1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 42 43 #ifndef CONFIG_USER_ONLY 44 45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 46 MMUAccessType access_type, ARMMMUIdx mmu_idx, 47 bool s1_is_el0, 48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 49 target_ulong *page_size_ptr, 50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 51 __attribute__((nonnull)); 52 #endif 53 54 static void switch_mode(CPUARMState *env, int mode); 55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 56 57 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 assert(ri->fieldoffset); 60 if (cpreg_field_is_64bit(ri)) { 61 return CPREG_FIELD64(env, ri); 62 } else { 63 return CPREG_FIELD32(env, ri); 64 } 65 } 66 67 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 68 uint64_t value) 69 { 70 assert(ri->fieldoffset); 71 if (cpreg_field_is_64bit(ri)) { 72 CPREG_FIELD64(env, ri) = value; 73 } else { 74 CPREG_FIELD32(env, ri) = value; 75 } 76 } 77 78 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 79 { 80 return (char *)env + ri->fieldoffset; 81 } 82 83 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 84 { 85 /* Raw read of a coprocessor register (as needed for migration, etc). */ 86 if (ri->type & ARM_CP_CONST) { 87 return ri->resetvalue; 88 } else if (ri->raw_readfn) { 89 return ri->raw_readfn(env, ri); 90 } else if (ri->readfn) { 91 return ri->readfn(env, ri); 92 } else { 93 return raw_read(env, ri); 94 } 95 } 96 97 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 98 uint64_t v) 99 { 100 /* Raw write of a coprocessor register (as needed for migration, etc). 101 * Note that constant registers are treated as write-ignored; the 102 * caller should check for success by whether a readback gives the 103 * value written. 104 */ 105 if (ri->type & ARM_CP_CONST) { 106 return; 107 } else if (ri->raw_writefn) { 108 ri->raw_writefn(env, ri, v); 109 } else if (ri->writefn) { 110 ri->writefn(env, ri, v); 111 } else { 112 raw_write(env, ri, v); 113 } 114 } 115 116 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 117 { 118 /* Return true if the regdef would cause an assertion if you called 119 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 120 * program bug for it not to have the NO_RAW flag). 121 * NB that returning false here doesn't necessarily mean that calling 122 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 123 * read/write access functions which are safe for raw use" from "has 124 * read/write access functions which have side effects but has forgotten 125 * to provide raw access functions". 126 * The tests here line up with the conditions in read/write_raw_cp_reg() 127 * and assertions in raw_read()/raw_write(). 128 */ 129 if ((ri->type & ARM_CP_CONST) || 130 ri->fieldoffset || 131 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 132 return false; 133 } 134 return true; 135 } 136 137 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 138 { 139 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 140 int i; 141 bool ok = true; 142 143 for (i = 0; i < cpu->cpreg_array_len; i++) { 144 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 145 const ARMCPRegInfo *ri; 146 uint64_t newval; 147 148 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 149 if (!ri) { 150 ok = false; 151 continue; 152 } 153 if (ri->type & ARM_CP_NO_RAW) { 154 continue; 155 } 156 157 newval = read_raw_cp_reg(&cpu->env, ri); 158 if (kvm_sync) { 159 /* 160 * Only sync if the previous list->cpustate sync succeeded. 161 * Rather than tracking the success/failure state for every 162 * item in the list, we just recheck "does the raw write we must 163 * have made in write_list_to_cpustate() read back OK" here. 164 */ 165 uint64_t oldval = cpu->cpreg_values[i]; 166 167 if (oldval == newval) { 168 continue; 169 } 170 171 write_raw_cp_reg(&cpu->env, ri, oldval); 172 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 173 continue; 174 } 175 176 write_raw_cp_reg(&cpu->env, ri, newval); 177 } 178 cpu->cpreg_values[i] = newval; 179 } 180 return ok; 181 } 182 183 bool write_list_to_cpustate(ARMCPU *cpu) 184 { 185 int i; 186 bool ok = true; 187 188 for (i = 0; i < cpu->cpreg_array_len; i++) { 189 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 190 uint64_t v = cpu->cpreg_values[i]; 191 const ARMCPRegInfo *ri; 192 193 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 194 if (!ri) { 195 ok = false; 196 continue; 197 } 198 if (ri->type & ARM_CP_NO_RAW) { 199 continue; 200 } 201 /* Write value and confirm it reads back as written 202 * (to catch read-only registers and partially read-only 203 * registers where the incoming migration value doesn't match) 204 */ 205 write_raw_cp_reg(&cpu->env, ri, v); 206 if (read_raw_cp_reg(&cpu->env, ri) != v) { 207 ok = false; 208 } 209 } 210 return ok; 211 } 212 213 static void add_cpreg_to_list(gpointer key, gpointer opaque) 214 { 215 ARMCPU *cpu = opaque; 216 uint64_t regidx; 217 const ARMCPRegInfo *ri; 218 219 regidx = *(uint32_t *)key; 220 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 221 222 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 223 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 224 /* The value array need not be initialized at this point */ 225 cpu->cpreg_array_len++; 226 } 227 } 228 229 static void count_cpreg(gpointer key, gpointer opaque) 230 { 231 ARMCPU *cpu = opaque; 232 uint64_t regidx; 233 const ARMCPRegInfo *ri; 234 235 regidx = *(uint32_t *)key; 236 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 237 238 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 239 cpu->cpreg_array_len++; 240 } 241 } 242 243 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 244 { 245 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 246 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 247 248 if (aidx > bidx) { 249 return 1; 250 } 251 if (aidx < bidx) { 252 return -1; 253 } 254 return 0; 255 } 256 257 void init_cpreg_list(ARMCPU *cpu) 258 { 259 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 260 * Note that we require cpreg_tuples[] to be sorted by key ID. 261 */ 262 GList *keys; 263 int arraylen; 264 265 keys = g_hash_table_get_keys(cpu->cp_regs); 266 keys = g_list_sort(keys, cpreg_key_compare); 267 268 cpu->cpreg_array_len = 0; 269 270 g_list_foreach(keys, count_cpreg, cpu); 271 272 arraylen = cpu->cpreg_array_len; 273 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 274 cpu->cpreg_values = g_new(uint64_t, arraylen); 275 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 276 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 277 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 278 cpu->cpreg_array_len = 0; 279 280 g_list_foreach(keys, add_cpreg_to_list, cpu); 281 282 assert(cpu->cpreg_array_len == arraylen); 283 284 g_list_free(keys); 285 } 286 287 /* 288 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 289 */ 290 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 291 const ARMCPRegInfo *ri, 292 bool isread) 293 { 294 if (!is_a64(env) && arm_current_el(env) == 3 && 295 arm_is_secure_below_el3(env)) { 296 return CP_ACCESS_TRAP_UNCATEGORIZED; 297 } 298 return CP_ACCESS_OK; 299 } 300 301 /* Some secure-only AArch32 registers trap to EL3 if used from 302 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 303 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 304 * We assume that the .access field is set to PL1_RW. 305 */ 306 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 307 const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 if (arm_current_el(env) == 3) { 311 return CP_ACCESS_OK; 312 } 313 if (arm_is_secure_below_el3(env)) { 314 if (env->cp15.scr_el3 & SCR_EEL2) { 315 return CP_ACCESS_TRAP_EL2; 316 } 317 return CP_ACCESS_TRAP_EL3; 318 } 319 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 320 return CP_ACCESS_TRAP_UNCATEGORIZED; 321 } 322 323 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 324 { 325 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 326 } 327 328 /* Check for traps to "powerdown debug" registers, which are controlled 329 * by MDCR.TDOSA 330 */ 331 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 332 bool isread) 333 { 334 int el = arm_current_el(env); 335 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 336 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 337 (arm_hcr_el2_eff(env) & HCR_TGE); 338 339 if (el < 2 && mdcr_el2_tdosa) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 343 return CP_ACCESS_TRAP_EL3; 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps to "debug ROM" registers, which are controlled 349 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 350 */ 351 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 352 bool isread) 353 { 354 int el = arm_current_el(env); 355 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 356 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 357 (arm_hcr_el2_eff(env) & HCR_TGE); 358 359 if (el < 2 && mdcr_el2_tdra) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 363 return CP_ACCESS_TRAP_EL3; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 /* Check for traps to general debug registers, which are controlled 369 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 370 */ 371 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 372 bool isread) 373 { 374 int el = arm_current_el(env); 375 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 376 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 377 (arm_hcr_el2_eff(env) & HCR_TGE); 378 379 if (el < 2 && mdcr_el2_tda) { 380 return CP_ACCESS_TRAP_EL2; 381 } 382 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 383 return CP_ACCESS_TRAP_EL3; 384 } 385 return CP_ACCESS_OK; 386 } 387 388 /* Check for traps to performance monitor registers, which are controlled 389 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 390 */ 391 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 int el = arm_current_el(env); 395 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 396 397 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 398 return CP_ACCESS_TRAP_EL2; 399 } 400 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 401 return CP_ACCESS_TRAP_EL3; 402 } 403 return CP_ACCESS_OK; 404 } 405 406 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 407 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 408 bool isread) 409 { 410 if (arm_current_el(env) == 1) { 411 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 412 if (arm_hcr_el2_eff(env) & trap) { 413 return CP_ACCESS_TRAP_EL2; 414 } 415 } 416 return CP_ACCESS_OK; 417 } 418 419 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 420 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 421 bool isread) 422 { 423 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 424 return CP_ACCESS_TRAP_EL2; 425 } 426 return CP_ACCESS_OK; 427 } 428 429 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 430 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 431 bool isread) 432 { 433 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 434 return CP_ACCESS_TRAP_EL2; 435 } 436 return CP_ACCESS_OK; 437 } 438 439 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 440 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 441 bool isread) 442 { 443 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 444 return CP_ACCESS_TRAP_EL2; 445 } 446 return CP_ACCESS_OK; 447 } 448 449 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 450 { 451 ARMCPU *cpu = env_archcpu(env); 452 453 raw_write(env, ri, value); 454 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 455 } 456 457 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 458 { 459 ARMCPU *cpu = env_archcpu(env); 460 461 if (raw_read(env, ri) != value) { 462 /* Unlike real hardware the qemu TLB uses virtual addresses, 463 * not modified virtual addresses, so this causes a TLB flush. 464 */ 465 tlb_flush(CPU(cpu)); 466 raw_write(env, ri, value); 467 } 468 } 469 470 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 471 uint64_t value) 472 { 473 ARMCPU *cpu = env_archcpu(env); 474 475 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 476 && !extended_addresses_enabled(env)) { 477 /* For VMSA (when not using the LPAE long descriptor page table 478 * format) this register includes the ASID, so do a TLB flush. 479 * For PMSA it is purely a process ID and no action is needed. 480 */ 481 tlb_flush(CPU(cpu)); 482 } 483 raw_write(env, ri, value); 484 } 485 486 /* IS variants of TLB operations must affect all cores */ 487 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 488 uint64_t value) 489 { 490 CPUState *cs = env_cpu(env); 491 492 tlb_flush_all_cpus_synced(cs); 493 } 494 495 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 496 uint64_t value) 497 { 498 CPUState *cs = env_cpu(env); 499 500 tlb_flush_all_cpus_synced(cs); 501 } 502 503 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 504 uint64_t value) 505 { 506 CPUState *cs = env_cpu(env); 507 508 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 509 } 510 511 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 512 uint64_t value) 513 { 514 CPUState *cs = env_cpu(env); 515 516 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 517 } 518 519 /* 520 * Non-IS variants of TLB operations are upgraded to 521 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 522 * force broadcast of these operations. 523 */ 524 static bool tlb_force_broadcast(CPUARMState *env) 525 { 526 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 527 } 528 529 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 530 uint64_t value) 531 { 532 /* Invalidate all (TLBIALL) */ 533 CPUState *cs = env_cpu(env); 534 535 if (tlb_force_broadcast(env)) { 536 tlb_flush_all_cpus_synced(cs); 537 } else { 538 tlb_flush(cs); 539 } 540 } 541 542 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 543 uint64_t value) 544 { 545 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 546 CPUState *cs = env_cpu(env); 547 548 value &= TARGET_PAGE_MASK; 549 if (tlb_force_broadcast(env)) { 550 tlb_flush_page_all_cpus_synced(cs, value); 551 } else { 552 tlb_flush_page(cs, value); 553 } 554 } 555 556 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 /* Invalidate by ASID (TLBIASID) */ 560 CPUState *cs = env_cpu(env); 561 562 if (tlb_force_broadcast(env)) { 563 tlb_flush_all_cpus_synced(cs); 564 } else { 565 tlb_flush(cs); 566 } 567 } 568 569 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 570 uint64_t value) 571 { 572 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 573 CPUState *cs = env_cpu(env); 574 575 value &= TARGET_PAGE_MASK; 576 if (tlb_force_broadcast(env)) { 577 tlb_flush_page_all_cpus_synced(cs, value); 578 } else { 579 tlb_flush_page(cs, value); 580 } 581 } 582 583 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 584 uint64_t value) 585 { 586 CPUState *cs = env_cpu(env); 587 588 tlb_flush_by_mmuidx(cs, 589 ARMMMUIdxBit_E10_1 | 590 ARMMMUIdxBit_E10_1_PAN | 591 ARMMMUIdxBit_E10_0); 592 } 593 594 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 595 uint64_t value) 596 { 597 CPUState *cs = env_cpu(env); 598 599 tlb_flush_by_mmuidx_all_cpus_synced(cs, 600 ARMMMUIdxBit_E10_1 | 601 ARMMMUIdxBit_E10_1_PAN | 602 ARMMMUIdxBit_E10_0); 603 } 604 605 606 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 607 uint64_t value) 608 { 609 CPUState *cs = env_cpu(env); 610 611 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 612 } 613 614 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 615 uint64_t value) 616 { 617 CPUState *cs = env_cpu(env); 618 619 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 620 } 621 622 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 623 uint64_t value) 624 { 625 CPUState *cs = env_cpu(env); 626 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 627 628 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 629 } 630 631 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 632 uint64_t value) 633 { 634 CPUState *cs = env_cpu(env); 635 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 636 637 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 638 ARMMMUIdxBit_E2); 639 } 640 641 static const ARMCPRegInfo cp_reginfo[] = { 642 /* Define the secure and non-secure FCSE identifier CP registers 643 * separately because there is no secure bank in V8 (no _EL3). This allows 644 * the secure register to be properly reset and migrated. There is also no 645 * v8 EL1 version of the register so the non-secure instance stands alone. 646 */ 647 { .name = "FCSEIDR", 648 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 649 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 650 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 651 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 652 { .name = "FCSEIDR_S", 653 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 654 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 655 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 656 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 657 /* Define the secure and non-secure context identifier CP registers 658 * separately because there is no secure bank in V8 (no _EL3). This allows 659 * the secure register to be properly reset and migrated. In the 660 * non-secure case, the 32-bit register will have reset and migration 661 * disabled during registration as it is handled by the 64-bit instance. 662 */ 663 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 664 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 665 .access = PL1_RW, .accessfn = access_tvm_trvm, 666 .secure = ARM_CP_SECSTATE_NS, 667 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 668 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 669 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 670 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 671 .access = PL1_RW, .accessfn = access_tvm_trvm, 672 .secure = ARM_CP_SECSTATE_S, 673 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 674 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 675 REGINFO_SENTINEL 676 }; 677 678 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 679 /* NB: Some of these registers exist in v8 but with more precise 680 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 681 */ 682 /* MMU Domain access control / MPU write buffer control */ 683 { .name = "DACR", 684 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 685 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 686 .writefn = dacr_write, .raw_writefn = raw_write, 687 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 688 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 689 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 690 * For v6 and v5, these mappings are overly broad. 691 */ 692 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 693 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 694 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 695 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 696 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 697 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 698 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 699 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 700 /* Cache maintenance ops; some of this space may be overridden later. */ 701 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 702 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 703 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 704 REGINFO_SENTINEL 705 }; 706 707 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 708 /* Not all pre-v6 cores implemented this WFI, so this is slightly 709 * over-broad. 710 */ 711 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 712 .access = PL1_W, .type = ARM_CP_WFI }, 713 REGINFO_SENTINEL 714 }; 715 716 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 717 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 718 * is UNPREDICTABLE; we choose to NOP as most implementations do). 719 */ 720 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 721 .access = PL1_W, .type = ARM_CP_WFI }, 722 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 723 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 724 * OMAPCP will override this space. 725 */ 726 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 727 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 728 .resetvalue = 0 }, 729 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 730 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 731 .resetvalue = 0 }, 732 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 733 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 734 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 735 .resetvalue = 0 }, 736 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 737 * implementing it as RAZ means the "debug architecture version" bits 738 * will read as a reserved value, which should cause Linux to not try 739 * to use the debug hardware. 740 */ 741 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 742 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 743 /* MMU TLB control. Note that the wildcarding means we cover not just 744 * the unified TLB ops but also the dside/iside/inner-shareable variants. 745 */ 746 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 747 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 748 .type = ARM_CP_NO_RAW }, 749 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 750 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 751 .type = ARM_CP_NO_RAW }, 752 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 753 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 754 .type = ARM_CP_NO_RAW }, 755 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 756 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 757 .type = ARM_CP_NO_RAW }, 758 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 759 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 760 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 761 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 762 REGINFO_SENTINEL 763 }; 764 765 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 766 uint64_t value) 767 { 768 uint32_t mask = 0; 769 770 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 771 if (!arm_feature(env, ARM_FEATURE_V8)) { 772 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 773 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 774 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 775 */ 776 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 777 /* VFP coprocessor: cp10 & cp11 [23:20] */ 778 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 779 780 if (!arm_feature(env, ARM_FEATURE_NEON)) { 781 /* ASEDIS [31] bit is RAO/WI */ 782 value |= (1 << 31); 783 } 784 785 /* VFPv3 and upwards with NEON implement 32 double precision 786 * registers (D0-D31). 787 */ 788 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 789 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 790 value |= (1 << 30); 791 } 792 } 793 value &= mask; 794 } 795 796 /* 797 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 798 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 799 */ 800 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 801 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 802 value &= ~(0xf << 20); 803 value |= env->cp15.cpacr_el1 & (0xf << 20); 804 } 805 806 env->cp15.cpacr_el1 = value; 807 } 808 809 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 810 { 811 /* 812 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 813 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 814 */ 815 uint64_t value = env->cp15.cpacr_el1; 816 817 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 818 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 819 value &= ~(0xf << 20); 820 } 821 return value; 822 } 823 824 825 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 826 { 827 /* Call cpacr_write() so that we reset with the correct RAO bits set 828 * for our CPU features. 829 */ 830 cpacr_write(env, ri, 0); 831 } 832 833 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 834 bool isread) 835 { 836 if (arm_feature(env, ARM_FEATURE_V8)) { 837 /* Check if CPACR accesses are to be trapped to EL2 */ 838 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 839 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 840 return CP_ACCESS_TRAP_EL2; 841 /* Check if CPACR accesses are to be trapped to EL3 */ 842 } else if (arm_current_el(env) < 3 && 843 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 844 return CP_ACCESS_TRAP_EL3; 845 } 846 } 847 848 return CP_ACCESS_OK; 849 } 850 851 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 852 bool isread) 853 { 854 /* Check if CPTR accesses are set to trap to EL3 */ 855 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 856 return CP_ACCESS_TRAP_EL3; 857 } 858 859 return CP_ACCESS_OK; 860 } 861 862 static const ARMCPRegInfo v6_cp_reginfo[] = { 863 /* prefetch by MVA in v6, NOP in v7 */ 864 { .name = "MVA_prefetch", 865 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 866 .access = PL1_W, .type = ARM_CP_NOP }, 867 /* We need to break the TB after ISB to execute self-modifying code 868 * correctly and also to take any pending interrupts immediately. 869 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 870 */ 871 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 872 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 873 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 874 .access = PL0_W, .type = ARM_CP_NOP }, 875 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 876 .access = PL0_W, .type = ARM_CP_NOP }, 877 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 878 .access = PL1_RW, .accessfn = access_tvm_trvm, 879 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 880 offsetof(CPUARMState, cp15.ifar_ns) }, 881 .resetvalue = 0, }, 882 /* Watchpoint Fault Address Register : should actually only be present 883 * for 1136, 1176, 11MPCore. 884 */ 885 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 886 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 887 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 888 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 891 REGINFO_SENTINEL 892 }; 893 894 typedef struct pm_event { 895 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 896 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 897 bool (*supported)(CPUARMState *); 898 /* 899 * Retrieve the current count of the underlying event. The programmed 900 * counters hold a difference from the return value from this function 901 */ 902 uint64_t (*get_count)(CPUARMState *); 903 /* 904 * Return how many nanoseconds it will take (at a minimum) for count events 905 * to occur. A negative value indicates the counter will never overflow, or 906 * that the counter has otherwise arranged for the overflow bit to be set 907 * and the PMU interrupt to be raised on overflow. 908 */ 909 int64_t (*ns_per_count)(uint64_t); 910 } pm_event; 911 912 static bool event_always_supported(CPUARMState *env) 913 { 914 return true; 915 } 916 917 static uint64_t swinc_get_count(CPUARMState *env) 918 { 919 /* 920 * SW_INCR events are written directly to the pmevcntr's by writes to 921 * PMSWINC, so there is no underlying count maintained by the PMU itself 922 */ 923 return 0; 924 } 925 926 static int64_t swinc_ns_per(uint64_t ignored) 927 { 928 return -1; 929 } 930 931 /* 932 * Return the underlying cycle count for the PMU cycle counters. If we're in 933 * usermode, simply return 0. 934 */ 935 static uint64_t cycles_get_count(CPUARMState *env) 936 { 937 #ifndef CONFIG_USER_ONLY 938 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 939 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 940 #else 941 return cpu_get_host_ticks(); 942 #endif 943 } 944 945 #ifndef CONFIG_USER_ONLY 946 static int64_t cycles_ns_per(uint64_t cycles) 947 { 948 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 949 } 950 951 static bool instructions_supported(CPUARMState *env) 952 { 953 return icount_enabled() == 1; /* Precise instruction counting */ 954 } 955 956 static uint64_t instructions_get_count(CPUARMState *env) 957 { 958 return (uint64_t)icount_get_raw(); 959 } 960 961 static int64_t instructions_ns_per(uint64_t icount) 962 { 963 return icount_to_ns((int64_t)icount); 964 } 965 #endif 966 967 static bool pmu_8_1_events_supported(CPUARMState *env) 968 { 969 /* For events which are supported in any v8.1 PMU */ 970 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 971 } 972 973 static bool pmu_8_4_events_supported(CPUARMState *env) 974 { 975 /* For events which are supported in any v8.1 PMU */ 976 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 977 } 978 979 static uint64_t zero_event_get_count(CPUARMState *env) 980 { 981 /* For events which on QEMU never fire, so their count is always zero */ 982 return 0; 983 } 984 985 static int64_t zero_event_ns_per(uint64_t cycles) 986 { 987 /* An event which never fires can never overflow */ 988 return -1; 989 } 990 991 static const pm_event pm_events[] = { 992 { .number = 0x000, /* SW_INCR */ 993 .supported = event_always_supported, 994 .get_count = swinc_get_count, 995 .ns_per_count = swinc_ns_per, 996 }, 997 #ifndef CONFIG_USER_ONLY 998 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 999 .supported = instructions_supported, 1000 .get_count = instructions_get_count, 1001 .ns_per_count = instructions_ns_per, 1002 }, 1003 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1004 .supported = event_always_supported, 1005 .get_count = cycles_get_count, 1006 .ns_per_count = cycles_ns_per, 1007 }, 1008 #endif 1009 { .number = 0x023, /* STALL_FRONTEND */ 1010 .supported = pmu_8_1_events_supported, 1011 .get_count = zero_event_get_count, 1012 .ns_per_count = zero_event_ns_per, 1013 }, 1014 { .number = 0x024, /* STALL_BACKEND */ 1015 .supported = pmu_8_1_events_supported, 1016 .get_count = zero_event_get_count, 1017 .ns_per_count = zero_event_ns_per, 1018 }, 1019 { .number = 0x03c, /* STALL */ 1020 .supported = pmu_8_4_events_supported, 1021 .get_count = zero_event_get_count, 1022 .ns_per_count = zero_event_ns_per, 1023 }, 1024 }; 1025 1026 /* 1027 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1028 * events (i.e. the statistical profiling extension), this implementation 1029 * should first be updated to something sparse instead of the current 1030 * supported_event_map[] array. 1031 */ 1032 #define MAX_EVENT_ID 0x3c 1033 #define UNSUPPORTED_EVENT UINT16_MAX 1034 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1035 1036 /* 1037 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1038 * of ARM event numbers to indices in our pm_events array. 1039 * 1040 * Note: Events in the 0x40XX range are not currently supported. 1041 */ 1042 void pmu_init(ARMCPU *cpu) 1043 { 1044 unsigned int i; 1045 1046 /* 1047 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1048 * events to them 1049 */ 1050 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1051 supported_event_map[i] = UNSUPPORTED_EVENT; 1052 } 1053 cpu->pmceid0 = 0; 1054 cpu->pmceid1 = 0; 1055 1056 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1057 const pm_event *cnt = &pm_events[i]; 1058 assert(cnt->number <= MAX_EVENT_ID); 1059 /* We do not currently support events in the 0x40xx range */ 1060 assert(cnt->number <= 0x3f); 1061 1062 if (cnt->supported(&cpu->env)) { 1063 supported_event_map[cnt->number] = i; 1064 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1065 if (cnt->number & 0x20) { 1066 cpu->pmceid1 |= event_mask; 1067 } else { 1068 cpu->pmceid0 |= event_mask; 1069 } 1070 } 1071 } 1072 } 1073 1074 /* 1075 * Check at runtime whether a PMU event is supported for the current machine 1076 */ 1077 static bool event_supported(uint16_t number) 1078 { 1079 if (number > MAX_EVENT_ID) { 1080 return false; 1081 } 1082 return supported_event_map[number] != UNSUPPORTED_EVENT; 1083 } 1084 1085 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1086 bool isread) 1087 { 1088 /* Performance monitor registers user accessibility is controlled 1089 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1090 * trapping to EL2 or EL3 for other accesses. 1091 */ 1092 int el = arm_current_el(env); 1093 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1094 1095 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1096 return CP_ACCESS_TRAP; 1097 } 1098 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1099 return CP_ACCESS_TRAP_EL2; 1100 } 1101 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1102 return CP_ACCESS_TRAP_EL3; 1103 } 1104 1105 return CP_ACCESS_OK; 1106 } 1107 1108 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1109 const ARMCPRegInfo *ri, 1110 bool isread) 1111 { 1112 /* ER: event counter read trap control */ 1113 if (arm_feature(env, ARM_FEATURE_V8) 1114 && arm_current_el(env) == 0 1115 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1116 && isread) { 1117 return CP_ACCESS_OK; 1118 } 1119 1120 return pmreg_access(env, ri, isread); 1121 } 1122 1123 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1124 const ARMCPRegInfo *ri, 1125 bool isread) 1126 { 1127 /* SW: software increment write trap control */ 1128 if (arm_feature(env, ARM_FEATURE_V8) 1129 && arm_current_el(env) == 0 1130 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1131 && !isread) { 1132 return CP_ACCESS_OK; 1133 } 1134 1135 return pmreg_access(env, ri, isread); 1136 } 1137 1138 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1139 const ARMCPRegInfo *ri, 1140 bool isread) 1141 { 1142 /* ER: event counter read trap control */ 1143 if (arm_feature(env, ARM_FEATURE_V8) 1144 && arm_current_el(env) == 0 1145 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1146 return CP_ACCESS_OK; 1147 } 1148 1149 return pmreg_access(env, ri, isread); 1150 } 1151 1152 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1153 const ARMCPRegInfo *ri, 1154 bool isread) 1155 { 1156 /* CR: cycle counter read trap control */ 1157 if (arm_feature(env, ARM_FEATURE_V8) 1158 && arm_current_el(env) == 0 1159 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1160 && isread) { 1161 return CP_ACCESS_OK; 1162 } 1163 1164 return pmreg_access(env, ri, isread); 1165 } 1166 1167 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1168 * the current EL, security state, and register configuration. 1169 */ 1170 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1171 { 1172 uint64_t filter; 1173 bool e, p, u, nsk, nsu, nsh, m; 1174 bool enabled, prohibited, filtered; 1175 bool secure = arm_is_secure(env); 1176 int el = arm_current_el(env); 1177 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1178 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1179 1180 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1181 return false; 1182 } 1183 1184 if (!arm_feature(env, ARM_FEATURE_EL2) || 1185 (counter < hpmn || counter == 31)) { 1186 e = env->cp15.c9_pmcr & PMCRE; 1187 } else { 1188 e = mdcr_el2 & MDCR_HPME; 1189 } 1190 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1191 1192 if (!secure) { 1193 if (el == 2 && (counter < hpmn || counter == 31)) { 1194 prohibited = mdcr_el2 & MDCR_HPMD; 1195 } else { 1196 prohibited = false; 1197 } 1198 } else { 1199 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1200 !(env->cp15.mdcr_el3 & MDCR_SPME); 1201 } 1202 1203 if (prohibited && counter == 31) { 1204 prohibited = env->cp15.c9_pmcr & PMCRDP; 1205 } 1206 1207 if (counter == 31) { 1208 filter = env->cp15.pmccfiltr_el0; 1209 } else { 1210 filter = env->cp15.c14_pmevtyper[counter]; 1211 } 1212 1213 p = filter & PMXEVTYPER_P; 1214 u = filter & PMXEVTYPER_U; 1215 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1216 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1217 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1218 m = arm_el_is_aa64(env, 1) && 1219 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1220 1221 if (el == 0) { 1222 filtered = secure ? u : u != nsu; 1223 } else if (el == 1) { 1224 filtered = secure ? p : p != nsk; 1225 } else if (el == 2) { 1226 filtered = !nsh; 1227 } else { /* EL3 */ 1228 filtered = m != p; 1229 } 1230 1231 if (counter != 31) { 1232 /* 1233 * If not checking PMCCNTR, ensure the counter is setup to an event we 1234 * support 1235 */ 1236 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1237 if (!event_supported(event)) { 1238 return false; 1239 } 1240 } 1241 1242 return enabled && !prohibited && !filtered; 1243 } 1244 1245 static void pmu_update_irq(CPUARMState *env) 1246 { 1247 ARMCPU *cpu = env_archcpu(env); 1248 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1249 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1250 } 1251 1252 /* 1253 * Ensure c15_ccnt is the guest-visible count so that operations such as 1254 * enabling/disabling the counter or filtering, modifying the count itself, 1255 * etc. can be done logically. This is essentially a no-op if the counter is 1256 * not enabled at the time of the call. 1257 */ 1258 static void pmccntr_op_start(CPUARMState *env) 1259 { 1260 uint64_t cycles = cycles_get_count(env); 1261 1262 if (pmu_counter_enabled(env, 31)) { 1263 uint64_t eff_cycles = cycles; 1264 if (env->cp15.c9_pmcr & PMCRD) { 1265 /* Increment once every 64 processor clock cycles */ 1266 eff_cycles /= 64; 1267 } 1268 1269 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1270 1271 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1272 1ull << 63 : 1ull << 31; 1273 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1274 env->cp15.c9_pmovsr |= (1 << 31); 1275 pmu_update_irq(env); 1276 } 1277 1278 env->cp15.c15_ccnt = new_pmccntr; 1279 } 1280 env->cp15.c15_ccnt_delta = cycles; 1281 } 1282 1283 /* 1284 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1285 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1286 * pmccntr_op_start. 1287 */ 1288 static void pmccntr_op_finish(CPUARMState *env) 1289 { 1290 if (pmu_counter_enabled(env, 31)) { 1291 #ifndef CONFIG_USER_ONLY 1292 /* Calculate when the counter will next overflow */ 1293 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1294 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1295 remaining_cycles = (uint32_t)remaining_cycles; 1296 } 1297 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1298 1299 if (overflow_in > 0) { 1300 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1301 overflow_in; 1302 ARMCPU *cpu = env_archcpu(env); 1303 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1304 } 1305 #endif 1306 1307 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1308 if (env->cp15.c9_pmcr & PMCRD) { 1309 /* Increment once every 64 processor clock cycles */ 1310 prev_cycles /= 64; 1311 } 1312 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1313 } 1314 } 1315 1316 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1317 { 1318 1319 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1320 uint64_t count = 0; 1321 if (event_supported(event)) { 1322 uint16_t event_idx = supported_event_map[event]; 1323 count = pm_events[event_idx].get_count(env); 1324 } 1325 1326 if (pmu_counter_enabled(env, counter)) { 1327 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1328 1329 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1330 env->cp15.c9_pmovsr |= (1 << counter); 1331 pmu_update_irq(env); 1332 } 1333 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1334 } 1335 env->cp15.c14_pmevcntr_delta[counter] = count; 1336 } 1337 1338 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1339 { 1340 if (pmu_counter_enabled(env, counter)) { 1341 #ifndef CONFIG_USER_ONLY 1342 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1343 uint16_t event_idx = supported_event_map[event]; 1344 uint64_t delta = UINT32_MAX - 1345 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1346 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1347 1348 if (overflow_in > 0) { 1349 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1350 overflow_in; 1351 ARMCPU *cpu = env_archcpu(env); 1352 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1353 } 1354 #endif 1355 1356 env->cp15.c14_pmevcntr_delta[counter] -= 1357 env->cp15.c14_pmevcntr[counter]; 1358 } 1359 } 1360 1361 void pmu_op_start(CPUARMState *env) 1362 { 1363 unsigned int i; 1364 pmccntr_op_start(env); 1365 for (i = 0; i < pmu_num_counters(env); i++) { 1366 pmevcntr_op_start(env, i); 1367 } 1368 } 1369 1370 void pmu_op_finish(CPUARMState *env) 1371 { 1372 unsigned int i; 1373 pmccntr_op_finish(env); 1374 for (i = 0; i < pmu_num_counters(env); i++) { 1375 pmevcntr_op_finish(env, i); 1376 } 1377 } 1378 1379 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1380 { 1381 pmu_op_start(&cpu->env); 1382 } 1383 1384 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1385 { 1386 pmu_op_finish(&cpu->env); 1387 } 1388 1389 void arm_pmu_timer_cb(void *opaque) 1390 { 1391 ARMCPU *cpu = opaque; 1392 1393 /* 1394 * Update all the counter values based on the current underlying counts, 1395 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1396 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1397 * counter may expire. 1398 */ 1399 pmu_op_start(&cpu->env); 1400 pmu_op_finish(&cpu->env); 1401 } 1402 1403 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1404 uint64_t value) 1405 { 1406 pmu_op_start(env); 1407 1408 if (value & PMCRC) { 1409 /* The counter has been reset */ 1410 env->cp15.c15_ccnt = 0; 1411 } 1412 1413 if (value & PMCRP) { 1414 unsigned int i; 1415 for (i = 0; i < pmu_num_counters(env); i++) { 1416 env->cp15.c14_pmevcntr[i] = 0; 1417 } 1418 } 1419 1420 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1421 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1422 1423 pmu_op_finish(env); 1424 } 1425 1426 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1427 uint64_t value) 1428 { 1429 unsigned int i; 1430 for (i = 0; i < pmu_num_counters(env); i++) { 1431 /* Increment a counter's count iff: */ 1432 if ((value & (1 << i)) && /* counter's bit is set */ 1433 /* counter is enabled and not filtered */ 1434 pmu_counter_enabled(env, i) && 1435 /* counter is SW_INCR */ 1436 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1437 pmevcntr_op_start(env, i); 1438 1439 /* 1440 * Detect if this write causes an overflow since we can't predict 1441 * PMSWINC overflows like we can for other events 1442 */ 1443 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1444 1445 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1446 env->cp15.c9_pmovsr |= (1 << i); 1447 pmu_update_irq(env); 1448 } 1449 1450 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1451 1452 pmevcntr_op_finish(env, i); 1453 } 1454 } 1455 } 1456 1457 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1458 { 1459 uint64_t ret; 1460 pmccntr_op_start(env); 1461 ret = env->cp15.c15_ccnt; 1462 pmccntr_op_finish(env); 1463 return ret; 1464 } 1465 1466 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1467 uint64_t value) 1468 { 1469 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1470 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1471 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1472 * accessed. 1473 */ 1474 env->cp15.c9_pmselr = value & 0x1f; 1475 } 1476 1477 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1478 uint64_t value) 1479 { 1480 pmccntr_op_start(env); 1481 env->cp15.c15_ccnt = value; 1482 pmccntr_op_finish(env); 1483 } 1484 1485 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1486 uint64_t value) 1487 { 1488 uint64_t cur_val = pmccntr_read(env, NULL); 1489 1490 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1491 } 1492 1493 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1494 uint64_t value) 1495 { 1496 pmccntr_op_start(env); 1497 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1498 pmccntr_op_finish(env); 1499 } 1500 1501 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1502 uint64_t value) 1503 { 1504 pmccntr_op_start(env); 1505 /* M is not accessible from AArch32 */ 1506 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1507 (value & PMCCFILTR); 1508 pmccntr_op_finish(env); 1509 } 1510 1511 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1512 { 1513 /* M is not visible in AArch32 */ 1514 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1515 } 1516 1517 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1518 uint64_t value) 1519 { 1520 value &= pmu_counter_mask(env); 1521 env->cp15.c9_pmcnten |= value; 1522 } 1523 1524 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1525 uint64_t value) 1526 { 1527 value &= pmu_counter_mask(env); 1528 env->cp15.c9_pmcnten &= ~value; 1529 } 1530 1531 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1532 uint64_t value) 1533 { 1534 value &= pmu_counter_mask(env); 1535 env->cp15.c9_pmovsr &= ~value; 1536 pmu_update_irq(env); 1537 } 1538 1539 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1540 uint64_t value) 1541 { 1542 value &= pmu_counter_mask(env); 1543 env->cp15.c9_pmovsr |= value; 1544 pmu_update_irq(env); 1545 } 1546 1547 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1548 uint64_t value, const uint8_t counter) 1549 { 1550 if (counter == 31) { 1551 pmccfiltr_write(env, ri, value); 1552 } else if (counter < pmu_num_counters(env)) { 1553 pmevcntr_op_start(env, counter); 1554 1555 /* 1556 * If this counter's event type is changing, store the current 1557 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1558 * pmevcntr_op_finish has the correct baseline when it converts back to 1559 * a delta. 1560 */ 1561 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1562 PMXEVTYPER_EVTCOUNT; 1563 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1564 if (old_event != new_event) { 1565 uint64_t count = 0; 1566 if (event_supported(new_event)) { 1567 uint16_t event_idx = supported_event_map[new_event]; 1568 count = pm_events[event_idx].get_count(env); 1569 } 1570 env->cp15.c14_pmevcntr_delta[counter] = count; 1571 } 1572 1573 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1574 pmevcntr_op_finish(env, counter); 1575 } 1576 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1577 * PMSELR value is equal to or greater than the number of implemented 1578 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1579 */ 1580 } 1581 1582 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1583 const uint8_t counter) 1584 { 1585 if (counter == 31) { 1586 return env->cp15.pmccfiltr_el0; 1587 } else if (counter < pmu_num_counters(env)) { 1588 return env->cp15.c14_pmevtyper[counter]; 1589 } else { 1590 /* 1591 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1592 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1593 */ 1594 return 0; 1595 } 1596 } 1597 1598 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1599 uint64_t value) 1600 { 1601 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1602 pmevtyper_write(env, ri, value, counter); 1603 } 1604 1605 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1609 env->cp15.c14_pmevtyper[counter] = value; 1610 1611 /* 1612 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1613 * pmu_op_finish calls when loading saved state for a migration. Because 1614 * we're potentially updating the type of event here, the value written to 1615 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1616 * different counter type. Therefore, we need to set this value to the 1617 * current count for the counter type we're writing so that pmu_op_finish 1618 * has the correct count for its calculation. 1619 */ 1620 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1621 if (event_supported(event)) { 1622 uint16_t event_idx = supported_event_map[event]; 1623 env->cp15.c14_pmevcntr_delta[counter] = 1624 pm_events[event_idx].get_count(env); 1625 } 1626 } 1627 1628 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1629 { 1630 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1631 return pmevtyper_read(env, ri, counter); 1632 } 1633 1634 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1635 uint64_t value) 1636 { 1637 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1638 } 1639 1640 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1641 { 1642 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1643 } 1644 1645 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1646 uint64_t value, uint8_t counter) 1647 { 1648 if (counter < pmu_num_counters(env)) { 1649 pmevcntr_op_start(env, counter); 1650 env->cp15.c14_pmevcntr[counter] = value; 1651 pmevcntr_op_finish(env, counter); 1652 } 1653 /* 1654 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1655 * are CONSTRAINED UNPREDICTABLE. 1656 */ 1657 } 1658 1659 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1660 uint8_t counter) 1661 { 1662 if (counter < pmu_num_counters(env)) { 1663 uint64_t ret; 1664 pmevcntr_op_start(env, counter); 1665 ret = env->cp15.c14_pmevcntr[counter]; 1666 pmevcntr_op_finish(env, counter); 1667 return ret; 1668 } else { 1669 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1670 * are CONSTRAINED UNPREDICTABLE. */ 1671 return 0; 1672 } 1673 } 1674 1675 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1676 uint64_t value) 1677 { 1678 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1679 pmevcntr_write(env, ri, value, counter); 1680 } 1681 1682 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1683 { 1684 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1685 return pmevcntr_read(env, ri, counter); 1686 } 1687 1688 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1689 uint64_t value) 1690 { 1691 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1692 assert(counter < pmu_num_counters(env)); 1693 env->cp15.c14_pmevcntr[counter] = value; 1694 pmevcntr_write(env, ri, value, counter); 1695 } 1696 1697 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1698 { 1699 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1700 assert(counter < pmu_num_counters(env)); 1701 return env->cp15.c14_pmevcntr[counter]; 1702 } 1703 1704 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1705 uint64_t value) 1706 { 1707 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1708 } 1709 1710 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1711 { 1712 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1713 } 1714 1715 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1716 uint64_t value) 1717 { 1718 if (arm_feature(env, ARM_FEATURE_V8)) { 1719 env->cp15.c9_pmuserenr = value & 0xf; 1720 } else { 1721 env->cp15.c9_pmuserenr = value & 1; 1722 } 1723 } 1724 1725 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 /* We have no event counters so only the C bit can be changed */ 1729 value &= pmu_counter_mask(env); 1730 env->cp15.c9_pminten |= value; 1731 pmu_update_irq(env); 1732 } 1733 1734 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1735 uint64_t value) 1736 { 1737 value &= pmu_counter_mask(env); 1738 env->cp15.c9_pminten &= ~value; 1739 pmu_update_irq(env); 1740 } 1741 1742 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1743 uint64_t value) 1744 { 1745 /* Note that even though the AArch64 view of this register has bits 1746 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1747 * architectural requirements for bits which are RES0 only in some 1748 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1749 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1750 */ 1751 raw_write(env, ri, value & ~0x1FULL); 1752 } 1753 1754 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1755 { 1756 /* Begin with base v8.0 state. */ 1757 uint32_t valid_mask = 0x3fff; 1758 ARMCPU *cpu = env_archcpu(env); 1759 1760 if (ri->state == ARM_CP_STATE_AA64) { 1761 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1762 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1763 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1764 } 1765 valid_mask &= ~SCR_NET; 1766 1767 if (cpu_isar_feature(aa64_lor, cpu)) { 1768 valid_mask |= SCR_TLOR; 1769 } 1770 if (cpu_isar_feature(aa64_pauth, cpu)) { 1771 valid_mask |= SCR_API | SCR_APK; 1772 } 1773 if (cpu_isar_feature(aa64_sel2, cpu)) { 1774 valid_mask |= SCR_EEL2; 1775 } 1776 if (cpu_isar_feature(aa64_mte, cpu)) { 1777 valid_mask |= SCR_ATA; 1778 } 1779 } else { 1780 valid_mask &= ~(SCR_RW | SCR_ST); 1781 } 1782 1783 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1784 valid_mask &= ~SCR_HCE; 1785 1786 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1787 * supported if EL2 exists. The bit is UNK/SBZP when 1788 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1789 * when EL2 is unavailable. 1790 * On ARMv8, this bit is always available. 1791 */ 1792 if (arm_feature(env, ARM_FEATURE_V7) && 1793 !arm_feature(env, ARM_FEATURE_V8)) { 1794 valid_mask &= ~SCR_SMD; 1795 } 1796 } 1797 1798 /* Clear all-context RES0 bits. */ 1799 value &= valid_mask; 1800 raw_write(env, ri, value); 1801 } 1802 1803 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1804 { 1805 /* 1806 * scr_write will set the RES1 bits on an AArch64-only CPU. 1807 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1808 */ 1809 scr_write(env, ri, 0); 1810 } 1811 1812 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1813 const ARMCPRegInfo *ri, 1814 bool isread) 1815 { 1816 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1817 return CP_ACCESS_TRAP_EL2; 1818 } 1819 1820 return CP_ACCESS_OK; 1821 } 1822 1823 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1824 { 1825 ARMCPU *cpu = env_archcpu(env); 1826 1827 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1828 * bank 1829 */ 1830 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1831 ri->secure & ARM_CP_SECSTATE_S); 1832 1833 return cpu->ccsidr[index]; 1834 } 1835 1836 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1837 uint64_t value) 1838 { 1839 raw_write(env, ri, value & 0xf); 1840 } 1841 1842 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1843 { 1844 CPUState *cs = env_cpu(env); 1845 bool el1 = arm_current_el(env) == 1; 1846 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1847 uint64_t ret = 0; 1848 1849 if (hcr_el2 & HCR_IMO) { 1850 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1851 ret |= CPSR_I; 1852 } 1853 } else { 1854 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1855 ret |= CPSR_I; 1856 } 1857 } 1858 1859 if (hcr_el2 & HCR_FMO) { 1860 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1861 ret |= CPSR_F; 1862 } 1863 } else { 1864 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1865 ret |= CPSR_F; 1866 } 1867 } 1868 1869 /* External aborts are not possible in QEMU so A bit is always clear */ 1870 return ret; 1871 } 1872 1873 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1874 bool isread) 1875 { 1876 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1877 return CP_ACCESS_TRAP_EL2; 1878 } 1879 1880 return CP_ACCESS_OK; 1881 } 1882 1883 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1884 bool isread) 1885 { 1886 if (arm_feature(env, ARM_FEATURE_V8)) { 1887 return access_aa64_tid1(env, ri, isread); 1888 } 1889 1890 return CP_ACCESS_OK; 1891 } 1892 1893 static const ARMCPRegInfo v7_cp_reginfo[] = { 1894 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1895 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1896 .access = PL1_W, .type = ARM_CP_NOP }, 1897 /* Performance monitors are implementation defined in v7, 1898 * but with an ARM recommended set of registers, which we 1899 * follow. 1900 * 1901 * Performance registers fall into three categories: 1902 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1903 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1904 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1905 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1906 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1907 */ 1908 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1909 .access = PL0_RW, .type = ARM_CP_ALIAS, 1910 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1911 .writefn = pmcntenset_write, 1912 .accessfn = pmreg_access, 1913 .raw_writefn = raw_write }, 1914 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1915 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1916 .access = PL0_RW, .accessfn = pmreg_access, 1917 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1918 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1919 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1920 .access = PL0_RW, 1921 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1922 .accessfn = pmreg_access, 1923 .writefn = pmcntenclr_write, 1924 .type = ARM_CP_ALIAS }, 1925 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1926 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1927 .access = PL0_RW, .accessfn = pmreg_access, 1928 .type = ARM_CP_ALIAS, 1929 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1930 .writefn = pmcntenclr_write }, 1931 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1932 .access = PL0_RW, .type = ARM_CP_IO, 1933 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1934 .accessfn = pmreg_access, 1935 .writefn = pmovsr_write, 1936 .raw_writefn = raw_write }, 1937 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1938 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1939 .access = PL0_RW, .accessfn = pmreg_access, 1940 .type = ARM_CP_ALIAS | ARM_CP_IO, 1941 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1942 .writefn = pmovsr_write, 1943 .raw_writefn = raw_write }, 1944 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1945 .access = PL0_W, .accessfn = pmreg_access_swinc, 1946 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1947 .writefn = pmswinc_write }, 1948 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1949 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1950 .access = PL0_W, .accessfn = pmreg_access_swinc, 1951 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1952 .writefn = pmswinc_write }, 1953 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1954 .access = PL0_RW, .type = ARM_CP_ALIAS, 1955 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1956 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1957 .raw_writefn = raw_write}, 1958 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1960 .access = PL0_RW, .accessfn = pmreg_access_selr, 1961 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1962 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1963 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1964 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1965 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1966 .accessfn = pmreg_access_ccntr }, 1967 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1968 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1969 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1970 .type = ARM_CP_IO, 1971 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1972 .readfn = pmccntr_read, .writefn = pmccntr_write, 1973 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1974 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1975 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1976 .access = PL0_RW, .accessfn = pmreg_access, 1977 .type = ARM_CP_ALIAS | ARM_CP_IO, 1978 .resetvalue = 0, }, 1979 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1980 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1981 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1982 .access = PL0_RW, .accessfn = pmreg_access, 1983 .type = ARM_CP_IO, 1984 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1985 .resetvalue = 0, }, 1986 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1987 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1988 .accessfn = pmreg_access, 1989 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1990 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1991 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1992 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1993 .accessfn = pmreg_access, 1994 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1995 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1996 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1997 .accessfn = pmreg_access_xevcntr, 1998 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1999 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2000 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2001 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2002 .accessfn = pmreg_access_xevcntr, 2003 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2004 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2005 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2006 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2007 .resetvalue = 0, 2008 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2009 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2010 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2011 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2012 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2013 .resetvalue = 0, 2014 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2015 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2016 .access = PL1_RW, .accessfn = access_tpm, 2017 .type = ARM_CP_ALIAS | ARM_CP_IO, 2018 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2019 .resetvalue = 0, 2020 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2021 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2022 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2023 .access = PL1_RW, .accessfn = access_tpm, 2024 .type = ARM_CP_IO, 2025 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2026 .writefn = pmintenset_write, .raw_writefn = raw_write, 2027 .resetvalue = 0x0 }, 2028 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2029 .access = PL1_RW, .accessfn = access_tpm, 2030 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2031 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2032 .writefn = pmintenclr_write, }, 2033 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2034 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2035 .access = PL1_RW, .accessfn = access_tpm, 2036 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2037 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2038 .writefn = pmintenclr_write }, 2039 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2040 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2041 .access = PL1_R, 2042 .accessfn = access_aa64_tid2, 2043 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2044 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2045 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2046 .access = PL1_RW, 2047 .accessfn = access_aa64_tid2, 2048 .writefn = csselr_write, .resetvalue = 0, 2049 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2050 offsetof(CPUARMState, cp15.csselr_ns) } }, 2051 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2052 * just RAZ for all cores: 2053 */ 2054 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2055 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2056 .access = PL1_R, .type = ARM_CP_CONST, 2057 .accessfn = access_aa64_tid1, 2058 .resetvalue = 0 }, 2059 /* Auxiliary fault status registers: these also are IMPDEF, and we 2060 * choose to RAZ/WI for all cores. 2061 */ 2062 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2063 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2064 .access = PL1_RW, .accessfn = access_tvm_trvm, 2065 .type = ARM_CP_CONST, .resetvalue = 0 }, 2066 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2067 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2068 .access = PL1_RW, .accessfn = access_tvm_trvm, 2069 .type = ARM_CP_CONST, .resetvalue = 0 }, 2070 /* MAIR can just read-as-written because we don't implement caches 2071 * and so don't need to care about memory attributes. 2072 */ 2073 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2074 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2075 .access = PL1_RW, .accessfn = access_tvm_trvm, 2076 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2077 .resetvalue = 0 }, 2078 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2079 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2080 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2081 .resetvalue = 0 }, 2082 /* For non-long-descriptor page tables these are PRRR and NMRR; 2083 * regardless they still act as reads-as-written for QEMU. 2084 */ 2085 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2086 * allows them to assign the correct fieldoffset based on the endianness 2087 * handled in the field definitions. 2088 */ 2089 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2090 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2091 .access = PL1_RW, .accessfn = access_tvm_trvm, 2092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2093 offsetof(CPUARMState, cp15.mair0_ns) }, 2094 .resetfn = arm_cp_reset_ignore }, 2095 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2096 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2097 .access = PL1_RW, .accessfn = access_tvm_trvm, 2098 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2099 offsetof(CPUARMState, cp15.mair1_ns) }, 2100 .resetfn = arm_cp_reset_ignore }, 2101 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2102 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2103 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2104 /* 32 bit ITLB invalidates */ 2105 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2106 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2107 .writefn = tlbiall_write }, 2108 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2109 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2110 .writefn = tlbimva_write }, 2111 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2112 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2113 .writefn = tlbiasid_write }, 2114 /* 32 bit DTLB invalidates */ 2115 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2116 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2117 .writefn = tlbiall_write }, 2118 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2119 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2120 .writefn = tlbimva_write }, 2121 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2122 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2123 .writefn = tlbiasid_write }, 2124 /* 32 bit TLB invalidates */ 2125 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2126 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2127 .writefn = tlbiall_write }, 2128 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2129 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2130 .writefn = tlbimva_write }, 2131 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2132 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2133 .writefn = tlbiasid_write }, 2134 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2135 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2136 .writefn = tlbimvaa_write }, 2137 REGINFO_SENTINEL 2138 }; 2139 2140 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2141 /* 32 bit TLB invalidates, Inner Shareable */ 2142 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2144 .writefn = tlbiall_is_write }, 2145 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2146 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2147 .writefn = tlbimva_is_write }, 2148 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2149 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2150 .writefn = tlbiasid_is_write }, 2151 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2152 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2153 .writefn = tlbimvaa_is_write }, 2154 REGINFO_SENTINEL 2155 }; 2156 2157 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2158 /* PMOVSSET is not implemented in v7 before v7ve */ 2159 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2160 .access = PL0_RW, .accessfn = pmreg_access, 2161 .type = ARM_CP_ALIAS | ARM_CP_IO, 2162 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2163 .writefn = pmovsset_write, 2164 .raw_writefn = raw_write }, 2165 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2167 .access = PL0_RW, .accessfn = pmreg_access, 2168 .type = ARM_CP_ALIAS | ARM_CP_IO, 2169 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2170 .writefn = pmovsset_write, 2171 .raw_writefn = raw_write }, 2172 REGINFO_SENTINEL 2173 }; 2174 2175 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2176 uint64_t value) 2177 { 2178 value &= 1; 2179 env->teecr = value; 2180 } 2181 2182 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2183 bool isread) 2184 { 2185 /* 2186 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2187 * at all, so we don't need to check whether we're v8A. 2188 */ 2189 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2190 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2191 return CP_ACCESS_TRAP_EL2; 2192 } 2193 return CP_ACCESS_OK; 2194 } 2195 2196 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2197 bool isread) 2198 { 2199 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2200 return CP_ACCESS_TRAP; 2201 } 2202 return teecr_access(env, ri, isread); 2203 } 2204 2205 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2206 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2207 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2208 .resetvalue = 0, 2209 .writefn = teecr_write, .accessfn = teecr_access }, 2210 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2211 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2212 .accessfn = teehbr_access, .resetvalue = 0 }, 2213 REGINFO_SENTINEL 2214 }; 2215 2216 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2217 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2218 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2219 .access = PL0_RW, 2220 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2221 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2222 .access = PL0_RW, 2223 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2224 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2225 .resetfn = arm_cp_reset_ignore }, 2226 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2227 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2228 .access = PL0_R|PL1_W, 2229 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2230 .resetvalue = 0}, 2231 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2232 .access = PL0_R|PL1_W, 2233 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2234 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2235 .resetfn = arm_cp_reset_ignore }, 2236 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2237 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2238 .access = PL1_RW, 2239 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2240 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2241 .access = PL1_RW, 2242 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2243 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2244 .resetvalue = 0 }, 2245 REGINFO_SENTINEL 2246 }; 2247 2248 #ifndef CONFIG_USER_ONLY 2249 2250 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2251 bool isread) 2252 { 2253 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2254 * Writable only at the highest implemented exception level. 2255 */ 2256 int el = arm_current_el(env); 2257 uint64_t hcr; 2258 uint32_t cntkctl; 2259 2260 switch (el) { 2261 case 0: 2262 hcr = arm_hcr_el2_eff(env); 2263 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2264 cntkctl = env->cp15.cnthctl_el2; 2265 } else { 2266 cntkctl = env->cp15.c14_cntkctl; 2267 } 2268 if (!extract32(cntkctl, 0, 2)) { 2269 return CP_ACCESS_TRAP; 2270 } 2271 break; 2272 case 1: 2273 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2274 arm_is_secure_below_el3(env)) { 2275 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2276 return CP_ACCESS_TRAP_UNCATEGORIZED; 2277 } 2278 break; 2279 case 2: 2280 case 3: 2281 break; 2282 } 2283 2284 if (!isread && el < arm_highest_el(env)) { 2285 return CP_ACCESS_TRAP_UNCATEGORIZED; 2286 } 2287 2288 return CP_ACCESS_OK; 2289 } 2290 2291 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2292 bool isread) 2293 { 2294 unsigned int cur_el = arm_current_el(env); 2295 bool has_el2 = arm_is_el2_enabled(env); 2296 uint64_t hcr = arm_hcr_el2_eff(env); 2297 2298 switch (cur_el) { 2299 case 0: 2300 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2301 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2302 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2303 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2304 } 2305 2306 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2307 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2308 return CP_ACCESS_TRAP; 2309 } 2310 2311 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2312 if (hcr & HCR_E2H) { 2313 if (timeridx == GTIMER_PHYS && 2314 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2315 return CP_ACCESS_TRAP_EL2; 2316 } 2317 } else { 2318 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2319 if (has_el2 && timeridx == GTIMER_PHYS && 2320 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2321 return CP_ACCESS_TRAP_EL2; 2322 } 2323 } 2324 break; 2325 2326 case 1: 2327 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2328 if (has_el2 && timeridx == GTIMER_PHYS && 2329 (hcr & HCR_E2H 2330 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2331 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2332 return CP_ACCESS_TRAP_EL2; 2333 } 2334 break; 2335 } 2336 return CP_ACCESS_OK; 2337 } 2338 2339 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2340 bool isread) 2341 { 2342 unsigned int cur_el = arm_current_el(env); 2343 bool has_el2 = arm_is_el2_enabled(env); 2344 uint64_t hcr = arm_hcr_el2_eff(env); 2345 2346 switch (cur_el) { 2347 case 0: 2348 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2349 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2350 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2351 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2352 } 2353 2354 /* 2355 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2356 * EL0 if EL0[PV]TEN is zero. 2357 */ 2358 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2359 return CP_ACCESS_TRAP; 2360 } 2361 /* fall through */ 2362 2363 case 1: 2364 if (has_el2 && timeridx == GTIMER_PHYS) { 2365 if (hcr & HCR_E2H) { 2366 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2367 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2368 return CP_ACCESS_TRAP_EL2; 2369 } 2370 } else { 2371 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2372 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2373 return CP_ACCESS_TRAP_EL2; 2374 } 2375 } 2376 } 2377 break; 2378 } 2379 return CP_ACCESS_OK; 2380 } 2381 2382 static CPAccessResult gt_pct_access(CPUARMState *env, 2383 const ARMCPRegInfo *ri, 2384 bool isread) 2385 { 2386 return gt_counter_access(env, GTIMER_PHYS, isread); 2387 } 2388 2389 static CPAccessResult gt_vct_access(CPUARMState *env, 2390 const ARMCPRegInfo *ri, 2391 bool isread) 2392 { 2393 return gt_counter_access(env, GTIMER_VIRT, isread); 2394 } 2395 2396 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2397 bool isread) 2398 { 2399 return gt_timer_access(env, GTIMER_PHYS, isread); 2400 } 2401 2402 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2403 bool isread) 2404 { 2405 return gt_timer_access(env, GTIMER_VIRT, isread); 2406 } 2407 2408 static CPAccessResult gt_stimer_access(CPUARMState *env, 2409 const ARMCPRegInfo *ri, 2410 bool isread) 2411 { 2412 /* The AArch64 register view of the secure physical timer is 2413 * always accessible from EL3, and configurably accessible from 2414 * Secure EL1. 2415 */ 2416 switch (arm_current_el(env)) { 2417 case 1: 2418 if (!arm_is_secure(env)) { 2419 return CP_ACCESS_TRAP; 2420 } 2421 if (!(env->cp15.scr_el3 & SCR_ST)) { 2422 return CP_ACCESS_TRAP_EL3; 2423 } 2424 return CP_ACCESS_OK; 2425 case 0: 2426 case 2: 2427 return CP_ACCESS_TRAP; 2428 case 3: 2429 return CP_ACCESS_OK; 2430 default: 2431 g_assert_not_reached(); 2432 } 2433 } 2434 2435 static uint64_t gt_get_countervalue(CPUARMState *env) 2436 { 2437 ARMCPU *cpu = env_archcpu(env); 2438 2439 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2440 } 2441 2442 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2443 { 2444 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2445 2446 if (gt->ctl & 1) { 2447 /* Timer enabled: calculate and set current ISTATUS, irq, and 2448 * reset timer to when ISTATUS next has to change 2449 */ 2450 uint64_t offset = timeridx == GTIMER_VIRT ? 2451 cpu->env.cp15.cntvoff_el2 : 0; 2452 uint64_t count = gt_get_countervalue(&cpu->env); 2453 /* Note that this must be unsigned 64 bit arithmetic: */ 2454 int istatus = count - offset >= gt->cval; 2455 uint64_t nexttick; 2456 int irqstate; 2457 2458 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2459 2460 irqstate = (istatus && !(gt->ctl & 2)); 2461 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2462 2463 if (istatus) { 2464 /* Next transition is when count rolls back over to zero */ 2465 nexttick = UINT64_MAX; 2466 } else { 2467 /* Next transition is when we hit cval */ 2468 nexttick = gt->cval + offset; 2469 } 2470 /* Note that the desired next expiry time might be beyond the 2471 * signed-64-bit range of a QEMUTimer -- in this case we just 2472 * set the timer for as far in the future as possible. When the 2473 * timer expires we will reset the timer for any remaining period. 2474 */ 2475 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2476 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2477 } else { 2478 timer_mod(cpu->gt_timer[timeridx], nexttick); 2479 } 2480 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2481 } else { 2482 /* Timer disabled: ISTATUS and timer output always clear */ 2483 gt->ctl &= ~4; 2484 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2485 timer_del(cpu->gt_timer[timeridx]); 2486 trace_arm_gt_recalc_disabled(timeridx); 2487 } 2488 } 2489 2490 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2491 int timeridx) 2492 { 2493 ARMCPU *cpu = env_archcpu(env); 2494 2495 timer_del(cpu->gt_timer[timeridx]); 2496 } 2497 2498 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2499 { 2500 return gt_get_countervalue(env); 2501 } 2502 2503 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2504 { 2505 uint64_t hcr; 2506 2507 switch (arm_current_el(env)) { 2508 case 2: 2509 hcr = arm_hcr_el2_eff(env); 2510 if (hcr & HCR_E2H) { 2511 return 0; 2512 } 2513 break; 2514 case 0: 2515 hcr = arm_hcr_el2_eff(env); 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 return 0; 2518 } 2519 break; 2520 } 2521 2522 return env->cp15.cntvoff_el2; 2523 } 2524 2525 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2526 { 2527 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2528 } 2529 2530 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2531 int timeridx, 2532 uint64_t value) 2533 { 2534 trace_arm_gt_cval_write(timeridx, value); 2535 env->cp15.c14_timer[timeridx].cval = value; 2536 gt_recalc_timer(env_archcpu(env), timeridx); 2537 } 2538 2539 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2540 int timeridx) 2541 { 2542 uint64_t offset = 0; 2543 2544 switch (timeridx) { 2545 case GTIMER_VIRT: 2546 case GTIMER_HYPVIRT: 2547 offset = gt_virt_cnt_offset(env); 2548 break; 2549 } 2550 2551 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2552 (gt_get_countervalue(env) - offset)); 2553 } 2554 2555 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2556 int timeridx, 2557 uint64_t value) 2558 { 2559 uint64_t offset = 0; 2560 2561 switch (timeridx) { 2562 case GTIMER_VIRT: 2563 case GTIMER_HYPVIRT: 2564 offset = gt_virt_cnt_offset(env); 2565 break; 2566 } 2567 2568 trace_arm_gt_tval_write(timeridx, value); 2569 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2570 sextract64(value, 0, 32); 2571 gt_recalc_timer(env_archcpu(env), timeridx); 2572 } 2573 2574 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2575 int timeridx, 2576 uint64_t value) 2577 { 2578 ARMCPU *cpu = env_archcpu(env); 2579 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2580 2581 trace_arm_gt_ctl_write(timeridx, value); 2582 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2583 if ((oldval ^ value) & 1) { 2584 /* Enable toggled */ 2585 gt_recalc_timer(cpu, timeridx); 2586 } else if ((oldval ^ value) & 2) { 2587 /* IMASK toggled: don't need to recalculate, 2588 * just set the interrupt line based on ISTATUS 2589 */ 2590 int irqstate = (oldval & 4) && !(value & 2); 2591 2592 trace_arm_gt_imask_toggle(timeridx, irqstate); 2593 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2594 } 2595 } 2596 2597 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2598 { 2599 gt_timer_reset(env, ri, GTIMER_PHYS); 2600 } 2601 2602 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2603 uint64_t value) 2604 { 2605 gt_cval_write(env, ri, GTIMER_PHYS, value); 2606 } 2607 2608 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2609 { 2610 return gt_tval_read(env, ri, GTIMER_PHYS); 2611 } 2612 2613 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2614 uint64_t value) 2615 { 2616 gt_tval_write(env, ri, GTIMER_PHYS, value); 2617 } 2618 2619 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2620 uint64_t value) 2621 { 2622 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2623 } 2624 2625 static int gt_phys_redir_timeridx(CPUARMState *env) 2626 { 2627 switch (arm_mmu_idx(env)) { 2628 case ARMMMUIdx_E20_0: 2629 case ARMMMUIdx_E20_2: 2630 case ARMMMUIdx_E20_2_PAN: 2631 case ARMMMUIdx_SE20_0: 2632 case ARMMMUIdx_SE20_2: 2633 case ARMMMUIdx_SE20_2_PAN: 2634 return GTIMER_HYP; 2635 default: 2636 return GTIMER_PHYS; 2637 } 2638 } 2639 2640 static int gt_virt_redir_timeridx(CPUARMState *env) 2641 { 2642 switch (arm_mmu_idx(env)) { 2643 case ARMMMUIdx_E20_0: 2644 case ARMMMUIdx_E20_2: 2645 case ARMMMUIdx_E20_2_PAN: 2646 case ARMMMUIdx_SE20_0: 2647 case ARMMMUIdx_SE20_2: 2648 case ARMMMUIdx_SE20_2_PAN: 2649 return GTIMER_HYPVIRT; 2650 default: 2651 return GTIMER_VIRT; 2652 } 2653 } 2654 2655 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2656 const ARMCPRegInfo *ri) 2657 { 2658 int timeridx = gt_phys_redir_timeridx(env); 2659 return env->cp15.c14_timer[timeridx].cval; 2660 } 2661 2662 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2663 uint64_t value) 2664 { 2665 int timeridx = gt_phys_redir_timeridx(env); 2666 gt_cval_write(env, ri, timeridx, value); 2667 } 2668 2669 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2670 const ARMCPRegInfo *ri) 2671 { 2672 int timeridx = gt_phys_redir_timeridx(env); 2673 return gt_tval_read(env, ri, timeridx); 2674 } 2675 2676 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2677 uint64_t value) 2678 { 2679 int timeridx = gt_phys_redir_timeridx(env); 2680 gt_tval_write(env, ri, timeridx, value); 2681 } 2682 2683 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2684 const ARMCPRegInfo *ri) 2685 { 2686 int timeridx = gt_phys_redir_timeridx(env); 2687 return env->cp15.c14_timer[timeridx].ctl; 2688 } 2689 2690 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2691 uint64_t value) 2692 { 2693 int timeridx = gt_phys_redir_timeridx(env); 2694 gt_ctl_write(env, ri, timeridx, value); 2695 } 2696 2697 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2698 { 2699 gt_timer_reset(env, ri, GTIMER_VIRT); 2700 } 2701 2702 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2703 uint64_t value) 2704 { 2705 gt_cval_write(env, ri, GTIMER_VIRT, value); 2706 } 2707 2708 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2709 { 2710 return gt_tval_read(env, ri, GTIMER_VIRT); 2711 } 2712 2713 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2714 uint64_t value) 2715 { 2716 gt_tval_write(env, ri, GTIMER_VIRT, value); 2717 } 2718 2719 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2720 uint64_t value) 2721 { 2722 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2723 } 2724 2725 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2726 uint64_t value) 2727 { 2728 ARMCPU *cpu = env_archcpu(env); 2729 2730 trace_arm_gt_cntvoff_write(value); 2731 raw_write(env, ri, value); 2732 gt_recalc_timer(cpu, GTIMER_VIRT); 2733 } 2734 2735 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2736 const ARMCPRegInfo *ri) 2737 { 2738 int timeridx = gt_virt_redir_timeridx(env); 2739 return env->cp15.c14_timer[timeridx].cval; 2740 } 2741 2742 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2743 uint64_t value) 2744 { 2745 int timeridx = gt_virt_redir_timeridx(env); 2746 gt_cval_write(env, ri, timeridx, value); 2747 } 2748 2749 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2750 const ARMCPRegInfo *ri) 2751 { 2752 int timeridx = gt_virt_redir_timeridx(env); 2753 return gt_tval_read(env, ri, timeridx); 2754 } 2755 2756 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2757 uint64_t value) 2758 { 2759 int timeridx = gt_virt_redir_timeridx(env); 2760 gt_tval_write(env, ri, timeridx, value); 2761 } 2762 2763 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2764 const ARMCPRegInfo *ri) 2765 { 2766 int timeridx = gt_virt_redir_timeridx(env); 2767 return env->cp15.c14_timer[timeridx].ctl; 2768 } 2769 2770 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2771 uint64_t value) 2772 { 2773 int timeridx = gt_virt_redir_timeridx(env); 2774 gt_ctl_write(env, ri, timeridx, value); 2775 } 2776 2777 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2778 { 2779 gt_timer_reset(env, ri, GTIMER_HYP); 2780 } 2781 2782 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2783 uint64_t value) 2784 { 2785 gt_cval_write(env, ri, GTIMER_HYP, value); 2786 } 2787 2788 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2789 { 2790 return gt_tval_read(env, ri, GTIMER_HYP); 2791 } 2792 2793 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2794 uint64_t value) 2795 { 2796 gt_tval_write(env, ri, GTIMER_HYP, value); 2797 } 2798 2799 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2800 uint64_t value) 2801 { 2802 gt_ctl_write(env, ri, GTIMER_HYP, value); 2803 } 2804 2805 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2806 { 2807 gt_timer_reset(env, ri, GTIMER_SEC); 2808 } 2809 2810 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2811 uint64_t value) 2812 { 2813 gt_cval_write(env, ri, GTIMER_SEC, value); 2814 } 2815 2816 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2817 { 2818 return gt_tval_read(env, ri, GTIMER_SEC); 2819 } 2820 2821 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2822 uint64_t value) 2823 { 2824 gt_tval_write(env, ri, GTIMER_SEC, value); 2825 } 2826 2827 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2828 uint64_t value) 2829 { 2830 gt_ctl_write(env, ri, GTIMER_SEC, value); 2831 } 2832 2833 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2834 { 2835 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2836 } 2837 2838 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2842 } 2843 2844 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2845 { 2846 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2847 } 2848 2849 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2853 } 2854 2855 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2859 } 2860 2861 void arm_gt_ptimer_cb(void *opaque) 2862 { 2863 ARMCPU *cpu = opaque; 2864 2865 gt_recalc_timer(cpu, GTIMER_PHYS); 2866 } 2867 2868 void arm_gt_vtimer_cb(void *opaque) 2869 { 2870 ARMCPU *cpu = opaque; 2871 2872 gt_recalc_timer(cpu, GTIMER_VIRT); 2873 } 2874 2875 void arm_gt_htimer_cb(void *opaque) 2876 { 2877 ARMCPU *cpu = opaque; 2878 2879 gt_recalc_timer(cpu, GTIMER_HYP); 2880 } 2881 2882 void arm_gt_stimer_cb(void *opaque) 2883 { 2884 ARMCPU *cpu = opaque; 2885 2886 gt_recalc_timer(cpu, GTIMER_SEC); 2887 } 2888 2889 void arm_gt_hvtimer_cb(void *opaque) 2890 { 2891 ARMCPU *cpu = opaque; 2892 2893 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2894 } 2895 2896 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2897 { 2898 ARMCPU *cpu = env_archcpu(env); 2899 2900 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2901 } 2902 2903 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2904 /* Note that CNTFRQ is purely reads-as-written for the benefit 2905 * of software; writing it doesn't actually change the timer frequency. 2906 * Our reset value matches the fixed frequency we implement the timer at. 2907 */ 2908 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2909 .type = ARM_CP_ALIAS, 2910 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2912 }, 2913 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2914 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2916 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2917 .resetfn = arm_gt_cntfrq_reset, 2918 }, 2919 /* overall control: mostly access permissions */ 2920 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2921 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2922 .access = PL1_RW, 2923 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2924 .resetvalue = 0, 2925 }, 2926 /* per-timer control */ 2927 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2928 .secure = ARM_CP_SECSTATE_NS, 2929 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2930 .accessfn = gt_ptimer_access, 2931 .fieldoffset = offsetoflow32(CPUARMState, 2932 cp15.c14_timer[GTIMER_PHYS].ctl), 2933 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2934 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2935 }, 2936 { .name = "CNTP_CTL_S", 2937 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2938 .secure = ARM_CP_SECSTATE_S, 2939 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2940 .accessfn = gt_ptimer_access, 2941 .fieldoffset = offsetoflow32(CPUARMState, 2942 cp15.c14_timer[GTIMER_SEC].ctl), 2943 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2944 }, 2945 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2946 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2947 .type = ARM_CP_IO, .access = PL0_RW, 2948 .accessfn = gt_ptimer_access, 2949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2950 .resetvalue = 0, 2951 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2952 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2953 }, 2954 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2955 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2956 .accessfn = gt_vtimer_access, 2957 .fieldoffset = offsetoflow32(CPUARMState, 2958 cp15.c14_timer[GTIMER_VIRT].ctl), 2959 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2960 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2961 }, 2962 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2963 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2964 .type = ARM_CP_IO, .access = PL0_RW, 2965 .accessfn = gt_vtimer_access, 2966 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2967 .resetvalue = 0, 2968 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2969 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2970 }, 2971 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2972 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2973 .secure = ARM_CP_SECSTATE_NS, 2974 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2975 .accessfn = gt_ptimer_access, 2976 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2977 }, 2978 { .name = "CNTP_TVAL_S", 2979 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2980 .secure = ARM_CP_SECSTATE_S, 2981 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2982 .accessfn = gt_ptimer_access, 2983 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2984 }, 2985 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2986 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2987 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2988 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2989 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2990 }, 2991 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2992 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2993 .accessfn = gt_vtimer_access, 2994 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2995 }, 2996 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2997 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2998 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2999 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3000 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3001 }, 3002 /* The counter itself */ 3003 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3004 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3005 .accessfn = gt_pct_access, 3006 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3007 }, 3008 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3009 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3010 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3011 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3012 }, 3013 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3014 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3015 .accessfn = gt_vct_access, 3016 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3017 }, 3018 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3019 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3020 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3021 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3022 }, 3023 /* Comparison value, indicating when the timer goes off */ 3024 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3025 .secure = ARM_CP_SECSTATE_NS, 3026 .access = PL0_RW, 3027 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3028 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3029 .accessfn = gt_ptimer_access, 3030 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3031 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3032 }, 3033 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3034 .secure = ARM_CP_SECSTATE_S, 3035 .access = PL0_RW, 3036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3038 .accessfn = gt_ptimer_access, 3039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3040 }, 3041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3043 .access = PL0_RW, 3044 .type = ARM_CP_IO, 3045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3046 .resetvalue = 0, .accessfn = gt_ptimer_access, 3047 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3048 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3049 }, 3050 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3051 .access = PL0_RW, 3052 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3054 .accessfn = gt_vtimer_access, 3055 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3056 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3057 }, 3058 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3059 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3060 .access = PL0_RW, 3061 .type = ARM_CP_IO, 3062 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3063 .resetvalue = 0, .accessfn = gt_vtimer_access, 3064 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3065 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3066 }, 3067 /* Secure timer -- this is actually restricted to only EL3 3068 * and configurably Secure-EL1 via the accessfn. 3069 */ 3070 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3071 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3072 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3073 .accessfn = gt_stimer_access, 3074 .readfn = gt_sec_tval_read, 3075 .writefn = gt_sec_tval_write, 3076 .resetfn = gt_sec_timer_reset, 3077 }, 3078 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3079 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3080 .type = ARM_CP_IO, .access = PL1_RW, 3081 .accessfn = gt_stimer_access, 3082 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3083 .resetvalue = 0, 3084 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3085 }, 3086 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3087 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3088 .type = ARM_CP_IO, .access = PL1_RW, 3089 .accessfn = gt_stimer_access, 3090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3091 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3092 }, 3093 REGINFO_SENTINEL 3094 }; 3095 3096 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3097 bool isread) 3098 { 3099 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3100 return CP_ACCESS_TRAP; 3101 } 3102 return CP_ACCESS_OK; 3103 } 3104 3105 #else 3106 3107 /* In user-mode most of the generic timer registers are inaccessible 3108 * however modern kernels (4.12+) allow access to cntvct_el0 3109 */ 3110 3111 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3112 { 3113 ARMCPU *cpu = env_archcpu(env); 3114 3115 /* Currently we have no support for QEMUTimer in linux-user so we 3116 * can't call gt_get_countervalue(env), instead we directly 3117 * call the lower level functions. 3118 */ 3119 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3120 } 3121 3122 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3123 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3125 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3126 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3127 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3128 }, 3129 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3130 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3131 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3132 .readfn = gt_virt_cnt_read, 3133 }, 3134 REGINFO_SENTINEL 3135 }; 3136 3137 #endif 3138 3139 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3140 { 3141 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3142 raw_write(env, ri, value); 3143 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3144 raw_write(env, ri, value & 0xfffff6ff); 3145 } else { 3146 raw_write(env, ri, value & 0xfffff1ff); 3147 } 3148 } 3149 3150 #ifndef CONFIG_USER_ONLY 3151 /* get_phys_addr() isn't present for user-mode-only targets */ 3152 3153 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3154 bool isread) 3155 { 3156 if (ri->opc2 & 4) { 3157 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3158 * Secure EL1 (which can only happen if EL3 is AArch64). 3159 * They are simply UNDEF if executed from NS EL1. 3160 * They function normally from EL2 or EL3. 3161 */ 3162 if (arm_current_el(env) == 1) { 3163 if (arm_is_secure_below_el3(env)) { 3164 if (env->cp15.scr_el3 & SCR_EEL2) { 3165 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3166 } 3167 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3168 } 3169 return CP_ACCESS_TRAP_UNCATEGORIZED; 3170 } 3171 } 3172 return CP_ACCESS_OK; 3173 } 3174 3175 #ifdef CONFIG_TCG 3176 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3177 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3178 { 3179 hwaddr phys_addr; 3180 target_ulong page_size; 3181 int prot; 3182 bool ret; 3183 uint64_t par64; 3184 bool format64 = false; 3185 MemTxAttrs attrs = {}; 3186 ARMMMUFaultInfo fi = {}; 3187 ARMCacheAttrs cacheattrs = {}; 3188 3189 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3190 &prot, &page_size, &fi, &cacheattrs); 3191 3192 if (ret) { 3193 /* 3194 * Some kinds of translation fault must cause exceptions rather 3195 * than being reported in the PAR. 3196 */ 3197 int current_el = arm_current_el(env); 3198 int target_el; 3199 uint32_t syn, fsr, fsc; 3200 bool take_exc = false; 3201 3202 if (fi.s1ptw && current_el == 1 3203 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3204 /* 3205 * Synchronous stage 2 fault on an access made as part of the 3206 * translation table walk for AT S1E0* or AT S1E1* insn 3207 * executed from NS EL1. If this is a synchronous external abort 3208 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3209 * to EL3. Otherwise the fault is taken as an exception to EL2, 3210 * and HPFAR_EL2 holds the faulting IPA. 3211 */ 3212 if (fi.type == ARMFault_SyncExternalOnWalk && 3213 (env->cp15.scr_el3 & SCR_EA)) { 3214 target_el = 3; 3215 } else { 3216 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3217 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3218 env->cp15.hpfar_el2 |= HPFAR_NS; 3219 } 3220 target_el = 2; 3221 } 3222 take_exc = true; 3223 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3224 /* 3225 * Synchronous external aborts during a translation table walk 3226 * are taken as Data Abort exceptions. 3227 */ 3228 if (fi.stage2) { 3229 if (current_el == 3) { 3230 target_el = 3; 3231 } else { 3232 target_el = 2; 3233 } 3234 } else { 3235 target_el = exception_target_el(env); 3236 } 3237 take_exc = true; 3238 } 3239 3240 if (take_exc) { 3241 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3242 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3243 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3244 fsr = arm_fi_to_lfsc(&fi); 3245 fsc = extract32(fsr, 0, 6); 3246 } else { 3247 fsr = arm_fi_to_sfsc(&fi); 3248 fsc = 0x3f; 3249 } 3250 /* 3251 * Report exception with ESR indicating a fault due to a 3252 * translation table walk for a cache maintenance instruction. 3253 */ 3254 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3255 fi.ea, 1, fi.s1ptw, 1, fsc); 3256 env->exception.vaddress = value; 3257 env->exception.fsr = fsr; 3258 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3259 } 3260 } 3261 3262 if (is_a64(env)) { 3263 format64 = true; 3264 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3265 /* 3266 * ATS1Cxx: 3267 * * TTBCR.EAE determines whether the result is returned using the 3268 * 32-bit or the 64-bit PAR format 3269 * * Instructions executed in Hyp mode always use the 64bit format 3270 * 3271 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3272 * * The Non-secure TTBCR.EAE bit is set to 1 3273 * * The implementation includes EL2, and the value of HCR.VM is 1 3274 * 3275 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3276 * 3277 * ATS1Hx always uses the 64bit format. 3278 */ 3279 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3280 3281 if (arm_feature(env, ARM_FEATURE_EL2)) { 3282 if (mmu_idx == ARMMMUIdx_E10_0 || 3283 mmu_idx == ARMMMUIdx_E10_1 || 3284 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3285 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3286 } else { 3287 format64 |= arm_current_el(env) == 2; 3288 } 3289 } 3290 } 3291 3292 if (format64) { 3293 /* Create a 64-bit PAR */ 3294 par64 = (1 << 11); /* LPAE bit always set */ 3295 if (!ret) { 3296 par64 |= phys_addr & ~0xfffULL; 3297 if (!attrs.secure) { 3298 par64 |= (1 << 9); /* NS */ 3299 } 3300 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3301 par64 |= cacheattrs.shareability << 7; /* SH */ 3302 } else { 3303 uint32_t fsr = arm_fi_to_lfsc(&fi); 3304 3305 par64 |= 1; /* F */ 3306 par64 |= (fsr & 0x3f) << 1; /* FS */ 3307 if (fi.stage2) { 3308 par64 |= (1 << 9); /* S */ 3309 } 3310 if (fi.s1ptw) { 3311 par64 |= (1 << 8); /* PTW */ 3312 } 3313 } 3314 } else { 3315 /* fsr is a DFSR/IFSR value for the short descriptor 3316 * translation table format (with WnR always clear). 3317 * Convert it to a 32-bit PAR. 3318 */ 3319 if (!ret) { 3320 /* We do not set any attribute bits in the PAR */ 3321 if (page_size == (1 << 24) 3322 && arm_feature(env, ARM_FEATURE_V7)) { 3323 par64 = (phys_addr & 0xff000000) | (1 << 1); 3324 } else { 3325 par64 = phys_addr & 0xfffff000; 3326 } 3327 if (!attrs.secure) { 3328 par64 |= (1 << 9); /* NS */ 3329 } 3330 } else { 3331 uint32_t fsr = arm_fi_to_sfsc(&fi); 3332 3333 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3334 ((fsr & 0xf) << 1) | 1; 3335 } 3336 } 3337 return par64; 3338 } 3339 #endif /* CONFIG_TCG */ 3340 3341 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3342 { 3343 #ifdef CONFIG_TCG 3344 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3345 uint64_t par64; 3346 ARMMMUIdx mmu_idx; 3347 int el = arm_current_el(env); 3348 bool secure = arm_is_secure_below_el3(env); 3349 3350 switch (ri->opc2 & 6) { 3351 case 0: 3352 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3353 switch (el) { 3354 case 3: 3355 mmu_idx = ARMMMUIdx_SE3; 3356 break; 3357 case 2: 3358 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3359 /* fall through */ 3360 case 1: 3361 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3362 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3363 : ARMMMUIdx_Stage1_E1_PAN); 3364 } else { 3365 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3366 } 3367 break; 3368 default: 3369 g_assert_not_reached(); 3370 } 3371 break; 3372 case 2: 3373 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3374 switch (el) { 3375 case 3: 3376 mmu_idx = ARMMMUIdx_SE10_0; 3377 break; 3378 case 2: 3379 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3380 mmu_idx = ARMMMUIdx_Stage1_E0; 3381 break; 3382 case 1: 3383 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3384 break; 3385 default: 3386 g_assert_not_reached(); 3387 } 3388 break; 3389 case 4: 3390 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3391 mmu_idx = ARMMMUIdx_E10_1; 3392 break; 3393 case 6: 3394 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3395 mmu_idx = ARMMMUIdx_E10_0; 3396 break; 3397 default: 3398 g_assert_not_reached(); 3399 } 3400 3401 par64 = do_ats_write(env, value, access_type, mmu_idx); 3402 3403 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3404 #else 3405 /* Handled by hardware accelerator. */ 3406 g_assert_not_reached(); 3407 #endif /* CONFIG_TCG */ 3408 } 3409 3410 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3411 uint64_t value) 3412 { 3413 #ifdef CONFIG_TCG 3414 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3415 uint64_t par64; 3416 3417 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3418 3419 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3420 #else 3421 /* Handled by hardware accelerator. */ 3422 g_assert_not_reached(); 3423 #endif /* CONFIG_TCG */ 3424 } 3425 3426 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3427 bool isread) 3428 { 3429 if (arm_current_el(env) == 3 && 3430 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3431 return CP_ACCESS_TRAP; 3432 } 3433 return CP_ACCESS_OK; 3434 } 3435 3436 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3437 uint64_t value) 3438 { 3439 #ifdef CONFIG_TCG 3440 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3441 ARMMMUIdx mmu_idx; 3442 int secure = arm_is_secure_below_el3(env); 3443 3444 switch (ri->opc2 & 6) { 3445 case 0: 3446 switch (ri->opc1) { 3447 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3448 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3449 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3450 : ARMMMUIdx_Stage1_E1_PAN); 3451 } else { 3452 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3453 } 3454 break; 3455 case 4: /* AT S1E2R, AT S1E2W */ 3456 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3457 break; 3458 case 6: /* AT S1E3R, AT S1E3W */ 3459 mmu_idx = ARMMMUIdx_SE3; 3460 break; 3461 default: 3462 g_assert_not_reached(); 3463 } 3464 break; 3465 case 2: /* AT S1E0R, AT S1E0W */ 3466 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3467 break; 3468 case 4: /* AT S12E1R, AT S12E1W */ 3469 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3470 break; 3471 case 6: /* AT S12E0R, AT S12E0W */ 3472 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3473 break; 3474 default: 3475 g_assert_not_reached(); 3476 } 3477 3478 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3479 #else 3480 /* Handled by hardware accelerator. */ 3481 g_assert_not_reached(); 3482 #endif /* CONFIG_TCG */ 3483 } 3484 #endif 3485 3486 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3487 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3488 .access = PL1_RW, .resetvalue = 0, 3489 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3490 offsetoflow32(CPUARMState, cp15.par_ns) }, 3491 .writefn = par_write }, 3492 #ifndef CONFIG_USER_ONLY 3493 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3494 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3495 .access = PL1_W, .accessfn = ats_access, 3496 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3497 #endif 3498 REGINFO_SENTINEL 3499 }; 3500 3501 /* Return basic MPU access permission bits. */ 3502 static uint32_t simple_mpu_ap_bits(uint32_t val) 3503 { 3504 uint32_t ret; 3505 uint32_t mask; 3506 int i; 3507 ret = 0; 3508 mask = 3; 3509 for (i = 0; i < 16; i += 2) { 3510 ret |= (val >> i) & mask; 3511 mask <<= 2; 3512 } 3513 return ret; 3514 } 3515 3516 /* Pad basic MPU access permission bits to extended format. */ 3517 static uint32_t extended_mpu_ap_bits(uint32_t val) 3518 { 3519 uint32_t ret; 3520 uint32_t mask; 3521 int i; 3522 ret = 0; 3523 mask = 3; 3524 for (i = 0; i < 16; i += 2) { 3525 ret |= (val & mask) << i; 3526 mask <<= 2; 3527 } 3528 return ret; 3529 } 3530 3531 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3532 uint64_t value) 3533 { 3534 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3535 } 3536 3537 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3538 { 3539 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3540 } 3541 3542 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3543 uint64_t value) 3544 { 3545 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3546 } 3547 3548 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3549 { 3550 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3551 } 3552 3553 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3554 { 3555 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3556 3557 if (!u32p) { 3558 return 0; 3559 } 3560 3561 u32p += env->pmsav7.rnr[M_REG_NS]; 3562 return *u32p; 3563 } 3564 3565 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3566 uint64_t value) 3567 { 3568 ARMCPU *cpu = env_archcpu(env); 3569 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3570 3571 if (!u32p) { 3572 return; 3573 } 3574 3575 u32p += env->pmsav7.rnr[M_REG_NS]; 3576 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3577 *u32p = value; 3578 } 3579 3580 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3581 uint64_t value) 3582 { 3583 ARMCPU *cpu = env_archcpu(env); 3584 uint32_t nrgs = cpu->pmsav7_dregion; 3585 3586 if (value >= nrgs) { 3587 qemu_log_mask(LOG_GUEST_ERROR, 3588 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3589 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3590 return; 3591 } 3592 3593 raw_write(env, ri, value); 3594 } 3595 3596 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3597 /* Reset for all these registers is handled in arm_cpu_reset(), 3598 * because the PMSAv7 is also used by M-profile CPUs, which do 3599 * not register cpregs but still need the state to be reset. 3600 */ 3601 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3602 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3603 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3604 .readfn = pmsav7_read, .writefn = pmsav7_write, 3605 .resetfn = arm_cp_reset_ignore }, 3606 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3607 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3608 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3609 .readfn = pmsav7_read, .writefn = pmsav7_write, 3610 .resetfn = arm_cp_reset_ignore }, 3611 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3612 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3613 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3614 .readfn = pmsav7_read, .writefn = pmsav7_write, 3615 .resetfn = arm_cp_reset_ignore }, 3616 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3617 .access = PL1_RW, 3618 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3619 .writefn = pmsav7_rgnr_write, 3620 .resetfn = arm_cp_reset_ignore }, 3621 REGINFO_SENTINEL 3622 }; 3623 3624 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3625 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3626 .access = PL1_RW, .type = ARM_CP_ALIAS, 3627 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3628 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3629 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3630 .access = PL1_RW, .type = ARM_CP_ALIAS, 3631 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3632 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3633 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3634 .access = PL1_RW, 3635 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3636 .resetvalue = 0, }, 3637 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3638 .access = PL1_RW, 3639 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3640 .resetvalue = 0, }, 3641 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3642 .access = PL1_RW, 3643 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3644 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3645 .access = PL1_RW, 3646 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3647 /* Protection region base and size registers */ 3648 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3649 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3650 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3651 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3652 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3653 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3654 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3655 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3656 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3657 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3658 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3659 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3660 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3661 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3662 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3663 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3664 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3665 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3666 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3667 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3668 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3669 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3670 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3671 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3672 REGINFO_SENTINEL 3673 }; 3674 3675 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3676 uint64_t value) 3677 { 3678 TCR *tcr = raw_ptr(env, ri); 3679 int maskshift = extract32(value, 0, 3); 3680 3681 if (!arm_feature(env, ARM_FEATURE_V8)) { 3682 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3683 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3684 * using Long-desciptor translation table format */ 3685 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3686 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3687 /* In an implementation that includes the Security Extensions 3688 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3689 * Short-descriptor translation table format. 3690 */ 3691 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3692 } else { 3693 value &= TTBCR_N; 3694 } 3695 } 3696 3697 /* Update the masks corresponding to the TCR bank being written 3698 * Note that we always calculate mask and base_mask, but 3699 * they are only used for short-descriptor tables (ie if EAE is 0); 3700 * for long-descriptor tables the TCR fields are used differently 3701 * and the mask and base_mask values are meaningless. 3702 */ 3703 tcr->raw_tcr = value; 3704 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3705 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3706 } 3707 3708 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3709 uint64_t value) 3710 { 3711 ARMCPU *cpu = env_archcpu(env); 3712 TCR *tcr = raw_ptr(env, ri); 3713 3714 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3715 /* With LPAE the TTBCR could result in a change of ASID 3716 * via the TTBCR.A1 bit, so do a TLB flush. 3717 */ 3718 tlb_flush(CPU(cpu)); 3719 } 3720 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3721 value = deposit64(tcr->raw_tcr, 0, 32, value); 3722 vmsa_ttbcr_raw_write(env, ri, value); 3723 } 3724 3725 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3726 { 3727 TCR *tcr = raw_ptr(env, ri); 3728 3729 /* Reset both the TCR as well as the masks corresponding to the bank of 3730 * the TCR being reset. 3731 */ 3732 tcr->raw_tcr = 0; 3733 tcr->mask = 0; 3734 tcr->base_mask = 0xffffc000u; 3735 } 3736 3737 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3738 uint64_t value) 3739 { 3740 ARMCPU *cpu = env_archcpu(env); 3741 TCR *tcr = raw_ptr(env, ri); 3742 3743 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3744 tlb_flush(CPU(cpu)); 3745 tcr->raw_tcr = value; 3746 } 3747 3748 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3749 uint64_t value) 3750 { 3751 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3752 if (cpreg_field_is_64bit(ri) && 3753 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3754 ARMCPU *cpu = env_archcpu(env); 3755 tlb_flush(CPU(cpu)); 3756 } 3757 raw_write(env, ri, value); 3758 } 3759 3760 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3761 uint64_t value) 3762 { 3763 /* 3764 * If we are running with E2&0 regime, then an ASID is active. 3765 * Flush if that might be changing. Note we're not checking 3766 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3767 * holds the active ASID, only checking the field that might. 3768 */ 3769 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3770 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3771 uint16_t mask = ARMMMUIdxBit_E20_2 | 3772 ARMMMUIdxBit_E20_2_PAN | 3773 ARMMMUIdxBit_E20_0; 3774 3775 if (arm_is_secure_below_el3(env)) { 3776 mask >>= ARM_MMU_IDX_A_NS; 3777 } 3778 3779 tlb_flush_by_mmuidx(env_cpu(env), mask); 3780 } 3781 raw_write(env, ri, value); 3782 } 3783 3784 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 ARMCPU *cpu = env_archcpu(env); 3788 CPUState *cs = CPU(cpu); 3789 3790 /* 3791 * A change in VMID to the stage2 page table (Stage2) invalidates 3792 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3793 */ 3794 if (raw_read(env, ri) != value) { 3795 uint16_t mask = ARMMMUIdxBit_E10_1 | 3796 ARMMMUIdxBit_E10_1_PAN | 3797 ARMMMUIdxBit_E10_0; 3798 3799 if (arm_is_secure_below_el3(env)) { 3800 mask >>= ARM_MMU_IDX_A_NS; 3801 } 3802 3803 tlb_flush_by_mmuidx(cs, mask); 3804 raw_write(env, ri, value); 3805 } 3806 } 3807 3808 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3809 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3810 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3811 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3812 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3813 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3814 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3815 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3816 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3817 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3818 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3819 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3820 offsetof(CPUARMState, cp15.dfar_ns) } }, 3821 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3822 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3823 .access = PL1_RW, .accessfn = access_tvm_trvm, 3824 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3825 .resetvalue = 0, }, 3826 REGINFO_SENTINEL 3827 }; 3828 3829 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3830 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3831 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3832 .access = PL1_RW, .accessfn = access_tvm_trvm, 3833 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3834 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3836 .access = PL1_RW, .accessfn = access_tvm_trvm, 3837 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3838 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3839 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3840 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3842 .access = PL1_RW, .accessfn = access_tvm_trvm, 3843 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3844 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3845 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3846 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3847 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3848 .access = PL1_RW, .accessfn = access_tvm_trvm, 3849 .writefn = vmsa_tcr_el12_write, 3850 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3851 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3852 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3853 .access = PL1_RW, .accessfn = access_tvm_trvm, 3854 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3855 .raw_writefn = vmsa_ttbcr_raw_write, 3856 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3857 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3858 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3859 REGINFO_SENTINEL 3860 }; 3861 3862 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3863 * qemu tlbs nor adjusting cached masks. 3864 */ 3865 static const ARMCPRegInfo ttbcr2_reginfo = { 3866 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3867 .access = PL1_RW, .accessfn = access_tvm_trvm, 3868 .type = ARM_CP_ALIAS, 3869 .bank_fieldoffsets = { 3870 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3871 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3872 }, 3873 }; 3874 3875 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3876 uint64_t value) 3877 { 3878 env->cp15.c15_ticonfig = value & 0xe7; 3879 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3880 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3881 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3882 } 3883 3884 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3885 uint64_t value) 3886 { 3887 env->cp15.c15_threadid = value & 0xffff; 3888 } 3889 3890 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3891 uint64_t value) 3892 { 3893 /* Wait-for-interrupt (deprecated) */ 3894 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3895 } 3896 3897 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3898 uint64_t value) 3899 { 3900 /* On OMAP there are registers indicating the max/min index of dcache lines 3901 * containing a dirty line; cache flush operations have to reset these. 3902 */ 3903 env->cp15.c15_i_max = 0x000; 3904 env->cp15.c15_i_min = 0xff0; 3905 } 3906 3907 static const ARMCPRegInfo omap_cp_reginfo[] = { 3908 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3909 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3910 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3911 .resetvalue = 0, }, 3912 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3913 .access = PL1_RW, .type = ARM_CP_NOP }, 3914 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3915 .access = PL1_RW, 3916 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3917 .writefn = omap_ticonfig_write }, 3918 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3919 .access = PL1_RW, 3920 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3921 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3922 .access = PL1_RW, .resetvalue = 0xff0, 3923 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3924 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3925 .access = PL1_RW, 3926 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3927 .writefn = omap_threadid_write }, 3928 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3929 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3930 .type = ARM_CP_NO_RAW, 3931 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3932 /* TODO: Peripheral port remap register: 3933 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3934 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3935 * when MMU is off. 3936 */ 3937 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3938 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3939 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3940 .writefn = omap_cachemaint_write }, 3941 { .name = "C9", .cp = 15, .crn = 9, 3942 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3943 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3944 REGINFO_SENTINEL 3945 }; 3946 3947 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3948 uint64_t value) 3949 { 3950 env->cp15.c15_cpar = value & 0x3fff; 3951 } 3952 3953 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3954 { .name = "XSCALE_CPAR", 3955 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3956 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3957 .writefn = xscale_cpar_write, }, 3958 { .name = "XSCALE_AUXCR", 3959 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3960 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3961 .resetvalue = 0, }, 3962 /* XScale specific cache-lockdown: since we have no cache we NOP these 3963 * and hope the guest does not really rely on cache behaviour. 3964 */ 3965 { .name = "XSCALE_LOCK_ICACHE_LINE", 3966 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3967 .access = PL1_W, .type = ARM_CP_NOP }, 3968 { .name = "XSCALE_UNLOCK_ICACHE", 3969 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3970 .access = PL1_W, .type = ARM_CP_NOP }, 3971 { .name = "XSCALE_DCACHE_LOCK", 3972 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3973 .access = PL1_RW, .type = ARM_CP_NOP }, 3974 { .name = "XSCALE_UNLOCK_DCACHE", 3975 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3976 .access = PL1_W, .type = ARM_CP_NOP }, 3977 REGINFO_SENTINEL 3978 }; 3979 3980 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3981 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3982 * implementation of this implementation-defined space. 3983 * Ideally this should eventually disappear in favour of actually 3984 * implementing the correct behaviour for all cores. 3985 */ 3986 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3987 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3988 .access = PL1_RW, 3989 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3990 .resetvalue = 0 }, 3991 REGINFO_SENTINEL 3992 }; 3993 3994 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3995 /* Cache status: RAZ because we have no cache so it's always clean */ 3996 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3997 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3998 .resetvalue = 0 }, 3999 REGINFO_SENTINEL 4000 }; 4001 4002 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4003 /* We never have a a block transfer operation in progress */ 4004 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4005 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4006 .resetvalue = 0 }, 4007 /* The cache ops themselves: these all NOP for QEMU */ 4008 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4009 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4010 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4011 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4012 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4013 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4014 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4015 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4016 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4017 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4018 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4019 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4020 REGINFO_SENTINEL 4021 }; 4022 4023 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4024 /* The cache test-and-clean instructions always return (1 << 30) 4025 * to indicate that there are no dirty cache lines. 4026 */ 4027 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4028 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4029 .resetvalue = (1 << 30) }, 4030 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4031 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4032 .resetvalue = (1 << 30) }, 4033 REGINFO_SENTINEL 4034 }; 4035 4036 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4037 /* Ignore ReadBuffer accesses */ 4038 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4039 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4040 .access = PL1_RW, .resetvalue = 0, 4041 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4042 REGINFO_SENTINEL 4043 }; 4044 4045 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4046 { 4047 unsigned int cur_el = arm_current_el(env); 4048 4049 if (arm_is_el2_enabled(env) && cur_el == 1) { 4050 return env->cp15.vpidr_el2; 4051 } 4052 return raw_read(env, ri); 4053 } 4054 4055 static uint64_t mpidr_read_val(CPUARMState *env) 4056 { 4057 ARMCPU *cpu = env_archcpu(env); 4058 uint64_t mpidr = cpu->mp_affinity; 4059 4060 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4061 mpidr |= (1U << 31); 4062 /* Cores which are uniprocessor (non-coherent) 4063 * but still implement the MP extensions set 4064 * bit 30. (For instance, Cortex-R5). 4065 */ 4066 if (cpu->mp_is_up) { 4067 mpidr |= (1u << 30); 4068 } 4069 } 4070 return mpidr; 4071 } 4072 4073 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4074 { 4075 unsigned int cur_el = arm_current_el(env); 4076 4077 if (arm_is_el2_enabled(env) && cur_el == 1) { 4078 return env->cp15.vmpidr_el2; 4079 } 4080 return mpidr_read_val(env); 4081 } 4082 4083 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4084 /* NOP AMAIR0/1 */ 4085 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4086 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4087 .access = PL1_RW, .accessfn = access_tvm_trvm, 4088 .type = ARM_CP_CONST, .resetvalue = 0 }, 4089 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4090 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4091 .access = PL1_RW, .accessfn = access_tvm_trvm, 4092 .type = ARM_CP_CONST, .resetvalue = 0 }, 4093 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4094 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4095 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4096 offsetof(CPUARMState, cp15.par_ns)} }, 4097 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4098 .access = PL1_RW, .accessfn = access_tvm_trvm, 4099 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4100 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4101 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4102 .writefn = vmsa_ttbr_write, }, 4103 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4104 .access = PL1_RW, .accessfn = access_tvm_trvm, 4105 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4106 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4107 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4108 .writefn = vmsa_ttbr_write, }, 4109 REGINFO_SENTINEL 4110 }; 4111 4112 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4113 { 4114 return vfp_get_fpcr(env); 4115 } 4116 4117 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4118 uint64_t value) 4119 { 4120 vfp_set_fpcr(env, value); 4121 } 4122 4123 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4124 { 4125 return vfp_get_fpsr(env); 4126 } 4127 4128 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 vfp_set_fpsr(env, value); 4132 } 4133 4134 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4135 bool isread) 4136 { 4137 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4138 return CP_ACCESS_TRAP; 4139 } 4140 return CP_ACCESS_OK; 4141 } 4142 4143 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4144 uint64_t value) 4145 { 4146 env->daif = value & PSTATE_DAIF; 4147 } 4148 4149 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4150 { 4151 return env->pstate & PSTATE_PAN; 4152 } 4153 4154 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4155 uint64_t value) 4156 { 4157 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4158 } 4159 4160 static const ARMCPRegInfo pan_reginfo = { 4161 .name = "PAN", .state = ARM_CP_STATE_AA64, 4162 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4163 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4164 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4165 }; 4166 4167 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4168 { 4169 return env->pstate & PSTATE_UAO; 4170 } 4171 4172 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4173 uint64_t value) 4174 { 4175 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4176 } 4177 4178 static const ARMCPRegInfo uao_reginfo = { 4179 .name = "UAO", .state = ARM_CP_STATE_AA64, 4180 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4181 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4182 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4183 }; 4184 4185 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4186 { 4187 return env->pstate & PSTATE_DIT; 4188 } 4189 4190 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4191 uint64_t value) 4192 { 4193 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4194 } 4195 4196 static const ARMCPRegInfo dit_reginfo = { 4197 .name = "DIT", .state = ARM_CP_STATE_AA64, 4198 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4199 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4200 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4201 }; 4202 4203 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4204 { 4205 return env->pstate & PSTATE_SSBS; 4206 } 4207 4208 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4209 uint64_t value) 4210 { 4211 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4212 } 4213 4214 static const ARMCPRegInfo ssbs_reginfo = { 4215 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4216 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4217 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4218 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4219 }; 4220 4221 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4222 const ARMCPRegInfo *ri, 4223 bool isread) 4224 { 4225 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4226 switch (arm_current_el(env)) { 4227 case 0: 4228 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4229 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4230 return CP_ACCESS_TRAP; 4231 } 4232 /* fall through */ 4233 case 1: 4234 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4235 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4236 return CP_ACCESS_TRAP_EL2; 4237 } 4238 break; 4239 } 4240 return CP_ACCESS_OK; 4241 } 4242 4243 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4244 const ARMCPRegInfo *ri, 4245 bool isread) 4246 { 4247 /* Cache invalidate/clean to Point of Unification... */ 4248 switch (arm_current_el(env)) { 4249 case 0: 4250 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4251 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4252 return CP_ACCESS_TRAP; 4253 } 4254 /* fall through */ 4255 case 1: 4256 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4257 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4258 return CP_ACCESS_TRAP_EL2; 4259 } 4260 break; 4261 } 4262 return CP_ACCESS_OK; 4263 } 4264 4265 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4266 * Page D4-1736 (DDI0487A.b) 4267 */ 4268 4269 static int vae1_tlbmask(CPUARMState *env) 4270 { 4271 uint64_t hcr = arm_hcr_el2_eff(env); 4272 uint16_t mask; 4273 4274 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4275 mask = ARMMMUIdxBit_E20_2 | 4276 ARMMMUIdxBit_E20_2_PAN | 4277 ARMMMUIdxBit_E20_0; 4278 } else { 4279 mask = ARMMMUIdxBit_E10_1 | 4280 ARMMMUIdxBit_E10_1_PAN | 4281 ARMMMUIdxBit_E10_0; 4282 } 4283 4284 if (arm_is_secure_below_el3(env)) { 4285 mask >>= ARM_MMU_IDX_A_NS; 4286 } 4287 4288 return mask; 4289 } 4290 4291 /* Return 56 if TBI is enabled, 64 otherwise. */ 4292 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4293 uint64_t addr) 4294 { 4295 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4296 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4297 int select = extract64(addr, 55, 1); 4298 4299 return (tbi >> select) & 1 ? 56 : 64; 4300 } 4301 4302 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4303 { 4304 uint64_t hcr = arm_hcr_el2_eff(env); 4305 ARMMMUIdx mmu_idx; 4306 4307 /* Only the regime of the mmu_idx below is significant. */ 4308 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4309 mmu_idx = ARMMMUIdx_E20_0; 4310 } else { 4311 mmu_idx = ARMMMUIdx_E10_0; 4312 } 4313 4314 if (arm_is_secure_below_el3(env)) { 4315 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4316 } 4317 4318 return tlbbits_for_regime(env, mmu_idx, addr); 4319 } 4320 4321 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4322 uint64_t value) 4323 { 4324 CPUState *cs = env_cpu(env); 4325 int mask = vae1_tlbmask(env); 4326 4327 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4328 } 4329 4330 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4331 uint64_t value) 4332 { 4333 CPUState *cs = env_cpu(env); 4334 int mask = vae1_tlbmask(env); 4335 4336 if (tlb_force_broadcast(env)) { 4337 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4338 } else { 4339 tlb_flush_by_mmuidx(cs, mask); 4340 } 4341 } 4342 4343 static int alle1_tlbmask(CPUARMState *env) 4344 { 4345 /* 4346 * Note that the 'ALL' scope must invalidate both stage 1 and 4347 * stage 2 translations, whereas most other scopes only invalidate 4348 * stage 1 translations. 4349 */ 4350 if (arm_is_secure_below_el3(env)) { 4351 return ARMMMUIdxBit_SE10_1 | 4352 ARMMMUIdxBit_SE10_1_PAN | 4353 ARMMMUIdxBit_SE10_0; 4354 } else { 4355 return ARMMMUIdxBit_E10_1 | 4356 ARMMMUIdxBit_E10_1_PAN | 4357 ARMMMUIdxBit_E10_0; 4358 } 4359 } 4360 4361 static int e2_tlbmask(CPUARMState *env) 4362 { 4363 if (arm_is_secure_below_el3(env)) { 4364 return ARMMMUIdxBit_SE20_0 | 4365 ARMMMUIdxBit_SE20_2 | 4366 ARMMMUIdxBit_SE20_2_PAN | 4367 ARMMMUIdxBit_SE2; 4368 } else { 4369 return ARMMMUIdxBit_E20_0 | 4370 ARMMMUIdxBit_E20_2 | 4371 ARMMMUIdxBit_E20_2_PAN | 4372 ARMMMUIdxBit_E2; 4373 } 4374 } 4375 4376 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4377 uint64_t value) 4378 { 4379 CPUState *cs = env_cpu(env); 4380 int mask = alle1_tlbmask(env); 4381 4382 tlb_flush_by_mmuidx(cs, mask); 4383 } 4384 4385 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4386 uint64_t value) 4387 { 4388 CPUState *cs = env_cpu(env); 4389 int mask = e2_tlbmask(env); 4390 4391 tlb_flush_by_mmuidx(cs, mask); 4392 } 4393 4394 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4395 uint64_t value) 4396 { 4397 ARMCPU *cpu = env_archcpu(env); 4398 CPUState *cs = CPU(cpu); 4399 4400 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4401 } 4402 4403 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4404 uint64_t value) 4405 { 4406 CPUState *cs = env_cpu(env); 4407 int mask = alle1_tlbmask(env); 4408 4409 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4410 } 4411 4412 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4413 uint64_t value) 4414 { 4415 CPUState *cs = env_cpu(env); 4416 int mask = e2_tlbmask(env); 4417 4418 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4419 } 4420 4421 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4422 uint64_t value) 4423 { 4424 CPUState *cs = env_cpu(env); 4425 4426 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4427 } 4428 4429 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4430 uint64_t value) 4431 { 4432 /* Invalidate by VA, EL2 4433 * Currently handles both VAE2 and VALE2, since we don't support 4434 * flush-last-level-only. 4435 */ 4436 CPUState *cs = env_cpu(env); 4437 int mask = e2_tlbmask(env); 4438 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4439 4440 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4441 } 4442 4443 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4444 uint64_t value) 4445 { 4446 /* Invalidate by VA, EL3 4447 * Currently handles both VAE3 and VALE3, since we don't support 4448 * flush-last-level-only. 4449 */ 4450 ARMCPU *cpu = env_archcpu(env); 4451 CPUState *cs = CPU(cpu); 4452 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4453 4454 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4455 } 4456 4457 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4458 uint64_t value) 4459 { 4460 CPUState *cs = env_cpu(env); 4461 int mask = vae1_tlbmask(env); 4462 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4463 int bits = vae1_tlbbits(env, pageaddr); 4464 4465 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4466 } 4467 4468 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4469 uint64_t value) 4470 { 4471 /* Invalidate by VA, EL1&0 (AArch64 version). 4472 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4473 * since we don't support flush-for-specific-ASID-only or 4474 * flush-last-level-only. 4475 */ 4476 CPUState *cs = env_cpu(env); 4477 int mask = vae1_tlbmask(env); 4478 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4479 int bits = vae1_tlbbits(env, pageaddr); 4480 4481 if (tlb_force_broadcast(env)) { 4482 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4483 } else { 4484 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4485 } 4486 } 4487 4488 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4489 uint64_t value) 4490 { 4491 CPUState *cs = env_cpu(env); 4492 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4493 bool secure = arm_is_secure_below_el3(env); 4494 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4495 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4496 pageaddr); 4497 4498 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4499 } 4500 4501 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4502 uint64_t value) 4503 { 4504 CPUState *cs = env_cpu(env); 4505 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4506 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4507 4508 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4509 ARMMMUIdxBit_SE3, bits); 4510 } 4511 4512 #ifdef TARGET_AARCH64 4513 typedef struct { 4514 uint64_t base; 4515 uint64_t length; 4516 } TLBIRange; 4517 4518 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4519 uint64_t value) 4520 { 4521 unsigned int page_size_granule, page_shift, num, scale, exponent; 4522 /* Extract one bit to represent the va selector in use. */ 4523 uint64_t select = sextract64(value, 36, 1); 4524 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4525 TLBIRange ret = { }; 4526 4527 page_size_granule = extract64(value, 46, 2); 4528 4529 /* The granule encoded in value must match the granule in use. */ 4530 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4531 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4532 page_size_granule); 4533 return ret; 4534 } 4535 4536 page_shift = (page_size_granule - 1) * 2 + 12; 4537 num = extract64(value, 39, 5); 4538 scale = extract64(value, 44, 2); 4539 exponent = (5 * scale) + 1; 4540 4541 ret.length = (num + 1) << (exponent + page_shift); 4542 4543 if (param.select) { 4544 ret.base = sextract64(value, 0, 37); 4545 } else { 4546 ret.base = extract64(value, 0, 37); 4547 } 4548 if (param.ds) { 4549 /* 4550 * With DS=1, BaseADDR is always shifted 16 so that it is able 4551 * to address all 52 va bits. The input address is perforce 4552 * aligned on a 64k boundary regardless of translation granule. 4553 */ 4554 page_shift = 16; 4555 } 4556 ret.base <<= page_shift; 4557 4558 return ret; 4559 } 4560 4561 static void do_rvae_write(CPUARMState *env, uint64_t value, 4562 int idxmap, bool synced) 4563 { 4564 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4565 TLBIRange range; 4566 int bits; 4567 4568 range = tlbi_aa64_get_range(env, one_idx, value); 4569 bits = tlbbits_for_regime(env, one_idx, range.base); 4570 4571 if (synced) { 4572 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4573 range.base, 4574 range.length, 4575 idxmap, 4576 bits); 4577 } else { 4578 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4579 range.length, idxmap, bits); 4580 } 4581 } 4582 4583 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4584 const ARMCPRegInfo *ri, 4585 uint64_t value) 4586 { 4587 /* 4588 * Invalidate by VA range, EL1&0. 4589 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4590 * since we don't support flush-for-specific-ASID-only or 4591 * flush-last-level-only. 4592 */ 4593 4594 do_rvae_write(env, value, vae1_tlbmask(env), 4595 tlb_force_broadcast(env)); 4596 } 4597 4598 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4599 const ARMCPRegInfo *ri, 4600 uint64_t value) 4601 { 4602 /* 4603 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4604 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4605 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4606 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4607 * shareable specific flushes. 4608 */ 4609 4610 do_rvae_write(env, value, vae1_tlbmask(env), true); 4611 } 4612 4613 static int vae2_tlbmask(CPUARMState *env) 4614 { 4615 return (arm_is_secure_below_el3(env) 4616 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4617 } 4618 4619 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4620 const ARMCPRegInfo *ri, 4621 uint64_t value) 4622 { 4623 /* 4624 * Invalidate by VA range, EL2. 4625 * Currently handles all of RVAE2 and RVALE2, 4626 * since we don't support flush-for-specific-ASID-only or 4627 * flush-last-level-only. 4628 */ 4629 4630 do_rvae_write(env, value, vae2_tlbmask(env), 4631 tlb_force_broadcast(env)); 4632 4633 4634 } 4635 4636 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4637 const ARMCPRegInfo *ri, 4638 uint64_t value) 4639 { 4640 /* 4641 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4642 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4643 * since we don't support flush-for-specific-ASID-only, 4644 * flush-last-level-only or inner/outer shareable specific flushes. 4645 */ 4646 4647 do_rvae_write(env, value, vae2_tlbmask(env), true); 4648 4649 } 4650 4651 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4652 const ARMCPRegInfo *ri, 4653 uint64_t value) 4654 { 4655 /* 4656 * Invalidate by VA range, EL3. 4657 * Currently handles all of RVAE3 and RVALE3, 4658 * since we don't support flush-for-specific-ASID-only or 4659 * flush-last-level-only. 4660 */ 4661 4662 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4663 tlb_force_broadcast(env)); 4664 } 4665 4666 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4667 const ARMCPRegInfo *ri, 4668 uint64_t value) 4669 { 4670 /* 4671 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4672 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4673 * since we don't support flush-for-specific-ASID-only, 4674 * flush-last-level-only or inner/outer specific flushes. 4675 */ 4676 4677 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4678 } 4679 #endif 4680 4681 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4682 bool isread) 4683 { 4684 int cur_el = arm_current_el(env); 4685 4686 if (cur_el < 2) { 4687 uint64_t hcr = arm_hcr_el2_eff(env); 4688 4689 if (cur_el == 0) { 4690 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4691 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4692 return CP_ACCESS_TRAP_EL2; 4693 } 4694 } else { 4695 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4696 return CP_ACCESS_TRAP; 4697 } 4698 if (hcr & HCR_TDZ) { 4699 return CP_ACCESS_TRAP_EL2; 4700 } 4701 } 4702 } else if (hcr & HCR_TDZ) { 4703 return CP_ACCESS_TRAP_EL2; 4704 } 4705 } 4706 return CP_ACCESS_OK; 4707 } 4708 4709 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4710 { 4711 ARMCPU *cpu = env_archcpu(env); 4712 int dzp_bit = 1 << 4; 4713 4714 /* DZP indicates whether DC ZVA access is allowed */ 4715 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4716 dzp_bit = 0; 4717 } 4718 return cpu->dcz_blocksize | dzp_bit; 4719 } 4720 4721 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4722 bool isread) 4723 { 4724 if (!(env->pstate & PSTATE_SP)) { 4725 /* Access to SP_EL0 is undefined if it's being used as 4726 * the stack pointer. 4727 */ 4728 return CP_ACCESS_TRAP_UNCATEGORIZED; 4729 } 4730 return CP_ACCESS_OK; 4731 } 4732 4733 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4734 { 4735 return env->pstate & PSTATE_SP; 4736 } 4737 4738 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4739 { 4740 update_spsel(env, val); 4741 } 4742 4743 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4744 uint64_t value) 4745 { 4746 ARMCPU *cpu = env_archcpu(env); 4747 4748 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4749 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4750 value &= ~SCTLR_M; 4751 } 4752 4753 /* ??? Lots of these bits are not implemented. */ 4754 4755 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4756 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4757 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4758 } else { 4759 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4760 SCTLR_ATA0 | SCTLR_ATA); 4761 } 4762 } 4763 4764 if (raw_read(env, ri) == value) { 4765 /* Skip the TLB flush if nothing actually changed; Linux likes 4766 * to do a lot of pointless SCTLR writes. 4767 */ 4768 return; 4769 } 4770 4771 raw_write(env, ri, value); 4772 4773 /* This may enable/disable the MMU, so do a TLB flush. */ 4774 tlb_flush(CPU(cpu)); 4775 4776 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4777 /* 4778 * Normally we would always end the TB on an SCTLR write; see the 4779 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4780 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4781 * of hflags from the translator, so do it here. 4782 */ 4783 arm_rebuild_hflags(env); 4784 } 4785 } 4786 4787 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4788 bool isread) 4789 { 4790 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4791 return CP_ACCESS_TRAP_FP_EL2; 4792 } 4793 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4794 return CP_ACCESS_TRAP_FP_EL3; 4795 } 4796 return CP_ACCESS_OK; 4797 } 4798 4799 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4800 uint64_t value) 4801 { 4802 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4803 } 4804 4805 static const ARMCPRegInfo v8_cp_reginfo[] = { 4806 /* Minimal set of EL0-visible registers. This will need to be expanded 4807 * significantly for system emulation of AArch64 CPUs. 4808 */ 4809 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4810 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4811 .access = PL0_RW, .type = ARM_CP_NZCV }, 4812 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4813 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4814 .type = ARM_CP_NO_RAW, 4815 .access = PL0_RW, .accessfn = aa64_daif_access, 4816 .fieldoffset = offsetof(CPUARMState, daif), 4817 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4818 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4820 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4821 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4822 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4823 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4824 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4825 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4826 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4827 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4828 .access = PL0_R, .type = ARM_CP_NO_RAW, 4829 .readfn = aa64_dczid_read }, 4830 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4831 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4832 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4833 #ifndef CONFIG_USER_ONLY 4834 /* Avoid overhead of an access check that always passes in user-mode */ 4835 .accessfn = aa64_zva_access, 4836 #endif 4837 }, 4838 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4839 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4840 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4841 /* Cache ops: all NOPs since we don't emulate caches */ 4842 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4843 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4844 .access = PL1_W, .type = ARM_CP_NOP, 4845 .accessfn = aa64_cacheop_pou_access }, 4846 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4847 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4848 .access = PL1_W, .type = ARM_CP_NOP, 4849 .accessfn = aa64_cacheop_pou_access }, 4850 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4852 .access = PL0_W, .type = ARM_CP_NOP, 4853 .accessfn = aa64_cacheop_pou_access }, 4854 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4855 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4856 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4857 .type = ARM_CP_NOP }, 4858 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4859 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4860 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4861 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4863 .access = PL0_W, .type = ARM_CP_NOP, 4864 .accessfn = aa64_cacheop_poc_access }, 4865 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4866 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4867 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4868 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4869 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4870 .access = PL0_W, .type = ARM_CP_NOP, 4871 .accessfn = aa64_cacheop_pou_access }, 4872 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4873 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4874 .access = PL0_W, .type = ARM_CP_NOP, 4875 .accessfn = aa64_cacheop_poc_access }, 4876 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4877 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4878 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4879 /* TLBI operations */ 4880 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4882 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4883 .writefn = tlbi_aa64_vmalle1is_write }, 4884 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4886 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4887 .writefn = tlbi_aa64_vae1is_write }, 4888 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4890 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4891 .writefn = tlbi_aa64_vmalle1is_write }, 4892 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4894 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4895 .writefn = tlbi_aa64_vae1is_write }, 4896 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4898 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4899 .writefn = tlbi_aa64_vae1is_write }, 4900 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4902 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4903 .writefn = tlbi_aa64_vae1is_write }, 4904 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4906 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4907 .writefn = tlbi_aa64_vmalle1_write }, 4908 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4910 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4911 .writefn = tlbi_aa64_vae1_write }, 4912 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4914 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4915 .writefn = tlbi_aa64_vmalle1_write }, 4916 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4918 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4919 .writefn = tlbi_aa64_vae1_write }, 4920 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4922 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4923 .writefn = tlbi_aa64_vae1_write }, 4924 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4926 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4927 .writefn = tlbi_aa64_vae1_write }, 4928 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4930 .access = PL2_W, .type = ARM_CP_NOP }, 4931 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4933 .access = PL2_W, .type = ARM_CP_NOP }, 4934 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4936 .access = PL2_W, .type = ARM_CP_NO_RAW, 4937 .writefn = tlbi_aa64_alle1is_write }, 4938 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4940 .access = PL2_W, .type = ARM_CP_NO_RAW, 4941 .writefn = tlbi_aa64_alle1is_write }, 4942 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4944 .access = PL2_W, .type = ARM_CP_NOP }, 4945 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4947 .access = PL2_W, .type = ARM_CP_NOP }, 4948 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4950 .access = PL2_W, .type = ARM_CP_NO_RAW, 4951 .writefn = tlbi_aa64_alle1_write }, 4952 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4953 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4954 .access = PL2_W, .type = ARM_CP_NO_RAW, 4955 .writefn = tlbi_aa64_alle1is_write }, 4956 #ifndef CONFIG_USER_ONLY 4957 /* 64 bit address translation operations */ 4958 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4960 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4961 .writefn = ats_write64 }, 4962 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4964 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4965 .writefn = ats_write64 }, 4966 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4968 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4969 .writefn = ats_write64 }, 4970 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4972 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4973 .writefn = ats_write64 }, 4974 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4976 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4977 .writefn = ats_write64 }, 4978 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4979 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4980 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4981 .writefn = ats_write64 }, 4982 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4983 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4984 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4985 .writefn = ats_write64 }, 4986 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4987 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4988 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4989 .writefn = ats_write64 }, 4990 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4991 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4992 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4993 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4994 .writefn = ats_write64 }, 4995 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4996 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4997 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4998 .writefn = ats_write64 }, 4999 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5000 .type = ARM_CP_ALIAS, 5001 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5002 .access = PL1_RW, .resetvalue = 0, 5003 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5004 .writefn = par_write }, 5005 #endif 5006 /* TLB invalidate last level of translation table walk */ 5007 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5008 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5009 .writefn = tlbimva_is_write }, 5010 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5011 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5012 .writefn = tlbimvaa_is_write }, 5013 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5014 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5015 .writefn = tlbimva_write }, 5016 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5017 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5018 .writefn = tlbimvaa_write }, 5019 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5020 .type = ARM_CP_NO_RAW, .access = PL2_W, 5021 .writefn = tlbimva_hyp_write }, 5022 { .name = "TLBIMVALHIS", 5023 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5024 .type = ARM_CP_NO_RAW, .access = PL2_W, 5025 .writefn = tlbimva_hyp_is_write }, 5026 { .name = "TLBIIPAS2", 5027 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5028 .type = ARM_CP_NOP, .access = PL2_W }, 5029 { .name = "TLBIIPAS2IS", 5030 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5031 .type = ARM_CP_NOP, .access = PL2_W }, 5032 { .name = "TLBIIPAS2L", 5033 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5034 .type = ARM_CP_NOP, .access = PL2_W }, 5035 { .name = "TLBIIPAS2LIS", 5036 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5037 .type = ARM_CP_NOP, .access = PL2_W }, 5038 /* 32 bit cache operations */ 5039 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5040 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5041 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5042 .type = ARM_CP_NOP, .access = PL1_W }, 5043 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5044 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5045 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5046 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5047 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5048 .type = ARM_CP_NOP, .access = PL1_W }, 5049 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5050 .type = ARM_CP_NOP, .access = PL1_W }, 5051 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5052 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5053 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5054 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5055 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5056 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5057 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5058 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5059 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5060 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5061 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5062 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5063 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5064 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5065 /* MMU Domain access control / MPU write buffer control */ 5066 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5067 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5068 .writefn = dacr_write, .raw_writefn = raw_write, 5069 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5070 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5071 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5072 .type = ARM_CP_ALIAS, 5073 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5074 .access = PL1_RW, 5075 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5076 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5077 .type = ARM_CP_ALIAS, 5078 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5079 .access = PL1_RW, 5080 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5081 /* We rely on the access checks not allowing the guest to write to the 5082 * state field when SPSel indicates that it's being used as the stack 5083 * pointer. 5084 */ 5085 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5086 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5087 .access = PL1_RW, .accessfn = sp_el0_access, 5088 .type = ARM_CP_ALIAS, 5089 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5090 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5091 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5092 .access = PL2_RW, .type = ARM_CP_ALIAS, 5093 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5094 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5095 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5096 .type = ARM_CP_NO_RAW, 5097 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5098 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5099 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5100 .type = ARM_CP_ALIAS, 5101 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5102 .access = PL2_RW, .accessfn = fpexc32_access }, 5103 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5104 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5105 .access = PL2_RW, .resetvalue = 0, 5106 .writefn = dacr_write, .raw_writefn = raw_write, 5107 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5108 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5109 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5110 .access = PL2_RW, .resetvalue = 0, 5111 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5112 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5113 .type = ARM_CP_ALIAS, 5114 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5115 .access = PL2_RW, 5116 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5117 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5118 .type = ARM_CP_ALIAS, 5119 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5120 .access = PL2_RW, 5121 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5122 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5123 .type = ARM_CP_ALIAS, 5124 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5125 .access = PL2_RW, 5126 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5127 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5128 .type = ARM_CP_ALIAS, 5129 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5130 .access = PL2_RW, 5131 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5132 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5133 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5134 .resetvalue = 0, 5135 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5136 { .name = "SDCR", .type = ARM_CP_ALIAS, 5137 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5138 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5139 .writefn = sdcr_write, 5140 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5141 REGINFO_SENTINEL 5142 }; 5143 5144 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5145 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5146 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5147 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5148 .access = PL2_RW, 5149 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5150 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5151 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5152 .access = PL2_RW, 5153 .type = ARM_CP_CONST, .resetvalue = 0 }, 5154 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5155 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5156 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5157 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5158 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5159 .access = PL2_RW, 5160 .type = ARM_CP_CONST, .resetvalue = 0 }, 5161 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5162 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5163 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5164 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5165 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5166 .access = PL2_RW, .type = ARM_CP_CONST, 5167 .resetvalue = 0 }, 5168 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5169 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5170 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5171 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5172 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5173 .access = PL2_RW, .type = ARM_CP_CONST, 5174 .resetvalue = 0 }, 5175 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5176 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5177 .access = PL2_RW, .type = ARM_CP_CONST, 5178 .resetvalue = 0 }, 5179 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5180 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5181 .access = PL2_RW, .type = ARM_CP_CONST, 5182 .resetvalue = 0 }, 5183 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5184 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5185 .access = PL2_RW, .type = ARM_CP_CONST, 5186 .resetvalue = 0 }, 5187 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5188 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5189 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5190 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5191 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5192 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5193 .type = ARM_CP_CONST, .resetvalue = 0 }, 5194 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5195 .cp = 15, .opc1 = 6, .crm = 2, 5196 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5197 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5198 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5199 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5200 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5201 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5202 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5203 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5204 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5205 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5206 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5207 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5208 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5209 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5210 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5211 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5212 .resetvalue = 0 }, 5213 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5214 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5215 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5216 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5217 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5218 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5219 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5220 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5221 .resetvalue = 0 }, 5222 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5223 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5224 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5225 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5226 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5227 .resetvalue = 0 }, 5228 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5229 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5230 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5231 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5232 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5233 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5234 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5235 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5236 .access = PL2_RW, .accessfn = access_tda, 5237 .type = ARM_CP_CONST, .resetvalue = 0 }, 5238 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5239 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5240 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5241 .type = ARM_CP_CONST, .resetvalue = 0 }, 5242 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5243 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5244 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5245 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5246 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5247 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5248 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5249 .type = ARM_CP_CONST, 5250 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5251 .access = PL2_RW, .resetvalue = 0 }, 5252 REGINFO_SENTINEL 5253 }; 5254 5255 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5256 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5257 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5258 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5259 .access = PL2_RW, 5260 .type = ARM_CP_CONST, .resetvalue = 0 }, 5261 REGINFO_SENTINEL 5262 }; 5263 5264 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5265 { 5266 ARMCPU *cpu = env_archcpu(env); 5267 5268 if (arm_feature(env, ARM_FEATURE_V8)) { 5269 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5270 } else { 5271 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5272 } 5273 5274 if (arm_feature(env, ARM_FEATURE_EL3)) { 5275 valid_mask &= ~HCR_HCD; 5276 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5277 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5278 * However, if we're using the SMC PSCI conduit then QEMU is 5279 * effectively acting like EL3 firmware and so the guest at 5280 * EL2 should retain the ability to prevent EL1 from being 5281 * able to make SMC calls into the ersatz firmware, so in 5282 * that case HCR.TSC should be read/write. 5283 */ 5284 valid_mask &= ~HCR_TSC; 5285 } 5286 5287 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5288 if (cpu_isar_feature(aa64_vh, cpu)) { 5289 valid_mask |= HCR_E2H; 5290 } 5291 if (cpu_isar_feature(aa64_lor, cpu)) { 5292 valid_mask |= HCR_TLOR; 5293 } 5294 if (cpu_isar_feature(aa64_pauth, cpu)) { 5295 valid_mask |= HCR_API | HCR_APK; 5296 } 5297 if (cpu_isar_feature(aa64_mte, cpu)) { 5298 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5299 } 5300 } 5301 5302 /* Clear RES0 bits. */ 5303 value &= valid_mask; 5304 5305 /* 5306 * These bits change the MMU setup: 5307 * HCR_VM enables stage 2 translation 5308 * HCR_PTW forbids certain page-table setups 5309 * HCR_DC disables stage1 and enables stage2 translation 5310 * HCR_DCT enables tagging on (disabled) stage1 translation 5311 */ 5312 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5313 tlb_flush(CPU(cpu)); 5314 } 5315 env->cp15.hcr_el2 = value; 5316 5317 /* 5318 * Updates to VI and VF require us to update the status of 5319 * virtual interrupts, which are the logical OR of these bits 5320 * and the state of the input lines from the GIC. (This requires 5321 * that we have the iothread lock, which is done by marking the 5322 * reginfo structs as ARM_CP_IO.) 5323 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5324 * possible for it to be taken immediately, because VIRQ and 5325 * VFIQ are masked unless running at EL0 or EL1, and HCR 5326 * can only be written at EL2. 5327 */ 5328 g_assert(qemu_mutex_iothread_locked()); 5329 arm_cpu_update_virq(cpu); 5330 arm_cpu_update_vfiq(cpu); 5331 } 5332 5333 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5334 { 5335 do_hcr_write(env, value, 0); 5336 } 5337 5338 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5339 uint64_t value) 5340 { 5341 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5342 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5343 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5344 } 5345 5346 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5347 uint64_t value) 5348 { 5349 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5350 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5351 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5352 } 5353 5354 /* 5355 * Return the effective value of HCR_EL2. 5356 * Bits that are not included here: 5357 * RW (read from SCR_EL3.RW as needed) 5358 */ 5359 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5360 { 5361 uint64_t ret = env->cp15.hcr_el2; 5362 5363 if (!arm_is_el2_enabled(env)) { 5364 /* 5365 * "This register has no effect if EL2 is not enabled in the 5366 * current Security state". This is ARMv8.4-SecEL2 speak for 5367 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5368 * 5369 * Prior to that, the language was "In an implementation that 5370 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5371 * as if this field is 0 for all purposes other than a direct 5372 * read or write access of HCR_EL2". With lots of enumeration 5373 * on a per-field basis. In current QEMU, this is condition 5374 * is arm_is_secure_below_el3. 5375 * 5376 * Since the v8.4 language applies to the entire register, and 5377 * appears to be backward compatible, use that. 5378 */ 5379 return 0; 5380 } 5381 5382 /* 5383 * For a cpu that supports both aarch64 and aarch32, we can set bits 5384 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5385 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5386 */ 5387 if (!arm_el_is_aa64(env, 2)) { 5388 uint64_t aa32_valid; 5389 5390 /* 5391 * These bits are up-to-date as of ARMv8.6. 5392 * For HCR, it's easiest to list just the 2 bits that are invalid. 5393 * For HCR2, list those that are valid. 5394 */ 5395 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5396 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5397 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5398 ret &= aa32_valid; 5399 } 5400 5401 if (ret & HCR_TGE) { 5402 /* These bits are up-to-date as of ARMv8.6. */ 5403 if (ret & HCR_E2H) { 5404 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5405 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5406 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5407 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5408 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5409 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5410 } else { 5411 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5412 } 5413 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5414 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5415 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5416 HCR_TLOR); 5417 } 5418 5419 return ret; 5420 } 5421 5422 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5423 uint64_t value) 5424 { 5425 /* 5426 * For A-profile AArch32 EL3, if NSACR.CP10 5427 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5428 */ 5429 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5430 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5431 value &= ~(0x3 << 10); 5432 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5433 } 5434 env->cp15.cptr_el[2] = value; 5435 } 5436 5437 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5438 { 5439 /* 5440 * For A-profile AArch32 EL3, if NSACR.CP10 5441 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5442 */ 5443 uint64_t value = env->cp15.cptr_el[2]; 5444 5445 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5446 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5447 value |= 0x3 << 10; 5448 } 5449 return value; 5450 } 5451 5452 static const ARMCPRegInfo el2_cp_reginfo[] = { 5453 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5454 .type = ARM_CP_IO, 5455 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5456 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5457 .writefn = hcr_write }, 5458 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5459 .type = ARM_CP_ALIAS | ARM_CP_IO, 5460 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5461 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5462 .writefn = hcr_writelow }, 5463 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5464 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5465 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5466 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5467 .type = ARM_CP_ALIAS, 5468 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5469 .access = PL2_RW, 5470 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5471 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5472 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5473 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5474 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5475 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5476 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5477 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5478 .type = ARM_CP_ALIAS, 5479 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5480 .access = PL2_RW, 5481 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5482 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5483 .type = ARM_CP_ALIAS, 5484 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5485 .access = PL2_RW, 5486 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5487 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5488 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5489 .access = PL2_RW, .writefn = vbar_write, 5490 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5491 .resetvalue = 0 }, 5492 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5493 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5494 .access = PL3_RW, .type = ARM_CP_ALIAS, 5495 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5496 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5497 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5498 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5499 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5500 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5501 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5502 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5503 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5504 .resetvalue = 0 }, 5505 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5506 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5507 .access = PL2_RW, .type = ARM_CP_ALIAS, 5508 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5509 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5510 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5511 .access = PL2_RW, .type = ARM_CP_CONST, 5512 .resetvalue = 0 }, 5513 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5514 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5515 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5516 .access = PL2_RW, .type = ARM_CP_CONST, 5517 .resetvalue = 0 }, 5518 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5519 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5520 .access = PL2_RW, .type = ARM_CP_CONST, 5521 .resetvalue = 0 }, 5522 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5523 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5524 .access = PL2_RW, .type = ARM_CP_CONST, 5525 .resetvalue = 0 }, 5526 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5527 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5528 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5529 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5530 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5531 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5532 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5533 .type = ARM_CP_ALIAS, 5534 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5535 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5536 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5537 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5538 .access = PL2_RW, 5539 /* no .writefn needed as this can't cause an ASID change; 5540 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5541 */ 5542 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5543 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5544 .cp = 15, .opc1 = 6, .crm = 2, 5545 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5546 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5547 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5548 .writefn = vttbr_write }, 5549 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5550 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5551 .access = PL2_RW, .writefn = vttbr_write, 5552 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5553 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5554 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5555 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5556 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5557 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5558 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5559 .access = PL2_RW, .resetvalue = 0, 5560 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5561 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5562 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5563 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5564 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5565 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5566 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5567 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5568 { .name = "TLBIALLNSNH", 5569 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5570 .type = ARM_CP_NO_RAW, .access = PL2_W, 5571 .writefn = tlbiall_nsnh_write }, 5572 { .name = "TLBIALLNSNHIS", 5573 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5574 .type = ARM_CP_NO_RAW, .access = PL2_W, 5575 .writefn = tlbiall_nsnh_is_write }, 5576 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5577 .type = ARM_CP_NO_RAW, .access = PL2_W, 5578 .writefn = tlbiall_hyp_write }, 5579 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5580 .type = ARM_CP_NO_RAW, .access = PL2_W, 5581 .writefn = tlbiall_hyp_is_write }, 5582 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5583 .type = ARM_CP_NO_RAW, .access = PL2_W, 5584 .writefn = tlbimva_hyp_write }, 5585 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5586 .type = ARM_CP_NO_RAW, .access = PL2_W, 5587 .writefn = tlbimva_hyp_is_write }, 5588 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5589 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5590 .type = ARM_CP_NO_RAW, .access = PL2_W, 5591 .writefn = tlbi_aa64_alle2_write }, 5592 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5593 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5594 .type = ARM_CP_NO_RAW, .access = PL2_W, 5595 .writefn = tlbi_aa64_vae2_write }, 5596 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5597 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5598 .access = PL2_W, .type = ARM_CP_NO_RAW, 5599 .writefn = tlbi_aa64_vae2_write }, 5600 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5601 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5602 .access = PL2_W, .type = ARM_CP_NO_RAW, 5603 .writefn = tlbi_aa64_alle2is_write }, 5604 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5605 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5606 .type = ARM_CP_NO_RAW, .access = PL2_W, 5607 .writefn = tlbi_aa64_vae2is_write }, 5608 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5609 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5610 .access = PL2_W, .type = ARM_CP_NO_RAW, 5611 .writefn = tlbi_aa64_vae2is_write }, 5612 #ifndef CONFIG_USER_ONLY 5613 /* Unlike the other EL2-related AT operations, these must 5614 * UNDEF from EL3 if EL2 is not implemented, which is why we 5615 * define them here rather than with the rest of the AT ops. 5616 */ 5617 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5618 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5619 .access = PL2_W, .accessfn = at_s1e2_access, 5620 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5621 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5622 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5623 .access = PL2_W, .accessfn = at_s1e2_access, 5624 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5625 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5626 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5627 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5628 * to behave as if SCR.NS was 1. 5629 */ 5630 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5631 .access = PL2_W, 5632 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5633 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5634 .access = PL2_W, 5635 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5636 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5637 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5638 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5639 * reset values as IMPDEF. We choose to reset to 3 to comply with 5640 * both ARMv7 and ARMv8. 5641 */ 5642 .access = PL2_RW, .resetvalue = 3, 5643 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5644 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5645 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5646 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5647 .writefn = gt_cntvoff_write, 5648 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5649 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5650 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5651 .writefn = gt_cntvoff_write, 5652 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5653 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5654 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5655 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5656 .type = ARM_CP_IO, .access = PL2_RW, 5657 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5658 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5659 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5660 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5661 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5662 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5663 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5664 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5665 .resetfn = gt_hyp_timer_reset, 5666 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5667 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5668 .type = ARM_CP_IO, 5669 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5670 .access = PL2_RW, 5671 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5672 .resetvalue = 0, 5673 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5674 #endif 5675 /* The only field of MDCR_EL2 that has a defined architectural reset value 5676 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5677 */ 5678 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5679 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5680 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5681 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5682 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5683 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5684 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5685 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5686 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5687 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5688 .access = PL2_RW, 5689 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5690 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5691 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5692 .access = PL2_RW, 5693 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5694 REGINFO_SENTINEL 5695 }; 5696 5697 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5698 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5699 .type = ARM_CP_ALIAS | ARM_CP_IO, 5700 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5701 .access = PL2_RW, 5702 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5703 .writefn = hcr_writehigh }, 5704 REGINFO_SENTINEL 5705 }; 5706 5707 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5708 bool isread) 5709 { 5710 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5711 return CP_ACCESS_OK; 5712 } 5713 return CP_ACCESS_TRAP_UNCATEGORIZED; 5714 } 5715 5716 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5717 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5718 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5719 .access = PL2_RW, .accessfn = sel2_access, 5720 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5721 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5722 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5723 .access = PL2_RW, .accessfn = sel2_access, 5724 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5725 REGINFO_SENTINEL 5726 }; 5727 5728 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5729 bool isread) 5730 { 5731 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5732 * At Secure EL1 it traps to EL3 or EL2. 5733 */ 5734 if (arm_current_el(env) == 3) { 5735 return CP_ACCESS_OK; 5736 } 5737 if (arm_is_secure_below_el3(env)) { 5738 if (env->cp15.scr_el3 & SCR_EEL2) { 5739 return CP_ACCESS_TRAP_EL2; 5740 } 5741 return CP_ACCESS_TRAP_EL3; 5742 } 5743 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5744 if (isread) { 5745 return CP_ACCESS_OK; 5746 } 5747 return CP_ACCESS_TRAP_UNCATEGORIZED; 5748 } 5749 5750 static const ARMCPRegInfo el3_cp_reginfo[] = { 5751 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5752 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5753 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5754 .resetfn = scr_reset, .writefn = scr_write }, 5755 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5756 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5757 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5758 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5759 .writefn = scr_write }, 5760 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5761 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5762 .access = PL3_RW, .resetvalue = 0, 5763 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5764 { .name = "SDER", 5765 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5766 .access = PL3_RW, .resetvalue = 0, 5767 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5768 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5769 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5770 .writefn = vbar_write, .resetvalue = 0, 5771 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5772 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5773 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5774 .access = PL3_RW, .resetvalue = 0, 5775 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5776 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5777 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5778 .access = PL3_RW, 5779 /* no .writefn needed as this can't cause an ASID change; 5780 * we must provide a .raw_writefn and .resetfn because we handle 5781 * reset and migration for the AArch32 TTBCR(S), which might be 5782 * using mask and base_mask. 5783 */ 5784 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5785 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5786 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5787 .type = ARM_CP_ALIAS, 5788 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5789 .access = PL3_RW, 5790 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5791 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5792 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5793 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5794 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5795 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5796 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5797 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5798 .type = ARM_CP_ALIAS, 5799 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5800 .access = PL3_RW, 5801 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5802 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5803 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5804 .access = PL3_RW, .writefn = vbar_write, 5805 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5806 .resetvalue = 0 }, 5807 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5808 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5809 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5810 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5811 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5812 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5813 .access = PL3_RW, .resetvalue = 0, 5814 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5815 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5816 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5817 .access = PL3_RW, .type = ARM_CP_CONST, 5818 .resetvalue = 0 }, 5819 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5820 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5821 .access = PL3_RW, .type = ARM_CP_CONST, 5822 .resetvalue = 0 }, 5823 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5824 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5825 .access = PL3_RW, .type = ARM_CP_CONST, 5826 .resetvalue = 0 }, 5827 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5828 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5829 .access = PL3_W, .type = ARM_CP_NO_RAW, 5830 .writefn = tlbi_aa64_alle3is_write }, 5831 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5832 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5833 .access = PL3_W, .type = ARM_CP_NO_RAW, 5834 .writefn = tlbi_aa64_vae3is_write }, 5835 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5836 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5837 .access = PL3_W, .type = ARM_CP_NO_RAW, 5838 .writefn = tlbi_aa64_vae3is_write }, 5839 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5840 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5841 .access = PL3_W, .type = ARM_CP_NO_RAW, 5842 .writefn = tlbi_aa64_alle3_write }, 5843 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5844 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5845 .access = PL3_W, .type = ARM_CP_NO_RAW, 5846 .writefn = tlbi_aa64_vae3_write }, 5847 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5848 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5849 .access = PL3_W, .type = ARM_CP_NO_RAW, 5850 .writefn = tlbi_aa64_vae3_write }, 5851 REGINFO_SENTINEL 5852 }; 5853 5854 #ifndef CONFIG_USER_ONLY 5855 /* Test if system register redirection is to occur in the current state. */ 5856 static bool redirect_for_e2h(CPUARMState *env) 5857 { 5858 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5859 } 5860 5861 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5862 { 5863 CPReadFn *readfn; 5864 5865 if (redirect_for_e2h(env)) { 5866 /* Switch to the saved EL2 version of the register. */ 5867 ri = ri->opaque; 5868 readfn = ri->readfn; 5869 } else { 5870 readfn = ri->orig_readfn; 5871 } 5872 if (readfn == NULL) { 5873 readfn = raw_read; 5874 } 5875 return readfn(env, ri); 5876 } 5877 5878 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5879 uint64_t value) 5880 { 5881 CPWriteFn *writefn; 5882 5883 if (redirect_for_e2h(env)) { 5884 /* Switch to the saved EL2 version of the register. */ 5885 ri = ri->opaque; 5886 writefn = ri->writefn; 5887 } else { 5888 writefn = ri->orig_writefn; 5889 } 5890 if (writefn == NULL) { 5891 writefn = raw_write; 5892 } 5893 writefn(env, ri, value); 5894 } 5895 5896 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5897 { 5898 struct E2HAlias { 5899 uint32_t src_key, dst_key, new_key; 5900 const char *src_name, *dst_name, *new_name; 5901 bool (*feature)(const ARMISARegisters *id); 5902 }; 5903 5904 #define K(op0, op1, crn, crm, op2) \ 5905 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5906 5907 static const struct E2HAlias aliases[] = { 5908 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5909 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5910 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5911 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5912 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5913 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5914 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5915 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5916 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5917 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5918 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5919 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5920 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5921 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5922 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5923 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5924 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5925 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5926 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5927 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5928 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5929 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5930 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5931 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5932 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5933 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5934 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5935 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5936 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5937 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5938 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5939 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5940 5941 /* 5942 * Note that redirection of ZCR is mentioned in the description 5943 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5944 * not in the summary table. 5945 */ 5946 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5947 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5948 5949 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5950 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5951 5952 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5953 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5954 }; 5955 #undef K 5956 5957 size_t i; 5958 5959 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5960 const struct E2HAlias *a = &aliases[i]; 5961 ARMCPRegInfo *src_reg, *dst_reg; 5962 5963 if (a->feature && !a->feature(&cpu->isar)) { 5964 continue; 5965 } 5966 5967 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5968 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5969 g_assert(src_reg != NULL); 5970 g_assert(dst_reg != NULL); 5971 5972 /* Cross-compare names to detect typos in the keys. */ 5973 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5974 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5975 5976 /* None of the core system registers use opaque; we will. */ 5977 g_assert(src_reg->opaque == NULL); 5978 5979 /* Create alias before redirection so we dup the right data. */ 5980 if (a->new_key) { 5981 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5982 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5983 bool ok; 5984 5985 new_reg->name = a->new_name; 5986 new_reg->type |= ARM_CP_ALIAS; 5987 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5988 new_reg->access &= PL2_RW | PL3_RW; 5989 5990 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5991 g_assert(ok); 5992 } 5993 5994 src_reg->opaque = dst_reg; 5995 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5996 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5997 if (!src_reg->raw_readfn) { 5998 src_reg->raw_readfn = raw_read; 5999 } 6000 if (!src_reg->raw_writefn) { 6001 src_reg->raw_writefn = raw_write; 6002 } 6003 src_reg->readfn = el2_e2h_read; 6004 src_reg->writefn = el2_e2h_write; 6005 } 6006 } 6007 #endif 6008 6009 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6010 bool isread) 6011 { 6012 int cur_el = arm_current_el(env); 6013 6014 if (cur_el < 2) { 6015 uint64_t hcr = arm_hcr_el2_eff(env); 6016 6017 if (cur_el == 0) { 6018 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6019 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6020 return CP_ACCESS_TRAP_EL2; 6021 } 6022 } else { 6023 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6024 return CP_ACCESS_TRAP; 6025 } 6026 if (hcr & HCR_TID2) { 6027 return CP_ACCESS_TRAP_EL2; 6028 } 6029 } 6030 } else if (hcr & HCR_TID2) { 6031 return CP_ACCESS_TRAP_EL2; 6032 } 6033 } 6034 6035 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6036 return CP_ACCESS_TRAP_EL2; 6037 } 6038 6039 return CP_ACCESS_OK; 6040 } 6041 6042 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6043 uint64_t value) 6044 { 6045 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6046 * read via a bit in OSLSR_EL1. 6047 */ 6048 int oslock; 6049 6050 if (ri->state == ARM_CP_STATE_AA32) { 6051 oslock = (value == 0xC5ACCE55); 6052 } else { 6053 oslock = value & 1; 6054 } 6055 6056 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6057 } 6058 6059 static const ARMCPRegInfo debug_cp_reginfo[] = { 6060 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6061 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6062 * unlike DBGDRAR it is never accessible from EL0. 6063 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6064 * accessor. 6065 */ 6066 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6067 .access = PL0_R, .accessfn = access_tdra, 6068 .type = ARM_CP_CONST, .resetvalue = 0 }, 6069 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6070 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6071 .access = PL1_R, .accessfn = access_tdra, 6072 .type = ARM_CP_CONST, .resetvalue = 0 }, 6073 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6074 .access = PL0_R, .accessfn = access_tdra, 6075 .type = ARM_CP_CONST, .resetvalue = 0 }, 6076 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6077 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6078 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6079 .access = PL1_RW, .accessfn = access_tda, 6080 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6081 .resetvalue = 0 }, 6082 /* 6083 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6084 * Debug Communication Channel is not implemented. 6085 */ 6086 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6087 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6088 .access = PL0_R, .accessfn = access_tda, 6089 .type = ARM_CP_CONST, .resetvalue = 0 }, 6090 /* 6091 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6092 * it is unlikely a guest will care. 6093 * We don't implement the configurable EL0 access. 6094 */ 6095 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6096 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6097 .type = ARM_CP_ALIAS, 6098 .access = PL1_R, .accessfn = access_tda, 6099 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6100 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6101 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6102 .access = PL1_W, .type = ARM_CP_NO_RAW, 6103 .accessfn = access_tdosa, 6104 .writefn = oslar_write }, 6105 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6106 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6107 .access = PL1_R, .resetvalue = 10, 6108 .accessfn = access_tdosa, 6109 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6110 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6111 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6112 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6113 .access = PL1_RW, .accessfn = access_tdosa, 6114 .type = ARM_CP_NOP }, 6115 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6116 * implement vector catch debug events yet. 6117 */ 6118 { .name = "DBGVCR", 6119 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6120 .access = PL1_RW, .accessfn = access_tda, 6121 .type = ARM_CP_NOP }, 6122 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6123 * to save and restore a 32-bit guest's DBGVCR) 6124 */ 6125 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6126 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6127 .access = PL2_RW, .accessfn = access_tda, 6128 .type = ARM_CP_NOP }, 6129 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6130 * Channel but Linux may try to access this register. The 32-bit 6131 * alias is DBGDCCINT. 6132 */ 6133 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6134 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6135 .access = PL1_RW, .accessfn = access_tda, 6136 .type = ARM_CP_NOP }, 6137 REGINFO_SENTINEL 6138 }; 6139 6140 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6141 /* 64 bit access versions of the (dummy) debug registers */ 6142 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6143 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6144 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6145 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6146 REGINFO_SENTINEL 6147 }; 6148 6149 /* Return the exception level to which exceptions should be taken 6150 * via SVEAccessTrap. If an exception should be routed through 6151 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6152 * take care of raising that exception. 6153 * C.f. the ARM pseudocode function CheckSVEEnabled. 6154 */ 6155 int sve_exception_el(CPUARMState *env, int el) 6156 { 6157 #ifndef CONFIG_USER_ONLY 6158 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6159 6160 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6161 /* Check CPACR.ZEN. */ 6162 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6163 case 1: 6164 if (el != 0) { 6165 break; 6166 } 6167 /* fall through */ 6168 case 0: 6169 case 2: 6170 /* route_to_el2 */ 6171 return hcr_el2 & HCR_TGE ? 2 : 1; 6172 } 6173 6174 /* Check CPACR.FPEN. */ 6175 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6176 case 1: 6177 if (el != 0) { 6178 break; 6179 } 6180 /* fall through */ 6181 case 0: 6182 case 2: 6183 return 0; 6184 } 6185 } 6186 6187 /* 6188 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6189 */ 6190 if (el <= 2) { 6191 if (hcr_el2 & HCR_E2H) { 6192 /* Check CPTR_EL2.ZEN. */ 6193 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6194 case 1: 6195 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6196 break; 6197 } 6198 /* fall through */ 6199 case 0: 6200 case 2: 6201 return 2; 6202 } 6203 6204 /* Check CPTR_EL2.FPEN. */ 6205 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6206 case 1: 6207 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6208 break; 6209 } 6210 /* fall through */ 6211 case 0: 6212 case 2: 6213 return 0; 6214 } 6215 } else if (arm_is_el2_enabled(env)) { 6216 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6217 return 2; 6218 } 6219 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6220 return 0; 6221 } 6222 } 6223 } 6224 6225 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6226 if (arm_feature(env, ARM_FEATURE_EL3) 6227 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6228 return 3; 6229 } 6230 #endif 6231 return 0; 6232 } 6233 6234 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6235 { 6236 uint32_t end_len; 6237 6238 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6239 end_len = start_len; 6240 6241 if (!test_bit(start_len, cpu->sve_vq_map)) { 6242 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6243 assert(end_len < start_len); 6244 } 6245 return end_len; 6246 } 6247 6248 /* 6249 * Given that SVE is enabled, return the vector length for EL. 6250 */ 6251 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6252 { 6253 ARMCPU *cpu = env_archcpu(env); 6254 uint32_t zcr_len = cpu->sve_max_vq - 1; 6255 6256 if (el <= 1 && 6257 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6258 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6259 } 6260 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6261 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6262 } 6263 if (arm_feature(env, ARM_FEATURE_EL3)) { 6264 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6265 } 6266 6267 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6268 } 6269 6270 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6271 uint64_t value) 6272 { 6273 int cur_el = arm_current_el(env); 6274 int old_len = sve_zcr_len_for_el(env, cur_el); 6275 int new_len; 6276 6277 /* Bits other than [3:0] are RAZ/WI. */ 6278 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6279 raw_write(env, ri, value & 0xf); 6280 6281 /* 6282 * Because we arrived here, we know both FP and SVE are enabled; 6283 * otherwise we would have trapped access to the ZCR_ELn register. 6284 */ 6285 new_len = sve_zcr_len_for_el(env, cur_el); 6286 if (new_len < old_len) { 6287 aarch64_sve_narrow_vq(env, new_len + 1); 6288 } 6289 } 6290 6291 static const ARMCPRegInfo zcr_el1_reginfo = { 6292 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6293 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6294 .access = PL1_RW, .type = ARM_CP_SVE, 6295 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6296 .writefn = zcr_write, .raw_writefn = raw_write 6297 }; 6298 6299 static const ARMCPRegInfo zcr_el2_reginfo = { 6300 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6301 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6302 .access = PL2_RW, .type = ARM_CP_SVE, 6303 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6304 .writefn = zcr_write, .raw_writefn = raw_write 6305 }; 6306 6307 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6308 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6309 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6310 .access = PL2_RW, .type = ARM_CP_SVE, 6311 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6312 }; 6313 6314 static const ARMCPRegInfo zcr_el3_reginfo = { 6315 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6316 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6317 .access = PL3_RW, .type = ARM_CP_SVE, 6318 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6319 .writefn = zcr_write, .raw_writefn = raw_write 6320 }; 6321 6322 void hw_watchpoint_update(ARMCPU *cpu, int n) 6323 { 6324 CPUARMState *env = &cpu->env; 6325 vaddr len = 0; 6326 vaddr wvr = env->cp15.dbgwvr[n]; 6327 uint64_t wcr = env->cp15.dbgwcr[n]; 6328 int mask; 6329 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6330 6331 if (env->cpu_watchpoint[n]) { 6332 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6333 env->cpu_watchpoint[n] = NULL; 6334 } 6335 6336 if (!extract64(wcr, 0, 1)) { 6337 /* E bit clear : watchpoint disabled */ 6338 return; 6339 } 6340 6341 switch (extract64(wcr, 3, 2)) { 6342 case 0: 6343 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6344 return; 6345 case 1: 6346 flags |= BP_MEM_READ; 6347 break; 6348 case 2: 6349 flags |= BP_MEM_WRITE; 6350 break; 6351 case 3: 6352 flags |= BP_MEM_ACCESS; 6353 break; 6354 } 6355 6356 /* Attempts to use both MASK and BAS fields simultaneously are 6357 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6358 * thus generating a watchpoint for every byte in the masked region. 6359 */ 6360 mask = extract64(wcr, 24, 4); 6361 if (mask == 1 || mask == 2) { 6362 /* Reserved values of MASK; we must act as if the mask value was 6363 * some non-reserved value, or as if the watchpoint were disabled. 6364 * We choose the latter. 6365 */ 6366 return; 6367 } else if (mask) { 6368 /* Watchpoint covers an aligned area up to 2GB in size */ 6369 len = 1ULL << mask; 6370 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6371 * whether the watchpoint fires when the unmasked bits match; we opt 6372 * to generate the exceptions. 6373 */ 6374 wvr &= ~(len - 1); 6375 } else { 6376 /* Watchpoint covers bytes defined by the byte address select bits */ 6377 int bas = extract64(wcr, 5, 8); 6378 int basstart; 6379 6380 if (extract64(wvr, 2, 1)) { 6381 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6382 * ignored, and BAS[3:0] define which bytes to watch. 6383 */ 6384 bas &= 0xf; 6385 } 6386 6387 if (bas == 0) { 6388 /* This must act as if the watchpoint is disabled */ 6389 return; 6390 } 6391 6392 /* The BAS bits are supposed to be programmed to indicate a contiguous 6393 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6394 * we fire for each byte in the word/doubleword addressed by the WVR. 6395 * We choose to ignore any non-zero bits after the first range of 1s. 6396 */ 6397 basstart = ctz32(bas); 6398 len = cto32(bas >> basstart); 6399 wvr += basstart; 6400 } 6401 6402 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6403 &env->cpu_watchpoint[n]); 6404 } 6405 6406 void hw_watchpoint_update_all(ARMCPU *cpu) 6407 { 6408 int i; 6409 CPUARMState *env = &cpu->env; 6410 6411 /* Completely clear out existing QEMU watchpoints and our array, to 6412 * avoid possible stale entries following migration load. 6413 */ 6414 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6415 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6416 6417 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6418 hw_watchpoint_update(cpu, i); 6419 } 6420 } 6421 6422 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6423 uint64_t value) 6424 { 6425 ARMCPU *cpu = env_archcpu(env); 6426 int i = ri->crm; 6427 6428 /* 6429 * Bits [1:0] are RES0. 6430 * 6431 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6432 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6433 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6434 * whether the RESS bits are ignored when comparing an address. 6435 * 6436 * Therefore we are allowed to compare the entire register, which lets 6437 * us avoid considering whether or not FEAT_LVA is actually enabled. 6438 */ 6439 value &= ~3ULL; 6440 6441 raw_write(env, ri, value); 6442 hw_watchpoint_update(cpu, i); 6443 } 6444 6445 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6446 uint64_t value) 6447 { 6448 ARMCPU *cpu = env_archcpu(env); 6449 int i = ri->crm; 6450 6451 raw_write(env, ri, value); 6452 hw_watchpoint_update(cpu, i); 6453 } 6454 6455 void hw_breakpoint_update(ARMCPU *cpu, int n) 6456 { 6457 CPUARMState *env = &cpu->env; 6458 uint64_t bvr = env->cp15.dbgbvr[n]; 6459 uint64_t bcr = env->cp15.dbgbcr[n]; 6460 vaddr addr; 6461 int bt; 6462 int flags = BP_CPU; 6463 6464 if (env->cpu_breakpoint[n]) { 6465 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6466 env->cpu_breakpoint[n] = NULL; 6467 } 6468 6469 if (!extract64(bcr, 0, 1)) { 6470 /* E bit clear : watchpoint disabled */ 6471 return; 6472 } 6473 6474 bt = extract64(bcr, 20, 4); 6475 6476 switch (bt) { 6477 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6478 case 5: /* linked address mismatch (reserved if AArch64) */ 6479 qemu_log_mask(LOG_UNIMP, 6480 "arm: address mismatch breakpoint types not implemented\n"); 6481 return; 6482 case 0: /* unlinked address match */ 6483 case 1: /* linked address match */ 6484 { 6485 /* 6486 * Bits [1:0] are RES0. 6487 * 6488 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6489 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6490 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6491 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6492 * whether the RESS bits are ignored when comparing an address. 6493 * Therefore we are allowed to compare the entire register, which 6494 * lets us avoid considering whether FEAT_LVA is actually enabled. 6495 * 6496 * The BAS field is used to allow setting breakpoints on 16-bit 6497 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6498 * a bp will fire if the addresses covered by the bp and the addresses 6499 * covered by the insn overlap but the insn doesn't start at the 6500 * start of the bp address range. We choose to require the insn and 6501 * the bp to have the same address. The constraints on writing to 6502 * BAS enforced in dbgbcr_write mean we have only four cases: 6503 * 0b0000 => no breakpoint 6504 * 0b0011 => breakpoint on addr 6505 * 0b1100 => breakpoint on addr + 2 6506 * 0b1111 => breakpoint on addr 6507 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6508 */ 6509 int bas = extract64(bcr, 5, 4); 6510 addr = bvr & ~3ULL; 6511 if (bas == 0) { 6512 return; 6513 } 6514 if (bas == 0xc) { 6515 addr += 2; 6516 } 6517 break; 6518 } 6519 case 2: /* unlinked context ID match */ 6520 case 8: /* unlinked VMID match (reserved if no EL2) */ 6521 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6522 qemu_log_mask(LOG_UNIMP, 6523 "arm: unlinked context breakpoint types not implemented\n"); 6524 return; 6525 case 9: /* linked VMID match (reserved if no EL2) */ 6526 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6527 case 3: /* linked context ID match */ 6528 default: 6529 /* We must generate no events for Linked context matches (unless 6530 * they are linked to by some other bp/wp, which is handled in 6531 * updates for the linking bp/wp). We choose to also generate no events 6532 * for reserved values. 6533 */ 6534 return; 6535 } 6536 6537 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6538 } 6539 6540 void hw_breakpoint_update_all(ARMCPU *cpu) 6541 { 6542 int i; 6543 CPUARMState *env = &cpu->env; 6544 6545 /* Completely clear out existing QEMU breakpoints and our array, to 6546 * avoid possible stale entries following migration load. 6547 */ 6548 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6549 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6550 6551 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6552 hw_breakpoint_update(cpu, i); 6553 } 6554 } 6555 6556 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6557 uint64_t value) 6558 { 6559 ARMCPU *cpu = env_archcpu(env); 6560 int i = ri->crm; 6561 6562 raw_write(env, ri, value); 6563 hw_breakpoint_update(cpu, i); 6564 } 6565 6566 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6567 uint64_t value) 6568 { 6569 ARMCPU *cpu = env_archcpu(env); 6570 int i = ri->crm; 6571 6572 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6573 * copy of BAS[0]. 6574 */ 6575 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6576 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6577 6578 raw_write(env, ri, value); 6579 hw_breakpoint_update(cpu, i); 6580 } 6581 6582 static void define_debug_regs(ARMCPU *cpu) 6583 { 6584 /* Define v7 and v8 architectural debug registers. 6585 * These are just dummy implementations for now. 6586 */ 6587 int i; 6588 int wrps, brps, ctx_cmps; 6589 6590 /* 6591 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6592 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6593 * the register must not exist for this cpu. 6594 */ 6595 if (cpu->isar.dbgdidr != 0) { 6596 ARMCPRegInfo dbgdidr = { 6597 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6598 .opc1 = 0, .opc2 = 0, 6599 .access = PL0_R, .accessfn = access_tda, 6600 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6601 }; 6602 define_one_arm_cp_reg(cpu, &dbgdidr); 6603 } 6604 6605 /* Note that all these register fields hold "number of Xs minus 1". */ 6606 brps = arm_num_brps(cpu); 6607 wrps = arm_num_wrps(cpu); 6608 ctx_cmps = arm_num_ctx_cmps(cpu); 6609 6610 assert(ctx_cmps <= brps); 6611 6612 define_arm_cp_regs(cpu, debug_cp_reginfo); 6613 6614 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6615 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6616 } 6617 6618 for (i = 0; i < brps; i++) { 6619 ARMCPRegInfo dbgregs[] = { 6620 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6621 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6622 .access = PL1_RW, .accessfn = access_tda, 6623 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6624 .writefn = dbgbvr_write, .raw_writefn = raw_write 6625 }, 6626 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6627 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6628 .access = PL1_RW, .accessfn = access_tda, 6629 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6630 .writefn = dbgbcr_write, .raw_writefn = raw_write 6631 }, 6632 REGINFO_SENTINEL 6633 }; 6634 define_arm_cp_regs(cpu, dbgregs); 6635 } 6636 6637 for (i = 0; i < wrps; i++) { 6638 ARMCPRegInfo dbgregs[] = { 6639 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6640 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6641 .access = PL1_RW, .accessfn = access_tda, 6642 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6643 .writefn = dbgwvr_write, .raw_writefn = raw_write 6644 }, 6645 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6646 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6647 .access = PL1_RW, .accessfn = access_tda, 6648 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6649 .writefn = dbgwcr_write, .raw_writefn = raw_write 6650 }, 6651 REGINFO_SENTINEL 6652 }; 6653 define_arm_cp_regs(cpu, dbgregs); 6654 } 6655 } 6656 6657 static void define_pmu_regs(ARMCPU *cpu) 6658 { 6659 /* 6660 * v7 performance monitor control register: same implementor 6661 * field as main ID register, and we implement four counters in 6662 * addition to the cycle count register. 6663 */ 6664 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6665 ARMCPRegInfo pmcr = { 6666 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6667 .access = PL0_RW, 6668 .type = ARM_CP_IO | ARM_CP_ALIAS, 6669 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6670 .accessfn = pmreg_access, .writefn = pmcr_write, 6671 .raw_writefn = raw_write, 6672 }; 6673 ARMCPRegInfo pmcr64 = { 6674 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6675 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6676 .access = PL0_RW, .accessfn = pmreg_access, 6677 .type = ARM_CP_IO, 6678 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6679 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6680 PMCRLC, 6681 .writefn = pmcr_write, .raw_writefn = raw_write, 6682 }; 6683 define_one_arm_cp_reg(cpu, &pmcr); 6684 define_one_arm_cp_reg(cpu, &pmcr64); 6685 for (i = 0; i < pmcrn; i++) { 6686 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6687 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6688 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6689 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6690 ARMCPRegInfo pmev_regs[] = { 6691 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6692 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6693 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6694 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6695 .accessfn = pmreg_access }, 6696 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6697 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6698 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6699 .type = ARM_CP_IO, 6700 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6701 .raw_readfn = pmevcntr_rawread, 6702 .raw_writefn = pmevcntr_rawwrite }, 6703 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6704 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6705 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6706 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6707 .accessfn = pmreg_access }, 6708 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6709 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6710 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6711 .type = ARM_CP_IO, 6712 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6713 .raw_writefn = pmevtyper_rawwrite }, 6714 REGINFO_SENTINEL 6715 }; 6716 define_arm_cp_regs(cpu, pmev_regs); 6717 g_free(pmevcntr_name); 6718 g_free(pmevcntr_el0_name); 6719 g_free(pmevtyper_name); 6720 g_free(pmevtyper_el0_name); 6721 } 6722 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6723 ARMCPRegInfo v81_pmu_regs[] = { 6724 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6725 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6726 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6727 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6728 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6729 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6730 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6731 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6732 REGINFO_SENTINEL 6733 }; 6734 define_arm_cp_regs(cpu, v81_pmu_regs); 6735 } 6736 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6737 static const ARMCPRegInfo v84_pmmir = { 6738 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6739 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6740 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6741 .resetvalue = 0 6742 }; 6743 define_one_arm_cp_reg(cpu, &v84_pmmir); 6744 } 6745 } 6746 6747 /* We don't know until after realize whether there's a GICv3 6748 * attached, and that is what registers the gicv3 sysregs. 6749 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6750 * at runtime. 6751 */ 6752 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6753 { 6754 ARMCPU *cpu = env_archcpu(env); 6755 uint64_t pfr1 = cpu->isar.id_pfr1; 6756 6757 if (env->gicv3state) { 6758 pfr1 |= 1 << 28; 6759 } 6760 return pfr1; 6761 } 6762 6763 #ifndef CONFIG_USER_ONLY 6764 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6765 { 6766 ARMCPU *cpu = env_archcpu(env); 6767 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6768 6769 if (env->gicv3state) { 6770 pfr0 |= 1 << 24; 6771 } 6772 return pfr0; 6773 } 6774 #endif 6775 6776 /* Shared logic between LORID and the rest of the LOR* registers. 6777 * Secure state exclusion has already been dealt with. 6778 */ 6779 static CPAccessResult access_lor_ns(CPUARMState *env, 6780 const ARMCPRegInfo *ri, bool isread) 6781 { 6782 int el = arm_current_el(env); 6783 6784 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6785 return CP_ACCESS_TRAP_EL2; 6786 } 6787 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6788 return CP_ACCESS_TRAP_EL3; 6789 } 6790 return CP_ACCESS_OK; 6791 } 6792 6793 static CPAccessResult access_lor_other(CPUARMState *env, 6794 const ARMCPRegInfo *ri, bool isread) 6795 { 6796 if (arm_is_secure_below_el3(env)) { 6797 /* Access denied in secure mode. */ 6798 return CP_ACCESS_TRAP; 6799 } 6800 return access_lor_ns(env, ri, isread); 6801 } 6802 6803 /* 6804 * A trivial implementation of ARMv8.1-LOR leaves all of these 6805 * registers fixed at 0, which indicates that there are zero 6806 * supported Limited Ordering regions. 6807 */ 6808 static const ARMCPRegInfo lor_reginfo[] = { 6809 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6810 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6811 .access = PL1_RW, .accessfn = access_lor_other, 6812 .type = ARM_CP_CONST, .resetvalue = 0 }, 6813 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6814 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6815 .access = PL1_RW, .accessfn = access_lor_other, 6816 .type = ARM_CP_CONST, .resetvalue = 0 }, 6817 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6818 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6819 .access = PL1_RW, .accessfn = access_lor_other, 6820 .type = ARM_CP_CONST, .resetvalue = 0 }, 6821 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6822 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6823 .access = PL1_RW, .accessfn = access_lor_other, 6824 .type = ARM_CP_CONST, .resetvalue = 0 }, 6825 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6826 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6827 .access = PL1_R, .accessfn = access_lor_ns, 6828 .type = ARM_CP_CONST, .resetvalue = 0 }, 6829 REGINFO_SENTINEL 6830 }; 6831 6832 #ifdef TARGET_AARCH64 6833 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6834 bool isread) 6835 { 6836 int el = arm_current_el(env); 6837 6838 if (el < 2 && 6839 arm_feature(env, ARM_FEATURE_EL2) && 6840 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6841 return CP_ACCESS_TRAP_EL2; 6842 } 6843 if (el < 3 && 6844 arm_feature(env, ARM_FEATURE_EL3) && 6845 !(env->cp15.scr_el3 & SCR_APK)) { 6846 return CP_ACCESS_TRAP_EL3; 6847 } 6848 return CP_ACCESS_OK; 6849 } 6850 6851 static const ARMCPRegInfo pauth_reginfo[] = { 6852 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6853 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6854 .access = PL1_RW, .accessfn = access_pauth, 6855 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6856 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6857 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6858 .access = PL1_RW, .accessfn = access_pauth, 6859 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6860 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6861 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6862 .access = PL1_RW, .accessfn = access_pauth, 6863 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6864 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6865 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6866 .access = PL1_RW, .accessfn = access_pauth, 6867 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6868 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6869 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6870 .access = PL1_RW, .accessfn = access_pauth, 6871 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6872 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6873 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6874 .access = PL1_RW, .accessfn = access_pauth, 6875 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6876 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6877 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6878 .access = PL1_RW, .accessfn = access_pauth, 6879 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6880 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6881 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6882 .access = PL1_RW, .accessfn = access_pauth, 6883 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6884 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6885 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6886 .access = PL1_RW, .accessfn = access_pauth, 6887 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6888 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6889 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6890 .access = PL1_RW, .accessfn = access_pauth, 6891 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6892 REGINFO_SENTINEL 6893 }; 6894 6895 static const ARMCPRegInfo tlbirange_reginfo[] = { 6896 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6898 .access = PL1_W, .type = ARM_CP_NO_RAW, 6899 .writefn = tlbi_aa64_rvae1is_write }, 6900 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6902 .access = PL1_W, .type = ARM_CP_NO_RAW, 6903 .writefn = tlbi_aa64_rvae1is_write }, 6904 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6906 .access = PL1_W, .type = ARM_CP_NO_RAW, 6907 .writefn = tlbi_aa64_rvae1is_write }, 6908 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6909 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6910 .access = PL1_W, .type = ARM_CP_NO_RAW, 6911 .writefn = tlbi_aa64_rvae1is_write }, 6912 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6914 .access = PL1_W, .type = ARM_CP_NO_RAW, 6915 .writefn = tlbi_aa64_rvae1is_write }, 6916 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6918 .access = PL1_W, .type = ARM_CP_NO_RAW, 6919 .writefn = tlbi_aa64_rvae1is_write }, 6920 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6921 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6922 .access = PL1_W, .type = ARM_CP_NO_RAW, 6923 .writefn = tlbi_aa64_rvae1is_write }, 6924 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6925 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6926 .access = PL1_W, .type = ARM_CP_NO_RAW, 6927 .writefn = tlbi_aa64_rvae1is_write }, 6928 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6929 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6930 .access = PL1_W, .type = ARM_CP_NO_RAW, 6931 .writefn = tlbi_aa64_rvae1_write }, 6932 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6933 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6934 .access = PL1_W, .type = ARM_CP_NO_RAW, 6935 .writefn = tlbi_aa64_rvae1_write }, 6936 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6937 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6938 .access = PL1_W, .type = ARM_CP_NO_RAW, 6939 .writefn = tlbi_aa64_rvae1_write }, 6940 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6941 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6942 .access = PL1_W, .type = ARM_CP_NO_RAW, 6943 .writefn = tlbi_aa64_rvae1_write }, 6944 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6946 .access = PL2_W, .type = ARM_CP_NOP }, 6947 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6948 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6949 .access = PL2_W, .type = ARM_CP_NOP }, 6950 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6951 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6952 .access = PL2_W, .type = ARM_CP_NO_RAW, 6953 .writefn = tlbi_aa64_rvae2is_write }, 6954 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6955 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6956 .access = PL2_W, .type = ARM_CP_NO_RAW, 6957 .writefn = tlbi_aa64_rvae2is_write }, 6958 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6959 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6960 .access = PL2_W, .type = ARM_CP_NOP }, 6961 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6962 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6963 .access = PL2_W, .type = ARM_CP_NOP }, 6964 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6965 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6966 .access = PL2_W, .type = ARM_CP_NO_RAW, 6967 .writefn = tlbi_aa64_rvae2is_write }, 6968 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6969 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6970 .access = PL2_W, .type = ARM_CP_NO_RAW, 6971 .writefn = tlbi_aa64_rvae2is_write }, 6972 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6973 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6974 .access = PL2_W, .type = ARM_CP_NO_RAW, 6975 .writefn = tlbi_aa64_rvae2_write }, 6976 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6977 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6978 .access = PL2_W, .type = ARM_CP_NO_RAW, 6979 .writefn = tlbi_aa64_rvae2_write }, 6980 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6981 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6982 .access = PL3_W, .type = ARM_CP_NO_RAW, 6983 .writefn = tlbi_aa64_rvae3is_write }, 6984 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6985 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6986 .access = PL3_W, .type = ARM_CP_NO_RAW, 6987 .writefn = tlbi_aa64_rvae3is_write }, 6988 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6989 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6990 .access = PL3_W, .type = ARM_CP_NO_RAW, 6991 .writefn = tlbi_aa64_rvae3is_write }, 6992 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6993 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6994 .access = PL3_W, .type = ARM_CP_NO_RAW, 6995 .writefn = tlbi_aa64_rvae3is_write }, 6996 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6997 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6998 .access = PL3_W, .type = ARM_CP_NO_RAW, 6999 .writefn = tlbi_aa64_rvae3_write }, 7000 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7001 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7002 .access = PL3_W, .type = ARM_CP_NO_RAW, 7003 .writefn = tlbi_aa64_rvae3_write }, 7004 REGINFO_SENTINEL 7005 }; 7006 7007 static const ARMCPRegInfo tlbios_reginfo[] = { 7008 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7009 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7010 .access = PL1_W, .type = ARM_CP_NO_RAW, 7011 .writefn = tlbi_aa64_vmalle1is_write }, 7012 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7013 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7014 .access = PL1_W, .type = ARM_CP_NO_RAW, 7015 .writefn = tlbi_aa64_vae1is_write }, 7016 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7017 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7018 .access = PL1_W, .type = ARM_CP_NO_RAW, 7019 .writefn = tlbi_aa64_vmalle1is_write }, 7020 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7021 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7022 .access = PL1_W, .type = ARM_CP_NO_RAW, 7023 .writefn = tlbi_aa64_vae1is_write }, 7024 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7025 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7026 .access = PL1_W, .type = ARM_CP_NO_RAW, 7027 .writefn = tlbi_aa64_vae1is_write }, 7028 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7030 .access = PL1_W, .type = ARM_CP_NO_RAW, 7031 .writefn = tlbi_aa64_vae1is_write }, 7032 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7034 .access = PL2_W, .type = ARM_CP_NO_RAW, 7035 .writefn = tlbi_aa64_alle2is_write }, 7036 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7037 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7038 .access = PL2_W, .type = ARM_CP_NO_RAW, 7039 .writefn = tlbi_aa64_vae2is_write }, 7040 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7041 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7042 .access = PL2_W, .type = ARM_CP_NO_RAW, 7043 .writefn = tlbi_aa64_alle1is_write }, 7044 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7045 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7046 .access = PL2_W, .type = ARM_CP_NO_RAW, 7047 .writefn = tlbi_aa64_vae2is_write }, 7048 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7049 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7050 .access = PL2_W, .type = ARM_CP_NO_RAW, 7051 .writefn = tlbi_aa64_alle1is_write }, 7052 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7053 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7054 .access = PL2_W, .type = ARM_CP_NOP }, 7055 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7056 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7057 .access = PL2_W, .type = ARM_CP_NOP }, 7058 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7059 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7060 .access = PL2_W, .type = ARM_CP_NOP }, 7061 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7062 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7063 .access = PL2_W, .type = ARM_CP_NOP }, 7064 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7065 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7066 .access = PL3_W, .type = ARM_CP_NO_RAW, 7067 .writefn = tlbi_aa64_alle3is_write }, 7068 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7069 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7070 .access = PL3_W, .type = ARM_CP_NO_RAW, 7071 .writefn = tlbi_aa64_vae3is_write }, 7072 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7073 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7074 .access = PL3_W, .type = ARM_CP_NO_RAW, 7075 .writefn = tlbi_aa64_vae3is_write }, 7076 REGINFO_SENTINEL 7077 }; 7078 7079 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7080 { 7081 Error *err = NULL; 7082 uint64_t ret; 7083 7084 /* Success sets NZCV = 0000. */ 7085 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7086 7087 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7088 /* 7089 * ??? Failed, for unknown reasons in the crypto subsystem. 7090 * The best we can do is log the reason and return the 7091 * timed-out indication to the guest. There is no reason 7092 * we know to expect this failure to be transitory, so the 7093 * guest may well hang retrying the operation. 7094 */ 7095 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7096 ri->name, error_get_pretty(err)); 7097 error_free(err); 7098 7099 env->ZF = 0; /* NZCF = 0100 */ 7100 return 0; 7101 } 7102 return ret; 7103 } 7104 7105 /* We do not support re-seeding, so the two registers operate the same. */ 7106 static const ARMCPRegInfo rndr_reginfo[] = { 7107 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7108 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7109 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7110 .access = PL0_R, .readfn = rndr_readfn }, 7111 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7112 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7113 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7114 .access = PL0_R, .readfn = rndr_readfn }, 7115 REGINFO_SENTINEL 7116 }; 7117 7118 #ifndef CONFIG_USER_ONLY 7119 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7120 uint64_t value) 7121 { 7122 ARMCPU *cpu = env_archcpu(env); 7123 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7124 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7125 uint64_t vaddr_in = (uint64_t) value; 7126 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7127 void *haddr; 7128 int mem_idx = cpu_mmu_index(env, false); 7129 7130 /* This won't be crossing page boundaries */ 7131 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7132 if (haddr) { 7133 7134 ram_addr_t offset; 7135 MemoryRegion *mr; 7136 7137 /* RCU lock is already being held */ 7138 mr = memory_region_from_host(haddr, &offset); 7139 7140 if (mr) { 7141 memory_region_writeback(mr, offset, dline_size); 7142 } 7143 } 7144 } 7145 7146 static const ARMCPRegInfo dcpop_reg[] = { 7147 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7148 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7149 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7150 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7151 REGINFO_SENTINEL 7152 }; 7153 7154 static const ARMCPRegInfo dcpodp_reg[] = { 7155 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7156 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7157 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7158 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7159 REGINFO_SENTINEL 7160 }; 7161 #endif /*CONFIG_USER_ONLY*/ 7162 7163 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7164 bool isread) 7165 { 7166 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7167 return CP_ACCESS_TRAP_EL2; 7168 } 7169 7170 return CP_ACCESS_OK; 7171 } 7172 7173 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7174 bool isread) 7175 { 7176 int el = arm_current_el(env); 7177 7178 if (el < 2 && arm_is_el2_enabled(env)) { 7179 uint64_t hcr = arm_hcr_el2_eff(env); 7180 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7181 return CP_ACCESS_TRAP_EL2; 7182 } 7183 } 7184 if (el < 3 && 7185 arm_feature(env, ARM_FEATURE_EL3) && 7186 !(env->cp15.scr_el3 & SCR_ATA)) { 7187 return CP_ACCESS_TRAP_EL3; 7188 } 7189 return CP_ACCESS_OK; 7190 } 7191 7192 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7193 { 7194 return env->pstate & PSTATE_TCO; 7195 } 7196 7197 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7198 { 7199 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7200 } 7201 7202 static const ARMCPRegInfo mte_reginfo[] = { 7203 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7204 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7205 .access = PL1_RW, .accessfn = access_mte, 7206 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7207 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7208 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7209 .access = PL1_RW, .accessfn = access_mte, 7210 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7211 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7212 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7213 .access = PL2_RW, .accessfn = access_mte, 7214 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7215 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7216 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7217 .access = PL3_RW, 7218 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7219 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7220 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7221 .access = PL1_RW, .accessfn = access_mte, 7222 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7223 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7224 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7225 .access = PL1_RW, .accessfn = access_mte, 7226 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7227 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7228 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7229 .access = PL1_R, .accessfn = access_aa64_tid5, 7230 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7231 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7232 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7233 .type = ARM_CP_NO_RAW, 7234 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7235 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7236 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7237 .type = ARM_CP_NOP, .access = PL1_W, 7238 .accessfn = aa64_cacheop_poc_access }, 7239 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7240 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7241 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7242 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7243 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7244 .type = ARM_CP_NOP, .access = PL1_W, 7245 .accessfn = aa64_cacheop_poc_access }, 7246 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7247 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7248 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7249 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7250 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7251 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7252 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7253 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7254 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7255 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7256 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7257 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7258 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7259 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7260 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7261 REGINFO_SENTINEL 7262 }; 7263 7264 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7265 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7266 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7267 .type = ARM_CP_CONST, .access = PL0_RW, }, 7268 REGINFO_SENTINEL 7269 }; 7270 7271 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7272 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7273 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7274 .type = ARM_CP_NOP, .access = PL0_W, 7275 .accessfn = aa64_cacheop_poc_access }, 7276 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7277 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7278 .type = ARM_CP_NOP, .access = PL0_W, 7279 .accessfn = aa64_cacheop_poc_access }, 7280 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7281 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7282 .type = ARM_CP_NOP, .access = PL0_W, 7283 .accessfn = aa64_cacheop_poc_access }, 7284 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7285 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7286 .type = ARM_CP_NOP, .access = PL0_W, 7287 .accessfn = aa64_cacheop_poc_access }, 7288 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7290 .type = ARM_CP_NOP, .access = PL0_W, 7291 .accessfn = aa64_cacheop_poc_access }, 7292 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7293 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7294 .type = ARM_CP_NOP, .access = PL0_W, 7295 .accessfn = aa64_cacheop_poc_access }, 7296 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7297 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7298 .type = ARM_CP_NOP, .access = PL0_W, 7299 .accessfn = aa64_cacheop_poc_access }, 7300 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7301 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7302 .type = ARM_CP_NOP, .access = PL0_W, 7303 .accessfn = aa64_cacheop_poc_access }, 7304 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7305 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7306 .access = PL0_W, .type = ARM_CP_DC_GVA, 7307 #ifndef CONFIG_USER_ONLY 7308 /* Avoid overhead of an access check that always passes in user-mode */ 7309 .accessfn = aa64_zva_access, 7310 #endif 7311 }, 7312 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7313 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7314 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7315 #ifndef CONFIG_USER_ONLY 7316 /* Avoid overhead of an access check that always passes in user-mode */ 7317 .accessfn = aa64_zva_access, 7318 #endif 7319 }, 7320 REGINFO_SENTINEL 7321 }; 7322 7323 #endif 7324 7325 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7326 bool isread) 7327 { 7328 int el = arm_current_el(env); 7329 7330 if (el == 0) { 7331 uint64_t sctlr = arm_sctlr(env, el); 7332 if (!(sctlr & SCTLR_EnRCTX)) { 7333 return CP_ACCESS_TRAP; 7334 } 7335 } else if (el == 1) { 7336 uint64_t hcr = arm_hcr_el2_eff(env); 7337 if (hcr & HCR_NV) { 7338 return CP_ACCESS_TRAP_EL2; 7339 } 7340 } 7341 return CP_ACCESS_OK; 7342 } 7343 7344 static const ARMCPRegInfo predinv_reginfo[] = { 7345 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7346 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7347 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7348 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7349 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7350 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7351 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7352 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7353 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7354 /* 7355 * Note the AArch32 opcodes have a different OPC1. 7356 */ 7357 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7358 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7359 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7360 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7361 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7362 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7363 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7364 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7365 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7366 REGINFO_SENTINEL 7367 }; 7368 7369 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7370 { 7371 /* Read the high 32 bits of the current CCSIDR */ 7372 return extract64(ccsidr_read(env, ri), 32, 32); 7373 } 7374 7375 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7376 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7377 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7378 .access = PL1_R, 7379 .accessfn = access_aa64_tid2, 7380 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7381 REGINFO_SENTINEL 7382 }; 7383 7384 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7385 bool isread) 7386 { 7387 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7388 return CP_ACCESS_TRAP_EL2; 7389 } 7390 7391 return CP_ACCESS_OK; 7392 } 7393 7394 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7395 bool isread) 7396 { 7397 if (arm_feature(env, ARM_FEATURE_V8)) { 7398 return access_aa64_tid3(env, ri, isread); 7399 } 7400 7401 return CP_ACCESS_OK; 7402 } 7403 7404 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7405 bool isread) 7406 { 7407 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7408 return CP_ACCESS_TRAP_EL2; 7409 } 7410 7411 return CP_ACCESS_OK; 7412 } 7413 7414 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7415 const ARMCPRegInfo *ri, bool isread) 7416 { 7417 /* 7418 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7419 * in v7A, not in v8A. 7420 */ 7421 if (!arm_feature(env, ARM_FEATURE_V8) && 7422 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7423 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7424 return CP_ACCESS_TRAP_EL2; 7425 } 7426 return CP_ACCESS_OK; 7427 } 7428 7429 static const ARMCPRegInfo jazelle_regs[] = { 7430 { .name = "JIDR", 7431 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7432 .access = PL1_R, .accessfn = access_jazelle, 7433 .type = ARM_CP_CONST, .resetvalue = 0 }, 7434 { .name = "JOSCR", 7435 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7436 .accessfn = access_joscr_jmcr, 7437 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7438 { .name = "JMCR", 7439 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7440 .accessfn = access_joscr_jmcr, 7441 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7442 REGINFO_SENTINEL 7443 }; 7444 7445 static const ARMCPRegInfo vhe_reginfo[] = { 7446 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7447 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7448 .access = PL2_RW, 7449 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7450 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7451 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7452 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7453 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7454 #ifndef CONFIG_USER_ONLY 7455 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7457 .fieldoffset = 7458 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7459 .type = ARM_CP_IO, .access = PL2_RW, 7460 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7461 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7462 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7463 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7464 .resetfn = gt_hv_timer_reset, 7465 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7466 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7467 .type = ARM_CP_IO, 7468 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7469 .access = PL2_RW, 7470 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7471 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7472 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7473 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7474 .type = ARM_CP_IO | ARM_CP_ALIAS, 7475 .access = PL2_RW, .accessfn = e2h_access, 7476 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7477 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7478 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7479 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7480 .type = ARM_CP_IO | ARM_CP_ALIAS, 7481 .access = PL2_RW, .accessfn = e2h_access, 7482 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7483 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7484 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7485 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7486 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7487 .access = PL2_RW, .accessfn = e2h_access, 7488 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7489 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7490 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7491 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7492 .access = PL2_RW, .accessfn = e2h_access, 7493 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7494 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7495 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7496 .type = ARM_CP_IO | ARM_CP_ALIAS, 7497 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7498 .access = PL2_RW, .accessfn = e2h_access, 7499 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7500 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7501 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7502 .type = ARM_CP_IO | ARM_CP_ALIAS, 7503 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7504 .access = PL2_RW, .accessfn = e2h_access, 7505 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7506 #endif 7507 REGINFO_SENTINEL 7508 }; 7509 7510 #ifndef CONFIG_USER_ONLY 7511 static const ARMCPRegInfo ats1e1_reginfo[] = { 7512 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7513 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7514 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7515 .writefn = ats_write64 }, 7516 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7517 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7518 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7519 .writefn = ats_write64 }, 7520 REGINFO_SENTINEL 7521 }; 7522 7523 static const ARMCPRegInfo ats1cp_reginfo[] = { 7524 { .name = "ATS1CPRP", 7525 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7526 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7527 .writefn = ats_write }, 7528 { .name = "ATS1CPWP", 7529 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7530 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7531 .writefn = ats_write }, 7532 REGINFO_SENTINEL 7533 }; 7534 #endif 7535 7536 /* 7537 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7538 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7539 * is non-zero, which is never for ARMv7, optionally in ARMv8 7540 * and mandatorily for ARMv8.2 and up. 7541 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7542 * implementation is RAZ/WI we can ignore this detail, as we 7543 * do for ACTLR. 7544 */ 7545 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7546 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7547 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7548 .access = PL1_RW, .accessfn = access_tacr, 7549 .type = ARM_CP_CONST, .resetvalue = 0 }, 7550 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7551 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7552 .access = PL2_RW, .type = ARM_CP_CONST, 7553 .resetvalue = 0 }, 7554 REGINFO_SENTINEL 7555 }; 7556 7557 void register_cp_regs_for_features(ARMCPU *cpu) 7558 { 7559 /* Register all the coprocessor registers based on feature bits */ 7560 CPUARMState *env = &cpu->env; 7561 if (arm_feature(env, ARM_FEATURE_M)) { 7562 /* M profile has no coprocessor registers */ 7563 return; 7564 } 7565 7566 define_arm_cp_regs(cpu, cp_reginfo); 7567 if (!arm_feature(env, ARM_FEATURE_V8)) { 7568 /* Must go early as it is full of wildcards that may be 7569 * overridden by later definitions. 7570 */ 7571 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7572 } 7573 7574 if (arm_feature(env, ARM_FEATURE_V6)) { 7575 /* The ID registers all have impdef reset values */ 7576 ARMCPRegInfo v6_idregs[] = { 7577 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7579 .access = PL1_R, .type = ARM_CP_CONST, 7580 .accessfn = access_aa32_tid3, 7581 .resetvalue = cpu->isar.id_pfr0 }, 7582 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7583 * the value of the GIC field until after we define these regs. 7584 */ 7585 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7587 .access = PL1_R, .type = ARM_CP_NO_RAW, 7588 .accessfn = access_aa32_tid3, 7589 .readfn = id_pfr1_read, 7590 .writefn = arm_cp_write_ignore }, 7591 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7593 .access = PL1_R, .type = ARM_CP_CONST, 7594 .accessfn = access_aa32_tid3, 7595 .resetvalue = cpu->isar.id_dfr0 }, 7596 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7598 .access = PL1_R, .type = ARM_CP_CONST, 7599 .accessfn = access_aa32_tid3, 7600 .resetvalue = cpu->id_afr0 }, 7601 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7602 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7603 .access = PL1_R, .type = ARM_CP_CONST, 7604 .accessfn = access_aa32_tid3, 7605 .resetvalue = cpu->isar.id_mmfr0 }, 7606 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7608 .access = PL1_R, .type = ARM_CP_CONST, 7609 .accessfn = access_aa32_tid3, 7610 .resetvalue = cpu->isar.id_mmfr1 }, 7611 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7613 .access = PL1_R, .type = ARM_CP_CONST, 7614 .accessfn = access_aa32_tid3, 7615 .resetvalue = cpu->isar.id_mmfr2 }, 7616 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7618 .access = PL1_R, .type = ARM_CP_CONST, 7619 .accessfn = access_aa32_tid3, 7620 .resetvalue = cpu->isar.id_mmfr3 }, 7621 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7623 .access = PL1_R, .type = ARM_CP_CONST, 7624 .accessfn = access_aa32_tid3, 7625 .resetvalue = cpu->isar.id_isar0 }, 7626 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7628 .access = PL1_R, .type = ARM_CP_CONST, 7629 .accessfn = access_aa32_tid3, 7630 .resetvalue = cpu->isar.id_isar1 }, 7631 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7633 .access = PL1_R, .type = ARM_CP_CONST, 7634 .accessfn = access_aa32_tid3, 7635 .resetvalue = cpu->isar.id_isar2 }, 7636 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7638 .access = PL1_R, .type = ARM_CP_CONST, 7639 .accessfn = access_aa32_tid3, 7640 .resetvalue = cpu->isar.id_isar3 }, 7641 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7643 .access = PL1_R, .type = ARM_CP_CONST, 7644 .accessfn = access_aa32_tid3, 7645 .resetvalue = cpu->isar.id_isar4 }, 7646 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7648 .access = PL1_R, .type = ARM_CP_CONST, 7649 .accessfn = access_aa32_tid3, 7650 .resetvalue = cpu->isar.id_isar5 }, 7651 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7653 .access = PL1_R, .type = ARM_CP_CONST, 7654 .accessfn = access_aa32_tid3, 7655 .resetvalue = cpu->isar.id_mmfr4 }, 7656 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7657 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7658 .access = PL1_R, .type = ARM_CP_CONST, 7659 .accessfn = access_aa32_tid3, 7660 .resetvalue = cpu->isar.id_isar6 }, 7661 REGINFO_SENTINEL 7662 }; 7663 define_arm_cp_regs(cpu, v6_idregs); 7664 define_arm_cp_regs(cpu, v6_cp_reginfo); 7665 } else { 7666 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7667 } 7668 if (arm_feature(env, ARM_FEATURE_V6K)) { 7669 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7670 } 7671 if (arm_feature(env, ARM_FEATURE_V7MP) && 7672 !arm_feature(env, ARM_FEATURE_PMSA)) { 7673 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7674 } 7675 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7676 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7677 } 7678 if (arm_feature(env, ARM_FEATURE_V7)) { 7679 ARMCPRegInfo clidr = { 7680 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7681 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7682 .access = PL1_R, .type = ARM_CP_CONST, 7683 .accessfn = access_aa64_tid2, 7684 .resetvalue = cpu->clidr 7685 }; 7686 define_one_arm_cp_reg(cpu, &clidr); 7687 define_arm_cp_regs(cpu, v7_cp_reginfo); 7688 define_debug_regs(cpu); 7689 define_pmu_regs(cpu); 7690 } else { 7691 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7692 } 7693 if (arm_feature(env, ARM_FEATURE_V8)) { 7694 /* AArch64 ID registers, which all have impdef reset values. 7695 * Note that within the ID register ranges the unused slots 7696 * must all RAZ, not UNDEF; future architecture versions may 7697 * define new registers here. 7698 */ 7699 ARMCPRegInfo v8_idregs[] = { 7700 /* 7701 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7702 * emulation because we don't know the right value for the 7703 * GIC field until after we define these regs. 7704 */ 7705 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7707 .access = PL1_R, 7708 #ifdef CONFIG_USER_ONLY 7709 .type = ARM_CP_CONST, 7710 .resetvalue = cpu->isar.id_aa64pfr0 7711 #else 7712 .type = ARM_CP_NO_RAW, 7713 .accessfn = access_aa64_tid3, 7714 .readfn = id_aa64pfr0_read, 7715 .writefn = arm_cp_write_ignore 7716 #endif 7717 }, 7718 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7720 .access = PL1_R, .type = ARM_CP_CONST, 7721 .accessfn = access_aa64_tid3, 7722 .resetvalue = cpu->isar.id_aa64pfr1}, 7723 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7724 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7725 .access = PL1_R, .type = ARM_CP_CONST, 7726 .accessfn = access_aa64_tid3, 7727 .resetvalue = 0 }, 7728 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7729 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7730 .access = PL1_R, .type = ARM_CP_CONST, 7731 .accessfn = access_aa64_tid3, 7732 .resetvalue = 0 }, 7733 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7735 .access = PL1_R, .type = ARM_CP_CONST, 7736 .accessfn = access_aa64_tid3, 7737 .resetvalue = cpu->isar.id_aa64zfr0 }, 7738 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7740 .access = PL1_R, .type = ARM_CP_CONST, 7741 .accessfn = access_aa64_tid3, 7742 .resetvalue = 0 }, 7743 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7745 .access = PL1_R, .type = ARM_CP_CONST, 7746 .accessfn = access_aa64_tid3, 7747 .resetvalue = 0 }, 7748 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7749 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7750 .access = PL1_R, .type = ARM_CP_CONST, 7751 .accessfn = access_aa64_tid3, 7752 .resetvalue = 0 }, 7753 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7755 .access = PL1_R, .type = ARM_CP_CONST, 7756 .accessfn = access_aa64_tid3, 7757 .resetvalue = cpu->isar.id_aa64dfr0 }, 7758 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7760 .access = PL1_R, .type = ARM_CP_CONST, 7761 .accessfn = access_aa64_tid3, 7762 .resetvalue = cpu->isar.id_aa64dfr1 }, 7763 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7765 .access = PL1_R, .type = ARM_CP_CONST, 7766 .accessfn = access_aa64_tid3, 7767 .resetvalue = 0 }, 7768 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7770 .access = PL1_R, .type = ARM_CP_CONST, 7771 .accessfn = access_aa64_tid3, 7772 .resetvalue = 0 }, 7773 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7775 .access = PL1_R, .type = ARM_CP_CONST, 7776 .accessfn = access_aa64_tid3, 7777 .resetvalue = cpu->id_aa64afr0 }, 7778 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7780 .access = PL1_R, .type = ARM_CP_CONST, 7781 .accessfn = access_aa64_tid3, 7782 .resetvalue = cpu->id_aa64afr1 }, 7783 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7785 .access = PL1_R, .type = ARM_CP_CONST, 7786 .accessfn = access_aa64_tid3, 7787 .resetvalue = 0 }, 7788 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7790 .access = PL1_R, .type = ARM_CP_CONST, 7791 .accessfn = access_aa64_tid3, 7792 .resetvalue = 0 }, 7793 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7795 .access = PL1_R, .type = ARM_CP_CONST, 7796 .accessfn = access_aa64_tid3, 7797 .resetvalue = cpu->isar.id_aa64isar0 }, 7798 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7800 .access = PL1_R, .type = ARM_CP_CONST, 7801 .accessfn = access_aa64_tid3, 7802 .resetvalue = cpu->isar.id_aa64isar1 }, 7803 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7805 .access = PL1_R, .type = ARM_CP_CONST, 7806 .accessfn = access_aa64_tid3, 7807 .resetvalue = 0 }, 7808 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7810 .access = PL1_R, .type = ARM_CP_CONST, 7811 .accessfn = access_aa64_tid3, 7812 .resetvalue = 0 }, 7813 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7815 .access = PL1_R, .type = ARM_CP_CONST, 7816 .accessfn = access_aa64_tid3, 7817 .resetvalue = 0 }, 7818 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7820 .access = PL1_R, .type = ARM_CP_CONST, 7821 .accessfn = access_aa64_tid3, 7822 .resetvalue = 0 }, 7823 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7825 .access = PL1_R, .type = ARM_CP_CONST, 7826 .accessfn = access_aa64_tid3, 7827 .resetvalue = 0 }, 7828 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7830 .access = PL1_R, .type = ARM_CP_CONST, 7831 .accessfn = access_aa64_tid3, 7832 .resetvalue = 0 }, 7833 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7834 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7835 .access = PL1_R, .type = ARM_CP_CONST, 7836 .accessfn = access_aa64_tid3, 7837 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7838 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7840 .access = PL1_R, .type = ARM_CP_CONST, 7841 .accessfn = access_aa64_tid3, 7842 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7843 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7845 .access = PL1_R, .type = ARM_CP_CONST, 7846 .accessfn = access_aa64_tid3, 7847 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7848 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7849 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7850 .access = PL1_R, .type = ARM_CP_CONST, 7851 .accessfn = access_aa64_tid3, 7852 .resetvalue = 0 }, 7853 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7854 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7855 .access = PL1_R, .type = ARM_CP_CONST, 7856 .accessfn = access_aa64_tid3, 7857 .resetvalue = 0 }, 7858 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7859 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7860 .access = PL1_R, .type = ARM_CP_CONST, 7861 .accessfn = access_aa64_tid3, 7862 .resetvalue = 0 }, 7863 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7865 .access = PL1_R, .type = ARM_CP_CONST, 7866 .accessfn = access_aa64_tid3, 7867 .resetvalue = 0 }, 7868 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7869 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7870 .access = PL1_R, .type = ARM_CP_CONST, 7871 .accessfn = access_aa64_tid3, 7872 .resetvalue = 0 }, 7873 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7874 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7875 .access = PL1_R, .type = ARM_CP_CONST, 7876 .accessfn = access_aa64_tid3, 7877 .resetvalue = cpu->isar.mvfr0 }, 7878 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7879 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7880 .access = PL1_R, .type = ARM_CP_CONST, 7881 .accessfn = access_aa64_tid3, 7882 .resetvalue = cpu->isar.mvfr1 }, 7883 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7885 .access = PL1_R, .type = ARM_CP_CONST, 7886 .accessfn = access_aa64_tid3, 7887 .resetvalue = cpu->isar.mvfr2 }, 7888 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7890 .access = PL1_R, .type = ARM_CP_CONST, 7891 .accessfn = access_aa64_tid3, 7892 .resetvalue = 0 }, 7893 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7894 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7895 .access = PL1_R, .type = ARM_CP_CONST, 7896 .accessfn = access_aa64_tid3, 7897 .resetvalue = cpu->isar.id_pfr2 }, 7898 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7899 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7900 .access = PL1_R, .type = ARM_CP_CONST, 7901 .accessfn = access_aa64_tid3, 7902 .resetvalue = 0 }, 7903 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7905 .access = PL1_R, .type = ARM_CP_CONST, 7906 .accessfn = access_aa64_tid3, 7907 .resetvalue = 0 }, 7908 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7910 .access = PL1_R, .type = ARM_CP_CONST, 7911 .accessfn = access_aa64_tid3, 7912 .resetvalue = 0 }, 7913 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7914 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7915 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7916 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7917 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7918 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7919 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7920 .resetvalue = cpu->pmceid0 }, 7921 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7922 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7923 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7924 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7925 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7926 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7927 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7928 .resetvalue = cpu->pmceid1 }, 7929 REGINFO_SENTINEL 7930 }; 7931 #ifdef CONFIG_USER_ONLY 7932 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7933 { .name = "ID_AA64PFR0_EL1", 7934 .exported_bits = 0x000f000f00ff0000, 7935 .fixed_bits = 0x0000000000000011 }, 7936 { .name = "ID_AA64PFR1_EL1", 7937 .exported_bits = 0x00000000000000f0 }, 7938 { .name = "ID_AA64PFR*_EL1_RESERVED", 7939 .is_glob = true }, 7940 { .name = "ID_AA64ZFR0_EL1" }, 7941 { .name = "ID_AA64MMFR0_EL1", 7942 .fixed_bits = 0x00000000ff000000 }, 7943 { .name = "ID_AA64MMFR1_EL1" }, 7944 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7945 .is_glob = true }, 7946 { .name = "ID_AA64DFR0_EL1", 7947 .fixed_bits = 0x0000000000000006 }, 7948 { .name = "ID_AA64DFR1_EL1" }, 7949 { .name = "ID_AA64DFR*_EL1_RESERVED", 7950 .is_glob = true }, 7951 { .name = "ID_AA64AFR*", 7952 .is_glob = true }, 7953 { .name = "ID_AA64ISAR0_EL1", 7954 .exported_bits = 0x00fffffff0fffff0 }, 7955 { .name = "ID_AA64ISAR1_EL1", 7956 .exported_bits = 0x000000f0ffffffff }, 7957 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7958 .is_glob = true }, 7959 REGUSERINFO_SENTINEL 7960 }; 7961 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7962 #endif 7963 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7964 if (!arm_feature(env, ARM_FEATURE_EL3) && 7965 !arm_feature(env, ARM_FEATURE_EL2)) { 7966 ARMCPRegInfo rvbar = { 7967 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7968 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7969 .access = PL1_R, 7970 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7971 }; 7972 define_one_arm_cp_reg(cpu, &rvbar); 7973 } 7974 define_arm_cp_regs(cpu, v8_idregs); 7975 define_arm_cp_regs(cpu, v8_cp_reginfo); 7976 } 7977 if (arm_feature(env, ARM_FEATURE_EL2)) { 7978 uint64_t vmpidr_def = mpidr_read_val(env); 7979 ARMCPRegInfo vpidr_regs[] = { 7980 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7981 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7982 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7983 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7984 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7985 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7986 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7987 .access = PL2_RW, .resetvalue = cpu->midr, 7988 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7989 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7990 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7991 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7992 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7993 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7994 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7995 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7996 .access = PL2_RW, 7997 .resetvalue = vmpidr_def, 7998 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7999 REGINFO_SENTINEL 8000 }; 8001 define_arm_cp_regs(cpu, vpidr_regs); 8002 define_arm_cp_regs(cpu, el2_cp_reginfo); 8003 if (arm_feature(env, ARM_FEATURE_V8)) { 8004 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8005 } 8006 if (cpu_isar_feature(aa64_sel2, cpu)) { 8007 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8008 } 8009 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8010 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8011 ARMCPRegInfo rvbar = { 8012 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8013 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8014 .access = PL2_R, 8015 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8016 }; 8017 define_one_arm_cp_reg(cpu, &rvbar); 8018 } 8019 } else { 8020 /* If EL2 is missing but higher ELs are enabled, we need to 8021 * register the no_el2 reginfos. 8022 */ 8023 if (arm_feature(env, ARM_FEATURE_EL3)) { 8024 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8025 * of MIDR_EL1 and MPIDR_EL1. 8026 */ 8027 ARMCPRegInfo vpidr_regs[] = { 8028 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8029 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8030 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8031 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8032 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8033 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8034 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8035 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8036 .type = ARM_CP_NO_RAW, 8037 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8038 REGINFO_SENTINEL 8039 }; 8040 define_arm_cp_regs(cpu, vpidr_regs); 8041 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8042 if (arm_feature(env, ARM_FEATURE_V8)) { 8043 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8044 } 8045 } 8046 } 8047 if (arm_feature(env, ARM_FEATURE_EL3)) { 8048 define_arm_cp_regs(cpu, el3_cp_reginfo); 8049 ARMCPRegInfo el3_regs[] = { 8050 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8051 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8052 .access = PL3_R, 8053 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8054 }, 8055 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8056 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8057 .access = PL3_RW, 8058 .raw_writefn = raw_write, .writefn = sctlr_write, 8059 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8060 .resetvalue = cpu->reset_sctlr }, 8061 REGINFO_SENTINEL 8062 }; 8063 8064 define_arm_cp_regs(cpu, el3_regs); 8065 } 8066 /* The behaviour of NSACR is sufficiently various that we don't 8067 * try to describe it in a single reginfo: 8068 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8069 * reads as constant 0xc00 from NS EL1 and NS EL2 8070 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8071 * if v7 without EL3, register doesn't exist 8072 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8073 */ 8074 if (arm_feature(env, ARM_FEATURE_EL3)) { 8075 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8076 ARMCPRegInfo nsacr = { 8077 .name = "NSACR", .type = ARM_CP_CONST, 8078 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8079 .access = PL1_RW, .accessfn = nsacr_access, 8080 .resetvalue = 0xc00 8081 }; 8082 define_one_arm_cp_reg(cpu, &nsacr); 8083 } else { 8084 ARMCPRegInfo nsacr = { 8085 .name = "NSACR", 8086 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8087 .access = PL3_RW | PL1_R, 8088 .resetvalue = 0, 8089 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8090 }; 8091 define_one_arm_cp_reg(cpu, &nsacr); 8092 } 8093 } else { 8094 if (arm_feature(env, ARM_FEATURE_V8)) { 8095 ARMCPRegInfo nsacr = { 8096 .name = "NSACR", .type = ARM_CP_CONST, 8097 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8098 .access = PL1_R, 8099 .resetvalue = 0xc00 8100 }; 8101 define_one_arm_cp_reg(cpu, &nsacr); 8102 } 8103 } 8104 8105 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8106 if (arm_feature(env, ARM_FEATURE_V6)) { 8107 /* PMSAv6 not implemented */ 8108 assert(arm_feature(env, ARM_FEATURE_V7)); 8109 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8110 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8111 } else { 8112 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8113 } 8114 } else { 8115 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8116 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8117 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8118 if (cpu_isar_feature(aa32_hpd, cpu)) { 8119 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8120 } 8121 } 8122 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8123 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8124 } 8125 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8126 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8127 } 8128 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8129 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8130 } 8131 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8132 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8133 } 8134 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8135 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8136 } 8137 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8138 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8139 } 8140 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8141 define_arm_cp_regs(cpu, omap_cp_reginfo); 8142 } 8143 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8144 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8145 } 8146 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8147 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8148 } 8149 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8150 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8151 } 8152 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8153 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8154 } 8155 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8156 define_arm_cp_regs(cpu, jazelle_regs); 8157 } 8158 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8159 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8160 * be read-only (ie write causes UNDEF exception). 8161 */ 8162 { 8163 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8164 /* Pre-v8 MIDR space. 8165 * Note that the MIDR isn't a simple constant register because 8166 * of the TI925 behaviour where writes to another register can 8167 * cause the MIDR value to change. 8168 * 8169 * Unimplemented registers in the c15 0 0 0 space default to 8170 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8171 * and friends override accordingly. 8172 */ 8173 { .name = "MIDR", 8174 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8175 .access = PL1_R, .resetvalue = cpu->midr, 8176 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8177 .readfn = midr_read, 8178 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8179 .type = ARM_CP_OVERRIDE }, 8180 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8181 { .name = "DUMMY", 8182 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8183 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8184 { .name = "DUMMY", 8185 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8186 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8187 { .name = "DUMMY", 8188 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8190 { .name = "DUMMY", 8191 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8192 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8193 { .name = "DUMMY", 8194 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8195 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8196 REGINFO_SENTINEL 8197 }; 8198 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8199 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8201 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8202 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8203 .readfn = midr_read }, 8204 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8205 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8206 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8207 .access = PL1_R, .resetvalue = cpu->midr }, 8208 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8209 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8210 .access = PL1_R, .resetvalue = cpu->midr }, 8211 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8213 .access = PL1_R, 8214 .accessfn = access_aa64_tid1, 8215 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8216 REGINFO_SENTINEL 8217 }; 8218 ARMCPRegInfo id_cp_reginfo[] = { 8219 /* These are common to v8 and pre-v8 */ 8220 { .name = "CTR", 8221 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8222 .access = PL1_R, .accessfn = ctr_el0_access, 8223 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8224 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8225 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8226 .access = PL0_R, .accessfn = ctr_el0_access, 8227 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8228 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8229 { .name = "TCMTR", 8230 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8231 .access = PL1_R, 8232 .accessfn = access_aa32_tid1, 8233 .type = ARM_CP_CONST, .resetvalue = 0 }, 8234 REGINFO_SENTINEL 8235 }; 8236 /* TLBTR is specific to VMSA */ 8237 ARMCPRegInfo id_tlbtr_reginfo = { 8238 .name = "TLBTR", 8239 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8240 .access = PL1_R, 8241 .accessfn = access_aa32_tid1, 8242 .type = ARM_CP_CONST, .resetvalue = 0, 8243 }; 8244 /* MPUIR is specific to PMSA V6+ */ 8245 ARMCPRegInfo id_mpuir_reginfo = { 8246 .name = "MPUIR", 8247 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8248 .access = PL1_R, .type = ARM_CP_CONST, 8249 .resetvalue = cpu->pmsav7_dregion << 8 8250 }; 8251 ARMCPRegInfo crn0_wi_reginfo = { 8252 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8253 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8254 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8255 }; 8256 #ifdef CONFIG_USER_ONLY 8257 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8258 { .name = "MIDR_EL1", 8259 .exported_bits = 0x00000000ffffffff }, 8260 { .name = "REVIDR_EL1" }, 8261 REGUSERINFO_SENTINEL 8262 }; 8263 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8264 #endif 8265 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8266 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8267 ARMCPRegInfo *r; 8268 /* Register the blanket "writes ignored" value first to cover the 8269 * whole space. Then update the specific ID registers to allow write 8270 * access, so that they ignore writes rather than causing them to 8271 * UNDEF. 8272 */ 8273 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8274 for (r = id_pre_v8_midr_cp_reginfo; 8275 r->type != ARM_CP_SENTINEL; r++) { 8276 r->access = PL1_RW; 8277 } 8278 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8279 r->access = PL1_RW; 8280 } 8281 id_mpuir_reginfo.access = PL1_RW; 8282 id_tlbtr_reginfo.access = PL1_RW; 8283 } 8284 if (arm_feature(env, ARM_FEATURE_V8)) { 8285 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8286 } else { 8287 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8288 } 8289 define_arm_cp_regs(cpu, id_cp_reginfo); 8290 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8291 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8292 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8293 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8294 } 8295 } 8296 8297 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8298 ARMCPRegInfo mpidr_cp_reginfo[] = { 8299 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8300 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8301 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8302 REGINFO_SENTINEL 8303 }; 8304 #ifdef CONFIG_USER_ONLY 8305 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8306 { .name = "MPIDR_EL1", 8307 .fixed_bits = 0x0000000080000000 }, 8308 REGUSERINFO_SENTINEL 8309 }; 8310 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8311 #endif 8312 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8313 } 8314 8315 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8316 ARMCPRegInfo auxcr_reginfo[] = { 8317 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8318 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8319 .access = PL1_RW, .accessfn = access_tacr, 8320 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8321 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8322 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8323 .access = PL2_RW, .type = ARM_CP_CONST, 8324 .resetvalue = 0 }, 8325 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8326 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8327 .access = PL3_RW, .type = ARM_CP_CONST, 8328 .resetvalue = 0 }, 8329 REGINFO_SENTINEL 8330 }; 8331 define_arm_cp_regs(cpu, auxcr_reginfo); 8332 if (cpu_isar_feature(aa32_ac2, cpu)) { 8333 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8334 } 8335 } 8336 8337 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8338 /* 8339 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8340 * There are two flavours: 8341 * (1) older 32-bit only cores have a simple 32-bit CBAR 8342 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8343 * 32-bit register visible to AArch32 at a different encoding 8344 * to the "flavour 1" register and with the bits rearranged to 8345 * be able to squash a 64-bit address into the 32-bit view. 8346 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8347 * in future if we support AArch32-only configs of some of the 8348 * AArch64 cores we might need to add a specific feature flag 8349 * to indicate cores with "flavour 2" CBAR. 8350 */ 8351 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8352 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8353 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8354 | extract64(cpu->reset_cbar, 32, 12); 8355 ARMCPRegInfo cbar_reginfo[] = { 8356 { .name = "CBAR", 8357 .type = ARM_CP_CONST, 8358 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8359 .access = PL1_R, .resetvalue = cbar32 }, 8360 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8361 .type = ARM_CP_CONST, 8362 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8363 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8364 REGINFO_SENTINEL 8365 }; 8366 /* We don't implement a r/w 64 bit CBAR currently */ 8367 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8368 define_arm_cp_regs(cpu, cbar_reginfo); 8369 } else { 8370 ARMCPRegInfo cbar = { 8371 .name = "CBAR", 8372 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8373 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8374 .fieldoffset = offsetof(CPUARMState, 8375 cp15.c15_config_base_address) 8376 }; 8377 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8378 cbar.access = PL1_R; 8379 cbar.fieldoffset = 0; 8380 cbar.type = ARM_CP_CONST; 8381 } 8382 define_one_arm_cp_reg(cpu, &cbar); 8383 } 8384 } 8385 8386 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8387 ARMCPRegInfo vbar_cp_reginfo[] = { 8388 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8389 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8390 .access = PL1_RW, .writefn = vbar_write, 8391 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8392 offsetof(CPUARMState, cp15.vbar_ns) }, 8393 .resetvalue = 0 }, 8394 REGINFO_SENTINEL 8395 }; 8396 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8397 } 8398 8399 /* Generic registers whose values depend on the implementation */ 8400 { 8401 ARMCPRegInfo sctlr = { 8402 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8403 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8404 .access = PL1_RW, .accessfn = access_tvm_trvm, 8405 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8406 offsetof(CPUARMState, cp15.sctlr_ns) }, 8407 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8408 .raw_writefn = raw_write, 8409 }; 8410 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8411 /* Normally we would always end the TB on an SCTLR write, but Linux 8412 * arch/arm/mach-pxa/sleep.S expects two instructions following 8413 * an MMU enable to execute from cache. Imitate this behaviour. 8414 */ 8415 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8416 } 8417 define_one_arm_cp_reg(cpu, &sctlr); 8418 } 8419 8420 if (cpu_isar_feature(aa64_lor, cpu)) { 8421 define_arm_cp_regs(cpu, lor_reginfo); 8422 } 8423 if (cpu_isar_feature(aa64_pan, cpu)) { 8424 define_one_arm_cp_reg(cpu, &pan_reginfo); 8425 } 8426 #ifndef CONFIG_USER_ONLY 8427 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8428 define_arm_cp_regs(cpu, ats1e1_reginfo); 8429 } 8430 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8431 define_arm_cp_regs(cpu, ats1cp_reginfo); 8432 } 8433 #endif 8434 if (cpu_isar_feature(aa64_uao, cpu)) { 8435 define_one_arm_cp_reg(cpu, &uao_reginfo); 8436 } 8437 8438 if (cpu_isar_feature(aa64_dit, cpu)) { 8439 define_one_arm_cp_reg(cpu, &dit_reginfo); 8440 } 8441 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8442 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8443 } 8444 8445 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8446 define_arm_cp_regs(cpu, vhe_reginfo); 8447 } 8448 8449 if (cpu_isar_feature(aa64_sve, cpu)) { 8450 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8451 if (arm_feature(env, ARM_FEATURE_EL2)) { 8452 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8453 } else { 8454 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8455 } 8456 if (arm_feature(env, ARM_FEATURE_EL3)) { 8457 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8458 } 8459 } 8460 8461 #ifdef TARGET_AARCH64 8462 if (cpu_isar_feature(aa64_pauth, cpu)) { 8463 define_arm_cp_regs(cpu, pauth_reginfo); 8464 } 8465 if (cpu_isar_feature(aa64_rndr, cpu)) { 8466 define_arm_cp_regs(cpu, rndr_reginfo); 8467 } 8468 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8469 define_arm_cp_regs(cpu, tlbirange_reginfo); 8470 } 8471 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8472 define_arm_cp_regs(cpu, tlbios_reginfo); 8473 } 8474 #ifndef CONFIG_USER_ONLY 8475 /* Data Cache clean instructions up to PoP */ 8476 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8477 define_one_arm_cp_reg(cpu, dcpop_reg); 8478 8479 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8480 define_one_arm_cp_reg(cpu, dcpodp_reg); 8481 } 8482 } 8483 #endif /*CONFIG_USER_ONLY*/ 8484 8485 /* 8486 * If full MTE is enabled, add all of the system registers. 8487 * If only "instructions available at EL0" are enabled, 8488 * then define only a RAZ/WI version of PSTATE.TCO. 8489 */ 8490 if (cpu_isar_feature(aa64_mte, cpu)) { 8491 define_arm_cp_regs(cpu, mte_reginfo); 8492 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8493 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8494 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8495 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8496 } 8497 #endif 8498 8499 if (cpu_isar_feature(any_predinv, cpu)) { 8500 define_arm_cp_regs(cpu, predinv_reginfo); 8501 } 8502 8503 if (cpu_isar_feature(any_ccidx, cpu)) { 8504 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8505 } 8506 8507 #ifndef CONFIG_USER_ONLY 8508 /* 8509 * Register redirections and aliases must be done last, 8510 * after the registers from the other extensions have been defined. 8511 */ 8512 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8513 define_arm_vh_e2h_redirects_aliases(cpu); 8514 } 8515 #endif 8516 } 8517 8518 /* Sort alphabetically by type name, except for "any". */ 8519 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8520 { 8521 ObjectClass *class_a = (ObjectClass *)a; 8522 ObjectClass *class_b = (ObjectClass *)b; 8523 const char *name_a, *name_b; 8524 8525 name_a = object_class_get_name(class_a); 8526 name_b = object_class_get_name(class_b); 8527 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8528 return 1; 8529 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8530 return -1; 8531 } else { 8532 return strcmp(name_a, name_b); 8533 } 8534 } 8535 8536 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8537 { 8538 ObjectClass *oc = data; 8539 const char *typename; 8540 char *name; 8541 8542 typename = object_class_get_name(oc); 8543 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8544 qemu_printf(" %s\n", name); 8545 g_free(name); 8546 } 8547 8548 void arm_cpu_list(void) 8549 { 8550 GSList *list; 8551 8552 list = object_class_get_list(TYPE_ARM_CPU, false); 8553 list = g_slist_sort(list, arm_cpu_list_compare); 8554 qemu_printf("Available CPUs:\n"); 8555 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8556 g_slist_free(list); 8557 } 8558 8559 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8560 { 8561 ObjectClass *oc = data; 8562 CpuDefinitionInfoList **cpu_list = user_data; 8563 CpuDefinitionInfo *info; 8564 const char *typename; 8565 8566 typename = object_class_get_name(oc); 8567 info = g_malloc0(sizeof(*info)); 8568 info->name = g_strndup(typename, 8569 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8570 info->q_typename = g_strdup(typename); 8571 8572 QAPI_LIST_PREPEND(*cpu_list, info); 8573 } 8574 8575 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8576 { 8577 CpuDefinitionInfoList *cpu_list = NULL; 8578 GSList *list; 8579 8580 list = object_class_get_list(TYPE_ARM_CPU, false); 8581 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8582 g_slist_free(list); 8583 8584 return cpu_list; 8585 } 8586 8587 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8588 void *opaque, int state, int secstate, 8589 int crm, int opc1, int opc2, 8590 const char *name) 8591 { 8592 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8593 * add a single reginfo struct to the hash table. 8594 */ 8595 uint32_t *key = g_new(uint32_t, 1); 8596 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8597 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8598 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8599 8600 r2->name = g_strdup(name); 8601 /* Reset the secure state to the specific incoming state. This is 8602 * necessary as the register may have been defined with both states. 8603 */ 8604 r2->secure = secstate; 8605 8606 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8607 /* Register is banked (using both entries in array). 8608 * Overwriting fieldoffset as the array is only used to define 8609 * banked registers but later only fieldoffset is used. 8610 */ 8611 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8612 } 8613 8614 if (state == ARM_CP_STATE_AA32) { 8615 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8616 /* If the register is banked then we don't need to migrate or 8617 * reset the 32-bit instance in certain cases: 8618 * 8619 * 1) If the register has both 32-bit and 64-bit instances then we 8620 * can count on the 64-bit instance taking care of the 8621 * non-secure bank. 8622 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8623 * taking care of the secure bank. This requires that separate 8624 * 32 and 64-bit definitions are provided. 8625 */ 8626 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8627 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8628 r2->type |= ARM_CP_ALIAS; 8629 } 8630 } else if ((secstate != r->secure) && !ns) { 8631 /* The register is not banked so we only want to allow migration of 8632 * the non-secure instance. 8633 */ 8634 r2->type |= ARM_CP_ALIAS; 8635 } 8636 8637 if (r->state == ARM_CP_STATE_BOTH) { 8638 /* We assume it is a cp15 register if the .cp field is left unset. 8639 */ 8640 if (r2->cp == 0) { 8641 r2->cp = 15; 8642 } 8643 8644 #if HOST_BIG_ENDIAN 8645 if (r2->fieldoffset) { 8646 r2->fieldoffset += sizeof(uint32_t); 8647 } 8648 #endif 8649 } 8650 } 8651 if (state == ARM_CP_STATE_AA64) { 8652 /* To allow abbreviation of ARMCPRegInfo 8653 * definitions, we treat cp == 0 as equivalent to 8654 * the value for "standard guest-visible sysreg". 8655 * STATE_BOTH definitions are also always "standard 8656 * sysreg" in their AArch64 view (the .cp value may 8657 * be non-zero for the benefit of the AArch32 view). 8658 */ 8659 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8660 r2->cp = CP_REG_ARM64_SYSREG_CP; 8661 } 8662 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8663 r2->opc0, opc1, opc2); 8664 } else { 8665 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8666 } 8667 if (opaque) { 8668 r2->opaque = opaque; 8669 } 8670 /* reginfo passed to helpers is correct for the actual access, 8671 * and is never ARM_CP_STATE_BOTH: 8672 */ 8673 r2->state = state; 8674 /* Make sure reginfo passed to helpers for wildcarded regs 8675 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8676 */ 8677 r2->crm = crm; 8678 r2->opc1 = opc1; 8679 r2->opc2 = opc2; 8680 /* By convention, for wildcarded registers only the first 8681 * entry is used for migration; the others are marked as 8682 * ALIAS so we don't try to transfer the register 8683 * multiple times. Special registers (ie NOP/WFI) are 8684 * never migratable and not even raw-accessible. 8685 */ 8686 if ((r->type & ARM_CP_SPECIAL)) { 8687 r2->type |= ARM_CP_NO_RAW; 8688 } 8689 if (((r->crm == CP_ANY) && crm != 0) || 8690 ((r->opc1 == CP_ANY) && opc1 != 0) || 8691 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8692 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8693 } 8694 8695 /* Check that raw accesses are either forbidden or handled. Note that 8696 * we can't assert this earlier because the setup of fieldoffset for 8697 * banked registers has to be done first. 8698 */ 8699 if (!(r2->type & ARM_CP_NO_RAW)) { 8700 assert(!raw_accessors_invalid(r2)); 8701 } 8702 8703 /* Overriding of an existing definition must be explicitly 8704 * requested. 8705 */ 8706 if (!(r->type & ARM_CP_OVERRIDE)) { 8707 ARMCPRegInfo *oldreg; 8708 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8709 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8710 fprintf(stderr, "Register redefined: cp=%d %d bit " 8711 "crn=%d crm=%d opc1=%d opc2=%d, " 8712 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8713 r2->crn, r2->crm, r2->opc1, r2->opc2, 8714 oldreg->name, r2->name); 8715 g_assert_not_reached(); 8716 } 8717 } 8718 g_hash_table_insert(cpu->cp_regs, key, r2); 8719 } 8720 8721 8722 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8723 const ARMCPRegInfo *r, void *opaque) 8724 { 8725 /* Define implementations of coprocessor registers. 8726 * We store these in a hashtable because typically 8727 * there are less than 150 registers in a space which 8728 * is 16*16*16*8*8 = 262144 in size. 8729 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8730 * If a register is defined twice then the second definition is 8731 * used, so this can be used to define some generic registers and 8732 * then override them with implementation specific variations. 8733 * At least one of the original and the second definition should 8734 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8735 * against accidental use. 8736 * 8737 * The state field defines whether the register is to be 8738 * visible in the AArch32 or AArch64 execution state. If the 8739 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8740 * reginfo structure for the AArch32 view, which sees the lower 8741 * 32 bits of the 64 bit register. 8742 * 8743 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8744 * be wildcarded. AArch64 registers are always considered to be 64 8745 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8746 * the register, if any. 8747 */ 8748 int crm, opc1, opc2, state; 8749 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8750 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8751 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8752 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8753 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8754 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8755 /* 64 bit registers have only CRm and Opc1 fields */ 8756 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8757 /* op0 only exists in the AArch64 encodings */ 8758 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8759 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8760 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8761 /* 8762 * This API is only for Arm's system coprocessors (14 and 15) or 8763 * (M-profile or v7A-and-earlier only) for implementation defined 8764 * coprocessors in the range 0..7. Our decode assumes this, since 8765 * 8..13 can be used for other insns including VFP and Neon. See 8766 * valid_cp() in translate.c. Assert here that we haven't tried 8767 * to use an invalid coprocessor number. 8768 */ 8769 switch (r->state) { 8770 case ARM_CP_STATE_BOTH: 8771 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8772 if (r->cp == 0) { 8773 break; 8774 } 8775 /* fall through */ 8776 case ARM_CP_STATE_AA32: 8777 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8778 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8779 assert(r->cp >= 14 && r->cp <= 15); 8780 } else { 8781 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8782 } 8783 break; 8784 case ARM_CP_STATE_AA64: 8785 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8786 break; 8787 default: 8788 g_assert_not_reached(); 8789 } 8790 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8791 * encodes a minimum access level for the register. We roll this 8792 * runtime check into our general permission check code, so check 8793 * here that the reginfo's specified permissions are strict enough 8794 * to encompass the generic architectural permission check. 8795 */ 8796 if (r->state != ARM_CP_STATE_AA32) { 8797 int mask = 0; 8798 switch (r->opc1) { 8799 case 0: 8800 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8801 mask = PL0U_R | PL1_RW; 8802 break; 8803 case 1: case 2: 8804 /* min_EL EL1 */ 8805 mask = PL1_RW; 8806 break; 8807 case 3: 8808 /* min_EL EL0 */ 8809 mask = PL0_RW; 8810 break; 8811 case 4: 8812 case 5: 8813 /* min_EL EL2 */ 8814 mask = PL2_RW; 8815 break; 8816 case 6: 8817 /* min_EL EL3 */ 8818 mask = PL3_RW; 8819 break; 8820 case 7: 8821 /* min_EL EL1, secure mode only (we don't check the latter) */ 8822 mask = PL1_RW; 8823 break; 8824 default: 8825 /* broken reginfo with out-of-range opc1 */ 8826 assert(false); 8827 break; 8828 } 8829 /* assert our permissions are not too lax (stricter is fine) */ 8830 assert((r->access & ~mask) == 0); 8831 } 8832 8833 /* Check that the register definition has enough info to handle 8834 * reads and writes if they are permitted. 8835 */ 8836 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8837 if (r->access & PL3_R) { 8838 assert((r->fieldoffset || 8839 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8840 r->readfn); 8841 } 8842 if (r->access & PL3_W) { 8843 assert((r->fieldoffset || 8844 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8845 r->writefn); 8846 } 8847 } 8848 /* Bad type field probably means missing sentinel at end of reg list */ 8849 assert(cptype_valid(r->type)); 8850 for (crm = crmmin; crm <= crmmax; crm++) { 8851 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8852 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8853 for (state = ARM_CP_STATE_AA32; 8854 state <= ARM_CP_STATE_AA64; state++) { 8855 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8856 continue; 8857 } 8858 if (state == ARM_CP_STATE_AA32) { 8859 /* Under AArch32 CP registers can be common 8860 * (same for secure and non-secure world) or banked. 8861 */ 8862 char *name; 8863 8864 switch (r->secure) { 8865 case ARM_CP_SECSTATE_S: 8866 case ARM_CP_SECSTATE_NS: 8867 add_cpreg_to_hashtable(cpu, r, opaque, state, 8868 r->secure, crm, opc1, opc2, 8869 r->name); 8870 break; 8871 default: 8872 name = g_strdup_printf("%s_S", r->name); 8873 add_cpreg_to_hashtable(cpu, r, opaque, state, 8874 ARM_CP_SECSTATE_S, 8875 crm, opc1, opc2, name); 8876 g_free(name); 8877 add_cpreg_to_hashtable(cpu, r, opaque, state, 8878 ARM_CP_SECSTATE_NS, 8879 crm, opc1, opc2, r->name); 8880 break; 8881 } 8882 } else { 8883 /* AArch64 registers get mapped to non-secure instance 8884 * of AArch32 */ 8885 add_cpreg_to_hashtable(cpu, r, opaque, state, 8886 ARM_CP_SECSTATE_NS, 8887 crm, opc1, opc2, r->name); 8888 } 8889 } 8890 } 8891 } 8892 } 8893 } 8894 8895 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8896 const ARMCPRegInfo *regs, void *opaque) 8897 { 8898 /* Define a whole list of registers */ 8899 const ARMCPRegInfo *r; 8900 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8901 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8902 } 8903 } 8904 8905 /* 8906 * Modify ARMCPRegInfo for access from userspace. 8907 * 8908 * This is a data driven modification directed by 8909 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8910 * user-space cannot alter any values and dynamic values pertaining to 8911 * execution state are hidden from user space view anyway. 8912 */ 8913 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8914 { 8915 const ARMCPRegUserSpaceInfo *m; 8916 ARMCPRegInfo *r; 8917 8918 for (m = mods; m->name; m++) { 8919 GPatternSpec *pat = NULL; 8920 if (m->is_glob) { 8921 pat = g_pattern_spec_new(m->name); 8922 } 8923 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8924 if (pat && g_pattern_match_string(pat, r->name)) { 8925 r->type = ARM_CP_CONST; 8926 r->access = PL0U_R; 8927 r->resetvalue = 0; 8928 /* continue */ 8929 } else if (strcmp(r->name, m->name) == 0) { 8930 r->type = ARM_CP_CONST; 8931 r->access = PL0U_R; 8932 r->resetvalue &= m->exported_bits; 8933 r->resetvalue |= m->fixed_bits; 8934 break; 8935 } 8936 } 8937 if (pat) { 8938 g_pattern_spec_free(pat); 8939 } 8940 } 8941 } 8942 8943 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8944 { 8945 return g_hash_table_lookup(cpregs, &encoded_cp); 8946 } 8947 8948 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8949 uint64_t value) 8950 { 8951 /* Helper coprocessor write function for write-ignore registers */ 8952 } 8953 8954 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8955 { 8956 /* Helper coprocessor write function for read-as-zero registers */ 8957 return 0; 8958 } 8959 8960 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8961 { 8962 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8963 } 8964 8965 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8966 { 8967 /* Return true if it is not valid for us to switch to 8968 * this CPU mode (ie all the UNPREDICTABLE cases in 8969 * the ARM ARM CPSRWriteByInstr pseudocode). 8970 */ 8971 8972 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8973 if (write_type == CPSRWriteByInstr && 8974 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8975 mode == ARM_CPU_MODE_HYP)) { 8976 return 1; 8977 } 8978 8979 switch (mode) { 8980 case ARM_CPU_MODE_USR: 8981 return 0; 8982 case ARM_CPU_MODE_SYS: 8983 case ARM_CPU_MODE_SVC: 8984 case ARM_CPU_MODE_ABT: 8985 case ARM_CPU_MODE_UND: 8986 case ARM_CPU_MODE_IRQ: 8987 case ARM_CPU_MODE_FIQ: 8988 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8989 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8990 */ 8991 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8992 * and CPS are treated as illegal mode changes. 8993 */ 8994 if (write_type == CPSRWriteByInstr && 8995 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8996 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8997 return 1; 8998 } 8999 return 0; 9000 case ARM_CPU_MODE_HYP: 9001 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9002 case ARM_CPU_MODE_MON: 9003 return arm_current_el(env) < 3; 9004 default: 9005 return 1; 9006 } 9007 } 9008 9009 uint32_t cpsr_read(CPUARMState *env) 9010 { 9011 int ZF; 9012 ZF = (env->ZF == 0); 9013 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9014 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9015 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9016 | ((env->condexec_bits & 0xfc) << 8) 9017 | (env->GE << 16) | (env->daif & CPSR_AIF); 9018 } 9019 9020 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9021 CPSRWriteType write_type) 9022 { 9023 uint32_t changed_daif; 9024 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9025 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9026 9027 if (mask & CPSR_NZCV) { 9028 env->ZF = (~val) & CPSR_Z; 9029 env->NF = val; 9030 env->CF = (val >> 29) & 1; 9031 env->VF = (val << 3) & 0x80000000; 9032 } 9033 if (mask & CPSR_Q) 9034 env->QF = ((val & CPSR_Q) != 0); 9035 if (mask & CPSR_T) 9036 env->thumb = ((val & CPSR_T) != 0); 9037 if (mask & CPSR_IT_0_1) { 9038 env->condexec_bits &= ~3; 9039 env->condexec_bits |= (val >> 25) & 3; 9040 } 9041 if (mask & CPSR_IT_2_7) { 9042 env->condexec_bits &= 3; 9043 env->condexec_bits |= (val >> 8) & 0xfc; 9044 } 9045 if (mask & CPSR_GE) { 9046 env->GE = (val >> 16) & 0xf; 9047 } 9048 9049 /* In a V7 implementation that includes the security extensions but does 9050 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9051 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9052 * bits respectively. 9053 * 9054 * In a V8 implementation, it is permitted for privileged software to 9055 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9056 */ 9057 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9058 arm_feature(env, ARM_FEATURE_EL3) && 9059 !arm_feature(env, ARM_FEATURE_EL2) && 9060 !arm_is_secure(env)) { 9061 9062 changed_daif = (env->daif ^ val) & mask; 9063 9064 if (changed_daif & CPSR_A) { 9065 /* Check to see if we are allowed to change the masking of async 9066 * abort exceptions from a non-secure state. 9067 */ 9068 if (!(env->cp15.scr_el3 & SCR_AW)) { 9069 qemu_log_mask(LOG_GUEST_ERROR, 9070 "Ignoring attempt to switch CPSR_A flag from " 9071 "non-secure world with SCR.AW bit clear\n"); 9072 mask &= ~CPSR_A; 9073 } 9074 } 9075 9076 if (changed_daif & CPSR_F) { 9077 /* Check to see if we are allowed to change the masking of FIQ 9078 * exceptions from a non-secure state. 9079 */ 9080 if (!(env->cp15.scr_el3 & SCR_FW)) { 9081 qemu_log_mask(LOG_GUEST_ERROR, 9082 "Ignoring attempt to switch CPSR_F flag from " 9083 "non-secure world with SCR.FW bit clear\n"); 9084 mask &= ~CPSR_F; 9085 } 9086 9087 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9088 * If this bit is set software is not allowed to mask 9089 * FIQs, but is allowed to set CPSR_F to 0. 9090 */ 9091 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9092 (val & CPSR_F)) { 9093 qemu_log_mask(LOG_GUEST_ERROR, 9094 "Ignoring attempt to enable CPSR_F flag " 9095 "(non-maskable FIQ [NMFI] support enabled)\n"); 9096 mask &= ~CPSR_F; 9097 } 9098 } 9099 } 9100 9101 env->daif &= ~(CPSR_AIF & mask); 9102 env->daif |= val & CPSR_AIF & mask; 9103 9104 if (write_type != CPSRWriteRaw && 9105 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9106 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9107 /* Note that we can only get here in USR mode if this is a 9108 * gdb stub write; for this case we follow the architectural 9109 * behaviour for guest writes in USR mode of ignoring an attempt 9110 * to switch mode. (Those are caught by translate.c for writes 9111 * triggered by guest instructions.) 9112 */ 9113 mask &= ~CPSR_M; 9114 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9115 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9116 * v7, and has defined behaviour in v8: 9117 * + leave CPSR.M untouched 9118 * + allow changes to the other CPSR fields 9119 * + set PSTATE.IL 9120 * For user changes via the GDB stub, we don't set PSTATE.IL, 9121 * as this would be unnecessarily harsh for a user error. 9122 */ 9123 mask &= ~CPSR_M; 9124 if (write_type != CPSRWriteByGDBStub && 9125 arm_feature(env, ARM_FEATURE_V8)) { 9126 mask |= CPSR_IL; 9127 val |= CPSR_IL; 9128 } 9129 qemu_log_mask(LOG_GUEST_ERROR, 9130 "Illegal AArch32 mode switch attempt from %s to %s\n", 9131 aarch32_mode_name(env->uncached_cpsr), 9132 aarch32_mode_name(val)); 9133 } else { 9134 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9135 write_type == CPSRWriteExceptionReturn ? 9136 "Exception return from AArch32" : 9137 "AArch32 mode switch from", 9138 aarch32_mode_name(env->uncached_cpsr), 9139 aarch32_mode_name(val), env->regs[15]); 9140 switch_mode(env, val & CPSR_M); 9141 } 9142 } 9143 mask &= ~CACHED_CPSR_BITS; 9144 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9145 if (rebuild_hflags) { 9146 arm_rebuild_hflags(env); 9147 } 9148 } 9149 9150 /* Sign/zero extend */ 9151 uint32_t HELPER(sxtb16)(uint32_t x) 9152 { 9153 uint32_t res; 9154 res = (uint16_t)(int8_t)x; 9155 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9156 return res; 9157 } 9158 9159 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9160 { 9161 /* 9162 * Take a division-by-zero exception if necessary; otherwise return 9163 * to get the usual non-trapping division behaviour (result of 0) 9164 */ 9165 if (arm_feature(env, ARM_FEATURE_M) 9166 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9167 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9168 } 9169 } 9170 9171 uint32_t HELPER(uxtb16)(uint32_t x) 9172 { 9173 uint32_t res; 9174 res = (uint16_t)(uint8_t)x; 9175 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9176 return res; 9177 } 9178 9179 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9180 { 9181 if (den == 0) { 9182 handle_possible_div0_trap(env, GETPC()); 9183 return 0; 9184 } 9185 if (num == INT_MIN && den == -1) { 9186 return INT_MIN; 9187 } 9188 return num / den; 9189 } 9190 9191 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9192 { 9193 if (den == 0) { 9194 handle_possible_div0_trap(env, GETPC()); 9195 return 0; 9196 } 9197 return num / den; 9198 } 9199 9200 uint32_t HELPER(rbit)(uint32_t x) 9201 { 9202 return revbit32(x); 9203 } 9204 9205 #ifdef CONFIG_USER_ONLY 9206 9207 static void switch_mode(CPUARMState *env, int mode) 9208 { 9209 ARMCPU *cpu = env_archcpu(env); 9210 9211 if (mode != ARM_CPU_MODE_USR) { 9212 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9213 } 9214 } 9215 9216 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9217 uint32_t cur_el, bool secure) 9218 { 9219 return 1; 9220 } 9221 9222 void aarch64_sync_64_to_32(CPUARMState *env) 9223 { 9224 g_assert_not_reached(); 9225 } 9226 9227 #else 9228 9229 static void switch_mode(CPUARMState *env, int mode) 9230 { 9231 int old_mode; 9232 int i; 9233 9234 old_mode = env->uncached_cpsr & CPSR_M; 9235 if (mode == old_mode) 9236 return; 9237 9238 if (old_mode == ARM_CPU_MODE_FIQ) { 9239 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9240 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9241 } else if (mode == ARM_CPU_MODE_FIQ) { 9242 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9243 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9244 } 9245 9246 i = bank_number(old_mode); 9247 env->banked_r13[i] = env->regs[13]; 9248 env->banked_spsr[i] = env->spsr; 9249 9250 i = bank_number(mode); 9251 env->regs[13] = env->banked_r13[i]; 9252 env->spsr = env->banked_spsr[i]; 9253 9254 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9255 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9256 } 9257 9258 /* Physical Interrupt Target EL Lookup Table 9259 * 9260 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9261 * 9262 * The below multi-dimensional table is used for looking up the target 9263 * exception level given numerous condition criteria. Specifically, the 9264 * target EL is based on SCR and HCR routing controls as well as the 9265 * currently executing EL and secure state. 9266 * 9267 * Dimensions: 9268 * target_el_table[2][2][2][2][2][4] 9269 * | | | | | +--- Current EL 9270 * | | | | +------ Non-secure(0)/Secure(1) 9271 * | | | +--------- HCR mask override 9272 * | | +------------ SCR exec state control 9273 * | +--------------- SCR mask override 9274 * +------------------ 32-bit(0)/64-bit(1) EL3 9275 * 9276 * The table values are as such: 9277 * 0-3 = EL0-EL3 9278 * -1 = Cannot occur 9279 * 9280 * The ARM ARM target EL table includes entries indicating that an "exception 9281 * is not taken". The two cases where this is applicable are: 9282 * 1) An exception is taken from EL3 but the SCR does not have the exception 9283 * routed to EL3. 9284 * 2) An exception is taken from EL2 but the HCR does not have the exception 9285 * routed to EL2. 9286 * In these two cases, the below table contain a target of EL1. This value is 9287 * returned as it is expected that the consumer of the table data will check 9288 * for "target EL >= current EL" to ensure the exception is not taken. 9289 * 9290 * SCR HCR 9291 * 64 EA AMO From 9292 * BIT IRQ IMO Non-secure Secure 9293 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9294 */ 9295 static const int8_t target_el_table[2][2][2][2][2][4] = { 9296 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9297 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9298 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9299 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9300 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9301 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9302 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9303 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9304 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9305 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9306 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9307 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9308 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9309 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9310 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9311 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9312 }; 9313 9314 /* 9315 * Determine the target EL for physical exceptions 9316 */ 9317 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9318 uint32_t cur_el, bool secure) 9319 { 9320 CPUARMState *env = cs->env_ptr; 9321 bool rw; 9322 bool scr; 9323 bool hcr; 9324 int target_el; 9325 /* Is the highest EL AArch64? */ 9326 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9327 uint64_t hcr_el2; 9328 9329 if (arm_feature(env, ARM_FEATURE_EL3)) { 9330 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9331 } else { 9332 /* Either EL2 is the highest EL (and so the EL2 register width 9333 * is given by is64); or there is no EL2 or EL3, in which case 9334 * the value of 'rw' does not affect the table lookup anyway. 9335 */ 9336 rw = is64; 9337 } 9338 9339 hcr_el2 = arm_hcr_el2_eff(env); 9340 switch (excp_idx) { 9341 case EXCP_IRQ: 9342 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9343 hcr = hcr_el2 & HCR_IMO; 9344 break; 9345 case EXCP_FIQ: 9346 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9347 hcr = hcr_el2 & HCR_FMO; 9348 break; 9349 default: 9350 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9351 hcr = hcr_el2 & HCR_AMO; 9352 break; 9353 }; 9354 9355 /* 9356 * For these purposes, TGE and AMO/IMO/FMO both force the 9357 * interrupt to EL2. Fold TGE into the bit extracted above. 9358 */ 9359 hcr |= (hcr_el2 & HCR_TGE) != 0; 9360 9361 /* Perform a table-lookup for the target EL given the current state */ 9362 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9363 9364 assert(target_el > 0); 9365 9366 return target_el; 9367 } 9368 9369 void arm_log_exception(CPUState *cs) 9370 { 9371 int idx = cs->exception_index; 9372 9373 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9374 const char *exc = NULL; 9375 static const char * const excnames[] = { 9376 [EXCP_UDEF] = "Undefined Instruction", 9377 [EXCP_SWI] = "SVC", 9378 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9379 [EXCP_DATA_ABORT] = "Data Abort", 9380 [EXCP_IRQ] = "IRQ", 9381 [EXCP_FIQ] = "FIQ", 9382 [EXCP_BKPT] = "Breakpoint", 9383 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9384 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9385 [EXCP_HVC] = "Hypervisor Call", 9386 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9387 [EXCP_SMC] = "Secure Monitor Call", 9388 [EXCP_VIRQ] = "Virtual IRQ", 9389 [EXCP_VFIQ] = "Virtual FIQ", 9390 [EXCP_SEMIHOST] = "Semihosting call", 9391 [EXCP_NOCP] = "v7M NOCP UsageFault", 9392 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9393 [EXCP_STKOF] = "v8M STKOF UsageFault", 9394 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9395 [EXCP_LSERR] = "v8M LSERR UsageFault", 9396 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9397 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9398 }; 9399 9400 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9401 exc = excnames[idx]; 9402 } 9403 if (!exc) { 9404 exc = "unknown"; 9405 } 9406 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9407 idx, exc, cs->cpu_index); 9408 } 9409 } 9410 9411 /* 9412 * Function used to synchronize QEMU's AArch64 register set with AArch32 9413 * register set. This is necessary when switching between AArch32 and AArch64 9414 * execution state. 9415 */ 9416 void aarch64_sync_32_to_64(CPUARMState *env) 9417 { 9418 int i; 9419 uint32_t mode = env->uncached_cpsr & CPSR_M; 9420 9421 /* We can blanket copy R[0:7] to X[0:7] */ 9422 for (i = 0; i < 8; i++) { 9423 env->xregs[i] = env->regs[i]; 9424 } 9425 9426 /* 9427 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9428 * Otherwise, they come from the banked user regs. 9429 */ 9430 if (mode == ARM_CPU_MODE_FIQ) { 9431 for (i = 8; i < 13; i++) { 9432 env->xregs[i] = env->usr_regs[i - 8]; 9433 } 9434 } else { 9435 for (i = 8; i < 13; i++) { 9436 env->xregs[i] = env->regs[i]; 9437 } 9438 } 9439 9440 /* 9441 * Registers x13-x23 are the various mode SP and FP registers. Registers 9442 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9443 * from the mode banked register. 9444 */ 9445 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9446 env->xregs[13] = env->regs[13]; 9447 env->xregs[14] = env->regs[14]; 9448 } else { 9449 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9450 /* HYP is an exception in that it is copied from r14 */ 9451 if (mode == ARM_CPU_MODE_HYP) { 9452 env->xregs[14] = env->regs[14]; 9453 } else { 9454 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9455 } 9456 } 9457 9458 if (mode == ARM_CPU_MODE_HYP) { 9459 env->xregs[15] = env->regs[13]; 9460 } else { 9461 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9462 } 9463 9464 if (mode == ARM_CPU_MODE_IRQ) { 9465 env->xregs[16] = env->regs[14]; 9466 env->xregs[17] = env->regs[13]; 9467 } else { 9468 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9469 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9470 } 9471 9472 if (mode == ARM_CPU_MODE_SVC) { 9473 env->xregs[18] = env->regs[14]; 9474 env->xregs[19] = env->regs[13]; 9475 } else { 9476 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9477 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9478 } 9479 9480 if (mode == ARM_CPU_MODE_ABT) { 9481 env->xregs[20] = env->regs[14]; 9482 env->xregs[21] = env->regs[13]; 9483 } else { 9484 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9485 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9486 } 9487 9488 if (mode == ARM_CPU_MODE_UND) { 9489 env->xregs[22] = env->regs[14]; 9490 env->xregs[23] = env->regs[13]; 9491 } else { 9492 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9493 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9494 } 9495 9496 /* 9497 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9498 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9499 * FIQ bank for r8-r14. 9500 */ 9501 if (mode == ARM_CPU_MODE_FIQ) { 9502 for (i = 24; i < 31; i++) { 9503 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9504 } 9505 } else { 9506 for (i = 24; i < 29; i++) { 9507 env->xregs[i] = env->fiq_regs[i - 24]; 9508 } 9509 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9510 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9511 } 9512 9513 env->pc = env->regs[15]; 9514 } 9515 9516 /* 9517 * Function used to synchronize QEMU's AArch32 register set with AArch64 9518 * register set. This is necessary when switching between AArch32 and AArch64 9519 * execution state. 9520 */ 9521 void aarch64_sync_64_to_32(CPUARMState *env) 9522 { 9523 int i; 9524 uint32_t mode = env->uncached_cpsr & CPSR_M; 9525 9526 /* We can blanket copy X[0:7] to R[0:7] */ 9527 for (i = 0; i < 8; i++) { 9528 env->regs[i] = env->xregs[i]; 9529 } 9530 9531 /* 9532 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9533 * Otherwise, we copy x8-x12 into the banked user regs. 9534 */ 9535 if (mode == ARM_CPU_MODE_FIQ) { 9536 for (i = 8; i < 13; i++) { 9537 env->usr_regs[i - 8] = env->xregs[i]; 9538 } 9539 } else { 9540 for (i = 8; i < 13; i++) { 9541 env->regs[i] = env->xregs[i]; 9542 } 9543 } 9544 9545 /* 9546 * Registers r13 & r14 depend on the current mode. 9547 * If we are in a given mode, we copy the corresponding x registers to r13 9548 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9549 * for the mode. 9550 */ 9551 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9552 env->regs[13] = env->xregs[13]; 9553 env->regs[14] = env->xregs[14]; 9554 } else { 9555 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9556 9557 /* 9558 * HYP is an exception in that it does not have its own banked r14 but 9559 * shares the USR r14 9560 */ 9561 if (mode == ARM_CPU_MODE_HYP) { 9562 env->regs[14] = env->xregs[14]; 9563 } else { 9564 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9565 } 9566 } 9567 9568 if (mode == ARM_CPU_MODE_HYP) { 9569 env->regs[13] = env->xregs[15]; 9570 } else { 9571 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9572 } 9573 9574 if (mode == ARM_CPU_MODE_IRQ) { 9575 env->regs[14] = env->xregs[16]; 9576 env->regs[13] = env->xregs[17]; 9577 } else { 9578 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9579 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9580 } 9581 9582 if (mode == ARM_CPU_MODE_SVC) { 9583 env->regs[14] = env->xregs[18]; 9584 env->regs[13] = env->xregs[19]; 9585 } else { 9586 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9587 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9588 } 9589 9590 if (mode == ARM_CPU_MODE_ABT) { 9591 env->regs[14] = env->xregs[20]; 9592 env->regs[13] = env->xregs[21]; 9593 } else { 9594 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9595 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9596 } 9597 9598 if (mode == ARM_CPU_MODE_UND) { 9599 env->regs[14] = env->xregs[22]; 9600 env->regs[13] = env->xregs[23]; 9601 } else { 9602 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9603 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9604 } 9605 9606 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9607 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9608 * FIQ bank for r8-r14. 9609 */ 9610 if (mode == ARM_CPU_MODE_FIQ) { 9611 for (i = 24; i < 31; i++) { 9612 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9613 } 9614 } else { 9615 for (i = 24; i < 29; i++) { 9616 env->fiq_regs[i - 24] = env->xregs[i]; 9617 } 9618 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9619 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9620 } 9621 9622 env->regs[15] = env->pc; 9623 } 9624 9625 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9626 uint32_t mask, uint32_t offset, 9627 uint32_t newpc) 9628 { 9629 int new_el; 9630 9631 /* Change the CPU state so as to actually take the exception. */ 9632 switch_mode(env, new_mode); 9633 9634 /* 9635 * For exceptions taken to AArch32 we must clear the SS bit in both 9636 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9637 */ 9638 env->pstate &= ~PSTATE_SS; 9639 env->spsr = cpsr_read(env); 9640 /* Clear IT bits. */ 9641 env->condexec_bits = 0; 9642 /* Switch to the new mode, and to the correct instruction set. */ 9643 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9644 9645 /* This must be after mode switching. */ 9646 new_el = arm_current_el(env); 9647 9648 /* Set new mode endianness */ 9649 env->uncached_cpsr &= ~CPSR_E; 9650 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9651 env->uncached_cpsr |= CPSR_E; 9652 } 9653 /* J and IL must always be cleared for exception entry */ 9654 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9655 env->daif |= mask; 9656 9657 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9658 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9659 env->uncached_cpsr |= CPSR_SSBS; 9660 } else { 9661 env->uncached_cpsr &= ~CPSR_SSBS; 9662 } 9663 } 9664 9665 if (new_mode == ARM_CPU_MODE_HYP) { 9666 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9667 env->elr_el[2] = env->regs[15]; 9668 } else { 9669 /* CPSR.PAN is normally preserved preserved unless... */ 9670 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9671 switch (new_el) { 9672 case 3: 9673 if (!arm_is_secure_below_el3(env)) { 9674 /* ... the target is EL3, from non-secure state. */ 9675 env->uncached_cpsr &= ~CPSR_PAN; 9676 break; 9677 } 9678 /* ... the target is EL3, from secure state ... */ 9679 /* fall through */ 9680 case 1: 9681 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9682 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9683 env->uncached_cpsr |= CPSR_PAN; 9684 } 9685 break; 9686 } 9687 } 9688 /* 9689 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9690 * and we should just guard the thumb mode on V4 9691 */ 9692 if (arm_feature(env, ARM_FEATURE_V4T)) { 9693 env->thumb = 9694 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9695 } 9696 env->regs[14] = env->regs[15] + offset; 9697 } 9698 env->regs[15] = newpc; 9699 arm_rebuild_hflags(env); 9700 } 9701 9702 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9703 { 9704 /* 9705 * Handle exception entry to Hyp mode; this is sufficiently 9706 * different to entry to other AArch32 modes that we handle it 9707 * separately here. 9708 * 9709 * The vector table entry used is always the 0x14 Hyp mode entry point, 9710 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9711 * The offset applied to the preferred return address is always zero 9712 * (see DDI0487C.a section G1.12.3). 9713 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9714 */ 9715 uint32_t addr, mask; 9716 ARMCPU *cpu = ARM_CPU(cs); 9717 CPUARMState *env = &cpu->env; 9718 9719 switch (cs->exception_index) { 9720 case EXCP_UDEF: 9721 addr = 0x04; 9722 break; 9723 case EXCP_SWI: 9724 addr = 0x08; 9725 break; 9726 case EXCP_BKPT: 9727 /* Fall through to prefetch abort. */ 9728 case EXCP_PREFETCH_ABORT: 9729 env->cp15.ifar_s = env->exception.vaddress; 9730 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9731 (uint32_t)env->exception.vaddress); 9732 addr = 0x0c; 9733 break; 9734 case EXCP_DATA_ABORT: 9735 env->cp15.dfar_s = env->exception.vaddress; 9736 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9737 (uint32_t)env->exception.vaddress); 9738 addr = 0x10; 9739 break; 9740 case EXCP_IRQ: 9741 addr = 0x18; 9742 break; 9743 case EXCP_FIQ: 9744 addr = 0x1c; 9745 break; 9746 case EXCP_HVC: 9747 addr = 0x08; 9748 break; 9749 case EXCP_HYP_TRAP: 9750 addr = 0x14; 9751 break; 9752 default: 9753 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9754 } 9755 9756 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9757 if (!arm_feature(env, ARM_FEATURE_V8)) { 9758 /* 9759 * QEMU syndrome values are v8-style. v7 has the IL bit 9760 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9761 * If this is a v7 CPU, squash the IL bit in those cases. 9762 */ 9763 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9764 (cs->exception_index == EXCP_DATA_ABORT && 9765 !(env->exception.syndrome & ARM_EL_ISV)) || 9766 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9767 env->exception.syndrome &= ~ARM_EL_IL; 9768 } 9769 } 9770 env->cp15.esr_el[2] = env->exception.syndrome; 9771 } 9772 9773 if (arm_current_el(env) != 2 && addr < 0x14) { 9774 addr = 0x14; 9775 } 9776 9777 mask = 0; 9778 if (!(env->cp15.scr_el3 & SCR_EA)) { 9779 mask |= CPSR_A; 9780 } 9781 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9782 mask |= CPSR_I; 9783 } 9784 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9785 mask |= CPSR_F; 9786 } 9787 9788 addr += env->cp15.hvbar; 9789 9790 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9791 } 9792 9793 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9794 { 9795 ARMCPU *cpu = ARM_CPU(cs); 9796 CPUARMState *env = &cpu->env; 9797 uint32_t addr; 9798 uint32_t mask; 9799 int new_mode; 9800 uint32_t offset; 9801 uint32_t moe; 9802 9803 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9804 switch (syn_get_ec(env->exception.syndrome)) { 9805 case EC_BREAKPOINT: 9806 case EC_BREAKPOINT_SAME_EL: 9807 moe = 1; 9808 break; 9809 case EC_WATCHPOINT: 9810 case EC_WATCHPOINT_SAME_EL: 9811 moe = 10; 9812 break; 9813 case EC_AA32_BKPT: 9814 moe = 3; 9815 break; 9816 case EC_VECTORCATCH: 9817 moe = 5; 9818 break; 9819 default: 9820 moe = 0; 9821 break; 9822 } 9823 9824 if (moe) { 9825 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9826 } 9827 9828 if (env->exception.target_el == 2) { 9829 arm_cpu_do_interrupt_aarch32_hyp(cs); 9830 return; 9831 } 9832 9833 switch (cs->exception_index) { 9834 case EXCP_UDEF: 9835 new_mode = ARM_CPU_MODE_UND; 9836 addr = 0x04; 9837 mask = CPSR_I; 9838 if (env->thumb) 9839 offset = 2; 9840 else 9841 offset = 4; 9842 break; 9843 case EXCP_SWI: 9844 new_mode = ARM_CPU_MODE_SVC; 9845 addr = 0x08; 9846 mask = CPSR_I; 9847 /* The PC already points to the next instruction. */ 9848 offset = 0; 9849 break; 9850 case EXCP_BKPT: 9851 /* Fall through to prefetch abort. */ 9852 case EXCP_PREFETCH_ABORT: 9853 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9854 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9855 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9856 env->exception.fsr, (uint32_t)env->exception.vaddress); 9857 new_mode = ARM_CPU_MODE_ABT; 9858 addr = 0x0c; 9859 mask = CPSR_A | CPSR_I; 9860 offset = 4; 9861 break; 9862 case EXCP_DATA_ABORT: 9863 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9864 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9865 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9866 env->exception.fsr, 9867 (uint32_t)env->exception.vaddress); 9868 new_mode = ARM_CPU_MODE_ABT; 9869 addr = 0x10; 9870 mask = CPSR_A | CPSR_I; 9871 offset = 8; 9872 break; 9873 case EXCP_IRQ: 9874 new_mode = ARM_CPU_MODE_IRQ; 9875 addr = 0x18; 9876 /* Disable IRQ and imprecise data aborts. */ 9877 mask = CPSR_A | CPSR_I; 9878 offset = 4; 9879 if (env->cp15.scr_el3 & SCR_IRQ) { 9880 /* IRQ routed to monitor mode */ 9881 new_mode = ARM_CPU_MODE_MON; 9882 mask |= CPSR_F; 9883 } 9884 break; 9885 case EXCP_FIQ: 9886 new_mode = ARM_CPU_MODE_FIQ; 9887 addr = 0x1c; 9888 /* Disable FIQ, IRQ and imprecise data aborts. */ 9889 mask = CPSR_A | CPSR_I | CPSR_F; 9890 if (env->cp15.scr_el3 & SCR_FIQ) { 9891 /* FIQ routed to monitor mode */ 9892 new_mode = ARM_CPU_MODE_MON; 9893 } 9894 offset = 4; 9895 break; 9896 case EXCP_VIRQ: 9897 new_mode = ARM_CPU_MODE_IRQ; 9898 addr = 0x18; 9899 /* Disable IRQ and imprecise data aborts. */ 9900 mask = CPSR_A | CPSR_I; 9901 offset = 4; 9902 break; 9903 case EXCP_VFIQ: 9904 new_mode = ARM_CPU_MODE_FIQ; 9905 addr = 0x1c; 9906 /* Disable FIQ, IRQ and imprecise data aborts. */ 9907 mask = CPSR_A | CPSR_I | CPSR_F; 9908 offset = 4; 9909 break; 9910 case EXCP_SMC: 9911 new_mode = ARM_CPU_MODE_MON; 9912 addr = 0x08; 9913 mask = CPSR_A | CPSR_I | CPSR_F; 9914 offset = 0; 9915 break; 9916 default: 9917 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9918 return; /* Never happens. Keep compiler happy. */ 9919 } 9920 9921 if (new_mode == ARM_CPU_MODE_MON) { 9922 addr += env->cp15.mvbar; 9923 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9924 /* High vectors. When enabled, base address cannot be remapped. */ 9925 addr += 0xffff0000; 9926 } else { 9927 /* ARM v7 architectures provide a vector base address register to remap 9928 * the interrupt vector table. 9929 * This register is only followed in non-monitor mode, and is banked. 9930 * Note: only bits 31:5 are valid. 9931 */ 9932 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9933 } 9934 9935 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9936 env->cp15.scr_el3 &= ~SCR_NS; 9937 } 9938 9939 take_aarch32_exception(env, new_mode, mask, offset, addr); 9940 } 9941 9942 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9943 { 9944 /* 9945 * Return the register number of the AArch64 view of the AArch32 9946 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9947 * be that of the AArch32 mode the exception came from. 9948 */ 9949 int mode = env->uncached_cpsr & CPSR_M; 9950 9951 switch (aarch32_reg) { 9952 case 0 ... 7: 9953 return aarch32_reg; 9954 case 8 ... 12: 9955 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9956 case 13: 9957 switch (mode) { 9958 case ARM_CPU_MODE_USR: 9959 case ARM_CPU_MODE_SYS: 9960 return 13; 9961 case ARM_CPU_MODE_HYP: 9962 return 15; 9963 case ARM_CPU_MODE_IRQ: 9964 return 17; 9965 case ARM_CPU_MODE_SVC: 9966 return 19; 9967 case ARM_CPU_MODE_ABT: 9968 return 21; 9969 case ARM_CPU_MODE_UND: 9970 return 23; 9971 case ARM_CPU_MODE_FIQ: 9972 return 29; 9973 default: 9974 g_assert_not_reached(); 9975 } 9976 case 14: 9977 switch (mode) { 9978 case ARM_CPU_MODE_USR: 9979 case ARM_CPU_MODE_SYS: 9980 case ARM_CPU_MODE_HYP: 9981 return 14; 9982 case ARM_CPU_MODE_IRQ: 9983 return 16; 9984 case ARM_CPU_MODE_SVC: 9985 return 18; 9986 case ARM_CPU_MODE_ABT: 9987 return 20; 9988 case ARM_CPU_MODE_UND: 9989 return 22; 9990 case ARM_CPU_MODE_FIQ: 9991 return 30; 9992 default: 9993 g_assert_not_reached(); 9994 } 9995 case 15: 9996 return 31; 9997 default: 9998 g_assert_not_reached(); 9999 } 10000 } 10001 10002 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10003 { 10004 uint32_t ret = cpsr_read(env); 10005 10006 /* Move DIT to the correct location for SPSR_ELx */ 10007 if (ret & CPSR_DIT) { 10008 ret &= ~CPSR_DIT; 10009 ret |= PSTATE_DIT; 10010 } 10011 /* Merge PSTATE.SS into SPSR_ELx */ 10012 ret |= env->pstate & PSTATE_SS; 10013 10014 return ret; 10015 } 10016 10017 /* Handle exception entry to a target EL which is using AArch64 */ 10018 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10019 { 10020 ARMCPU *cpu = ARM_CPU(cs); 10021 CPUARMState *env = &cpu->env; 10022 unsigned int new_el = env->exception.target_el; 10023 target_ulong addr = env->cp15.vbar_el[new_el]; 10024 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10025 unsigned int old_mode; 10026 unsigned int cur_el = arm_current_el(env); 10027 int rt; 10028 10029 /* 10030 * Note that new_el can never be 0. If cur_el is 0, then 10031 * el0_a64 is is_a64(), else el0_a64 is ignored. 10032 */ 10033 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10034 10035 if (cur_el < new_el) { 10036 /* Entry vector offset depends on whether the implemented EL 10037 * immediately lower than the target level is using AArch32 or AArch64 10038 */ 10039 bool is_aa64; 10040 uint64_t hcr; 10041 10042 switch (new_el) { 10043 case 3: 10044 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10045 break; 10046 case 2: 10047 hcr = arm_hcr_el2_eff(env); 10048 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10049 is_aa64 = (hcr & HCR_RW) != 0; 10050 break; 10051 } 10052 /* fall through */ 10053 case 1: 10054 is_aa64 = is_a64(env); 10055 break; 10056 default: 10057 g_assert_not_reached(); 10058 } 10059 10060 if (is_aa64) { 10061 addr += 0x400; 10062 } else { 10063 addr += 0x600; 10064 } 10065 } else if (pstate_read(env) & PSTATE_SP) { 10066 addr += 0x200; 10067 } 10068 10069 switch (cs->exception_index) { 10070 case EXCP_PREFETCH_ABORT: 10071 case EXCP_DATA_ABORT: 10072 env->cp15.far_el[new_el] = env->exception.vaddress; 10073 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10074 env->cp15.far_el[new_el]); 10075 /* fall through */ 10076 case EXCP_BKPT: 10077 case EXCP_UDEF: 10078 case EXCP_SWI: 10079 case EXCP_HVC: 10080 case EXCP_HYP_TRAP: 10081 case EXCP_SMC: 10082 switch (syn_get_ec(env->exception.syndrome)) { 10083 case EC_ADVSIMDFPACCESSTRAP: 10084 /* 10085 * QEMU internal FP/SIMD syndromes from AArch32 include the 10086 * TA and coproc fields which are only exposed if the exception 10087 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10088 * AArch64 format syndrome. 10089 */ 10090 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10091 break; 10092 case EC_CP14RTTRAP: 10093 case EC_CP15RTTRAP: 10094 case EC_CP14DTTRAP: 10095 /* 10096 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10097 * the raw register field from the insn; when taking this to 10098 * AArch64 we must convert it to the AArch64 view of the register 10099 * number. Notice that we read a 4-bit AArch32 register number and 10100 * write back a 5-bit AArch64 one. 10101 */ 10102 rt = extract32(env->exception.syndrome, 5, 4); 10103 rt = aarch64_regnum(env, rt); 10104 env->exception.syndrome = deposit32(env->exception.syndrome, 10105 5, 5, rt); 10106 break; 10107 case EC_CP15RRTTRAP: 10108 case EC_CP14RRTTRAP: 10109 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10110 rt = extract32(env->exception.syndrome, 5, 4); 10111 rt = aarch64_regnum(env, rt); 10112 env->exception.syndrome = deposit32(env->exception.syndrome, 10113 5, 5, rt); 10114 rt = extract32(env->exception.syndrome, 10, 4); 10115 rt = aarch64_regnum(env, rt); 10116 env->exception.syndrome = deposit32(env->exception.syndrome, 10117 10, 5, rt); 10118 break; 10119 } 10120 env->cp15.esr_el[new_el] = env->exception.syndrome; 10121 break; 10122 case EXCP_IRQ: 10123 case EXCP_VIRQ: 10124 addr += 0x80; 10125 break; 10126 case EXCP_FIQ: 10127 case EXCP_VFIQ: 10128 addr += 0x100; 10129 break; 10130 default: 10131 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10132 } 10133 10134 if (is_a64(env)) { 10135 old_mode = pstate_read(env); 10136 aarch64_save_sp(env, arm_current_el(env)); 10137 env->elr_el[new_el] = env->pc; 10138 } else { 10139 old_mode = cpsr_read_for_spsr_elx(env); 10140 env->elr_el[new_el] = env->regs[15]; 10141 10142 aarch64_sync_32_to_64(env); 10143 10144 env->condexec_bits = 0; 10145 } 10146 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10147 10148 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10149 env->elr_el[new_el]); 10150 10151 if (cpu_isar_feature(aa64_pan, cpu)) { 10152 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10153 new_mode |= old_mode & PSTATE_PAN; 10154 switch (new_el) { 10155 case 2: 10156 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10157 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10158 != (HCR_E2H | HCR_TGE)) { 10159 break; 10160 } 10161 /* fall through */ 10162 case 1: 10163 /* ... the target is EL1 ... */ 10164 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10165 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10166 new_mode |= PSTATE_PAN; 10167 } 10168 break; 10169 } 10170 } 10171 if (cpu_isar_feature(aa64_mte, cpu)) { 10172 new_mode |= PSTATE_TCO; 10173 } 10174 10175 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10176 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10177 new_mode |= PSTATE_SSBS; 10178 } else { 10179 new_mode &= ~PSTATE_SSBS; 10180 } 10181 } 10182 10183 pstate_write(env, PSTATE_DAIF | new_mode); 10184 env->aarch64 = 1; 10185 aarch64_restore_sp(env, new_el); 10186 helper_rebuild_hflags_a64(env, new_el); 10187 10188 env->pc = addr; 10189 10190 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10191 new_el, env->pc, pstate_read(env)); 10192 } 10193 10194 /* 10195 * Do semihosting call and set the appropriate return value. All the 10196 * permission and validity checks have been done at translate time. 10197 * 10198 * We only see semihosting exceptions in TCG only as they are not 10199 * trapped to the hypervisor in KVM. 10200 */ 10201 #ifdef CONFIG_TCG 10202 static void handle_semihosting(CPUState *cs) 10203 { 10204 ARMCPU *cpu = ARM_CPU(cs); 10205 CPUARMState *env = &cpu->env; 10206 10207 if (is_a64(env)) { 10208 qemu_log_mask(CPU_LOG_INT, 10209 "...handling as semihosting call 0x%" PRIx64 "\n", 10210 env->xregs[0]); 10211 env->xregs[0] = do_common_semihosting(cs); 10212 env->pc += 4; 10213 } else { 10214 qemu_log_mask(CPU_LOG_INT, 10215 "...handling as semihosting call 0x%x\n", 10216 env->regs[0]); 10217 env->regs[0] = do_common_semihosting(cs); 10218 env->regs[15] += env->thumb ? 2 : 4; 10219 } 10220 } 10221 #endif 10222 10223 /* Handle a CPU exception for A and R profile CPUs. 10224 * Do any appropriate logging, handle PSCI calls, and then hand off 10225 * to the AArch64-entry or AArch32-entry function depending on the 10226 * target exception level's register width. 10227 * 10228 * Note: this is used for both TCG (as the do_interrupt tcg op), 10229 * and KVM to re-inject guest debug exceptions, and to 10230 * inject a Synchronous-External-Abort. 10231 */ 10232 void arm_cpu_do_interrupt(CPUState *cs) 10233 { 10234 ARMCPU *cpu = ARM_CPU(cs); 10235 CPUARMState *env = &cpu->env; 10236 unsigned int new_el = env->exception.target_el; 10237 10238 assert(!arm_feature(env, ARM_FEATURE_M)); 10239 10240 arm_log_exception(cs); 10241 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10242 new_el); 10243 if (qemu_loglevel_mask(CPU_LOG_INT) 10244 && !excp_is_internal(cs->exception_index)) { 10245 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10246 syn_get_ec(env->exception.syndrome), 10247 env->exception.syndrome); 10248 } 10249 10250 if (arm_is_psci_call(cpu, cs->exception_index)) { 10251 arm_handle_psci_call(cpu); 10252 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10253 return; 10254 } 10255 10256 /* 10257 * Semihosting semantics depend on the register width of the code 10258 * that caused the exception, not the target exception level, so 10259 * must be handled here. 10260 */ 10261 #ifdef CONFIG_TCG 10262 if (cs->exception_index == EXCP_SEMIHOST) { 10263 handle_semihosting(cs); 10264 return; 10265 } 10266 #endif 10267 10268 /* Hooks may change global state so BQL should be held, also the 10269 * BQL needs to be held for any modification of 10270 * cs->interrupt_request. 10271 */ 10272 g_assert(qemu_mutex_iothread_locked()); 10273 10274 arm_call_pre_el_change_hook(cpu); 10275 10276 assert(!excp_is_internal(cs->exception_index)); 10277 if (arm_el_is_aa64(env, new_el)) { 10278 arm_cpu_do_interrupt_aarch64(cs); 10279 } else { 10280 arm_cpu_do_interrupt_aarch32(cs); 10281 } 10282 10283 arm_call_el_change_hook(cpu); 10284 10285 if (!kvm_enabled()) { 10286 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10287 } 10288 } 10289 #endif /* !CONFIG_USER_ONLY */ 10290 10291 uint64_t arm_sctlr(CPUARMState *env, int el) 10292 { 10293 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10294 if (el == 0) { 10295 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10296 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10297 ? 2 : 1; 10298 } 10299 return env->cp15.sctlr_el[el]; 10300 } 10301 10302 /* Return the SCTLR value which controls this address translation regime */ 10303 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10304 { 10305 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10306 } 10307 10308 #ifndef CONFIG_USER_ONLY 10309 10310 /* Return true if the specified stage of address translation is disabled */ 10311 static inline bool regime_translation_disabled(CPUARMState *env, 10312 ARMMMUIdx mmu_idx) 10313 { 10314 uint64_t hcr_el2; 10315 10316 if (arm_feature(env, ARM_FEATURE_M)) { 10317 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10318 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10319 case R_V7M_MPU_CTRL_ENABLE_MASK: 10320 /* Enabled, but not for HardFault and NMI */ 10321 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10322 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10323 /* Enabled for all cases */ 10324 return false; 10325 case 0: 10326 default: 10327 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10328 * we warned about that in armv7m_nvic.c when the guest set it. 10329 */ 10330 return true; 10331 } 10332 } 10333 10334 hcr_el2 = arm_hcr_el2_eff(env); 10335 10336 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10337 /* HCR.DC means HCR.VM behaves as 1 */ 10338 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10339 } 10340 10341 if (hcr_el2 & HCR_TGE) { 10342 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10343 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10344 return true; 10345 } 10346 } 10347 10348 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10349 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10350 return true; 10351 } 10352 10353 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10354 } 10355 10356 static inline bool regime_translation_big_endian(CPUARMState *env, 10357 ARMMMUIdx mmu_idx) 10358 { 10359 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10360 } 10361 10362 /* Return the TTBR associated with this translation regime */ 10363 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10364 int ttbrn) 10365 { 10366 if (mmu_idx == ARMMMUIdx_Stage2) { 10367 return env->cp15.vttbr_el2; 10368 } 10369 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10370 return env->cp15.vsttbr_el2; 10371 } 10372 if (ttbrn == 0) { 10373 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10374 } else { 10375 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10376 } 10377 } 10378 10379 #endif /* !CONFIG_USER_ONLY */ 10380 10381 /* Convert a possible stage1+2 MMU index into the appropriate 10382 * stage 1 MMU index 10383 */ 10384 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10385 { 10386 switch (mmu_idx) { 10387 case ARMMMUIdx_SE10_0: 10388 return ARMMMUIdx_Stage1_SE0; 10389 case ARMMMUIdx_SE10_1: 10390 return ARMMMUIdx_Stage1_SE1; 10391 case ARMMMUIdx_SE10_1_PAN: 10392 return ARMMMUIdx_Stage1_SE1_PAN; 10393 case ARMMMUIdx_E10_0: 10394 return ARMMMUIdx_Stage1_E0; 10395 case ARMMMUIdx_E10_1: 10396 return ARMMMUIdx_Stage1_E1; 10397 case ARMMMUIdx_E10_1_PAN: 10398 return ARMMMUIdx_Stage1_E1_PAN; 10399 default: 10400 return mmu_idx; 10401 } 10402 } 10403 10404 /* Return true if the translation regime is using LPAE format page tables */ 10405 static inline bool regime_using_lpae_format(CPUARMState *env, 10406 ARMMMUIdx mmu_idx) 10407 { 10408 int el = regime_el(env, mmu_idx); 10409 if (el == 2 || arm_el_is_aa64(env, el)) { 10410 return true; 10411 } 10412 if (arm_feature(env, ARM_FEATURE_LPAE) 10413 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10414 return true; 10415 } 10416 return false; 10417 } 10418 10419 /* Returns true if the stage 1 translation regime is using LPAE format page 10420 * tables. Used when raising alignment exceptions, whose FSR changes depending 10421 * on whether the long or short descriptor format is in use. */ 10422 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10423 { 10424 mmu_idx = stage_1_mmu_idx(mmu_idx); 10425 10426 return regime_using_lpae_format(env, mmu_idx); 10427 } 10428 10429 #ifndef CONFIG_USER_ONLY 10430 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10431 { 10432 switch (mmu_idx) { 10433 case ARMMMUIdx_SE10_0: 10434 case ARMMMUIdx_E20_0: 10435 case ARMMMUIdx_SE20_0: 10436 case ARMMMUIdx_Stage1_E0: 10437 case ARMMMUIdx_Stage1_SE0: 10438 case ARMMMUIdx_MUser: 10439 case ARMMMUIdx_MSUser: 10440 case ARMMMUIdx_MUserNegPri: 10441 case ARMMMUIdx_MSUserNegPri: 10442 return true; 10443 default: 10444 return false; 10445 case ARMMMUIdx_E10_0: 10446 case ARMMMUIdx_E10_1: 10447 case ARMMMUIdx_E10_1_PAN: 10448 g_assert_not_reached(); 10449 } 10450 } 10451 10452 /* Translate section/page access permissions to page 10453 * R/W protection flags 10454 * 10455 * @env: CPUARMState 10456 * @mmu_idx: MMU index indicating required translation regime 10457 * @ap: The 3-bit access permissions (AP[2:0]) 10458 * @domain_prot: The 2-bit domain access permissions 10459 */ 10460 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10461 int ap, int domain_prot) 10462 { 10463 bool is_user = regime_is_user(env, mmu_idx); 10464 10465 if (domain_prot == 3) { 10466 return PAGE_READ | PAGE_WRITE; 10467 } 10468 10469 switch (ap) { 10470 case 0: 10471 if (arm_feature(env, ARM_FEATURE_V7)) { 10472 return 0; 10473 } 10474 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10475 case SCTLR_S: 10476 return is_user ? 0 : PAGE_READ; 10477 case SCTLR_R: 10478 return PAGE_READ; 10479 default: 10480 return 0; 10481 } 10482 case 1: 10483 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10484 case 2: 10485 if (is_user) { 10486 return PAGE_READ; 10487 } else { 10488 return PAGE_READ | PAGE_WRITE; 10489 } 10490 case 3: 10491 return PAGE_READ | PAGE_WRITE; 10492 case 4: /* Reserved. */ 10493 return 0; 10494 case 5: 10495 return is_user ? 0 : PAGE_READ; 10496 case 6: 10497 return PAGE_READ; 10498 case 7: 10499 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10500 return 0; 10501 } 10502 return PAGE_READ; 10503 default: 10504 g_assert_not_reached(); 10505 } 10506 } 10507 10508 /* Translate section/page access permissions to page 10509 * R/W protection flags. 10510 * 10511 * @ap: The 2-bit simple AP (AP[2:1]) 10512 * @is_user: TRUE if accessing from PL0 10513 */ 10514 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10515 { 10516 switch (ap) { 10517 case 0: 10518 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10519 case 1: 10520 return PAGE_READ | PAGE_WRITE; 10521 case 2: 10522 return is_user ? 0 : PAGE_READ; 10523 case 3: 10524 return PAGE_READ; 10525 default: 10526 g_assert_not_reached(); 10527 } 10528 } 10529 10530 static inline int 10531 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10532 { 10533 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10534 } 10535 10536 /* Translate S2 section/page access permissions to protection flags 10537 * 10538 * @env: CPUARMState 10539 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10540 * @xn: XN (execute-never) bits 10541 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10542 */ 10543 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10544 { 10545 int prot = 0; 10546 10547 if (s2ap & 1) { 10548 prot |= PAGE_READ; 10549 } 10550 if (s2ap & 2) { 10551 prot |= PAGE_WRITE; 10552 } 10553 10554 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10555 switch (xn) { 10556 case 0: 10557 prot |= PAGE_EXEC; 10558 break; 10559 case 1: 10560 if (s1_is_el0) { 10561 prot |= PAGE_EXEC; 10562 } 10563 break; 10564 case 2: 10565 break; 10566 case 3: 10567 if (!s1_is_el0) { 10568 prot |= PAGE_EXEC; 10569 } 10570 break; 10571 default: 10572 g_assert_not_reached(); 10573 } 10574 } else { 10575 if (!extract32(xn, 1, 1)) { 10576 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10577 prot |= PAGE_EXEC; 10578 } 10579 } 10580 } 10581 return prot; 10582 } 10583 10584 /* Translate section/page access permissions to protection flags 10585 * 10586 * @env: CPUARMState 10587 * @mmu_idx: MMU index indicating required translation regime 10588 * @is_aa64: TRUE if AArch64 10589 * @ap: The 2-bit simple AP (AP[2:1]) 10590 * @ns: NS (non-secure) bit 10591 * @xn: XN (execute-never) bit 10592 * @pxn: PXN (privileged execute-never) bit 10593 */ 10594 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10595 int ap, int ns, int xn, int pxn) 10596 { 10597 bool is_user = regime_is_user(env, mmu_idx); 10598 int prot_rw, user_rw; 10599 bool have_wxn; 10600 int wxn = 0; 10601 10602 assert(mmu_idx != ARMMMUIdx_Stage2); 10603 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10604 10605 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10606 if (is_user) { 10607 prot_rw = user_rw; 10608 } else { 10609 if (user_rw && regime_is_pan(env, mmu_idx)) { 10610 /* PAN forbids data accesses but doesn't affect insn fetch */ 10611 prot_rw = 0; 10612 } else { 10613 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10614 } 10615 } 10616 10617 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10618 return prot_rw; 10619 } 10620 10621 /* TODO have_wxn should be replaced with 10622 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10623 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10624 * compatible processors have EL2, which is required for [U]WXN. 10625 */ 10626 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10627 10628 if (have_wxn) { 10629 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10630 } 10631 10632 if (is_aa64) { 10633 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10634 xn = pxn || (user_rw & PAGE_WRITE); 10635 } 10636 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10637 switch (regime_el(env, mmu_idx)) { 10638 case 1: 10639 case 3: 10640 if (is_user) { 10641 xn = xn || !(user_rw & PAGE_READ); 10642 } else { 10643 int uwxn = 0; 10644 if (have_wxn) { 10645 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10646 } 10647 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10648 (uwxn && (user_rw & PAGE_WRITE)); 10649 } 10650 break; 10651 case 2: 10652 break; 10653 } 10654 } else { 10655 xn = wxn = 0; 10656 } 10657 10658 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10659 return prot_rw; 10660 } 10661 return prot_rw | PAGE_EXEC; 10662 } 10663 10664 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10665 uint32_t *table, uint32_t address) 10666 { 10667 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10668 TCR *tcr = regime_tcr(env, mmu_idx); 10669 10670 if (address & tcr->mask) { 10671 if (tcr->raw_tcr & TTBCR_PD1) { 10672 /* Translation table walk disabled for TTBR1 */ 10673 return false; 10674 } 10675 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10676 } else { 10677 if (tcr->raw_tcr & TTBCR_PD0) { 10678 /* Translation table walk disabled for TTBR0 */ 10679 return false; 10680 } 10681 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10682 } 10683 *table |= (address >> 18) & 0x3ffc; 10684 return true; 10685 } 10686 10687 /* Translate a S1 pagetable walk through S2 if needed. */ 10688 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10689 hwaddr addr, bool *is_secure, 10690 ARMMMUFaultInfo *fi) 10691 { 10692 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10693 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10694 target_ulong s2size; 10695 hwaddr s2pa; 10696 int s2prot; 10697 int ret; 10698 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10699 : ARMMMUIdx_Stage2; 10700 ARMCacheAttrs cacheattrs = {}; 10701 MemTxAttrs txattrs = {}; 10702 10703 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10704 &s2pa, &txattrs, &s2prot, &s2size, fi, 10705 &cacheattrs); 10706 if (ret) { 10707 assert(fi->type != ARMFault_None); 10708 fi->s2addr = addr; 10709 fi->stage2 = true; 10710 fi->s1ptw = true; 10711 fi->s1ns = !*is_secure; 10712 return ~0; 10713 } 10714 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10715 (cacheattrs.attrs & 0xf0) == 0) { 10716 /* 10717 * PTW set and S1 walk touched S2 Device memory: 10718 * generate Permission fault. 10719 */ 10720 fi->type = ARMFault_Permission; 10721 fi->s2addr = addr; 10722 fi->stage2 = true; 10723 fi->s1ptw = true; 10724 fi->s1ns = !*is_secure; 10725 return ~0; 10726 } 10727 10728 if (arm_is_secure_below_el3(env)) { 10729 /* Check if page table walk is to secure or non-secure PA space. */ 10730 if (*is_secure) { 10731 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10732 } else { 10733 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10734 } 10735 } else { 10736 assert(!*is_secure); 10737 } 10738 10739 addr = s2pa; 10740 } 10741 return addr; 10742 } 10743 10744 /* All loads done in the course of a page table walk go through here. */ 10745 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10746 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10747 { 10748 ARMCPU *cpu = ARM_CPU(cs); 10749 CPUARMState *env = &cpu->env; 10750 MemTxAttrs attrs = {}; 10751 MemTxResult result = MEMTX_OK; 10752 AddressSpace *as; 10753 uint32_t data; 10754 10755 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10756 attrs.secure = is_secure; 10757 as = arm_addressspace(cs, attrs); 10758 if (fi->s1ptw) { 10759 return 0; 10760 } 10761 if (regime_translation_big_endian(env, mmu_idx)) { 10762 data = address_space_ldl_be(as, addr, attrs, &result); 10763 } else { 10764 data = address_space_ldl_le(as, addr, attrs, &result); 10765 } 10766 if (result == MEMTX_OK) { 10767 return data; 10768 } 10769 fi->type = ARMFault_SyncExternalOnWalk; 10770 fi->ea = arm_extabort_type(result); 10771 return 0; 10772 } 10773 10774 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10775 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10776 { 10777 ARMCPU *cpu = ARM_CPU(cs); 10778 CPUARMState *env = &cpu->env; 10779 MemTxAttrs attrs = {}; 10780 MemTxResult result = MEMTX_OK; 10781 AddressSpace *as; 10782 uint64_t data; 10783 10784 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10785 attrs.secure = is_secure; 10786 as = arm_addressspace(cs, attrs); 10787 if (fi->s1ptw) { 10788 return 0; 10789 } 10790 if (regime_translation_big_endian(env, mmu_idx)) { 10791 data = address_space_ldq_be(as, addr, attrs, &result); 10792 } else { 10793 data = address_space_ldq_le(as, addr, attrs, &result); 10794 } 10795 if (result == MEMTX_OK) { 10796 return data; 10797 } 10798 fi->type = ARMFault_SyncExternalOnWalk; 10799 fi->ea = arm_extabort_type(result); 10800 return 0; 10801 } 10802 10803 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10804 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10805 hwaddr *phys_ptr, int *prot, 10806 target_ulong *page_size, 10807 ARMMMUFaultInfo *fi) 10808 { 10809 CPUState *cs = env_cpu(env); 10810 int level = 1; 10811 uint32_t table; 10812 uint32_t desc; 10813 int type; 10814 int ap; 10815 int domain = 0; 10816 int domain_prot; 10817 hwaddr phys_addr; 10818 uint32_t dacr; 10819 10820 /* Pagetable walk. */ 10821 /* Lookup l1 descriptor. */ 10822 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10823 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10824 fi->type = ARMFault_Translation; 10825 goto do_fault; 10826 } 10827 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10828 mmu_idx, fi); 10829 if (fi->type != ARMFault_None) { 10830 goto do_fault; 10831 } 10832 type = (desc & 3); 10833 domain = (desc >> 5) & 0x0f; 10834 if (regime_el(env, mmu_idx) == 1) { 10835 dacr = env->cp15.dacr_ns; 10836 } else { 10837 dacr = env->cp15.dacr_s; 10838 } 10839 domain_prot = (dacr >> (domain * 2)) & 3; 10840 if (type == 0) { 10841 /* Section translation fault. */ 10842 fi->type = ARMFault_Translation; 10843 goto do_fault; 10844 } 10845 if (type != 2) { 10846 level = 2; 10847 } 10848 if (domain_prot == 0 || domain_prot == 2) { 10849 fi->type = ARMFault_Domain; 10850 goto do_fault; 10851 } 10852 if (type == 2) { 10853 /* 1Mb section. */ 10854 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10855 ap = (desc >> 10) & 3; 10856 *page_size = 1024 * 1024; 10857 } else { 10858 /* Lookup l2 entry. */ 10859 if (type == 1) { 10860 /* Coarse pagetable. */ 10861 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10862 } else { 10863 /* Fine pagetable. */ 10864 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10865 } 10866 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10867 mmu_idx, fi); 10868 if (fi->type != ARMFault_None) { 10869 goto do_fault; 10870 } 10871 switch (desc & 3) { 10872 case 0: /* Page translation fault. */ 10873 fi->type = ARMFault_Translation; 10874 goto do_fault; 10875 case 1: /* 64k page. */ 10876 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10877 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10878 *page_size = 0x10000; 10879 break; 10880 case 2: /* 4k page. */ 10881 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10882 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10883 *page_size = 0x1000; 10884 break; 10885 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10886 if (type == 1) { 10887 /* ARMv6/XScale extended small page format */ 10888 if (arm_feature(env, ARM_FEATURE_XSCALE) 10889 || arm_feature(env, ARM_FEATURE_V6)) { 10890 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10891 *page_size = 0x1000; 10892 } else { 10893 /* UNPREDICTABLE in ARMv5; we choose to take a 10894 * page translation fault. 10895 */ 10896 fi->type = ARMFault_Translation; 10897 goto do_fault; 10898 } 10899 } else { 10900 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10901 *page_size = 0x400; 10902 } 10903 ap = (desc >> 4) & 3; 10904 break; 10905 default: 10906 /* Never happens, but compiler isn't smart enough to tell. */ 10907 abort(); 10908 } 10909 } 10910 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10911 *prot |= *prot ? PAGE_EXEC : 0; 10912 if (!(*prot & (1 << access_type))) { 10913 /* Access permission fault. */ 10914 fi->type = ARMFault_Permission; 10915 goto do_fault; 10916 } 10917 *phys_ptr = phys_addr; 10918 return false; 10919 do_fault: 10920 fi->domain = domain; 10921 fi->level = level; 10922 return true; 10923 } 10924 10925 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10926 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10927 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10928 target_ulong *page_size, ARMMMUFaultInfo *fi) 10929 { 10930 CPUState *cs = env_cpu(env); 10931 ARMCPU *cpu = env_archcpu(env); 10932 int level = 1; 10933 uint32_t table; 10934 uint32_t desc; 10935 uint32_t xn; 10936 uint32_t pxn = 0; 10937 int type; 10938 int ap; 10939 int domain = 0; 10940 int domain_prot; 10941 hwaddr phys_addr; 10942 uint32_t dacr; 10943 bool ns; 10944 10945 /* Pagetable walk. */ 10946 /* Lookup l1 descriptor. */ 10947 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10948 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10949 fi->type = ARMFault_Translation; 10950 goto do_fault; 10951 } 10952 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10953 mmu_idx, fi); 10954 if (fi->type != ARMFault_None) { 10955 goto do_fault; 10956 } 10957 type = (desc & 3); 10958 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10959 /* Section translation fault, or attempt to use the encoding 10960 * which is Reserved on implementations without PXN. 10961 */ 10962 fi->type = ARMFault_Translation; 10963 goto do_fault; 10964 } 10965 if ((type == 1) || !(desc & (1 << 18))) { 10966 /* Page or Section. */ 10967 domain = (desc >> 5) & 0x0f; 10968 } 10969 if (regime_el(env, mmu_idx) == 1) { 10970 dacr = env->cp15.dacr_ns; 10971 } else { 10972 dacr = env->cp15.dacr_s; 10973 } 10974 if (type == 1) { 10975 level = 2; 10976 } 10977 domain_prot = (dacr >> (domain * 2)) & 3; 10978 if (domain_prot == 0 || domain_prot == 2) { 10979 /* Section or Page domain fault */ 10980 fi->type = ARMFault_Domain; 10981 goto do_fault; 10982 } 10983 if (type != 1) { 10984 if (desc & (1 << 18)) { 10985 /* Supersection. */ 10986 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10987 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10988 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10989 *page_size = 0x1000000; 10990 } else { 10991 /* Section. */ 10992 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10993 *page_size = 0x100000; 10994 } 10995 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10996 xn = desc & (1 << 4); 10997 pxn = desc & 1; 10998 ns = extract32(desc, 19, 1); 10999 } else { 11000 if (cpu_isar_feature(aa32_pxn, cpu)) { 11001 pxn = (desc >> 2) & 1; 11002 } 11003 ns = extract32(desc, 3, 1); 11004 /* Lookup l2 entry. */ 11005 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11006 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11007 mmu_idx, fi); 11008 if (fi->type != ARMFault_None) { 11009 goto do_fault; 11010 } 11011 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11012 switch (desc & 3) { 11013 case 0: /* Page translation fault. */ 11014 fi->type = ARMFault_Translation; 11015 goto do_fault; 11016 case 1: /* 64k page. */ 11017 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11018 xn = desc & (1 << 15); 11019 *page_size = 0x10000; 11020 break; 11021 case 2: case 3: /* 4k page. */ 11022 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11023 xn = desc & 1; 11024 *page_size = 0x1000; 11025 break; 11026 default: 11027 /* Never happens, but compiler isn't smart enough to tell. */ 11028 abort(); 11029 } 11030 } 11031 if (domain_prot == 3) { 11032 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11033 } else { 11034 if (pxn && !regime_is_user(env, mmu_idx)) { 11035 xn = 1; 11036 } 11037 if (xn && access_type == MMU_INST_FETCH) { 11038 fi->type = ARMFault_Permission; 11039 goto do_fault; 11040 } 11041 11042 if (arm_feature(env, ARM_FEATURE_V6K) && 11043 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11044 /* The simplified model uses AP[0] as an access control bit. */ 11045 if ((ap & 1) == 0) { 11046 /* Access flag fault. */ 11047 fi->type = ARMFault_AccessFlag; 11048 goto do_fault; 11049 } 11050 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11051 } else { 11052 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11053 } 11054 if (*prot && !xn) { 11055 *prot |= PAGE_EXEC; 11056 } 11057 if (!(*prot & (1 << access_type))) { 11058 /* Access permission fault. */ 11059 fi->type = ARMFault_Permission; 11060 goto do_fault; 11061 } 11062 } 11063 if (ns) { 11064 /* The NS bit will (as required by the architecture) have no effect if 11065 * the CPU doesn't support TZ or this is a non-secure translation 11066 * regime, because the attribute will already be non-secure. 11067 */ 11068 attrs->secure = false; 11069 } 11070 *phys_ptr = phys_addr; 11071 return false; 11072 do_fault: 11073 fi->domain = domain; 11074 fi->level = level; 11075 return true; 11076 } 11077 11078 /* 11079 * check_s2_mmu_setup 11080 * @cpu: ARMCPU 11081 * @is_aa64: True if the translation regime is in AArch64 state 11082 * @startlevel: Suggested starting level 11083 * @inputsize: Bitsize of IPAs 11084 * @stride: Page-table stride (See the ARM ARM) 11085 * 11086 * Returns true if the suggested S2 translation parameters are OK and 11087 * false otherwise. 11088 */ 11089 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11090 int inputsize, int stride, int outputsize) 11091 { 11092 const int grainsize = stride + 3; 11093 int startsizecheck; 11094 11095 /* 11096 * Negative levels are usually not allowed... 11097 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 11098 * begins with level -1. Note that previous feature tests will have 11099 * eliminated this combination if it is not enabled. 11100 */ 11101 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 11102 return false; 11103 } 11104 11105 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11106 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11107 return false; 11108 } 11109 11110 if (is_aa64) { 11111 switch (stride) { 11112 case 13: /* 64KB Pages. */ 11113 if (level == 0 || (level == 1 && outputsize <= 42)) { 11114 return false; 11115 } 11116 break; 11117 case 11: /* 16KB Pages. */ 11118 if (level == 0 || (level == 1 && outputsize <= 40)) { 11119 return false; 11120 } 11121 break; 11122 case 9: /* 4KB Pages. */ 11123 if (level == 0 && outputsize <= 42) { 11124 return false; 11125 } 11126 break; 11127 default: 11128 g_assert_not_reached(); 11129 } 11130 11131 /* Inputsize checks. */ 11132 if (inputsize > outputsize && 11133 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11134 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11135 return false; 11136 } 11137 } else { 11138 /* AArch32 only supports 4KB pages. Assert on that. */ 11139 assert(stride == 9); 11140 11141 if (level == 0) { 11142 return false; 11143 } 11144 } 11145 return true; 11146 } 11147 11148 /* Translate from the 4-bit stage 2 representation of 11149 * memory attributes (without cache-allocation hints) to 11150 * the 8-bit representation of the stage 1 MAIR registers 11151 * (which includes allocation hints). 11152 * 11153 * ref: shared/translation/attrs/S2AttrDecode() 11154 * .../S2ConvertAttrsHints() 11155 */ 11156 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11157 { 11158 uint8_t hiattr = extract32(s2attrs, 2, 2); 11159 uint8_t loattr = extract32(s2attrs, 0, 2); 11160 uint8_t hihint = 0, lohint = 0; 11161 11162 if (hiattr != 0) { /* normal memory */ 11163 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11164 hiattr = loattr = 1; /* non-cacheable */ 11165 } else { 11166 if (hiattr != 1) { /* Write-through or write-back */ 11167 hihint = 3; /* RW allocate */ 11168 } 11169 if (loattr != 1) { /* Write-through or write-back */ 11170 lohint = 3; /* RW allocate */ 11171 } 11172 } 11173 } 11174 11175 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11176 } 11177 #endif /* !CONFIG_USER_ONLY */ 11178 11179 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11180 static const uint8_t pamax_map[] = { 11181 [0] = 32, 11182 [1] = 36, 11183 [2] = 40, 11184 [3] = 42, 11185 [4] = 44, 11186 [5] = 48, 11187 [6] = 52, 11188 }; 11189 11190 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11191 unsigned int arm_pamax(ARMCPU *cpu) 11192 { 11193 unsigned int parange = 11194 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11195 11196 /* 11197 * id_aa64mmfr0 is a read-only register so values outside of the 11198 * supported mappings can be considered an implementation error. 11199 */ 11200 assert(parange < ARRAY_SIZE(pamax_map)); 11201 return pamax_map[parange]; 11202 } 11203 11204 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11205 { 11206 if (regime_has_2_ranges(mmu_idx)) { 11207 return extract64(tcr, 37, 2); 11208 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11209 return 0; /* VTCR_EL2 */ 11210 } else { 11211 /* Replicate the single TBI bit so we always have 2 bits. */ 11212 return extract32(tcr, 20, 1) * 3; 11213 } 11214 } 11215 11216 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11217 { 11218 if (regime_has_2_ranges(mmu_idx)) { 11219 return extract64(tcr, 51, 2); 11220 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11221 return 0; /* VTCR_EL2 */ 11222 } else { 11223 /* Replicate the single TBID bit so we always have 2 bits. */ 11224 return extract32(tcr, 29, 1) * 3; 11225 } 11226 } 11227 11228 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11229 { 11230 if (regime_has_2_ranges(mmu_idx)) { 11231 return extract64(tcr, 57, 2); 11232 } else { 11233 /* Replicate the single TCMA bit so we always have 2 bits. */ 11234 return extract32(tcr, 30, 1) * 3; 11235 } 11236 } 11237 11238 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11239 ARMMMUIdx mmu_idx, bool data) 11240 { 11241 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11242 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11243 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11244 ARMCPU *cpu = env_archcpu(env); 11245 11246 if (!regime_has_2_ranges(mmu_idx)) { 11247 select = 0; 11248 tsz = extract32(tcr, 0, 6); 11249 using64k = extract32(tcr, 14, 1); 11250 using16k = extract32(tcr, 15, 1); 11251 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11252 /* VTCR_EL2 */ 11253 hpd = false; 11254 } else { 11255 hpd = extract32(tcr, 24, 1); 11256 } 11257 epd = false; 11258 sh = extract32(tcr, 12, 2); 11259 ps = extract32(tcr, 16, 3); 11260 ds = extract64(tcr, 32, 1); 11261 } else { 11262 /* 11263 * Bit 55 is always between the two regions, and is canonical for 11264 * determining if address tagging is enabled. 11265 */ 11266 select = extract64(va, 55, 1); 11267 if (!select) { 11268 tsz = extract32(tcr, 0, 6); 11269 epd = extract32(tcr, 7, 1); 11270 sh = extract32(tcr, 12, 2); 11271 using64k = extract32(tcr, 14, 1); 11272 using16k = extract32(tcr, 15, 1); 11273 hpd = extract64(tcr, 41, 1); 11274 } else { 11275 int tg = extract32(tcr, 30, 2); 11276 using16k = tg == 1; 11277 using64k = tg == 3; 11278 tsz = extract32(tcr, 16, 6); 11279 epd = extract32(tcr, 23, 1); 11280 sh = extract32(tcr, 28, 2); 11281 hpd = extract64(tcr, 42, 1); 11282 } 11283 ps = extract64(tcr, 32, 3); 11284 ds = extract64(tcr, 59, 1); 11285 } 11286 11287 if (cpu_isar_feature(aa64_st, cpu)) { 11288 max_tsz = 48 - using64k; 11289 } else { 11290 max_tsz = 39; 11291 } 11292 11293 /* 11294 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11295 * adjust the effective value of DS, as documented. 11296 */ 11297 min_tsz = 16; 11298 if (using64k) { 11299 if (cpu_isar_feature(aa64_lva, cpu)) { 11300 min_tsz = 12; 11301 } 11302 ds = false; 11303 } else if (ds) { 11304 switch (mmu_idx) { 11305 case ARMMMUIdx_Stage2: 11306 case ARMMMUIdx_Stage2_S: 11307 if (using16k) { 11308 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11309 } else { 11310 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11311 } 11312 break; 11313 default: 11314 if (using16k) { 11315 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11316 } else { 11317 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11318 } 11319 break; 11320 } 11321 if (ds) { 11322 min_tsz = 12; 11323 } 11324 } 11325 11326 if (tsz > max_tsz) { 11327 tsz = max_tsz; 11328 tsz_oob = true; 11329 } else if (tsz < min_tsz) { 11330 tsz = min_tsz; 11331 tsz_oob = true; 11332 } else { 11333 tsz_oob = false; 11334 } 11335 11336 /* Present TBI as a composite with TBID. */ 11337 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11338 if (!data) { 11339 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11340 } 11341 tbi = (tbi >> select) & 1; 11342 11343 return (ARMVAParameters) { 11344 .tsz = tsz, 11345 .ps = ps, 11346 .sh = sh, 11347 .select = select, 11348 .tbi = tbi, 11349 .epd = epd, 11350 .hpd = hpd, 11351 .using16k = using16k, 11352 .using64k = using64k, 11353 .tsz_oob = tsz_oob, 11354 .ds = ds, 11355 }; 11356 } 11357 11358 #ifndef CONFIG_USER_ONLY 11359 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11360 ARMMMUIdx mmu_idx) 11361 { 11362 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11363 uint32_t el = regime_el(env, mmu_idx); 11364 int select, tsz; 11365 bool epd, hpd; 11366 11367 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11368 11369 if (mmu_idx == ARMMMUIdx_Stage2) { 11370 /* VTCR */ 11371 bool sext = extract32(tcr, 4, 1); 11372 bool sign = extract32(tcr, 3, 1); 11373 11374 /* 11375 * If the sign-extend bit is not the same as t0sz[3], the result 11376 * is unpredictable. Flag this as a guest error. 11377 */ 11378 if (sign != sext) { 11379 qemu_log_mask(LOG_GUEST_ERROR, 11380 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11381 } 11382 tsz = sextract32(tcr, 0, 4) + 8; 11383 select = 0; 11384 hpd = false; 11385 epd = false; 11386 } else if (el == 2) { 11387 /* HTCR */ 11388 tsz = extract32(tcr, 0, 3); 11389 select = 0; 11390 hpd = extract64(tcr, 24, 1); 11391 epd = false; 11392 } else { 11393 int t0sz = extract32(tcr, 0, 3); 11394 int t1sz = extract32(tcr, 16, 3); 11395 11396 if (t1sz == 0) { 11397 select = va > (0xffffffffu >> t0sz); 11398 } else { 11399 /* Note that we will detect errors later. */ 11400 select = va >= ~(0xffffffffu >> t1sz); 11401 } 11402 if (!select) { 11403 tsz = t0sz; 11404 epd = extract32(tcr, 7, 1); 11405 hpd = extract64(tcr, 41, 1); 11406 } else { 11407 tsz = t1sz; 11408 epd = extract32(tcr, 23, 1); 11409 hpd = extract64(tcr, 42, 1); 11410 } 11411 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11412 hpd &= extract32(tcr, 6, 1); 11413 } 11414 11415 return (ARMVAParameters) { 11416 .tsz = tsz, 11417 .select = select, 11418 .epd = epd, 11419 .hpd = hpd, 11420 }; 11421 } 11422 11423 /** 11424 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11425 * 11426 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11427 * prot and page_size may not be filled in, and the populated fsr value provides 11428 * information on why the translation aborted, in the format of a long-format 11429 * DFSR/IFSR fault register, with the following caveats: 11430 * * the WnR bit is never set (the caller must do this). 11431 * 11432 * @env: CPUARMState 11433 * @address: virtual address to get physical address for 11434 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11435 * @mmu_idx: MMU index indicating required translation regime 11436 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11437 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11438 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11439 * @phys_ptr: set to the physical address corresponding to the virtual address 11440 * @attrs: set to the memory transaction attributes to use 11441 * @prot: set to the permissions for the page containing phys_ptr 11442 * @page_size_ptr: set to the size of the page containing phys_ptr 11443 * @fi: set to fault info if the translation fails 11444 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11445 */ 11446 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11447 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11448 bool s1_is_el0, 11449 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11450 target_ulong *page_size_ptr, 11451 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11452 { 11453 ARMCPU *cpu = env_archcpu(env); 11454 CPUState *cs = CPU(cpu); 11455 /* Read an LPAE long-descriptor translation table. */ 11456 ARMFaultType fault_type = ARMFault_Translation; 11457 uint32_t level; 11458 ARMVAParameters param; 11459 uint64_t ttbr; 11460 hwaddr descaddr, indexmask, indexmask_grainsize; 11461 uint32_t tableattrs; 11462 target_ulong page_size; 11463 uint32_t attrs; 11464 int32_t stride; 11465 int addrsize, inputsize, outputsize; 11466 TCR *tcr = regime_tcr(env, mmu_idx); 11467 int ap, ns, xn, pxn; 11468 uint32_t el = regime_el(env, mmu_idx); 11469 uint64_t descaddrmask; 11470 bool aarch64 = arm_el_is_aa64(env, el); 11471 bool guarded = false; 11472 11473 /* TODO: This code does not support shareability levels. */ 11474 if (aarch64) { 11475 int ps; 11476 11477 param = aa64_va_parameters(env, address, mmu_idx, 11478 access_type != MMU_INST_FETCH); 11479 level = 0; 11480 11481 /* 11482 * If TxSZ is programmed to a value larger than the maximum, 11483 * or smaller than the effective minimum, it is IMPLEMENTATION 11484 * DEFINED whether we behave as if the field were programmed 11485 * within bounds, or if a level 0 Translation fault is generated. 11486 * 11487 * With FEAT_LVA, fault on less than minimum becomes required, 11488 * so our choice is to always raise the fault. 11489 */ 11490 if (param.tsz_oob) { 11491 fault_type = ARMFault_Translation; 11492 goto do_fault; 11493 } 11494 11495 addrsize = 64 - 8 * param.tbi; 11496 inputsize = 64 - param.tsz; 11497 11498 /* 11499 * Bound PS by PARANGE to find the effective output address size. 11500 * ID_AA64MMFR0 is a read-only register so values outside of the 11501 * supported mappings can be considered an implementation error. 11502 */ 11503 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11504 ps = MIN(ps, param.ps); 11505 assert(ps < ARRAY_SIZE(pamax_map)); 11506 outputsize = pamax_map[ps]; 11507 } else { 11508 param = aa32_va_parameters(env, address, mmu_idx); 11509 level = 1; 11510 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11511 inputsize = addrsize - param.tsz; 11512 outputsize = 40; 11513 } 11514 11515 /* 11516 * We determined the region when collecting the parameters, but we 11517 * have not yet validated that the address is valid for the region. 11518 * Extract the top bits and verify that they all match select. 11519 * 11520 * For aa32, if inputsize == addrsize, then we have selected the 11521 * region by exclusion in aa32_va_parameters and there is no more 11522 * validation to do here. 11523 */ 11524 if (inputsize < addrsize) { 11525 target_ulong top_bits = sextract64(address, inputsize, 11526 addrsize - inputsize); 11527 if (-top_bits != param.select) { 11528 /* The gap between the two regions is a Translation fault */ 11529 fault_type = ARMFault_Translation; 11530 goto do_fault; 11531 } 11532 } 11533 11534 if (param.using64k) { 11535 stride = 13; 11536 } else if (param.using16k) { 11537 stride = 11; 11538 } else { 11539 stride = 9; 11540 } 11541 11542 /* Note that QEMU ignores shareability and cacheability attributes, 11543 * so we don't need to do anything with the SH, ORGN, IRGN fields 11544 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11545 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11546 * implement any ASID-like capability so we can ignore it (instead 11547 * we will always flush the TLB any time the ASID is changed). 11548 */ 11549 ttbr = regime_ttbr(env, mmu_idx, param.select); 11550 11551 /* Here we should have set up all the parameters for the translation: 11552 * inputsize, ttbr, epd, stride, tbi 11553 */ 11554 11555 if (param.epd) { 11556 /* Translation table walk disabled => Translation fault on TLB miss 11557 * Note: This is always 0 on 64-bit EL2 and EL3. 11558 */ 11559 goto do_fault; 11560 } 11561 11562 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11563 /* The starting level depends on the virtual address size (which can 11564 * be up to 48 bits) and the translation granule size. It indicates 11565 * the number of strides (stride bits at a time) needed to 11566 * consume the bits of the input address. In the pseudocode this is: 11567 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11568 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11569 * our 'stride + 3' and 'stride' is our 'stride'. 11570 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11571 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11572 * = 4 - (inputsize - 4) / stride; 11573 */ 11574 level = 4 - (inputsize - 4) / stride; 11575 } else { 11576 /* For stage 2 translations the starting level is specified by the 11577 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11578 */ 11579 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11580 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11581 uint32_t startlevel; 11582 bool ok; 11583 11584 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11585 if (param.ds && stride == 9 && sl2) { 11586 if (sl0 != 0) { 11587 level = 0; 11588 fault_type = ARMFault_Translation; 11589 goto do_fault; 11590 } 11591 startlevel = -1; 11592 } else if (!aarch64 || stride == 9) { 11593 /* AArch32 or 4KB pages */ 11594 startlevel = 2 - sl0; 11595 11596 if (cpu_isar_feature(aa64_st, cpu)) { 11597 startlevel &= 3; 11598 } 11599 } else { 11600 /* 16KB or 64KB pages */ 11601 startlevel = 3 - sl0; 11602 } 11603 11604 /* Check that the starting level is valid. */ 11605 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11606 inputsize, stride, outputsize); 11607 if (!ok) { 11608 fault_type = ARMFault_Translation; 11609 goto do_fault; 11610 } 11611 level = startlevel; 11612 } 11613 11614 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11615 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11616 11617 /* Now we can extract the actual base address from the TTBR */ 11618 descaddr = extract64(ttbr, 0, 48); 11619 11620 /* 11621 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11622 * 11623 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11624 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11625 * but we've just cleared the bits above 47, so simplify the test. 11626 */ 11627 if (outputsize > 48) { 11628 descaddr |= extract64(ttbr, 2, 4) << 48; 11629 } else if (descaddr >> outputsize) { 11630 level = 0; 11631 fault_type = ARMFault_AddressSize; 11632 goto do_fault; 11633 } 11634 11635 /* 11636 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11637 * and also to mask out CnP (bit 0) which could validly be non-zero. 11638 */ 11639 descaddr &= ~indexmask; 11640 11641 /* 11642 * For AArch32, the address field in the descriptor goes up to bit 39 11643 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11644 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11645 * bits as part of the address, which will be checked via outputsize. 11646 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11647 * the highest bits of a 52-bit output are placed elsewhere. 11648 */ 11649 if (param.ds) { 11650 descaddrmask = MAKE_64BIT_MASK(0, 50); 11651 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11652 descaddrmask = MAKE_64BIT_MASK(0, 48); 11653 } else { 11654 descaddrmask = MAKE_64BIT_MASK(0, 40); 11655 } 11656 descaddrmask &= ~indexmask_grainsize; 11657 11658 /* Secure accesses start with the page table in secure memory and 11659 * can be downgraded to non-secure at any step. Non-secure accesses 11660 * remain non-secure. We implement this by just ORing in the NSTable/NS 11661 * bits at each step. 11662 */ 11663 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11664 for (;;) { 11665 uint64_t descriptor; 11666 bool nstable; 11667 11668 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11669 descaddr &= ~7ULL; 11670 nstable = extract32(tableattrs, 4, 1); 11671 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11672 if (fi->type != ARMFault_None) { 11673 goto do_fault; 11674 } 11675 11676 if (!(descriptor & 1) || 11677 (!(descriptor & 2) && (level == 3))) { 11678 /* Invalid, or the Reserved level 3 encoding */ 11679 goto do_fault; 11680 } 11681 11682 descaddr = descriptor & descaddrmask; 11683 11684 /* 11685 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11686 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11687 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11688 * raise AddressSizeFault. 11689 */ 11690 if (outputsize > 48) { 11691 if (param.ds) { 11692 descaddr |= extract64(descriptor, 8, 2) << 50; 11693 } else { 11694 descaddr |= extract64(descriptor, 12, 4) << 48; 11695 } 11696 } else if (descaddr >> outputsize) { 11697 fault_type = ARMFault_AddressSize; 11698 goto do_fault; 11699 } 11700 11701 if ((descriptor & 2) && (level < 3)) { 11702 /* Table entry. The top five bits are attributes which may 11703 * propagate down through lower levels of the table (and 11704 * which are all arranged so that 0 means "no effect", so 11705 * we can gather them up by ORing in the bits at each level). 11706 */ 11707 tableattrs |= extract64(descriptor, 59, 5); 11708 level++; 11709 indexmask = indexmask_grainsize; 11710 continue; 11711 } 11712 /* 11713 * Block entry at level 1 or 2, or page entry at level 3. 11714 * These are basically the same thing, although the number 11715 * of bits we pull in from the vaddr varies. Note that although 11716 * descaddrmask masks enough of the low bits of the descriptor 11717 * to give a correct page or table address, the address field 11718 * in a block descriptor is smaller; so we need to explicitly 11719 * clear the lower bits here before ORing in the low vaddr bits. 11720 */ 11721 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11722 descaddr &= ~(page_size - 1); 11723 descaddr |= (address & (page_size - 1)); 11724 /* Extract attributes from the descriptor */ 11725 attrs = extract64(descriptor, 2, 10) 11726 | (extract64(descriptor, 52, 12) << 10); 11727 11728 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11729 /* Stage 2 table descriptors do not include any attribute fields */ 11730 break; 11731 } 11732 /* Merge in attributes from table descriptors */ 11733 attrs |= nstable << 3; /* NS */ 11734 guarded = extract64(descriptor, 50, 1); /* GP */ 11735 if (param.hpd) { 11736 /* HPD disables all the table attributes except NSTable. */ 11737 break; 11738 } 11739 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11740 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11741 * means "force PL1 access only", which means forcing AP[1] to 0. 11742 */ 11743 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11744 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11745 break; 11746 } 11747 /* Here descaddr is the final physical address, and attributes 11748 * are all in attrs. 11749 */ 11750 fault_type = ARMFault_AccessFlag; 11751 if ((attrs & (1 << 8)) == 0) { 11752 /* Access flag */ 11753 goto do_fault; 11754 } 11755 11756 ap = extract32(attrs, 4, 2); 11757 11758 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11759 ns = mmu_idx == ARMMMUIdx_Stage2; 11760 xn = extract32(attrs, 11, 2); 11761 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11762 } else { 11763 ns = extract32(attrs, 3, 1); 11764 xn = extract32(attrs, 12, 1); 11765 pxn = extract32(attrs, 11, 1); 11766 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11767 } 11768 11769 fault_type = ARMFault_Permission; 11770 if (!(*prot & (1 << access_type))) { 11771 goto do_fault; 11772 } 11773 11774 if (ns) { 11775 /* The NS bit will (as required by the architecture) have no effect if 11776 * the CPU doesn't support TZ or this is a non-secure translation 11777 * regime, because the attribute will already be non-secure. 11778 */ 11779 txattrs->secure = false; 11780 } 11781 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11782 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11783 arm_tlb_bti_gp(txattrs) = true; 11784 } 11785 11786 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11787 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11788 } else { 11789 /* Index into MAIR registers for cache attributes */ 11790 uint8_t attrindx = extract32(attrs, 0, 3); 11791 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11792 assert(attrindx <= 7); 11793 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11794 } 11795 11796 /* 11797 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11798 * was re-purposed for output address bits. The SH attribute in 11799 * that case comes from TCR_ELx, which we extracted earlier. 11800 */ 11801 if (param.ds) { 11802 cacheattrs->shareability = param.sh; 11803 } else { 11804 cacheattrs->shareability = extract32(attrs, 6, 2); 11805 } 11806 11807 *phys_ptr = descaddr; 11808 *page_size_ptr = page_size; 11809 return false; 11810 11811 do_fault: 11812 fi->type = fault_type; 11813 fi->level = level; 11814 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11815 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11816 mmu_idx == ARMMMUIdx_Stage2_S); 11817 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11818 return true; 11819 } 11820 11821 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11822 ARMMMUIdx mmu_idx, 11823 int32_t address, int *prot) 11824 { 11825 if (!arm_feature(env, ARM_FEATURE_M)) { 11826 *prot = PAGE_READ | PAGE_WRITE; 11827 switch (address) { 11828 case 0xF0000000 ... 0xFFFFFFFF: 11829 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11830 /* hivecs execing is ok */ 11831 *prot |= PAGE_EXEC; 11832 } 11833 break; 11834 case 0x00000000 ... 0x7FFFFFFF: 11835 *prot |= PAGE_EXEC; 11836 break; 11837 } 11838 } else { 11839 /* Default system address map for M profile cores. 11840 * The architecture specifies which regions are execute-never; 11841 * at the MPU level no other checks are defined. 11842 */ 11843 switch (address) { 11844 case 0x00000000 ... 0x1fffffff: /* ROM */ 11845 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11846 case 0x60000000 ... 0x7fffffff: /* RAM */ 11847 case 0x80000000 ... 0x9fffffff: /* RAM */ 11848 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11849 break; 11850 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11851 case 0xa0000000 ... 0xbfffffff: /* Device */ 11852 case 0xc0000000 ... 0xdfffffff: /* Device */ 11853 case 0xe0000000 ... 0xffffffff: /* System */ 11854 *prot = PAGE_READ | PAGE_WRITE; 11855 break; 11856 default: 11857 g_assert_not_reached(); 11858 } 11859 } 11860 } 11861 11862 static bool pmsav7_use_background_region(ARMCPU *cpu, 11863 ARMMMUIdx mmu_idx, bool is_user) 11864 { 11865 /* Return true if we should use the default memory map as a 11866 * "background" region if there are no hits against any MPU regions. 11867 */ 11868 CPUARMState *env = &cpu->env; 11869 11870 if (is_user) { 11871 return false; 11872 } 11873 11874 if (arm_feature(env, ARM_FEATURE_M)) { 11875 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11876 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11877 } else { 11878 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11879 } 11880 } 11881 11882 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11883 { 11884 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11885 return arm_feature(env, ARM_FEATURE_M) && 11886 extract32(address, 20, 12) == 0xe00; 11887 } 11888 11889 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11890 { 11891 /* True if address is in the M profile system region 11892 * 0xe0000000 - 0xffffffff 11893 */ 11894 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11895 } 11896 11897 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11898 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11899 hwaddr *phys_ptr, int *prot, 11900 target_ulong *page_size, 11901 ARMMMUFaultInfo *fi) 11902 { 11903 ARMCPU *cpu = env_archcpu(env); 11904 int n; 11905 bool is_user = regime_is_user(env, mmu_idx); 11906 11907 *phys_ptr = address; 11908 *page_size = TARGET_PAGE_SIZE; 11909 *prot = 0; 11910 11911 if (regime_translation_disabled(env, mmu_idx) || 11912 m_is_ppb_region(env, address)) { 11913 /* MPU disabled or M profile PPB access: use default memory map. 11914 * The other case which uses the default memory map in the 11915 * v7M ARM ARM pseudocode is exception vector reads from the vector 11916 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11917 * which always does a direct read using address_space_ldl(), rather 11918 * than going via this function, so we don't need to check that here. 11919 */ 11920 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11921 } else { /* MPU enabled */ 11922 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11923 /* region search */ 11924 uint32_t base = env->pmsav7.drbar[n]; 11925 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11926 uint32_t rmask; 11927 bool srdis = false; 11928 11929 if (!(env->pmsav7.drsr[n] & 0x1)) { 11930 continue; 11931 } 11932 11933 if (!rsize) { 11934 qemu_log_mask(LOG_GUEST_ERROR, 11935 "DRSR[%d]: Rsize field cannot be 0\n", n); 11936 continue; 11937 } 11938 rsize++; 11939 rmask = (1ull << rsize) - 1; 11940 11941 if (base & rmask) { 11942 qemu_log_mask(LOG_GUEST_ERROR, 11943 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11944 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11945 n, base, rmask); 11946 continue; 11947 } 11948 11949 if (address < base || address > base + rmask) { 11950 /* 11951 * Address not in this region. We must check whether the 11952 * region covers addresses in the same page as our address. 11953 * In that case we must not report a size that covers the 11954 * whole page for a subsequent hit against a different MPU 11955 * region or the background region, because it would result in 11956 * incorrect TLB hits for subsequent accesses to addresses that 11957 * are in this MPU region. 11958 */ 11959 if (ranges_overlap(base, rmask, 11960 address & TARGET_PAGE_MASK, 11961 TARGET_PAGE_SIZE)) { 11962 *page_size = 1; 11963 } 11964 continue; 11965 } 11966 11967 /* Region matched */ 11968 11969 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11970 int i, snd; 11971 uint32_t srdis_mask; 11972 11973 rsize -= 3; /* sub region size (power of 2) */ 11974 snd = ((address - base) >> rsize) & 0x7; 11975 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11976 11977 srdis_mask = srdis ? 0x3 : 0x0; 11978 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11979 /* This will check in groups of 2, 4 and then 8, whether 11980 * the subregion bits are consistent. rsize is incremented 11981 * back up to give the region size, considering consistent 11982 * adjacent subregions as one region. Stop testing if rsize 11983 * is already big enough for an entire QEMU page. 11984 */ 11985 int snd_rounded = snd & ~(i - 1); 11986 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11987 snd_rounded + 8, i); 11988 if (srdis_mask ^ srdis_multi) { 11989 break; 11990 } 11991 srdis_mask = (srdis_mask << i) | srdis_mask; 11992 rsize++; 11993 } 11994 } 11995 if (srdis) { 11996 continue; 11997 } 11998 if (rsize < TARGET_PAGE_BITS) { 11999 *page_size = 1 << rsize; 12000 } 12001 break; 12002 } 12003 12004 if (n == -1) { /* no hits */ 12005 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12006 /* background fault */ 12007 fi->type = ARMFault_Background; 12008 return true; 12009 } 12010 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12011 } else { /* a MPU hit! */ 12012 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12013 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12014 12015 if (m_is_system_region(env, address)) { 12016 /* System space is always execute never */ 12017 xn = 1; 12018 } 12019 12020 if (is_user) { /* User mode AP bit decoding */ 12021 switch (ap) { 12022 case 0: 12023 case 1: 12024 case 5: 12025 break; /* no access */ 12026 case 3: 12027 *prot |= PAGE_WRITE; 12028 /* fall through */ 12029 case 2: 12030 case 6: 12031 *prot |= PAGE_READ | PAGE_EXEC; 12032 break; 12033 case 7: 12034 /* for v7M, same as 6; for R profile a reserved value */ 12035 if (arm_feature(env, ARM_FEATURE_M)) { 12036 *prot |= PAGE_READ | PAGE_EXEC; 12037 break; 12038 } 12039 /* fall through */ 12040 default: 12041 qemu_log_mask(LOG_GUEST_ERROR, 12042 "DRACR[%d]: Bad value for AP bits: 0x%" 12043 PRIx32 "\n", n, ap); 12044 } 12045 } else { /* Priv. mode AP bits decoding */ 12046 switch (ap) { 12047 case 0: 12048 break; /* no access */ 12049 case 1: 12050 case 2: 12051 case 3: 12052 *prot |= PAGE_WRITE; 12053 /* fall through */ 12054 case 5: 12055 case 6: 12056 *prot |= PAGE_READ | PAGE_EXEC; 12057 break; 12058 case 7: 12059 /* for v7M, same as 6; for R profile a reserved value */ 12060 if (arm_feature(env, ARM_FEATURE_M)) { 12061 *prot |= PAGE_READ | PAGE_EXEC; 12062 break; 12063 } 12064 /* fall through */ 12065 default: 12066 qemu_log_mask(LOG_GUEST_ERROR, 12067 "DRACR[%d]: Bad value for AP bits: 0x%" 12068 PRIx32 "\n", n, ap); 12069 } 12070 } 12071 12072 /* execute never */ 12073 if (xn) { 12074 *prot &= ~PAGE_EXEC; 12075 } 12076 } 12077 } 12078 12079 fi->type = ARMFault_Permission; 12080 fi->level = 1; 12081 return !(*prot & (1 << access_type)); 12082 } 12083 12084 static bool v8m_is_sau_exempt(CPUARMState *env, 12085 uint32_t address, MMUAccessType access_type) 12086 { 12087 /* The architecture specifies that certain address ranges are 12088 * exempt from v8M SAU/IDAU checks. 12089 */ 12090 return 12091 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12092 (address >= 0xe0000000 && address <= 0xe0002fff) || 12093 (address >= 0xe000e000 && address <= 0xe000efff) || 12094 (address >= 0xe002e000 && address <= 0xe002efff) || 12095 (address >= 0xe0040000 && address <= 0xe0041fff) || 12096 (address >= 0xe00ff000 && address <= 0xe00fffff); 12097 } 12098 12099 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12100 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12101 V8M_SAttributes *sattrs) 12102 { 12103 /* Look up the security attributes for this address. Compare the 12104 * pseudocode SecurityCheck() function. 12105 * We assume the caller has zero-initialized *sattrs. 12106 */ 12107 ARMCPU *cpu = env_archcpu(env); 12108 int r; 12109 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12110 int idau_region = IREGION_NOTVALID; 12111 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12112 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12113 12114 if (cpu->idau) { 12115 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12116 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12117 12118 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12119 &idau_nsc); 12120 } 12121 12122 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12123 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12124 return; 12125 } 12126 12127 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12128 sattrs->ns = !regime_is_secure(env, mmu_idx); 12129 return; 12130 } 12131 12132 if (idau_region != IREGION_NOTVALID) { 12133 sattrs->irvalid = true; 12134 sattrs->iregion = idau_region; 12135 } 12136 12137 switch (env->sau.ctrl & 3) { 12138 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12139 break; 12140 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12141 sattrs->ns = true; 12142 break; 12143 default: /* SAU.ENABLE == 1 */ 12144 for (r = 0; r < cpu->sau_sregion; r++) { 12145 if (env->sau.rlar[r] & 1) { 12146 uint32_t base = env->sau.rbar[r] & ~0x1f; 12147 uint32_t limit = env->sau.rlar[r] | 0x1f; 12148 12149 if (base <= address && limit >= address) { 12150 if (base > addr_page_base || limit < addr_page_limit) { 12151 sattrs->subpage = true; 12152 } 12153 if (sattrs->srvalid) { 12154 /* If we hit in more than one region then we must report 12155 * as Secure, not NS-Callable, with no valid region 12156 * number info. 12157 */ 12158 sattrs->ns = false; 12159 sattrs->nsc = false; 12160 sattrs->sregion = 0; 12161 sattrs->srvalid = false; 12162 break; 12163 } else { 12164 if (env->sau.rlar[r] & 2) { 12165 sattrs->nsc = true; 12166 } else { 12167 sattrs->ns = true; 12168 } 12169 sattrs->srvalid = true; 12170 sattrs->sregion = r; 12171 } 12172 } else { 12173 /* 12174 * Address not in this region. We must check whether the 12175 * region covers addresses in the same page as our address. 12176 * In that case we must not report a size that covers the 12177 * whole page for a subsequent hit against a different MPU 12178 * region or the background region, because it would result 12179 * in incorrect TLB hits for subsequent accesses to 12180 * addresses that are in this MPU region. 12181 */ 12182 if (limit >= base && 12183 ranges_overlap(base, limit - base + 1, 12184 addr_page_base, 12185 TARGET_PAGE_SIZE)) { 12186 sattrs->subpage = true; 12187 } 12188 } 12189 } 12190 } 12191 break; 12192 } 12193 12194 /* 12195 * The IDAU will override the SAU lookup results if it specifies 12196 * higher security than the SAU does. 12197 */ 12198 if (!idau_ns) { 12199 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12200 sattrs->ns = false; 12201 sattrs->nsc = idau_nsc; 12202 } 12203 } 12204 } 12205 12206 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12207 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12208 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12209 int *prot, bool *is_subpage, 12210 ARMMMUFaultInfo *fi, uint32_t *mregion) 12211 { 12212 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12213 * that a full phys-to-virt translation does). 12214 * mregion is (if not NULL) set to the region number which matched, 12215 * or -1 if no region number is returned (MPU off, address did not 12216 * hit a region, address hit in multiple regions). 12217 * We set is_subpage to true if the region hit doesn't cover the 12218 * entire TARGET_PAGE the address is within. 12219 */ 12220 ARMCPU *cpu = env_archcpu(env); 12221 bool is_user = regime_is_user(env, mmu_idx); 12222 uint32_t secure = regime_is_secure(env, mmu_idx); 12223 int n; 12224 int matchregion = -1; 12225 bool hit = false; 12226 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12227 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12228 12229 *is_subpage = false; 12230 *phys_ptr = address; 12231 *prot = 0; 12232 if (mregion) { 12233 *mregion = -1; 12234 } 12235 12236 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12237 * was an exception vector read from the vector table (which is always 12238 * done using the default system address map), because those accesses 12239 * are done in arm_v7m_load_vector(), which always does a direct 12240 * read using address_space_ldl(), rather than going via this function. 12241 */ 12242 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12243 hit = true; 12244 } else if (m_is_ppb_region(env, address)) { 12245 hit = true; 12246 } else { 12247 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12248 hit = true; 12249 } 12250 12251 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12252 /* region search */ 12253 /* Note that the base address is bits [31:5] from the register 12254 * with bits [4:0] all zeroes, but the limit address is bits 12255 * [31:5] from the register with bits [4:0] all ones. 12256 */ 12257 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12258 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12259 12260 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12261 /* Region disabled */ 12262 continue; 12263 } 12264 12265 if (address < base || address > limit) { 12266 /* 12267 * Address not in this region. We must check whether the 12268 * region covers addresses in the same page as our address. 12269 * In that case we must not report a size that covers the 12270 * whole page for a subsequent hit against a different MPU 12271 * region or the background region, because it would result in 12272 * incorrect TLB hits for subsequent accesses to addresses that 12273 * are in this MPU region. 12274 */ 12275 if (limit >= base && 12276 ranges_overlap(base, limit - base + 1, 12277 addr_page_base, 12278 TARGET_PAGE_SIZE)) { 12279 *is_subpage = true; 12280 } 12281 continue; 12282 } 12283 12284 if (base > addr_page_base || limit < addr_page_limit) { 12285 *is_subpage = true; 12286 } 12287 12288 if (matchregion != -1) { 12289 /* Multiple regions match -- always a failure (unlike 12290 * PMSAv7 where highest-numbered-region wins) 12291 */ 12292 fi->type = ARMFault_Permission; 12293 fi->level = 1; 12294 return true; 12295 } 12296 12297 matchregion = n; 12298 hit = true; 12299 } 12300 } 12301 12302 if (!hit) { 12303 /* background fault */ 12304 fi->type = ARMFault_Background; 12305 return true; 12306 } 12307 12308 if (matchregion == -1) { 12309 /* hit using the background region */ 12310 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12311 } else { 12312 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12313 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12314 bool pxn = false; 12315 12316 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12317 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12318 } 12319 12320 if (m_is_system_region(env, address)) { 12321 /* System space is always execute never */ 12322 xn = 1; 12323 } 12324 12325 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12326 if (*prot && !xn && !(pxn && !is_user)) { 12327 *prot |= PAGE_EXEC; 12328 } 12329 /* We don't need to look the attribute up in the MAIR0/MAIR1 12330 * registers because that only tells us about cacheability. 12331 */ 12332 if (mregion) { 12333 *mregion = matchregion; 12334 } 12335 } 12336 12337 fi->type = ARMFault_Permission; 12338 fi->level = 1; 12339 return !(*prot & (1 << access_type)); 12340 } 12341 12342 12343 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12344 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12345 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12346 int *prot, target_ulong *page_size, 12347 ARMMMUFaultInfo *fi) 12348 { 12349 uint32_t secure = regime_is_secure(env, mmu_idx); 12350 V8M_SAttributes sattrs = {}; 12351 bool ret; 12352 bool mpu_is_subpage; 12353 12354 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12355 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12356 if (access_type == MMU_INST_FETCH) { 12357 /* Instruction fetches always use the MMU bank and the 12358 * transaction attribute determined by the fetch address, 12359 * regardless of CPU state. This is painful for QEMU 12360 * to handle, because it would mean we need to encode 12361 * into the mmu_idx not just the (user, negpri) information 12362 * for the current security state but also that for the 12363 * other security state, which would balloon the number 12364 * of mmu_idx values needed alarmingly. 12365 * Fortunately we can avoid this because it's not actually 12366 * possible to arbitrarily execute code from memory with 12367 * the wrong security attribute: it will always generate 12368 * an exception of some kind or another, apart from the 12369 * special case of an NS CPU executing an SG instruction 12370 * in S&NSC memory. So we always just fail the translation 12371 * here and sort things out in the exception handler 12372 * (including possibly emulating an SG instruction). 12373 */ 12374 if (sattrs.ns != !secure) { 12375 if (sattrs.nsc) { 12376 fi->type = ARMFault_QEMU_NSCExec; 12377 } else { 12378 fi->type = ARMFault_QEMU_SFault; 12379 } 12380 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12381 *phys_ptr = address; 12382 *prot = 0; 12383 return true; 12384 } 12385 } else { 12386 /* For data accesses we always use the MMU bank indicated 12387 * by the current CPU state, but the security attributes 12388 * might downgrade a secure access to nonsecure. 12389 */ 12390 if (sattrs.ns) { 12391 txattrs->secure = false; 12392 } else if (!secure) { 12393 /* NS access to S memory must fault. 12394 * Architecturally we should first check whether the 12395 * MPU information for this address indicates that we 12396 * are doing an unaligned access to Device memory, which 12397 * should generate a UsageFault instead. QEMU does not 12398 * currently check for that kind of unaligned access though. 12399 * If we added it we would need to do so as a special case 12400 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12401 */ 12402 fi->type = ARMFault_QEMU_SFault; 12403 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12404 *phys_ptr = address; 12405 *prot = 0; 12406 return true; 12407 } 12408 } 12409 } 12410 12411 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12412 txattrs, prot, &mpu_is_subpage, fi, NULL); 12413 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12414 return ret; 12415 } 12416 12417 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12418 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12419 hwaddr *phys_ptr, int *prot, 12420 ARMMMUFaultInfo *fi) 12421 { 12422 int n; 12423 uint32_t mask; 12424 uint32_t base; 12425 bool is_user = regime_is_user(env, mmu_idx); 12426 12427 if (regime_translation_disabled(env, mmu_idx)) { 12428 /* MPU disabled. */ 12429 *phys_ptr = address; 12430 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12431 return false; 12432 } 12433 12434 *phys_ptr = address; 12435 for (n = 7; n >= 0; n--) { 12436 base = env->cp15.c6_region[n]; 12437 if ((base & 1) == 0) { 12438 continue; 12439 } 12440 mask = 1 << ((base >> 1) & 0x1f); 12441 /* Keep this shift separate from the above to avoid an 12442 (undefined) << 32. */ 12443 mask = (mask << 1) - 1; 12444 if (((base ^ address) & ~mask) == 0) { 12445 break; 12446 } 12447 } 12448 if (n < 0) { 12449 fi->type = ARMFault_Background; 12450 return true; 12451 } 12452 12453 if (access_type == MMU_INST_FETCH) { 12454 mask = env->cp15.pmsav5_insn_ap; 12455 } else { 12456 mask = env->cp15.pmsav5_data_ap; 12457 } 12458 mask = (mask >> (n * 4)) & 0xf; 12459 switch (mask) { 12460 case 0: 12461 fi->type = ARMFault_Permission; 12462 fi->level = 1; 12463 return true; 12464 case 1: 12465 if (is_user) { 12466 fi->type = ARMFault_Permission; 12467 fi->level = 1; 12468 return true; 12469 } 12470 *prot = PAGE_READ | PAGE_WRITE; 12471 break; 12472 case 2: 12473 *prot = PAGE_READ; 12474 if (!is_user) { 12475 *prot |= PAGE_WRITE; 12476 } 12477 break; 12478 case 3: 12479 *prot = PAGE_READ | PAGE_WRITE; 12480 break; 12481 case 5: 12482 if (is_user) { 12483 fi->type = ARMFault_Permission; 12484 fi->level = 1; 12485 return true; 12486 } 12487 *prot = PAGE_READ; 12488 break; 12489 case 6: 12490 *prot = PAGE_READ; 12491 break; 12492 default: 12493 /* Bad permission. */ 12494 fi->type = ARMFault_Permission; 12495 fi->level = 1; 12496 return true; 12497 } 12498 *prot |= PAGE_EXEC; 12499 return false; 12500 } 12501 12502 /* Combine either inner or outer cacheability attributes for normal 12503 * memory, according to table D4-42 and pseudocode procedure 12504 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12505 * 12506 * NB: only stage 1 includes allocation hints (RW bits), leading to 12507 * some asymmetry. 12508 */ 12509 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12510 { 12511 if (s1 == 4 || s2 == 4) { 12512 /* non-cacheable has precedence */ 12513 return 4; 12514 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12515 /* stage 1 write-through takes precedence */ 12516 return s1; 12517 } else if (extract32(s2, 2, 2) == 2) { 12518 /* stage 2 write-through takes precedence, but the allocation hint 12519 * is still taken from stage 1 12520 */ 12521 return (2 << 2) | extract32(s1, 0, 2); 12522 } else { /* write-back */ 12523 return s1; 12524 } 12525 } 12526 12527 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12528 * and CombineS1S2Desc() 12529 * 12530 * @s1: Attributes from stage 1 walk 12531 * @s2: Attributes from stage 2 walk 12532 */ 12533 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12534 { 12535 uint8_t s1lo, s2lo, s1hi, s2hi; 12536 ARMCacheAttrs ret; 12537 bool tagged = false; 12538 12539 if (s1.attrs == 0xf0) { 12540 tagged = true; 12541 s1.attrs = 0xff; 12542 } 12543 12544 s1lo = extract32(s1.attrs, 0, 4); 12545 s2lo = extract32(s2.attrs, 0, 4); 12546 s1hi = extract32(s1.attrs, 4, 4); 12547 s2hi = extract32(s2.attrs, 4, 4); 12548 12549 /* Combine shareability attributes (table D4-43) */ 12550 if (s1.shareability == 2 || s2.shareability == 2) { 12551 /* if either are outer-shareable, the result is outer-shareable */ 12552 ret.shareability = 2; 12553 } else if (s1.shareability == 3 || s2.shareability == 3) { 12554 /* if either are inner-shareable, the result is inner-shareable */ 12555 ret.shareability = 3; 12556 } else { 12557 /* both non-shareable */ 12558 ret.shareability = 0; 12559 } 12560 12561 /* Combine memory type and cacheability attributes */ 12562 if (s1hi == 0 || s2hi == 0) { 12563 /* Device has precedence over normal */ 12564 if (s1lo == 0 || s2lo == 0) { 12565 /* nGnRnE has precedence over anything */ 12566 ret.attrs = 0; 12567 } else if (s1lo == 4 || s2lo == 4) { 12568 /* non-Reordering has precedence over Reordering */ 12569 ret.attrs = 4; /* nGnRE */ 12570 } else if (s1lo == 8 || s2lo == 8) { 12571 /* non-Gathering has precedence over Gathering */ 12572 ret.attrs = 8; /* nGRE */ 12573 } else { 12574 ret.attrs = 0xc; /* GRE */ 12575 } 12576 12577 /* Any location for which the resultant memory type is any 12578 * type of Device memory is always treated as Outer Shareable. 12579 */ 12580 ret.shareability = 2; 12581 } else { /* Normal memory */ 12582 /* Outer/inner cacheability combine independently */ 12583 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12584 | combine_cacheattr_nibble(s1lo, s2lo); 12585 12586 if (ret.attrs == 0x44) { 12587 /* Any location for which the resultant memory type is Normal 12588 * Inner Non-cacheable, Outer Non-cacheable is always treated 12589 * as Outer Shareable. 12590 */ 12591 ret.shareability = 2; 12592 } 12593 } 12594 12595 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12596 if (tagged && ret.attrs == 0xff) { 12597 ret.attrs = 0xf0; 12598 } 12599 12600 return ret; 12601 } 12602 12603 12604 /* get_phys_addr - get the physical address for this virtual address 12605 * 12606 * Find the physical address corresponding to the given virtual address, 12607 * by doing a translation table walk on MMU based systems or using the 12608 * MPU state on MPU based systems. 12609 * 12610 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12611 * prot and page_size may not be filled in, and the populated fsr value provides 12612 * information on why the translation aborted, in the format of a 12613 * DFSR/IFSR fault register, with the following caveats: 12614 * * we honour the short vs long DFSR format differences. 12615 * * the WnR bit is never set (the caller must do this). 12616 * * for PSMAv5 based systems we don't bother to return a full FSR format 12617 * value. 12618 * 12619 * @env: CPUARMState 12620 * @address: virtual address to get physical address for 12621 * @access_type: 0 for read, 1 for write, 2 for execute 12622 * @mmu_idx: MMU index indicating required translation regime 12623 * @phys_ptr: set to the physical address corresponding to the virtual address 12624 * @attrs: set to the memory transaction attributes to use 12625 * @prot: set to the permissions for the page containing phys_ptr 12626 * @page_size: set to the size of the page containing phys_ptr 12627 * @fi: set to fault info if the translation fails 12628 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12629 */ 12630 bool get_phys_addr(CPUARMState *env, target_ulong address, 12631 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12632 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12633 target_ulong *page_size, 12634 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12635 { 12636 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12637 12638 if (mmu_idx != s1_mmu_idx) { 12639 /* Call ourselves recursively to do the stage 1 and then stage 2 12640 * translations if mmu_idx is a two-stage regime. 12641 */ 12642 if (arm_feature(env, ARM_FEATURE_EL2)) { 12643 hwaddr ipa; 12644 int s2_prot; 12645 int ret; 12646 bool ipa_secure; 12647 ARMCacheAttrs cacheattrs2 = {}; 12648 ARMMMUIdx s2_mmu_idx; 12649 bool is_el0; 12650 12651 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12652 attrs, prot, page_size, fi, cacheattrs); 12653 12654 /* If S1 fails or S2 is disabled, return early. */ 12655 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12656 *phys_ptr = ipa; 12657 return ret; 12658 } 12659 12660 ipa_secure = attrs->secure; 12661 if (arm_is_secure_below_el3(env)) { 12662 if (ipa_secure) { 12663 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 12664 } else { 12665 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 12666 } 12667 } else { 12668 assert(!ipa_secure); 12669 } 12670 12671 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12672 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12673 12674 /* S1 is done. Now do S2 translation. */ 12675 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12676 phys_ptr, attrs, &s2_prot, 12677 page_size, fi, &cacheattrs2); 12678 fi->s2addr = ipa; 12679 /* Combine the S1 and S2 perms. */ 12680 *prot &= s2_prot; 12681 12682 /* If S2 fails, return early. */ 12683 if (ret) { 12684 return ret; 12685 } 12686 12687 /* Combine the S1 and S2 cache attributes. */ 12688 if (arm_hcr_el2_eff(env) & HCR_DC) { 12689 /* 12690 * HCR.DC forces the first stage attributes to 12691 * Normal Non-Shareable, 12692 * Inner Write-Back Read-Allocate Write-Allocate, 12693 * Outer Write-Back Read-Allocate Write-Allocate. 12694 * Do not overwrite Tagged within attrs. 12695 */ 12696 if (cacheattrs->attrs != 0xf0) { 12697 cacheattrs->attrs = 0xff; 12698 } 12699 cacheattrs->shareability = 0; 12700 } 12701 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12702 12703 /* Check if IPA translates to secure or non-secure PA space. */ 12704 if (arm_is_secure_below_el3(env)) { 12705 if (ipa_secure) { 12706 attrs->secure = 12707 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12708 } else { 12709 attrs->secure = 12710 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12711 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); 12712 } 12713 } 12714 return 0; 12715 } else { 12716 /* 12717 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12718 */ 12719 mmu_idx = stage_1_mmu_idx(mmu_idx); 12720 } 12721 } 12722 12723 /* The page table entries may downgrade secure to non-secure, but 12724 * cannot upgrade an non-secure translation regime's attributes 12725 * to secure. 12726 */ 12727 attrs->secure = regime_is_secure(env, mmu_idx); 12728 attrs->user = regime_is_user(env, mmu_idx); 12729 12730 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12731 * In v7 and earlier it affects all stage 1 translations. 12732 */ 12733 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12734 && !arm_feature(env, ARM_FEATURE_V8)) { 12735 if (regime_el(env, mmu_idx) == 3) { 12736 address += env->cp15.fcseidr_s; 12737 } else { 12738 address += env->cp15.fcseidr_ns; 12739 } 12740 } 12741 12742 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12743 bool ret; 12744 *page_size = TARGET_PAGE_SIZE; 12745 12746 if (arm_feature(env, ARM_FEATURE_V8)) { 12747 /* PMSAv8 */ 12748 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12749 phys_ptr, attrs, prot, page_size, fi); 12750 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12751 /* PMSAv7 */ 12752 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12753 phys_ptr, prot, page_size, fi); 12754 } else { 12755 /* Pre-v7 MPU */ 12756 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12757 phys_ptr, prot, fi); 12758 } 12759 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12760 " mmu_idx %u -> %s (prot %c%c%c)\n", 12761 access_type == MMU_DATA_LOAD ? "reading" : 12762 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12763 (uint32_t)address, mmu_idx, 12764 ret ? "Miss" : "Hit", 12765 *prot & PAGE_READ ? 'r' : '-', 12766 *prot & PAGE_WRITE ? 'w' : '-', 12767 *prot & PAGE_EXEC ? 'x' : '-'); 12768 12769 return ret; 12770 } 12771 12772 /* Definitely a real MMU, not an MPU */ 12773 12774 if (regime_translation_disabled(env, mmu_idx)) { 12775 uint64_t hcr; 12776 uint8_t memattr; 12777 12778 /* 12779 * MMU disabled. S1 addresses within aa64 translation regimes are 12780 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12781 */ 12782 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12783 int r_el = regime_el(env, mmu_idx); 12784 if (arm_el_is_aa64(env, r_el)) { 12785 int pamax = arm_pamax(env_archcpu(env)); 12786 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12787 int addrtop, tbi; 12788 12789 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12790 if (access_type == MMU_INST_FETCH) { 12791 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12792 } 12793 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12794 addrtop = (tbi ? 55 : 63); 12795 12796 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12797 fi->type = ARMFault_AddressSize; 12798 fi->level = 0; 12799 fi->stage2 = false; 12800 return 1; 12801 } 12802 12803 /* 12804 * When TBI is disabled, we've just validated that all of the 12805 * bits above PAMax are zero, so logically we only need to 12806 * clear the top byte for TBI. But it's clearer to follow 12807 * the pseudocode set of addrdesc.paddress. 12808 */ 12809 address = extract64(address, 0, 52); 12810 } 12811 } 12812 *phys_ptr = address; 12813 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12814 *page_size = TARGET_PAGE_SIZE; 12815 12816 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12817 hcr = arm_hcr_el2_eff(env); 12818 cacheattrs->shareability = 0; 12819 if (hcr & HCR_DC) { 12820 if (hcr & HCR_DCT) { 12821 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12822 } else { 12823 memattr = 0xff; /* Normal, WB, RWA */ 12824 } 12825 } else if (access_type == MMU_INST_FETCH) { 12826 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12827 memattr = 0xee; /* Normal, WT, RA, NT */ 12828 } else { 12829 memattr = 0x44; /* Normal, NC, No */ 12830 } 12831 cacheattrs->shareability = 2; /* outer sharable */ 12832 } else { 12833 memattr = 0x00; /* Device, nGnRnE */ 12834 } 12835 cacheattrs->attrs = memattr; 12836 return 0; 12837 } 12838 12839 if (regime_using_lpae_format(env, mmu_idx)) { 12840 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12841 phys_ptr, attrs, prot, page_size, 12842 fi, cacheattrs); 12843 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12844 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12845 phys_ptr, attrs, prot, page_size, fi); 12846 } else { 12847 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12848 phys_ptr, prot, page_size, fi); 12849 } 12850 } 12851 12852 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12853 MemTxAttrs *attrs) 12854 { 12855 ARMCPU *cpu = ARM_CPU(cs); 12856 CPUARMState *env = &cpu->env; 12857 hwaddr phys_addr; 12858 target_ulong page_size; 12859 int prot; 12860 bool ret; 12861 ARMMMUFaultInfo fi = {}; 12862 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12863 ARMCacheAttrs cacheattrs = {}; 12864 12865 *attrs = (MemTxAttrs) {}; 12866 12867 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12868 attrs, &prot, &page_size, &fi, &cacheattrs); 12869 12870 if (ret) { 12871 return -1; 12872 } 12873 return phys_addr; 12874 } 12875 12876 #endif 12877 12878 /* Note that signed overflow is undefined in C. The following routines are 12879 careful to use unsigned types where modulo arithmetic is required. 12880 Failure to do so _will_ break on newer gcc. */ 12881 12882 /* Signed saturating arithmetic. */ 12883 12884 /* Perform 16-bit signed saturating addition. */ 12885 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12886 { 12887 uint16_t res; 12888 12889 res = a + b; 12890 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12891 if (a & 0x8000) 12892 res = 0x8000; 12893 else 12894 res = 0x7fff; 12895 } 12896 return res; 12897 } 12898 12899 /* Perform 8-bit signed saturating addition. */ 12900 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12901 { 12902 uint8_t res; 12903 12904 res = a + b; 12905 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12906 if (a & 0x80) 12907 res = 0x80; 12908 else 12909 res = 0x7f; 12910 } 12911 return res; 12912 } 12913 12914 /* Perform 16-bit signed saturating subtraction. */ 12915 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12916 { 12917 uint16_t res; 12918 12919 res = a - b; 12920 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12921 if (a & 0x8000) 12922 res = 0x8000; 12923 else 12924 res = 0x7fff; 12925 } 12926 return res; 12927 } 12928 12929 /* Perform 8-bit signed saturating subtraction. */ 12930 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12931 { 12932 uint8_t res; 12933 12934 res = a - b; 12935 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12936 if (a & 0x80) 12937 res = 0x80; 12938 else 12939 res = 0x7f; 12940 } 12941 return res; 12942 } 12943 12944 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12945 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12946 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12947 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12948 #define PFX q 12949 12950 #include "op_addsub.h" 12951 12952 /* Unsigned saturating arithmetic. */ 12953 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12954 { 12955 uint16_t res; 12956 res = a + b; 12957 if (res < a) 12958 res = 0xffff; 12959 return res; 12960 } 12961 12962 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12963 { 12964 if (a > b) 12965 return a - b; 12966 else 12967 return 0; 12968 } 12969 12970 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12971 { 12972 uint8_t res; 12973 res = a + b; 12974 if (res < a) 12975 res = 0xff; 12976 return res; 12977 } 12978 12979 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12980 { 12981 if (a > b) 12982 return a - b; 12983 else 12984 return 0; 12985 } 12986 12987 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12988 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12989 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12990 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12991 #define PFX uq 12992 12993 #include "op_addsub.h" 12994 12995 /* Signed modulo arithmetic. */ 12996 #define SARITH16(a, b, n, op) do { \ 12997 int32_t sum; \ 12998 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12999 RESULT(sum, n, 16); \ 13000 if (sum >= 0) \ 13001 ge |= 3 << (n * 2); \ 13002 } while(0) 13003 13004 #define SARITH8(a, b, n, op) do { \ 13005 int32_t sum; \ 13006 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 13007 RESULT(sum, n, 8); \ 13008 if (sum >= 0) \ 13009 ge |= 1 << n; \ 13010 } while(0) 13011 13012 13013 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13014 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13015 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13016 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13017 #define PFX s 13018 #define ARITH_GE 13019 13020 #include "op_addsub.h" 13021 13022 /* Unsigned modulo arithmetic. */ 13023 #define ADD16(a, b, n) do { \ 13024 uint32_t sum; \ 13025 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13026 RESULT(sum, n, 16); \ 13027 if ((sum >> 16) == 1) \ 13028 ge |= 3 << (n * 2); \ 13029 } while(0) 13030 13031 #define ADD8(a, b, n) do { \ 13032 uint32_t sum; \ 13033 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13034 RESULT(sum, n, 8); \ 13035 if ((sum >> 8) == 1) \ 13036 ge |= 1 << n; \ 13037 } while(0) 13038 13039 #define SUB16(a, b, n) do { \ 13040 uint32_t sum; \ 13041 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13042 RESULT(sum, n, 16); \ 13043 if ((sum >> 16) == 0) \ 13044 ge |= 3 << (n * 2); \ 13045 } while(0) 13046 13047 #define SUB8(a, b, n) do { \ 13048 uint32_t sum; \ 13049 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13050 RESULT(sum, n, 8); \ 13051 if ((sum >> 8) == 0) \ 13052 ge |= 1 << n; \ 13053 } while(0) 13054 13055 #define PFX u 13056 #define ARITH_GE 13057 13058 #include "op_addsub.h" 13059 13060 /* Halved signed arithmetic. */ 13061 #define ADD16(a, b, n) \ 13062 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13063 #define SUB16(a, b, n) \ 13064 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13065 #define ADD8(a, b, n) \ 13066 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13067 #define SUB8(a, b, n) \ 13068 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13069 #define PFX sh 13070 13071 #include "op_addsub.h" 13072 13073 /* Halved unsigned arithmetic. */ 13074 #define ADD16(a, b, n) \ 13075 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13076 #define SUB16(a, b, n) \ 13077 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13078 #define ADD8(a, b, n) \ 13079 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13080 #define SUB8(a, b, n) \ 13081 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13082 #define PFX uh 13083 13084 #include "op_addsub.h" 13085 13086 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13087 { 13088 if (a > b) 13089 return a - b; 13090 else 13091 return b - a; 13092 } 13093 13094 /* Unsigned sum of absolute byte differences. */ 13095 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13096 { 13097 uint32_t sum; 13098 sum = do_usad(a, b); 13099 sum += do_usad(a >> 8, b >> 8); 13100 sum += do_usad(a >> 16, b >> 16); 13101 sum += do_usad(a >> 24, b >> 24); 13102 return sum; 13103 } 13104 13105 /* For ARMv6 SEL instruction. */ 13106 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13107 { 13108 uint32_t mask; 13109 13110 mask = 0; 13111 if (flags & 1) 13112 mask |= 0xff; 13113 if (flags & 2) 13114 mask |= 0xff00; 13115 if (flags & 4) 13116 mask |= 0xff0000; 13117 if (flags & 8) 13118 mask |= 0xff000000; 13119 return (a & mask) | (b & ~mask); 13120 } 13121 13122 /* CRC helpers. 13123 * The upper bytes of val (above the number specified by 'bytes') must have 13124 * been zeroed out by the caller. 13125 */ 13126 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13127 { 13128 uint8_t buf[4]; 13129 13130 stl_le_p(buf, val); 13131 13132 /* zlib crc32 converts the accumulator and output to one's complement. */ 13133 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13134 } 13135 13136 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13137 { 13138 uint8_t buf[4]; 13139 13140 stl_le_p(buf, val); 13141 13142 /* Linux crc32c converts the output to one's complement. */ 13143 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13144 } 13145 13146 /* Return the exception level to which FP-disabled exceptions should 13147 * be taken, or 0 if FP is enabled. 13148 */ 13149 int fp_exception_el(CPUARMState *env, int cur_el) 13150 { 13151 #ifndef CONFIG_USER_ONLY 13152 uint64_t hcr_el2; 13153 13154 /* CPACR and the CPTR registers don't exist before v6, so FP is 13155 * always accessible 13156 */ 13157 if (!arm_feature(env, ARM_FEATURE_V6)) { 13158 return 0; 13159 } 13160 13161 if (arm_feature(env, ARM_FEATURE_M)) { 13162 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13163 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13164 return 1; 13165 } 13166 13167 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13168 if (!extract32(env->v7m.nsacr, 10, 1)) { 13169 /* FP insns cause a NOCP UsageFault taken to Secure */ 13170 return 3; 13171 } 13172 } 13173 13174 return 0; 13175 } 13176 13177 hcr_el2 = arm_hcr_el2_eff(env); 13178 13179 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13180 * 0, 2 : trap EL0 and EL1/PL1 accesses 13181 * 1 : trap only EL0 accesses 13182 * 3 : trap no accesses 13183 * This register is ignored if E2H+TGE are both set. 13184 */ 13185 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13186 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13187 13188 switch (fpen) { 13189 case 0: 13190 case 2: 13191 if (cur_el == 0 || cur_el == 1) { 13192 /* Trap to PL1, which might be EL1 or EL3 */ 13193 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13194 return 3; 13195 } 13196 return 1; 13197 } 13198 if (cur_el == 3 && !is_a64(env)) { 13199 /* Secure PL1 running at EL3 */ 13200 return 3; 13201 } 13202 break; 13203 case 1: 13204 if (cur_el == 0) { 13205 return 1; 13206 } 13207 break; 13208 case 3: 13209 break; 13210 } 13211 } 13212 13213 /* 13214 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13215 * to control non-secure access to the FPU. It doesn't have any 13216 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13217 */ 13218 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13219 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13220 if (!extract32(env->cp15.nsacr, 10, 1)) { 13221 /* FP insns act as UNDEF */ 13222 return cur_el == 2 ? 2 : 1; 13223 } 13224 } 13225 13226 /* 13227 * CPTR_EL2 is present in v7VE or v8, and changes format 13228 * with HCR_EL2.E2H (regardless of TGE). 13229 */ 13230 if (cur_el <= 2) { 13231 if (hcr_el2 & HCR_E2H) { 13232 /* Check CPTR_EL2.FPEN. */ 13233 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13234 case 1: 13235 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13236 break; 13237 } 13238 /* fall through */ 13239 case 0: 13240 case 2: 13241 return 2; 13242 } 13243 } else if (arm_is_el2_enabled(env)) { 13244 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13245 return 2; 13246 } 13247 } 13248 } 13249 13250 /* CPTR_EL3 : present in v8 */ 13251 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13252 /* Trap all FP ops to EL3 */ 13253 return 3; 13254 } 13255 #endif 13256 return 0; 13257 } 13258 13259 /* Return the exception level we're running at if this is our mmu_idx */ 13260 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13261 { 13262 if (mmu_idx & ARM_MMU_IDX_M) { 13263 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13264 } 13265 13266 switch (mmu_idx) { 13267 case ARMMMUIdx_E10_0: 13268 case ARMMMUIdx_E20_0: 13269 case ARMMMUIdx_SE10_0: 13270 case ARMMMUIdx_SE20_0: 13271 return 0; 13272 case ARMMMUIdx_E10_1: 13273 case ARMMMUIdx_E10_1_PAN: 13274 case ARMMMUIdx_SE10_1: 13275 case ARMMMUIdx_SE10_1_PAN: 13276 return 1; 13277 case ARMMMUIdx_E2: 13278 case ARMMMUIdx_E20_2: 13279 case ARMMMUIdx_E20_2_PAN: 13280 case ARMMMUIdx_SE2: 13281 case ARMMMUIdx_SE20_2: 13282 case ARMMMUIdx_SE20_2_PAN: 13283 return 2; 13284 case ARMMMUIdx_SE3: 13285 return 3; 13286 default: 13287 g_assert_not_reached(); 13288 } 13289 } 13290 13291 #ifndef CONFIG_TCG 13292 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13293 { 13294 g_assert_not_reached(); 13295 } 13296 #endif 13297 13298 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13299 { 13300 ARMMMUIdx idx; 13301 uint64_t hcr; 13302 13303 if (arm_feature(env, ARM_FEATURE_M)) { 13304 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13305 } 13306 13307 /* See ARM pseudo-function ELIsInHost. */ 13308 switch (el) { 13309 case 0: 13310 hcr = arm_hcr_el2_eff(env); 13311 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13312 idx = ARMMMUIdx_E20_0; 13313 } else { 13314 idx = ARMMMUIdx_E10_0; 13315 } 13316 break; 13317 case 1: 13318 if (env->pstate & PSTATE_PAN) { 13319 idx = ARMMMUIdx_E10_1_PAN; 13320 } else { 13321 idx = ARMMMUIdx_E10_1; 13322 } 13323 break; 13324 case 2: 13325 /* Note that TGE does not apply at EL2. */ 13326 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13327 if (env->pstate & PSTATE_PAN) { 13328 idx = ARMMMUIdx_E20_2_PAN; 13329 } else { 13330 idx = ARMMMUIdx_E20_2; 13331 } 13332 } else { 13333 idx = ARMMMUIdx_E2; 13334 } 13335 break; 13336 case 3: 13337 return ARMMMUIdx_SE3; 13338 default: 13339 g_assert_not_reached(); 13340 } 13341 13342 if (arm_is_secure_below_el3(env)) { 13343 idx &= ~ARM_MMU_IDX_A_NS; 13344 } 13345 13346 return idx; 13347 } 13348 13349 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13350 { 13351 return arm_mmu_idx_el(env, arm_current_el(env)); 13352 } 13353 13354 #ifndef CONFIG_USER_ONLY 13355 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13356 { 13357 return stage_1_mmu_idx(arm_mmu_idx(env)); 13358 } 13359 #endif 13360 13361 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13362 ARMMMUIdx mmu_idx, 13363 CPUARMTBFlags flags) 13364 { 13365 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13366 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13367 13368 if (arm_singlestep_active(env)) { 13369 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13370 } 13371 return flags; 13372 } 13373 13374 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13375 ARMMMUIdx mmu_idx, 13376 CPUARMTBFlags flags) 13377 { 13378 bool sctlr_b = arm_sctlr_b(env); 13379 13380 if (sctlr_b) { 13381 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13382 } 13383 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13384 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13385 } 13386 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13387 13388 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13389 } 13390 13391 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13392 ARMMMUIdx mmu_idx) 13393 { 13394 CPUARMTBFlags flags = {}; 13395 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13396 13397 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13398 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13399 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13400 } 13401 13402 if (arm_v7m_is_handler_mode(env)) { 13403 DP_TBFLAG_M32(flags, HANDLER, 1); 13404 } 13405 13406 /* 13407 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13408 * is suppressing them because the requested execution priority 13409 * is less than 0. 13410 */ 13411 if (arm_feature(env, ARM_FEATURE_V8) && 13412 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13413 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13414 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13415 } 13416 13417 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13418 } 13419 13420 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13421 { 13422 CPUARMTBFlags flags = {}; 13423 13424 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13425 return flags; 13426 } 13427 13428 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13429 ARMMMUIdx mmu_idx) 13430 { 13431 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13432 int el = arm_current_el(env); 13433 13434 if (arm_sctlr(env, el) & SCTLR_A) { 13435 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13436 } 13437 13438 if (arm_el_is_aa64(env, 1)) { 13439 DP_TBFLAG_A32(flags, VFPEN, 1); 13440 } 13441 13442 if (el < 2 && env->cp15.hstr_el2 && 13443 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13444 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13445 } 13446 13447 if (env->uncached_cpsr & CPSR_IL) { 13448 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13449 } 13450 13451 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13452 } 13453 13454 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13455 ARMMMUIdx mmu_idx) 13456 { 13457 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13458 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13459 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13460 uint64_t sctlr; 13461 int tbii, tbid; 13462 13463 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13464 13465 /* Get control bits for tagged addresses. */ 13466 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13467 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13468 13469 DP_TBFLAG_A64(flags, TBII, tbii); 13470 DP_TBFLAG_A64(flags, TBID, tbid); 13471 13472 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13473 int sve_el = sve_exception_el(env, el); 13474 uint32_t zcr_len; 13475 13476 /* 13477 * If SVE is disabled, but FP is enabled, 13478 * then the effective len is 0. 13479 */ 13480 if (sve_el != 0 && fp_el == 0) { 13481 zcr_len = 0; 13482 } else { 13483 zcr_len = sve_zcr_len_for_el(env, el); 13484 } 13485 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13486 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13487 } 13488 13489 sctlr = regime_sctlr(env, stage1); 13490 13491 if (sctlr & SCTLR_A) { 13492 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13493 } 13494 13495 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13496 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13497 } 13498 13499 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13500 /* 13501 * In order to save space in flags, we record only whether 13502 * pauth is "inactive", meaning all insns are implemented as 13503 * a nop, or "active" when some action must be performed. 13504 * The decision of which action to take is left to a helper. 13505 */ 13506 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13507 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13508 } 13509 } 13510 13511 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13512 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13513 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13514 DP_TBFLAG_A64(flags, BT, 1); 13515 } 13516 } 13517 13518 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13519 if (!(env->pstate & PSTATE_UAO)) { 13520 switch (mmu_idx) { 13521 case ARMMMUIdx_E10_1: 13522 case ARMMMUIdx_E10_1_PAN: 13523 case ARMMMUIdx_SE10_1: 13524 case ARMMMUIdx_SE10_1_PAN: 13525 /* TODO: ARMv8.3-NV */ 13526 DP_TBFLAG_A64(flags, UNPRIV, 1); 13527 break; 13528 case ARMMMUIdx_E20_2: 13529 case ARMMMUIdx_E20_2_PAN: 13530 case ARMMMUIdx_SE20_2: 13531 case ARMMMUIdx_SE20_2_PAN: 13532 /* 13533 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13534 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13535 */ 13536 if (env->cp15.hcr_el2 & HCR_TGE) { 13537 DP_TBFLAG_A64(flags, UNPRIV, 1); 13538 } 13539 break; 13540 default: 13541 break; 13542 } 13543 } 13544 13545 if (env->pstate & PSTATE_IL) { 13546 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13547 } 13548 13549 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13550 /* 13551 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13552 * if all accesses must be Unchecked: 13553 * 1) If no TBI, then there are no tags in the address to check, 13554 * 2) If Tag Check Override, then all accesses are Unchecked, 13555 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13556 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13557 */ 13558 if (allocation_tag_access_enabled(env, el, sctlr)) { 13559 DP_TBFLAG_A64(flags, ATA, 1); 13560 if (tbid 13561 && !(env->pstate & PSTATE_TCO) 13562 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13563 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13564 } 13565 } 13566 /* And again for unprivileged accesses, if required. */ 13567 if (EX_TBFLAG_A64(flags, UNPRIV) 13568 && tbid 13569 && !(env->pstate & PSTATE_TCO) 13570 && (sctlr & SCTLR_TCF0) 13571 && allocation_tag_access_enabled(env, 0, sctlr)) { 13572 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13573 } 13574 /* Cache TCMA as well as TBI. */ 13575 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13576 } 13577 13578 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13579 } 13580 13581 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13582 { 13583 int el = arm_current_el(env); 13584 int fp_el = fp_exception_el(env, el); 13585 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13586 13587 if (is_a64(env)) { 13588 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13589 } else if (arm_feature(env, ARM_FEATURE_M)) { 13590 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13591 } else { 13592 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13593 } 13594 } 13595 13596 void arm_rebuild_hflags(CPUARMState *env) 13597 { 13598 env->hflags = rebuild_hflags_internal(env); 13599 } 13600 13601 /* 13602 * If we have triggered a EL state change we can't rely on the 13603 * translator having passed it to us, we need to recompute. 13604 */ 13605 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13606 { 13607 int el = arm_current_el(env); 13608 int fp_el = fp_exception_el(env, el); 13609 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13610 13611 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13612 } 13613 13614 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13615 { 13616 int fp_el = fp_exception_el(env, el); 13617 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13618 13619 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13620 } 13621 13622 /* 13623 * If we have triggered a EL state change we can't rely on the 13624 * translator having passed it to us, we need to recompute. 13625 */ 13626 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13627 { 13628 int el = arm_current_el(env); 13629 int fp_el = fp_exception_el(env, el); 13630 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13631 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13632 } 13633 13634 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13635 { 13636 int fp_el = fp_exception_el(env, el); 13637 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13638 13639 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13640 } 13641 13642 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13643 { 13644 int fp_el = fp_exception_el(env, el); 13645 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13646 13647 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13648 } 13649 13650 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13651 { 13652 #ifdef CONFIG_DEBUG_TCG 13653 CPUARMTBFlags c = env->hflags; 13654 CPUARMTBFlags r = rebuild_hflags_internal(env); 13655 13656 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13657 fprintf(stderr, "TCG hflags mismatch " 13658 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13659 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13660 c.flags, c.flags2, r.flags, r.flags2); 13661 abort(); 13662 } 13663 #endif 13664 } 13665 13666 static bool mve_no_pred(CPUARMState *env) 13667 { 13668 /* 13669 * Return true if there is definitely no predication of MVE 13670 * instructions by VPR or LTPSIZE. (Returning false even if there 13671 * isn't any predication is OK; generated code will just be 13672 * a little worse.) 13673 * If the CPU does not implement MVE then this TB flag is always 0. 13674 * 13675 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13676 * logic in gen_update_fp_context() needs to be updated to match. 13677 * 13678 * We do not include the effect of the ECI bits here -- they are 13679 * tracked in other TB flags. This simplifies the logic for 13680 * "when did we emit code that changes the MVE_NO_PRED TB flag 13681 * and thus need to end the TB?". 13682 */ 13683 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13684 return false; 13685 } 13686 if (env->v7m.vpr) { 13687 return false; 13688 } 13689 if (env->v7m.ltpsize < 4) { 13690 return false; 13691 } 13692 return true; 13693 } 13694 13695 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13696 target_ulong *cs_base, uint32_t *pflags) 13697 { 13698 CPUARMTBFlags flags; 13699 13700 assert_hflags_rebuild_correctly(env); 13701 flags = env->hflags; 13702 13703 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13704 *pc = env->pc; 13705 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13706 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13707 } 13708 } else { 13709 *pc = env->regs[15]; 13710 13711 if (arm_feature(env, ARM_FEATURE_M)) { 13712 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13713 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13714 != env->v7m.secure) { 13715 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13716 } 13717 13718 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13719 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13720 (env->v7m.secure && 13721 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13722 /* 13723 * ASPEN is set, but FPCA/SFPA indicate that there is no 13724 * active FP context; we must create a new FP context before 13725 * executing any FP insn. 13726 */ 13727 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13728 } 13729 13730 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13731 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13732 DP_TBFLAG_M32(flags, LSPACT, 1); 13733 } 13734 13735 if (mve_no_pred(env)) { 13736 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13737 } 13738 } else { 13739 /* 13740 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13741 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13742 */ 13743 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13744 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13745 } else { 13746 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13747 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13748 } 13749 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13750 DP_TBFLAG_A32(flags, VFPEN, 1); 13751 } 13752 } 13753 13754 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13755 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13756 } 13757 13758 /* 13759 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13760 * states defined in the ARM ARM for software singlestep: 13761 * SS_ACTIVE PSTATE.SS State 13762 * 0 x Inactive (the TB flag for SS is always 0) 13763 * 1 0 Active-pending 13764 * 1 1 Active-not-pending 13765 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13766 */ 13767 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13768 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13769 } 13770 13771 *pflags = flags.flags; 13772 *cs_base = flags.flags2; 13773 } 13774 13775 #ifdef TARGET_AARCH64 13776 /* 13777 * The manual says that when SVE is enabled and VQ is widened the 13778 * implementation is allowed to zero the previously inaccessible 13779 * portion of the registers. The corollary to that is that when 13780 * SVE is enabled and VQ is narrowed we are also allowed to zero 13781 * the now inaccessible portion of the registers. 13782 * 13783 * The intent of this is that no predicate bit beyond VQ is ever set. 13784 * Which means that some operations on predicate registers themselves 13785 * may operate on full uint64_t or even unrolled across the maximum 13786 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13787 * may well be cheaper than conditionals to restrict the operation 13788 * to the relevant portion of a uint16_t[16]. 13789 */ 13790 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13791 { 13792 int i, j; 13793 uint64_t pmask; 13794 13795 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13796 assert(vq <= env_archcpu(env)->sve_max_vq); 13797 13798 /* Zap the high bits of the zregs. */ 13799 for (i = 0; i < 32; i++) { 13800 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13801 } 13802 13803 /* Zap the high bits of the pregs and ffr. */ 13804 pmask = 0; 13805 if (vq & 3) { 13806 pmask = ~(-1ULL << (16 * (vq & 3))); 13807 } 13808 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13809 for (i = 0; i < 17; ++i) { 13810 env->vfp.pregs[i].p[j] &= pmask; 13811 } 13812 pmask = 0; 13813 } 13814 } 13815 13816 /* 13817 * Notice a change in SVE vector size when changing EL. 13818 */ 13819 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13820 int new_el, bool el0_a64) 13821 { 13822 ARMCPU *cpu = env_archcpu(env); 13823 int old_len, new_len; 13824 bool old_a64, new_a64; 13825 13826 /* Nothing to do if no SVE. */ 13827 if (!cpu_isar_feature(aa64_sve, cpu)) { 13828 return; 13829 } 13830 13831 /* Nothing to do if FP is disabled in either EL. */ 13832 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13833 return; 13834 } 13835 13836 /* 13837 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13838 * at ELx, or not available because the EL is in AArch32 state, then 13839 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13840 * has an effective value of 0". 13841 * 13842 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13843 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13844 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13845 * we already have the correct register contents when encountering the 13846 * vq0->vq0 transition between EL0->EL1. 13847 */ 13848 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13849 old_len = (old_a64 && !sve_exception_el(env, old_el) 13850 ? sve_zcr_len_for_el(env, old_el) : 0); 13851 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13852 new_len = (new_a64 && !sve_exception_el(env, new_el) 13853 ? sve_zcr_len_for_el(env, new_el) : 0); 13854 13855 /* When changing vector length, clear inaccessible state. */ 13856 if (new_len < old_len) { 13857 aarch64_sve_narrow_vq(env, new_len + 1); 13858 } 13859 } 13860 #endif 13861