1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "sysemu/tcg.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #endif 37 38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 39 40 #ifndef CONFIG_USER_ONLY 41 42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 43 MMUAccessType access_type, ARMMMUIdx mmu_idx, 44 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 45 target_ulong *page_size_ptr, 46 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 47 #endif 48 49 static void switch_mode(CPUARMState *env, int mode); 50 51 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 52 { 53 ARMCPU *cpu = env_archcpu(env); 54 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 55 56 /* VFP data registers are always little-endian. */ 57 if (reg < nregs) { 58 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 59 return 8; 60 } 61 if (arm_feature(env, ARM_FEATURE_NEON)) { 62 /* Aliases for Q regs. */ 63 nregs += 16; 64 if (reg < nregs) { 65 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 66 stq_le_p(buf, q[0]); 67 stq_le_p(buf + 8, q[1]); 68 return 16; 69 } 70 } 71 switch (reg - nregs) { 72 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 73 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 74 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 75 } 76 return 0; 77 } 78 79 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 80 { 81 ARMCPU *cpu = env_archcpu(env); 82 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 83 84 if (reg < nregs) { 85 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 86 return 8; 87 } 88 if (arm_feature(env, ARM_FEATURE_NEON)) { 89 nregs += 16; 90 if (reg < nregs) { 91 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 92 q[0] = ldq_le_p(buf); 93 q[1] = ldq_le_p(buf + 8); 94 return 16; 95 } 96 } 97 switch (reg - nregs) { 98 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 99 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 100 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 101 } 102 return 0; 103 } 104 105 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 106 { 107 switch (reg) { 108 case 0 ... 31: 109 /* 128 bit FP register */ 110 { 111 uint64_t *q = aa64_vfp_qreg(env, reg); 112 stq_le_p(buf, q[0]); 113 stq_le_p(buf + 8, q[1]); 114 return 16; 115 } 116 case 32: 117 /* FPSR */ 118 stl_p(buf, vfp_get_fpsr(env)); 119 return 4; 120 case 33: 121 /* FPCR */ 122 stl_p(buf, vfp_get_fpcr(env)); 123 return 4; 124 default: 125 return 0; 126 } 127 } 128 129 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 130 { 131 switch (reg) { 132 case 0 ... 31: 133 /* 128 bit FP register */ 134 { 135 uint64_t *q = aa64_vfp_qreg(env, reg); 136 q[0] = ldq_le_p(buf); 137 q[1] = ldq_le_p(buf + 8); 138 return 16; 139 } 140 case 32: 141 /* FPSR */ 142 vfp_set_fpsr(env, ldl_p(buf)); 143 return 4; 144 case 33: 145 /* FPCR */ 146 vfp_set_fpcr(env, ldl_p(buf)); 147 return 4; 148 default: 149 return 0; 150 } 151 } 152 153 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 154 { 155 assert(ri->fieldoffset); 156 if (cpreg_field_is_64bit(ri)) { 157 return CPREG_FIELD64(env, ri); 158 } else { 159 return CPREG_FIELD32(env, ri); 160 } 161 } 162 163 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 164 uint64_t value) 165 { 166 assert(ri->fieldoffset); 167 if (cpreg_field_is_64bit(ri)) { 168 CPREG_FIELD64(env, ri) = value; 169 } else { 170 CPREG_FIELD32(env, ri) = value; 171 } 172 } 173 174 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 175 { 176 return (char *)env + ri->fieldoffset; 177 } 178 179 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 180 { 181 /* Raw read of a coprocessor register (as needed for migration, etc). */ 182 if (ri->type & ARM_CP_CONST) { 183 return ri->resetvalue; 184 } else if (ri->raw_readfn) { 185 return ri->raw_readfn(env, ri); 186 } else if (ri->readfn) { 187 return ri->readfn(env, ri); 188 } else { 189 return raw_read(env, ri); 190 } 191 } 192 193 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 194 uint64_t v) 195 { 196 /* Raw write of a coprocessor register (as needed for migration, etc). 197 * Note that constant registers are treated as write-ignored; the 198 * caller should check for success by whether a readback gives the 199 * value written. 200 */ 201 if (ri->type & ARM_CP_CONST) { 202 return; 203 } else if (ri->raw_writefn) { 204 ri->raw_writefn(env, ri, v); 205 } else if (ri->writefn) { 206 ri->writefn(env, ri, v); 207 } else { 208 raw_write(env, ri, v); 209 } 210 } 211 212 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 213 { 214 ARMCPU *cpu = env_archcpu(env); 215 const ARMCPRegInfo *ri; 216 uint32_t key; 217 218 key = cpu->dyn_xml.cpregs_keys[reg]; 219 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 220 if (ri) { 221 if (cpreg_field_is_64bit(ri)) { 222 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 223 } else { 224 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 225 } 226 } 227 return 0; 228 } 229 230 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 231 { 232 return 0; 233 } 234 235 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 236 { 237 /* Return true if the regdef would cause an assertion if you called 238 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 239 * program bug for it not to have the NO_RAW flag). 240 * NB that returning false here doesn't necessarily mean that calling 241 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 242 * read/write access functions which are safe for raw use" from "has 243 * read/write access functions which have side effects but has forgotten 244 * to provide raw access functions". 245 * The tests here line up with the conditions in read/write_raw_cp_reg() 246 * and assertions in raw_read()/raw_write(). 247 */ 248 if ((ri->type & ARM_CP_CONST) || 249 ri->fieldoffset || 250 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 251 return false; 252 } 253 return true; 254 } 255 256 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 257 { 258 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 259 int i; 260 bool ok = true; 261 262 for (i = 0; i < cpu->cpreg_array_len; i++) { 263 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 264 const ARMCPRegInfo *ri; 265 uint64_t newval; 266 267 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 268 if (!ri) { 269 ok = false; 270 continue; 271 } 272 if (ri->type & ARM_CP_NO_RAW) { 273 continue; 274 } 275 276 newval = read_raw_cp_reg(&cpu->env, ri); 277 if (kvm_sync) { 278 /* 279 * Only sync if the previous list->cpustate sync succeeded. 280 * Rather than tracking the success/failure state for every 281 * item in the list, we just recheck "does the raw write we must 282 * have made in write_list_to_cpustate() read back OK" here. 283 */ 284 uint64_t oldval = cpu->cpreg_values[i]; 285 286 if (oldval == newval) { 287 continue; 288 } 289 290 write_raw_cp_reg(&cpu->env, ri, oldval); 291 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 292 continue; 293 } 294 295 write_raw_cp_reg(&cpu->env, ri, newval); 296 } 297 cpu->cpreg_values[i] = newval; 298 } 299 return ok; 300 } 301 302 bool write_list_to_cpustate(ARMCPU *cpu) 303 { 304 int i; 305 bool ok = true; 306 307 for (i = 0; i < cpu->cpreg_array_len; i++) { 308 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 309 uint64_t v = cpu->cpreg_values[i]; 310 const ARMCPRegInfo *ri; 311 312 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 313 if (!ri) { 314 ok = false; 315 continue; 316 } 317 if (ri->type & ARM_CP_NO_RAW) { 318 continue; 319 } 320 /* Write value and confirm it reads back as written 321 * (to catch read-only registers and partially read-only 322 * registers where the incoming migration value doesn't match) 323 */ 324 write_raw_cp_reg(&cpu->env, ri, v); 325 if (read_raw_cp_reg(&cpu->env, ri) != v) { 326 ok = false; 327 } 328 } 329 return ok; 330 } 331 332 static void add_cpreg_to_list(gpointer key, gpointer opaque) 333 { 334 ARMCPU *cpu = opaque; 335 uint64_t regidx; 336 const ARMCPRegInfo *ri; 337 338 regidx = *(uint32_t *)key; 339 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 340 341 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 342 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 343 /* The value array need not be initialized at this point */ 344 cpu->cpreg_array_len++; 345 } 346 } 347 348 static void count_cpreg(gpointer key, gpointer opaque) 349 { 350 ARMCPU *cpu = opaque; 351 uint64_t regidx; 352 const ARMCPRegInfo *ri; 353 354 regidx = *(uint32_t *)key; 355 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 356 357 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 358 cpu->cpreg_array_len++; 359 } 360 } 361 362 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 363 { 364 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 365 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 366 367 if (aidx > bidx) { 368 return 1; 369 } 370 if (aidx < bidx) { 371 return -1; 372 } 373 return 0; 374 } 375 376 void init_cpreg_list(ARMCPU *cpu) 377 { 378 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 379 * Note that we require cpreg_tuples[] to be sorted by key ID. 380 */ 381 GList *keys; 382 int arraylen; 383 384 keys = g_hash_table_get_keys(cpu->cp_regs); 385 keys = g_list_sort(keys, cpreg_key_compare); 386 387 cpu->cpreg_array_len = 0; 388 389 g_list_foreach(keys, count_cpreg, cpu); 390 391 arraylen = cpu->cpreg_array_len; 392 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 393 cpu->cpreg_values = g_new(uint64_t, arraylen); 394 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 395 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 396 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 397 cpu->cpreg_array_len = 0; 398 399 g_list_foreach(keys, add_cpreg_to_list, cpu); 400 401 assert(cpu->cpreg_array_len == arraylen); 402 403 g_list_free(keys); 404 } 405 406 /* 407 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 408 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 409 * 410 * access_el3_aa32ns: Used to check AArch32 register views. 411 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 412 */ 413 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 414 const ARMCPRegInfo *ri, 415 bool isread) 416 { 417 bool secure = arm_is_secure_below_el3(env); 418 419 assert(!arm_el_is_aa64(env, 3)); 420 if (secure) { 421 return CP_ACCESS_TRAP_UNCATEGORIZED; 422 } 423 return CP_ACCESS_OK; 424 } 425 426 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 427 const ARMCPRegInfo *ri, 428 bool isread) 429 { 430 if (!arm_el_is_aa64(env, 3)) { 431 return access_el3_aa32ns(env, ri, isread); 432 } 433 return CP_ACCESS_OK; 434 } 435 436 /* Some secure-only AArch32 registers trap to EL3 if used from 437 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 438 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 439 * We assume that the .access field is set to PL1_RW. 440 */ 441 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 442 const ARMCPRegInfo *ri, 443 bool isread) 444 { 445 if (arm_current_el(env) == 3) { 446 return CP_ACCESS_OK; 447 } 448 if (arm_is_secure_below_el3(env)) { 449 return CP_ACCESS_TRAP_EL3; 450 } 451 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 452 return CP_ACCESS_TRAP_UNCATEGORIZED; 453 } 454 455 /* Check for traps to "powerdown debug" registers, which are controlled 456 * by MDCR.TDOSA 457 */ 458 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 459 bool isread) 460 { 461 int el = arm_current_el(env); 462 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 463 (env->cp15.mdcr_el2 & MDCR_TDE) || 464 (arm_hcr_el2_eff(env) & HCR_TGE); 465 466 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 467 return CP_ACCESS_TRAP_EL2; 468 } 469 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 470 return CP_ACCESS_TRAP_EL3; 471 } 472 return CP_ACCESS_OK; 473 } 474 475 /* Check for traps to "debug ROM" registers, which are controlled 476 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 477 */ 478 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 479 bool isread) 480 { 481 int el = arm_current_el(env); 482 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 483 (env->cp15.mdcr_el2 & MDCR_TDE) || 484 (arm_hcr_el2_eff(env) & HCR_TGE); 485 486 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 487 return CP_ACCESS_TRAP_EL2; 488 } 489 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 490 return CP_ACCESS_TRAP_EL3; 491 } 492 return CP_ACCESS_OK; 493 } 494 495 /* Check for traps to general debug registers, which are controlled 496 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 497 */ 498 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 499 bool isread) 500 { 501 int el = arm_current_el(env); 502 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 503 (env->cp15.mdcr_el2 & MDCR_TDE) || 504 (arm_hcr_el2_eff(env) & HCR_TGE); 505 506 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 507 return CP_ACCESS_TRAP_EL2; 508 } 509 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 510 return CP_ACCESS_TRAP_EL3; 511 } 512 return CP_ACCESS_OK; 513 } 514 515 /* Check for traps to performance monitor registers, which are controlled 516 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 517 */ 518 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 519 bool isread) 520 { 521 int el = arm_current_el(env); 522 523 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 524 && !arm_is_secure_below_el3(env)) { 525 return CP_ACCESS_TRAP_EL2; 526 } 527 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 528 return CP_ACCESS_TRAP_EL3; 529 } 530 return CP_ACCESS_OK; 531 } 532 533 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 534 { 535 ARMCPU *cpu = env_archcpu(env); 536 537 raw_write(env, ri, value); 538 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 539 } 540 541 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 542 { 543 ARMCPU *cpu = env_archcpu(env); 544 545 if (raw_read(env, ri) != value) { 546 /* Unlike real hardware the qemu TLB uses virtual addresses, 547 * not modified virtual addresses, so this causes a TLB flush. 548 */ 549 tlb_flush(CPU(cpu)); 550 raw_write(env, ri, value); 551 } 552 } 553 554 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 555 uint64_t value) 556 { 557 ARMCPU *cpu = env_archcpu(env); 558 559 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 560 && !extended_addresses_enabled(env)) { 561 /* For VMSA (when not using the LPAE long descriptor page table 562 * format) this register includes the ASID, so do a TLB flush. 563 * For PMSA it is purely a process ID and no action is needed. 564 */ 565 tlb_flush(CPU(cpu)); 566 } 567 raw_write(env, ri, value); 568 } 569 570 /* IS variants of TLB operations must affect all cores */ 571 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 572 uint64_t value) 573 { 574 CPUState *cs = env_cpu(env); 575 576 tlb_flush_all_cpus_synced(cs); 577 } 578 579 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 580 uint64_t value) 581 { 582 CPUState *cs = env_cpu(env); 583 584 tlb_flush_all_cpus_synced(cs); 585 } 586 587 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 588 uint64_t value) 589 { 590 CPUState *cs = env_cpu(env); 591 592 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 593 } 594 595 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 600 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 601 } 602 603 /* 604 * Non-IS variants of TLB operations are upgraded to 605 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 606 * force broadcast of these operations. 607 */ 608 static bool tlb_force_broadcast(CPUARMState *env) 609 { 610 return (env->cp15.hcr_el2 & HCR_FB) && 611 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 612 } 613 614 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 615 uint64_t value) 616 { 617 /* Invalidate all (TLBIALL) */ 618 CPUState *cs = env_cpu(env); 619 620 if (tlb_force_broadcast(env)) { 621 tlb_flush_all_cpus_synced(cs); 622 } else { 623 tlb_flush(cs); 624 } 625 } 626 627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 631 CPUState *cs = env_cpu(env); 632 633 value &= TARGET_PAGE_MASK; 634 if (tlb_force_broadcast(env)) { 635 tlb_flush_page_all_cpus_synced(cs, value); 636 } else { 637 tlb_flush_page(cs, value); 638 } 639 } 640 641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 642 uint64_t value) 643 { 644 /* Invalidate by ASID (TLBIASID) */ 645 CPUState *cs = env_cpu(env); 646 647 if (tlb_force_broadcast(env)) { 648 tlb_flush_all_cpus_synced(cs); 649 } else { 650 tlb_flush(cs); 651 } 652 } 653 654 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 655 uint64_t value) 656 { 657 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 658 CPUState *cs = env_cpu(env); 659 660 value &= TARGET_PAGE_MASK; 661 if (tlb_force_broadcast(env)) { 662 tlb_flush_page_all_cpus_synced(cs, value); 663 } else { 664 tlb_flush_page(cs, value); 665 } 666 } 667 668 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 669 uint64_t value) 670 { 671 CPUState *cs = env_cpu(env); 672 673 tlb_flush_by_mmuidx(cs, 674 ARMMMUIdxBit_E10_1 | 675 ARMMMUIdxBit_E10_1_PAN | 676 ARMMMUIdxBit_E10_0 | 677 ARMMMUIdxBit_Stage2); 678 } 679 680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 CPUState *cs = env_cpu(env); 684 685 tlb_flush_by_mmuidx_all_cpus_synced(cs, 686 ARMMMUIdxBit_E10_1 | 687 ARMMMUIdxBit_E10_1_PAN | 688 ARMMMUIdxBit_E10_0 | 689 ARMMMUIdxBit_Stage2); 690 } 691 692 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 693 uint64_t value) 694 { 695 /* Invalidate by IPA. This has to invalidate any structures that 696 * contain only stage 2 translation information, but does not need 697 * to apply to structures that contain combined stage 1 and stage 2 698 * translation information. 699 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 700 */ 701 CPUState *cs = env_cpu(env); 702 uint64_t pageaddr; 703 704 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 705 return; 706 } 707 708 pageaddr = sextract64(value << 12, 0, 40); 709 710 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 711 } 712 713 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 714 uint64_t value) 715 { 716 CPUState *cs = env_cpu(env); 717 uint64_t pageaddr; 718 719 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 720 return; 721 } 722 723 pageaddr = sextract64(value << 12, 0, 40); 724 725 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 726 ARMMMUIdxBit_Stage2); 727 } 728 729 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 730 uint64_t value) 731 { 732 CPUState *cs = env_cpu(env); 733 734 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 735 } 736 737 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 738 uint64_t value) 739 { 740 CPUState *cs = env_cpu(env); 741 742 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 743 } 744 745 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 746 uint64_t value) 747 { 748 CPUState *cs = env_cpu(env); 749 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 750 751 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 752 } 753 754 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 755 uint64_t value) 756 { 757 CPUState *cs = env_cpu(env); 758 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 759 760 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 761 ARMMMUIdxBit_E2); 762 } 763 764 static const ARMCPRegInfo cp_reginfo[] = { 765 /* Define the secure and non-secure FCSE identifier CP registers 766 * separately because there is no secure bank in V8 (no _EL3). This allows 767 * the secure register to be properly reset and migrated. There is also no 768 * v8 EL1 version of the register so the non-secure instance stands alone. 769 */ 770 { .name = "FCSEIDR", 771 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 772 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 773 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 774 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 775 { .name = "FCSEIDR_S", 776 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 777 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 778 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 779 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 780 /* Define the secure and non-secure context identifier CP registers 781 * separately because there is no secure bank in V8 (no _EL3). This allows 782 * the secure register to be properly reset and migrated. In the 783 * non-secure case, the 32-bit register will have reset and migration 784 * disabled during registration as it is handled by the 64-bit instance. 785 */ 786 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 787 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 788 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 789 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 790 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 791 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 792 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 793 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 794 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 795 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 796 REGINFO_SENTINEL 797 }; 798 799 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 800 /* NB: Some of these registers exist in v8 but with more precise 801 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 802 */ 803 /* MMU Domain access control / MPU write buffer control */ 804 { .name = "DACR", 805 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 806 .access = PL1_RW, .resetvalue = 0, 807 .writefn = dacr_write, .raw_writefn = raw_write, 808 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 809 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 810 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 811 * For v6 and v5, these mappings are overly broad. 812 */ 813 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 814 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 815 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 816 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 817 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 818 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 819 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 820 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 821 /* Cache maintenance ops; some of this space may be overridden later. */ 822 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 823 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 824 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 825 REGINFO_SENTINEL 826 }; 827 828 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 829 /* Not all pre-v6 cores implemented this WFI, so this is slightly 830 * over-broad. 831 */ 832 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 833 .access = PL1_W, .type = ARM_CP_WFI }, 834 REGINFO_SENTINEL 835 }; 836 837 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 838 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 839 * is UNPREDICTABLE; we choose to NOP as most implementations do). 840 */ 841 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 842 .access = PL1_W, .type = ARM_CP_WFI }, 843 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 844 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 845 * OMAPCP will override this space. 846 */ 847 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 848 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 849 .resetvalue = 0 }, 850 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 851 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 852 .resetvalue = 0 }, 853 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 854 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 855 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 856 .resetvalue = 0 }, 857 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 858 * implementing it as RAZ means the "debug architecture version" bits 859 * will read as a reserved value, which should cause Linux to not try 860 * to use the debug hardware. 861 */ 862 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 863 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 864 /* MMU TLB control. Note that the wildcarding means we cover not just 865 * the unified TLB ops but also the dside/iside/inner-shareable variants. 866 */ 867 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 868 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 869 .type = ARM_CP_NO_RAW }, 870 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 871 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 872 .type = ARM_CP_NO_RAW }, 873 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 874 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 875 .type = ARM_CP_NO_RAW }, 876 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 877 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 878 .type = ARM_CP_NO_RAW }, 879 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 880 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 881 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 882 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 883 REGINFO_SENTINEL 884 }; 885 886 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 887 uint64_t value) 888 { 889 uint32_t mask = 0; 890 891 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 892 if (!arm_feature(env, ARM_FEATURE_V8)) { 893 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 894 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 895 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 896 */ 897 if (arm_feature(env, ARM_FEATURE_VFP)) { 898 /* VFP coprocessor: cp10 & cp11 [23:20] */ 899 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 900 901 if (!arm_feature(env, ARM_FEATURE_NEON)) { 902 /* ASEDIS [31] bit is RAO/WI */ 903 value |= (1 << 31); 904 } 905 906 /* VFPv3 and upwards with NEON implement 32 double precision 907 * registers (D0-D31). 908 */ 909 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 911 value |= (1 << 30); 912 } 913 } 914 value &= mask; 915 } 916 917 /* 918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 920 */ 921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 923 value &= ~(0xf << 20); 924 value |= env->cp15.cpacr_el1 & (0xf << 20); 925 } 926 927 env->cp15.cpacr_el1 = value; 928 } 929 930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 931 { 932 /* 933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 935 */ 936 uint64_t value = env->cp15.cpacr_el1; 937 938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 940 value &= ~(0xf << 20); 941 } 942 return value; 943 } 944 945 946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 947 { 948 /* Call cpacr_write() so that we reset with the correct RAO bits set 949 * for our CPU features. 950 */ 951 cpacr_write(env, ri, 0); 952 } 953 954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 955 bool isread) 956 { 957 if (arm_feature(env, ARM_FEATURE_V8)) { 958 /* Check if CPACR accesses are to be trapped to EL2 */ 959 if (arm_current_el(env) == 1 && 960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 961 return CP_ACCESS_TRAP_EL2; 962 /* Check if CPACR accesses are to be trapped to EL3 */ 963 } else if (arm_current_el(env) < 3 && 964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 965 return CP_ACCESS_TRAP_EL3; 966 } 967 } 968 969 return CP_ACCESS_OK; 970 } 971 972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 973 bool isread) 974 { 975 /* Check if CPTR accesses are set to trap to EL3 */ 976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 977 return CP_ACCESS_TRAP_EL3; 978 } 979 980 return CP_ACCESS_OK; 981 } 982 983 static const ARMCPRegInfo v6_cp_reginfo[] = { 984 /* prefetch by MVA in v6, NOP in v7 */ 985 { .name = "MVA_prefetch", 986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 987 .access = PL1_W, .type = ARM_CP_NOP }, 988 /* We need to break the TB after ISB to execute self-modifying code 989 * correctly and also to take any pending interrupts immediately. 990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 991 */ 992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 995 .access = PL0_W, .type = ARM_CP_NOP }, 996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 997 .access = PL0_W, .type = ARM_CP_NOP }, 998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 999 .access = PL1_RW, 1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1001 offsetof(CPUARMState, cp15.ifar_ns) }, 1002 .resetvalue = 0, }, 1003 /* Watchpoint Fault Address Register : should actually only be present 1004 * for 1136, 1176, 11MPCore. 1005 */ 1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1012 REGINFO_SENTINEL 1013 }; 1014 1015 /* Definitions for the PMU registers */ 1016 #define PMCRN_MASK 0xf800 1017 #define PMCRN_SHIFT 11 1018 #define PMCRLC 0x40 1019 #define PMCRDP 0x20 1020 #define PMCRX 0x10 1021 #define PMCRD 0x8 1022 #define PMCRC 0x4 1023 #define PMCRP 0x2 1024 #define PMCRE 0x1 1025 /* 1026 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1027 * which can be written as 1 to trigger behaviour but which stay RAZ). 1028 */ 1029 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1030 1031 #define PMXEVTYPER_P 0x80000000 1032 #define PMXEVTYPER_U 0x40000000 1033 #define PMXEVTYPER_NSK 0x20000000 1034 #define PMXEVTYPER_NSU 0x10000000 1035 #define PMXEVTYPER_NSH 0x08000000 1036 #define PMXEVTYPER_M 0x04000000 1037 #define PMXEVTYPER_MT 0x02000000 1038 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1039 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1040 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1041 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1042 PMXEVTYPER_EVTCOUNT) 1043 1044 #define PMCCFILTR 0xf8000000 1045 #define PMCCFILTR_M PMXEVTYPER_M 1046 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1047 1048 static inline uint32_t pmu_num_counters(CPUARMState *env) 1049 { 1050 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1051 } 1052 1053 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1054 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1055 { 1056 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1057 } 1058 1059 typedef struct pm_event { 1060 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1061 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1062 bool (*supported)(CPUARMState *); 1063 /* 1064 * Retrieve the current count of the underlying event. The programmed 1065 * counters hold a difference from the return value from this function 1066 */ 1067 uint64_t (*get_count)(CPUARMState *); 1068 /* 1069 * Return how many nanoseconds it will take (at a minimum) for count events 1070 * to occur. A negative value indicates the counter will never overflow, or 1071 * that the counter has otherwise arranged for the overflow bit to be set 1072 * and the PMU interrupt to be raised on overflow. 1073 */ 1074 int64_t (*ns_per_count)(uint64_t); 1075 } pm_event; 1076 1077 static bool event_always_supported(CPUARMState *env) 1078 { 1079 return true; 1080 } 1081 1082 static uint64_t swinc_get_count(CPUARMState *env) 1083 { 1084 /* 1085 * SW_INCR events are written directly to the pmevcntr's by writes to 1086 * PMSWINC, so there is no underlying count maintained by the PMU itself 1087 */ 1088 return 0; 1089 } 1090 1091 static int64_t swinc_ns_per(uint64_t ignored) 1092 { 1093 return -1; 1094 } 1095 1096 /* 1097 * Return the underlying cycle count for the PMU cycle counters. If we're in 1098 * usermode, simply return 0. 1099 */ 1100 static uint64_t cycles_get_count(CPUARMState *env) 1101 { 1102 #ifndef CONFIG_USER_ONLY 1103 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1104 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1105 #else 1106 return cpu_get_host_ticks(); 1107 #endif 1108 } 1109 1110 #ifndef CONFIG_USER_ONLY 1111 static int64_t cycles_ns_per(uint64_t cycles) 1112 { 1113 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1114 } 1115 1116 static bool instructions_supported(CPUARMState *env) 1117 { 1118 return use_icount == 1 /* Precise instruction counting */; 1119 } 1120 1121 static uint64_t instructions_get_count(CPUARMState *env) 1122 { 1123 return (uint64_t)cpu_get_icount_raw(); 1124 } 1125 1126 static int64_t instructions_ns_per(uint64_t icount) 1127 { 1128 return cpu_icount_to_ns((int64_t)icount); 1129 } 1130 #endif 1131 1132 static bool pmu_8_1_events_supported(CPUARMState *env) 1133 { 1134 /* For events which are supported in any v8.1 PMU */ 1135 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1136 } 1137 1138 static bool pmu_8_4_events_supported(CPUARMState *env) 1139 { 1140 /* For events which are supported in any v8.1 PMU */ 1141 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1142 } 1143 1144 static uint64_t zero_event_get_count(CPUARMState *env) 1145 { 1146 /* For events which on QEMU never fire, so their count is always zero */ 1147 return 0; 1148 } 1149 1150 static int64_t zero_event_ns_per(uint64_t cycles) 1151 { 1152 /* An event which never fires can never overflow */ 1153 return -1; 1154 } 1155 1156 static const pm_event pm_events[] = { 1157 { .number = 0x000, /* SW_INCR */ 1158 .supported = event_always_supported, 1159 .get_count = swinc_get_count, 1160 .ns_per_count = swinc_ns_per, 1161 }, 1162 #ifndef CONFIG_USER_ONLY 1163 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1164 .supported = instructions_supported, 1165 .get_count = instructions_get_count, 1166 .ns_per_count = instructions_ns_per, 1167 }, 1168 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1169 .supported = event_always_supported, 1170 .get_count = cycles_get_count, 1171 .ns_per_count = cycles_ns_per, 1172 }, 1173 #endif 1174 { .number = 0x023, /* STALL_FRONTEND */ 1175 .supported = pmu_8_1_events_supported, 1176 .get_count = zero_event_get_count, 1177 .ns_per_count = zero_event_ns_per, 1178 }, 1179 { .number = 0x024, /* STALL_BACKEND */ 1180 .supported = pmu_8_1_events_supported, 1181 .get_count = zero_event_get_count, 1182 .ns_per_count = zero_event_ns_per, 1183 }, 1184 { .number = 0x03c, /* STALL */ 1185 .supported = pmu_8_4_events_supported, 1186 .get_count = zero_event_get_count, 1187 .ns_per_count = zero_event_ns_per, 1188 }, 1189 }; 1190 1191 /* 1192 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1193 * events (i.e. the statistical profiling extension), this implementation 1194 * should first be updated to something sparse instead of the current 1195 * supported_event_map[] array. 1196 */ 1197 #define MAX_EVENT_ID 0x3c 1198 #define UNSUPPORTED_EVENT UINT16_MAX 1199 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1200 1201 /* 1202 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1203 * of ARM event numbers to indices in our pm_events array. 1204 * 1205 * Note: Events in the 0x40XX range are not currently supported. 1206 */ 1207 void pmu_init(ARMCPU *cpu) 1208 { 1209 unsigned int i; 1210 1211 /* 1212 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1213 * events to them 1214 */ 1215 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1216 supported_event_map[i] = UNSUPPORTED_EVENT; 1217 } 1218 cpu->pmceid0 = 0; 1219 cpu->pmceid1 = 0; 1220 1221 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1222 const pm_event *cnt = &pm_events[i]; 1223 assert(cnt->number <= MAX_EVENT_ID); 1224 /* We do not currently support events in the 0x40xx range */ 1225 assert(cnt->number <= 0x3f); 1226 1227 if (cnt->supported(&cpu->env)) { 1228 supported_event_map[cnt->number] = i; 1229 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1230 if (cnt->number & 0x20) { 1231 cpu->pmceid1 |= event_mask; 1232 } else { 1233 cpu->pmceid0 |= event_mask; 1234 } 1235 } 1236 } 1237 } 1238 1239 /* 1240 * Check at runtime whether a PMU event is supported for the current machine 1241 */ 1242 static bool event_supported(uint16_t number) 1243 { 1244 if (number > MAX_EVENT_ID) { 1245 return false; 1246 } 1247 return supported_event_map[number] != UNSUPPORTED_EVENT; 1248 } 1249 1250 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1251 bool isread) 1252 { 1253 /* Performance monitor registers user accessibility is controlled 1254 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1255 * trapping to EL2 or EL3 for other accesses. 1256 */ 1257 int el = arm_current_el(env); 1258 1259 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1260 return CP_ACCESS_TRAP; 1261 } 1262 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1263 && !arm_is_secure_below_el3(env)) { 1264 return CP_ACCESS_TRAP_EL2; 1265 } 1266 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1267 return CP_ACCESS_TRAP_EL3; 1268 } 1269 1270 return CP_ACCESS_OK; 1271 } 1272 1273 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1274 const ARMCPRegInfo *ri, 1275 bool isread) 1276 { 1277 /* ER: event counter read trap control */ 1278 if (arm_feature(env, ARM_FEATURE_V8) 1279 && arm_current_el(env) == 0 1280 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1281 && isread) { 1282 return CP_ACCESS_OK; 1283 } 1284 1285 return pmreg_access(env, ri, isread); 1286 } 1287 1288 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1289 const ARMCPRegInfo *ri, 1290 bool isread) 1291 { 1292 /* SW: software increment write trap control */ 1293 if (arm_feature(env, ARM_FEATURE_V8) 1294 && arm_current_el(env) == 0 1295 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1296 && !isread) { 1297 return CP_ACCESS_OK; 1298 } 1299 1300 return pmreg_access(env, ri, isread); 1301 } 1302 1303 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1304 const ARMCPRegInfo *ri, 1305 bool isread) 1306 { 1307 /* ER: event counter read trap control */ 1308 if (arm_feature(env, ARM_FEATURE_V8) 1309 && arm_current_el(env) == 0 1310 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1311 return CP_ACCESS_OK; 1312 } 1313 1314 return pmreg_access(env, ri, isread); 1315 } 1316 1317 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1318 const ARMCPRegInfo *ri, 1319 bool isread) 1320 { 1321 /* CR: cycle counter read trap control */ 1322 if (arm_feature(env, ARM_FEATURE_V8) 1323 && arm_current_el(env) == 0 1324 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1325 && isread) { 1326 return CP_ACCESS_OK; 1327 } 1328 1329 return pmreg_access(env, ri, isread); 1330 } 1331 1332 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1333 * the current EL, security state, and register configuration. 1334 */ 1335 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1336 { 1337 uint64_t filter; 1338 bool e, p, u, nsk, nsu, nsh, m; 1339 bool enabled, prohibited, filtered; 1340 bool secure = arm_is_secure(env); 1341 int el = arm_current_el(env); 1342 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1343 1344 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1345 return false; 1346 } 1347 1348 if (!arm_feature(env, ARM_FEATURE_EL2) || 1349 (counter < hpmn || counter == 31)) { 1350 e = env->cp15.c9_pmcr & PMCRE; 1351 } else { 1352 e = env->cp15.mdcr_el2 & MDCR_HPME; 1353 } 1354 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1355 1356 if (!secure) { 1357 if (el == 2 && (counter < hpmn || counter == 31)) { 1358 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1359 } else { 1360 prohibited = false; 1361 } 1362 } else { 1363 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1364 (env->cp15.mdcr_el3 & MDCR_SPME); 1365 } 1366 1367 if (prohibited && counter == 31) { 1368 prohibited = env->cp15.c9_pmcr & PMCRDP; 1369 } 1370 1371 if (counter == 31) { 1372 filter = env->cp15.pmccfiltr_el0; 1373 } else { 1374 filter = env->cp15.c14_pmevtyper[counter]; 1375 } 1376 1377 p = filter & PMXEVTYPER_P; 1378 u = filter & PMXEVTYPER_U; 1379 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1380 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1381 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1382 m = arm_el_is_aa64(env, 1) && 1383 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1384 1385 if (el == 0) { 1386 filtered = secure ? u : u != nsu; 1387 } else if (el == 1) { 1388 filtered = secure ? p : p != nsk; 1389 } else if (el == 2) { 1390 filtered = !nsh; 1391 } else { /* EL3 */ 1392 filtered = m != p; 1393 } 1394 1395 if (counter != 31) { 1396 /* 1397 * If not checking PMCCNTR, ensure the counter is setup to an event we 1398 * support 1399 */ 1400 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1401 if (!event_supported(event)) { 1402 return false; 1403 } 1404 } 1405 1406 return enabled && !prohibited && !filtered; 1407 } 1408 1409 static void pmu_update_irq(CPUARMState *env) 1410 { 1411 ARMCPU *cpu = env_archcpu(env); 1412 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1413 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1414 } 1415 1416 /* 1417 * Ensure c15_ccnt is the guest-visible count so that operations such as 1418 * enabling/disabling the counter or filtering, modifying the count itself, 1419 * etc. can be done logically. This is essentially a no-op if the counter is 1420 * not enabled at the time of the call. 1421 */ 1422 static void pmccntr_op_start(CPUARMState *env) 1423 { 1424 uint64_t cycles = cycles_get_count(env); 1425 1426 if (pmu_counter_enabled(env, 31)) { 1427 uint64_t eff_cycles = cycles; 1428 if (env->cp15.c9_pmcr & PMCRD) { 1429 /* Increment once every 64 processor clock cycles */ 1430 eff_cycles /= 64; 1431 } 1432 1433 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1434 1435 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1436 1ull << 63 : 1ull << 31; 1437 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1438 env->cp15.c9_pmovsr |= (1 << 31); 1439 pmu_update_irq(env); 1440 } 1441 1442 env->cp15.c15_ccnt = new_pmccntr; 1443 } 1444 env->cp15.c15_ccnt_delta = cycles; 1445 } 1446 1447 /* 1448 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1449 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1450 * pmccntr_op_start. 1451 */ 1452 static void pmccntr_op_finish(CPUARMState *env) 1453 { 1454 if (pmu_counter_enabled(env, 31)) { 1455 #ifndef CONFIG_USER_ONLY 1456 /* Calculate when the counter will next overflow */ 1457 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1458 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1459 remaining_cycles = (uint32_t)remaining_cycles; 1460 } 1461 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1462 1463 if (overflow_in > 0) { 1464 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1465 overflow_in; 1466 ARMCPU *cpu = env_archcpu(env); 1467 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1468 } 1469 #endif 1470 1471 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1472 if (env->cp15.c9_pmcr & PMCRD) { 1473 /* Increment once every 64 processor clock cycles */ 1474 prev_cycles /= 64; 1475 } 1476 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1477 } 1478 } 1479 1480 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1481 { 1482 1483 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1484 uint64_t count = 0; 1485 if (event_supported(event)) { 1486 uint16_t event_idx = supported_event_map[event]; 1487 count = pm_events[event_idx].get_count(env); 1488 } 1489 1490 if (pmu_counter_enabled(env, counter)) { 1491 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1492 1493 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1494 env->cp15.c9_pmovsr |= (1 << counter); 1495 pmu_update_irq(env); 1496 } 1497 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1498 } 1499 env->cp15.c14_pmevcntr_delta[counter] = count; 1500 } 1501 1502 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1503 { 1504 if (pmu_counter_enabled(env, counter)) { 1505 #ifndef CONFIG_USER_ONLY 1506 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1507 uint16_t event_idx = supported_event_map[event]; 1508 uint64_t delta = UINT32_MAX - 1509 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1510 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1511 1512 if (overflow_in > 0) { 1513 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1514 overflow_in; 1515 ARMCPU *cpu = env_archcpu(env); 1516 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1517 } 1518 #endif 1519 1520 env->cp15.c14_pmevcntr_delta[counter] -= 1521 env->cp15.c14_pmevcntr[counter]; 1522 } 1523 } 1524 1525 void pmu_op_start(CPUARMState *env) 1526 { 1527 unsigned int i; 1528 pmccntr_op_start(env); 1529 for (i = 0; i < pmu_num_counters(env); i++) { 1530 pmevcntr_op_start(env, i); 1531 } 1532 } 1533 1534 void pmu_op_finish(CPUARMState *env) 1535 { 1536 unsigned int i; 1537 pmccntr_op_finish(env); 1538 for (i = 0; i < pmu_num_counters(env); i++) { 1539 pmevcntr_op_finish(env, i); 1540 } 1541 } 1542 1543 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1544 { 1545 pmu_op_start(&cpu->env); 1546 } 1547 1548 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1549 { 1550 pmu_op_finish(&cpu->env); 1551 } 1552 1553 void arm_pmu_timer_cb(void *opaque) 1554 { 1555 ARMCPU *cpu = opaque; 1556 1557 /* 1558 * Update all the counter values based on the current underlying counts, 1559 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1560 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1561 * counter may expire. 1562 */ 1563 pmu_op_start(&cpu->env); 1564 pmu_op_finish(&cpu->env); 1565 } 1566 1567 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1568 uint64_t value) 1569 { 1570 pmu_op_start(env); 1571 1572 if (value & PMCRC) { 1573 /* The counter has been reset */ 1574 env->cp15.c15_ccnt = 0; 1575 } 1576 1577 if (value & PMCRP) { 1578 unsigned int i; 1579 for (i = 0; i < pmu_num_counters(env); i++) { 1580 env->cp15.c14_pmevcntr[i] = 0; 1581 } 1582 } 1583 1584 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1585 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1586 1587 pmu_op_finish(env); 1588 } 1589 1590 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1591 uint64_t value) 1592 { 1593 unsigned int i; 1594 for (i = 0; i < pmu_num_counters(env); i++) { 1595 /* Increment a counter's count iff: */ 1596 if ((value & (1 << i)) && /* counter's bit is set */ 1597 /* counter is enabled and not filtered */ 1598 pmu_counter_enabled(env, i) && 1599 /* counter is SW_INCR */ 1600 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1601 pmevcntr_op_start(env, i); 1602 1603 /* 1604 * Detect if this write causes an overflow since we can't predict 1605 * PMSWINC overflows like we can for other events 1606 */ 1607 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1608 1609 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1610 env->cp15.c9_pmovsr |= (1 << i); 1611 pmu_update_irq(env); 1612 } 1613 1614 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1615 1616 pmevcntr_op_finish(env, i); 1617 } 1618 } 1619 } 1620 1621 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1622 { 1623 uint64_t ret; 1624 pmccntr_op_start(env); 1625 ret = env->cp15.c15_ccnt; 1626 pmccntr_op_finish(env); 1627 return ret; 1628 } 1629 1630 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1631 uint64_t value) 1632 { 1633 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1634 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1635 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1636 * accessed. 1637 */ 1638 env->cp15.c9_pmselr = value & 0x1f; 1639 } 1640 1641 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1642 uint64_t value) 1643 { 1644 pmccntr_op_start(env); 1645 env->cp15.c15_ccnt = value; 1646 pmccntr_op_finish(env); 1647 } 1648 1649 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1650 uint64_t value) 1651 { 1652 uint64_t cur_val = pmccntr_read(env, NULL); 1653 1654 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1655 } 1656 1657 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1658 uint64_t value) 1659 { 1660 pmccntr_op_start(env); 1661 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1662 pmccntr_op_finish(env); 1663 } 1664 1665 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1666 uint64_t value) 1667 { 1668 pmccntr_op_start(env); 1669 /* M is not accessible from AArch32 */ 1670 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1671 (value & PMCCFILTR); 1672 pmccntr_op_finish(env); 1673 } 1674 1675 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1676 { 1677 /* M is not visible in AArch32 */ 1678 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1679 } 1680 1681 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1682 uint64_t value) 1683 { 1684 value &= pmu_counter_mask(env); 1685 env->cp15.c9_pmcnten |= value; 1686 } 1687 1688 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1689 uint64_t value) 1690 { 1691 value &= pmu_counter_mask(env); 1692 env->cp15.c9_pmcnten &= ~value; 1693 } 1694 1695 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1696 uint64_t value) 1697 { 1698 value &= pmu_counter_mask(env); 1699 env->cp15.c9_pmovsr &= ~value; 1700 pmu_update_irq(env); 1701 } 1702 1703 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1704 uint64_t value) 1705 { 1706 value &= pmu_counter_mask(env); 1707 env->cp15.c9_pmovsr |= value; 1708 pmu_update_irq(env); 1709 } 1710 1711 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1712 uint64_t value, const uint8_t counter) 1713 { 1714 if (counter == 31) { 1715 pmccfiltr_write(env, ri, value); 1716 } else if (counter < pmu_num_counters(env)) { 1717 pmevcntr_op_start(env, counter); 1718 1719 /* 1720 * If this counter's event type is changing, store the current 1721 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1722 * pmevcntr_op_finish has the correct baseline when it converts back to 1723 * a delta. 1724 */ 1725 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1726 PMXEVTYPER_EVTCOUNT; 1727 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1728 if (old_event != new_event) { 1729 uint64_t count = 0; 1730 if (event_supported(new_event)) { 1731 uint16_t event_idx = supported_event_map[new_event]; 1732 count = pm_events[event_idx].get_count(env); 1733 } 1734 env->cp15.c14_pmevcntr_delta[counter] = count; 1735 } 1736 1737 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1738 pmevcntr_op_finish(env, counter); 1739 } 1740 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1741 * PMSELR value is equal to or greater than the number of implemented 1742 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1743 */ 1744 } 1745 1746 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1747 const uint8_t counter) 1748 { 1749 if (counter == 31) { 1750 return env->cp15.pmccfiltr_el0; 1751 } else if (counter < pmu_num_counters(env)) { 1752 return env->cp15.c14_pmevtyper[counter]; 1753 } else { 1754 /* 1755 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1756 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1757 */ 1758 return 0; 1759 } 1760 } 1761 1762 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1763 uint64_t value) 1764 { 1765 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1766 pmevtyper_write(env, ri, value, counter); 1767 } 1768 1769 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1770 uint64_t value) 1771 { 1772 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1773 env->cp15.c14_pmevtyper[counter] = value; 1774 1775 /* 1776 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1777 * pmu_op_finish calls when loading saved state for a migration. Because 1778 * we're potentially updating the type of event here, the value written to 1779 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1780 * different counter type. Therefore, we need to set this value to the 1781 * current count for the counter type we're writing so that pmu_op_finish 1782 * has the correct count for its calculation. 1783 */ 1784 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1785 if (event_supported(event)) { 1786 uint16_t event_idx = supported_event_map[event]; 1787 env->cp15.c14_pmevcntr_delta[counter] = 1788 pm_events[event_idx].get_count(env); 1789 } 1790 } 1791 1792 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1793 { 1794 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1795 return pmevtyper_read(env, ri, counter); 1796 } 1797 1798 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1802 } 1803 1804 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1805 { 1806 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1807 } 1808 1809 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1810 uint64_t value, uint8_t counter) 1811 { 1812 if (counter < pmu_num_counters(env)) { 1813 pmevcntr_op_start(env, counter); 1814 env->cp15.c14_pmevcntr[counter] = value; 1815 pmevcntr_op_finish(env, counter); 1816 } 1817 /* 1818 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1819 * are CONSTRAINED UNPREDICTABLE. 1820 */ 1821 } 1822 1823 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1824 uint8_t counter) 1825 { 1826 if (counter < pmu_num_counters(env)) { 1827 uint64_t ret; 1828 pmevcntr_op_start(env, counter); 1829 ret = env->cp15.c14_pmevcntr[counter]; 1830 pmevcntr_op_finish(env, counter); 1831 return ret; 1832 } else { 1833 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1834 * are CONSTRAINED UNPREDICTABLE. */ 1835 return 0; 1836 } 1837 } 1838 1839 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1840 uint64_t value) 1841 { 1842 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1843 pmevcntr_write(env, ri, value, counter); 1844 } 1845 1846 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1847 { 1848 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1849 return pmevcntr_read(env, ri, counter); 1850 } 1851 1852 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1853 uint64_t value) 1854 { 1855 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1856 assert(counter < pmu_num_counters(env)); 1857 env->cp15.c14_pmevcntr[counter] = value; 1858 pmevcntr_write(env, ri, value, counter); 1859 } 1860 1861 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1862 { 1863 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1864 assert(counter < pmu_num_counters(env)); 1865 return env->cp15.c14_pmevcntr[counter]; 1866 } 1867 1868 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1869 uint64_t value) 1870 { 1871 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1872 } 1873 1874 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1875 { 1876 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1877 } 1878 1879 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1880 uint64_t value) 1881 { 1882 if (arm_feature(env, ARM_FEATURE_V8)) { 1883 env->cp15.c9_pmuserenr = value & 0xf; 1884 } else { 1885 env->cp15.c9_pmuserenr = value & 1; 1886 } 1887 } 1888 1889 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1890 uint64_t value) 1891 { 1892 /* We have no event counters so only the C bit can be changed */ 1893 value &= pmu_counter_mask(env); 1894 env->cp15.c9_pminten |= value; 1895 pmu_update_irq(env); 1896 } 1897 1898 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1899 uint64_t value) 1900 { 1901 value &= pmu_counter_mask(env); 1902 env->cp15.c9_pminten &= ~value; 1903 pmu_update_irq(env); 1904 } 1905 1906 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1907 uint64_t value) 1908 { 1909 /* Note that even though the AArch64 view of this register has bits 1910 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1911 * architectural requirements for bits which are RES0 only in some 1912 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1913 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1914 */ 1915 raw_write(env, ri, value & ~0x1FULL); 1916 } 1917 1918 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1919 { 1920 /* Begin with base v8.0 state. */ 1921 uint32_t valid_mask = 0x3fff; 1922 ARMCPU *cpu = env_archcpu(env); 1923 1924 if (arm_el_is_aa64(env, 3)) { 1925 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1926 valid_mask &= ~SCR_NET; 1927 } else { 1928 valid_mask &= ~(SCR_RW | SCR_ST); 1929 } 1930 1931 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1932 valid_mask &= ~SCR_HCE; 1933 1934 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1935 * supported if EL2 exists. The bit is UNK/SBZP when 1936 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1937 * when EL2 is unavailable. 1938 * On ARMv8, this bit is always available. 1939 */ 1940 if (arm_feature(env, ARM_FEATURE_V7) && 1941 !arm_feature(env, ARM_FEATURE_V8)) { 1942 valid_mask &= ~SCR_SMD; 1943 } 1944 } 1945 if (cpu_isar_feature(aa64_lor, cpu)) { 1946 valid_mask |= SCR_TLOR; 1947 } 1948 if (cpu_isar_feature(aa64_pauth, cpu)) { 1949 valid_mask |= SCR_API | SCR_APK; 1950 } 1951 1952 /* Clear all-context RES0 bits. */ 1953 value &= valid_mask; 1954 raw_write(env, ri, value); 1955 } 1956 1957 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1958 const ARMCPRegInfo *ri, 1959 bool isread) 1960 { 1961 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1962 return CP_ACCESS_TRAP_EL2; 1963 } 1964 1965 return CP_ACCESS_OK; 1966 } 1967 1968 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1969 { 1970 ARMCPU *cpu = env_archcpu(env); 1971 1972 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1973 * bank 1974 */ 1975 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1976 ri->secure & ARM_CP_SECSTATE_S); 1977 1978 return cpu->ccsidr[index]; 1979 } 1980 1981 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1982 uint64_t value) 1983 { 1984 raw_write(env, ri, value & 0xf); 1985 } 1986 1987 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1988 { 1989 CPUState *cs = env_cpu(env); 1990 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1991 uint64_t ret = 0; 1992 bool allow_virt = (arm_current_el(env) == 1 && 1993 (!arm_is_secure_below_el3(env) || 1994 (env->cp15.scr_el3 & SCR_EEL2))); 1995 1996 if (allow_virt && (hcr_el2 & HCR_IMO)) { 1997 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1998 ret |= CPSR_I; 1999 } 2000 } else { 2001 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2002 ret |= CPSR_I; 2003 } 2004 } 2005 2006 if (allow_virt && (hcr_el2 & HCR_FMO)) { 2007 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2008 ret |= CPSR_F; 2009 } 2010 } else { 2011 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2012 ret |= CPSR_F; 2013 } 2014 } 2015 2016 /* External aborts are not possible in QEMU so A bit is always clear */ 2017 return ret; 2018 } 2019 2020 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2021 bool isread) 2022 { 2023 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2024 return CP_ACCESS_TRAP_EL2; 2025 } 2026 2027 return CP_ACCESS_OK; 2028 } 2029 2030 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2031 bool isread) 2032 { 2033 if (arm_feature(env, ARM_FEATURE_V8)) { 2034 return access_aa64_tid1(env, ri, isread); 2035 } 2036 2037 return CP_ACCESS_OK; 2038 } 2039 2040 static const ARMCPRegInfo v7_cp_reginfo[] = { 2041 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2042 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2043 .access = PL1_W, .type = ARM_CP_NOP }, 2044 /* Performance monitors are implementation defined in v7, 2045 * but with an ARM recommended set of registers, which we 2046 * follow. 2047 * 2048 * Performance registers fall into three categories: 2049 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2050 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2051 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2052 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2053 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2054 */ 2055 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2056 .access = PL0_RW, .type = ARM_CP_ALIAS, 2057 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2058 .writefn = pmcntenset_write, 2059 .accessfn = pmreg_access, 2060 .raw_writefn = raw_write }, 2061 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2062 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2063 .access = PL0_RW, .accessfn = pmreg_access, 2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2065 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2066 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2067 .access = PL0_RW, 2068 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2069 .accessfn = pmreg_access, 2070 .writefn = pmcntenclr_write, 2071 .type = ARM_CP_ALIAS }, 2072 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2073 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2074 .access = PL0_RW, .accessfn = pmreg_access, 2075 .type = ARM_CP_ALIAS, 2076 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2077 .writefn = pmcntenclr_write }, 2078 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2079 .access = PL0_RW, .type = ARM_CP_IO, 2080 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2081 .accessfn = pmreg_access, 2082 .writefn = pmovsr_write, 2083 .raw_writefn = raw_write }, 2084 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2085 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2086 .access = PL0_RW, .accessfn = pmreg_access, 2087 .type = ARM_CP_ALIAS | ARM_CP_IO, 2088 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2089 .writefn = pmovsr_write, 2090 .raw_writefn = raw_write }, 2091 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2092 .access = PL0_W, .accessfn = pmreg_access_swinc, 2093 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2094 .writefn = pmswinc_write }, 2095 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2096 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2097 .access = PL0_W, .accessfn = pmreg_access_swinc, 2098 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2099 .writefn = pmswinc_write }, 2100 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2101 .access = PL0_RW, .type = ARM_CP_ALIAS, 2102 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2103 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2104 .raw_writefn = raw_write}, 2105 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2106 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2107 .access = PL0_RW, .accessfn = pmreg_access_selr, 2108 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2109 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2110 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2111 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2112 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2113 .accessfn = pmreg_access_ccntr }, 2114 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2115 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2116 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2117 .type = ARM_CP_IO, 2118 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2119 .readfn = pmccntr_read, .writefn = pmccntr_write, 2120 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2121 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2122 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2123 .access = PL0_RW, .accessfn = pmreg_access, 2124 .type = ARM_CP_ALIAS | ARM_CP_IO, 2125 .resetvalue = 0, }, 2126 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2127 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2128 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2129 .access = PL0_RW, .accessfn = pmreg_access, 2130 .type = ARM_CP_IO, 2131 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2132 .resetvalue = 0, }, 2133 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2134 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2135 .accessfn = pmreg_access, 2136 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2137 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2139 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2140 .accessfn = pmreg_access, 2141 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2142 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .accessfn = pmreg_access_xevcntr, 2145 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2146 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2147 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2148 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2149 .accessfn = pmreg_access_xevcntr, 2150 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2151 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2152 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2153 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2154 .resetvalue = 0, 2155 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2156 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2157 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2158 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2159 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2160 .resetvalue = 0, 2161 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2162 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2163 .access = PL1_RW, .accessfn = access_tpm, 2164 .type = ARM_CP_ALIAS | ARM_CP_IO, 2165 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2166 .resetvalue = 0, 2167 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2168 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2169 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2170 .access = PL1_RW, .accessfn = access_tpm, 2171 .type = ARM_CP_IO, 2172 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2173 .writefn = pmintenset_write, .raw_writefn = raw_write, 2174 .resetvalue = 0x0 }, 2175 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2176 .access = PL1_RW, .accessfn = access_tpm, 2177 .type = ARM_CP_ALIAS | ARM_CP_IO, 2178 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2179 .writefn = pmintenclr_write, }, 2180 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2181 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2182 .access = PL1_RW, .accessfn = access_tpm, 2183 .type = ARM_CP_ALIAS | ARM_CP_IO, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2185 .writefn = pmintenclr_write }, 2186 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2187 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2188 .access = PL1_R, 2189 .accessfn = access_aa64_tid2, 2190 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2191 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2192 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2193 .access = PL1_RW, 2194 .accessfn = access_aa64_tid2, 2195 .writefn = csselr_write, .resetvalue = 0, 2196 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2197 offsetof(CPUARMState, cp15.csselr_ns) } }, 2198 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2199 * just RAZ for all cores: 2200 */ 2201 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2202 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2203 .access = PL1_R, .type = ARM_CP_CONST, 2204 .accessfn = access_aa64_tid1, 2205 .resetvalue = 0 }, 2206 /* Auxiliary fault status registers: these also are IMPDEF, and we 2207 * choose to RAZ/WI for all cores. 2208 */ 2209 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2210 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2211 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2212 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2213 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2214 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2215 /* MAIR can just read-as-written because we don't implement caches 2216 * and so don't need to care about memory attributes. 2217 */ 2218 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2219 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2220 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2221 .resetvalue = 0 }, 2222 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2223 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2224 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2225 .resetvalue = 0 }, 2226 /* For non-long-descriptor page tables these are PRRR and NMRR; 2227 * regardless they still act as reads-as-written for QEMU. 2228 */ 2229 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2230 * allows them to assign the correct fieldoffset based on the endianness 2231 * handled in the field definitions. 2232 */ 2233 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2234 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 2235 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2236 offsetof(CPUARMState, cp15.mair0_ns) }, 2237 .resetfn = arm_cp_reset_ignore }, 2238 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2239 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2240 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2241 offsetof(CPUARMState, cp15.mair1_ns) }, 2242 .resetfn = arm_cp_reset_ignore }, 2243 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2244 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2245 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2246 /* 32 bit ITLB invalidates */ 2247 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2248 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2249 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2250 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2251 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2252 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2253 /* 32 bit DTLB invalidates */ 2254 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2255 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2256 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2257 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2258 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2259 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2260 /* 32 bit TLB invalidates */ 2261 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2262 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2263 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2264 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2265 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2266 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2267 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2268 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2269 REGINFO_SENTINEL 2270 }; 2271 2272 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2273 /* 32 bit TLB invalidates, Inner Shareable */ 2274 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2276 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2277 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2278 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2279 .type = ARM_CP_NO_RAW, .access = PL1_W, 2280 .writefn = tlbiasid_is_write }, 2281 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2282 .type = ARM_CP_NO_RAW, .access = PL1_W, 2283 .writefn = tlbimvaa_is_write }, 2284 REGINFO_SENTINEL 2285 }; 2286 2287 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2288 /* PMOVSSET is not implemented in v7 before v7ve */ 2289 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2290 .access = PL0_RW, .accessfn = pmreg_access, 2291 .type = ARM_CP_ALIAS | ARM_CP_IO, 2292 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2293 .writefn = pmovsset_write, 2294 .raw_writefn = raw_write }, 2295 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2296 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2297 .access = PL0_RW, .accessfn = pmreg_access, 2298 .type = ARM_CP_ALIAS | ARM_CP_IO, 2299 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2300 .writefn = pmovsset_write, 2301 .raw_writefn = raw_write }, 2302 REGINFO_SENTINEL 2303 }; 2304 2305 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2306 uint64_t value) 2307 { 2308 value &= 1; 2309 env->teecr = value; 2310 } 2311 2312 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2313 bool isread) 2314 { 2315 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2316 return CP_ACCESS_TRAP; 2317 } 2318 return CP_ACCESS_OK; 2319 } 2320 2321 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2322 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2323 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2324 .resetvalue = 0, 2325 .writefn = teecr_write }, 2326 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2327 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2328 .accessfn = teehbr_access, .resetvalue = 0 }, 2329 REGINFO_SENTINEL 2330 }; 2331 2332 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2333 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2334 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2335 .access = PL0_RW, 2336 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2337 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2338 .access = PL0_RW, 2339 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2340 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2341 .resetfn = arm_cp_reset_ignore }, 2342 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2343 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2344 .access = PL0_R|PL1_W, 2345 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2346 .resetvalue = 0}, 2347 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2348 .access = PL0_R|PL1_W, 2349 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2350 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2351 .resetfn = arm_cp_reset_ignore }, 2352 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2353 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2354 .access = PL1_RW, 2355 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2356 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2357 .access = PL1_RW, 2358 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2359 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2360 .resetvalue = 0 }, 2361 REGINFO_SENTINEL 2362 }; 2363 2364 #ifndef CONFIG_USER_ONLY 2365 2366 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2367 bool isread) 2368 { 2369 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2370 * Writable only at the highest implemented exception level. 2371 */ 2372 int el = arm_current_el(env); 2373 uint64_t hcr; 2374 uint32_t cntkctl; 2375 2376 switch (el) { 2377 case 0: 2378 hcr = arm_hcr_el2_eff(env); 2379 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2380 cntkctl = env->cp15.cnthctl_el2; 2381 } else { 2382 cntkctl = env->cp15.c14_cntkctl; 2383 } 2384 if (!extract32(cntkctl, 0, 2)) { 2385 return CP_ACCESS_TRAP; 2386 } 2387 break; 2388 case 1: 2389 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2390 arm_is_secure_below_el3(env)) { 2391 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2392 return CP_ACCESS_TRAP_UNCATEGORIZED; 2393 } 2394 break; 2395 case 2: 2396 case 3: 2397 break; 2398 } 2399 2400 if (!isread && el < arm_highest_el(env)) { 2401 return CP_ACCESS_TRAP_UNCATEGORIZED; 2402 } 2403 2404 return CP_ACCESS_OK; 2405 } 2406 2407 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2408 bool isread) 2409 { 2410 unsigned int cur_el = arm_current_el(env); 2411 bool secure = arm_is_secure(env); 2412 uint64_t hcr = arm_hcr_el2_eff(env); 2413 2414 switch (cur_el) { 2415 case 0: 2416 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2417 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2418 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2419 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2420 } 2421 2422 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2423 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2424 return CP_ACCESS_TRAP; 2425 } 2426 2427 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2428 if (hcr & HCR_E2H) { 2429 if (timeridx == GTIMER_PHYS && 2430 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2431 return CP_ACCESS_TRAP_EL2; 2432 } 2433 } else { 2434 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2435 if (arm_feature(env, ARM_FEATURE_EL2) && 2436 timeridx == GTIMER_PHYS && !secure && 2437 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2438 return CP_ACCESS_TRAP_EL2; 2439 } 2440 } 2441 break; 2442 2443 case 1: 2444 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2445 if (arm_feature(env, ARM_FEATURE_EL2) && 2446 timeridx == GTIMER_PHYS && !secure && 2447 (hcr & HCR_E2H 2448 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2449 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2450 return CP_ACCESS_TRAP_EL2; 2451 } 2452 break; 2453 } 2454 return CP_ACCESS_OK; 2455 } 2456 2457 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2458 bool isread) 2459 { 2460 unsigned int cur_el = arm_current_el(env); 2461 bool secure = arm_is_secure(env); 2462 uint64_t hcr = arm_hcr_el2_eff(env); 2463 2464 switch (cur_el) { 2465 case 0: 2466 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2467 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2468 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2469 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2470 } 2471 2472 /* 2473 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2474 * EL0 if EL0[PV]TEN is zero. 2475 */ 2476 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2477 return CP_ACCESS_TRAP; 2478 } 2479 /* fall through */ 2480 2481 case 1: 2482 if (arm_feature(env, ARM_FEATURE_EL2) && 2483 timeridx == GTIMER_PHYS && !secure) { 2484 if (hcr & HCR_E2H) { 2485 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2486 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2487 return CP_ACCESS_TRAP_EL2; 2488 } 2489 } else { 2490 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2491 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2492 return CP_ACCESS_TRAP_EL2; 2493 } 2494 } 2495 } 2496 break; 2497 } 2498 return CP_ACCESS_OK; 2499 } 2500 2501 static CPAccessResult gt_pct_access(CPUARMState *env, 2502 const ARMCPRegInfo *ri, 2503 bool isread) 2504 { 2505 return gt_counter_access(env, GTIMER_PHYS, isread); 2506 } 2507 2508 static CPAccessResult gt_vct_access(CPUARMState *env, 2509 const ARMCPRegInfo *ri, 2510 bool isread) 2511 { 2512 return gt_counter_access(env, GTIMER_VIRT, isread); 2513 } 2514 2515 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2516 bool isread) 2517 { 2518 return gt_timer_access(env, GTIMER_PHYS, isread); 2519 } 2520 2521 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2522 bool isread) 2523 { 2524 return gt_timer_access(env, GTIMER_VIRT, isread); 2525 } 2526 2527 static CPAccessResult gt_stimer_access(CPUARMState *env, 2528 const ARMCPRegInfo *ri, 2529 bool isread) 2530 { 2531 /* The AArch64 register view of the secure physical timer is 2532 * always accessible from EL3, and configurably accessible from 2533 * Secure EL1. 2534 */ 2535 switch (arm_current_el(env)) { 2536 case 1: 2537 if (!arm_is_secure(env)) { 2538 return CP_ACCESS_TRAP; 2539 } 2540 if (!(env->cp15.scr_el3 & SCR_ST)) { 2541 return CP_ACCESS_TRAP_EL3; 2542 } 2543 return CP_ACCESS_OK; 2544 case 0: 2545 case 2: 2546 return CP_ACCESS_TRAP; 2547 case 3: 2548 return CP_ACCESS_OK; 2549 default: 2550 g_assert_not_reached(); 2551 } 2552 } 2553 2554 static uint64_t gt_get_countervalue(CPUARMState *env) 2555 { 2556 ARMCPU *cpu = env_archcpu(env); 2557 2558 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2559 } 2560 2561 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2562 { 2563 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2564 2565 if (gt->ctl & 1) { 2566 /* Timer enabled: calculate and set current ISTATUS, irq, and 2567 * reset timer to when ISTATUS next has to change 2568 */ 2569 uint64_t offset = timeridx == GTIMER_VIRT ? 2570 cpu->env.cp15.cntvoff_el2 : 0; 2571 uint64_t count = gt_get_countervalue(&cpu->env); 2572 /* Note that this must be unsigned 64 bit arithmetic: */ 2573 int istatus = count - offset >= gt->cval; 2574 uint64_t nexttick; 2575 int irqstate; 2576 2577 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2578 2579 irqstate = (istatus && !(gt->ctl & 2)); 2580 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2581 2582 if (istatus) { 2583 /* Next transition is when count rolls back over to zero */ 2584 nexttick = UINT64_MAX; 2585 } else { 2586 /* Next transition is when we hit cval */ 2587 nexttick = gt->cval + offset; 2588 } 2589 /* Note that the desired next expiry time might be beyond the 2590 * signed-64-bit range of a QEMUTimer -- in this case we just 2591 * set the timer for as far in the future as possible. When the 2592 * timer expires we will reset the timer for any remaining period. 2593 */ 2594 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2595 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2596 } else { 2597 timer_mod(cpu->gt_timer[timeridx], nexttick); 2598 } 2599 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2600 } else { 2601 /* Timer disabled: ISTATUS and timer output always clear */ 2602 gt->ctl &= ~4; 2603 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2604 timer_del(cpu->gt_timer[timeridx]); 2605 trace_arm_gt_recalc_disabled(timeridx); 2606 } 2607 } 2608 2609 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2610 int timeridx) 2611 { 2612 ARMCPU *cpu = env_archcpu(env); 2613 2614 timer_del(cpu->gt_timer[timeridx]); 2615 } 2616 2617 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2618 { 2619 return gt_get_countervalue(env); 2620 } 2621 2622 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2623 { 2624 uint64_t hcr; 2625 2626 switch (arm_current_el(env)) { 2627 case 2: 2628 hcr = arm_hcr_el2_eff(env); 2629 if (hcr & HCR_E2H) { 2630 return 0; 2631 } 2632 break; 2633 case 0: 2634 hcr = arm_hcr_el2_eff(env); 2635 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2636 return 0; 2637 } 2638 break; 2639 } 2640 2641 return env->cp15.cntvoff_el2; 2642 } 2643 2644 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2645 { 2646 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2647 } 2648 2649 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2650 int timeridx, 2651 uint64_t value) 2652 { 2653 trace_arm_gt_cval_write(timeridx, value); 2654 env->cp15.c14_timer[timeridx].cval = value; 2655 gt_recalc_timer(env_archcpu(env), timeridx); 2656 } 2657 2658 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2659 int timeridx) 2660 { 2661 uint64_t offset = 0; 2662 2663 switch (timeridx) { 2664 case GTIMER_VIRT: 2665 case GTIMER_HYPVIRT: 2666 offset = gt_virt_cnt_offset(env); 2667 break; 2668 } 2669 2670 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2671 (gt_get_countervalue(env) - offset)); 2672 } 2673 2674 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2675 int timeridx, 2676 uint64_t value) 2677 { 2678 uint64_t offset = 0; 2679 2680 switch (timeridx) { 2681 case GTIMER_VIRT: 2682 case GTIMER_HYPVIRT: 2683 offset = gt_virt_cnt_offset(env); 2684 break; 2685 } 2686 2687 trace_arm_gt_tval_write(timeridx, value); 2688 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2689 sextract64(value, 0, 32); 2690 gt_recalc_timer(env_archcpu(env), timeridx); 2691 } 2692 2693 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2694 int timeridx, 2695 uint64_t value) 2696 { 2697 ARMCPU *cpu = env_archcpu(env); 2698 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2699 2700 trace_arm_gt_ctl_write(timeridx, value); 2701 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2702 if ((oldval ^ value) & 1) { 2703 /* Enable toggled */ 2704 gt_recalc_timer(cpu, timeridx); 2705 } else if ((oldval ^ value) & 2) { 2706 /* IMASK toggled: don't need to recalculate, 2707 * just set the interrupt line based on ISTATUS 2708 */ 2709 int irqstate = (oldval & 4) && !(value & 2); 2710 2711 trace_arm_gt_imask_toggle(timeridx, irqstate); 2712 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2713 } 2714 } 2715 2716 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2717 { 2718 gt_timer_reset(env, ri, GTIMER_PHYS); 2719 } 2720 2721 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2722 uint64_t value) 2723 { 2724 gt_cval_write(env, ri, GTIMER_PHYS, value); 2725 } 2726 2727 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2728 { 2729 return gt_tval_read(env, ri, GTIMER_PHYS); 2730 } 2731 2732 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2733 uint64_t value) 2734 { 2735 gt_tval_write(env, ri, GTIMER_PHYS, value); 2736 } 2737 2738 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2739 uint64_t value) 2740 { 2741 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2742 } 2743 2744 static int gt_phys_redir_timeridx(CPUARMState *env) 2745 { 2746 switch (arm_mmu_idx(env)) { 2747 case ARMMMUIdx_E20_0: 2748 case ARMMMUIdx_E20_2: 2749 case ARMMMUIdx_E20_2_PAN: 2750 return GTIMER_HYP; 2751 default: 2752 return GTIMER_PHYS; 2753 } 2754 } 2755 2756 static int gt_virt_redir_timeridx(CPUARMState *env) 2757 { 2758 switch (arm_mmu_idx(env)) { 2759 case ARMMMUIdx_E20_0: 2760 case ARMMMUIdx_E20_2: 2761 case ARMMMUIdx_E20_2_PAN: 2762 return GTIMER_HYPVIRT; 2763 default: 2764 return GTIMER_VIRT; 2765 } 2766 } 2767 2768 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2769 const ARMCPRegInfo *ri) 2770 { 2771 int timeridx = gt_phys_redir_timeridx(env); 2772 return env->cp15.c14_timer[timeridx].cval; 2773 } 2774 2775 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2776 uint64_t value) 2777 { 2778 int timeridx = gt_phys_redir_timeridx(env); 2779 gt_cval_write(env, ri, timeridx, value); 2780 } 2781 2782 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2783 const ARMCPRegInfo *ri) 2784 { 2785 int timeridx = gt_phys_redir_timeridx(env); 2786 return gt_tval_read(env, ri, timeridx); 2787 } 2788 2789 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2790 uint64_t value) 2791 { 2792 int timeridx = gt_phys_redir_timeridx(env); 2793 gt_tval_write(env, ri, timeridx, value); 2794 } 2795 2796 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2797 const ARMCPRegInfo *ri) 2798 { 2799 int timeridx = gt_phys_redir_timeridx(env); 2800 return env->cp15.c14_timer[timeridx].ctl; 2801 } 2802 2803 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2804 uint64_t value) 2805 { 2806 int timeridx = gt_phys_redir_timeridx(env); 2807 gt_ctl_write(env, ri, timeridx, value); 2808 } 2809 2810 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2811 { 2812 gt_timer_reset(env, ri, GTIMER_VIRT); 2813 } 2814 2815 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2816 uint64_t value) 2817 { 2818 gt_cval_write(env, ri, GTIMER_VIRT, value); 2819 } 2820 2821 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2822 { 2823 return gt_tval_read(env, ri, GTIMER_VIRT); 2824 } 2825 2826 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2827 uint64_t value) 2828 { 2829 gt_tval_write(env, ri, GTIMER_VIRT, value); 2830 } 2831 2832 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2833 uint64_t value) 2834 { 2835 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2836 } 2837 2838 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 ARMCPU *cpu = env_archcpu(env); 2842 2843 trace_arm_gt_cntvoff_write(value); 2844 raw_write(env, ri, value); 2845 gt_recalc_timer(cpu, GTIMER_VIRT); 2846 } 2847 2848 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2849 const ARMCPRegInfo *ri) 2850 { 2851 int timeridx = gt_virt_redir_timeridx(env); 2852 return env->cp15.c14_timer[timeridx].cval; 2853 } 2854 2855 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 int timeridx = gt_virt_redir_timeridx(env); 2859 gt_cval_write(env, ri, timeridx, value); 2860 } 2861 2862 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2863 const ARMCPRegInfo *ri) 2864 { 2865 int timeridx = gt_virt_redir_timeridx(env); 2866 return gt_tval_read(env, ri, timeridx); 2867 } 2868 2869 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2870 uint64_t value) 2871 { 2872 int timeridx = gt_virt_redir_timeridx(env); 2873 gt_tval_write(env, ri, timeridx, value); 2874 } 2875 2876 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2877 const ARMCPRegInfo *ri) 2878 { 2879 int timeridx = gt_virt_redir_timeridx(env); 2880 return env->cp15.c14_timer[timeridx].ctl; 2881 } 2882 2883 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2884 uint64_t value) 2885 { 2886 int timeridx = gt_virt_redir_timeridx(env); 2887 gt_ctl_write(env, ri, timeridx, value); 2888 } 2889 2890 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2891 { 2892 gt_timer_reset(env, ri, GTIMER_HYP); 2893 } 2894 2895 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2896 uint64_t value) 2897 { 2898 gt_cval_write(env, ri, GTIMER_HYP, value); 2899 } 2900 2901 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2902 { 2903 return gt_tval_read(env, ri, GTIMER_HYP); 2904 } 2905 2906 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2907 uint64_t value) 2908 { 2909 gt_tval_write(env, ri, GTIMER_HYP, value); 2910 } 2911 2912 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2913 uint64_t value) 2914 { 2915 gt_ctl_write(env, ri, GTIMER_HYP, value); 2916 } 2917 2918 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2919 { 2920 gt_timer_reset(env, ri, GTIMER_SEC); 2921 } 2922 2923 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2924 uint64_t value) 2925 { 2926 gt_cval_write(env, ri, GTIMER_SEC, value); 2927 } 2928 2929 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2930 { 2931 return gt_tval_read(env, ri, GTIMER_SEC); 2932 } 2933 2934 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2935 uint64_t value) 2936 { 2937 gt_tval_write(env, ri, GTIMER_SEC, value); 2938 } 2939 2940 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2941 uint64_t value) 2942 { 2943 gt_ctl_write(env, ri, GTIMER_SEC, value); 2944 } 2945 2946 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2947 { 2948 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2949 } 2950 2951 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2952 uint64_t value) 2953 { 2954 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2955 } 2956 2957 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2958 { 2959 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2960 } 2961 2962 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2963 uint64_t value) 2964 { 2965 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2966 } 2967 2968 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2969 uint64_t value) 2970 { 2971 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2972 } 2973 2974 void arm_gt_ptimer_cb(void *opaque) 2975 { 2976 ARMCPU *cpu = opaque; 2977 2978 gt_recalc_timer(cpu, GTIMER_PHYS); 2979 } 2980 2981 void arm_gt_vtimer_cb(void *opaque) 2982 { 2983 ARMCPU *cpu = opaque; 2984 2985 gt_recalc_timer(cpu, GTIMER_VIRT); 2986 } 2987 2988 void arm_gt_htimer_cb(void *opaque) 2989 { 2990 ARMCPU *cpu = opaque; 2991 2992 gt_recalc_timer(cpu, GTIMER_HYP); 2993 } 2994 2995 void arm_gt_stimer_cb(void *opaque) 2996 { 2997 ARMCPU *cpu = opaque; 2998 2999 gt_recalc_timer(cpu, GTIMER_SEC); 3000 } 3001 3002 void arm_gt_hvtimer_cb(void *opaque) 3003 { 3004 ARMCPU *cpu = opaque; 3005 3006 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3007 } 3008 3009 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3010 { 3011 ARMCPU *cpu = env_archcpu(env); 3012 3013 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3014 } 3015 3016 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3017 /* Note that CNTFRQ is purely reads-as-written for the benefit 3018 * of software; writing it doesn't actually change the timer frequency. 3019 * Our reset value matches the fixed frequency we implement the timer at. 3020 */ 3021 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3022 .type = ARM_CP_ALIAS, 3023 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3024 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3025 }, 3026 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3027 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3028 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3029 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3030 .resetfn = arm_gt_cntfrq_reset, 3031 }, 3032 /* overall control: mostly access permissions */ 3033 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3034 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3035 .access = PL1_RW, 3036 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3037 .resetvalue = 0, 3038 }, 3039 /* per-timer control */ 3040 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3041 .secure = ARM_CP_SECSTATE_NS, 3042 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3043 .accessfn = gt_ptimer_access, 3044 .fieldoffset = offsetoflow32(CPUARMState, 3045 cp15.c14_timer[GTIMER_PHYS].ctl), 3046 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3047 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3048 }, 3049 { .name = "CNTP_CTL_S", 3050 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3051 .secure = ARM_CP_SECSTATE_S, 3052 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3053 .accessfn = gt_ptimer_access, 3054 .fieldoffset = offsetoflow32(CPUARMState, 3055 cp15.c14_timer[GTIMER_SEC].ctl), 3056 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3057 }, 3058 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3059 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3060 .type = ARM_CP_IO, .access = PL0_RW, 3061 .accessfn = gt_ptimer_access, 3062 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3063 .resetvalue = 0, 3064 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3065 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3066 }, 3067 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3068 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3069 .accessfn = gt_vtimer_access, 3070 .fieldoffset = offsetoflow32(CPUARMState, 3071 cp15.c14_timer[GTIMER_VIRT].ctl), 3072 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3073 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3074 }, 3075 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3076 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3077 .type = ARM_CP_IO, .access = PL0_RW, 3078 .accessfn = gt_vtimer_access, 3079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3080 .resetvalue = 0, 3081 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3082 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3083 }, 3084 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3085 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3086 .secure = ARM_CP_SECSTATE_NS, 3087 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3088 .accessfn = gt_ptimer_access, 3089 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3090 }, 3091 { .name = "CNTP_TVAL_S", 3092 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3093 .secure = ARM_CP_SECSTATE_S, 3094 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3095 .accessfn = gt_ptimer_access, 3096 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3097 }, 3098 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3099 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3100 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3101 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3102 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3103 }, 3104 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3105 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3106 .accessfn = gt_vtimer_access, 3107 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3108 }, 3109 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3110 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3111 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3112 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3113 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3114 }, 3115 /* The counter itself */ 3116 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3117 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3118 .accessfn = gt_pct_access, 3119 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3120 }, 3121 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3122 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3123 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3124 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3125 }, 3126 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3127 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3128 .accessfn = gt_vct_access, 3129 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3130 }, 3131 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3132 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3133 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3134 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3135 }, 3136 /* Comparison value, indicating when the timer goes off */ 3137 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3138 .secure = ARM_CP_SECSTATE_NS, 3139 .access = PL0_RW, 3140 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3141 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3142 .accessfn = gt_ptimer_access, 3143 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3144 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3145 }, 3146 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3147 .secure = ARM_CP_SECSTATE_S, 3148 .access = PL0_RW, 3149 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3150 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3151 .accessfn = gt_ptimer_access, 3152 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3153 }, 3154 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3155 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3156 .access = PL0_RW, 3157 .type = ARM_CP_IO, 3158 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3159 .resetvalue = 0, .accessfn = gt_ptimer_access, 3160 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3161 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3162 }, 3163 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3164 .access = PL0_RW, 3165 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3166 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3167 .accessfn = gt_vtimer_access, 3168 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3169 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3170 }, 3171 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3172 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3173 .access = PL0_RW, 3174 .type = ARM_CP_IO, 3175 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3176 .resetvalue = 0, .accessfn = gt_vtimer_access, 3177 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3178 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3179 }, 3180 /* Secure timer -- this is actually restricted to only EL3 3181 * and configurably Secure-EL1 via the accessfn. 3182 */ 3183 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3184 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3185 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3186 .accessfn = gt_stimer_access, 3187 .readfn = gt_sec_tval_read, 3188 .writefn = gt_sec_tval_write, 3189 .resetfn = gt_sec_timer_reset, 3190 }, 3191 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3192 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3193 .type = ARM_CP_IO, .access = PL1_RW, 3194 .accessfn = gt_stimer_access, 3195 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3196 .resetvalue = 0, 3197 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3198 }, 3199 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3200 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3201 .type = ARM_CP_IO, .access = PL1_RW, 3202 .accessfn = gt_stimer_access, 3203 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3204 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3205 }, 3206 REGINFO_SENTINEL 3207 }; 3208 3209 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3210 bool isread) 3211 { 3212 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3213 return CP_ACCESS_TRAP; 3214 } 3215 return CP_ACCESS_OK; 3216 } 3217 3218 #else 3219 3220 /* In user-mode most of the generic timer registers are inaccessible 3221 * however modern kernels (4.12+) allow access to cntvct_el0 3222 */ 3223 3224 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3225 { 3226 ARMCPU *cpu = env_archcpu(env); 3227 3228 /* Currently we have no support for QEMUTimer in linux-user so we 3229 * can't call gt_get_countervalue(env), instead we directly 3230 * call the lower level functions. 3231 */ 3232 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3233 } 3234 3235 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3236 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3238 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3239 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3240 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3241 }, 3242 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3243 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3244 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3245 .readfn = gt_virt_cnt_read, 3246 }, 3247 REGINFO_SENTINEL 3248 }; 3249 3250 #endif 3251 3252 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3253 { 3254 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3255 raw_write(env, ri, value); 3256 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3257 raw_write(env, ri, value & 0xfffff6ff); 3258 } else { 3259 raw_write(env, ri, value & 0xfffff1ff); 3260 } 3261 } 3262 3263 #ifndef CONFIG_USER_ONLY 3264 /* get_phys_addr() isn't present for user-mode-only targets */ 3265 3266 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3267 bool isread) 3268 { 3269 if (ri->opc2 & 4) { 3270 /* The ATS12NSO* operations must trap to EL3 if executed in 3271 * Secure EL1 (which can only happen if EL3 is AArch64). 3272 * They are simply UNDEF if executed from NS EL1. 3273 * They function normally from EL2 or EL3. 3274 */ 3275 if (arm_current_el(env) == 1) { 3276 if (arm_is_secure_below_el3(env)) { 3277 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3278 } 3279 return CP_ACCESS_TRAP_UNCATEGORIZED; 3280 } 3281 } 3282 return CP_ACCESS_OK; 3283 } 3284 3285 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3286 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3287 { 3288 hwaddr phys_addr; 3289 target_ulong page_size; 3290 int prot; 3291 bool ret; 3292 uint64_t par64; 3293 bool format64 = false; 3294 MemTxAttrs attrs = {}; 3295 ARMMMUFaultInfo fi = {}; 3296 ARMCacheAttrs cacheattrs = {}; 3297 3298 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3299 &prot, &page_size, &fi, &cacheattrs); 3300 3301 if (ret) { 3302 /* 3303 * Some kinds of translation fault must cause exceptions rather 3304 * than being reported in the PAR. 3305 */ 3306 int current_el = arm_current_el(env); 3307 int target_el; 3308 uint32_t syn, fsr, fsc; 3309 bool take_exc = false; 3310 3311 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3312 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3313 /* 3314 * Synchronous stage 2 fault on an access made as part of the 3315 * translation table walk for AT S1E0* or AT S1E1* insn 3316 * executed from NS EL1. If this is a synchronous external abort 3317 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3318 * to EL3. Otherwise the fault is taken as an exception to EL2, 3319 * and HPFAR_EL2 holds the faulting IPA. 3320 */ 3321 if (fi.type == ARMFault_SyncExternalOnWalk && 3322 (env->cp15.scr_el3 & SCR_EA)) { 3323 target_el = 3; 3324 } else { 3325 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3326 target_el = 2; 3327 } 3328 take_exc = true; 3329 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3330 /* 3331 * Synchronous external aborts during a translation table walk 3332 * are taken as Data Abort exceptions. 3333 */ 3334 if (fi.stage2) { 3335 if (current_el == 3) { 3336 target_el = 3; 3337 } else { 3338 target_el = 2; 3339 } 3340 } else { 3341 target_el = exception_target_el(env); 3342 } 3343 take_exc = true; 3344 } 3345 3346 if (take_exc) { 3347 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3348 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3349 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3350 fsr = arm_fi_to_lfsc(&fi); 3351 fsc = extract32(fsr, 0, 6); 3352 } else { 3353 fsr = arm_fi_to_sfsc(&fi); 3354 fsc = 0x3f; 3355 } 3356 /* 3357 * Report exception with ESR indicating a fault due to a 3358 * translation table walk for a cache maintenance instruction. 3359 */ 3360 syn = syn_data_abort_no_iss(current_el == target_el, 3361 fi.ea, 1, fi.s1ptw, 1, fsc); 3362 env->exception.vaddress = value; 3363 env->exception.fsr = fsr; 3364 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3365 } 3366 } 3367 3368 if (is_a64(env)) { 3369 format64 = true; 3370 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3371 /* 3372 * ATS1Cxx: 3373 * * TTBCR.EAE determines whether the result is returned using the 3374 * 32-bit or the 64-bit PAR format 3375 * * Instructions executed in Hyp mode always use the 64bit format 3376 * 3377 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3378 * * The Non-secure TTBCR.EAE bit is set to 1 3379 * * The implementation includes EL2, and the value of HCR.VM is 1 3380 * 3381 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3382 * 3383 * ATS1Hx always uses the 64bit format. 3384 */ 3385 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3386 3387 if (arm_feature(env, ARM_FEATURE_EL2)) { 3388 if (mmu_idx == ARMMMUIdx_E10_0 || 3389 mmu_idx == ARMMMUIdx_E10_1 || 3390 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3391 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3392 } else { 3393 format64 |= arm_current_el(env) == 2; 3394 } 3395 } 3396 } 3397 3398 if (format64) { 3399 /* Create a 64-bit PAR */ 3400 par64 = (1 << 11); /* LPAE bit always set */ 3401 if (!ret) { 3402 par64 |= phys_addr & ~0xfffULL; 3403 if (!attrs.secure) { 3404 par64 |= (1 << 9); /* NS */ 3405 } 3406 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3407 par64 |= cacheattrs.shareability << 7; /* SH */ 3408 } else { 3409 uint32_t fsr = arm_fi_to_lfsc(&fi); 3410 3411 par64 |= 1; /* F */ 3412 par64 |= (fsr & 0x3f) << 1; /* FS */ 3413 if (fi.stage2) { 3414 par64 |= (1 << 9); /* S */ 3415 } 3416 if (fi.s1ptw) { 3417 par64 |= (1 << 8); /* PTW */ 3418 } 3419 } 3420 } else { 3421 /* fsr is a DFSR/IFSR value for the short descriptor 3422 * translation table format (with WnR always clear). 3423 * Convert it to a 32-bit PAR. 3424 */ 3425 if (!ret) { 3426 /* We do not set any attribute bits in the PAR */ 3427 if (page_size == (1 << 24) 3428 && arm_feature(env, ARM_FEATURE_V7)) { 3429 par64 = (phys_addr & 0xff000000) | (1 << 1); 3430 } else { 3431 par64 = phys_addr & 0xfffff000; 3432 } 3433 if (!attrs.secure) { 3434 par64 |= (1 << 9); /* NS */ 3435 } 3436 } else { 3437 uint32_t fsr = arm_fi_to_sfsc(&fi); 3438 3439 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3440 ((fsr & 0xf) << 1) | 1; 3441 } 3442 } 3443 return par64; 3444 } 3445 3446 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3447 { 3448 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3449 uint64_t par64; 3450 ARMMMUIdx mmu_idx; 3451 int el = arm_current_el(env); 3452 bool secure = arm_is_secure_below_el3(env); 3453 3454 switch (ri->opc2 & 6) { 3455 case 0: 3456 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3457 switch (el) { 3458 case 3: 3459 mmu_idx = ARMMMUIdx_SE3; 3460 break; 3461 case 2: 3462 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */ 3463 /* fall through */ 3464 case 1: 3465 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3466 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3467 : ARMMMUIdx_Stage1_E1_PAN); 3468 } else { 3469 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3470 } 3471 break; 3472 default: 3473 g_assert_not_reached(); 3474 } 3475 break; 3476 case 2: 3477 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3478 switch (el) { 3479 case 3: 3480 mmu_idx = ARMMMUIdx_SE10_0; 3481 break; 3482 case 2: 3483 mmu_idx = ARMMMUIdx_Stage1_E0; 3484 break; 3485 case 1: 3486 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3487 break; 3488 default: 3489 g_assert_not_reached(); 3490 } 3491 break; 3492 case 4: 3493 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3494 mmu_idx = ARMMMUIdx_E10_1; 3495 break; 3496 case 6: 3497 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3498 mmu_idx = ARMMMUIdx_E10_0; 3499 break; 3500 default: 3501 g_assert_not_reached(); 3502 } 3503 3504 par64 = do_ats_write(env, value, access_type, mmu_idx); 3505 3506 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3507 } 3508 3509 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3510 uint64_t value) 3511 { 3512 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3513 uint64_t par64; 3514 3515 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3516 3517 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3518 } 3519 3520 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3521 bool isread) 3522 { 3523 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3524 return CP_ACCESS_TRAP; 3525 } 3526 return CP_ACCESS_OK; 3527 } 3528 3529 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3530 uint64_t value) 3531 { 3532 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3533 ARMMMUIdx mmu_idx; 3534 int secure = arm_is_secure_below_el3(env); 3535 3536 switch (ri->opc2 & 6) { 3537 case 0: 3538 switch (ri->opc1) { 3539 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3540 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3541 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3542 : ARMMMUIdx_Stage1_E1_PAN); 3543 } else { 3544 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3545 } 3546 break; 3547 case 4: /* AT S1E2R, AT S1E2W */ 3548 mmu_idx = ARMMMUIdx_E2; 3549 break; 3550 case 6: /* AT S1E3R, AT S1E3W */ 3551 mmu_idx = ARMMMUIdx_SE3; 3552 break; 3553 default: 3554 g_assert_not_reached(); 3555 } 3556 break; 3557 case 2: /* AT S1E0R, AT S1E0W */ 3558 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3559 break; 3560 case 4: /* AT S12E1R, AT S12E1W */ 3561 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3562 break; 3563 case 6: /* AT S12E0R, AT S12E0W */ 3564 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3565 break; 3566 default: 3567 g_assert_not_reached(); 3568 } 3569 3570 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3571 } 3572 #endif 3573 3574 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3575 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3576 .access = PL1_RW, .resetvalue = 0, 3577 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3578 offsetoflow32(CPUARMState, cp15.par_ns) }, 3579 .writefn = par_write }, 3580 #ifndef CONFIG_USER_ONLY 3581 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3582 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3583 .access = PL1_W, .accessfn = ats_access, 3584 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3585 #endif 3586 REGINFO_SENTINEL 3587 }; 3588 3589 /* Return basic MPU access permission bits. */ 3590 static uint32_t simple_mpu_ap_bits(uint32_t val) 3591 { 3592 uint32_t ret; 3593 uint32_t mask; 3594 int i; 3595 ret = 0; 3596 mask = 3; 3597 for (i = 0; i < 16; i += 2) { 3598 ret |= (val >> i) & mask; 3599 mask <<= 2; 3600 } 3601 return ret; 3602 } 3603 3604 /* Pad basic MPU access permission bits to extended format. */ 3605 static uint32_t extended_mpu_ap_bits(uint32_t val) 3606 { 3607 uint32_t ret; 3608 uint32_t mask; 3609 int i; 3610 ret = 0; 3611 mask = 3; 3612 for (i = 0; i < 16; i += 2) { 3613 ret |= (val & mask) << i; 3614 mask <<= 2; 3615 } 3616 return ret; 3617 } 3618 3619 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3620 uint64_t value) 3621 { 3622 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3623 } 3624 3625 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3626 { 3627 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3628 } 3629 3630 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3631 uint64_t value) 3632 { 3633 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3634 } 3635 3636 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3637 { 3638 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3639 } 3640 3641 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3642 { 3643 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3644 3645 if (!u32p) { 3646 return 0; 3647 } 3648 3649 u32p += env->pmsav7.rnr[M_REG_NS]; 3650 return *u32p; 3651 } 3652 3653 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3654 uint64_t value) 3655 { 3656 ARMCPU *cpu = env_archcpu(env); 3657 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3658 3659 if (!u32p) { 3660 return; 3661 } 3662 3663 u32p += env->pmsav7.rnr[M_REG_NS]; 3664 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3665 *u32p = value; 3666 } 3667 3668 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3669 uint64_t value) 3670 { 3671 ARMCPU *cpu = env_archcpu(env); 3672 uint32_t nrgs = cpu->pmsav7_dregion; 3673 3674 if (value >= nrgs) { 3675 qemu_log_mask(LOG_GUEST_ERROR, 3676 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3677 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3678 return; 3679 } 3680 3681 raw_write(env, ri, value); 3682 } 3683 3684 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3685 /* Reset for all these registers is handled in arm_cpu_reset(), 3686 * because the PMSAv7 is also used by M-profile CPUs, which do 3687 * not register cpregs but still need the state to be reset. 3688 */ 3689 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3690 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3691 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3692 .readfn = pmsav7_read, .writefn = pmsav7_write, 3693 .resetfn = arm_cp_reset_ignore }, 3694 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3695 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3696 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3697 .readfn = pmsav7_read, .writefn = pmsav7_write, 3698 .resetfn = arm_cp_reset_ignore }, 3699 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3700 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3701 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3702 .readfn = pmsav7_read, .writefn = pmsav7_write, 3703 .resetfn = arm_cp_reset_ignore }, 3704 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3705 .access = PL1_RW, 3706 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3707 .writefn = pmsav7_rgnr_write, 3708 .resetfn = arm_cp_reset_ignore }, 3709 REGINFO_SENTINEL 3710 }; 3711 3712 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3713 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3714 .access = PL1_RW, .type = ARM_CP_ALIAS, 3715 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3716 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3717 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3718 .access = PL1_RW, .type = ARM_CP_ALIAS, 3719 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3720 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3721 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3722 .access = PL1_RW, 3723 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3724 .resetvalue = 0, }, 3725 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3726 .access = PL1_RW, 3727 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3728 .resetvalue = 0, }, 3729 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3730 .access = PL1_RW, 3731 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3732 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3733 .access = PL1_RW, 3734 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3735 /* Protection region base and size registers */ 3736 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3737 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3738 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3739 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3740 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3741 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3742 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3743 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3744 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3745 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3746 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3747 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3748 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3749 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3750 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3751 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3752 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3753 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3754 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3755 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3756 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3757 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3758 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3759 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3760 REGINFO_SENTINEL 3761 }; 3762 3763 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3764 uint64_t value) 3765 { 3766 TCR *tcr = raw_ptr(env, ri); 3767 int maskshift = extract32(value, 0, 3); 3768 3769 if (!arm_feature(env, ARM_FEATURE_V8)) { 3770 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3771 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3772 * using Long-desciptor translation table format */ 3773 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3774 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3775 /* In an implementation that includes the Security Extensions 3776 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3777 * Short-descriptor translation table format. 3778 */ 3779 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3780 } else { 3781 value &= TTBCR_N; 3782 } 3783 } 3784 3785 /* Update the masks corresponding to the TCR bank being written 3786 * Note that we always calculate mask and base_mask, but 3787 * they are only used for short-descriptor tables (ie if EAE is 0); 3788 * for long-descriptor tables the TCR fields are used differently 3789 * and the mask and base_mask values are meaningless. 3790 */ 3791 tcr->raw_tcr = value; 3792 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3793 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3794 } 3795 3796 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3797 uint64_t value) 3798 { 3799 ARMCPU *cpu = env_archcpu(env); 3800 TCR *tcr = raw_ptr(env, ri); 3801 3802 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3803 /* With LPAE the TTBCR could result in a change of ASID 3804 * via the TTBCR.A1 bit, so do a TLB flush. 3805 */ 3806 tlb_flush(CPU(cpu)); 3807 } 3808 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3809 value = deposit64(tcr->raw_tcr, 0, 32, value); 3810 vmsa_ttbcr_raw_write(env, ri, value); 3811 } 3812 3813 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3814 { 3815 TCR *tcr = raw_ptr(env, ri); 3816 3817 /* Reset both the TCR as well as the masks corresponding to the bank of 3818 * the TCR being reset. 3819 */ 3820 tcr->raw_tcr = 0; 3821 tcr->mask = 0; 3822 tcr->base_mask = 0xffffc000u; 3823 } 3824 3825 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3826 uint64_t value) 3827 { 3828 ARMCPU *cpu = env_archcpu(env); 3829 TCR *tcr = raw_ptr(env, ri); 3830 3831 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3832 tlb_flush(CPU(cpu)); 3833 tcr->raw_tcr = value; 3834 } 3835 3836 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3837 uint64_t value) 3838 { 3839 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3840 if (cpreg_field_is_64bit(ri) && 3841 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3842 ARMCPU *cpu = env_archcpu(env); 3843 tlb_flush(CPU(cpu)); 3844 } 3845 raw_write(env, ri, value); 3846 } 3847 3848 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3849 uint64_t value) 3850 { 3851 /* 3852 * If we are running with E2&0 regime, then an ASID is active. 3853 * Flush if that might be changing. Note we're not checking 3854 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3855 * holds the active ASID, only checking the field that might. 3856 */ 3857 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3858 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3859 tlb_flush_by_mmuidx(env_cpu(env), 3860 ARMMMUIdxBit_E20_2 | 3861 ARMMMUIdxBit_E20_2_PAN | 3862 ARMMMUIdxBit_E20_0); 3863 } 3864 raw_write(env, ri, value); 3865 } 3866 3867 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3868 uint64_t value) 3869 { 3870 ARMCPU *cpu = env_archcpu(env); 3871 CPUState *cs = CPU(cpu); 3872 3873 /* 3874 * A change in VMID to the stage2 page table (Stage2) invalidates 3875 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3876 */ 3877 if (raw_read(env, ri) != value) { 3878 tlb_flush_by_mmuidx(cs, 3879 ARMMMUIdxBit_E10_1 | 3880 ARMMMUIdxBit_E10_1_PAN | 3881 ARMMMUIdxBit_E10_0 | 3882 ARMMMUIdxBit_Stage2); 3883 raw_write(env, ri, value); 3884 } 3885 } 3886 3887 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3888 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3889 .access = PL1_RW, .type = ARM_CP_ALIAS, 3890 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3891 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3892 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3893 .access = PL1_RW, .resetvalue = 0, 3894 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3895 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3896 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3897 .access = PL1_RW, .resetvalue = 0, 3898 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3899 offsetof(CPUARMState, cp15.dfar_ns) } }, 3900 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3901 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3902 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3903 .resetvalue = 0, }, 3904 REGINFO_SENTINEL 3905 }; 3906 3907 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3908 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3909 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3910 .access = PL1_RW, 3911 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3912 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3913 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3914 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3915 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3916 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3917 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3918 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3919 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3920 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3921 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3922 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3923 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3924 .access = PL1_RW, .writefn = vmsa_tcr_el12_write, 3925 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3926 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3927 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3928 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3929 .raw_writefn = vmsa_ttbcr_raw_write, 3930 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3931 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3932 REGINFO_SENTINEL 3933 }; 3934 3935 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3936 * qemu tlbs nor adjusting cached masks. 3937 */ 3938 static const ARMCPRegInfo ttbcr2_reginfo = { 3939 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3940 .access = PL1_RW, .type = ARM_CP_ALIAS, 3941 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3942 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3943 }; 3944 3945 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3946 uint64_t value) 3947 { 3948 env->cp15.c15_ticonfig = value & 0xe7; 3949 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3950 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3951 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3952 } 3953 3954 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3955 uint64_t value) 3956 { 3957 env->cp15.c15_threadid = value & 0xffff; 3958 } 3959 3960 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3961 uint64_t value) 3962 { 3963 /* Wait-for-interrupt (deprecated) */ 3964 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3965 } 3966 3967 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3968 uint64_t value) 3969 { 3970 /* On OMAP there are registers indicating the max/min index of dcache lines 3971 * containing a dirty line; cache flush operations have to reset these. 3972 */ 3973 env->cp15.c15_i_max = 0x000; 3974 env->cp15.c15_i_min = 0xff0; 3975 } 3976 3977 static const ARMCPRegInfo omap_cp_reginfo[] = { 3978 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3979 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3980 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3981 .resetvalue = 0, }, 3982 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3983 .access = PL1_RW, .type = ARM_CP_NOP }, 3984 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3985 .access = PL1_RW, 3986 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3987 .writefn = omap_ticonfig_write }, 3988 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3989 .access = PL1_RW, 3990 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3991 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3992 .access = PL1_RW, .resetvalue = 0xff0, 3993 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3994 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3995 .access = PL1_RW, 3996 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3997 .writefn = omap_threadid_write }, 3998 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3999 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4000 .type = ARM_CP_NO_RAW, 4001 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4002 /* TODO: Peripheral port remap register: 4003 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4004 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4005 * when MMU is off. 4006 */ 4007 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4008 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4009 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4010 .writefn = omap_cachemaint_write }, 4011 { .name = "C9", .cp = 15, .crn = 9, 4012 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4013 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4014 REGINFO_SENTINEL 4015 }; 4016 4017 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4018 uint64_t value) 4019 { 4020 env->cp15.c15_cpar = value & 0x3fff; 4021 } 4022 4023 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4024 { .name = "XSCALE_CPAR", 4025 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4026 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4027 .writefn = xscale_cpar_write, }, 4028 { .name = "XSCALE_AUXCR", 4029 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4030 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4031 .resetvalue = 0, }, 4032 /* XScale specific cache-lockdown: since we have no cache we NOP these 4033 * and hope the guest does not really rely on cache behaviour. 4034 */ 4035 { .name = "XSCALE_LOCK_ICACHE_LINE", 4036 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4037 .access = PL1_W, .type = ARM_CP_NOP }, 4038 { .name = "XSCALE_UNLOCK_ICACHE", 4039 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4040 .access = PL1_W, .type = ARM_CP_NOP }, 4041 { .name = "XSCALE_DCACHE_LOCK", 4042 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4043 .access = PL1_RW, .type = ARM_CP_NOP }, 4044 { .name = "XSCALE_UNLOCK_DCACHE", 4045 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4046 .access = PL1_W, .type = ARM_CP_NOP }, 4047 REGINFO_SENTINEL 4048 }; 4049 4050 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4051 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4052 * implementation of this implementation-defined space. 4053 * Ideally this should eventually disappear in favour of actually 4054 * implementing the correct behaviour for all cores. 4055 */ 4056 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4057 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4058 .access = PL1_RW, 4059 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4060 .resetvalue = 0 }, 4061 REGINFO_SENTINEL 4062 }; 4063 4064 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4065 /* Cache status: RAZ because we have no cache so it's always clean */ 4066 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4067 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4068 .resetvalue = 0 }, 4069 REGINFO_SENTINEL 4070 }; 4071 4072 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4073 /* We never have a a block transfer operation in progress */ 4074 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4075 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4076 .resetvalue = 0 }, 4077 /* The cache ops themselves: these all NOP for QEMU */ 4078 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4079 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4080 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4081 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4082 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4083 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4084 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4085 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4086 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4087 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4088 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4089 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4090 REGINFO_SENTINEL 4091 }; 4092 4093 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4094 /* The cache test-and-clean instructions always return (1 << 30) 4095 * to indicate that there are no dirty cache lines. 4096 */ 4097 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4098 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4099 .resetvalue = (1 << 30) }, 4100 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4101 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4102 .resetvalue = (1 << 30) }, 4103 REGINFO_SENTINEL 4104 }; 4105 4106 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4107 /* Ignore ReadBuffer accesses */ 4108 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4109 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4110 .access = PL1_RW, .resetvalue = 0, 4111 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4112 REGINFO_SENTINEL 4113 }; 4114 4115 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4116 { 4117 ARMCPU *cpu = env_archcpu(env); 4118 unsigned int cur_el = arm_current_el(env); 4119 bool secure = arm_is_secure(env); 4120 4121 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4122 return env->cp15.vpidr_el2; 4123 } 4124 return raw_read(env, ri); 4125 } 4126 4127 static uint64_t mpidr_read_val(CPUARMState *env) 4128 { 4129 ARMCPU *cpu = env_archcpu(env); 4130 uint64_t mpidr = cpu->mp_affinity; 4131 4132 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4133 mpidr |= (1U << 31); 4134 /* Cores which are uniprocessor (non-coherent) 4135 * but still implement the MP extensions set 4136 * bit 30. (For instance, Cortex-R5). 4137 */ 4138 if (cpu->mp_is_up) { 4139 mpidr |= (1u << 30); 4140 } 4141 } 4142 return mpidr; 4143 } 4144 4145 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4146 { 4147 unsigned int cur_el = arm_current_el(env); 4148 bool secure = arm_is_secure(env); 4149 4150 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4151 return env->cp15.vmpidr_el2; 4152 } 4153 return mpidr_read_val(env); 4154 } 4155 4156 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4157 /* NOP AMAIR0/1 */ 4158 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4159 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4160 .access = PL1_RW, .type = ARM_CP_CONST, 4161 .resetvalue = 0 }, 4162 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4163 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4164 .access = PL1_RW, .type = ARM_CP_CONST, 4165 .resetvalue = 0 }, 4166 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4167 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4168 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4169 offsetof(CPUARMState, cp15.par_ns)} }, 4170 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4171 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4172 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4173 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4174 .writefn = vmsa_ttbr_write, }, 4175 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4176 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4177 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4178 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4179 .writefn = vmsa_ttbr_write, }, 4180 REGINFO_SENTINEL 4181 }; 4182 4183 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4184 { 4185 return vfp_get_fpcr(env); 4186 } 4187 4188 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4189 uint64_t value) 4190 { 4191 vfp_set_fpcr(env, value); 4192 } 4193 4194 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4195 { 4196 return vfp_get_fpsr(env); 4197 } 4198 4199 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4200 uint64_t value) 4201 { 4202 vfp_set_fpsr(env, value); 4203 } 4204 4205 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4206 bool isread) 4207 { 4208 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4209 return CP_ACCESS_TRAP; 4210 } 4211 return CP_ACCESS_OK; 4212 } 4213 4214 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4215 uint64_t value) 4216 { 4217 env->daif = value & PSTATE_DAIF; 4218 } 4219 4220 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4221 { 4222 return env->pstate & PSTATE_PAN; 4223 } 4224 4225 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4226 uint64_t value) 4227 { 4228 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4229 } 4230 4231 static const ARMCPRegInfo pan_reginfo = { 4232 .name = "PAN", .state = ARM_CP_STATE_AA64, 4233 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4234 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4235 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4236 }; 4237 4238 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4239 { 4240 return env->pstate & PSTATE_UAO; 4241 } 4242 4243 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4244 uint64_t value) 4245 { 4246 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4247 } 4248 4249 static const ARMCPRegInfo uao_reginfo = { 4250 .name = "UAO", .state = ARM_CP_STATE_AA64, 4251 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4252 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4253 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4254 }; 4255 4256 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 4257 const ARMCPRegInfo *ri, 4258 bool isread) 4259 { 4260 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 4261 * SCTLR_EL1.UCI is set. 4262 */ 4263 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UCI)) { 4264 return CP_ACCESS_TRAP; 4265 } 4266 return CP_ACCESS_OK; 4267 } 4268 4269 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4270 * Page D4-1736 (DDI0487A.b) 4271 */ 4272 4273 static int vae1_tlbmask(CPUARMState *env) 4274 { 4275 /* Since we exclude secure first, we may read HCR_EL2 directly. */ 4276 if (arm_is_secure_below_el3(env)) { 4277 return ARMMMUIdxBit_SE10_1 | 4278 ARMMMUIdxBit_SE10_1_PAN | 4279 ARMMMUIdxBit_SE10_0; 4280 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4281 == (HCR_E2H | HCR_TGE)) { 4282 return ARMMMUIdxBit_E20_2 | 4283 ARMMMUIdxBit_E20_2_PAN | 4284 ARMMMUIdxBit_E20_0; 4285 } else { 4286 return ARMMMUIdxBit_E10_1 | 4287 ARMMMUIdxBit_E10_1_PAN | 4288 ARMMMUIdxBit_E10_0; 4289 } 4290 } 4291 4292 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4293 uint64_t value) 4294 { 4295 CPUState *cs = env_cpu(env); 4296 int mask = vae1_tlbmask(env); 4297 4298 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4299 } 4300 4301 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4302 uint64_t value) 4303 { 4304 CPUState *cs = env_cpu(env); 4305 int mask = vae1_tlbmask(env); 4306 4307 if (tlb_force_broadcast(env)) { 4308 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4309 } else { 4310 tlb_flush_by_mmuidx(cs, mask); 4311 } 4312 } 4313 4314 static int alle1_tlbmask(CPUARMState *env) 4315 { 4316 /* 4317 * Note that the 'ALL' scope must invalidate both stage 1 and 4318 * stage 2 translations, whereas most other scopes only invalidate 4319 * stage 1 translations. 4320 */ 4321 if (arm_is_secure_below_el3(env)) { 4322 return ARMMMUIdxBit_SE10_1 | 4323 ARMMMUIdxBit_SE10_1_PAN | 4324 ARMMMUIdxBit_SE10_0; 4325 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 4326 return ARMMMUIdxBit_E10_1 | 4327 ARMMMUIdxBit_E10_1_PAN | 4328 ARMMMUIdxBit_E10_0 | 4329 ARMMMUIdxBit_Stage2; 4330 } else { 4331 return ARMMMUIdxBit_E10_1 | 4332 ARMMMUIdxBit_E10_1_PAN | 4333 ARMMMUIdxBit_E10_0; 4334 } 4335 } 4336 4337 static int e2_tlbmask(CPUARMState *env) 4338 { 4339 /* TODO: ARMv8.4-SecEL2 */ 4340 return ARMMMUIdxBit_E20_0 | 4341 ARMMMUIdxBit_E20_2 | 4342 ARMMMUIdxBit_E20_2_PAN | 4343 ARMMMUIdxBit_E2; 4344 } 4345 4346 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4347 uint64_t value) 4348 { 4349 CPUState *cs = env_cpu(env); 4350 int mask = alle1_tlbmask(env); 4351 4352 tlb_flush_by_mmuidx(cs, mask); 4353 } 4354 4355 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4356 uint64_t value) 4357 { 4358 CPUState *cs = env_cpu(env); 4359 int mask = e2_tlbmask(env); 4360 4361 tlb_flush_by_mmuidx(cs, mask); 4362 } 4363 4364 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4365 uint64_t value) 4366 { 4367 ARMCPU *cpu = env_archcpu(env); 4368 CPUState *cs = CPU(cpu); 4369 4370 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4371 } 4372 4373 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4374 uint64_t value) 4375 { 4376 CPUState *cs = env_cpu(env); 4377 int mask = alle1_tlbmask(env); 4378 4379 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4380 } 4381 4382 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4383 uint64_t value) 4384 { 4385 CPUState *cs = env_cpu(env); 4386 int mask = e2_tlbmask(env); 4387 4388 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4389 } 4390 4391 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4392 uint64_t value) 4393 { 4394 CPUState *cs = env_cpu(env); 4395 4396 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4397 } 4398 4399 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4400 uint64_t value) 4401 { 4402 /* Invalidate by VA, EL2 4403 * Currently handles both VAE2 and VALE2, since we don't support 4404 * flush-last-level-only. 4405 */ 4406 CPUState *cs = env_cpu(env); 4407 int mask = e2_tlbmask(env); 4408 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4409 4410 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4411 } 4412 4413 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 /* Invalidate by VA, EL3 4417 * Currently handles both VAE3 and VALE3, since we don't support 4418 * flush-last-level-only. 4419 */ 4420 ARMCPU *cpu = env_archcpu(env); 4421 CPUState *cs = CPU(cpu); 4422 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4423 4424 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4425 } 4426 4427 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4428 uint64_t value) 4429 { 4430 CPUState *cs = env_cpu(env); 4431 int mask = vae1_tlbmask(env); 4432 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4433 4434 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4435 } 4436 4437 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4438 uint64_t value) 4439 { 4440 /* Invalidate by VA, EL1&0 (AArch64 version). 4441 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4442 * since we don't support flush-for-specific-ASID-only or 4443 * flush-last-level-only. 4444 */ 4445 CPUState *cs = env_cpu(env); 4446 int mask = vae1_tlbmask(env); 4447 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4448 4449 if (tlb_force_broadcast(env)) { 4450 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4451 } else { 4452 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4453 } 4454 } 4455 4456 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4457 uint64_t value) 4458 { 4459 CPUState *cs = env_cpu(env); 4460 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4461 4462 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4463 ARMMMUIdxBit_E2); 4464 } 4465 4466 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4467 uint64_t value) 4468 { 4469 CPUState *cs = env_cpu(env); 4470 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4471 4472 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4473 ARMMMUIdxBit_SE3); 4474 } 4475 4476 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4477 uint64_t value) 4478 { 4479 /* Invalidate by IPA. This has to invalidate any structures that 4480 * contain only stage 2 translation information, but does not need 4481 * to apply to structures that contain combined stage 1 and stage 2 4482 * translation information. 4483 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4484 */ 4485 ARMCPU *cpu = env_archcpu(env); 4486 CPUState *cs = CPU(cpu); 4487 uint64_t pageaddr; 4488 4489 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4490 return; 4491 } 4492 4493 pageaddr = sextract64(value << 12, 0, 48); 4494 4495 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 4496 } 4497 4498 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4499 uint64_t value) 4500 { 4501 CPUState *cs = env_cpu(env); 4502 uint64_t pageaddr; 4503 4504 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4505 return; 4506 } 4507 4508 pageaddr = sextract64(value << 12, 0, 48); 4509 4510 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4511 ARMMMUIdxBit_Stage2); 4512 } 4513 4514 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4515 bool isread) 4516 { 4517 int cur_el = arm_current_el(env); 4518 4519 if (cur_el < 2) { 4520 uint64_t hcr = arm_hcr_el2_eff(env); 4521 4522 if (cur_el == 0) { 4523 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4524 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4525 return CP_ACCESS_TRAP_EL2; 4526 } 4527 } else { 4528 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4529 return CP_ACCESS_TRAP; 4530 } 4531 if (hcr & HCR_TDZ) { 4532 return CP_ACCESS_TRAP_EL2; 4533 } 4534 } 4535 } else if (hcr & HCR_TDZ) { 4536 return CP_ACCESS_TRAP_EL2; 4537 } 4538 } 4539 return CP_ACCESS_OK; 4540 } 4541 4542 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4543 { 4544 ARMCPU *cpu = env_archcpu(env); 4545 int dzp_bit = 1 << 4; 4546 4547 /* DZP indicates whether DC ZVA access is allowed */ 4548 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4549 dzp_bit = 0; 4550 } 4551 return cpu->dcz_blocksize | dzp_bit; 4552 } 4553 4554 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4555 bool isread) 4556 { 4557 if (!(env->pstate & PSTATE_SP)) { 4558 /* Access to SP_EL0 is undefined if it's being used as 4559 * the stack pointer. 4560 */ 4561 return CP_ACCESS_TRAP_UNCATEGORIZED; 4562 } 4563 return CP_ACCESS_OK; 4564 } 4565 4566 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4567 { 4568 return env->pstate & PSTATE_SP; 4569 } 4570 4571 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4572 { 4573 update_spsel(env, val); 4574 } 4575 4576 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4577 uint64_t value) 4578 { 4579 ARMCPU *cpu = env_archcpu(env); 4580 4581 if (raw_read(env, ri) == value) { 4582 /* Skip the TLB flush if nothing actually changed; Linux likes 4583 * to do a lot of pointless SCTLR writes. 4584 */ 4585 return; 4586 } 4587 4588 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4589 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4590 value &= ~SCTLR_M; 4591 } 4592 4593 raw_write(env, ri, value); 4594 /* ??? Lots of these bits are not implemented. */ 4595 /* This may enable/disable the MMU, so do a TLB flush. */ 4596 tlb_flush(CPU(cpu)); 4597 4598 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4599 /* 4600 * Normally we would always end the TB on an SCTLR write; see the 4601 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4602 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4603 * of hflags from the translator, so do it here. 4604 */ 4605 arm_rebuild_hflags(env); 4606 } 4607 } 4608 4609 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4610 bool isread) 4611 { 4612 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4613 return CP_ACCESS_TRAP_FP_EL2; 4614 } 4615 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4616 return CP_ACCESS_TRAP_FP_EL3; 4617 } 4618 return CP_ACCESS_OK; 4619 } 4620 4621 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4622 uint64_t value) 4623 { 4624 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4625 } 4626 4627 static const ARMCPRegInfo v8_cp_reginfo[] = { 4628 /* Minimal set of EL0-visible registers. This will need to be expanded 4629 * significantly for system emulation of AArch64 CPUs. 4630 */ 4631 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4632 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4633 .access = PL0_RW, .type = ARM_CP_NZCV }, 4634 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4635 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4636 .type = ARM_CP_NO_RAW, 4637 .access = PL0_RW, .accessfn = aa64_daif_access, 4638 .fieldoffset = offsetof(CPUARMState, daif), 4639 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4640 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4641 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4642 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4643 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4644 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4645 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4646 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4647 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4648 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4649 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4650 .access = PL0_R, .type = ARM_CP_NO_RAW, 4651 .readfn = aa64_dczid_read }, 4652 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4653 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4654 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4655 #ifndef CONFIG_USER_ONLY 4656 /* Avoid overhead of an access check that always passes in user-mode */ 4657 .accessfn = aa64_zva_access, 4658 #endif 4659 }, 4660 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4661 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4662 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4663 /* Cache ops: all NOPs since we don't emulate caches */ 4664 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4665 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4666 .access = PL1_W, .type = ARM_CP_NOP }, 4667 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4668 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4669 .access = PL1_W, .type = ARM_CP_NOP }, 4670 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4671 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4672 .access = PL0_W, .type = ARM_CP_NOP, 4673 .accessfn = aa64_cacheop_access }, 4674 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4675 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4676 .access = PL1_W, .type = ARM_CP_NOP }, 4677 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4678 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4679 .access = PL1_W, .type = ARM_CP_NOP }, 4680 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4681 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4682 .access = PL0_W, .type = ARM_CP_NOP, 4683 .accessfn = aa64_cacheop_access }, 4684 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4685 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4686 .access = PL1_W, .type = ARM_CP_NOP }, 4687 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4688 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4689 .access = PL0_W, .type = ARM_CP_NOP, 4690 .accessfn = aa64_cacheop_access }, 4691 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4692 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4693 .access = PL0_W, .type = ARM_CP_NOP, 4694 .accessfn = aa64_cacheop_access }, 4695 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4696 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4697 .access = PL1_W, .type = ARM_CP_NOP }, 4698 /* TLBI operations */ 4699 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4700 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4701 .access = PL1_W, .type = ARM_CP_NO_RAW, 4702 .writefn = tlbi_aa64_vmalle1is_write }, 4703 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4704 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4705 .access = PL1_W, .type = ARM_CP_NO_RAW, 4706 .writefn = tlbi_aa64_vae1is_write }, 4707 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4708 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4709 .access = PL1_W, .type = ARM_CP_NO_RAW, 4710 .writefn = tlbi_aa64_vmalle1is_write }, 4711 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4712 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4713 .access = PL1_W, .type = ARM_CP_NO_RAW, 4714 .writefn = tlbi_aa64_vae1is_write }, 4715 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4716 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4717 .access = PL1_W, .type = ARM_CP_NO_RAW, 4718 .writefn = tlbi_aa64_vae1is_write }, 4719 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4720 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4721 .access = PL1_W, .type = ARM_CP_NO_RAW, 4722 .writefn = tlbi_aa64_vae1is_write }, 4723 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4724 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4725 .access = PL1_W, .type = ARM_CP_NO_RAW, 4726 .writefn = tlbi_aa64_vmalle1_write }, 4727 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4728 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4729 .access = PL1_W, .type = ARM_CP_NO_RAW, 4730 .writefn = tlbi_aa64_vae1_write }, 4731 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4732 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4733 .access = PL1_W, .type = ARM_CP_NO_RAW, 4734 .writefn = tlbi_aa64_vmalle1_write }, 4735 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4736 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4737 .access = PL1_W, .type = ARM_CP_NO_RAW, 4738 .writefn = tlbi_aa64_vae1_write }, 4739 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4740 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4741 .access = PL1_W, .type = ARM_CP_NO_RAW, 4742 .writefn = tlbi_aa64_vae1_write }, 4743 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4744 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4745 .access = PL1_W, .type = ARM_CP_NO_RAW, 4746 .writefn = tlbi_aa64_vae1_write }, 4747 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4748 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4749 .access = PL2_W, .type = ARM_CP_NO_RAW, 4750 .writefn = tlbi_aa64_ipas2e1is_write }, 4751 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4752 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4753 .access = PL2_W, .type = ARM_CP_NO_RAW, 4754 .writefn = tlbi_aa64_ipas2e1is_write }, 4755 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4756 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4757 .access = PL2_W, .type = ARM_CP_NO_RAW, 4758 .writefn = tlbi_aa64_alle1is_write }, 4759 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4760 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4761 .access = PL2_W, .type = ARM_CP_NO_RAW, 4762 .writefn = tlbi_aa64_alle1is_write }, 4763 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4764 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4765 .access = PL2_W, .type = ARM_CP_NO_RAW, 4766 .writefn = tlbi_aa64_ipas2e1_write }, 4767 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4768 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4769 .access = PL2_W, .type = ARM_CP_NO_RAW, 4770 .writefn = tlbi_aa64_ipas2e1_write }, 4771 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4772 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4773 .access = PL2_W, .type = ARM_CP_NO_RAW, 4774 .writefn = tlbi_aa64_alle1_write }, 4775 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4776 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4777 .access = PL2_W, .type = ARM_CP_NO_RAW, 4778 .writefn = tlbi_aa64_alle1is_write }, 4779 #ifndef CONFIG_USER_ONLY 4780 /* 64 bit address translation operations */ 4781 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4782 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4783 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4784 .writefn = ats_write64 }, 4785 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4786 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4787 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4788 .writefn = ats_write64 }, 4789 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4790 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4791 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4792 .writefn = ats_write64 }, 4793 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4794 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4795 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4796 .writefn = ats_write64 }, 4797 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4798 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4799 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4800 .writefn = ats_write64 }, 4801 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4802 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4803 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4804 .writefn = ats_write64 }, 4805 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4806 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4807 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4808 .writefn = ats_write64 }, 4809 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4810 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4811 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4812 .writefn = ats_write64 }, 4813 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4814 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4815 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4816 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4817 .writefn = ats_write64 }, 4818 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4820 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4821 .writefn = ats_write64 }, 4822 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4823 .type = ARM_CP_ALIAS, 4824 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4825 .access = PL1_RW, .resetvalue = 0, 4826 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4827 .writefn = par_write }, 4828 #endif 4829 /* TLB invalidate last level of translation table walk */ 4830 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4831 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4832 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4833 .type = ARM_CP_NO_RAW, .access = PL1_W, 4834 .writefn = tlbimvaa_is_write }, 4835 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4836 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4837 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4838 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4839 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4840 .type = ARM_CP_NO_RAW, .access = PL2_W, 4841 .writefn = tlbimva_hyp_write }, 4842 { .name = "TLBIMVALHIS", 4843 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4844 .type = ARM_CP_NO_RAW, .access = PL2_W, 4845 .writefn = tlbimva_hyp_is_write }, 4846 { .name = "TLBIIPAS2", 4847 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4848 .type = ARM_CP_NO_RAW, .access = PL2_W, 4849 .writefn = tlbiipas2_write }, 4850 { .name = "TLBIIPAS2IS", 4851 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4852 .type = ARM_CP_NO_RAW, .access = PL2_W, 4853 .writefn = tlbiipas2_is_write }, 4854 { .name = "TLBIIPAS2L", 4855 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4856 .type = ARM_CP_NO_RAW, .access = PL2_W, 4857 .writefn = tlbiipas2_write }, 4858 { .name = "TLBIIPAS2LIS", 4859 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4860 .type = ARM_CP_NO_RAW, .access = PL2_W, 4861 .writefn = tlbiipas2_is_write }, 4862 /* 32 bit cache operations */ 4863 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4864 .type = ARM_CP_NOP, .access = PL1_W }, 4865 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4866 .type = ARM_CP_NOP, .access = PL1_W }, 4867 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4868 .type = ARM_CP_NOP, .access = PL1_W }, 4869 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4870 .type = ARM_CP_NOP, .access = PL1_W }, 4871 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4872 .type = ARM_CP_NOP, .access = PL1_W }, 4873 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4874 .type = ARM_CP_NOP, .access = PL1_W }, 4875 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4876 .type = ARM_CP_NOP, .access = PL1_W }, 4877 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4878 .type = ARM_CP_NOP, .access = PL1_W }, 4879 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4880 .type = ARM_CP_NOP, .access = PL1_W }, 4881 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4882 .type = ARM_CP_NOP, .access = PL1_W }, 4883 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4884 .type = ARM_CP_NOP, .access = PL1_W }, 4885 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4886 .type = ARM_CP_NOP, .access = PL1_W }, 4887 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4888 .type = ARM_CP_NOP, .access = PL1_W }, 4889 /* MMU Domain access control / MPU write buffer control */ 4890 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4891 .access = PL1_RW, .resetvalue = 0, 4892 .writefn = dacr_write, .raw_writefn = raw_write, 4893 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4894 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4895 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4896 .type = ARM_CP_ALIAS, 4897 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4898 .access = PL1_RW, 4899 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4900 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4901 .type = ARM_CP_ALIAS, 4902 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4903 .access = PL1_RW, 4904 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4905 /* We rely on the access checks not allowing the guest to write to the 4906 * state field when SPSel indicates that it's being used as the stack 4907 * pointer. 4908 */ 4909 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4911 .access = PL1_RW, .accessfn = sp_el0_access, 4912 .type = ARM_CP_ALIAS, 4913 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4914 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4915 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4916 .access = PL2_RW, .type = ARM_CP_ALIAS, 4917 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4918 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4919 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4920 .type = ARM_CP_NO_RAW, 4921 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4922 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4923 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4924 .type = ARM_CP_ALIAS, 4925 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4926 .access = PL2_RW, .accessfn = fpexc32_access }, 4927 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4929 .access = PL2_RW, .resetvalue = 0, 4930 .writefn = dacr_write, .raw_writefn = raw_write, 4931 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4932 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4934 .access = PL2_RW, .resetvalue = 0, 4935 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4936 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4937 .type = ARM_CP_ALIAS, 4938 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4939 .access = PL2_RW, 4940 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4941 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4942 .type = ARM_CP_ALIAS, 4943 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4944 .access = PL2_RW, 4945 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4946 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4947 .type = ARM_CP_ALIAS, 4948 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4949 .access = PL2_RW, 4950 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4951 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4952 .type = ARM_CP_ALIAS, 4953 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4954 .access = PL2_RW, 4955 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4956 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4957 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4958 .resetvalue = 0, 4959 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4960 { .name = "SDCR", .type = ARM_CP_ALIAS, 4961 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4962 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4963 .writefn = sdcr_write, 4964 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4965 REGINFO_SENTINEL 4966 }; 4967 4968 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4969 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4970 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4971 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4972 .access = PL2_RW, 4973 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4974 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4975 .type = ARM_CP_NO_RAW, 4976 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4977 .access = PL2_RW, 4978 .type = ARM_CP_CONST, .resetvalue = 0 }, 4979 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4980 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4981 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4982 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4983 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4984 .access = PL2_RW, 4985 .type = ARM_CP_CONST, .resetvalue = 0 }, 4986 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4987 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4988 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4989 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4990 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4991 .access = PL2_RW, .type = ARM_CP_CONST, 4992 .resetvalue = 0 }, 4993 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4994 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4995 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4996 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4997 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4998 .access = PL2_RW, .type = ARM_CP_CONST, 4999 .resetvalue = 0 }, 5000 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5001 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5002 .access = PL2_RW, .type = ARM_CP_CONST, 5003 .resetvalue = 0 }, 5004 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5005 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5006 .access = PL2_RW, .type = ARM_CP_CONST, 5007 .resetvalue = 0 }, 5008 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5009 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5010 .access = PL2_RW, .type = ARM_CP_CONST, 5011 .resetvalue = 0 }, 5012 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5013 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5014 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5015 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5016 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5017 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5018 .type = ARM_CP_CONST, .resetvalue = 0 }, 5019 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5020 .cp = 15, .opc1 = 6, .crm = 2, 5021 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5022 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5023 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5024 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5025 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5026 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5027 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5028 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5029 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5030 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5031 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5032 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5033 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5034 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5035 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5036 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5037 .resetvalue = 0 }, 5038 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5039 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5040 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5041 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5042 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5043 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5044 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5045 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5046 .resetvalue = 0 }, 5047 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5048 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5049 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5050 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5051 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5052 .resetvalue = 0 }, 5053 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5054 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5055 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5056 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5057 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5058 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5059 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5060 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5061 .access = PL2_RW, .accessfn = access_tda, 5062 .type = ARM_CP_CONST, .resetvalue = 0 }, 5063 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5064 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5065 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5066 .type = ARM_CP_CONST, .resetvalue = 0 }, 5067 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5068 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5069 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5070 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5071 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5072 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5073 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5074 .type = ARM_CP_CONST, 5075 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5076 .access = PL2_RW, .resetvalue = 0 }, 5077 REGINFO_SENTINEL 5078 }; 5079 5080 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5081 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5082 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5083 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5084 .access = PL2_RW, 5085 .type = ARM_CP_CONST, .resetvalue = 0 }, 5086 REGINFO_SENTINEL 5087 }; 5088 5089 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5090 { 5091 ARMCPU *cpu = env_archcpu(env); 5092 /* Begin with bits defined in base ARMv8.0. */ 5093 uint64_t valid_mask = MAKE_64BIT_MASK(0, 34); 5094 5095 if (arm_feature(env, ARM_FEATURE_EL3)) { 5096 valid_mask &= ~HCR_HCD; 5097 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5098 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5099 * However, if we're using the SMC PSCI conduit then QEMU is 5100 * effectively acting like EL3 firmware and so the guest at 5101 * EL2 should retain the ability to prevent EL1 from being 5102 * able to make SMC calls into the ersatz firmware, so in 5103 * that case HCR.TSC should be read/write. 5104 */ 5105 valid_mask &= ~HCR_TSC; 5106 } 5107 if (cpu_isar_feature(aa64_vh, cpu)) { 5108 valid_mask |= HCR_E2H; 5109 } 5110 if (cpu_isar_feature(aa64_lor, cpu)) { 5111 valid_mask |= HCR_TLOR; 5112 } 5113 if (cpu_isar_feature(aa64_pauth, cpu)) { 5114 valid_mask |= HCR_API | HCR_APK; 5115 } 5116 5117 /* Clear RES0 bits. */ 5118 value &= valid_mask; 5119 5120 /* These bits change the MMU setup: 5121 * HCR_VM enables stage 2 translation 5122 * HCR_PTW forbids certain page-table setups 5123 * HCR_DC Disables stage1 and enables stage2 translation 5124 */ 5125 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 5126 tlb_flush(CPU(cpu)); 5127 } 5128 env->cp15.hcr_el2 = value; 5129 5130 /* 5131 * Updates to VI and VF require us to update the status of 5132 * virtual interrupts, which are the logical OR of these bits 5133 * and the state of the input lines from the GIC. (This requires 5134 * that we have the iothread lock, which is done by marking the 5135 * reginfo structs as ARM_CP_IO.) 5136 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5137 * possible for it to be taken immediately, because VIRQ and 5138 * VFIQ are masked unless running at EL0 or EL1, and HCR 5139 * can only be written at EL2. 5140 */ 5141 g_assert(qemu_mutex_iothread_locked()); 5142 arm_cpu_update_virq(cpu); 5143 arm_cpu_update_vfiq(cpu); 5144 } 5145 5146 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5147 uint64_t value) 5148 { 5149 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5150 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5151 hcr_write(env, NULL, value); 5152 } 5153 5154 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5155 uint64_t value) 5156 { 5157 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5158 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5159 hcr_write(env, NULL, value); 5160 } 5161 5162 /* 5163 * Return the effective value of HCR_EL2. 5164 * Bits that are not included here: 5165 * RW (read from SCR_EL3.RW as needed) 5166 */ 5167 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5168 { 5169 uint64_t ret = env->cp15.hcr_el2; 5170 5171 if (arm_is_secure_below_el3(env)) { 5172 /* 5173 * "This register has no effect if EL2 is not enabled in the 5174 * current Security state". This is ARMv8.4-SecEL2 speak for 5175 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5176 * 5177 * Prior to that, the language was "In an implementation that 5178 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5179 * as if this field is 0 for all purposes other than a direct 5180 * read or write access of HCR_EL2". With lots of enumeration 5181 * on a per-field basis. In current QEMU, this is condition 5182 * is arm_is_secure_below_el3. 5183 * 5184 * Since the v8.4 language applies to the entire register, and 5185 * appears to be backward compatible, use that. 5186 */ 5187 ret = 0; 5188 } else if (ret & HCR_TGE) { 5189 /* These bits are up-to-date as of ARMv8.4. */ 5190 if (ret & HCR_E2H) { 5191 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5192 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5193 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5194 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 5195 } else { 5196 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5197 } 5198 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5199 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5200 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5201 HCR_TLOR); 5202 } 5203 5204 return ret; 5205 } 5206 5207 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5208 uint64_t value) 5209 { 5210 /* 5211 * For A-profile AArch32 EL3, if NSACR.CP10 5212 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5213 */ 5214 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5215 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5216 value &= ~(0x3 << 10); 5217 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5218 } 5219 env->cp15.cptr_el[2] = value; 5220 } 5221 5222 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5223 { 5224 /* 5225 * For A-profile AArch32 EL3, if NSACR.CP10 5226 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5227 */ 5228 uint64_t value = env->cp15.cptr_el[2]; 5229 5230 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5231 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5232 value |= 0x3 << 10; 5233 } 5234 return value; 5235 } 5236 5237 static const ARMCPRegInfo el2_cp_reginfo[] = { 5238 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5239 .type = ARM_CP_IO, 5240 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5241 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5242 .writefn = hcr_write }, 5243 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5244 .type = ARM_CP_ALIAS | ARM_CP_IO, 5245 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5246 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5247 .writefn = hcr_writelow }, 5248 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5249 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5250 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5251 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5252 .type = ARM_CP_ALIAS, 5253 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5254 .access = PL2_RW, 5255 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5256 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5257 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5258 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5259 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5260 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5261 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5262 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5263 .type = ARM_CP_ALIAS, 5264 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5265 .access = PL2_RW, 5266 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5267 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5268 .type = ARM_CP_ALIAS, 5269 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5270 .access = PL2_RW, 5271 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5272 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5273 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5274 .access = PL2_RW, .writefn = vbar_write, 5275 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5276 .resetvalue = 0 }, 5277 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5278 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5279 .access = PL3_RW, .type = ARM_CP_ALIAS, 5280 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5281 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5282 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5283 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5284 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5285 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5286 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5287 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5288 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5289 .resetvalue = 0 }, 5290 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5291 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5292 .access = PL2_RW, .type = ARM_CP_ALIAS, 5293 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5294 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5295 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5296 .access = PL2_RW, .type = ARM_CP_CONST, 5297 .resetvalue = 0 }, 5298 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5299 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5300 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5301 .access = PL2_RW, .type = ARM_CP_CONST, 5302 .resetvalue = 0 }, 5303 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5304 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5305 .access = PL2_RW, .type = ARM_CP_CONST, 5306 .resetvalue = 0 }, 5307 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5308 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5309 .access = PL2_RW, .type = ARM_CP_CONST, 5310 .resetvalue = 0 }, 5311 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5312 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5313 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5314 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5315 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5316 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5317 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5318 .type = ARM_CP_ALIAS, 5319 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5320 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5321 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5322 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5323 .access = PL2_RW, 5324 /* no .writefn needed as this can't cause an ASID change; 5325 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5326 */ 5327 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5328 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5329 .cp = 15, .opc1 = 6, .crm = 2, 5330 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5331 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5332 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5333 .writefn = vttbr_write }, 5334 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5335 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5336 .access = PL2_RW, .writefn = vttbr_write, 5337 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5338 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5339 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5340 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5341 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5342 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5343 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5344 .access = PL2_RW, .resetvalue = 0, 5345 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5346 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5347 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5348 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5349 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5350 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5351 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5352 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5353 { .name = "TLBIALLNSNH", 5354 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5355 .type = ARM_CP_NO_RAW, .access = PL2_W, 5356 .writefn = tlbiall_nsnh_write }, 5357 { .name = "TLBIALLNSNHIS", 5358 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5359 .type = ARM_CP_NO_RAW, .access = PL2_W, 5360 .writefn = tlbiall_nsnh_is_write }, 5361 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5362 .type = ARM_CP_NO_RAW, .access = PL2_W, 5363 .writefn = tlbiall_hyp_write }, 5364 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5365 .type = ARM_CP_NO_RAW, .access = PL2_W, 5366 .writefn = tlbiall_hyp_is_write }, 5367 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5368 .type = ARM_CP_NO_RAW, .access = PL2_W, 5369 .writefn = tlbimva_hyp_write }, 5370 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5371 .type = ARM_CP_NO_RAW, .access = PL2_W, 5372 .writefn = tlbimva_hyp_is_write }, 5373 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5374 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5375 .type = ARM_CP_NO_RAW, .access = PL2_W, 5376 .writefn = tlbi_aa64_alle2_write }, 5377 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5378 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5379 .type = ARM_CP_NO_RAW, .access = PL2_W, 5380 .writefn = tlbi_aa64_vae2_write }, 5381 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5382 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5383 .access = PL2_W, .type = ARM_CP_NO_RAW, 5384 .writefn = tlbi_aa64_vae2_write }, 5385 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5386 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5387 .access = PL2_W, .type = ARM_CP_NO_RAW, 5388 .writefn = tlbi_aa64_alle2is_write }, 5389 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5390 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5391 .type = ARM_CP_NO_RAW, .access = PL2_W, 5392 .writefn = tlbi_aa64_vae2is_write }, 5393 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5394 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5395 .access = PL2_W, .type = ARM_CP_NO_RAW, 5396 .writefn = tlbi_aa64_vae2is_write }, 5397 #ifndef CONFIG_USER_ONLY 5398 /* Unlike the other EL2-related AT operations, these must 5399 * UNDEF from EL3 if EL2 is not implemented, which is why we 5400 * define them here rather than with the rest of the AT ops. 5401 */ 5402 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5403 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5404 .access = PL2_W, .accessfn = at_s1e2_access, 5405 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5406 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5407 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5408 .access = PL2_W, .accessfn = at_s1e2_access, 5409 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5410 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5411 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5412 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5413 * to behave as if SCR.NS was 1. 5414 */ 5415 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5416 .access = PL2_W, 5417 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5418 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5419 .access = PL2_W, 5420 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5421 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5422 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5423 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5424 * reset values as IMPDEF. We choose to reset to 3 to comply with 5425 * both ARMv7 and ARMv8. 5426 */ 5427 .access = PL2_RW, .resetvalue = 3, 5428 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5429 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5430 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5431 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5432 .writefn = gt_cntvoff_write, 5433 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5434 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5435 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5436 .writefn = gt_cntvoff_write, 5437 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5438 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5439 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5440 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5441 .type = ARM_CP_IO, .access = PL2_RW, 5442 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5443 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5444 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5445 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5446 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5447 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5448 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5449 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5450 .resetfn = gt_hyp_timer_reset, 5451 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5452 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5453 .type = ARM_CP_IO, 5454 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5455 .access = PL2_RW, 5456 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5457 .resetvalue = 0, 5458 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5459 #endif 5460 /* The only field of MDCR_EL2 that has a defined architectural reset value 5461 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5462 * don't implement any PMU event counters, so using zero as a reset 5463 * value for MDCR_EL2 is okay 5464 */ 5465 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5466 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5467 .access = PL2_RW, .resetvalue = 0, 5468 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5469 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5470 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5471 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5472 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5473 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5474 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5475 .access = PL2_RW, 5476 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5477 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5478 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5479 .access = PL2_RW, 5480 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5481 REGINFO_SENTINEL 5482 }; 5483 5484 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5485 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5486 .type = ARM_CP_ALIAS | ARM_CP_IO, 5487 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5488 .access = PL2_RW, 5489 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5490 .writefn = hcr_writehigh }, 5491 REGINFO_SENTINEL 5492 }; 5493 5494 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5495 bool isread) 5496 { 5497 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5498 * At Secure EL1 it traps to EL3. 5499 */ 5500 if (arm_current_el(env) == 3) { 5501 return CP_ACCESS_OK; 5502 } 5503 if (arm_is_secure_below_el3(env)) { 5504 return CP_ACCESS_TRAP_EL3; 5505 } 5506 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5507 if (isread) { 5508 return CP_ACCESS_OK; 5509 } 5510 return CP_ACCESS_TRAP_UNCATEGORIZED; 5511 } 5512 5513 static const ARMCPRegInfo el3_cp_reginfo[] = { 5514 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5515 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5516 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5517 .resetvalue = 0, .writefn = scr_write }, 5518 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5519 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5520 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5521 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5522 .writefn = scr_write }, 5523 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5524 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5525 .access = PL3_RW, .resetvalue = 0, 5526 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5527 { .name = "SDER", 5528 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5529 .access = PL3_RW, .resetvalue = 0, 5530 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5531 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5532 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5533 .writefn = vbar_write, .resetvalue = 0, 5534 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5535 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5536 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5537 .access = PL3_RW, .resetvalue = 0, 5538 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5539 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5540 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5541 .access = PL3_RW, 5542 /* no .writefn needed as this can't cause an ASID change; 5543 * we must provide a .raw_writefn and .resetfn because we handle 5544 * reset and migration for the AArch32 TTBCR(S), which might be 5545 * using mask and base_mask. 5546 */ 5547 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5548 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5549 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5550 .type = ARM_CP_ALIAS, 5551 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5552 .access = PL3_RW, 5553 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5554 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5555 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5556 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5557 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5558 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5559 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5560 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5561 .type = ARM_CP_ALIAS, 5562 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5563 .access = PL3_RW, 5564 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5565 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5566 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5567 .access = PL3_RW, .writefn = vbar_write, 5568 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5569 .resetvalue = 0 }, 5570 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5571 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5572 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5573 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5574 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5575 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5576 .access = PL3_RW, .resetvalue = 0, 5577 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5578 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5579 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5580 .access = PL3_RW, .type = ARM_CP_CONST, 5581 .resetvalue = 0 }, 5582 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5583 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5584 .access = PL3_RW, .type = ARM_CP_CONST, 5585 .resetvalue = 0 }, 5586 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5587 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5588 .access = PL3_RW, .type = ARM_CP_CONST, 5589 .resetvalue = 0 }, 5590 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5591 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5592 .access = PL3_W, .type = ARM_CP_NO_RAW, 5593 .writefn = tlbi_aa64_alle3is_write }, 5594 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5595 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5596 .access = PL3_W, .type = ARM_CP_NO_RAW, 5597 .writefn = tlbi_aa64_vae3is_write }, 5598 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5599 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5600 .access = PL3_W, .type = ARM_CP_NO_RAW, 5601 .writefn = tlbi_aa64_vae3is_write }, 5602 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5603 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5604 .access = PL3_W, .type = ARM_CP_NO_RAW, 5605 .writefn = tlbi_aa64_alle3_write }, 5606 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5607 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5608 .access = PL3_W, .type = ARM_CP_NO_RAW, 5609 .writefn = tlbi_aa64_vae3_write }, 5610 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5611 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5612 .access = PL3_W, .type = ARM_CP_NO_RAW, 5613 .writefn = tlbi_aa64_vae3_write }, 5614 REGINFO_SENTINEL 5615 }; 5616 5617 #ifndef CONFIG_USER_ONLY 5618 /* Test if system register redirection is to occur in the current state. */ 5619 static bool redirect_for_e2h(CPUARMState *env) 5620 { 5621 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5622 } 5623 5624 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5625 { 5626 CPReadFn *readfn; 5627 5628 if (redirect_for_e2h(env)) { 5629 /* Switch to the saved EL2 version of the register. */ 5630 ri = ri->opaque; 5631 readfn = ri->readfn; 5632 } else { 5633 readfn = ri->orig_readfn; 5634 } 5635 if (readfn == NULL) { 5636 readfn = raw_read; 5637 } 5638 return readfn(env, ri); 5639 } 5640 5641 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5642 uint64_t value) 5643 { 5644 CPWriteFn *writefn; 5645 5646 if (redirect_for_e2h(env)) { 5647 /* Switch to the saved EL2 version of the register. */ 5648 ri = ri->opaque; 5649 writefn = ri->writefn; 5650 } else { 5651 writefn = ri->orig_writefn; 5652 } 5653 if (writefn == NULL) { 5654 writefn = raw_write; 5655 } 5656 writefn(env, ri, value); 5657 } 5658 5659 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5660 { 5661 struct E2HAlias { 5662 uint32_t src_key, dst_key, new_key; 5663 const char *src_name, *dst_name, *new_name; 5664 bool (*feature)(const ARMISARegisters *id); 5665 }; 5666 5667 #define K(op0, op1, crn, crm, op2) \ 5668 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5669 5670 static const struct E2HAlias aliases[] = { 5671 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5672 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5673 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5674 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5675 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5676 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5677 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5678 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5679 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5680 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5681 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5682 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5683 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5684 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5685 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5686 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5687 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5688 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5689 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5690 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5691 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5692 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5693 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5694 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5695 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5696 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5697 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5698 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5699 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5700 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5701 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5702 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5703 5704 /* 5705 * Note that redirection of ZCR is mentioned in the description 5706 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5707 * not in the summary table. 5708 */ 5709 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5710 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5711 5712 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5713 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5714 }; 5715 #undef K 5716 5717 size_t i; 5718 5719 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5720 const struct E2HAlias *a = &aliases[i]; 5721 ARMCPRegInfo *src_reg, *dst_reg; 5722 5723 if (a->feature && !a->feature(&cpu->isar)) { 5724 continue; 5725 } 5726 5727 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5728 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5729 g_assert(src_reg != NULL); 5730 g_assert(dst_reg != NULL); 5731 5732 /* Cross-compare names to detect typos in the keys. */ 5733 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5734 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5735 5736 /* None of the core system registers use opaque; we will. */ 5737 g_assert(src_reg->opaque == NULL); 5738 5739 /* Create alias before redirection so we dup the right data. */ 5740 if (a->new_key) { 5741 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5742 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5743 bool ok; 5744 5745 new_reg->name = a->new_name; 5746 new_reg->type |= ARM_CP_ALIAS; 5747 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5748 new_reg->access &= PL2_RW | PL3_RW; 5749 5750 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5751 g_assert(ok); 5752 } 5753 5754 src_reg->opaque = dst_reg; 5755 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5756 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5757 if (!src_reg->raw_readfn) { 5758 src_reg->raw_readfn = raw_read; 5759 } 5760 if (!src_reg->raw_writefn) { 5761 src_reg->raw_writefn = raw_write; 5762 } 5763 src_reg->readfn = el2_e2h_read; 5764 src_reg->writefn = el2_e2h_write; 5765 } 5766 } 5767 #endif 5768 5769 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5770 bool isread) 5771 { 5772 int cur_el = arm_current_el(env); 5773 5774 if (cur_el < 2) { 5775 uint64_t hcr = arm_hcr_el2_eff(env); 5776 5777 if (cur_el == 0) { 5778 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5779 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5780 return CP_ACCESS_TRAP_EL2; 5781 } 5782 } else { 5783 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5784 return CP_ACCESS_TRAP; 5785 } 5786 if (hcr & HCR_TID2) { 5787 return CP_ACCESS_TRAP_EL2; 5788 } 5789 } 5790 } else if (hcr & HCR_TID2) { 5791 return CP_ACCESS_TRAP_EL2; 5792 } 5793 } 5794 5795 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5796 return CP_ACCESS_TRAP_EL2; 5797 } 5798 5799 return CP_ACCESS_OK; 5800 } 5801 5802 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5803 uint64_t value) 5804 { 5805 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5806 * read via a bit in OSLSR_EL1. 5807 */ 5808 int oslock; 5809 5810 if (ri->state == ARM_CP_STATE_AA32) { 5811 oslock = (value == 0xC5ACCE55); 5812 } else { 5813 oslock = value & 1; 5814 } 5815 5816 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5817 } 5818 5819 static const ARMCPRegInfo debug_cp_reginfo[] = { 5820 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5821 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5822 * unlike DBGDRAR it is never accessible from EL0. 5823 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5824 * accessor. 5825 */ 5826 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5827 .access = PL0_R, .accessfn = access_tdra, 5828 .type = ARM_CP_CONST, .resetvalue = 0 }, 5829 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5830 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5831 .access = PL1_R, .accessfn = access_tdra, 5832 .type = ARM_CP_CONST, .resetvalue = 0 }, 5833 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5834 .access = PL0_R, .accessfn = access_tdra, 5835 .type = ARM_CP_CONST, .resetvalue = 0 }, 5836 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5837 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5838 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5839 .access = PL1_RW, .accessfn = access_tda, 5840 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5841 .resetvalue = 0 }, 5842 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5843 * We don't implement the configurable EL0 access. 5844 */ 5845 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5846 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5847 .type = ARM_CP_ALIAS, 5848 .access = PL1_R, .accessfn = access_tda, 5849 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5850 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5851 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5852 .access = PL1_W, .type = ARM_CP_NO_RAW, 5853 .accessfn = access_tdosa, 5854 .writefn = oslar_write }, 5855 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5856 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5857 .access = PL1_R, .resetvalue = 10, 5858 .accessfn = access_tdosa, 5859 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5860 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5861 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5862 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5863 .access = PL1_RW, .accessfn = access_tdosa, 5864 .type = ARM_CP_NOP }, 5865 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5866 * implement vector catch debug events yet. 5867 */ 5868 { .name = "DBGVCR", 5869 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5870 .access = PL1_RW, .accessfn = access_tda, 5871 .type = ARM_CP_NOP }, 5872 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5873 * to save and restore a 32-bit guest's DBGVCR) 5874 */ 5875 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5876 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5877 .access = PL2_RW, .accessfn = access_tda, 5878 .type = ARM_CP_NOP }, 5879 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5880 * Channel but Linux may try to access this register. The 32-bit 5881 * alias is DBGDCCINT. 5882 */ 5883 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5884 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5885 .access = PL1_RW, .accessfn = access_tda, 5886 .type = ARM_CP_NOP }, 5887 REGINFO_SENTINEL 5888 }; 5889 5890 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5891 /* 64 bit access versions of the (dummy) debug registers */ 5892 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5893 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5894 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5895 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5896 REGINFO_SENTINEL 5897 }; 5898 5899 /* Return the exception level to which exceptions should be taken 5900 * via SVEAccessTrap. If an exception should be routed through 5901 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5902 * take care of raising that exception. 5903 * C.f. the ARM pseudocode function CheckSVEEnabled. 5904 */ 5905 int sve_exception_el(CPUARMState *env, int el) 5906 { 5907 #ifndef CONFIG_USER_ONLY 5908 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 5909 5910 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 5911 bool disabled = false; 5912 5913 /* The CPACR.ZEN controls traps to EL1: 5914 * 0, 2 : trap EL0 and EL1 accesses 5915 * 1 : trap only EL0 accesses 5916 * 3 : trap no accesses 5917 */ 5918 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5919 disabled = true; 5920 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5921 disabled = el == 0; 5922 } 5923 if (disabled) { 5924 /* route_to_el2 */ 5925 return hcr_el2 & HCR_TGE ? 2 : 1; 5926 } 5927 5928 /* Check CPACR.FPEN. */ 5929 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5930 disabled = true; 5931 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5932 disabled = el == 0; 5933 } 5934 if (disabled) { 5935 return 0; 5936 } 5937 } 5938 5939 /* CPTR_EL2. Since TZ and TFP are positive, 5940 * they will be zero when EL2 is not present. 5941 */ 5942 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5943 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5944 return 2; 5945 } 5946 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5947 return 0; 5948 } 5949 } 5950 5951 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5952 if (arm_feature(env, ARM_FEATURE_EL3) 5953 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5954 return 3; 5955 } 5956 #endif 5957 return 0; 5958 } 5959 5960 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 5961 { 5962 uint32_t end_len; 5963 5964 end_len = start_len &= 0xf; 5965 if (!test_bit(start_len, cpu->sve_vq_map)) { 5966 end_len = find_last_bit(cpu->sve_vq_map, start_len); 5967 assert(end_len < start_len); 5968 } 5969 return end_len; 5970 } 5971 5972 /* 5973 * Given that SVE is enabled, return the vector length for EL. 5974 */ 5975 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5976 { 5977 ARMCPU *cpu = env_archcpu(env); 5978 uint32_t zcr_len = cpu->sve_max_vq - 1; 5979 5980 if (el <= 1) { 5981 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5982 } 5983 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5984 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5985 } 5986 if (arm_feature(env, ARM_FEATURE_EL3)) { 5987 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5988 } 5989 5990 return sve_zcr_get_valid_len(cpu, zcr_len); 5991 } 5992 5993 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5994 uint64_t value) 5995 { 5996 int cur_el = arm_current_el(env); 5997 int old_len = sve_zcr_len_for_el(env, cur_el); 5998 int new_len; 5999 6000 /* Bits other than [3:0] are RAZ/WI. */ 6001 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6002 raw_write(env, ri, value & 0xf); 6003 6004 /* 6005 * Because we arrived here, we know both FP and SVE are enabled; 6006 * otherwise we would have trapped access to the ZCR_ELn register. 6007 */ 6008 new_len = sve_zcr_len_for_el(env, cur_el); 6009 if (new_len < old_len) { 6010 aarch64_sve_narrow_vq(env, new_len + 1); 6011 } 6012 } 6013 6014 static const ARMCPRegInfo zcr_el1_reginfo = { 6015 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6016 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6017 .access = PL1_RW, .type = ARM_CP_SVE, 6018 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6019 .writefn = zcr_write, .raw_writefn = raw_write 6020 }; 6021 6022 static const ARMCPRegInfo zcr_el2_reginfo = { 6023 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6024 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6025 .access = PL2_RW, .type = ARM_CP_SVE, 6026 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6027 .writefn = zcr_write, .raw_writefn = raw_write 6028 }; 6029 6030 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6031 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6032 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6033 .access = PL2_RW, .type = ARM_CP_SVE, 6034 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6035 }; 6036 6037 static const ARMCPRegInfo zcr_el3_reginfo = { 6038 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6039 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6040 .access = PL3_RW, .type = ARM_CP_SVE, 6041 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6042 .writefn = zcr_write, .raw_writefn = raw_write 6043 }; 6044 6045 void hw_watchpoint_update(ARMCPU *cpu, int n) 6046 { 6047 CPUARMState *env = &cpu->env; 6048 vaddr len = 0; 6049 vaddr wvr = env->cp15.dbgwvr[n]; 6050 uint64_t wcr = env->cp15.dbgwcr[n]; 6051 int mask; 6052 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6053 6054 if (env->cpu_watchpoint[n]) { 6055 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6056 env->cpu_watchpoint[n] = NULL; 6057 } 6058 6059 if (!extract64(wcr, 0, 1)) { 6060 /* E bit clear : watchpoint disabled */ 6061 return; 6062 } 6063 6064 switch (extract64(wcr, 3, 2)) { 6065 case 0: 6066 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6067 return; 6068 case 1: 6069 flags |= BP_MEM_READ; 6070 break; 6071 case 2: 6072 flags |= BP_MEM_WRITE; 6073 break; 6074 case 3: 6075 flags |= BP_MEM_ACCESS; 6076 break; 6077 } 6078 6079 /* Attempts to use both MASK and BAS fields simultaneously are 6080 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6081 * thus generating a watchpoint for every byte in the masked region. 6082 */ 6083 mask = extract64(wcr, 24, 4); 6084 if (mask == 1 || mask == 2) { 6085 /* Reserved values of MASK; we must act as if the mask value was 6086 * some non-reserved value, or as if the watchpoint were disabled. 6087 * We choose the latter. 6088 */ 6089 return; 6090 } else if (mask) { 6091 /* Watchpoint covers an aligned area up to 2GB in size */ 6092 len = 1ULL << mask; 6093 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6094 * whether the watchpoint fires when the unmasked bits match; we opt 6095 * to generate the exceptions. 6096 */ 6097 wvr &= ~(len - 1); 6098 } else { 6099 /* Watchpoint covers bytes defined by the byte address select bits */ 6100 int bas = extract64(wcr, 5, 8); 6101 int basstart; 6102 6103 if (bas == 0) { 6104 /* This must act as if the watchpoint is disabled */ 6105 return; 6106 } 6107 6108 if (extract64(wvr, 2, 1)) { 6109 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6110 * ignored, and BAS[3:0] define which bytes to watch. 6111 */ 6112 bas &= 0xf; 6113 } 6114 /* The BAS bits are supposed to be programmed to indicate a contiguous 6115 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6116 * we fire for each byte in the word/doubleword addressed by the WVR. 6117 * We choose to ignore any non-zero bits after the first range of 1s. 6118 */ 6119 basstart = ctz32(bas); 6120 len = cto32(bas >> basstart); 6121 wvr += basstart; 6122 } 6123 6124 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6125 &env->cpu_watchpoint[n]); 6126 } 6127 6128 void hw_watchpoint_update_all(ARMCPU *cpu) 6129 { 6130 int i; 6131 CPUARMState *env = &cpu->env; 6132 6133 /* Completely clear out existing QEMU watchpoints and our array, to 6134 * avoid possible stale entries following migration load. 6135 */ 6136 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6137 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6138 6139 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6140 hw_watchpoint_update(cpu, i); 6141 } 6142 } 6143 6144 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6145 uint64_t value) 6146 { 6147 ARMCPU *cpu = env_archcpu(env); 6148 int i = ri->crm; 6149 6150 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6151 * register reads and behaves as if values written are sign extended. 6152 * Bits [1:0] are RES0. 6153 */ 6154 value = sextract64(value, 0, 49) & ~3ULL; 6155 6156 raw_write(env, ri, value); 6157 hw_watchpoint_update(cpu, i); 6158 } 6159 6160 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6161 uint64_t value) 6162 { 6163 ARMCPU *cpu = env_archcpu(env); 6164 int i = ri->crm; 6165 6166 raw_write(env, ri, value); 6167 hw_watchpoint_update(cpu, i); 6168 } 6169 6170 void hw_breakpoint_update(ARMCPU *cpu, int n) 6171 { 6172 CPUARMState *env = &cpu->env; 6173 uint64_t bvr = env->cp15.dbgbvr[n]; 6174 uint64_t bcr = env->cp15.dbgbcr[n]; 6175 vaddr addr; 6176 int bt; 6177 int flags = BP_CPU; 6178 6179 if (env->cpu_breakpoint[n]) { 6180 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6181 env->cpu_breakpoint[n] = NULL; 6182 } 6183 6184 if (!extract64(bcr, 0, 1)) { 6185 /* E bit clear : watchpoint disabled */ 6186 return; 6187 } 6188 6189 bt = extract64(bcr, 20, 4); 6190 6191 switch (bt) { 6192 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6193 case 5: /* linked address mismatch (reserved if AArch64) */ 6194 qemu_log_mask(LOG_UNIMP, 6195 "arm: address mismatch breakpoint types not implemented\n"); 6196 return; 6197 case 0: /* unlinked address match */ 6198 case 1: /* linked address match */ 6199 { 6200 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6201 * we behave as if the register was sign extended. Bits [1:0] are 6202 * RES0. The BAS field is used to allow setting breakpoints on 16 6203 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6204 * a bp will fire if the addresses covered by the bp and the addresses 6205 * covered by the insn overlap but the insn doesn't start at the 6206 * start of the bp address range. We choose to require the insn and 6207 * the bp to have the same address. The constraints on writing to 6208 * BAS enforced in dbgbcr_write mean we have only four cases: 6209 * 0b0000 => no breakpoint 6210 * 0b0011 => breakpoint on addr 6211 * 0b1100 => breakpoint on addr + 2 6212 * 0b1111 => breakpoint on addr 6213 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6214 */ 6215 int bas = extract64(bcr, 5, 4); 6216 addr = sextract64(bvr, 0, 49) & ~3ULL; 6217 if (bas == 0) { 6218 return; 6219 } 6220 if (bas == 0xc) { 6221 addr += 2; 6222 } 6223 break; 6224 } 6225 case 2: /* unlinked context ID match */ 6226 case 8: /* unlinked VMID match (reserved if no EL2) */ 6227 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6228 qemu_log_mask(LOG_UNIMP, 6229 "arm: unlinked context breakpoint types not implemented\n"); 6230 return; 6231 case 9: /* linked VMID match (reserved if no EL2) */ 6232 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6233 case 3: /* linked context ID match */ 6234 default: 6235 /* We must generate no events for Linked context matches (unless 6236 * they are linked to by some other bp/wp, which is handled in 6237 * updates for the linking bp/wp). We choose to also generate no events 6238 * for reserved values. 6239 */ 6240 return; 6241 } 6242 6243 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6244 } 6245 6246 void hw_breakpoint_update_all(ARMCPU *cpu) 6247 { 6248 int i; 6249 CPUARMState *env = &cpu->env; 6250 6251 /* Completely clear out existing QEMU breakpoints and our array, to 6252 * avoid possible stale entries following migration load. 6253 */ 6254 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6255 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6256 6257 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6258 hw_breakpoint_update(cpu, i); 6259 } 6260 } 6261 6262 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6263 uint64_t value) 6264 { 6265 ARMCPU *cpu = env_archcpu(env); 6266 int i = ri->crm; 6267 6268 raw_write(env, ri, value); 6269 hw_breakpoint_update(cpu, i); 6270 } 6271 6272 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6273 uint64_t value) 6274 { 6275 ARMCPU *cpu = env_archcpu(env); 6276 int i = ri->crm; 6277 6278 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6279 * copy of BAS[0]. 6280 */ 6281 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6282 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6283 6284 raw_write(env, ri, value); 6285 hw_breakpoint_update(cpu, i); 6286 } 6287 6288 static void define_debug_regs(ARMCPU *cpu) 6289 { 6290 /* Define v7 and v8 architectural debug registers. 6291 * These are just dummy implementations for now. 6292 */ 6293 int i; 6294 int wrps, brps, ctx_cmps; 6295 ARMCPRegInfo dbgdidr = { 6296 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 6297 .access = PL0_R, .accessfn = access_tda, 6298 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6299 }; 6300 6301 /* Note that all these register fields hold "number of Xs minus 1". */ 6302 brps = arm_num_brps(cpu); 6303 wrps = arm_num_wrps(cpu); 6304 ctx_cmps = arm_num_ctx_cmps(cpu); 6305 6306 assert(ctx_cmps <= brps); 6307 6308 define_one_arm_cp_reg(cpu, &dbgdidr); 6309 define_arm_cp_regs(cpu, debug_cp_reginfo); 6310 6311 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6312 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6313 } 6314 6315 for (i = 0; i < brps; i++) { 6316 ARMCPRegInfo dbgregs[] = { 6317 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6318 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6319 .access = PL1_RW, .accessfn = access_tda, 6320 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6321 .writefn = dbgbvr_write, .raw_writefn = raw_write 6322 }, 6323 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6324 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6325 .access = PL1_RW, .accessfn = access_tda, 6326 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6327 .writefn = dbgbcr_write, .raw_writefn = raw_write 6328 }, 6329 REGINFO_SENTINEL 6330 }; 6331 define_arm_cp_regs(cpu, dbgregs); 6332 } 6333 6334 for (i = 0; i < wrps; i++) { 6335 ARMCPRegInfo dbgregs[] = { 6336 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6337 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6338 .access = PL1_RW, .accessfn = access_tda, 6339 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6340 .writefn = dbgwvr_write, .raw_writefn = raw_write 6341 }, 6342 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6343 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6344 .access = PL1_RW, .accessfn = access_tda, 6345 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6346 .writefn = dbgwcr_write, .raw_writefn = raw_write 6347 }, 6348 REGINFO_SENTINEL 6349 }; 6350 define_arm_cp_regs(cpu, dbgregs); 6351 } 6352 } 6353 6354 static void define_pmu_regs(ARMCPU *cpu) 6355 { 6356 /* 6357 * v7 performance monitor control register: same implementor 6358 * field as main ID register, and we implement four counters in 6359 * addition to the cycle count register. 6360 */ 6361 unsigned int i, pmcrn = 4; 6362 ARMCPRegInfo pmcr = { 6363 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6364 .access = PL0_RW, 6365 .type = ARM_CP_IO | ARM_CP_ALIAS, 6366 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6367 .accessfn = pmreg_access, .writefn = pmcr_write, 6368 .raw_writefn = raw_write, 6369 }; 6370 ARMCPRegInfo pmcr64 = { 6371 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6372 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6373 .access = PL0_RW, .accessfn = pmreg_access, 6374 .type = ARM_CP_IO, 6375 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6376 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6377 PMCRLC, 6378 .writefn = pmcr_write, .raw_writefn = raw_write, 6379 }; 6380 define_one_arm_cp_reg(cpu, &pmcr); 6381 define_one_arm_cp_reg(cpu, &pmcr64); 6382 for (i = 0; i < pmcrn; i++) { 6383 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6384 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6385 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6386 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6387 ARMCPRegInfo pmev_regs[] = { 6388 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6389 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6390 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6391 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6392 .accessfn = pmreg_access }, 6393 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6394 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6395 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6396 .type = ARM_CP_IO, 6397 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6398 .raw_readfn = pmevcntr_rawread, 6399 .raw_writefn = pmevcntr_rawwrite }, 6400 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6401 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6402 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6403 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6404 .accessfn = pmreg_access }, 6405 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6406 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6407 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6408 .type = ARM_CP_IO, 6409 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6410 .raw_writefn = pmevtyper_rawwrite }, 6411 REGINFO_SENTINEL 6412 }; 6413 define_arm_cp_regs(cpu, pmev_regs); 6414 g_free(pmevcntr_name); 6415 g_free(pmevcntr_el0_name); 6416 g_free(pmevtyper_name); 6417 g_free(pmevtyper_el0_name); 6418 } 6419 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6420 ARMCPRegInfo v81_pmu_regs[] = { 6421 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6422 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6423 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6424 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6425 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6426 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6427 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6428 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6429 REGINFO_SENTINEL 6430 }; 6431 define_arm_cp_regs(cpu, v81_pmu_regs); 6432 } 6433 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6434 static const ARMCPRegInfo v84_pmmir = { 6435 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6436 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6437 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6438 .resetvalue = 0 6439 }; 6440 define_one_arm_cp_reg(cpu, &v84_pmmir); 6441 } 6442 } 6443 6444 /* We don't know until after realize whether there's a GICv3 6445 * attached, and that is what registers the gicv3 sysregs. 6446 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6447 * at runtime. 6448 */ 6449 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6450 { 6451 ARMCPU *cpu = env_archcpu(env); 6452 uint64_t pfr1 = cpu->id_pfr1; 6453 6454 if (env->gicv3state) { 6455 pfr1 |= 1 << 28; 6456 } 6457 return pfr1; 6458 } 6459 6460 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6461 { 6462 ARMCPU *cpu = env_archcpu(env); 6463 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6464 6465 if (env->gicv3state) { 6466 pfr0 |= 1 << 24; 6467 } 6468 return pfr0; 6469 } 6470 6471 /* Shared logic between LORID and the rest of the LOR* registers. 6472 * Secure state has already been delt with. 6473 */ 6474 static CPAccessResult access_lor_ns(CPUARMState *env) 6475 { 6476 int el = arm_current_el(env); 6477 6478 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6479 return CP_ACCESS_TRAP_EL2; 6480 } 6481 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6482 return CP_ACCESS_TRAP_EL3; 6483 } 6484 return CP_ACCESS_OK; 6485 } 6486 6487 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 6488 bool isread) 6489 { 6490 if (arm_is_secure_below_el3(env)) { 6491 /* Access ok in secure mode. */ 6492 return CP_ACCESS_OK; 6493 } 6494 return access_lor_ns(env); 6495 } 6496 6497 static CPAccessResult access_lor_other(CPUARMState *env, 6498 const ARMCPRegInfo *ri, bool isread) 6499 { 6500 if (arm_is_secure_below_el3(env)) { 6501 /* Access denied in secure mode. */ 6502 return CP_ACCESS_TRAP; 6503 } 6504 return access_lor_ns(env); 6505 } 6506 6507 /* 6508 * A trivial implementation of ARMv8.1-LOR leaves all of these 6509 * registers fixed at 0, which indicates that there are zero 6510 * supported Limited Ordering regions. 6511 */ 6512 static const ARMCPRegInfo lor_reginfo[] = { 6513 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6514 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6515 .access = PL1_RW, .accessfn = access_lor_other, 6516 .type = ARM_CP_CONST, .resetvalue = 0 }, 6517 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6518 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6519 .access = PL1_RW, .accessfn = access_lor_other, 6520 .type = ARM_CP_CONST, .resetvalue = 0 }, 6521 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6522 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6523 .access = PL1_RW, .accessfn = access_lor_other, 6524 .type = ARM_CP_CONST, .resetvalue = 0 }, 6525 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6526 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6527 .access = PL1_RW, .accessfn = access_lor_other, 6528 .type = ARM_CP_CONST, .resetvalue = 0 }, 6529 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6530 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6531 .access = PL1_R, .accessfn = access_lorid, 6532 .type = ARM_CP_CONST, .resetvalue = 0 }, 6533 REGINFO_SENTINEL 6534 }; 6535 6536 #ifdef TARGET_AARCH64 6537 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6538 bool isread) 6539 { 6540 int el = arm_current_el(env); 6541 6542 if (el < 2 && 6543 arm_feature(env, ARM_FEATURE_EL2) && 6544 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6545 return CP_ACCESS_TRAP_EL2; 6546 } 6547 if (el < 3 && 6548 arm_feature(env, ARM_FEATURE_EL3) && 6549 !(env->cp15.scr_el3 & SCR_APK)) { 6550 return CP_ACCESS_TRAP_EL3; 6551 } 6552 return CP_ACCESS_OK; 6553 } 6554 6555 static const ARMCPRegInfo pauth_reginfo[] = { 6556 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6557 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6558 .access = PL1_RW, .accessfn = access_pauth, 6559 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6560 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6561 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6562 .access = PL1_RW, .accessfn = access_pauth, 6563 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6564 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6565 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6566 .access = PL1_RW, .accessfn = access_pauth, 6567 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6568 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6569 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6570 .access = PL1_RW, .accessfn = access_pauth, 6571 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6572 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6573 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6574 .access = PL1_RW, .accessfn = access_pauth, 6575 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6576 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6577 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6578 .access = PL1_RW, .accessfn = access_pauth, 6579 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6580 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6581 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6582 .access = PL1_RW, .accessfn = access_pauth, 6583 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6584 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6585 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6586 .access = PL1_RW, .accessfn = access_pauth, 6587 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6588 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6589 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6590 .access = PL1_RW, .accessfn = access_pauth, 6591 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6592 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6593 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6594 .access = PL1_RW, .accessfn = access_pauth, 6595 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6596 REGINFO_SENTINEL 6597 }; 6598 6599 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6600 { 6601 Error *err = NULL; 6602 uint64_t ret; 6603 6604 /* Success sets NZCV = 0000. */ 6605 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6606 6607 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6608 /* 6609 * ??? Failed, for unknown reasons in the crypto subsystem. 6610 * The best we can do is log the reason and return the 6611 * timed-out indication to the guest. There is no reason 6612 * we know to expect this failure to be transitory, so the 6613 * guest may well hang retrying the operation. 6614 */ 6615 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6616 ri->name, error_get_pretty(err)); 6617 error_free(err); 6618 6619 env->ZF = 0; /* NZCF = 0100 */ 6620 return 0; 6621 } 6622 return ret; 6623 } 6624 6625 /* We do not support re-seeding, so the two registers operate the same. */ 6626 static const ARMCPRegInfo rndr_reginfo[] = { 6627 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6628 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6629 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6630 .access = PL0_R, .readfn = rndr_readfn }, 6631 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6632 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6633 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6634 .access = PL0_R, .readfn = rndr_readfn }, 6635 REGINFO_SENTINEL 6636 }; 6637 6638 #ifndef CONFIG_USER_ONLY 6639 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6640 uint64_t value) 6641 { 6642 ARMCPU *cpu = env_archcpu(env); 6643 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6644 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6645 uint64_t vaddr_in = (uint64_t) value; 6646 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6647 void *haddr; 6648 int mem_idx = cpu_mmu_index(env, false); 6649 6650 /* This won't be crossing page boundaries */ 6651 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6652 if (haddr) { 6653 6654 ram_addr_t offset; 6655 MemoryRegion *mr; 6656 6657 /* RCU lock is already being held */ 6658 mr = memory_region_from_host(haddr, &offset); 6659 6660 if (mr) { 6661 memory_region_do_writeback(mr, offset, dline_size); 6662 } 6663 } 6664 } 6665 6666 static const ARMCPRegInfo dcpop_reg[] = { 6667 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6668 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6669 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6670 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn }, 6671 REGINFO_SENTINEL 6672 }; 6673 6674 static const ARMCPRegInfo dcpodp_reg[] = { 6675 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6676 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6677 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6678 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn }, 6679 REGINFO_SENTINEL 6680 }; 6681 #endif /*CONFIG_USER_ONLY*/ 6682 6683 #endif 6684 6685 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 6686 bool isread) 6687 { 6688 int el = arm_current_el(env); 6689 6690 if (el == 0) { 6691 uint64_t sctlr = arm_sctlr(env, el); 6692 if (!(sctlr & SCTLR_EnRCTX)) { 6693 return CP_ACCESS_TRAP; 6694 } 6695 } else if (el == 1) { 6696 uint64_t hcr = arm_hcr_el2_eff(env); 6697 if (hcr & HCR_NV) { 6698 return CP_ACCESS_TRAP_EL2; 6699 } 6700 } 6701 return CP_ACCESS_OK; 6702 } 6703 6704 static const ARMCPRegInfo predinv_reginfo[] = { 6705 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 6706 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 6707 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6708 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 6709 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 6710 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6711 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 6712 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 6713 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6714 /* 6715 * Note the AArch32 opcodes have a different OPC1. 6716 */ 6717 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 6718 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 6719 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6720 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 6721 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 6722 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6723 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 6724 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 6725 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6726 REGINFO_SENTINEL 6727 }; 6728 6729 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6730 bool isread) 6731 { 6732 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 6733 return CP_ACCESS_TRAP_EL2; 6734 } 6735 6736 return CP_ACCESS_OK; 6737 } 6738 6739 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6740 bool isread) 6741 { 6742 if (arm_feature(env, ARM_FEATURE_V8)) { 6743 return access_aa64_tid3(env, ri, isread); 6744 } 6745 6746 return CP_ACCESS_OK; 6747 } 6748 6749 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 6750 bool isread) 6751 { 6752 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 6753 return CP_ACCESS_TRAP_EL2; 6754 } 6755 6756 return CP_ACCESS_OK; 6757 } 6758 6759 static const ARMCPRegInfo jazelle_regs[] = { 6760 { .name = "JIDR", 6761 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 6762 .access = PL1_R, .accessfn = access_jazelle, 6763 .type = ARM_CP_CONST, .resetvalue = 0 }, 6764 { .name = "JOSCR", 6765 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 6766 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6767 { .name = "JMCR", 6768 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 6769 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6770 REGINFO_SENTINEL 6771 }; 6772 6773 static const ARMCPRegInfo vhe_reginfo[] = { 6774 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 6775 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 6776 .access = PL2_RW, 6777 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 6778 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 6779 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 6780 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 6781 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 6782 #ifndef CONFIG_USER_ONLY 6783 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6784 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 6785 .fieldoffset = 6786 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 6787 .type = ARM_CP_IO, .access = PL2_RW, 6788 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 6789 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6790 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 6791 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6792 .resetfn = gt_hv_timer_reset, 6793 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 6794 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6795 .type = ARM_CP_IO, 6796 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 6797 .access = PL2_RW, 6798 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 6799 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 6800 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 6801 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 6802 .type = ARM_CP_IO | ARM_CP_ALIAS, 6803 .access = PL2_RW, .accessfn = e2h_access, 6804 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 6805 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 6806 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 6807 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 6808 .type = ARM_CP_IO | ARM_CP_ALIAS, 6809 .access = PL2_RW, .accessfn = e2h_access, 6810 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 6811 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 6812 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 6813 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 6814 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 6815 .access = PL2_RW, .accessfn = e2h_access, 6816 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 6817 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 6818 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 6819 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 6820 .access = PL2_RW, .accessfn = e2h_access, 6821 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 6822 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 6823 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 6824 .type = ARM_CP_IO | ARM_CP_ALIAS, 6825 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 6826 .access = PL2_RW, .accessfn = e2h_access, 6827 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 6828 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 6829 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 6830 .type = ARM_CP_IO | ARM_CP_ALIAS, 6831 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 6832 .access = PL2_RW, .accessfn = e2h_access, 6833 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 6834 #endif 6835 REGINFO_SENTINEL 6836 }; 6837 6838 #ifndef CONFIG_USER_ONLY 6839 static const ARMCPRegInfo ats1e1_reginfo[] = { 6840 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 6841 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 6842 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 6843 .writefn = ats_write64 }, 6844 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 6845 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 6846 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 6847 .writefn = ats_write64 }, 6848 REGINFO_SENTINEL 6849 }; 6850 6851 static const ARMCPRegInfo ats1cp_reginfo[] = { 6852 { .name = "ATS1CPRP", 6853 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 6854 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 6855 .writefn = ats_write }, 6856 { .name = "ATS1CPWP", 6857 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 6858 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 6859 .writefn = ats_write }, 6860 REGINFO_SENTINEL 6861 }; 6862 #endif 6863 6864 /* 6865 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 6866 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 6867 * is non-zero, which is never for ARMv7, optionally in ARMv8 6868 * and mandatorily for ARMv8.2 and up. 6869 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 6870 * implementation is RAZ/WI we can ignore this detail, as we 6871 * do for ACTLR. 6872 */ 6873 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 6874 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 6875 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 6876 .access = PL1_RW, .type = ARM_CP_CONST, 6877 .resetvalue = 0 }, 6878 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6879 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6880 .access = PL2_RW, .type = ARM_CP_CONST, 6881 .resetvalue = 0 }, 6882 REGINFO_SENTINEL 6883 }; 6884 6885 void register_cp_regs_for_features(ARMCPU *cpu) 6886 { 6887 /* Register all the coprocessor registers based on feature bits */ 6888 CPUARMState *env = &cpu->env; 6889 if (arm_feature(env, ARM_FEATURE_M)) { 6890 /* M profile has no coprocessor registers */ 6891 return; 6892 } 6893 6894 define_arm_cp_regs(cpu, cp_reginfo); 6895 if (!arm_feature(env, ARM_FEATURE_V8)) { 6896 /* Must go early as it is full of wildcards that may be 6897 * overridden by later definitions. 6898 */ 6899 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 6900 } 6901 6902 if (arm_feature(env, ARM_FEATURE_V6)) { 6903 /* The ID registers all have impdef reset values */ 6904 ARMCPRegInfo v6_idregs[] = { 6905 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 6906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6907 .access = PL1_R, .type = ARM_CP_CONST, 6908 .accessfn = access_aa32_tid3, 6909 .resetvalue = cpu->id_pfr0 }, 6910 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 6911 * the value of the GIC field until after we define these regs. 6912 */ 6913 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 6914 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 6915 .access = PL1_R, .type = ARM_CP_NO_RAW, 6916 .accessfn = access_aa32_tid3, 6917 .readfn = id_pfr1_read, 6918 .writefn = arm_cp_write_ignore }, 6919 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 6920 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 6921 .access = PL1_R, .type = ARM_CP_CONST, 6922 .accessfn = access_aa32_tid3, 6923 .resetvalue = cpu->isar.id_dfr0 }, 6924 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 6925 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 6926 .access = PL1_R, .type = ARM_CP_CONST, 6927 .accessfn = access_aa32_tid3, 6928 .resetvalue = cpu->id_afr0 }, 6929 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 6930 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 6931 .access = PL1_R, .type = ARM_CP_CONST, 6932 .accessfn = access_aa32_tid3, 6933 .resetvalue = cpu->isar.id_mmfr0 }, 6934 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 6935 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 6936 .access = PL1_R, .type = ARM_CP_CONST, 6937 .accessfn = access_aa32_tid3, 6938 .resetvalue = cpu->isar.id_mmfr1 }, 6939 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 6940 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 6941 .access = PL1_R, .type = ARM_CP_CONST, 6942 .accessfn = access_aa32_tid3, 6943 .resetvalue = cpu->isar.id_mmfr2 }, 6944 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 6945 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 6946 .access = PL1_R, .type = ARM_CP_CONST, 6947 .accessfn = access_aa32_tid3, 6948 .resetvalue = cpu->isar.id_mmfr3 }, 6949 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 6950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6951 .access = PL1_R, .type = ARM_CP_CONST, 6952 .accessfn = access_aa32_tid3, 6953 .resetvalue = cpu->isar.id_isar0 }, 6954 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 6955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 6956 .access = PL1_R, .type = ARM_CP_CONST, 6957 .accessfn = access_aa32_tid3, 6958 .resetvalue = cpu->isar.id_isar1 }, 6959 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 6960 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6961 .access = PL1_R, .type = ARM_CP_CONST, 6962 .accessfn = access_aa32_tid3, 6963 .resetvalue = cpu->isar.id_isar2 }, 6964 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 6965 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 6966 .access = PL1_R, .type = ARM_CP_CONST, 6967 .accessfn = access_aa32_tid3, 6968 .resetvalue = cpu->isar.id_isar3 }, 6969 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 6970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 6971 .access = PL1_R, .type = ARM_CP_CONST, 6972 .accessfn = access_aa32_tid3, 6973 .resetvalue = cpu->isar.id_isar4 }, 6974 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 6975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 6976 .access = PL1_R, .type = ARM_CP_CONST, 6977 .accessfn = access_aa32_tid3, 6978 .resetvalue = cpu->isar.id_isar5 }, 6979 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 6980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 6981 .access = PL1_R, .type = ARM_CP_CONST, 6982 .accessfn = access_aa32_tid3, 6983 .resetvalue = cpu->isar.id_mmfr4 }, 6984 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 6985 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 6986 .access = PL1_R, .type = ARM_CP_CONST, 6987 .accessfn = access_aa32_tid3, 6988 .resetvalue = cpu->isar.id_isar6 }, 6989 REGINFO_SENTINEL 6990 }; 6991 define_arm_cp_regs(cpu, v6_idregs); 6992 define_arm_cp_regs(cpu, v6_cp_reginfo); 6993 } else { 6994 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 6995 } 6996 if (arm_feature(env, ARM_FEATURE_V6K)) { 6997 define_arm_cp_regs(cpu, v6k_cp_reginfo); 6998 } 6999 if (arm_feature(env, ARM_FEATURE_V7MP) && 7000 !arm_feature(env, ARM_FEATURE_PMSA)) { 7001 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7002 } 7003 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7004 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7005 } 7006 if (arm_feature(env, ARM_FEATURE_V7)) { 7007 ARMCPRegInfo clidr = { 7008 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7009 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7010 .access = PL1_R, .type = ARM_CP_CONST, 7011 .accessfn = access_aa64_tid2, 7012 .resetvalue = cpu->clidr 7013 }; 7014 define_one_arm_cp_reg(cpu, &clidr); 7015 define_arm_cp_regs(cpu, v7_cp_reginfo); 7016 define_debug_regs(cpu); 7017 define_pmu_regs(cpu); 7018 } else { 7019 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7020 } 7021 if (arm_feature(env, ARM_FEATURE_V8)) { 7022 /* AArch64 ID registers, which all have impdef reset values. 7023 * Note that within the ID register ranges the unused slots 7024 * must all RAZ, not UNDEF; future architecture versions may 7025 * define new registers here. 7026 */ 7027 ARMCPRegInfo v8_idregs[] = { 7028 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 7029 * know the right value for the GIC field until after we 7030 * define these regs. 7031 */ 7032 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7034 .access = PL1_R, .type = ARM_CP_NO_RAW, 7035 .accessfn = access_aa64_tid3, 7036 .readfn = id_aa64pfr0_read, 7037 .writefn = arm_cp_write_ignore }, 7038 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7040 .access = PL1_R, .type = ARM_CP_CONST, 7041 .accessfn = access_aa64_tid3, 7042 .resetvalue = cpu->isar.id_aa64pfr1}, 7043 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7045 .access = PL1_R, .type = ARM_CP_CONST, 7046 .accessfn = access_aa64_tid3, 7047 .resetvalue = 0 }, 7048 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7050 .access = PL1_R, .type = ARM_CP_CONST, 7051 .accessfn = access_aa64_tid3, 7052 .resetvalue = 0 }, 7053 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7055 .access = PL1_R, .type = ARM_CP_CONST, 7056 .accessfn = access_aa64_tid3, 7057 /* At present, only SVEver == 0 is defined anyway. */ 7058 .resetvalue = 0 }, 7059 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7061 .access = PL1_R, .type = ARM_CP_CONST, 7062 .accessfn = access_aa64_tid3, 7063 .resetvalue = 0 }, 7064 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7065 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7066 .access = PL1_R, .type = ARM_CP_CONST, 7067 .accessfn = access_aa64_tid3, 7068 .resetvalue = 0 }, 7069 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7071 .access = PL1_R, .type = ARM_CP_CONST, 7072 .accessfn = access_aa64_tid3, 7073 .resetvalue = 0 }, 7074 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7076 .access = PL1_R, .type = ARM_CP_CONST, 7077 .accessfn = access_aa64_tid3, 7078 .resetvalue = cpu->isar.id_aa64dfr0 }, 7079 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7081 .access = PL1_R, .type = ARM_CP_CONST, 7082 .accessfn = access_aa64_tid3, 7083 .resetvalue = cpu->isar.id_aa64dfr1 }, 7084 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7086 .access = PL1_R, .type = ARM_CP_CONST, 7087 .accessfn = access_aa64_tid3, 7088 .resetvalue = 0 }, 7089 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7091 .access = PL1_R, .type = ARM_CP_CONST, 7092 .accessfn = access_aa64_tid3, 7093 .resetvalue = 0 }, 7094 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7096 .access = PL1_R, .type = ARM_CP_CONST, 7097 .accessfn = access_aa64_tid3, 7098 .resetvalue = cpu->id_aa64afr0 }, 7099 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7100 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7101 .access = PL1_R, .type = ARM_CP_CONST, 7102 .accessfn = access_aa64_tid3, 7103 .resetvalue = cpu->id_aa64afr1 }, 7104 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7105 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7106 .access = PL1_R, .type = ARM_CP_CONST, 7107 .accessfn = access_aa64_tid3, 7108 .resetvalue = 0 }, 7109 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7111 .access = PL1_R, .type = ARM_CP_CONST, 7112 .accessfn = access_aa64_tid3, 7113 .resetvalue = 0 }, 7114 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7115 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7116 .access = PL1_R, .type = ARM_CP_CONST, 7117 .accessfn = access_aa64_tid3, 7118 .resetvalue = cpu->isar.id_aa64isar0 }, 7119 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7121 .access = PL1_R, .type = ARM_CP_CONST, 7122 .accessfn = access_aa64_tid3, 7123 .resetvalue = cpu->isar.id_aa64isar1 }, 7124 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7126 .access = PL1_R, .type = ARM_CP_CONST, 7127 .accessfn = access_aa64_tid3, 7128 .resetvalue = 0 }, 7129 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7131 .access = PL1_R, .type = ARM_CP_CONST, 7132 .accessfn = access_aa64_tid3, 7133 .resetvalue = 0 }, 7134 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7136 .access = PL1_R, .type = ARM_CP_CONST, 7137 .accessfn = access_aa64_tid3, 7138 .resetvalue = 0 }, 7139 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7140 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7141 .access = PL1_R, .type = ARM_CP_CONST, 7142 .accessfn = access_aa64_tid3, 7143 .resetvalue = 0 }, 7144 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7145 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7146 .access = PL1_R, .type = ARM_CP_CONST, 7147 .accessfn = access_aa64_tid3, 7148 .resetvalue = 0 }, 7149 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7151 .access = PL1_R, .type = ARM_CP_CONST, 7152 .accessfn = access_aa64_tid3, 7153 .resetvalue = 0 }, 7154 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7156 .access = PL1_R, .type = ARM_CP_CONST, 7157 .accessfn = access_aa64_tid3, 7158 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7159 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7160 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7161 .access = PL1_R, .type = ARM_CP_CONST, 7162 .accessfn = access_aa64_tid3, 7163 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7164 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7165 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7166 .access = PL1_R, .type = ARM_CP_CONST, 7167 .accessfn = access_aa64_tid3, 7168 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7169 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7171 .access = PL1_R, .type = ARM_CP_CONST, 7172 .accessfn = access_aa64_tid3, 7173 .resetvalue = 0 }, 7174 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7176 .access = PL1_R, .type = ARM_CP_CONST, 7177 .accessfn = access_aa64_tid3, 7178 .resetvalue = 0 }, 7179 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7180 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7181 .access = PL1_R, .type = ARM_CP_CONST, 7182 .accessfn = access_aa64_tid3, 7183 .resetvalue = 0 }, 7184 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7185 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7186 .access = PL1_R, .type = ARM_CP_CONST, 7187 .accessfn = access_aa64_tid3, 7188 .resetvalue = 0 }, 7189 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7191 .access = PL1_R, .type = ARM_CP_CONST, 7192 .accessfn = access_aa64_tid3, 7193 .resetvalue = 0 }, 7194 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7196 .access = PL1_R, .type = ARM_CP_CONST, 7197 .accessfn = access_aa64_tid3, 7198 .resetvalue = cpu->isar.mvfr0 }, 7199 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7201 .access = PL1_R, .type = ARM_CP_CONST, 7202 .accessfn = access_aa64_tid3, 7203 .resetvalue = cpu->isar.mvfr1 }, 7204 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7205 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7206 .access = PL1_R, .type = ARM_CP_CONST, 7207 .accessfn = access_aa64_tid3, 7208 .resetvalue = cpu->isar.mvfr2 }, 7209 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7210 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7211 .access = PL1_R, .type = ARM_CP_CONST, 7212 .accessfn = access_aa64_tid3, 7213 .resetvalue = 0 }, 7214 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7215 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7216 .access = PL1_R, .type = ARM_CP_CONST, 7217 .accessfn = access_aa64_tid3, 7218 .resetvalue = 0 }, 7219 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7221 .access = PL1_R, .type = ARM_CP_CONST, 7222 .accessfn = access_aa64_tid3, 7223 .resetvalue = 0 }, 7224 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7225 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7226 .access = PL1_R, .type = ARM_CP_CONST, 7227 .accessfn = access_aa64_tid3, 7228 .resetvalue = 0 }, 7229 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7230 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7231 .access = PL1_R, .type = ARM_CP_CONST, 7232 .accessfn = access_aa64_tid3, 7233 .resetvalue = 0 }, 7234 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7235 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7236 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7237 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7238 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7239 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7240 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7241 .resetvalue = cpu->pmceid0 }, 7242 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7243 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7244 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7245 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7246 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7247 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7248 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7249 .resetvalue = cpu->pmceid1 }, 7250 REGINFO_SENTINEL 7251 }; 7252 #ifdef CONFIG_USER_ONLY 7253 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7254 { .name = "ID_AA64PFR0_EL1", 7255 .exported_bits = 0x000f000f00ff0000, 7256 .fixed_bits = 0x0000000000000011 }, 7257 { .name = "ID_AA64PFR1_EL1", 7258 .exported_bits = 0x00000000000000f0 }, 7259 { .name = "ID_AA64PFR*_EL1_RESERVED", 7260 .is_glob = true }, 7261 { .name = "ID_AA64ZFR0_EL1" }, 7262 { .name = "ID_AA64MMFR0_EL1", 7263 .fixed_bits = 0x00000000ff000000 }, 7264 { .name = "ID_AA64MMFR1_EL1" }, 7265 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7266 .is_glob = true }, 7267 { .name = "ID_AA64DFR0_EL1", 7268 .fixed_bits = 0x0000000000000006 }, 7269 { .name = "ID_AA64DFR1_EL1" }, 7270 { .name = "ID_AA64DFR*_EL1_RESERVED", 7271 .is_glob = true }, 7272 { .name = "ID_AA64AFR*", 7273 .is_glob = true }, 7274 { .name = "ID_AA64ISAR0_EL1", 7275 .exported_bits = 0x00fffffff0fffff0 }, 7276 { .name = "ID_AA64ISAR1_EL1", 7277 .exported_bits = 0x000000f0ffffffff }, 7278 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7279 .is_glob = true }, 7280 REGUSERINFO_SENTINEL 7281 }; 7282 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7283 #endif 7284 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7285 if (!arm_feature(env, ARM_FEATURE_EL3) && 7286 !arm_feature(env, ARM_FEATURE_EL2)) { 7287 ARMCPRegInfo rvbar = { 7288 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7290 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7291 }; 7292 define_one_arm_cp_reg(cpu, &rvbar); 7293 } 7294 define_arm_cp_regs(cpu, v8_idregs); 7295 define_arm_cp_regs(cpu, v8_cp_reginfo); 7296 } 7297 if (arm_feature(env, ARM_FEATURE_EL2)) { 7298 uint64_t vmpidr_def = mpidr_read_val(env); 7299 ARMCPRegInfo vpidr_regs[] = { 7300 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7301 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7302 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7303 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7304 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7305 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7306 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7307 .access = PL2_RW, .resetvalue = cpu->midr, 7308 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7309 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7310 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7311 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7312 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7313 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7314 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7315 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7316 .access = PL2_RW, 7317 .resetvalue = vmpidr_def, 7318 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7319 REGINFO_SENTINEL 7320 }; 7321 define_arm_cp_regs(cpu, vpidr_regs); 7322 define_arm_cp_regs(cpu, el2_cp_reginfo); 7323 if (arm_feature(env, ARM_FEATURE_V8)) { 7324 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7325 } 7326 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7327 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7328 ARMCPRegInfo rvbar = { 7329 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7330 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7331 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7332 }; 7333 define_one_arm_cp_reg(cpu, &rvbar); 7334 } 7335 } else { 7336 /* If EL2 is missing but higher ELs are enabled, we need to 7337 * register the no_el2 reginfos. 7338 */ 7339 if (arm_feature(env, ARM_FEATURE_EL3)) { 7340 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7341 * of MIDR_EL1 and MPIDR_EL1. 7342 */ 7343 ARMCPRegInfo vpidr_regs[] = { 7344 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7345 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7346 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 7347 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7348 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7349 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7350 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7351 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 7352 .type = ARM_CP_NO_RAW, 7353 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7354 REGINFO_SENTINEL 7355 }; 7356 define_arm_cp_regs(cpu, vpidr_regs); 7357 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7358 if (arm_feature(env, ARM_FEATURE_V8)) { 7359 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7360 } 7361 } 7362 } 7363 if (arm_feature(env, ARM_FEATURE_EL3)) { 7364 define_arm_cp_regs(cpu, el3_cp_reginfo); 7365 ARMCPRegInfo el3_regs[] = { 7366 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7367 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7368 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7369 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7370 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7371 .access = PL3_RW, 7372 .raw_writefn = raw_write, .writefn = sctlr_write, 7373 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7374 .resetvalue = cpu->reset_sctlr }, 7375 REGINFO_SENTINEL 7376 }; 7377 7378 define_arm_cp_regs(cpu, el3_regs); 7379 } 7380 /* The behaviour of NSACR is sufficiently various that we don't 7381 * try to describe it in a single reginfo: 7382 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7383 * reads as constant 0xc00 from NS EL1 and NS EL2 7384 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7385 * if v7 without EL3, register doesn't exist 7386 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7387 */ 7388 if (arm_feature(env, ARM_FEATURE_EL3)) { 7389 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7390 ARMCPRegInfo nsacr = { 7391 .name = "NSACR", .type = ARM_CP_CONST, 7392 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7393 .access = PL1_RW, .accessfn = nsacr_access, 7394 .resetvalue = 0xc00 7395 }; 7396 define_one_arm_cp_reg(cpu, &nsacr); 7397 } else { 7398 ARMCPRegInfo nsacr = { 7399 .name = "NSACR", 7400 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7401 .access = PL3_RW | PL1_R, 7402 .resetvalue = 0, 7403 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7404 }; 7405 define_one_arm_cp_reg(cpu, &nsacr); 7406 } 7407 } else { 7408 if (arm_feature(env, ARM_FEATURE_V8)) { 7409 ARMCPRegInfo nsacr = { 7410 .name = "NSACR", .type = ARM_CP_CONST, 7411 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7412 .access = PL1_R, 7413 .resetvalue = 0xc00 7414 }; 7415 define_one_arm_cp_reg(cpu, &nsacr); 7416 } 7417 } 7418 7419 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7420 if (arm_feature(env, ARM_FEATURE_V6)) { 7421 /* PMSAv6 not implemented */ 7422 assert(arm_feature(env, ARM_FEATURE_V7)); 7423 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7424 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7425 } else { 7426 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7427 } 7428 } else { 7429 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7430 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7431 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7432 if (cpu_isar_feature(aa32_hpd, cpu)) { 7433 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7434 } 7435 } 7436 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7437 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7438 } 7439 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7440 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7441 } 7442 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7443 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7444 } 7445 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7446 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7447 } 7448 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7449 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7450 } 7451 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7452 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7453 } 7454 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7455 define_arm_cp_regs(cpu, omap_cp_reginfo); 7456 } 7457 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7458 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7459 } 7460 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7461 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7462 } 7463 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7464 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7465 } 7466 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7467 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7468 } 7469 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7470 define_arm_cp_regs(cpu, jazelle_regs); 7471 } 7472 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7473 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7474 * be read-only (ie write causes UNDEF exception). 7475 */ 7476 { 7477 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7478 /* Pre-v8 MIDR space. 7479 * Note that the MIDR isn't a simple constant register because 7480 * of the TI925 behaviour where writes to another register can 7481 * cause the MIDR value to change. 7482 * 7483 * Unimplemented registers in the c15 0 0 0 space default to 7484 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7485 * and friends override accordingly. 7486 */ 7487 { .name = "MIDR", 7488 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7489 .access = PL1_R, .resetvalue = cpu->midr, 7490 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7491 .readfn = midr_read, 7492 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7493 .type = ARM_CP_OVERRIDE }, 7494 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7495 { .name = "DUMMY", 7496 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7497 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7498 { .name = "DUMMY", 7499 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7500 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7501 { .name = "DUMMY", 7502 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7503 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7504 { .name = "DUMMY", 7505 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7506 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7507 { .name = "DUMMY", 7508 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7509 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7510 REGINFO_SENTINEL 7511 }; 7512 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7513 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7514 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7515 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7516 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7517 .readfn = midr_read }, 7518 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7519 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7520 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7521 .access = PL1_R, .resetvalue = cpu->midr }, 7522 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7523 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7524 .access = PL1_R, .resetvalue = cpu->midr }, 7525 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7526 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7527 .access = PL1_R, 7528 .accessfn = access_aa64_tid1, 7529 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 7530 REGINFO_SENTINEL 7531 }; 7532 ARMCPRegInfo id_cp_reginfo[] = { 7533 /* These are common to v8 and pre-v8 */ 7534 { .name = "CTR", 7535 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 7536 .access = PL1_R, .accessfn = ctr_el0_access, 7537 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7538 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 7539 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 7540 .access = PL0_R, .accessfn = ctr_el0_access, 7541 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7542 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 7543 { .name = "TCMTR", 7544 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 7545 .access = PL1_R, 7546 .accessfn = access_aa32_tid1, 7547 .type = ARM_CP_CONST, .resetvalue = 0 }, 7548 REGINFO_SENTINEL 7549 }; 7550 /* TLBTR is specific to VMSA */ 7551 ARMCPRegInfo id_tlbtr_reginfo = { 7552 .name = "TLBTR", 7553 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 7554 .access = PL1_R, 7555 .accessfn = access_aa32_tid1, 7556 .type = ARM_CP_CONST, .resetvalue = 0, 7557 }; 7558 /* MPUIR is specific to PMSA V6+ */ 7559 ARMCPRegInfo id_mpuir_reginfo = { 7560 .name = "MPUIR", 7561 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7562 .access = PL1_R, .type = ARM_CP_CONST, 7563 .resetvalue = cpu->pmsav7_dregion << 8 7564 }; 7565 ARMCPRegInfo crn0_wi_reginfo = { 7566 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 7567 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 7568 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 7569 }; 7570 #ifdef CONFIG_USER_ONLY 7571 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 7572 { .name = "MIDR_EL1", 7573 .exported_bits = 0x00000000ffffffff }, 7574 { .name = "REVIDR_EL1" }, 7575 REGUSERINFO_SENTINEL 7576 }; 7577 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 7578 #endif 7579 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 7580 arm_feature(env, ARM_FEATURE_STRONGARM)) { 7581 ARMCPRegInfo *r; 7582 /* Register the blanket "writes ignored" value first to cover the 7583 * whole space. Then update the specific ID registers to allow write 7584 * access, so that they ignore writes rather than causing them to 7585 * UNDEF. 7586 */ 7587 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 7588 for (r = id_pre_v8_midr_cp_reginfo; 7589 r->type != ARM_CP_SENTINEL; r++) { 7590 r->access = PL1_RW; 7591 } 7592 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 7593 r->access = PL1_RW; 7594 } 7595 id_mpuir_reginfo.access = PL1_RW; 7596 id_tlbtr_reginfo.access = PL1_RW; 7597 } 7598 if (arm_feature(env, ARM_FEATURE_V8)) { 7599 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 7600 } else { 7601 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 7602 } 7603 define_arm_cp_regs(cpu, id_cp_reginfo); 7604 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 7605 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 7606 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7607 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 7608 } 7609 } 7610 7611 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 7612 ARMCPRegInfo mpidr_cp_reginfo[] = { 7613 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 7614 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 7615 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 7616 REGINFO_SENTINEL 7617 }; 7618 #ifdef CONFIG_USER_ONLY 7619 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 7620 { .name = "MPIDR_EL1", 7621 .fixed_bits = 0x0000000080000000 }, 7622 REGUSERINFO_SENTINEL 7623 }; 7624 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 7625 #endif 7626 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 7627 } 7628 7629 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 7630 ARMCPRegInfo auxcr_reginfo[] = { 7631 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 7632 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 7633 .access = PL1_RW, .type = ARM_CP_CONST, 7634 .resetvalue = cpu->reset_auxcr }, 7635 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 7636 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 7637 .access = PL2_RW, .type = ARM_CP_CONST, 7638 .resetvalue = 0 }, 7639 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 7640 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 7641 .access = PL3_RW, .type = ARM_CP_CONST, 7642 .resetvalue = 0 }, 7643 REGINFO_SENTINEL 7644 }; 7645 define_arm_cp_regs(cpu, auxcr_reginfo); 7646 if (cpu_isar_feature(aa32_ac2, cpu)) { 7647 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 7648 } 7649 } 7650 7651 if (arm_feature(env, ARM_FEATURE_CBAR)) { 7652 /* 7653 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 7654 * There are two flavours: 7655 * (1) older 32-bit only cores have a simple 32-bit CBAR 7656 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 7657 * 32-bit register visible to AArch32 at a different encoding 7658 * to the "flavour 1" register and with the bits rearranged to 7659 * be able to squash a 64-bit address into the 32-bit view. 7660 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 7661 * in future if we support AArch32-only configs of some of the 7662 * AArch64 cores we might need to add a specific feature flag 7663 * to indicate cores with "flavour 2" CBAR. 7664 */ 7665 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7666 /* 32 bit view is [31:18] 0...0 [43:32]. */ 7667 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 7668 | extract64(cpu->reset_cbar, 32, 12); 7669 ARMCPRegInfo cbar_reginfo[] = { 7670 { .name = "CBAR", 7671 .type = ARM_CP_CONST, 7672 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 7673 .access = PL1_R, .resetvalue = cbar32 }, 7674 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 7675 .type = ARM_CP_CONST, 7676 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 7677 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 7678 REGINFO_SENTINEL 7679 }; 7680 /* We don't implement a r/w 64 bit CBAR currently */ 7681 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 7682 define_arm_cp_regs(cpu, cbar_reginfo); 7683 } else { 7684 ARMCPRegInfo cbar = { 7685 .name = "CBAR", 7686 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 7687 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 7688 .fieldoffset = offsetof(CPUARMState, 7689 cp15.c15_config_base_address) 7690 }; 7691 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 7692 cbar.access = PL1_R; 7693 cbar.fieldoffset = 0; 7694 cbar.type = ARM_CP_CONST; 7695 } 7696 define_one_arm_cp_reg(cpu, &cbar); 7697 } 7698 } 7699 7700 if (arm_feature(env, ARM_FEATURE_VBAR)) { 7701 ARMCPRegInfo vbar_cp_reginfo[] = { 7702 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 7703 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 7704 .access = PL1_RW, .writefn = vbar_write, 7705 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 7706 offsetof(CPUARMState, cp15.vbar_ns) }, 7707 .resetvalue = 0 }, 7708 REGINFO_SENTINEL 7709 }; 7710 define_arm_cp_regs(cpu, vbar_cp_reginfo); 7711 } 7712 7713 /* Generic registers whose values depend on the implementation */ 7714 { 7715 ARMCPRegInfo sctlr = { 7716 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 7717 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 7718 .access = PL1_RW, 7719 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 7720 offsetof(CPUARMState, cp15.sctlr_ns) }, 7721 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 7722 .raw_writefn = raw_write, 7723 }; 7724 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7725 /* Normally we would always end the TB on an SCTLR write, but Linux 7726 * arch/arm/mach-pxa/sleep.S expects two instructions following 7727 * an MMU enable to execute from cache. Imitate this behaviour. 7728 */ 7729 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 7730 } 7731 define_one_arm_cp_reg(cpu, &sctlr); 7732 } 7733 7734 if (cpu_isar_feature(aa64_lor, cpu)) { 7735 define_arm_cp_regs(cpu, lor_reginfo); 7736 } 7737 if (cpu_isar_feature(aa64_pan, cpu)) { 7738 define_one_arm_cp_reg(cpu, &pan_reginfo); 7739 } 7740 #ifndef CONFIG_USER_ONLY 7741 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 7742 define_arm_cp_regs(cpu, ats1e1_reginfo); 7743 } 7744 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 7745 define_arm_cp_regs(cpu, ats1cp_reginfo); 7746 } 7747 #endif 7748 if (cpu_isar_feature(aa64_uao, cpu)) { 7749 define_one_arm_cp_reg(cpu, &uao_reginfo); 7750 } 7751 7752 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 7753 define_arm_cp_regs(cpu, vhe_reginfo); 7754 } 7755 7756 if (cpu_isar_feature(aa64_sve, cpu)) { 7757 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 7758 if (arm_feature(env, ARM_FEATURE_EL2)) { 7759 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 7760 } else { 7761 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 7762 } 7763 if (arm_feature(env, ARM_FEATURE_EL3)) { 7764 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 7765 } 7766 } 7767 7768 #ifdef TARGET_AARCH64 7769 if (cpu_isar_feature(aa64_pauth, cpu)) { 7770 define_arm_cp_regs(cpu, pauth_reginfo); 7771 } 7772 if (cpu_isar_feature(aa64_rndr, cpu)) { 7773 define_arm_cp_regs(cpu, rndr_reginfo); 7774 } 7775 #ifndef CONFIG_USER_ONLY 7776 /* Data Cache clean instructions up to PoP */ 7777 if (cpu_isar_feature(aa64_dcpop, cpu)) { 7778 define_one_arm_cp_reg(cpu, dcpop_reg); 7779 7780 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 7781 define_one_arm_cp_reg(cpu, dcpodp_reg); 7782 } 7783 } 7784 #endif /*CONFIG_USER_ONLY*/ 7785 #endif 7786 7787 if (cpu_isar_feature(any_predinv, cpu)) { 7788 define_arm_cp_regs(cpu, predinv_reginfo); 7789 } 7790 7791 #ifndef CONFIG_USER_ONLY 7792 /* 7793 * Register redirections and aliases must be done last, 7794 * after the registers from the other extensions have been defined. 7795 */ 7796 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 7797 define_arm_vh_e2h_redirects_aliases(cpu); 7798 } 7799 #endif 7800 } 7801 7802 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 7803 { 7804 CPUState *cs = CPU(cpu); 7805 CPUARMState *env = &cpu->env; 7806 7807 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7808 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 7809 aarch64_fpu_gdb_set_reg, 7810 34, "aarch64-fpu.xml", 0); 7811 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 7812 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7813 51, "arm-neon.xml", 0); 7814 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 7815 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7816 35, "arm-vfp3.xml", 0); 7817 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 7818 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7819 19, "arm-vfp.xml", 0); 7820 } 7821 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 7822 arm_gen_dynamic_xml(cs), 7823 "system-registers.xml", 0); 7824 } 7825 7826 /* Sort alphabetically by type name, except for "any". */ 7827 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 7828 { 7829 ObjectClass *class_a = (ObjectClass *)a; 7830 ObjectClass *class_b = (ObjectClass *)b; 7831 const char *name_a, *name_b; 7832 7833 name_a = object_class_get_name(class_a); 7834 name_b = object_class_get_name(class_b); 7835 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 7836 return 1; 7837 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 7838 return -1; 7839 } else { 7840 return strcmp(name_a, name_b); 7841 } 7842 } 7843 7844 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 7845 { 7846 ObjectClass *oc = data; 7847 const char *typename; 7848 char *name; 7849 7850 typename = object_class_get_name(oc); 7851 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 7852 qemu_printf(" %s\n", name); 7853 g_free(name); 7854 } 7855 7856 void arm_cpu_list(void) 7857 { 7858 GSList *list; 7859 7860 list = object_class_get_list(TYPE_ARM_CPU, false); 7861 list = g_slist_sort(list, arm_cpu_list_compare); 7862 qemu_printf("Available CPUs:\n"); 7863 g_slist_foreach(list, arm_cpu_list_entry, NULL); 7864 g_slist_free(list); 7865 } 7866 7867 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 7868 { 7869 ObjectClass *oc = data; 7870 CpuDefinitionInfoList **cpu_list = user_data; 7871 CpuDefinitionInfoList *entry; 7872 CpuDefinitionInfo *info; 7873 const char *typename; 7874 7875 typename = object_class_get_name(oc); 7876 info = g_malloc0(sizeof(*info)); 7877 info->name = g_strndup(typename, 7878 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 7879 info->q_typename = g_strdup(typename); 7880 7881 entry = g_malloc0(sizeof(*entry)); 7882 entry->value = info; 7883 entry->next = *cpu_list; 7884 *cpu_list = entry; 7885 } 7886 7887 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 7888 { 7889 CpuDefinitionInfoList *cpu_list = NULL; 7890 GSList *list; 7891 7892 list = object_class_get_list(TYPE_ARM_CPU, false); 7893 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 7894 g_slist_free(list); 7895 7896 return cpu_list; 7897 } 7898 7899 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 7900 void *opaque, int state, int secstate, 7901 int crm, int opc1, int opc2, 7902 const char *name) 7903 { 7904 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 7905 * add a single reginfo struct to the hash table. 7906 */ 7907 uint32_t *key = g_new(uint32_t, 1); 7908 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 7909 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 7910 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 7911 7912 r2->name = g_strdup(name); 7913 /* Reset the secure state to the specific incoming state. This is 7914 * necessary as the register may have been defined with both states. 7915 */ 7916 r2->secure = secstate; 7917 7918 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7919 /* Register is banked (using both entries in array). 7920 * Overwriting fieldoffset as the array is only used to define 7921 * banked registers but later only fieldoffset is used. 7922 */ 7923 r2->fieldoffset = r->bank_fieldoffsets[ns]; 7924 } 7925 7926 if (state == ARM_CP_STATE_AA32) { 7927 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7928 /* If the register is banked then we don't need to migrate or 7929 * reset the 32-bit instance in certain cases: 7930 * 7931 * 1) If the register has both 32-bit and 64-bit instances then we 7932 * can count on the 64-bit instance taking care of the 7933 * non-secure bank. 7934 * 2) If ARMv8 is enabled then we can count on a 64-bit version 7935 * taking care of the secure bank. This requires that separate 7936 * 32 and 64-bit definitions are provided. 7937 */ 7938 if ((r->state == ARM_CP_STATE_BOTH && ns) || 7939 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 7940 r2->type |= ARM_CP_ALIAS; 7941 } 7942 } else if ((secstate != r->secure) && !ns) { 7943 /* The register is not banked so we only want to allow migration of 7944 * the non-secure instance. 7945 */ 7946 r2->type |= ARM_CP_ALIAS; 7947 } 7948 7949 if (r->state == ARM_CP_STATE_BOTH) { 7950 /* We assume it is a cp15 register if the .cp field is left unset. 7951 */ 7952 if (r2->cp == 0) { 7953 r2->cp = 15; 7954 } 7955 7956 #ifdef HOST_WORDS_BIGENDIAN 7957 if (r2->fieldoffset) { 7958 r2->fieldoffset += sizeof(uint32_t); 7959 } 7960 #endif 7961 } 7962 } 7963 if (state == ARM_CP_STATE_AA64) { 7964 /* To allow abbreviation of ARMCPRegInfo 7965 * definitions, we treat cp == 0 as equivalent to 7966 * the value for "standard guest-visible sysreg". 7967 * STATE_BOTH definitions are also always "standard 7968 * sysreg" in their AArch64 view (the .cp value may 7969 * be non-zero for the benefit of the AArch32 view). 7970 */ 7971 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 7972 r2->cp = CP_REG_ARM64_SYSREG_CP; 7973 } 7974 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 7975 r2->opc0, opc1, opc2); 7976 } else { 7977 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 7978 } 7979 if (opaque) { 7980 r2->opaque = opaque; 7981 } 7982 /* reginfo passed to helpers is correct for the actual access, 7983 * and is never ARM_CP_STATE_BOTH: 7984 */ 7985 r2->state = state; 7986 /* Make sure reginfo passed to helpers for wildcarded regs 7987 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 7988 */ 7989 r2->crm = crm; 7990 r2->opc1 = opc1; 7991 r2->opc2 = opc2; 7992 /* By convention, for wildcarded registers only the first 7993 * entry is used for migration; the others are marked as 7994 * ALIAS so we don't try to transfer the register 7995 * multiple times. Special registers (ie NOP/WFI) are 7996 * never migratable and not even raw-accessible. 7997 */ 7998 if ((r->type & ARM_CP_SPECIAL)) { 7999 r2->type |= ARM_CP_NO_RAW; 8000 } 8001 if (((r->crm == CP_ANY) && crm != 0) || 8002 ((r->opc1 == CP_ANY) && opc1 != 0) || 8003 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8004 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8005 } 8006 8007 /* Check that raw accesses are either forbidden or handled. Note that 8008 * we can't assert this earlier because the setup of fieldoffset for 8009 * banked registers has to be done first. 8010 */ 8011 if (!(r2->type & ARM_CP_NO_RAW)) { 8012 assert(!raw_accessors_invalid(r2)); 8013 } 8014 8015 /* Overriding of an existing definition must be explicitly 8016 * requested. 8017 */ 8018 if (!(r->type & ARM_CP_OVERRIDE)) { 8019 ARMCPRegInfo *oldreg; 8020 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8021 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8022 fprintf(stderr, "Register redefined: cp=%d %d bit " 8023 "crn=%d crm=%d opc1=%d opc2=%d, " 8024 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8025 r2->crn, r2->crm, r2->opc1, r2->opc2, 8026 oldreg->name, r2->name); 8027 g_assert_not_reached(); 8028 } 8029 } 8030 g_hash_table_insert(cpu->cp_regs, key, r2); 8031 } 8032 8033 8034 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8035 const ARMCPRegInfo *r, void *opaque) 8036 { 8037 /* Define implementations of coprocessor registers. 8038 * We store these in a hashtable because typically 8039 * there are less than 150 registers in a space which 8040 * is 16*16*16*8*8 = 262144 in size. 8041 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8042 * If a register is defined twice then the second definition is 8043 * used, so this can be used to define some generic registers and 8044 * then override them with implementation specific variations. 8045 * At least one of the original and the second definition should 8046 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8047 * against accidental use. 8048 * 8049 * The state field defines whether the register is to be 8050 * visible in the AArch32 or AArch64 execution state. If the 8051 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8052 * reginfo structure for the AArch32 view, which sees the lower 8053 * 32 bits of the 64 bit register. 8054 * 8055 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8056 * be wildcarded. AArch64 registers are always considered to be 64 8057 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8058 * the register, if any. 8059 */ 8060 int crm, opc1, opc2, state; 8061 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8062 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8063 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8064 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8065 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8066 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8067 /* 64 bit registers have only CRm and Opc1 fields */ 8068 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8069 /* op0 only exists in the AArch64 encodings */ 8070 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8071 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8072 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8073 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8074 * encodes a minimum access level for the register. We roll this 8075 * runtime check into our general permission check code, so check 8076 * here that the reginfo's specified permissions are strict enough 8077 * to encompass the generic architectural permission check. 8078 */ 8079 if (r->state != ARM_CP_STATE_AA32) { 8080 int mask = 0; 8081 switch (r->opc1) { 8082 case 0: 8083 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8084 mask = PL0U_R | PL1_RW; 8085 break; 8086 case 1: case 2: 8087 /* min_EL EL1 */ 8088 mask = PL1_RW; 8089 break; 8090 case 3: 8091 /* min_EL EL0 */ 8092 mask = PL0_RW; 8093 break; 8094 case 4: 8095 case 5: 8096 /* min_EL EL2 */ 8097 mask = PL2_RW; 8098 break; 8099 case 6: 8100 /* min_EL EL3 */ 8101 mask = PL3_RW; 8102 break; 8103 case 7: 8104 /* min_EL EL1, secure mode only (we don't check the latter) */ 8105 mask = PL1_RW; 8106 break; 8107 default: 8108 /* broken reginfo with out-of-range opc1 */ 8109 assert(false); 8110 break; 8111 } 8112 /* assert our permissions are not too lax (stricter is fine) */ 8113 assert((r->access & ~mask) == 0); 8114 } 8115 8116 /* Check that the register definition has enough info to handle 8117 * reads and writes if they are permitted. 8118 */ 8119 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8120 if (r->access & PL3_R) { 8121 assert((r->fieldoffset || 8122 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8123 r->readfn); 8124 } 8125 if (r->access & PL3_W) { 8126 assert((r->fieldoffset || 8127 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8128 r->writefn); 8129 } 8130 } 8131 /* Bad type field probably means missing sentinel at end of reg list */ 8132 assert(cptype_valid(r->type)); 8133 for (crm = crmmin; crm <= crmmax; crm++) { 8134 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8135 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8136 for (state = ARM_CP_STATE_AA32; 8137 state <= ARM_CP_STATE_AA64; state++) { 8138 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8139 continue; 8140 } 8141 if (state == ARM_CP_STATE_AA32) { 8142 /* Under AArch32 CP registers can be common 8143 * (same for secure and non-secure world) or banked. 8144 */ 8145 char *name; 8146 8147 switch (r->secure) { 8148 case ARM_CP_SECSTATE_S: 8149 case ARM_CP_SECSTATE_NS: 8150 add_cpreg_to_hashtable(cpu, r, opaque, state, 8151 r->secure, crm, opc1, opc2, 8152 r->name); 8153 break; 8154 default: 8155 name = g_strdup_printf("%s_S", r->name); 8156 add_cpreg_to_hashtable(cpu, r, opaque, state, 8157 ARM_CP_SECSTATE_S, 8158 crm, opc1, opc2, name); 8159 g_free(name); 8160 add_cpreg_to_hashtable(cpu, r, opaque, state, 8161 ARM_CP_SECSTATE_NS, 8162 crm, opc1, opc2, r->name); 8163 break; 8164 } 8165 } else { 8166 /* AArch64 registers get mapped to non-secure instance 8167 * of AArch32 */ 8168 add_cpreg_to_hashtable(cpu, r, opaque, state, 8169 ARM_CP_SECSTATE_NS, 8170 crm, opc1, opc2, r->name); 8171 } 8172 } 8173 } 8174 } 8175 } 8176 } 8177 8178 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8179 const ARMCPRegInfo *regs, void *opaque) 8180 { 8181 /* Define a whole list of registers */ 8182 const ARMCPRegInfo *r; 8183 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8184 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8185 } 8186 } 8187 8188 /* 8189 * Modify ARMCPRegInfo for access from userspace. 8190 * 8191 * This is a data driven modification directed by 8192 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8193 * user-space cannot alter any values and dynamic values pertaining to 8194 * execution state are hidden from user space view anyway. 8195 */ 8196 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8197 { 8198 const ARMCPRegUserSpaceInfo *m; 8199 ARMCPRegInfo *r; 8200 8201 for (m = mods; m->name; m++) { 8202 GPatternSpec *pat = NULL; 8203 if (m->is_glob) { 8204 pat = g_pattern_spec_new(m->name); 8205 } 8206 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8207 if (pat && g_pattern_match_string(pat, r->name)) { 8208 r->type = ARM_CP_CONST; 8209 r->access = PL0U_R; 8210 r->resetvalue = 0; 8211 /* continue */ 8212 } else if (strcmp(r->name, m->name) == 0) { 8213 r->type = ARM_CP_CONST; 8214 r->access = PL0U_R; 8215 r->resetvalue &= m->exported_bits; 8216 r->resetvalue |= m->fixed_bits; 8217 break; 8218 } 8219 } 8220 if (pat) { 8221 g_pattern_spec_free(pat); 8222 } 8223 } 8224 } 8225 8226 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8227 { 8228 return g_hash_table_lookup(cpregs, &encoded_cp); 8229 } 8230 8231 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8232 uint64_t value) 8233 { 8234 /* Helper coprocessor write function for write-ignore registers */ 8235 } 8236 8237 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8238 { 8239 /* Helper coprocessor write function for read-as-zero registers */ 8240 return 0; 8241 } 8242 8243 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8244 { 8245 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8246 } 8247 8248 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8249 { 8250 /* Return true if it is not valid for us to switch to 8251 * this CPU mode (ie all the UNPREDICTABLE cases in 8252 * the ARM ARM CPSRWriteByInstr pseudocode). 8253 */ 8254 8255 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8256 if (write_type == CPSRWriteByInstr && 8257 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8258 mode == ARM_CPU_MODE_HYP)) { 8259 return 1; 8260 } 8261 8262 switch (mode) { 8263 case ARM_CPU_MODE_USR: 8264 return 0; 8265 case ARM_CPU_MODE_SYS: 8266 case ARM_CPU_MODE_SVC: 8267 case ARM_CPU_MODE_ABT: 8268 case ARM_CPU_MODE_UND: 8269 case ARM_CPU_MODE_IRQ: 8270 case ARM_CPU_MODE_FIQ: 8271 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8272 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8273 */ 8274 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8275 * and CPS are treated as illegal mode changes. 8276 */ 8277 if (write_type == CPSRWriteByInstr && 8278 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8279 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8280 return 1; 8281 } 8282 return 0; 8283 case ARM_CPU_MODE_HYP: 8284 return !arm_feature(env, ARM_FEATURE_EL2) 8285 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 8286 case ARM_CPU_MODE_MON: 8287 return arm_current_el(env) < 3; 8288 default: 8289 return 1; 8290 } 8291 } 8292 8293 uint32_t cpsr_read(CPUARMState *env) 8294 { 8295 int ZF; 8296 ZF = (env->ZF == 0); 8297 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8298 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8299 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8300 | ((env->condexec_bits & 0xfc) << 8) 8301 | (env->GE << 16) | (env->daif & CPSR_AIF); 8302 } 8303 8304 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8305 CPSRWriteType write_type) 8306 { 8307 uint32_t changed_daif; 8308 8309 if (mask & CPSR_NZCV) { 8310 env->ZF = (~val) & CPSR_Z; 8311 env->NF = val; 8312 env->CF = (val >> 29) & 1; 8313 env->VF = (val << 3) & 0x80000000; 8314 } 8315 if (mask & CPSR_Q) 8316 env->QF = ((val & CPSR_Q) != 0); 8317 if (mask & CPSR_T) 8318 env->thumb = ((val & CPSR_T) != 0); 8319 if (mask & CPSR_IT_0_1) { 8320 env->condexec_bits &= ~3; 8321 env->condexec_bits |= (val >> 25) & 3; 8322 } 8323 if (mask & CPSR_IT_2_7) { 8324 env->condexec_bits &= 3; 8325 env->condexec_bits |= (val >> 8) & 0xfc; 8326 } 8327 if (mask & CPSR_GE) { 8328 env->GE = (val >> 16) & 0xf; 8329 } 8330 8331 /* In a V7 implementation that includes the security extensions but does 8332 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8333 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8334 * bits respectively. 8335 * 8336 * In a V8 implementation, it is permitted for privileged software to 8337 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8338 */ 8339 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8340 arm_feature(env, ARM_FEATURE_EL3) && 8341 !arm_feature(env, ARM_FEATURE_EL2) && 8342 !arm_is_secure(env)) { 8343 8344 changed_daif = (env->daif ^ val) & mask; 8345 8346 if (changed_daif & CPSR_A) { 8347 /* Check to see if we are allowed to change the masking of async 8348 * abort exceptions from a non-secure state. 8349 */ 8350 if (!(env->cp15.scr_el3 & SCR_AW)) { 8351 qemu_log_mask(LOG_GUEST_ERROR, 8352 "Ignoring attempt to switch CPSR_A flag from " 8353 "non-secure world with SCR.AW bit clear\n"); 8354 mask &= ~CPSR_A; 8355 } 8356 } 8357 8358 if (changed_daif & CPSR_F) { 8359 /* Check to see if we are allowed to change the masking of FIQ 8360 * exceptions from a non-secure state. 8361 */ 8362 if (!(env->cp15.scr_el3 & SCR_FW)) { 8363 qemu_log_mask(LOG_GUEST_ERROR, 8364 "Ignoring attempt to switch CPSR_F flag from " 8365 "non-secure world with SCR.FW bit clear\n"); 8366 mask &= ~CPSR_F; 8367 } 8368 8369 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8370 * If this bit is set software is not allowed to mask 8371 * FIQs, but is allowed to set CPSR_F to 0. 8372 */ 8373 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8374 (val & CPSR_F)) { 8375 qemu_log_mask(LOG_GUEST_ERROR, 8376 "Ignoring attempt to enable CPSR_F flag " 8377 "(non-maskable FIQ [NMFI] support enabled)\n"); 8378 mask &= ~CPSR_F; 8379 } 8380 } 8381 } 8382 8383 env->daif &= ~(CPSR_AIF & mask); 8384 env->daif |= val & CPSR_AIF & mask; 8385 8386 if (write_type != CPSRWriteRaw && 8387 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8388 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8389 /* Note that we can only get here in USR mode if this is a 8390 * gdb stub write; for this case we follow the architectural 8391 * behaviour for guest writes in USR mode of ignoring an attempt 8392 * to switch mode. (Those are caught by translate.c for writes 8393 * triggered by guest instructions.) 8394 */ 8395 mask &= ~CPSR_M; 8396 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8397 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8398 * v7, and has defined behaviour in v8: 8399 * + leave CPSR.M untouched 8400 * + allow changes to the other CPSR fields 8401 * + set PSTATE.IL 8402 * For user changes via the GDB stub, we don't set PSTATE.IL, 8403 * as this would be unnecessarily harsh for a user error. 8404 */ 8405 mask &= ~CPSR_M; 8406 if (write_type != CPSRWriteByGDBStub && 8407 arm_feature(env, ARM_FEATURE_V8)) { 8408 mask |= CPSR_IL; 8409 val |= CPSR_IL; 8410 } 8411 qemu_log_mask(LOG_GUEST_ERROR, 8412 "Illegal AArch32 mode switch attempt from %s to %s\n", 8413 aarch32_mode_name(env->uncached_cpsr), 8414 aarch32_mode_name(val)); 8415 } else { 8416 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8417 write_type == CPSRWriteExceptionReturn ? 8418 "Exception return from AArch32" : 8419 "AArch32 mode switch from", 8420 aarch32_mode_name(env->uncached_cpsr), 8421 aarch32_mode_name(val), env->regs[15]); 8422 switch_mode(env, val & CPSR_M); 8423 } 8424 } 8425 mask &= ~CACHED_CPSR_BITS; 8426 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8427 } 8428 8429 /* Sign/zero extend */ 8430 uint32_t HELPER(sxtb16)(uint32_t x) 8431 { 8432 uint32_t res; 8433 res = (uint16_t)(int8_t)x; 8434 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8435 return res; 8436 } 8437 8438 uint32_t HELPER(uxtb16)(uint32_t x) 8439 { 8440 uint32_t res; 8441 res = (uint16_t)(uint8_t)x; 8442 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8443 return res; 8444 } 8445 8446 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8447 { 8448 if (den == 0) 8449 return 0; 8450 if (num == INT_MIN && den == -1) 8451 return INT_MIN; 8452 return num / den; 8453 } 8454 8455 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 8456 { 8457 if (den == 0) 8458 return 0; 8459 return num / den; 8460 } 8461 8462 uint32_t HELPER(rbit)(uint32_t x) 8463 { 8464 return revbit32(x); 8465 } 8466 8467 #ifdef CONFIG_USER_ONLY 8468 8469 static void switch_mode(CPUARMState *env, int mode) 8470 { 8471 ARMCPU *cpu = env_archcpu(env); 8472 8473 if (mode != ARM_CPU_MODE_USR) { 8474 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 8475 } 8476 } 8477 8478 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8479 uint32_t cur_el, bool secure) 8480 { 8481 return 1; 8482 } 8483 8484 void aarch64_sync_64_to_32(CPUARMState *env) 8485 { 8486 g_assert_not_reached(); 8487 } 8488 8489 #else 8490 8491 static void switch_mode(CPUARMState *env, int mode) 8492 { 8493 int old_mode; 8494 int i; 8495 8496 old_mode = env->uncached_cpsr & CPSR_M; 8497 if (mode == old_mode) 8498 return; 8499 8500 if (old_mode == ARM_CPU_MODE_FIQ) { 8501 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8502 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 8503 } else if (mode == ARM_CPU_MODE_FIQ) { 8504 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8505 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 8506 } 8507 8508 i = bank_number(old_mode); 8509 env->banked_r13[i] = env->regs[13]; 8510 env->banked_spsr[i] = env->spsr; 8511 8512 i = bank_number(mode); 8513 env->regs[13] = env->banked_r13[i]; 8514 env->spsr = env->banked_spsr[i]; 8515 8516 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 8517 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 8518 } 8519 8520 /* Physical Interrupt Target EL Lookup Table 8521 * 8522 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 8523 * 8524 * The below multi-dimensional table is used for looking up the target 8525 * exception level given numerous condition criteria. Specifically, the 8526 * target EL is based on SCR and HCR routing controls as well as the 8527 * currently executing EL and secure state. 8528 * 8529 * Dimensions: 8530 * target_el_table[2][2][2][2][2][4] 8531 * | | | | | +--- Current EL 8532 * | | | | +------ Non-secure(0)/Secure(1) 8533 * | | | +--------- HCR mask override 8534 * | | +------------ SCR exec state control 8535 * | +--------------- SCR mask override 8536 * +------------------ 32-bit(0)/64-bit(1) EL3 8537 * 8538 * The table values are as such: 8539 * 0-3 = EL0-EL3 8540 * -1 = Cannot occur 8541 * 8542 * The ARM ARM target EL table includes entries indicating that an "exception 8543 * is not taken". The two cases where this is applicable are: 8544 * 1) An exception is taken from EL3 but the SCR does not have the exception 8545 * routed to EL3. 8546 * 2) An exception is taken from EL2 but the HCR does not have the exception 8547 * routed to EL2. 8548 * In these two cases, the below table contain a target of EL1. This value is 8549 * returned as it is expected that the consumer of the table data will check 8550 * for "target EL >= current EL" to ensure the exception is not taken. 8551 * 8552 * SCR HCR 8553 * 64 EA AMO From 8554 * BIT IRQ IMO Non-secure Secure 8555 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 8556 */ 8557 static const int8_t target_el_table[2][2][2][2][2][4] = { 8558 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8559 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 8560 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8561 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 8562 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8563 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 8564 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8565 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 8566 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 8567 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 8568 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 8569 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 8570 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8571 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 8572 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8573 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 8574 }; 8575 8576 /* 8577 * Determine the target EL for physical exceptions 8578 */ 8579 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8580 uint32_t cur_el, bool secure) 8581 { 8582 CPUARMState *env = cs->env_ptr; 8583 bool rw; 8584 bool scr; 8585 bool hcr; 8586 int target_el; 8587 /* Is the highest EL AArch64? */ 8588 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 8589 uint64_t hcr_el2; 8590 8591 if (arm_feature(env, ARM_FEATURE_EL3)) { 8592 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 8593 } else { 8594 /* Either EL2 is the highest EL (and so the EL2 register width 8595 * is given by is64); or there is no EL2 or EL3, in which case 8596 * the value of 'rw' does not affect the table lookup anyway. 8597 */ 8598 rw = is64; 8599 } 8600 8601 hcr_el2 = arm_hcr_el2_eff(env); 8602 switch (excp_idx) { 8603 case EXCP_IRQ: 8604 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 8605 hcr = hcr_el2 & HCR_IMO; 8606 break; 8607 case EXCP_FIQ: 8608 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 8609 hcr = hcr_el2 & HCR_FMO; 8610 break; 8611 default: 8612 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 8613 hcr = hcr_el2 & HCR_AMO; 8614 break; 8615 }; 8616 8617 /* 8618 * For these purposes, TGE and AMO/IMO/FMO both force the 8619 * interrupt to EL2. Fold TGE into the bit extracted above. 8620 */ 8621 hcr |= (hcr_el2 & HCR_TGE) != 0; 8622 8623 /* Perform a table-lookup for the target EL given the current state */ 8624 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 8625 8626 assert(target_el > 0); 8627 8628 return target_el; 8629 } 8630 8631 void arm_log_exception(int idx) 8632 { 8633 if (qemu_loglevel_mask(CPU_LOG_INT)) { 8634 const char *exc = NULL; 8635 static const char * const excnames[] = { 8636 [EXCP_UDEF] = "Undefined Instruction", 8637 [EXCP_SWI] = "SVC", 8638 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 8639 [EXCP_DATA_ABORT] = "Data Abort", 8640 [EXCP_IRQ] = "IRQ", 8641 [EXCP_FIQ] = "FIQ", 8642 [EXCP_BKPT] = "Breakpoint", 8643 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 8644 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 8645 [EXCP_HVC] = "Hypervisor Call", 8646 [EXCP_HYP_TRAP] = "Hypervisor Trap", 8647 [EXCP_SMC] = "Secure Monitor Call", 8648 [EXCP_VIRQ] = "Virtual IRQ", 8649 [EXCP_VFIQ] = "Virtual FIQ", 8650 [EXCP_SEMIHOST] = "Semihosting call", 8651 [EXCP_NOCP] = "v7M NOCP UsageFault", 8652 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 8653 [EXCP_STKOF] = "v8M STKOF UsageFault", 8654 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 8655 [EXCP_LSERR] = "v8M LSERR UsageFault", 8656 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 8657 }; 8658 8659 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 8660 exc = excnames[idx]; 8661 } 8662 if (!exc) { 8663 exc = "unknown"; 8664 } 8665 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 8666 } 8667 } 8668 8669 /* 8670 * Function used to synchronize QEMU's AArch64 register set with AArch32 8671 * register set. This is necessary when switching between AArch32 and AArch64 8672 * execution state. 8673 */ 8674 void aarch64_sync_32_to_64(CPUARMState *env) 8675 { 8676 int i; 8677 uint32_t mode = env->uncached_cpsr & CPSR_M; 8678 8679 /* We can blanket copy R[0:7] to X[0:7] */ 8680 for (i = 0; i < 8; i++) { 8681 env->xregs[i] = env->regs[i]; 8682 } 8683 8684 /* 8685 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 8686 * Otherwise, they come from the banked user regs. 8687 */ 8688 if (mode == ARM_CPU_MODE_FIQ) { 8689 for (i = 8; i < 13; i++) { 8690 env->xregs[i] = env->usr_regs[i - 8]; 8691 } 8692 } else { 8693 for (i = 8; i < 13; i++) { 8694 env->xregs[i] = env->regs[i]; 8695 } 8696 } 8697 8698 /* 8699 * Registers x13-x23 are the various mode SP and FP registers. Registers 8700 * r13 and r14 are only copied if we are in that mode, otherwise we copy 8701 * from the mode banked register. 8702 */ 8703 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8704 env->xregs[13] = env->regs[13]; 8705 env->xregs[14] = env->regs[14]; 8706 } else { 8707 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 8708 /* HYP is an exception in that it is copied from r14 */ 8709 if (mode == ARM_CPU_MODE_HYP) { 8710 env->xregs[14] = env->regs[14]; 8711 } else { 8712 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 8713 } 8714 } 8715 8716 if (mode == ARM_CPU_MODE_HYP) { 8717 env->xregs[15] = env->regs[13]; 8718 } else { 8719 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 8720 } 8721 8722 if (mode == ARM_CPU_MODE_IRQ) { 8723 env->xregs[16] = env->regs[14]; 8724 env->xregs[17] = env->regs[13]; 8725 } else { 8726 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 8727 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 8728 } 8729 8730 if (mode == ARM_CPU_MODE_SVC) { 8731 env->xregs[18] = env->regs[14]; 8732 env->xregs[19] = env->regs[13]; 8733 } else { 8734 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 8735 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 8736 } 8737 8738 if (mode == ARM_CPU_MODE_ABT) { 8739 env->xregs[20] = env->regs[14]; 8740 env->xregs[21] = env->regs[13]; 8741 } else { 8742 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 8743 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 8744 } 8745 8746 if (mode == ARM_CPU_MODE_UND) { 8747 env->xregs[22] = env->regs[14]; 8748 env->xregs[23] = env->regs[13]; 8749 } else { 8750 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 8751 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 8752 } 8753 8754 /* 8755 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8756 * mode, then we can copy from r8-r14. Otherwise, we copy from the 8757 * FIQ bank for r8-r14. 8758 */ 8759 if (mode == ARM_CPU_MODE_FIQ) { 8760 for (i = 24; i < 31; i++) { 8761 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 8762 } 8763 } else { 8764 for (i = 24; i < 29; i++) { 8765 env->xregs[i] = env->fiq_regs[i - 24]; 8766 } 8767 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 8768 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 8769 } 8770 8771 env->pc = env->regs[15]; 8772 } 8773 8774 /* 8775 * Function used to synchronize QEMU's AArch32 register set with AArch64 8776 * register set. This is necessary when switching between AArch32 and AArch64 8777 * execution state. 8778 */ 8779 void aarch64_sync_64_to_32(CPUARMState *env) 8780 { 8781 int i; 8782 uint32_t mode = env->uncached_cpsr & CPSR_M; 8783 8784 /* We can blanket copy X[0:7] to R[0:7] */ 8785 for (i = 0; i < 8; i++) { 8786 env->regs[i] = env->xregs[i]; 8787 } 8788 8789 /* 8790 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 8791 * Otherwise, we copy x8-x12 into the banked user regs. 8792 */ 8793 if (mode == ARM_CPU_MODE_FIQ) { 8794 for (i = 8; i < 13; i++) { 8795 env->usr_regs[i - 8] = env->xregs[i]; 8796 } 8797 } else { 8798 for (i = 8; i < 13; i++) { 8799 env->regs[i] = env->xregs[i]; 8800 } 8801 } 8802 8803 /* 8804 * Registers r13 & r14 depend on the current mode. 8805 * If we are in a given mode, we copy the corresponding x registers to r13 8806 * and r14. Otherwise, we copy the x register to the banked r13 and r14 8807 * for the mode. 8808 */ 8809 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8810 env->regs[13] = env->xregs[13]; 8811 env->regs[14] = env->xregs[14]; 8812 } else { 8813 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 8814 8815 /* 8816 * HYP is an exception in that it does not have its own banked r14 but 8817 * shares the USR r14 8818 */ 8819 if (mode == ARM_CPU_MODE_HYP) { 8820 env->regs[14] = env->xregs[14]; 8821 } else { 8822 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 8823 } 8824 } 8825 8826 if (mode == ARM_CPU_MODE_HYP) { 8827 env->regs[13] = env->xregs[15]; 8828 } else { 8829 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 8830 } 8831 8832 if (mode == ARM_CPU_MODE_IRQ) { 8833 env->regs[14] = env->xregs[16]; 8834 env->regs[13] = env->xregs[17]; 8835 } else { 8836 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 8837 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 8838 } 8839 8840 if (mode == ARM_CPU_MODE_SVC) { 8841 env->regs[14] = env->xregs[18]; 8842 env->regs[13] = env->xregs[19]; 8843 } else { 8844 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 8845 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 8846 } 8847 8848 if (mode == ARM_CPU_MODE_ABT) { 8849 env->regs[14] = env->xregs[20]; 8850 env->regs[13] = env->xregs[21]; 8851 } else { 8852 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 8853 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 8854 } 8855 8856 if (mode == ARM_CPU_MODE_UND) { 8857 env->regs[14] = env->xregs[22]; 8858 env->regs[13] = env->xregs[23]; 8859 } else { 8860 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 8861 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 8862 } 8863 8864 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8865 * mode, then we can copy to r8-r14. Otherwise, we copy to the 8866 * FIQ bank for r8-r14. 8867 */ 8868 if (mode == ARM_CPU_MODE_FIQ) { 8869 for (i = 24; i < 31; i++) { 8870 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 8871 } 8872 } else { 8873 for (i = 24; i < 29; i++) { 8874 env->fiq_regs[i - 24] = env->xregs[i]; 8875 } 8876 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 8877 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 8878 } 8879 8880 env->regs[15] = env->pc; 8881 } 8882 8883 static void take_aarch32_exception(CPUARMState *env, int new_mode, 8884 uint32_t mask, uint32_t offset, 8885 uint32_t newpc) 8886 { 8887 int new_el; 8888 8889 /* Change the CPU state so as to actually take the exception. */ 8890 switch_mode(env, new_mode); 8891 new_el = arm_current_el(env); 8892 8893 /* 8894 * For exceptions taken to AArch32 we must clear the SS bit in both 8895 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8896 */ 8897 env->uncached_cpsr &= ~PSTATE_SS; 8898 env->spsr = cpsr_read(env); 8899 /* Clear IT bits. */ 8900 env->condexec_bits = 0; 8901 /* Switch to the new mode, and to the correct instruction set. */ 8902 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8903 /* Set new mode endianness */ 8904 env->uncached_cpsr &= ~CPSR_E; 8905 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 8906 env->uncached_cpsr |= CPSR_E; 8907 } 8908 /* J and IL must always be cleared for exception entry */ 8909 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 8910 env->daif |= mask; 8911 8912 if (new_mode == ARM_CPU_MODE_HYP) { 8913 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 8914 env->elr_el[2] = env->regs[15]; 8915 } else { 8916 /* CPSR.PAN is normally preserved preserved unless... */ 8917 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 8918 switch (new_el) { 8919 case 3: 8920 if (!arm_is_secure_below_el3(env)) { 8921 /* ... the target is EL3, from non-secure state. */ 8922 env->uncached_cpsr &= ~CPSR_PAN; 8923 break; 8924 } 8925 /* ... the target is EL3, from secure state ... */ 8926 /* fall through */ 8927 case 1: 8928 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 8929 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 8930 env->uncached_cpsr |= CPSR_PAN; 8931 } 8932 break; 8933 } 8934 } 8935 /* 8936 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 8937 * and we should just guard the thumb mode on V4 8938 */ 8939 if (arm_feature(env, ARM_FEATURE_V4T)) { 8940 env->thumb = 8941 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8942 } 8943 env->regs[14] = env->regs[15] + offset; 8944 } 8945 env->regs[15] = newpc; 8946 arm_rebuild_hflags(env); 8947 } 8948 8949 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 8950 { 8951 /* 8952 * Handle exception entry to Hyp mode; this is sufficiently 8953 * different to entry to other AArch32 modes that we handle it 8954 * separately here. 8955 * 8956 * The vector table entry used is always the 0x14 Hyp mode entry point, 8957 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 8958 * The offset applied to the preferred return address is always zero 8959 * (see DDI0487C.a section G1.12.3). 8960 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 8961 */ 8962 uint32_t addr, mask; 8963 ARMCPU *cpu = ARM_CPU(cs); 8964 CPUARMState *env = &cpu->env; 8965 8966 switch (cs->exception_index) { 8967 case EXCP_UDEF: 8968 addr = 0x04; 8969 break; 8970 case EXCP_SWI: 8971 addr = 0x14; 8972 break; 8973 case EXCP_BKPT: 8974 /* Fall through to prefetch abort. */ 8975 case EXCP_PREFETCH_ABORT: 8976 env->cp15.ifar_s = env->exception.vaddress; 8977 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 8978 (uint32_t)env->exception.vaddress); 8979 addr = 0x0c; 8980 break; 8981 case EXCP_DATA_ABORT: 8982 env->cp15.dfar_s = env->exception.vaddress; 8983 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 8984 (uint32_t)env->exception.vaddress); 8985 addr = 0x10; 8986 break; 8987 case EXCP_IRQ: 8988 addr = 0x18; 8989 break; 8990 case EXCP_FIQ: 8991 addr = 0x1c; 8992 break; 8993 case EXCP_HVC: 8994 addr = 0x08; 8995 break; 8996 case EXCP_HYP_TRAP: 8997 addr = 0x14; 8998 break; 8999 default: 9000 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9001 } 9002 9003 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9004 if (!arm_feature(env, ARM_FEATURE_V8)) { 9005 /* 9006 * QEMU syndrome values are v8-style. v7 has the IL bit 9007 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9008 * If this is a v7 CPU, squash the IL bit in those cases. 9009 */ 9010 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9011 (cs->exception_index == EXCP_DATA_ABORT && 9012 !(env->exception.syndrome & ARM_EL_ISV)) || 9013 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9014 env->exception.syndrome &= ~ARM_EL_IL; 9015 } 9016 } 9017 env->cp15.esr_el[2] = env->exception.syndrome; 9018 } 9019 9020 if (arm_current_el(env) != 2 && addr < 0x14) { 9021 addr = 0x14; 9022 } 9023 9024 mask = 0; 9025 if (!(env->cp15.scr_el3 & SCR_EA)) { 9026 mask |= CPSR_A; 9027 } 9028 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9029 mask |= CPSR_I; 9030 } 9031 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9032 mask |= CPSR_F; 9033 } 9034 9035 addr += env->cp15.hvbar; 9036 9037 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9038 } 9039 9040 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9041 { 9042 ARMCPU *cpu = ARM_CPU(cs); 9043 CPUARMState *env = &cpu->env; 9044 uint32_t addr; 9045 uint32_t mask; 9046 int new_mode; 9047 uint32_t offset; 9048 uint32_t moe; 9049 9050 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9051 switch (syn_get_ec(env->exception.syndrome)) { 9052 case EC_BREAKPOINT: 9053 case EC_BREAKPOINT_SAME_EL: 9054 moe = 1; 9055 break; 9056 case EC_WATCHPOINT: 9057 case EC_WATCHPOINT_SAME_EL: 9058 moe = 10; 9059 break; 9060 case EC_AA32_BKPT: 9061 moe = 3; 9062 break; 9063 case EC_VECTORCATCH: 9064 moe = 5; 9065 break; 9066 default: 9067 moe = 0; 9068 break; 9069 } 9070 9071 if (moe) { 9072 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9073 } 9074 9075 if (env->exception.target_el == 2) { 9076 arm_cpu_do_interrupt_aarch32_hyp(cs); 9077 return; 9078 } 9079 9080 switch (cs->exception_index) { 9081 case EXCP_UDEF: 9082 new_mode = ARM_CPU_MODE_UND; 9083 addr = 0x04; 9084 mask = CPSR_I; 9085 if (env->thumb) 9086 offset = 2; 9087 else 9088 offset = 4; 9089 break; 9090 case EXCP_SWI: 9091 new_mode = ARM_CPU_MODE_SVC; 9092 addr = 0x08; 9093 mask = CPSR_I; 9094 /* The PC already points to the next instruction. */ 9095 offset = 0; 9096 break; 9097 case EXCP_BKPT: 9098 /* Fall through to prefetch abort. */ 9099 case EXCP_PREFETCH_ABORT: 9100 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9101 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9102 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9103 env->exception.fsr, (uint32_t)env->exception.vaddress); 9104 new_mode = ARM_CPU_MODE_ABT; 9105 addr = 0x0c; 9106 mask = CPSR_A | CPSR_I; 9107 offset = 4; 9108 break; 9109 case EXCP_DATA_ABORT: 9110 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9111 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9112 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9113 env->exception.fsr, 9114 (uint32_t)env->exception.vaddress); 9115 new_mode = ARM_CPU_MODE_ABT; 9116 addr = 0x10; 9117 mask = CPSR_A | CPSR_I; 9118 offset = 8; 9119 break; 9120 case EXCP_IRQ: 9121 new_mode = ARM_CPU_MODE_IRQ; 9122 addr = 0x18; 9123 /* Disable IRQ and imprecise data aborts. */ 9124 mask = CPSR_A | CPSR_I; 9125 offset = 4; 9126 if (env->cp15.scr_el3 & SCR_IRQ) { 9127 /* IRQ routed to monitor mode */ 9128 new_mode = ARM_CPU_MODE_MON; 9129 mask |= CPSR_F; 9130 } 9131 break; 9132 case EXCP_FIQ: 9133 new_mode = ARM_CPU_MODE_FIQ; 9134 addr = 0x1c; 9135 /* Disable FIQ, IRQ and imprecise data aborts. */ 9136 mask = CPSR_A | CPSR_I | CPSR_F; 9137 if (env->cp15.scr_el3 & SCR_FIQ) { 9138 /* FIQ routed to monitor mode */ 9139 new_mode = ARM_CPU_MODE_MON; 9140 } 9141 offset = 4; 9142 break; 9143 case EXCP_VIRQ: 9144 new_mode = ARM_CPU_MODE_IRQ; 9145 addr = 0x18; 9146 /* Disable IRQ and imprecise data aborts. */ 9147 mask = CPSR_A | CPSR_I; 9148 offset = 4; 9149 break; 9150 case EXCP_VFIQ: 9151 new_mode = ARM_CPU_MODE_FIQ; 9152 addr = 0x1c; 9153 /* Disable FIQ, IRQ and imprecise data aborts. */ 9154 mask = CPSR_A | CPSR_I | CPSR_F; 9155 offset = 4; 9156 break; 9157 case EXCP_SMC: 9158 new_mode = ARM_CPU_MODE_MON; 9159 addr = 0x08; 9160 mask = CPSR_A | CPSR_I | CPSR_F; 9161 offset = 0; 9162 break; 9163 default: 9164 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9165 return; /* Never happens. Keep compiler happy. */ 9166 } 9167 9168 if (new_mode == ARM_CPU_MODE_MON) { 9169 addr += env->cp15.mvbar; 9170 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9171 /* High vectors. When enabled, base address cannot be remapped. */ 9172 addr += 0xffff0000; 9173 } else { 9174 /* ARM v7 architectures provide a vector base address register to remap 9175 * the interrupt vector table. 9176 * This register is only followed in non-monitor mode, and is banked. 9177 * Note: only bits 31:5 are valid. 9178 */ 9179 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9180 } 9181 9182 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9183 env->cp15.scr_el3 &= ~SCR_NS; 9184 } 9185 9186 take_aarch32_exception(env, new_mode, mask, offset, addr); 9187 } 9188 9189 /* Handle exception entry to a target EL which is using AArch64 */ 9190 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9191 { 9192 ARMCPU *cpu = ARM_CPU(cs); 9193 CPUARMState *env = &cpu->env; 9194 unsigned int new_el = env->exception.target_el; 9195 target_ulong addr = env->cp15.vbar_el[new_el]; 9196 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9197 unsigned int old_mode; 9198 unsigned int cur_el = arm_current_el(env); 9199 9200 /* 9201 * Note that new_el can never be 0. If cur_el is 0, then 9202 * el0_a64 is is_a64(), else el0_a64 is ignored. 9203 */ 9204 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9205 9206 if (cur_el < new_el) { 9207 /* Entry vector offset depends on whether the implemented EL 9208 * immediately lower than the target level is using AArch32 or AArch64 9209 */ 9210 bool is_aa64; 9211 uint64_t hcr; 9212 9213 switch (new_el) { 9214 case 3: 9215 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9216 break; 9217 case 2: 9218 hcr = arm_hcr_el2_eff(env); 9219 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9220 is_aa64 = (hcr & HCR_RW) != 0; 9221 break; 9222 } 9223 /* fall through */ 9224 case 1: 9225 is_aa64 = is_a64(env); 9226 break; 9227 default: 9228 g_assert_not_reached(); 9229 } 9230 9231 if (is_aa64) { 9232 addr += 0x400; 9233 } else { 9234 addr += 0x600; 9235 } 9236 } else if (pstate_read(env) & PSTATE_SP) { 9237 addr += 0x200; 9238 } 9239 9240 switch (cs->exception_index) { 9241 case EXCP_PREFETCH_ABORT: 9242 case EXCP_DATA_ABORT: 9243 env->cp15.far_el[new_el] = env->exception.vaddress; 9244 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9245 env->cp15.far_el[new_el]); 9246 /* fall through */ 9247 case EXCP_BKPT: 9248 case EXCP_UDEF: 9249 case EXCP_SWI: 9250 case EXCP_HVC: 9251 case EXCP_HYP_TRAP: 9252 case EXCP_SMC: 9253 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 9254 /* 9255 * QEMU internal FP/SIMD syndromes from AArch32 include the 9256 * TA and coproc fields which are only exposed if the exception 9257 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9258 * AArch64 format syndrome. 9259 */ 9260 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9261 } 9262 env->cp15.esr_el[new_el] = env->exception.syndrome; 9263 break; 9264 case EXCP_IRQ: 9265 case EXCP_VIRQ: 9266 addr += 0x80; 9267 break; 9268 case EXCP_FIQ: 9269 case EXCP_VFIQ: 9270 addr += 0x100; 9271 break; 9272 default: 9273 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9274 } 9275 9276 if (is_a64(env)) { 9277 old_mode = pstate_read(env); 9278 aarch64_save_sp(env, arm_current_el(env)); 9279 env->elr_el[new_el] = env->pc; 9280 } else { 9281 old_mode = cpsr_read(env); 9282 env->elr_el[new_el] = env->regs[15]; 9283 9284 aarch64_sync_32_to_64(env); 9285 9286 env->condexec_bits = 0; 9287 } 9288 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9289 9290 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9291 env->elr_el[new_el]); 9292 9293 if (cpu_isar_feature(aa64_pan, cpu)) { 9294 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9295 new_mode |= old_mode & PSTATE_PAN; 9296 switch (new_el) { 9297 case 2: 9298 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9299 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9300 != (HCR_E2H | HCR_TGE)) { 9301 break; 9302 } 9303 /* fall through */ 9304 case 1: 9305 /* ... the target is EL1 ... */ 9306 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9307 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9308 new_mode |= PSTATE_PAN; 9309 } 9310 break; 9311 } 9312 } 9313 9314 pstate_write(env, PSTATE_DAIF | new_mode); 9315 env->aarch64 = 1; 9316 aarch64_restore_sp(env, new_el); 9317 helper_rebuild_hflags_a64(env, new_el); 9318 9319 env->pc = addr; 9320 9321 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9322 new_el, env->pc, pstate_read(env)); 9323 } 9324 9325 /* 9326 * Do semihosting call and set the appropriate return value. All the 9327 * permission and validity checks have been done at translate time. 9328 * 9329 * We only see semihosting exceptions in TCG only as they are not 9330 * trapped to the hypervisor in KVM. 9331 */ 9332 #ifdef CONFIG_TCG 9333 static void handle_semihosting(CPUState *cs) 9334 { 9335 ARMCPU *cpu = ARM_CPU(cs); 9336 CPUARMState *env = &cpu->env; 9337 9338 if (is_a64(env)) { 9339 qemu_log_mask(CPU_LOG_INT, 9340 "...handling as semihosting call 0x%" PRIx64 "\n", 9341 env->xregs[0]); 9342 env->xregs[0] = do_arm_semihosting(env); 9343 env->pc += 4; 9344 } else { 9345 qemu_log_mask(CPU_LOG_INT, 9346 "...handling as semihosting call 0x%x\n", 9347 env->regs[0]); 9348 env->regs[0] = do_arm_semihosting(env); 9349 env->regs[15] += env->thumb ? 2 : 4; 9350 } 9351 } 9352 #endif 9353 9354 /* Handle a CPU exception for A and R profile CPUs. 9355 * Do any appropriate logging, handle PSCI calls, and then hand off 9356 * to the AArch64-entry or AArch32-entry function depending on the 9357 * target exception level's register width. 9358 */ 9359 void arm_cpu_do_interrupt(CPUState *cs) 9360 { 9361 ARMCPU *cpu = ARM_CPU(cs); 9362 CPUARMState *env = &cpu->env; 9363 unsigned int new_el = env->exception.target_el; 9364 9365 assert(!arm_feature(env, ARM_FEATURE_M)); 9366 9367 arm_log_exception(cs->exception_index); 9368 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9369 new_el); 9370 if (qemu_loglevel_mask(CPU_LOG_INT) 9371 && !excp_is_internal(cs->exception_index)) { 9372 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9373 syn_get_ec(env->exception.syndrome), 9374 env->exception.syndrome); 9375 } 9376 9377 if (arm_is_psci_call(cpu, cs->exception_index)) { 9378 arm_handle_psci_call(cpu); 9379 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9380 return; 9381 } 9382 9383 /* 9384 * Semihosting semantics depend on the register width of the code 9385 * that caused the exception, not the target exception level, so 9386 * must be handled here. 9387 */ 9388 #ifdef CONFIG_TCG 9389 if (cs->exception_index == EXCP_SEMIHOST) { 9390 handle_semihosting(cs); 9391 return; 9392 } 9393 #endif 9394 9395 /* Hooks may change global state so BQL should be held, also the 9396 * BQL needs to be held for any modification of 9397 * cs->interrupt_request. 9398 */ 9399 g_assert(qemu_mutex_iothread_locked()); 9400 9401 arm_call_pre_el_change_hook(cpu); 9402 9403 assert(!excp_is_internal(cs->exception_index)); 9404 if (arm_el_is_aa64(env, new_el)) { 9405 arm_cpu_do_interrupt_aarch64(cs); 9406 } else { 9407 arm_cpu_do_interrupt_aarch32(cs); 9408 } 9409 9410 arm_call_el_change_hook(cpu); 9411 9412 if (!kvm_enabled()) { 9413 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9414 } 9415 } 9416 #endif /* !CONFIG_USER_ONLY */ 9417 9418 /* Return the exception level which controls this address translation regime */ 9419 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 9420 { 9421 switch (mmu_idx) { 9422 case ARMMMUIdx_E20_0: 9423 case ARMMMUIdx_E20_2: 9424 case ARMMMUIdx_E20_2_PAN: 9425 case ARMMMUIdx_Stage2: 9426 case ARMMMUIdx_E2: 9427 return 2; 9428 case ARMMMUIdx_SE3: 9429 return 3; 9430 case ARMMMUIdx_SE10_0: 9431 return arm_el_is_aa64(env, 3) ? 1 : 3; 9432 case ARMMMUIdx_SE10_1: 9433 case ARMMMUIdx_SE10_1_PAN: 9434 case ARMMMUIdx_Stage1_E0: 9435 case ARMMMUIdx_Stage1_E1: 9436 case ARMMMUIdx_Stage1_E1_PAN: 9437 case ARMMMUIdx_E10_0: 9438 case ARMMMUIdx_E10_1: 9439 case ARMMMUIdx_E10_1_PAN: 9440 case ARMMMUIdx_MPrivNegPri: 9441 case ARMMMUIdx_MUserNegPri: 9442 case ARMMMUIdx_MPriv: 9443 case ARMMMUIdx_MUser: 9444 case ARMMMUIdx_MSPrivNegPri: 9445 case ARMMMUIdx_MSUserNegPri: 9446 case ARMMMUIdx_MSPriv: 9447 case ARMMMUIdx_MSUser: 9448 return 1; 9449 default: 9450 g_assert_not_reached(); 9451 } 9452 } 9453 9454 uint64_t arm_sctlr(CPUARMState *env, int el) 9455 { 9456 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 9457 if (el == 0) { 9458 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 9459 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1); 9460 } 9461 return env->cp15.sctlr_el[el]; 9462 } 9463 9464 /* Return the SCTLR value which controls this address translation regime */ 9465 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9466 { 9467 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9468 } 9469 9470 #ifndef CONFIG_USER_ONLY 9471 9472 /* Return true if the specified stage of address translation is disabled */ 9473 static inline bool regime_translation_disabled(CPUARMState *env, 9474 ARMMMUIdx mmu_idx) 9475 { 9476 if (arm_feature(env, ARM_FEATURE_M)) { 9477 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9478 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9479 case R_V7M_MPU_CTRL_ENABLE_MASK: 9480 /* Enabled, but not for HardFault and NMI */ 9481 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9482 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9483 /* Enabled for all cases */ 9484 return false; 9485 case 0: 9486 default: 9487 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 9488 * we warned about that in armv7m_nvic.c when the guest set it. 9489 */ 9490 return true; 9491 } 9492 } 9493 9494 if (mmu_idx == ARMMMUIdx_Stage2) { 9495 /* HCR.DC means HCR.VM behaves as 1 */ 9496 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 9497 } 9498 9499 if (env->cp15.hcr_el2 & HCR_TGE) { 9500 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 9501 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 9502 return true; 9503 } 9504 } 9505 9506 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 9507 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 9508 return true; 9509 } 9510 9511 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 9512 } 9513 9514 static inline bool regime_translation_big_endian(CPUARMState *env, 9515 ARMMMUIdx mmu_idx) 9516 { 9517 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 9518 } 9519 9520 /* Return the TTBR associated with this translation regime */ 9521 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 9522 int ttbrn) 9523 { 9524 if (mmu_idx == ARMMMUIdx_Stage2) { 9525 return env->cp15.vttbr_el2; 9526 } 9527 if (ttbrn == 0) { 9528 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 9529 } else { 9530 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 9531 } 9532 } 9533 9534 #endif /* !CONFIG_USER_ONLY */ 9535 9536 /* Return the TCR controlling this translation regime */ 9537 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 9538 { 9539 if (mmu_idx == ARMMMUIdx_Stage2) { 9540 return &env->cp15.vtcr_el2; 9541 } 9542 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 9543 } 9544 9545 /* Convert a possible stage1+2 MMU index into the appropriate 9546 * stage 1 MMU index 9547 */ 9548 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 9549 { 9550 switch (mmu_idx) { 9551 case ARMMMUIdx_E10_0: 9552 return ARMMMUIdx_Stage1_E0; 9553 case ARMMMUIdx_E10_1: 9554 return ARMMMUIdx_Stage1_E1; 9555 case ARMMMUIdx_E10_1_PAN: 9556 return ARMMMUIdx_Stage1_E1_PAN; 9557 default: 9558 return mmu_idx; 9559 } 9560 } 9561 9562 /* Return true if the translation regime is using LPAE format page tables */ 9563 static inline bool regime_using_lpae_format(CPUARMState *env, 9564 ARMMMUIdx mmu_idx) 9565 { 9566 int el = regime_el(env, mmu_idx); 9567 if (el == 2 || arm_el_is_aa64(env, el)) { 9568 return true; 9569 } 9570 if (arm_feature(env, ARM_FEATURE_LPAE) 9571 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 9572 return true; 9573 } 9574 return false; 9575 } 9576 9577 /* Returns true if the stage 1 translation regime is using LPAE format page 9578 * tables. Used when raising alignment exceptions, whose FSR changes depending 9579 * on whether the long or short descriptor format is in use. */ 9580 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 9581 { 9582 mmu_idx = stage_1_mmu_idx(mmu_idx); 9583 9584 return regime_using_lpae_format(env, mmu_idx); 9585 } 9586 9587 #ifndef CONFIG_USER_ONLY 9588 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 9589 { 9590 switch (mmu_idx) { 9591 case ARMMMUIdx_SE10_0: 9592 case ARMMMUIdx_E20_0: 9593 case ARMMMUIdx_Stage1_E0: 9594 case ARMMMUIdx_MUser: 9595 case ARMMMUIdx_MSUser: 9596 case ARMMMUIdx_MUserNegPri: 9597 case ARMMMUIdx_MSUserNegPri: 9598 return true; 9599 default: 9600 return false; 9601 case ARMMMUIdx_E10_0: 9602 case ARMMMUIdx_E10_1: 9603 case ARMMMUIdx_E10_1_PAN: 9604 g_assert_not_reached(); 9605 } 9606 } 9607 9608 /* Translate section/page access permissions to page 9609 * R/W protection flags 9610 * 9611 * @env: CPUARMState 9612 * @mmu_idx: MMU index indicating required translation regime 9613 * @ap: The 3-bit access permissions (AP[2:0]) 9614 * @domain_prot: The 2-bit domain access permissions 9615 */ 9616 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 9617 int ap, int domain_prot) 9618 { 9619 bool is_user = regime_is_user(env, mmu_idx); 9620 9621 if (domain_prot == 3) { 9622 return PAGE_READ | PAGE_WRITE; 9623 } 9624 9625 switch (ap) { 9626 case 0: 9627 if (arm_feature(env, ARM_FEATURE_V7)) { 9628 return 0; 9629 } 9630 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 9631 case SCTLR_S: 9632 return is_user ? 0 : PAGE_READ; 9633 case SCTLR_R: 9634 return PAGE_READ; 9635 default: 9636 return 0; 9637 } 9638 case 1: 9639 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9640 case 2: 9641 if (is_user) { 9642 return PAGE_READ; 9643 } else { 9644 return PAGE_READ | PAGE_WRITE; 9645 } 9646 case 3: 9647 return PAGE_READ | PAGE_WRITE; 9648 case 4: /* Reserved. */ 9649 return 0; 9650 case 5: 9651 return is_user ? 0 : PAGE_READ; 9652 case 6: 9653 return PAGE_READ; 9654 case 7: 9655 if (!arm_feature(env, ARM_FEATURE_V6K)) { 9656 return 0; 9657 } 9658 return PAGE_READ; 9659 default: 9660 g_assert_not_reached(); 9661 } 9662 } 9663 9664 /* Translate section/page access permissions to page 9665 * R/W protection flags. 9666 * 9667 * @ap: The 2-bit simple AP (AP[2:1]) 9668 * @is_user: TRUE if accessing from PL0 9669 */ 9670 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 9671 { 9672 switch (ap) { 9673 case 0: 9674 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9675 case 1: 9676 return PAGE_READ | PAGE_WRITE; 9677 case 2: 9678 return is_user ? 0 : PAGE_READ; 9679 case 3: 9680 return PAGE_READ; 9681 default: 9682 g_assert_not_reached(); 9683 } 9684 } 9685 9686 static inline int 9687 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 9688 { 9689 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 9690 } 9691 9692 /* Translate S2 section/page access permissions to protection flags 9693 * 9694 * @env: CPUARMState 9695 * @s2ap: The 2-bit stage2 access permissions (S2AP) 9696 * @xn: XN (execute-never) bit 9697 */ 9698 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 9699 { 9700 int prot = 0; 9701 9702 if (s2ap & 1) { 9703 prot |= PAGE_READ; 9704 } 9705 if (s2ap & 2) { 9706 prot |= PAGE_WRITE; 9707 } 9708 if (!xn) { 9709 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 9710 prot |= PAGE_EXEC; 9711 } 9712 } 9713 return prot; 9714 } 9715 9716 /* Translate section/page access permissions to protection flags 9717 * 9718 * @env: CPUARMState 9719 * @mmu_idx: MMU index indicating required translation regime 9720 * @is_aa64: TRUE if AArch64 9721 * @ap: The 2-bit simple AP (AP[2:1]) 9722 * @ns: NS (non-secure) bit 9723 * @xn: XN (execute-never) bit 9724 * @pxn: PXN (privileged execute-never) bit 9725 */ 9726 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 9727 int ap, int ns, int xn, int pxn) 9728 { 9729 bool is_user = regime_is_user(env, mmu_idx); 9730 int prot_rw, user_rw; 9731 bool have_wxn; 9732 int wxn = 0; 9733 9734 assert(mmu_idx != ARMMMUIdx_Stage2); 9735 9736 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 9737 if (is_user) { 9738 prot_rw = user_rw; 9739 } else { 9740 if (user_rw && regime_is_pan(env, mmu_idx)) { 9741 return 0; 9742 } 9743 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 9744 } 9745 9746 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 9747 return prot_rw; 9748 } 9749 9750 /* TODO have_wxn should be replaced with 9751 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 9752 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 9753 * compatible processors have EL2, which is required for [U]WXN. 9754 */ 9755 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 9756 9757 if (have_wxn) { 9758 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 9759 } 9760 9761 if (is_aa64) { 9762 if (regime_has_2_ranges(mmu_idx) && !is_user) { 9763 xn = pxn || (user_rw & PAGE_WRITE); 9764 } 9765 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9766 switch (regime_el(env, mmu_idx)) { 9767 case 1: 9768 case 3: 9769 if (is_user) { 9770 xn = xn || !(user_rw & PAGE_READ); 9771 } else { 9772 int uwxn = 0; 9773 if (have_wxn) { 9774 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 9775 } 9776 xn = xn || !(prot_rw & PAGE_READ) || pxn || 9777 (uwxn && (user_rw & PAGE_WRITE)); 9778 } 9779 break; 9780 case 2: 9781 break; 9782 } 9783 } else { 9784 xn = wxn = 0; 9785 } 9786 9787 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 9788 return prot_rw; 9789 } 9790 return prot_rw | PAGE_EXEC; 9791 } 9792 9793 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 9794 uint32_t *table, uint32_t address) 9795 { 9796 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 9797 TCR *tcr = regime_tcr(env, mmu_idx); 9798 9799 if (address & tcr->mask) { 9800 if (tcr->raw_tcr & TTBCR_PD1) { 9801 /* Translation table walk disabled for TTBR1 */ 9802 return false; 9803 } 9804 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 9805 } else { 9806 if (tcr->raw_tcr & TTBCR_PD0) { 9807 /* Translation table walk disabled for TTBR0 */ 9808 return false; 9809 } 9810 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 9811 } 9812 *table |= (address >> 18) & 0x3ffc; 9813 return true; 9814 } 9815 9816 /* Translate a S1 pagetable walk through S2 if needed. */ 9817 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 9818 hwaddr addr, MemTxAttrs txattrs, 9819 ARMMMUFaultInfo *fi) 9820 { 9821 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 9822 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 9823 target_ulong s2size; 9824 hwaddr s2pa; 9825 int s2prot; 9826 int ret; 9827 ARMCacheAttrs cacheattrs = {}; 9828 ARMCacheAttrs *pcacheattrs = NULL; 9829 9830 if (env->cp15.hcr_el2 & HCR_PTW) { 9831 /* 9832 * PTW means we must fault if this S1 walk touches S2 Device 9833 * memory; otherwise we don't care about the attributes and can 9834 * save the S2 translation the effort of computing them. 9835 */ 9836 pcacheattrs = &cacheattrs; 9837 } 9838 9839 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_Stage2, &s2pa, 9840 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 9841 if (ret) { 9842 assert(fi->type != ARMFault_None); 9843 fi->s2addr = addr; 9844 fi->stage2 = true; 9845 fi->s1ptw = true; 9846 return ~0; 9847 } 9848 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 9849 /* Access was to Device memory: generate Permission fault */ 9850 fi->type = ARMFault_Permission; 9851 fi->s2addr = addr; 9852 fi->stage2 = true; 9853 fi->s1ptw = true; 9854 return ~0; 9855 } 9856 addr = s2pa; 9857 } 9858 return addr; 9859 } 9860 9861 /* All loads done in the course of a page table walk go through here. */ 9862 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9863 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9864 { 9865 ARMCPU *cpu = ARM_CPU(cs); 9866 CPUARMState *env = &cpu->env; 9867 MemTxAttrs attrs = {}; 9868 MemTxResult result = MEMTX_OK; 9869 AddressSpace *as; 9870 uint32_t data; 9871 9872 attrs.secure = is_secure; 9873 as = arm_addressspace(cs, attrs); 9874 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9875 if (fi->s1ptw) { 9876 return 0; 9877 } 9878 if (regime_translation_big_endian(env, mmu_idx)) { 9879 data = address_space_ldl_be(as, addr, attrs, &result); 9880 } else { 9881 data = address_space_ldl_le(as, addr, attrs, &result); 9882 } 9883 if (result == MEMTX_OK) { 9884 return data; 9885 } 9886 fi->type = ARMFault_SyncExternalOnWalk; 9887 fi->ea = arm_extabort_type(result); 9888 return 0; 9889 } 9890 9891 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9892 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9893 { 9894 ARMCPU *cpu = ARM_CPU(cs); 9895 CPUARMState *env = &cpu->env; 9896 MemTxAttrs attrs = {}; 9897 MemTxResult result = MEMTX_OK; 9898 AddressSpace *as; 9899 uint64_t data; 9900 9901 attrs.secure = is_secure; 9902 as = arm_addressspace(cs, attrs); 9903 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9904 if (fi->s1ptw) { 9905 return 0; 9906 } 9907 if (regime_translation_big_endian(env, mmu_idx)) { 9908 data = address_space_ldq_be(as, addr, attrs, &result); 9909 } else { 9910 data = address_space_ldq_le(as, addr, attrs, &result); 9911 } 9912 if (result == MEMTX_OK) { 9913 return data; 9914 } 9915 fi->type = ARMFault_SyncExternalOnWalk; 9916 fi->ea = arm_extabort_type(result); 9917 return 0; 9918 } 9919 9920 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 9921 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9922 hwaddr *phys_ptr, int *prot, 9923 target_ulong *page_size, 9924 ARMMMUFaultInfo *fi) 9925 { 9926 CPUState *cs = env_cpu(env); 9927 int level = 1; 9928 uint32_t table; 9929 uint32_t desc; 9930 int type; 9931 int ap; 9932 int domain = 0; 9933 int domain_prot; 9934 hwaddr phys_addr; 9935 uint32_t dacr; 9936 9937 /* Pagetable walk. */ 9938 /* Lookup l1 descriptor. */ 9939 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9940 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9941 fi->type = ARMFault_Translation; 9942 goto do_fault; 9943 } 9944 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9945 mmu_idx, fi); 9946 if (fi->type != ARMFault_None) { 9947 goto do_fault; 9948 } 9949 type = (desc & 3); 9950 domain = (desc >> 5) & 0x0f; 9951 if (regime_el(env, mmu_idx) == 1) { 9952 dacr = env->cp15.dacr_ns; 9953 } else { 9954 dacr = env->cp15.dacr_s; 9955 } 9956 domain_prot = (dacr >> (domain * 2)) & 3; 9957 if (type == 0) { 9958 /* Section translation fault. */ 9959 fi->type = ARMFault_Translation; 9960 goto do_fault; 9961 } 9962 if (type != 2) { 9963 level = 2; 9964 } 9965 if (domain_prot == 0 || domain_prot == 2) { 9966 fi->type = ARMFault_Domain; 9967 goto do_fault; 9968 } 9969 if (type == 2) { 9970 /* 1Mb section. */ 9971 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9972 ap = (desc >> 10) & 3; 9973 *page_size = 1024 * 1024; 9974 } else { 9975 /* Lookup l2 entry. */ 9976 if (type == 1) { 9977 /* Coarse pagetable. */ 9978 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9979 } else { 9980 /* Fine pagetable. */ 9981 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 9982 } 9983 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9984 mmu_idx, fi); 9985 if (fi->type != ARMFault_None) { 9986 goto do_fault; 9987 } 9988 switch (desc & 3) { 9989 case 0: /* Page translation fault. */ 9990 fi->type = ARMFault_Translation; 9991 goto do_fault; 9992 case 1: /* 64k page. */ 9993 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9994 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 9995 *page_size = 0x10000; 9996 break; 9997 case 2: /* 4k page. */ 9998 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9999 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10000 *page_size = 0x1000; 10001 break; 10002 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10003 if (type == 1) { 10004 /* ARMv6/XScale extended small page format */ 10005 if (arm_feature(env, ARM_FEATURE_XSCALE) 10006 || arm_feature(env, ARM_FEATURE_V6)) { 10007 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10008 *page_size = 0x1000; 10009 } else { 10010 /* UNPREDICTABLE in ARMv5; we choose to take a 10011 * page translation fault. 10012 */ 10013 fi->type = ARMFault_Translation; 10014 goto do_fault; 10015 } 10016 } else { 10017 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10018 *page_size = 0x400; 10019 } 10020 ap = (desc >> 4) & 3; 10021 break; 10022 default: 10023 /* Never happens, but compiler isn't smart enough to tell. */ 10024 abort(); 10025 } 10026 } 10027 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10028 *prot |= *prot ? PAGE_EXEC : 0; 10029 if (!(*prot & (1 << access_type))) { 10030 /* Access permission fault. */ 10031 fi->type = ARMFault_Permission; 10032 goto do_fault; 10033 } 10034 *phys_ptr = phys_addr; 10035 return false; 10036 do_fault: 10037 fi->domain = domain; 10038 fi->level = level; 10039 return true; 10040 } 10041 10042 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10043 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10044 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10045 target_ulong *page_size, ARMMMUFaultInfo *fi) 10046 { 10047 CPUState *cs = env_cpu(env); 10048 int level = 1; 10049 uint32_t table; 10050 uint32_t desc; 10051 uint32_t xn; 10052 uint32_t pxn = 0; 10053 int type; 10054 int ap; 10055 int domain = 0; 10056 int domain_prot; 10057 hwaddr phys_addr; 10058 uint32_t dacr; 10059 bool ns; 10060 10061 /* Pagetable walk. */ 10062 /* Lookup l1 descriptor. */ 10063 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10064 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10065 fi->type = ARMFault_Translation; 10066 goto do_fault; 10067 } 10068 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10069 mmu_idx, fi); 10070 if (fi->type != ARMFault_None) { 10071 goto do_fault; 10072 } 10073 type = (desc & 3); 10074 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 10075 /* Section translation fault, or attempt to use the encoding 10076 * which is Reserved on implementations without PXN. 10077 */ 10078 fi->type = ARMFault_Translation; 10079 goto do_fault; 10080 } 10081 if ((type == 1) || !(desc & (1 << 18))) { 10082 /* Page or Section. */ 10083 domain = (desc >> 5) & 0x0f; 10084 } 10085 if (regime_el(env, mmu_idx) == 1) { 10086 dacr = env->cp15.dacr_ns; 10087 } else { 10088 dacr = env->cp15.dacr_s; 10089 } 10090 if (type == 1) { 10091 level = 2; 10092 } 10093 domain_prot = (dacr >> (domain * 2)) & 3; 10094 if (domain_prot == 0 || domain_prot == 2) { 10095 /* Section or Page domain fault */ 10096 fi->type = ARMFault_Domain; 10097 goto do_fault; 10098 } 10099 if (type != 1) { 10100 if (desc & (1 << 18)) { 10101 /* Supersection. */ 10102 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10103 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10104 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10105 *page_size = 0x1000000; 10106 } else { 10107 /* Section. */ 10108 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10109 *page_size = 0x100000; 10110 } 10111 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10112 xn = desc & (1 << 4); 10113 pxn = desc & 1; 10114 ns = extract32(desc, 19, 1); 10115 } else { 10116 if (arm_feature(env, ARM_FEATURE_PXN)) { 10117 pxn = (desc >> 2) & 1; 10118 } 10119 ns = extract32(desc, 3, 1); 10120 /* Lookup l2 entry. */ 10121 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10122 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10123 mmu_idx, fi); 10124 if (fi->type != ARMFault_None) { 10125 goto do_fault; 10126 } 10127 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10128 switch (desc & 3) { 10129 case 0: /* Page translation fault. */ 10130 fi->type = ARMFault_Translation; 10131 goto do_fault; 10132 case 1: /* 64k page. */ 10133 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10134 xn = desc & (1 << 15); 10135 *page_size = 0x10000; 10136 break; 10137 case 2: case 3: /* 4k page. */ 10138 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10139 xn = desc & 1; 10140 *page_size = 0x1000; 10141 break; 10142 default: 10143 /* Never happens, but compiler isn't smart enough to tell. */ 10144 abort(); 10145 } 10146 } 10147 if (domain_prot == 3) { 10148 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10149 } else { 10150 if (pxn && !regime_is_user(env, mmu_idx)) { 10151 xn = 1; 10152 } 10153 if (xn && access_type == MMU_INST_FETCH) { 10154 fi->type = ARMFault_Permission; 10155 goto do_fault; 10156 } 10157 10158 if (arm_feature(env, ARM_FEATURE_V6K) && 10159 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10160 /* The simplified model uses AP[0] as an access control bit. */ 10161 if ((ap & 1) == 0) { 10162 /* Access flag fault. */ 10163 fi->type = ARMFault_AccessFlag; 10164 goto do_fault; 10165 } 10166 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10167 } else { 10168 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10169 } 10170 if (*prot && !xn) { 10171 *prot |= PAGE_EXEC; 10172 } 10173 if (!(*prot & (1 << access_type))) { 10174 /* Access permission fault. */ 10175 fi->type = ARMFault_Permission; 10176 goto do_fault; 10177 } 10178 } 10179 if (ns) { 10180 /* The NS bit will (as required by the architecture) have no effect if 10181 * the CPU doesn't support TZ or this is a non-secure translation 10182 * regime, because the attribute will already be non-secure. 10183 */ 10184 attrs->secure = false; 10185 } 10186 *phys_ptr = phys_addr; 10187 return false; 10188 do_fault: 10189 fi->domain = domain; 10190 fi->level = level; 10191 return true; 10192 } 10193 10194 /* 10195 * check_s2_mmu_setup 10196 * @cpu: ARMCPU 10197 * @is_aa64: True if the translation regime is in AArch64 state 10198 * @startlevel: Suggested starting level 10199 * @inputsize: Bitsize of IPAs 10200 * @stride: Page-table stride (See the ARM ARM) 10201 * 10202 * Returns true if the suggested S2 translation parameters are OK and 10203 * false otherwise. 10204 */ 10205 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10206 int inputsize, int stride) 10207 { 10208 const int grainsize = stride + 3; 10209 int startsizecheck; 10210 10211 /* Negative levels are never allowed. */ 10212 if (level < 0) { 10213 return false; 10214 } 10215 10216 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10217 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10218 return false; 10219 } 10220 10221 if (is_aa64) { 10222 CPUARMState *env = &cpu->env; 10223 unsigned int pamax = arm_pamax(cpu); 10224 10225 switch (stride) { 10226 case 13: /* 64KB Pages. */ 10227 if (level == 0 || (level == 1 && pamax <= 42)) { 10228 return false; 10229 } 10230 break; 10231 case 11: /* 16KB Pages. */ 10232 if (level == 0 || (level == 1 && pamax <= 40)) { 10233 return false; 10234 } 10235 break; 10236 case 9: /* 4KB Pages. */ 10237 if (level == 0 && pamax <= 42) { 10238 return false; 10239 } 10240 break; 10241 default: 10242 g_assert_not_reached(); 10243 } 10244 10245 /* Inputsize checks. */ 10246 if (inputsize > pamax && 10247 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10248 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10249 return false; 10250 } 10251 } else { 10252 /* AArch32 only supports 4KB pages. Assert on that. */ 10253 assert(stride == 9); 10254 10255 if (level == 0) { 10256 return false; 10257 } 10258 } 10259 return true; 10260 } 10261 10262 /* Translate from the 4-bit stage 2 representation of 10263 * memory attributes (without cache-allocation hints) to 10264 * the 8-bit representation of the stage 1 MAIR registers 10265 * (which includes allocation hints). 10266 * 10267 * ref: shared/translation/attrs/S2AttrDecode() 10268 * .../S2ConvertAttrsHints() 10269 */ 10270 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10271 { 10272 uint8_t hiattr = extract32(s2attrs, 2, 2); 10273 uint8_t loattr = extract32(s2attrs, 0, 2); 10274 uint8_t hihint = 0, lohint = 0; 10275 10276 if (hiattr != 0) { /* normal memory */ 10277 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10278 hiattr = loattr = 1; /* non-cacheable */ 10279 } else { 10280 if (hiattr != 1) { /* Write-through or write-back */ 10281 hihint = 3; /* RW allocate */ 10282 } 10283 if (loattr != 1) { /* Write-through or write-back */ 10284 lohint = 3; /* RW allocate */ 10285 } 10286 } 10287 } 10288 10289 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10290 } 10291 #endif /* !CONFIG_USER_ONLY */ 10292 10293 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10294 { 10295 if (regime_has_2_ranges(mmu_idx)) { 10296 return extract64(tcr, 37, 2); 10297 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10298 return 0; /* VTCR_EL2 */ 10299 } else { 10300 return extract32(tcr, 20, 1); 10301 } 10302 } 10303 10304 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10305 { 10306 if (regime_has_2_ranges(mmu_idx)) { 10307 return extract64(tcr, 51, 2); 10308 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10309 return 0; /* VTCR_EL2 */ 10310 } else { 10311 return extract32(tcr, 29, 1); 10312 } 10313 } 10314 10315 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10316 ARMMMUIdx mmu_idx, bool data) 10317 { 10318 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10319 bool epd, hpd, using16k, using64k; 10320 int select, tsz, tbi; 10321 10322 if (!regime_has_2_ranges(mmu_idx)) { 10323 select = 0; 10324 tsz = extract32(tcr, 0, 6); 10325 using64k = extract32(tcr, 14, 1); 10326 using16k = extract32(tcr, 15, 1); 10327 if (mmu_idx == ARMMMUIdx_Stage2) { 10328 /* VTCR_EL2 */ 10329 hpd = false; 10330 } else { 10331 hpd = extract32(tcr, 24, 1); 10332 } 10333 epd = false; 10334 } else { 10335 /* 10336 * Bit 55 is always between the two regions, and is canonical for 10337 * determining if address tagging is enabled. 10338 */ 10339 select = extract64(va, 55, 1); 10340 if (!select) { 10341 tsz = extract32(tcr, 0, 6); 10342 epd = extract32(tcr, 7, 1); 10343 using64k = extract32(tcr, 14, 1); 10344 using16k = extract32(tcr, 15, 1); 10345 hpd = extract64(tcr, 41, 1); 10346 } else { 10347 int tg = extract32(tcr, 30, 2); 10348 using16k = tg == 1; 10349 using64k = tg == 3; 10350 tsz = extract32(tcr, 16, 6); 10351 epd = extract32(tcr, 23, 1); 10352 hpd = extract64(tcr, 42, 1); 10353 } 10354 } 10355 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 10356 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10357 10358 /* Present TBI as a composite with TBID. */ 10359 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10360 if (!data) { 10361 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10362 } 10363 tbi = (tbi >> select) & 1; 10364 10365 return (ARMVAParameters) { 10366 .tsz = tsz, 10367 .select = select, 10368 .tbi = tbi, 10369 .epd = epd, 10370 .hpd = hpd, 10371 .using16k = using16k, 10372 .using64k = using64k, 10373 }; 10374 } 10375 10376 #ifndef CONFIG_USER_ONLY 10377 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10378 ARMMMUIdx mmu_idx) 10379 { 10380 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10381 uint32_t el = regime_el(env, mmu_idx); 10382 int select, tsz; 10383 bool epd, hpd; 10384 10385 if (mmu_idx == ARMMMUIdx_Stage2) { 10386 /* VTCR */ 10387 bool sext = extract32(tcr, 4, 1); 10388 bool sign = extract32(tcr, 3, 1); 10389 10390 /* 10391 * If the sign-extend bit is not the same as t0sz[3], the result 10392 * is unpredictable. Flag this as a guest error. 10393 */ 10394 if (sign != sext) { 10395 qemu_log_mask(LOG_GUEST_ERROR, 10396 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10397 } 10398 tsz = sextract32(tcr, 0, 4) + 8; 10399 select = 0; 10400 hpd = false; 10401 epd = false; 10402 } else if (el == 2) { 10403 /* HTCR */ 10404 tsz = extract32(tcr, 0, 3); 10405 select = 0; 10406 hpd = extract64(tcr, 24, 1); 10407 epd = false; 10408 } else { 10409 int t0sz = extract32(tcr, 0, 3); 10410 int t1sz = extract32(tcr, 16, 3); 10411 10412 if (t1sz == 0) { 10413 select = va > (0xffffffffu >> t0sz); 10414 } else { 10415 /* Note that we will detect errors later. */ 10416 select = va >= ~(0xffffffffu >> t1sz); 10417 } 10418 if (!select) { 10419 tsz = t0sz; 10420 epd = extract32(tcr, 7, 1); 10421 hpd = extract64(tcr, 41, 1); 10422 } else { 10423 tsz = t1sz; 10424 epd = extract32(tcr, 23, 1); 10425 hpd = extract64(tcr, 42, 1); 10426 } 10427 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10428 hpd &= extract32(tcr, 6, 1); 10429 } 10430 10431 return (ARMVAParameters) { 10432 .tsz = tsz, 10433 .select = select, 10434 .epd = epd, 10435 .hpd = hpd, 10436 }; 10437 } 10438 10439 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 10440 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10441 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 10442 target_ulong *page_size_ptr, 10443 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10444 { 10445 ARMCPU *cpu = env_archcpu(env); 10446 CPUState *cs = CPU(cpu); 10447 /* Read an LPAE long-descriptor translation table. */ 10448 ARMFaultType fault_type = ARMFault_Translation; 10449 uint32_t level; 10450 ARMVAParameters param; 10451 uint64_t ttbr; 10452 hwaddr descaddr, indexmask, indexmask_grainsize; 10453 uint32_t tableattrs; 10454 target_ulong page_size; 10455 uint32_t attrs; 10456 int32_t stride; 10457 int addrsize, inputsize; 10458 TCR *tcr = regime_tcr(env, mmu_idx); 10459 int ap, ns, xn, pxn; 10460 uint32_t el = regime_el(env, mmu_idx); 10461 uint64_t descaddrmask; 10462 bool aarch64 = arm_el_is_aa64(env, el); 10463 bool guarded = false; 10464 10465 /* TODO: 10466 * This code does not handle the different format TCR for VTCR_EL2. 10467 * This code also does not support shareability levels. 10468 * Attribute and permission bit handling should also be checked when adding 10469 * support for those page table walks. 10470 */ 10471 if (aarch64) { 10472 param = aa64_va_parameters(env, address, mmu_idx, 10473 access_type != MMU_INST_FETCH); 10474 level = 0; 10475 addrsize = 64 - 8 * param.tbi; 10476 inputsize = 64 - param.tsz; 10477 } else { 10478 param = aa32_va_parameters(env, address, mmu_idx); 10479 level = 1; 10480 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 10481 inputsize = addrsize - param.tsz; 10482 } 10483 10484 /* 10485 * We determined the region when collecting the parameters, but we 10486 * have not yet validated that the address is valid for the region. 10487 * Extract the top bits and verify that they all match select. 10488 * 10489 * For aa32, if inputsize == addrsize, then we have selected the 10490 * region by exclusion in aa32_va_parameters and there is no more 10491 * validation to do here. 10492 */ 10493 if (inputsize < addrsize) { 10494 target_ulong top_bits = sextract64(address, inputsize, 10495 addrsize - inputsize); 10496 if (-top_bits != param.select) { 10497 /* The gap between the two regions is a Translation fault */ 10498 fault_type = ARMFault_Translation; 10499 goto do_fault; 10500 } 10501 } 10502 10503 if (param.using64k) { 10504 stride = 13; 10505 } else if (param.using16k) { 10506 stride = 11; 10507 } else { 10508 stride = 9; 10509 } 10510 10511 /* Note that QEMU ignores shareability and cacheability attributes, 10512 * so we don't need to do anything with the SH, ORGN, IRGN fields 10513 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 10514 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 10515 * implement any ASID-like capability so we can ignore it (instead 10516 * we will always flush the TLB any time the ASID is changed). 10517 */ 10518 ttbr = regime_ttbr(env, mmu_idx, param.select); 10519 10520 /* Here we should have set up all the parameters for the translation: 10521 * inputsize, ttbr, epd, stride, tbi 10522 */ 10523 10524 if (param.epd) { 10525 /* Translation table walk disabled => Translation fault on TLB miss 10526 * Note: This is always 0 on 64-bit EL2 and EL3. 10527 */ 10528 goto do_fault; 10529 } 10530 10531 if (mmu_idx != ARMMMUIdx_Stage2) { 10532 /* The starting level depends on the virtual address size (which can 10533 * be up to 48 bits) and the translation granule size. It indicates 10534 * the number of strides (stride bits at a time) needed to 10535 * consume the bits of the input address. In the pseudocode this is: 10536 * level = 4 - RoundUp((inputsize - grainsize) / stride) 10537 * where their 'inputsize' is our 'inputsize', 'grainsize' is 10538 * our 'stride + 3' and 'stride' is our 'stride'. 10539 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 10540 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 10541 * = 4 - (inputsize - 4) / stride; 10542 */ 10543 level = 4 - (inputsize - 4) / stride; 10544 } else { 10545 /* For stage 2 translations the starting level is specified by the 10546 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 10547 */ 10548 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 10549 uint32_t startlevel; 10550 bool ok; 10551 10552 if (!aarch64 || stride == 9) { 10553 /* AArch32 or 4KB pages */ 10554 startlevel = 2 - sl0; 10555 } else { 10556 /* 16KB or 64KB pages */ 10557 startlevel = 3 - sl0; 10558 } 10559 10560 /* Check that the starting level is valid. */ 10561 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 10562 inputsize, stride); 10563 if (!ok) { 10564 fault_type = ARMFault_Translation; 10565 goto do_fault; 10566 } 10567 level = startlevel; 10568 } 10569 10570 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 10571 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 10572 10573 /* Now we can extract the actual base address from the TTBR */ 10574 descaddr = extract64(ttbr, 0, 48); 10575 descaddr &= ~indexmask; 10576 10577 /* The address field in the descriptor goes up to bit 39 for ARMv7 10578 * but up to bit 47 for ARMv8, but we use the descaddrmask 10579 * up to bit 39 for AArch32, because we don't need other bits in that case 10580 * to construct next descriptor address (anyway they should be all zeroes). 10581 */ 10582 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 10583 ~indexmask_grainsize; 10584 10585 /* Secure accesses start with the page table in secure memory and 10586 * can be downgraded to non-secure at any step. Non-secure accesses 10587 * remain non-secure. We implement this by just ORing in the NSTable/NS 10588 * bits at each step. 10589 */ 10590 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 10591 for (;;) { 10592 uint64_t descriptor; 10593 bool nstable; 10594 10595 descaddr |= (address >> (stride * (4 - level))) & indexmask; 10596 descaddr &= ~7ULL; 10597 nstable = extract32(tableattrs, 4, 1); 10598 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 10599 if (fi->type != ARMFault_None) { 10600 goto do_fault; 10601 } 10602 10603 if (!(descriptor & 1) || 10604 (!(descriptor & 2) && (level == 3))) { 10605 /* Invalid, or the Reserved level 3 encoding */ 10606 goto do_fault; 10607 } 10608 descaddr = descriptor & descaddrmask; 10609 10610 if ((descriptor & 2) && (level < 3)) { 10611 /* Table entry. The top five bits are attributes which may 10612 * propagate down through lower levels of the table (and 10613 * which are all arranged so that 0 means "no effect", so 10614 * we can gather them up by ORing in the bits at each level). 10615 */ 10616 tableattrs |= extract64(descriptor, 59, 5); 10617 level++; 10618 indexmask = indexmask_grainsize; 10619 continue; 10620 } 10621 /* Block entry at level 1 or 2, or page entry at level 3. 10622 * These are basically the same thing, although the number 10623 * of bits we pull in from the vaddr varies. 10624 */ 10625 page_size = (1ULL << ((stride * (4 - level)) + 3)); 10626 descaddr |= (address & (page_size - 1)); 10627 /* Extract attributes from the descriptor */ 10628 attrs = extract64(descriptor, 2, 10) 10629 | (extract64(descriptor, 52, 12) << 10); 10630 10631 if (mmu_idx == ARMMMUIdx_Stage2) { 10632 /* Stage 2 table descriptors do not include any attribute fields */ 10633 break; 10634 } 10635 /* Merge in attributes from table descriptors */ 10636 attrs |= nstable << 3; /* NS */ 10637 guarded = extract64(descriptor, 50, 1); /* GP */ 10638 if (param.hpd) { 10639 /* HPD disables all the table attributes except NSTable. */ 10640 break; 10641 } 10642 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 10643 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 10644 * means "force PL1 access only", which means forcing AP[1] to 0. 10645 */ 10646 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 10647 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 10648 break; 10649 } 10650 /* Here descaddr is the final physical address, and attributes 10651 * are all in attrs. 10652 */ 10653 fault_type = ARMFault_AccessFlag; 10654 if ((attrs & (1 << 8)) == 0) { 10655 /* Access flag */ 10656 goto do_fault; 10657 } 10658 10659 ap = extract32(attrs, 4, 2); 10660 xn = extract32(attrs, 12, 1); 10661 10662 if (mmu_idx == ARMMMUIdx_Stage2) { 10663 ns = true; 10664 *prot = get_S2prot(env, ap, xn); 10665 } else { 10666 ns = extract32(attrs, 3, 1); 10667 pxn = extract32(attrs, 11, 1); 10668 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 10669 } 10670 10671 fault_type = ARMFault_Permission; 10672 if (!(*prot & (1 << access_type))) { 10673 goto do_fault; 10674 } 10675 10676 if (ns) { 10677 /* The NS bit will (as required by the architecture) have no effect if 10678 * the CPU doesn't support TZ or this is a non-secure translation 10679 * regime, because the attribute will already be non-secure. 10680 */ 10681 txattrs->secure = false; 10682 } 10683 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 10684 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 10685 txattrs->target_tlb_bit0 = true; 10686 } 10687 10688 if (cacheattrs != NULL) { 10689 if (mmu_idx == ARMMMUIdx_Stage2) { 10690 cacheattrs->attrs = convert_stage2_attrs(env, 10691 extract32(attrs, 0, 4)); 10692 } else { 10693 /* Index into MAIR registers for cache attributes */ 10694 uint8_t attrindx = extract32(attrs, 0, 3); 10695 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 10696 assert(attrindx <= 7); 10697 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 10698 } 10699 cacheattrs->shareability = extract32(attrs, 6, 2); 10700 } 10701 10702 *phys_ptr = descaddr; 10703 *page_size_ptr = page_size; 10704 return false; 10705 10706 do_fault: 10707 fi->type = fault_type; 10708 fi->level = level; 10709 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 10710 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); 10711 return true; 10712 } 10713 10714 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 10715 ARMMMUIdx mmu_idx, 10716 int32_t address, int *prot) 10717 { 10718 if (!arm_feature(env, ARM_FEATURE_M)) { 10719 *prot = PAGE_READ | PAGE_WRITE; 10720 switch (address) { 10721 case 0xF0000000 ... 0xFFFFFFFF: 10722 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 10723 /* hivecs execing is ok */ 10724 *prot |= PAGE_EXEC; 10725 } 10726 break; 10727 case 0x00000000 ... 0x7FFFFFFF: 10728 *prot |= PAGE_EXEC; 10729 break; 10730 } 10731 } else { 10732 /* Default system address map for M profile cores. 10733 * The architecture specifies which regions are execute-never; 10734 * at the MPU level no other checks are defined. 10735 */ 10736 switch (address) { 10737 case 0x00000000 ... 0x1fffffff: /* ROM */ 10738 case 0x20000000 ... 0x3fffffff: /* SRAM */ 10739 case 0x60000000 ... 0x7fffffff: /* RAM */ 10740 case 0x80000000 ... 0x9fffffff: /* RAM */ 10741 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10742 break; 10743 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 10744 case 0xa0000000 ... 0xbfffffff: /* Device */ 10745 case 0xc0000000 ... 0xdfffffff: /* Device */ 10746 case 0xe0000000 ... 0xffffffff: /* System */ 10747 *prot = PAGE_READ | PAGE_WRITE; 10748 break; 10749 default: 10750 g_assert_not_reached(); 10751 } 10752 } 10753 } 10754 10755 static bool pmsav7_use_background_region(ARMCPU *cpu, 10756 ARMMMUIdx mmu_idx, bool is_user) 10757 { 10758 /* Return true if we should use the default memory map as a 10759 * "background" region if there are no hits against any MPU regions. 10760 */ 10761 CPUARMState *env = &cpu->env; 10762 10763 if (is_user) { 10764 return false; 10765 } 10766 10767 if (arm_feature(env, ARM_FEATURE_M)) { 10768 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 10769 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 10770 } else { 10771 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 10772 } 10773 } 10774 10775 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 10776 { 10777 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 10778 return arm_feature(env, ARM_FEATURE_M) && 10779 extract32(address, 20, 12) == 0xe00; 10780 } 10781 10782 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 10783 { 10784 /* True if address is in the M profile system region 10785 * 0xe0000000 - 0xffffffff 10786 */ 10787 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 10788 } 10789 10790 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 10791 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10792 hwaddr *phys_ptr, int *prot, 10793 target_ulong *page_size, 10794 ARMMMUFaultInfo *fi) 10795 { 10796 ARMCPU *cpu = env_archcpu(env); 10797 int n; 10798 bool is_user = regime_is_user(env, mmu_idx); 10799 10800 *phys_ptr = address; 10801 *page_size = TARGET_PAGE_SIZE; 10802 *prot = 0; 10803 10804 if (regime_translation_disabled(env, mmu_idx) || 10805 m_is_ppb_region(env, address)) { 10806 /* MPU disabled or M profile PPB access: use default memory map. 10807 * The other case which uses the default memory map in the 10808 * v7M ARM ARM pseudocode is exception vector reads from the vector 10809 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 10810 * which always does a direct read using address_space_ldl(), rather 10811 * than going via this function, so we don't need to check that here. 10812 */ 10813 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10814 } else { /* MPU enabled */ 10815 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10816 /* region search */ 10817 uint32_t base = env->pmsav7.drbar[n]; 10818 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 10819 uint32_t rmask; 10820 bool srdis = false; 10821 10822 if (!(env->pmsav7.drsr[n] & 0x1)) { 10823 continue; 10824 } 10825 10826 if (!rsize) { 10827 qemu_log_mask(LOG_GUEST_ERROR, 10828 "DRSR[%d]: Rsize field cannot be 0\n", n); 10829 continue; 10830 } 10831 rsize++; 10832 rmask = (1ull << rsize) - 1; 10833 10834 if (base & rmask) { 10835 qemu_log_mask(LOG_GUEST_ERROR, 10836 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 10837 "to DRSR region size, mask = 0x%" PRIx32 "\n", 10838 n, base, rmask); 10839 continue; 10840 } 10841 10842 if (address < base || address > base + rmask) { 10843 /* 10844 * Address not in this region. We must check whether the 10845 * region covers addresses in the same page as our address. 10846 * In that case we must not report a size that covers the 10847 * whole page for a subsequent hit against a different MPU 10848 * region or the background region, because it would result in 10849 * incorrect TLB hits for subsequent accesses to addresses that 10850 * are in this MPU region. 10851 */ 10852 if (ranges_overlap(base, rmask, 10853 address & TARGET_PAGE_MASK, 10854 TARGET_PAGE_SIZE)) { 10855 *page_size = 1; 10856 } 10857 continue; 10858 } 10859 10860 /* Region matched */ 10861 10862 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 10863 int i, snd; 10864 uint32_t srdis_mask; 10865 10866 rsize -= 3; /* sub region size (power of 2) */ 10867 snd = ((address - base) >> rsize) & 0x7; 10868 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 10869 10870 srdis_mask = srdis ? 0x3 : 0x0; 10871 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 10872 /* This will check in groups of 2, 4 and then 8, whether 10873 * the subregion bits are consistent. rsize is incremented 10874 * back up to give the region size, considering consistent 10875 * adjacent subregions as one region. Stop testing if rsize 10876 * is already big enough for an entire QEMU page. 10877 */ 10878 int snd_rounded = snd & ~(i - 1); 10879 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 10880 snd_rounded + 8, i); 10881 if (srdis_mask ^ srdis_multi) { 10882 break; 10883 } 10884 srdis_mask = (srdis_mask << i) | srdis_mask; 10885 rsize++; 10886 } 10887 } 10888 if (srdis) { 10889 continue; 10890 } 10891 if (rsize < TARGET_PAGE_BITS) { 10892 *page_size = 1 << rsize; 10893 } 10894 break; 10895 } 10896 10897 if (n == -1) { /* no hits */ 10898 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10899 /* background fault */ 10900 fi->type = ARMFault_Background; 10901 return true; 10902 } 10903 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10904 } else { /* a MPU hit! */ 10905 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 10906 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 10907 10908 if (m_is_system_region(env, address)) { 10909 /* System space is always execute never */ 10910 xn = 1; 10911 } 10912 10913 if (is_user) { /* User mode AP bit decoding */ 10914 switch (ap) { 10915 case 0: 10916 case 1: 10917 case 5: 10918 break; /* no access */ 10919 case 3: 10920 *prot |= PAGE_WRITE; 10921 /* fall through */ 10922 case 2: 10923 case 6: 10924 *prot |= PAGE_READ | PAGE_EXEC; 10925 break; 10926 case 7: 10927 /* for v7M, same as 6; for R profile a reserved value */ 10928 if (arm_feature(env, ARM_FEATURE_M)) { 10929 *prot |= PAGE_READ | PAGE_EXEC; 10930 break; 10931 } 10932 /* fall through */ 10933 default: 10934 qemu_log_mask(LOG_GUEST_ERROR, 10935 "DRACR[%d]: Bad value for AP bits: 0x%" 10936 PRIx32 "\n", n, ap); 10937 } 10938 } else { /* Priv. mode AP bits decoding */ 10939 switch (ap) { 10940 case 0: 10941 break; /* no access */ 10942 case 1: 10943 case 2: 10944 case 3: 10945 *prot |= PAGE_WRITE; 10946 /* fall through */ 10947 case 5: 10948 case 6: 10949 *prot |= PAGE_READ | PAGE_EXEC; 10950 break; 10951 case 7: 10952 /* for v7M, same as 6; for R profile a reserved value */ 10953 if (arm_feature(env, ARM_FEATURE_M)) { 10954 *prot |= PAGE_READ | PAGE_EXEC; 10955 break; 10956 } 10957 /* fall through */ 10958 default: 10959 qemu_log_mask(LOG_GUEST_ERROR, 10960 "DRACR[%d]: Bad value for AP bits: 0x%" 10961 PRIx32 "\n", n, ap); 10962 } 10963 } 10964 10965 /* execute never */ 10966 if (xn) { 10967 *prot &= ~PAGE_EXEC; 10968 } 10969 } 10970 } 10971 10972 fi->type = ARMFault_Permission; 10973 fi->level = 1; 10974 return !(*prot & (1 << access_type)); 10975 } 10976 10977 static bool v8m_is_sau_exempt(CPUARMState *env, 10978 uint32_t address, MMUAccessType access_type) 10979 { 10980 /* The architecture specifies that certain address ranges are 10981 * exempt from v8M SAU/IDAU checks. 10982 */ 10983 return 10984 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 10985 (address >= 0xe0000000 && address <= 0xe0002fff) || 10986 (address >= 0xe000e000 && address <= 0xe000efff) || 10987 (address >= 0xe002e000 && address <= 0xe002efff) || 10988 (address >= 0xe0040000 && address <= 0xe0041fff) || 10989 (address >= 0xe00ff000 && address <= 0xe00fffff); 10990 } 10991 10992 void v8m_security_lookup(CPUARMState *env, uint32_t address, 10993 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10994 V8M_SAttributes *sattrs) 10995 { 10996 /* Look up the security attributes for this address. Compare the 10997 * pseudocode SecurityCheck() function. 10998 * We assume the caller has zero-initialized *sattrs. 10999 */ 11000 ARMCPU *cpu = env_archcpu(env); 11001 int r; 11002 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11003 int idau_region = IREGION_NOTVALID; 11004 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11005 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11006 11007 if (cpu->idau) { 11008 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11009 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11010 11011 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11012 &idau_nsc); 11013 } 11014 11015 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11016 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11017 return; 11018 } 11019 11020 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11021 sattrs->ns = !regime_is_secure(env, mmu_idx); 11022 return; 11023 } 11024 11025 if (idau_region != IREGION_NOTVALID) { 11026 sattrs->irvalid = true; 11027 sattrs->iregion = idau_region; 11028 } 11029 11030 switch (env->sau.ctrl & 3) { 11031 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11032 break; 11033 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11034 sattrs->ns = true; 11035 break; 11036 default: /* SAU.ENABLE == 1 */ 11037 for (r = 0; r < cpu->sau_sregion; r++) { 11038 if (env->sau.rlar[r] & 1) { 11039 uint32_t base = env->sau.rbar[r] & ~0x1f; 11040 uint32_t limit = env->sau.rlar[r] | 0x1f; 11041 11042 if (base <= address && limit >= address) { 11043 if (base > addr_page_base || limit < addr_page_limit) { 11044 sattrs->subpage = true; 11045 } 11046 if (sattrs->srvalid) { 11047 /* If we hit in more than one region then we must report 11048 * as Secure, not NS-Callable, with no valid region 11049 * number info. 11050 */ 11051 sattrs->ns = false; 11052 sattrs->nsc = false; 11053 sattrs->sregion = 0; 11054 sattrs->srvalid = false; 11055 break; 11056 } else { 11057 if (env->sau.rlar[r] & 2) { 11058 sattrs->nsc = true; 11059 } else { 11060 sattrs->ns = true; 11061 } 11062 sattrs->srvalid = true; 11063 sattrs->sregion = r; 11064 } 11065 } else { 11066 /* 11067 * Address not in this region. We must check whether the 11068 * region covers addresses in the same page as our address. 11069 * In that case we must not report a size that covers the 11070 * whole page for a subsequent hit against a different MPU 11071 * region or the background region, because it would result 11072 * in incorrect TLB hits for subsequent accesses to 11073 * addresses that are in this MPU region. 11074 */ 11075 if (limit >= base && 11076 ranges_overlap(base, limit - base + 1, 11077 addr_page_base, 11078 TARGET_PAGE_SIZE)) { 11079 sattrs->subpage = true; 11080 } 11081 } 11082 } 11083 } 11084 break; 11085 } 11086 11087 /* 11088 * The IDAU will override the SAU lookup results if it specifies 11089 * higher security than the SAU does. 11090 */ 11091 if (!idau_ns) { 11092 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11093 sattrs->ns = false; 11094 sattrs->nsc = idau_nsc; 11095 } 11096 } 11097 } 11098 11099 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11100 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11101 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11102 int *prot, bool *is_subpage, 11103 ARMMMUFaultInfo *fi, uint32_t *mregion) 11104 { 11105 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11106 * that a full phys-to-virt translation does). 11107 * mregion is (if not NULL) set to the region number which matched, 11108 * or -1 if no region number is returned (MPU off, address did not 11109 * hit a region, address hit in multiple regions). 11110 * We set is_subpage to true if the region hit doesn't cover the 11111 * entire TARGET_PAGE the address is within. 11112 */ 11113 ARMCPU *cpu = env_archcpu(env); 11114 bool is_user = regime_is_user(env, mmu_idx); 11115 uint32_t secure = regime_is_secure(env, mmu_idx); 11116 int n; 11117 int matchregion = -1; 11118 bool hit = false; 11119 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11120 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11121 11122 *is_subpage = false; 11123 *phys_ptr = address; 11124 *prot = 0; 11125 if (mregion) { 11126 *mregion = -1; 11127 } 11128 11129 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11130 * was an exception vector read from the vector table (which is always 11131 * done using the default system address map), because those accesses 11132 * are done in arm_v7m_load_vector(), which always does a direct 11133 * read using address_space_ldl(), rather than going via this function. 11134 */ 11135 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11136 hit = true; 11137 } else if (m_is_ppb_region(env, address)) { 11138 hit = true; 11139 } else { 11140 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11141 hit = true; 11142 } 11143 11144 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11145 /* region search */ 11146 /* Note that the base address is bits [31:5] from the register 11147 * with bits [4:0] all zeroes, but the limit address is bits 11148 * [31:5] from the register with bits [4:0] all ones. 11149 */ 11150 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11151 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11152 11153 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11154 /* Region disabled */ 11155 continue; 11156 } 11157 11158 if (address < base || address > limit) { 11159 /* 11160 * Address not in this region. We must check whether the 11161 * region covers addresses in the same page as our address. 11162 * In that case we must not report a size that covers the 11163 * whole page for a subsequent hit against a different MPU 11164 * region or the background region, because it would result in 11165 * incorrect TLB hits for subsequent accesses to addresses that 11166 * are in this MPU region. 11167 */ 11168 if (limit >= base && 11169 ranges_overlap(base, limit - base + 1, 11170 addr_page_base, 11171 TARGET_PAGE_SIZE)) { 11172 *is_subpage = true; 11173 } 11174 continue; 11175 } 11176 11177 if (base > addr_page_base || limit < addr_page_limit) { 11178 *is_subpage = true; 11179 } 11180 11181 if (matchregion != -1) { 11182 /* Multiple regions match -- always a failure (unlike 11183 * PMSAv7 where highest-numbered-region wins) 11184 */ 11185 fi->type = ARMFault_Permission; 11186 fi->level = 1; 11187 return true; 11188 } 11189 11190 matchregion = n; 11191 hit = true; 11192 } 11193 } 11194 11195 if (!hit) { 11196 /* background fault */ 11197 fi->type = ARMFault_Background; 11198 return true; 11199 } 11200 11201 if (matchregion == -1) { 11202 /* hit using the background region */ 11203 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11204 } else { 11205 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11206 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11207 11208 if (m_is_system_region(env, address)) { 11209 /* System space is always execute never */ 11210 xn = 1; 11211 } 11212 11213 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11214 if (*prot && !xn) { 11215 *prot |= PAGE_EXEC; 11216 } 11217 /* We don't need to look the attribute up in the MAIR0/MAIR1 11218 * registers because that only tells us about cacheability. 11219 */ 11220 if (mregion) { 11221 *mregion = matchregion; 11222 } 11223 } 11224 11225 fi->type = ARMFault_Permission; 11226 fi->level = 1; 11227 return !(*prot & (1 << access_type)); 11228 } 11229 11230 11231 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11232 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11233 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11234 int *prot, target_ulong *page_size, 11235 ARMMMUFaultInfo *fi) 11236 { 11237 uint32_t secure = regime_is_secure(env, mmu_idx); 11238 V8M_SAttributes sattrs = {}; 11239 bool ret; 11240 bool mpu_is_subpage; 11241 11242 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11243 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11244 if (access_type == MMU_INST_FETCH) { 11245 /* Instruction fetches always use the MMU bank and the 11246 * transaction attribute determined by the fetch address, 11247 * regardless of CPU state. This is painful for QEMU 11248 * to handle, because it would mean we need to encode 11249 * into the mmu_idx not just the (user, negpri) information 11250 * for the current security state but also that for the 11251 * other security state, which would balloon the number 11252 * of mmu_idx values needed alarmingly. 11253 * Fortunately we can avoid this because it's not actually 11254 * possible to arbitrarily execute code from memory with 11255 * the wrong security attribute: it will always generate 11256 * an exception of some kind or another, apart from the 11257 * special case of an NS CPU executing an SG instruction 11258 * in S&NSC memory. So we always just fail the translation 11259 * here and sort things out in the exception handler 11260 * (including possibly emulating an SG instruction). 11261 */ 11262 if (sattrs.ns != !secure) { 11263 if (sattrs.nsc) { 11264 fi->type = ARMFault_QEMU_NSCExec; 11265 } else { 11266 fi->type = ARMFault_QEMU_SFault; 11267 } 11268 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11269 *phys_ptr = address; 11270 *prot = 0; 11271 return true; 11272 } 11273 } else { 11274 /* For data accesses we always use the MMU bank indicated 11275 * by the current CPU state, but the security attributes 11276 * might downgrade a secure access to nonsecure. 11277 */ 11278 if (sattrs.ns) { 11279 txattrs->secure = false; 11280 } else if (!secure) { 11281 /* NS access to S memory must fault. 11282 * Architecturally we should first check whether the 11283 * MPU information for this address indicates that we 11284 * are doing an unaligned access to Device memory, which 11285 * should generate a UsageFault instead. QEMU does not 11286 * currently check for that kind of unaligned access though. 11287 * If we added it we would need to do so as a special case 11288 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11289 */ 11290 fi->type = ARMFault_QEMU_SFault; 11291 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11292 *phys_ptr = address; 11293 *prot = 0; 11294 return true; 11295 } 11296 } 11297 } 11298 11299 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11300 txattrs, prot, &mpu_is_subpage, fi, NULL); 11301 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11302 return ret; 11303 } 11304 11305 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11306 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11307 hwaddr *phys_ptr, int *prot, 11308 ARMMMUFaultInfo *fi) 11309 { 11310 int n; 11311 uint32_t mask; 11312 uint32_t base; 11313 bool is_user = regime_is_user(env, mmu_idx); 11314 11315 if (regime_translation_disabled(env, mmu_idx)) { 11316 /* MPU disabled. */ 11317 *phys_ptr = address; 11318 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11319 return false; 11320 } 11321 11322 *phys_ptr = address; 11323 for (n = 7; n >= 0; n--) { 11324 base = env->cp15.c6_region[n]; 11325 if ((base & 1) == 0) { 11326 continue; 11327 } 11328 mask = 1 << ((base >> 1) & 0x1f); 11329 /* Keep this shift separate from the above to avoid an 11330 (undefined) << 32. */ 11331 mask = (mask << 1) - 1; 11332 if (((base ^ address) & ~mask) == 0) { 11333 break; 11334 } 11335 } 11336 if (n < 0) { 11337 fi->type = ARMFault_Background; 11338 return true; 11339 } 11340 11341 if (access_type == MMU_INST_FETCH) { 11342 mask = env->cp15.pmsav5_insn_ap; 11343 } else { 11344 mask = env->cp15.pmsav5_data_ap; 11345 } 11346 mask = (mask >> (n * 4)) & 0xf; 11347 switch (mask) { 11348 case 0: 11349 fi->type = ARMFault_Permission; 11350 fi->level = 1; 11351 return true; 11352 case 1: 11353 if (is_user) { 11354 fi->type = ARMFault_Permission; 11355 fi->level = 1; 11356 return true; 11357 } 11358 *prot = PAGE_READ | PAGE_WRITE; 11359 break; 11360 case 2: 11361 *prot = PAGE_READ; 11362 if (!is_user) { 11363 *prot |= PAGE_WRITE; 11364 } 11365 break; 11366 case 3: 11367 *prot = PAGE_READ | PAGE_WRITE; 11368 break; 11369 case 5: 11370 if (is_user) { 11371 fi->type = ARMFault_Permission; 11372 fi->level = 1; 11373 return true; 11374 } 11375 *prot = PAGE_READ; 11376 break; 11377 case 6: 11378 *prot = PAGE_READ; 11379 break; 11380 default: 11381 /* Bad permission. */ 11382 fi->type = ARMFault_Permission; 11383 fi->level = 1; 11384 return true; 11385 } 11386 *prot |= PAGE_EXEC; 11387 return false; 11388 } 11389 11390 /* Combine either inner or outer cacheability attributes for normal 11391 * memory, according to table D4-42 and pseudocode procedure 11392 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11393 * 11394 * NB: only stage 1 includes allocation hints (RW bits), leading to 11395 * some asymmetry. 11396 */ 11397 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11398 { 11399 if (s1 == 4 || s2 == 4) { 11400 /* non-cacheable has precedence */ 11401 return 4; 11402 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11403 /* stage 1 write-through takes precedence */ 11404 return s1; 11405 } else if (extract32(s2, 2, 2) == 2) { 11406 /* stage 2 write-through takes precedence, but the allocation hint 11407 * is still taken from stage 1 11408 */ 11409 return (2 << 2) | extract32(s1, 0, 2); 11410 } else { /* write-back */ 11411 return s1; 11412 } 11413 } 11414 11415 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11416 * and CombineS1S2Desc() 11417 * 11418 * @s1: Attributes from stage 1 walk 11419 * @s2: Attributes from stage 2 walk 11420 */ 11421 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11422 { 11423 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 11424 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 11425 ARMCacheAttrs ret; 11426 11427 /* Combine shareability attributes (table D4-43) */ 11428 if (s1.shareability == 2 || s2.shareability == 2) { 11429 /* if either are outer-shareable, the result is outer-shareable */ 11430 ret.shareability = 2; 11431 } else if (s1.shareability == 3 || s2.shareability == 3) { 11432 /* if either are inner-shareable, the result is inner-shareable */ 11433 ret.shareability = 3; 11434 } else { 11435 /* both non-shareable */ 11436 ret.shareability = 0; 11437 } 11438 11439 /* Combine memory type and cacheability attributes */ 11440 if (s1hi == 0 || s2hi == 0) { 11441 /* Device has precedence over normal */ 11442 if (s1lo == 0 || s2lo == 0) { 11443 /* nGnRnE has precedence over anything */ 11444 ret.attrs = 0; 11445 } else if (s1lo == 4 || s2lo == 4) { 11446 /* non-Reordering has precedence over Reordering */ 11447 ret.attrs = 4; /* nGnRE */ 11448 } else if (s1lo == 8 || s2lo == 8) { 11449 /* non-Gathering has precedence over Gathering */ 11450 ret.attrs = 8; /* nGRE */ 11451 } else { 11452 ret.attrs = 0xc; /* GRE */ 11453 } 11454 11455 /* Any location for which the resultant memory type is any 11456 * type of Device memory is always treated as Outer Shareable. 11457 */ 11458 ret.shareability = 2; 11459 } else { /* Normal memory */ 11460 /* Outer/inner cacheability combine independently */ 11461 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 11462 | combine_cacheattr_nibble(s1lo, s2lo); 11463 11464 if (ret.attrs == 0x44) { 11465 /* Any location for which the resultant memory type is Normal 11466 * Inner Non-cacheable, Outer Non-cacheable is always treated 11467 * as Outer Shareable. 11468 */ 11469 ret.shareability = 2; 11470 } 11471 } 11472 11473 return ret; 11474 } 11475 11476 11477 /* get_phys_addr - get the physical address for this virtual address 11478 * 11479 * Find the physical address corresponding to the given virtual address, 11480 * by doing a translation table walk on MMU based systems or using the 11481 * MPU state on MPU based systems. 11482 * 11483 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11484 * prot and page_size may not be filled in, and the populated fsr value provides 11485 * information on why the translation aborted, in the format of a 11486 * DFSR/IFSR fault register, with the following caveats: 11487 * * we honour the short vs long DFSR format differences. 11488 * * the WnR bit is never set (the caller must do this). 11489 * * for PSMAv5 based systems we don't bother to return a full FSR format 11490 * value. 11491 * 11492 * @env: CPUARMState 11493 * @address: virtual address to get physical address for 11494 * @access_type: 0 for read, 1 for write, 2 for execute 11495 * @mmu_idx: MMU index indicating required translation regime 11496 * @phys_ptr: set to the physical address corresponding to the virtual address 11497 * @attrs: set to the memory transaction attributes to use 11498 * @prot: set to the permissions for the page containing phys_ptr 11499 * @page_size: set to the size of the page containing phys_ptr 11500 * @fi: set to fault info if the translation fails 11501 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11502 */ 11503 bool get_phys_addr(CPUARMState *env, target_ulong address, 11504 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11505 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11506 target_ulong *page_size, 11507 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11508 { 11509 if (mmu_idx == ARMMMUIdx_E10_0 || 11510 mmu_idx == ARMMMUIdx_E10_1 || 11511 mmu_idx == ARMMMUIdx_E10_1_PAN) { 11512 /* Call ourselves recursively to do the stage 1 and then stage 2 11513 * translations. 11514 */ 11515 if (arm_feature(env, ARM_FEATURE_EL2)) { 11516 hwaddr ipa; 11517 int s2_prot; 11518 int ret; 11519 ARMCacheAttrs cacheattrs2 = {}; 11520 11521 ret = get_phys_addr(env, address, access_type, 11522 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 11523 prot, page_size, fi, cacheattrs); 11524 11525 /* If S1 fails or S2 is disabled, return early. */ 11526 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 11527 *phys_ptr = ipa; 11528 return ret; 11529 } 11530 11531 /* S1 is done. Now do S2 translation. */ 11532 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, 11533 phys_ptr, attrs, &s2_prot, 11534 page_size, fi, 11535 cacheattrs != NULL ? &cacheattrs2 : NULL); 11536 fi->s2addr = ipa; 11537 /* Combine the S1 and S2 perms. */ 11538 *prot &= s2_prot; 11539 11540 /* Combine the S1 and S2 cache attributes, if needed */ 11541 if (!ret && cacheattrs != NULL) { 11542 if (env->cp15.hcr_el2 & HCR_DC) { 11543 /* 11544 * HCR.DC forces the first stage attributes to 11545 * Normal Non-Shareable, 11546 * Inner Write-Back Read-Allocate Write-Allocate, 11547 * Outer Write-Back Read-Allocate Write-Allocate. 11548 */ 11549 cacheattrs->attrs = 0xff; 11550 cacheattrs->shareability = 0; 11551 } 11552 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 11553 } 11554 11555 return ret; 11556 } else { 11557 /* 11558 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 11559 */ 11560 mmu_idx = stage_1_mmu_idx(mmu_idx); 11561 } 11562 } 11563 11564 /* The page table entries may downgrade secure to non-secure, but 11565 * cannot upgrade an non-secure translation regime's attributes 11566 * to secure. 11567 */ 11568 attrs->secure = regime_is_secure(env, mmu_idx); 11569 attrs->user = regime_is_user(env, mmu_idx); 11570 11571 /* Fast Context Switch Extension. This doesn't exist at all in v8. 11572 * In v7 and earlier it affects all stage 1 translations. 11573 */ 11574 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 11575 && !arm_feature(env, ARM_FEATURE_V8)) { 11576 if (regime_el(env, mmu_idx) == 3) { 11577 address += env->cp15.fcseidr_s; 11578 } else { 11579 address += env->cp15.fcseidr_ns; 11580 } 11581 } 11582 11583 if (arm_feature(env, ARM_FEATURE_PMSA)) { 11584 bool ret; 11585 *page_size = TARGET_PAGE_SIZE; 11586 11587 if (arm_feature(env, ARM_FEATURE_V8)) { 11588 /* PMSAv8 */ 11589 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 11590 phys_ptr, attrs, prot, page_size, fi); 11591 } else if (arm_feature(env, ARM_FEATURE_V7)) { 11592 /* PMSAv7 */ 11593 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 11594 phys_ptr, prot, page_size, fi); 11595 } else { 11596 /* Pre-v7 MPU */ 11597 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 11598 phys_ptr, prot, fi); 11599 } 11600 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 11601 " mmu_idx %u -> %s (prot %c%c%c)\n", 11602 access_type == MMU_DATA_LOAD ? "reading" : 11603 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 11604 (uint32_t)address, mmu_idx, 11605 ret ? "Miss" : "Hit", 11606 *prot & PAGE_READ ? 'r' : '-', 11607 *prot & PAGE_WRITE ? 'w' : '-', 11608 *prot & PAGE_EXEC ? 'x' : '-'); 11609 11610 return ret; 11611 } 11612 11613 /* Definitely a real MMU, not an MPU */ 11614 11615 if (regime_translation_disabled(env, mmu_idx)) { 11616 /* MMU disabled. */ 11617 *phys_ptr = address; 11618 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11619 *page_size = TARGET_PAGE_SIZE; 11620 return 0; 11621 } 11622 11623 if (regime_using_lpae_format(env, mmu_idx)) { 11624 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 11625 phys_ptr, attrs, prot, page_size, 11626 fi, cacheattrs); 11627 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 11628 return get_phys_addr_v6(env, address, access_type, mmu_idx, 11629 phys_ptr, attrs, prot, page_size, fi); 11630 } else { 11631 return get_phys_addr_v5(env, address, access_type, mmu_idx, 11632 phys_ptr, prot, page_size, fi); 11633 } 11634 } 11635 11636 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 11637 MemTxAttrs *attrs) 11638 { 11639 ARMCPU *cpu = ARM_CPU(cs); 11640 CPUARMState *env = &cpu->env; 11641 hwaddr phys_addr; 11642 target_ulong page_size; 11643 int prot; 11644 bool ret; 11645 ARMMMUFaultInfo fi = {}; 11646 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 11647 11648 *attrs = (MemTxAttrs) {}; 11649 11650 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 11651 attrs, &prot, &page_size, &fi, NULL); 11652 11653 if (ret) { 11654 return -1; 11655 } 11656 return phys_addr; 11657 } 11658 11659 #endif 11660 11661 /* Note that signed overflow is undefined in C. The following routines are 11662 careful to use unsigned types where modulo arithmetic is required. 11663 Failure to do so _will_ break on newer gcc. */ 11664 11665 /* Signed saturating arithmetic. */ 11666 11667 /* Perform 16-bit signed saturating addition. */ 11668 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11669 { 11670 uint16_t res; 11671 11672 res = a + b; 11673 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11674 if (a & 0x8000) 11675 res = 0x8000; 11676 else 11677 res = 0x7fff; 11678 } 11679 return res; 11680 } 11681 11682 /* Perform 8-bit signed saturating addition. */ 11683 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11684 { 11685 uint8_t res; 11686 11687 res = a + b; 11688 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11689 if (a & 0x80) 11690 res = 0x80; 11691 else 11692 res = 0x7f; 11693 } 11694 return res; 11695 } 11696 11697 /* Perform 16-bit signed saturating subtraction. */ 11698 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11699 { 11700 uint16_t res; 11701 11702 res = a - b; 11703 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11704 if (a & 0x8000) 11705 res = 0x8000; 11706 else 11707 res = 0x7fff; 11708 } 11709 return res; 11710 } 11711 11712 /* Perform 8-bit signed saturating subtraction. */ 11713 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11714 { 11715 uint8_t res; 11716 11717 res = a - b; 11718 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11719 if (a & 0x80) 11720 res = 0x80; 11721 else 11722 res = 0x7f; 11723 } 11724 return res; 11725 } 11726 11727 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11728 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11729 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11730 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11731 #define PFX q 11732 11733 #include "op_addsub.h" 11734 11735 /* Unsigned saturating arithmetic. */ 11736 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11737 { 11738 uint16_t res; 11739 res = a + b; 11740 if (res < a) 11741 res = 0xffff; 11742 return res; 11743 } 11744 11745 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11746 { 11747 if (a > b) 11748 return a - b; 11749 else 11750 return 0; 11751 } 11752 11753 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11754 { 11755 uint8_t res; 11756 res = a + b; 11757 if (res < a) 11758 res = 0xff; 11759 return res; 11760 } 11761 11762 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11763 { 11764 if (a > b) 11765 return a - b; 11766 else 11767 return 0; 11768 } 11769 11770 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11771 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11772 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11773 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11774 #define PFX uq 11775 11776 #include "op_addsub.h" 11777 11778 /* Signed modulo arithmetic. */ 11779 #define SARITH16(a, b, n, op) do { \ 11780 int32_t sum; \ 11781 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11782 RESULT(sum, n, 16); \ 11783 if (sum >= 0) \ 11784 ge |= 3 << (n * 2); \ 11785 } while(0) 11786 11787 #define SARITH8(a, b, n, op) do { \ 11788 int32_t sum; \ 11789 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11790 RESULT(sum, n, 8); \ 11791 if (sum >= 0) \ 11792 ge |= 1 << n; \ 11793 } while(0) 11794 11795 11796 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11797 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11798 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11799 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11800 #define PFX s 11801 #define ARITH_GE 11802 11803 #include "op_addsub.h" 11804 11805 /* Unsigned modulo arithmetic. */ 11806 #define ADD16(a, b, n) do { \ 11807 uint32_t sum; \ 11808 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11809 RESULT(sum, n, 16); \ 11810 if ((sum >> 16) == 1) \ 11811 ge |= 3 << (n * 2); \ 11812 } while(0) 11813 11814 #define ADD8(a, b, n) do { \ 11815 uint32_t sum; \ 11816 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11817 RESULT(sum, n, 8); \ 11818 if ((sum >> 8) == 1) \ 11819 ge |= 1 << n; \ 11820 } while(0) 11821 11822 #define SUB16(a, b, n) do { \ 11823 uint32_t sum; \ 11824 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11825 RESULT(sum, n, 16); \ 11826 if ((sum >> 16) == 0) \ 11827 ge |= 3 << (n * 2); \ 11828 } while(0) 11829 11830 #define SUB8(a, b, n) do { \ 11831 uint32_t sum; \ 11832 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11833 RESULT(sum, n, 8); \ 11834 if ((sum >> 8) == 0) \ 11835 ge |= 1 << n; \ 11836 } while(0) 11837 11838 #define PFX u 11839 #define ARITH_GE 11840 11841 #include "op_addsub.h" 11842 11843 /* Halved signed arithmetic. */ 11844 #define ADD16(a, b, n) \ 11845 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11846 #define SUB16(a, b, n) \ 11847 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11848 #define ADD8(a, b, n) \ 11849 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11850 #define SUB8(a, b, n) \ 11851 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11852 #define PFX sh 11853 11854 #include "op_addsub.h" 11855 11856 /* Halved unsigned arithmetic. */ 11857 #define ADD16(a, b, n) \ 11858 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11859 #define SUB16(a, b, n) \ 11860 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11861 #define ADD8(a, b, n) \ 11862 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11863 #define SUB8(a, b, n) \ 11864 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11865 #define PFX uh 11866 11867 #include "op_addsub.h" 11868 11869 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11870 { 11871 if (a > b) 11872 return a - b; 11873 else 11874 return b - a; 11875 } 11876 11877 /* Unsigned sum of absolute byte differences. */ 11878 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11879 { 11880 uint32_t sum; 11881 sum = do_usad(a, b); 11882 sum += do_usad(a >> 8, b >> 8); 11883 sum += do_usad(a >> 16, b >>16); 11884 sum += do_usad(a >> 24, b >> 24); 11885 return sum; 11886 } 11887 11888 /* For ARMv6 SEL instruction. */ 11889 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11890 { 11891 uint32_t mask; 11892 11893 mask = 0; 11894 if (flags & 1) 11895 mask |= 0xff; 11896 if (flags & 2) 11897 mask |= 0xff00; 11898 if (flags & 4) 11899 mask |= 0xff0000; 11900 if (flags & 8) 11901 mask |= 0xff000000; 11902 return (a & mask) | (b & ~mask); 11903 } 11904 11905 /* CRC helpers. 11906 * The upper bytes of val (above the number specified by 'bytes') must have 11907 * been zeroed out by the caller. 11908 */ 11909 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11910 { 11911 uint8_t buf[4]; 11912 11913 stl_le_p(buf, val); 11914 11915 /* zlib crc32 converts the accumulator and output to one's complement. */ 11916 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11917 } 11918 11919 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11920 { 11921 uint8_t buf[4]; 11922 11923 stl_le_p(buf, val); 11924 11925 /* Linux crc32c converts the output to one's complement. */ 11926 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11927 } 11928 11929 /* Return the exception level to which FP-disabled exceptions should 11930 * be taken, or 0 if FP is enabled. 11931 */ 11932 int fp_exception_el(CPUARMState *env, int cur_el) 11933 { 11934 #ifndef CONFIG_USER_ONLY 11935 /* CPACR and the CPTR registers don't exist before v6, so FP is 11936 * always accessible 11937 */ 11938 if (!arm_feature(env, ARM_FEATURE_V6)) { 11939 return 0; 11940 } 11941 11942 if (arm_feature(env, ARM_FEATURE_M)) { 11943 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11944 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11945 return 1; 11946 } 11947 11948 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11949 if (!extract32(env->v7m.nsacr, 10, 1)) { 11950 /* FP insns cause a NOCP UsageFault taken to Secure */ 11951 return 3; 11952 } 11953 } 11954 11955 return 0; 11956 } 11957 11958 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11959 * 0, 2 : trap EL0 and EL1/PL1 accesses 11960 * 1 : trap only EL0 accesses 11961 * 3 : trap no accesses 11962 * This register is ignored if E2H+TGE are both set. 11963 */ 11964 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11965 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 11966 11967 switch (fpen) { 11968 case 0: 11969 case 2: 11970 if (cur_el == 0 || cur_el == 1) { 11971 /* Trap to PL1, which might be EL1 or EL3 */ 11972 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 11973 return 3; 11974 } 11975 return 1; 11976 } 11977 if (cur_el == 3 && !is_a64(env)) { 11978 /* Secure PL1 running at EL3 */ 11979 return 3; 11980 } 11981 break; 11982 case 1: 11983 if (cur_el == 0) { 11984 return 1; 11985 } 11986 break; 11987 case 3: 11988 break; 11989 } 11990 } 11991 11992 /* 11993 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11994 * to control non-secure access to the FPU. It doesn't have any 11995 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11996 */ 11997 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11998 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11999 if (!extract32(env->cp15.nsacr, 10, 1)) { 12000 /* FP insns act as UNDEF */ 12001 return cur_el == 2 ? 2 : 1; 12002 } 12003 } 12004 12005 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12006 * check because zero bits in the registers mean "don't trap". 12007 */ 12008 12009 /* CPTR_EL2 : present in v7VE or v8 */ 12010 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12011 && !arm_is_secure_below_el3(env)) { 12012 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12013 return 2; 12014 } 12015 12016 /* CPTR_EL3 : present in v8 */ 12017 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12018 /* Trap all FP ops to EL3 */ 12019 return 3; 12020 } 12021 #endif 12022 return 0; 12023 } 12024 12025 /* Return the exception level we're running at if this is our mmu_idx */ 12026 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12027 { 12028 if (mmu_idx & ARM_MMU_IDX_M) { 12029 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12030 } 12031 12032 switch (mmu_idx) { 12033 case ARMMMUIdx_E10_0: 12034 case ARMMMUIdx_E20_0: 12035 case ARMMMUIdx_SE10_0: 12036 return 0; 12037 case ARMMMUIdx_E10_1: 12038 case ARMMMUIdx_E10_1_PAN: 12039 case ARMMMUIdx_SE10_1: 12040 case ARMMMUIdx_SE10_1_PAN: 12041 return 1; 12042 case ARMMMUIdx_E2: 12043 case ARMMMUIdx_E20_2: 12044 case ARMMMUIdx_E20_2_PAN: 12045 return 2; 12046 case ARMMMUIdx_SE3: 12047 return 3; 12048 default: 12049 g_assert_not_reached(); 12050 } 12051 } 12052 12053 #ifndef CONFIG_TCG 12054 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12055 { 12056 g_assert_not_reached(); 12057 } 12058 #endif 12059 12060 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12061 { 12062 if (arm_feature(env, ARM_FEATURE_M)) { 12063 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12064 } 12065 12066 /* See ARM pseudo-function ELIsInHost. */ 12067 switch (el) { 12068 case 0: 12069 if (arm_is_secure_below_el3(env)) { 12070 return ARMMMUIdx_SE10_0; 12071 } 12072 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE) 12073 && arm_el_is_aa64(env, 2)) { 12074 return ARMMMUIdx_E20_0; 12075 } 12076 return ARMMMUIdx_E10_0; 12077 case 1: 12078 if (arm_is_secure_below_el3(env)) { 12079 if (env->pstate & PSTATE_PAN) { 12080 return ARMMMUIdx_SE10_1_PAN; 12081 } 12082 return ARMMMUIdx_SE10_1; 12083 } 12084 if (env->pstate & PSTATE_PAN) { 12085 return ARMMMUIdx_E10_1_PAN; 12086 } 12087 return ARMMMUIdx_E10_1; 12088 case 2: 12089 /* TODO: ARMv8.4-SecEL2 */ 12090 /* Note that TGE does not apply at EL2. */ 12091 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) { 12092 if (env->pstate & PSTATE_PAN) { 12093 return ARMMMUIdx_E20_2_PAN; 12094 } 12095 return ARMMMUIdx_E20_2; 12096 } 12097 return ARMMMUIdx_E2; 12098 case 3: 12099 return ARMMMUIdx_SE3; 12100 default: 12101 g_assert_not_reached(); 12102 } 12103 } 12104 12105 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12106 { 12107 return arm_mmu_idx_el(env, arm_current_el(env)); 12108 } 12109 12110 int cpu_mmu_index(CPUARMState *env, bool ifetch) 12111 { 12112 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 12113 } 12114 12115 #ifndef CONFIG_USER_ONLY 12116 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12117 { 12118 return stage_1_mmu_idx(arm_mmu_idx(env)); 12119 } 12120 #endif 12121 12122 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12123 ARMMMUIdx mmu_idx, uint32_t flags) 12124 { 12125 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12126 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12127 arm_to_core_mmu_idx(mmu_idx)); 12128 12129 if (arm_singlestep_active(env)) { 12130 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12131 } 12132 return flags; 12133 } 12134 12135 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12136 ARMMMUIdx mmu_idx, uint32_t flags) 12137 { 12138 bool sctlr_b = arm_sctlr_b(env); 12139 12140 if (sctlr_b) { 12141 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12142 } 12143 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12144 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12145 } 12146 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12147 12148 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12149 } 12150 12151 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12152 ARMMMUIdx mmu_idx) 12153 { 12154 uint32_t flags = 0; 12155 12156 if (arm_v7m_is_handler_mode(env)) { 12157 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12158 } 12159 12160 /* 12161 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12162 * is suppressing them because the requested execution priority 12163 * is less than 0. 12164 */ 12165 if (arm_feature(env, ARM_FEATURE_V8) && 12166 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12167 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12168 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12169 } 12170 12171 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12172 } 12173 12174 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 12175 { 12176 int flags = 0; 12177 12178 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 12179 arm_debug_target_el(env)); 12180 return flags; 12181 } 12182 12183 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 12184 ARMMMUIdx mmu_idx) 12185 { 12186 uint32_t flags = rebuild_hflags_aprofile(env); 12187 12188 if (arm_el_is_aa64(env, 1)) { 12189 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12190 } 12191 12192 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 12193 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12194 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 12195 } 12196 12197 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12198 } 12199 12200 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 12201 ARMMMUIdx mmu_idx) 12202 { 12203 uint32_t flags = rebuild_hflags_aprofile(env); 12204 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12205 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 12206 uint64_t sctlr; 12207 int tbii, tbid; 12208 12209 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12210 12211 /* Get control bits for tagged addresses. */ 12212 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12213 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12214 12215 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12216 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12217 12218 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12219 int sve_el = sve_exception_el(env, el); 12220 uint32_t zcr_len; 12221 12222 /* 12223 * If SVE is disabled, but FP is enabled, 12224 * then the effective len is 0. 12225 */ 12226 if (sve_el != 0 && fp_el == 0) { 12227 zcr_len = 0; 12228 } else { 12229 zcr_len = sve_zcr_len_for_el(env, el); 12230 } 12231 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12232 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 12233 } 12234 12235 sctlr = regime_sctlr(env, stage1); 12236 12237 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12238 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12239 } 12240 12241 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12242 /* 12243 * In order to save space in flags, we record only whether 12244 * pauth is "inactive", meaning all insns are implemented as 12245 * a nop, or "active" when some action must be performed. 12246 * The decision of which action to take is left to a helper. 12247 */ 12248 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12249 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 12250 } 12251 } 12252 12253 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12254 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12255 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12256 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 12257 } 12258 } 12259 12260 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12261 if (!(env->pstate & PSTATE_UAO)) { 12262 switch (mmu_idx) { 12263 case ARMMMUIdx_E10_1: 12264 case ARMMMUIdx_E10_1_PAN: 12265 case ARMMMUIdx_SE10_1: 12266 case ARMMMUIdx_SE10_1_PAN: 12267 /* TODO: ARMv8.3-NV */ 12268 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12269 break; 12270 case ARMMMUIdx_E20_2: 12271 case ARMMMUIdx_E20_2_PAN: 12272 /* TODO: ARMv8.4-SecEL2 */ 12273 /* 12274 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12275 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12276 */ 12277 if (env->cp15.hcr_el2 & HCR_TGE) { 12278 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12279 } 12280 break; 12281 default: 12282 break; 12283 } 12284 } 12285 12286 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12287 } 12288 12289 static uint32_t rebuild_hflags_internal(CPUARMState *env) 12290 { 12291 int el = arm_current_el(env); 12292 int fp_el = fp_exception_el(env, el); 12293 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12294 12295 if (is_a64(env)) { 12296 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12297 } else if (arm_feature(env, ARM_FEATURE_M)) { 12298 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12299 } else { 12300 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12301 } 12302 } 12303 12304 void arm_rebuild_hflags(CPUARMState *env) 12305 { 12306 env->hflags = rebuild_hflags_internal(env); 12307 } 12308 12309 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12310 { 12311 int fp_el = fp_exception_el(env, el); 12312 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12313 12314 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12315 } 12316 12317 /* 12318 * If we have triggered a EL state change we can't rely on the 12319 * translator having passed it too us, we need to recompute. 12320 */ 12321 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12322 { 12323 int el = arm_current_el(env); 12324 int fp_el = fp_exception_el(env, el); 12325 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12326 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12327 } 12328 12329 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 12330 { 12331 int fp_el = fp_exception_el(env, el); 12332 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12333 12334 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12335 } 12336 12337 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 12338 { 12339 int fp_el = fp_exception_el(env, el); 12340 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12341 12342 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12343 } 12344 12345 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 12346 { 12347 #ifdef CONFIG_DEBUG_TCG 12348 uint32_t env_flags_current = env->hflags; 12349 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 12350 12351 if (unlikely(env_flags_current != env_flags_rebuilt)) { 12352 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 12353 env_flags_current, env_flags_rebuilt); 12354 abort(); 12355 } 12356 #endif 12357 } 12358 12359 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12360 target_ulong *cs_base, uint32_t *pflags) 12361 { 12362 uint32_t flags = env->hflags; 12363 uint32_t pstate_for_ss; 12364 12365 *cs_base = 0; 12366 assert_hflags_rebuild_correctly(env); 12367 12368 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 12369 *pc = env->pc; 12370 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12371 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 12372 } 12373 pstate_for_ss = env->pstate; 12374 } else { 12375 *pc = env->regs[15]; 12376 12377 if (arm_feature(env, ARM_FEATURE_M)) { 12378 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12379 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12380 != env->v7m.secure) { 12381 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 12382 } 12383 12384 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12385 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12386 (env->v7m.secure && 12387 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12388 /* 12389 * ASPEN is set, but FPCA/SFPA indicate that there is no 12390 * active FP context; we must create a new FP context before 12391 * executing any FP insn. 12392 */ 12393 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 12394 } 12395 12396 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12397 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12398 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 12399 } 12400 } else { 12401 /* 12402 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12403 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12404 */ 12405 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12406 flags = FIELD_DP32(flags, TBFLAG_A32, 12407 XSCALE_CPAR, env->cp15.c15_cpar); 12408 } else { 12409 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 12410 env->vfp.vec_len); 12411 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 12412 env->vfp.vec_stride); 12413 } 12414 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12415 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12416 } 12417 } 12418 12419 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 12420 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 12421 pstate_for_ss = env->uncached_cpsr; 12422 } 12423 12424 /* 12425 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12426 * states defined in the ARM ARM for software singlestep: 12427 * SS_ACTIVE PSTATE.SS State 12428 * 0 x Inactive (the TB flag for SS is always 0) 12429 * 1 0 Active-pending 12430 * 1 1 Active-not-pending 12431 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 12432 */ 12433 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 12434 (pstate_for_ss & PSTATE_SS)) { 12435 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 12436 } 12437 12438 *pflags = flags; 12439 } 12440 12441 #ifdef TARGET_AARCH64 12442 /* 12443 * The manual says that when SVE is enabled and VQ is widened the 12444 * implementation is allowed to zero the previously inaccessible 12445 * portion of the registers. The corollary to that is that when 12446 * SVE is enabled and VQ is narrowed we are also allowed to zero 12447 * the now inaccessible portion of the registers. 12448 * 12449 * The intent of this is that no predicate bit beyond VQ is ever set. 12450 * Which means that some operations on predicate registers themselves 12451 * may operate on full uint64_t or even unrolled across the maximum 12452 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12453 * may well be cheaper than conditionals to restrict the operation 12454 * to the relevant portion of a uint16_t[16]. 12455 */ 12456 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12457 { 12458 int i, j; 12459 uint64_t pmask; 12460 12461 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12462 assert(vq <= env_archcpu(env)->sve_max_vq); 12463 12464 /* Zap the high bits of the zregs. */ 12465 for (i = 0; i < 32; i++) { 12466 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12467 } 12468 12469 /* Zap the high bits of the pregs and ffr. */ 12470 pmask = 0; 12471 if (vq & 3) { 12472 pmask = ~(-1ULL << (16 * (vq & 3))); 12473 } 12474 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12475 for (i = 0; i < 17; ++i) { 12476 env->vfp.pregs[i].p[j] &= pmask; 12477 } 12478 pmask = 0; 12479 } 12480 } 12481 12482 /* 12483 * Notice a change in SVE vector size when changing EL. 12484 */ 12485 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12486 int new_el, bool el0_a64) 12487 { 12488 ARMCPU *cpu = env_archcpu(env); 12489 int old_len, new_len; 12490 bool old_a64, new_a64; 12491 12492 /* Nothing to do if no SVE. */ 12493 if (!cpu_isar_feature(aa64_sve, cpu)) { 12494 return; 12495 } 12496 12497 /* Nothing to do if FP is disabled in either EL. */ 12498 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12499 return; 12500 } 12501 12502 /* 12503 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12504 * at ELx, or not available because the EL is in AArch32 state, then 12505 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12506 * has an effective value of 0". 12507 * 12508 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12509 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12510 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12511 * we already have the correct register contents when encountering the 12512 * vq0->vq0 transition between EL0->EL1. 12513 */ 12514 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12515 old_len = (old_a64 && !sve_exception_el(env, old_el) 12516 ? sve_zcr_len_for_el(env, old_el) : 0); 12517 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12518 new_len = (new_a64 && !sve_exception_el(env, new_el) 12519 ? sve_zcr_len_for_el(env, new_el) : 0); 12520 12521 /* When changing vector length, clear inaccessible state. */ 12522 if (new_len < old_len) { 12523 aarch64_sve_narrow_vq(env, new_len + 1); 12524 } 12525 } 12526 #endif 12527