 /*
11643  * Return the exception level to which FP-disabled exceptions should
11644  * be taken, or 0 if FP is enabled.
11645  */
11646 int fp_exception_el(CPUARMState *env, int cur_el)
11647 {
11648 #ifndef CONFIG_USER_ONLY
11649     uint64_t hcr_el2;
11650 
11651     /*
11652      * CPACR and the CPTR registers don't exist before v6, so FP is
11653      * always accessible
11654      */
11655     if (!arm_feature(env, ARM_FEATURE_V6)) {
11656         return 0;
11657     }
11658 
11659     if (arm_feature(env, ARM_FEATURE_M)) {
11660         /* CPACR can cause a NOCP UsageFault taken to current security state */
11661         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11662             return 1;
11663         }
11664 
11665         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11666             if (!extract32(env->v7m.nsacr, 10, 1)) {
11667                 /* FP insns cause a NOCP UsageFault taken to Secure */
11668                 return 3;
11669             }
11670         }
11671 
11672         return 0;
11673     }
11674 
11675     hcr_el2 = arm_hcr_el2_eff(env);
11676 
11677     /*
11678      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11679      * 0, 2 : trap EL0 and EL1/PL1 accesses
11680      * 1    : trap only EL0 accesses
11681      * 3    : trap no accesses
11682      * This register is ignored if E2H+TGE are both set.
11683      */
11684     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11685         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11686 
11687         switch (fpen) {
11688         case 1:
11689             if (cur_el != 0) {
11690                 break;
11691             }
11692             /* fall through */
11693         case 0:
11694         case 2:
11695             /* Trap from Secure PL0 or PL1 to Secure PL1. */
11696             if (!arm_el_is_aa64(env, 3)
11697                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11698                 return 3;
11699             }
11700             if (cur_el <= 1) {
11701                 return 1;
11702             }
11703             break;
11704         }
11705     }
11706 
11707     /*
11708      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11709      * to control non-secure access to the FPU. It doesn't have any
11710      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11711      */
11712     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11713          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11714         if (!extract32(env->cp15.nsacr, 10, 1)) {
11715             /* FP insns act as UNDEF */
11716             return cur_el == 2 ? 2 : 1;
11717         }
11718     }
11719 
11720     /*
11721      * CPTR_EL2 is present in v7VE or v8, and changes format
11722      * with HCR_EL2.E2H (regardless of TGE).
11723      */
11724     if (cur_el <= 2) {
11725         if (hcr_el2 & HCR_E2H) {
11726             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11727             case 1:
11728                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11729                     break;
11730                 }
11731                 /* fall through */
11732             case 0:
11733             case 2:
11734                 return 2;
11735             }
11736         } else if (arm_is_el2_enabled(env)) {
11737             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11738                 return 2;
11739             }
11740         }
11741     }
11742 
11743     /* CPTR_EL3 : present in v8 */
11744     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11745         /* Trap all FP ops to EL3 */
11746         return 3;
11747     }
11748 #endif
11749     return 0;
11750 }
11751 
11752 /* Return the exception level we're running at if this is our mmu_idx */
11753 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11754 {
11755     if (mmu_idx & ARM_MMU_IDX_M) {
11756         return mmu_idx & ARM_MMU_IDX_M_PRIV;
11757     }
11758 
11759     switch (mmu_idx) {
11760     case ARMMMUIdx_E10_0:
11761     case ARMMMUIdx_E20_0:
11762         return 0;
11763     case ARMMMUIdx_E10_1:
11764     case ARMMMUIdx_E10_1_PAN:
11765         return 1;
11766     case ARMMMUIdx_E2:
11767     case ARMMMUIdx_E20_2:
11768     case ARMMMUIdx_E20_2_PAN:
11769         return 2;
11770     case ARMMMUIdx_E3:
11771         return 3;
11772     default:
11773         g_assert_not_reached();
11774     }
11775 }
11776 
11777 #ifndef CONFIG_TCG
11778 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11779 {
11780     g_assert_not_reached();
11781 }
11782 #endif
11783 
11784 static bool arm_pan_enabled(CPUARMState *env)
11785 {
11786     if (is_a64(env)) {
11787         return env->pstate & PSTATE_PAN;
11788     } else {
11789         return env->uncached_cpsr & CPSR_PAN;
11790     }
11791 }
11792 
11793 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11794 {
11795     ARMMMUIdx idx;
11796     uint64_t hcr;
11797 
11798     if (arm_feature(env, ARM_FEATURE_M)) {
11799         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11800     }
11801 
11802     /* See ARM pseudo-function ELIsInHost.  */
11803     switch (el) {
11804     case 0:
11805         hcr = arm_hcr_el2_eff(env);
11806         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11807             idx = ARMMMUIdx_E20_0;
11808         } else {
11809             idx = ARMMMUIdx_E10_0;
11810         }
11811         break;
11812     case 1:
11813         if (arm_pan_enabled(env)) {
11814             idx = ARMMMUIdx_E10_1_PAN;
11815         } else {
11816             idx = ARMMMUIdx_E10_1;
11817         }
11818         break;
11819     case 2:
11820         /* Note that TGE does not apply at EL2.  */
11821         if (arm_hcr_el2_eff(env) & HCR_E2H) {
11822             if (arm_pan_enabled(env)) {
11823                 idx = ARMMMUIdx_E20_2_PAN;
11824             } else {
11825                 idx = ARMMMUIdx_E20_2;
11826             }
11827         } else {
11828             idx = ARMMMUIdx_E2;
11829         }
11830         break;
11831     case 3:
11832         return ARMMMUIdx_E3;
11833     default:
11834         g_assert_not_reached();
11835     }
11836 
11837     return idx;
11838 }
11839 
11840 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11841 {
11842     return arm_mmu_idx_el(env, arm_current_el(env));
11843 }
11844 
11845 static inline bool fgt_svc(CPUARMState *env, int el)
11846 {
11847     /*
11848      * Assuming fine-grained-traps are active, return true if we
11849      * should be trapping on SVC instructions. Only AArch64 can
11850      * trap on an SVC at EL1, but we don't need to special-case this
11851      * because if this is AArch32 EL1 then arm_fgt_active() is false.
11852      * We also know el is 0 or 1.
11853      */
11854     return el == 0 ?
11855         FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) :
11856         FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1);
11857 }
11858 
11859 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
11860                                            ARMMMUIdx mmu_idx,
11861                                            CPUARMTBFlags flags)
11862 {
11863     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
11864     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
11865 
11866     if (arm_singlestep_active(env)) {
11867         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
11868     }
11869 
11870     return flags;
11871 }
11872 
11873 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11874                                               ARMMMUIdx mmu_idx,
11875                                               CPUARMTBFlags flags)
11876 {
11877     bool sctlr_b = arm_sctlr_b(env);
11878 
11879     if (sctlr_b) {
11880         DP_TBFLAG_A32(flags, SCTLR__B, 1);
11881     }
11882     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
11883         DP_TBFLAG_ANY(flags, BE_DATA, 1);
11884     }
11885     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
11886 
11887     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11888 }
11889 
11890 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
11891                                         ARMMMUIdx mmu_idx)
11892 {
11893     CPUARMTBFlags flags = {};
11894     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
11895 
11896     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
11897     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
11898         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11899     }
11900 
11901     if (arm_v7m_is_handler_mode(env)) {
11902         DP_TBFLAG_M32(flags, HANDLER, 1);
11903     }
11904 
11905     /*
11906      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11907      * is suppressing them because the requested execution priority
11908      * is less than 0.
11909      */
11910     if (arm_feature(env, ARM_FEATURE_V8) &&
11911         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11912           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11913         DP_TBFLAG_M32(flags, STACKCHECK, 1);
11914     }
11915 
11916     if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
11917         DP_TBFLAG_M32(flags, SECURE, 1);
11918     }
11919 
11920     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11921 }
11922 
11923 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
11924                                         ARMMMUIdx mmu_idx)
11925 {
11926     CPUARMTBFlags flags = {};
11927     int el = arm_current_el(env);
11928 
11929     if (arm_sctlr(env, el) & SCTLR_A) {
11930         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11931     }
11932 
11933     if (arm_el_is_aa64(env, 1)) {
11934         DP_TBFLAG_A32(flags, VFPEN, 1);
11935     }
11936 
11937     if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
11938         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11939         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
11940     }
11941 
11942     if (arm_fgt_active(env, el)) {
11943         DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
11944         if (fgt_svc(env, el)) {
11945             DP_TBFLAG_ANY(flags, FGT_SVC, 1);
11946         }
11947     }
11948 
11949     if (env->uncached_cpsr & CPSR_IL) {
11950         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
11951     }
11952 
11953     /*
11954      * The SME exception we are testing for is raised via
11955      * AArch64.CheckFPAdvSIMDEnabled(), as called from
11956      * AArch32.CheckAdvSIMDOrFPEnabled().
11957      */
11958     if (el == 0
11959         && FIELD_EX64(env->svcr, SVCR, SM)
11960         && (!arm_is_el2_enabled(env)
11961             || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
11962         && arm_el_is_aa64(env, 1)
11963         && !sme_fa64(env, el)) {
11964         DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
11965     }
11966 
11967     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11968 }
11969 
11970 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11971                                         ARMMMUIdx mmu_idx)
11972 {
11973     CPUARMTBFlags flags = {};
11974     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11975     uint64_t tcr = regime_tcr(env, mmu_idx);
11976     uint64_t sctlr;
11977     int tbii, tbid;
11978 
11979     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
11980 
11981     /* Get control bits for tagged addresses.  */
11982     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
11983     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
11984 
11985     DP_TBFLAG_A64(flags, TBII, tbii);
11986     DP_TBFLAG_A64(flags, TBID, tbid);
11987 
11988     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11989         int sve_el = sve_exception_el(env, el);
11990 
11991         /*
11992          * If either FP or SVE are disabled, translator does not need len.
11993          * If SVE EL > FP EL, FP exception has precedence, and translator
11994          * does not need SVE EL.  Save potential re-translations by forcing
11995          * the unneeded data to zero.
11996          */
11997         if (fp_el != 0) {
11998             if (sve_el > fp_el) {
11999                 sve_el = 0;
12000             }
12001         } else if (sve_el == 0) {
12002             DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
12003         }
12004         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
12005     }
12006     if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
12007         int sme_el = sme_exception_el(env, el);
12008         bool sm = FIELD_EX64(env->svcr, SVCR, SM);
12009 
12010         DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
12011         if (sme_el == 0) {
12012             /* Similarly, do not compute SVL if SME is disabled. */
12013             int svl = sve_vqm1_for_el_sm(env, el, true);
12014             DP_TBFLAG_A64(flags, SVL, svl);
12015             if (sm) {
12016                 /* If SVE is disabled, we will not have set VL above. */
12017                 DP_TBFLAG_A64(flags, VL, svl);
12018             }
12019         }
12020         if (sm) {
12021             DP_TBFLAG_A64(flags, PSTATE_SM, 1);
12022             DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
12023         }
12024         DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
12025     }
12026 
12027     sctlr = regime_sctlr(env, stage1);
12028 
12029     if (sctlr & SCTLR_A) {
12030         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
12031     }
12032 
12033     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12034         DP_TBFLAG_ANY(flags, BE_DATA, 1);
12035     }
12036 
12037     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12038         /*
12039          * In order to save space in flags, we record only whether
12040          * pauth is "inactive", meaning all insns are implemented as
12041          * a nop, or "active" when some action must be performed.
12042          * The decision of which action to take is left to a helper.
12043          */
12044         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12045             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
12046         }
12047     }
12048 
12049     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12050         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
12051         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12052             DP_TBFLAG_A64(flags, BT, 1);
12053         }
12054     }
12055 
12056     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12057     if (!(env->pstate & PSTATE_UAO)) {
12058         switch (mmu_idx) {
12059         case ARMMMUIdx_E10_1:
12060         case ARMMMUIdx_E10_1_PAN:
12061             /* TODO: ARMv8.3-NV */
12062             DP_TBFLAG_A64(flags, UNPRIV, 1);
12063             break;
12064         case ARMMMUIdx_E20_2:
12065         case ARMMMUIdx_E20_2_PAN:
12066             /*
12067              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12068              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12069              */
12070             if (env->cp15.hcr_el2 & HCR_TGE) {
12071                 DP_TBFLAG_A64(flags, UNPRIV, 1);
12072             }
12073             break;
12074         default:
12075             break;
12076         }
12077     }
12078 
12079     if (env->pstate & PSTATE_IL) {
12080         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
12081     }
12082 
12083     if (arm_fgt_active(env, el)) {
12084         DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
12085         if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
12086             DP_TBFLAG_A64(flags, FGT_ERET, 1);
12087         }
12088         if (fgt_svc(env, el)) {
12089             DP_TBFLAG_ANY(flags, FGT_SVC, 1);
12090         }
12091     }
12092 
12093     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
12094         /*
12095          * Set MTE_ACTIVE if any access may be Checked, and leave clear
12096          * if all accesses must be Unchecked:
12097          * 1) If no TBI, then there are no tags in the address to check,
12098          * 2) If Tag Check Override, then all accesses are Unchecked,
12099          * 3) If Tag Check Fail == 0, then Checked access have no effect,
12100          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
12101          */
12102         if (allocation_tag_access_enabled(env, el, sctlr)) {
12103             DP_TBFLAG_A64(flags, ATA, 1);
12104             if (tbid
12105                 && !(env->pstate & PSTATE_TCO)
12106                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
12107                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
12108             }
12109         }
12110         /* And again for unprivileged accesses, if required.  */
12111         if (EX_TBFLAG_A64(flags, UNPRIV)
12112             && tbid
12113             && !(env->pstate & PSTATE_TCO)
12114             && (sctlr & SCTLR_TCF0)
12115             && allocation_tag_access_enabled(env, 0, sctlr)) {
12116             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
12117         }
12118         /* Cache TCMA as well as TBI. */
12119         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
12120     }
12121 
12122     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12123 }
12124 
12125 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
12126 {
12127     int el = arm_current_el(env);
12128     int fp_el = fp_exception_el(env, el);
12129     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12130 
12131     if (is_a64(env)) {
12132         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12133     } else if (arm_feature(env, ARM_FEATURE_M)) {
12134         return rebuild_hflags_m32(env, fp_el, mmu_idx);
12135     } else {
12136         return rebuild_hflags_a32(env, fp_el, mmu_idx);
12137     }
12138 }
12139 
12140 void arm_rebuild_hflags(CPUARMState *env)
12141 {
12142     env->hflags = rebuild_hflags_internal(env);
12143 }
12144 
12145 /*
12146  * If we have triggered a EL state change we can't rely on the
12147  * translator having passed it to us, we need to recompute.
12148  */
12149 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12150 {
12151     int el = arm_current_el(env);
12152     int fp_el = fp_exception_el(env, el);
12153     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12154 
12155     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12156 }
12157 
12158 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12159 {
12160     int fp_el = fp_exception_el(env, el);
12161     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12162 
12163     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12164 }
12165 
12166 /*
12167  * If we have triggered a EL state change we can't rely on the
12168  * translator having passed it to us, we need to recompute.
12169  */
12170 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12171 {
12172     int el = arm_current_el(env);
12173     int fp_el = fp_exception_el(env, el);
12174     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12175     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12176 }
12177 
12178 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12179 {
12180     int fp_el = fp_exception_el(env, el);
12181     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12182 
12183     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12184 }
12185 
12186 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12187 {
12188     int fp_el = fp_exception_el(env, el);
12189     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12190 
12191     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12192 }
12193 
12194 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12195 {
12196 #ifdef CONFIG_DEBUG_TCG
12197     CPUARMTBFlags c = env->hflags;
12198     CPUARMTBFlags r = rebuild_hflags_internal(env);
12199 
12200     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
12201         fprintf(stderr, "TCG hflags mismatch "
12202                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
12203                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
12204                 c.flags, c.flags2, r.flags, r.flags2);
12205         abort();
12206     }
12207 #endif
12208 }
12209 
12210 static bool mve_no_pred(CPUARMState *env)
12211 {
12212     /*
12213      * Return true if there is definitely no predication of MVE
12214      * instructions by VPR or LTPSIZE. (Returning false even if there
12215      * isn't any predication is OK; generated code will just be
12216      * a little worse.)
12217      * If the CPU does not implement MVE then this TB flag is always 0.
12218      *
12219      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12220      * logic in gen_update_fp_context() needs to be updated to match.
12221      *
12222      * We do not include the effect of the ECI bits here -- they are
12223      * tracked in other TB flags. This simplifies the logic for
12224      * "when did we emit code that changes the MVE_NO_PRED TB flag
12225      * and thus need to end the TB?".
12226      */
12227     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12228         return false;
12229     }
12230     if (env->v7m.vpr) {
12231         return false;
12232     }
12233     if (env->v7m.ltpsize < 4) {
12234         return false;
12235     }
12236     return true;
12237 }
12238 
12239 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12240                           target_ulong *cs_base, uint32_t *pflags)
12241 {
12242     CPUARMTBFlags flags;
12243 
12244     assert_hflags_rebuild_correctly(env);
12245     flags = env->hflags;
12246 
12247     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12248         *pc = env->pc;
12249         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12250             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12251         }
12252     } else {
12253         *pc = env->regs[15];
12254 
12255         if (arm_feature(env, ARM_FEATURE_M)) {
12256             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12257                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12258                 != env->v7m.secure) {
12259                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12260             }
12261 
12262             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12263                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12264                  (env->v7m.secure &&
12265                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12266                 /*
12267                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12268                  * active FP context; we must create a new FP context before
12269                  * executing any FP insn.
12270                  */
12271                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12272             }
12273 
12274             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12275             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12276                 DP_TBFLAG_M32(flags, LSPACT, 1);
12277             }
12278 
12279             if (mve_no_pred(env)) {
12280                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12281             }
12282         } else {
12283             /*
12284              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12285              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12286              */
12287             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12288                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12289             } else {
12290                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12291                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12292             }
12293             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12294                 DP_TBFLAG_A32(flags, VFPEN, 1);
12295             }
12296         }
12297 
12298         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12299         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12300     }
12301 
12302     /*
12303      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12304      * states defined in the ARM ARM for software singlestep:
12305      *  SS_ACTIVE   PSTATE.SS   State
12306      *     0            x       Inactive (the TB flag for SS is always 0)
12307      *     1            0       Active-pending
12308      *     1            1       Active-not-pending
12309      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12310      */
12311     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12312         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12313     }
12314 
12315     *pflags = flags.flags;
12316     *cs_base = flags.flags2;
12317 }
12318 
12319 #ifdef TARGET_AARCH64
12320 /*
12321  * The manual says that when SVE is enabled and VQ is widened the
12322  * implementation is allowed to zero the previously inaccessible
12323  * portion of the registers.  The corollary to that is that when
12324  * SVE is enabled and VQ is narrowed we are also allowed to zero
12325  * the now inaccessible portion of the registers.
12326  *
12327  * The intent of this is that no predicate bit beyond VQ is ever set.
12328  * Which means that some operations on predicate registers themselves
12329  * may operate on full uint64_t or even unrolled across the maximum
12330  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12331  * may well be cheaper than conditionals to restrict the operation
12332  * to the relevant portion of a uint16_t[16].
12333  */
12334 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12335 {
12336     int i, j;
12337     uint64_t pmask;
12338 
12339     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12340     assert(vq <= env_archcpu(env)->sve_max_vq);
12341 
12342     /* Zap the high bits of the zregs.  */
12343     for (i = 0; i < 32; i++) {
12344         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12345     }
12346 
12347     /* Zap the high bits of the pregs and ffr.  */
12348     pmask = 0;
12349     if (vq & 3) {
12350         pmask = ~(-1ULL << (16 * (vq & 3)));
12351     }
12352     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12353         for (i = 0; i < 17; ++i) {
12354             env->vfp.pregs[i].p[j] &= pmask;
12355         }
12356         pmask = 0;
12357     }
12358 }
12359 
12360 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12361 {
12362     int exc_el;
12363 
12364     if (sm) {
12365         exc_el = sme_exception_el(env, el);
12366     } else {
12367         exc_el = sve_exception_el(env, el);
12368     }
12369     if (exc_el) {
12370         return 0; /* disabled */
12371     }
12372     return sve_vqm1_for_el_sm(env, el, sm);
12373 }
12374 
12375 /*
12376  * Notice a change in SVE vector size when changing EL.
12377  */
12378 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12379                            int new_el, bool el0_a64)
12380 {
12381     ARMCPU *cpu = env_archcpu(env);
12382     int old_len, new_len;
12383     bool old_a64, new_a64, sm;
12384 
12385     /* Nothing to do if no SVE.  */
12386     if (!cpu_isar_feature(aa64_sve, cpu)) {
12387         return;
12388     }
12389 
12390     /* Nothing to do if FP is disabled in either EL.  */
12391     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12392         return;
12393     }
12394 
12395     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12396     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12397 
12398     /*
12399      * Both AArch64.TakeException and AArch64.ExceptionReturn
12400      * invoke ResetSVEState when taking an exception from, or
12401      * returning to, AArch32 state when PSTATE.SM is enabled.
12402      */
12403     sm = FIELD_EX64(env->svcr, SVCR, SM);
12404     if (old_a64 != new_a64 && sm) {
12405         arm_reset_sve_state(env);
12406         return;
12407     }
12408 
12409     /*
12410      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12411      * at ELx, or not available because the EL is in AArch32 state, then
12412      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12413      * has an effective value of 0".
12414      *
12415      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12416      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12417      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12418      * we already have the correct register contents when encountering the
12419      * vq0->vq0 transition between EL0->EL1.
12420      */
12421     old_len = new_len = 0;
12422     if (old_a64) {
12423         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12424     }
12425     if (new_a64) {
12426         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12427     }
12428 
12429     /* When changing vector length, clear inaccessible state.  */
12430     if (new_len < old_len) {
12431         aarch64_sve_narrow_vq(env, new_len + 1);
12432     }
12433 }
12434 #endif
12435