1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #include "semihosting/common-semi.h" 37 #endif 38 #include "cpregs.h" 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 42 static void switch_mode(CPUARMState *env, int mode); 43 44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 45 { 46 assert(ri->fieldoffset); 47 if (cpreg_field_is_64bit(ri)) { 48 return CPREG_FIELD64(env, ri); 49 } else { 50 return CPREG_FIELD32(env, ri); 51 } 52 } 53 54 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 55 { 56 assert(ri->fieldoffset); 57 if (cpreg_field_is_64bit(ri)) { 58 CPREG_FIELD64(env, ri) = value; 59 } else { 60 CPREG_FIELD32(env, ri) = value; 61 } 62 } 63 64 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 return (char *)env + ri->fieldoffset; 67 } 68 69 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 70 { 71 /* Raw read of a coprocessor register (as needed for migration, etc). */ 72 if (ri->type & ARM_CP_CONST) { 73 return ri->resetvalue; 74 } else if (ri->raw_readfn) { 75 return ri->raw_readfn(env, ri); 76 } else if (ri->readfn) { 77 return ri->readfn(env, ri); 78 } else { 79 return raw_read(env, ri); 80 } 81 } 82 83 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 84 uint64_t v) 85 { 86 /* Raw write of a coprocessor register (as needed for migration, etc). 87 * Note that constant registers are treated as write-ignored; the 88 * caller should check for success by whether a readback gives the 89 * value written. 90 */ 91 if (ri->type & ARM_CP_CONST) { 92 return; 93 } else if (ri->raw_writefn) { 94 ri->raw_writefn(env, ri, v); 95 } else if (ri->writefn) { 96 ri->writefn(env, ri, v); 97 } else { 98 raw_write(env, ri, v); 99 } 100 } 101 102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 103 { 104 /* Return true if the regdef would cause an assertion if you called 105 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 106 * program bug for it not to have the NO_RAW flag). 107 * NB that returning false here doesn't necessarily mean that calling 108 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 109 * read/write access functions which are safe for raw use" from "has 110 * read/write access functions which have side effects but has forgotten 111 * to provide raw access functions". 112 * The tests here line up with the conditions in read/write_raw_cp_reg() 113 * and assertions in raw_read()/raw_write(). 114 */ 115 if ((ri->type & ARM_CP_CONST) || 116 ri->fieldoffset || 117 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 118 return false; 119 } 120 return true; 121 } 122 123 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 124 { 125 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 126 int i; 127 bool ok = true; 128 129 for (i = 0; i < cpu->cpreg_array_len; i++) { 130 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 131 const ARMCPRegInfo *ri; 132 uint64_t newval; 133 134 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 135 if (!ri) { 136 ok = false; 137 continue; 138 } 139 if (ri->type & ARM_CP_NO_RAW) { 140 continue; 141 } 142 143 newval = read_raw_cp_reg(&cpu->env, ri); 144 if (kvm_sync) { 145 /* 146 * Only sync if the previous list->cpustate sync succeeded. 147 * Rather than tracking the success/failure state for every 148 * item in the list, we just recheck "does the raw write we must 149 * have made in write_list_to_cpustate() read back OK" here. 150 */ 151 uint64_t oldval = cpu->cpreg_values[i]; 152 153 if (oldval == newval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, oldval); 158 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 159 continue; 160 } 161 162 write_raw_cp_reg(&cpu->env, ri, newval); 163 } 164 cpu->cpreg_values[i] = newval; 165 } 166 return ok; 167 } 168 169 bool write_list_to_cpustate(ARMCPU *cpu) 170 { 171 int i; 172 bool ok = true; 173 174 for (i = 0; i < cpu->cpreg_array_len; i++) { 175 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 176 uint64_t v = cpu->cpreg_values[i]; 177 const ARMCPRegInfo *ri; 178 179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 180 if (!ri) { 181 ok = false; 182 continue; 183 } 184 if (ri->type & ARM_CP_NO_RAW) { 185 continue; 186 } 187 /* Write value and confirm it reads back as written 188 * (to catch read-only registers and partially read-only 189 * registers where the incoming migration value doesn't match) 190 */ 191 write_raw_cp_reg(&cpu->env, ri, v); 192 if (read_raw_cp_reg(&cpu->env, ri) != v) { 193 ok = false; 194 } 195 } 196 return ok; 197 } 198 199 static void add_cpreg_to_list(gpointer key, gpointer opaque) 200 { 201 ARMCPU *cpu = opaque; 202 uint32_t regidx = (uintptr_t)key; 203 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 204 205 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 207 /* The value array need not be initialized at this point */ 208 cpu->cpreg_array_len++; 209 } 210 } 211 212 static void count_cpreg(gpointer key, gpointer opaque) 213 { 214 ARMCPU *cpu = opaque; 215 const ARMCPRegInfo *ri; 216 217 ri = g_hash_table_lookup(cpu->cp_regs, key); 218 219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 220 cpu->cpreg_array_len++; 221 } 222 } 223 224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 225 { 226 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 227 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 228 229 if (aidx > bidx) { 230 return 1; 231 } 232 if (aidx < bidx) { 233 return -1; 234 } 235 return 0; 236 } 237 238 void init_cpreg_list(ARMCPU *cpu) 239 { 240 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 241 * Note that we require cpreg_tuples[] to be sorted by key ID. 242 */ 243 GList *keys; 244 int arraylen; 245 246 keys = g_hash_table_get_keys(cpu->cp_regs); 247 keys = g_list_sort(keys, cpreg_key_compare); 248 249 cpu->cpreg_array_len = 0; 250 251 g_list_foreach(keys, count_cpreg, cpu); 252 253 arraylen = cpu->cpreg_array_len; 254 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 259 cpu->cpreg_array_len = 0; 260 261 g_list_foreach(keys, add_cpreg_to_list, cpu); 262 263 assert(cpu->cpreg_array_len == arraylen); 264 265 g_list_free(keys); 266 } 267 268 /* 269 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 270 */ 271 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 272 const ARMCPRegInfo *ri, 273 bool isread) 274 { 275 if (!is_a64(env) && arm_current_el(env) == 3 && 276 arm_is_secure_below_el3(env)) { 277 return CP_ACCESS_TRAP_UNCATEGORIZED; 278 } 279 return CP_ACCESS_OK; 280 } 281 282 /* Some secure-only AArch32 registers trap to EL3 if used from 283 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 284 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 285 * We assume that the .access field is set to PL1_RW. 286 */ 287 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 288 const ARMCPRegInfo *ri, 289 bool isread) 290 { 291 if (arm_current_el(env) == 3) { 292 return CP_ACCESS_OK; 293 } 294 if (arm_is_secure_below_el3(env)) { 295 if (env->cp15.scr_el3 & SCR_EEL2) { 296 return CP_ACCESS_TRAP_EL2; 297 } 298 return CP_ACCESS_TRAP_EL3; 299 } 300 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 301 return CP_ACCESS_TRAP_UNCATEGORIZED; 302 } 303 304 /* Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 367 bool isread) 368 { 369 if (arm_current_el(env) == 1 && 370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 371 return CP_ACCESS_TRAP_EL2; 372 } 373 return CP_ACCESS_OK; 374 } 375 376 #ifdef TARGET_AARCH64 377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 379 bool isread) 380 { 381 if (arm_current_el(env) == 1 && 382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 383 return CP_ACCESS_TRAP_EL2; 384 } 385 return CP_ACCESS_OK; 386 } 387 #endif 388 389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 390 { 391 ARMCPU *cpu = env_archcpu(env); 392 393 raw_write(env, ri, value); 394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 395 } 396 397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 398 { 399 ARMCPU *cpu = env_archcpu(env); 400 401 if (raw_read(env, ri) != value) { 402 /* Unlike real hardware the qemu TLB uses virtual addresses, 403 * not modified virtual addresses, so this causes a TLB flush. 404 */ 405 tlb_flush(CPU(cpu)); 406 raw_write(env, ri, value); 407 } 408 } 409 410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 411 uint64_t value) 412 { 413 ARMCPU *cpu = env_archcpu(env); 414 415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 416 && !extended_addresses_enabled(env)) { 417 /* For VMSA (when not using the LPAE long descriptor page table 418 * format) this register includes the ASID, so do a TLB flush. 419 * For PMSA it is purely a process ID and no action is needed. 420 */ 421 tlb_flush(CPU(cpu)); 422 } 423 raw_write(env, ri, value); 424 } 425 426 static int alle1_tlbmask(CPUARMState *env) 427 { 428 /* 429 * Note that the 'ALL' scope must invalidate both stage 1 and 430 * stage 2 translations, whereas most other scopes only invalidate 431 * stage 1 translations. 432 */ 433 return (ARMMMUIdxBit_E10_1 | 434 ARMMMUIdxBit_E10_1_PAN | 435 ARMMMUIdxBit_E10_0 | 436 ARMMMUIdxBit_Stage2 | 437 ARMMMUIdxBit_Stage2_S); 438 } 439 440 441 /* IS variants of TLB operations must affect all cores */ 442 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 443 uint64_t value) 444 { 445 CPUState *cs = env_cpu(env); 446 447 tlb_flush_all_cpus_synced(cs); 448 } 449 450 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 451 uint64_t value) 452 { 453 CPUState *cs = env_cpu(env); 454 455 tlb_flush_all_cpus_synced(cs); 456 } 457 458 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 459 uint64_t value) 460 { 461 CPUState *cs = env_cpu(env); 462 463 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 464 } 465 466 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 467 uint64_t value) 468 { 469 CPUState *cs = env_cpu(env); 470 471 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 472 } 473 474 /* 475 * Non-IS variants of TLB operations are upgraded to 476 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 477 * force broadcast of these operations. 478 */ 479 static bool tlb_force_broadcast(CPUARMState *env) 480 { 481 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 482 } 483 484 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 485 uint64_t value) 486 { 487 /* Invalidate all (TLBIALL) */ 488 CPUState *cs = env_cpu(env); 489 490 if (tlb_force_broadcast(env)) { 491 tlb_flush_all_cpus_synced(cs); 492 } else { 493 tlb_flush(cs); 494 } 495 } 496 497 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 498 uint64_t value) 499 { 500 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 501 CPUState *cs = env_cpu(env); 502 503 value &= TARGET_PAGE_MASK; 504 if (tlb_force_broadcast(env)) { 505 tlb_flush_page_all_cpus_synced(cs, value); 506 } else { 507 tlb_flush_page(cs, value); 508 } 509 } 510 511 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 512 uint64_t value) 513 { 514 /* Invalidate by ASID (TLBIASID) */ 515 CPUState *cs = env_cpu(env); 516 517 if (tlb_force_broadcast(env)) { 518 tlb_flush_all_cpus_synced(cs); 519 } else { 520 tlb_flush(cs); 521 } 522 } 523 524 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 525 uint64_t value) 526 { 527 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 528 CPUState *cs = env_cpu(env); 529 530 value &= TARGET_PAGE_MASK; 531 if (tlb_force_broadcast(env)) { 532 tlb_flush_page_all_cpus_synced(cs, value); 533 } else { 534 tlb_flush_page(cs, value); 535 } 536 } 537 538 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 CPUState *cs = env_cpu(env); 542 543 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 544 } 545 546 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 547 uint64_t value) 548 { 549 CPUState *cs = env_cpu(env); 550 551 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 552 } 553 554 555 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 556 uint64_t value) 557 { 558 CPUState *cs = env_cpu(env); 559 560 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 561 } 562 563 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 564 uint64_t value) 565 { 566 CPUState *cs = env_cpu(env); 567 568 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 569 } 570 571 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 572 uint64_t value) 573 { 574 CPUState *cs = env_cpu(env); 575 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 576 577 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 578 } 579 580 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 581 uint64_t value) 582 { 583 CPUState *cs = env_cpu(env); 584 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 585 586 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 587 ARMMMUIdxBit_E2); 588 } 589 590 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 591 uint64_t value) 592 { 593 CPUState *cs = env_cpu(env); 594 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 595 596 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 597 } 598 599 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 600 uint64_t value) 601 { 602 CPUState *cs = env_cpu(env); 603 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 604 605 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 606 } 607 608 static const ARMCPRegInfo cp_reginfo[] = { 609 /* Define the secure and non-secure FCSE identifier CP registers 610 * separately because there is no secure bank in V8 (no _EL3). This allows 611 * the secure register to be properly reset and migrated. There is also no 612 * v8 EL1 version of the register so the non-secure instance stands alone. 613 */ 614 { .name = "FCSEIDR", 615 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 616 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 617 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 618 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 619 { .name = "FCSEIDR_S", 620 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 621 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 622 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 623 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 624 /* Define the secure and non-secure context identifier CP registers 625 * separately because there is no secure bank in V8 (no _EL3). This allows 626 * the secure register to be properly reset and migrated. In the 627 * non-secure case, the 32-bit register will have reset and migration 628 * disabled during registration as it is handled by the 64-bit instance. 629 */ 630 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 631 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 632 .access = PL1_RW, .accessfn = access_tvm_trvm, 633 .secure = ARM_CP_SECSTATE_NS, 634 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 635 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 636 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 637 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 638 .access = PL1_RW, .accessfn = access_tvm_trvm, 639 .secure = ARM_CP_SECSTATE_S, 640 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 641 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 642 }; 643 644 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 645 /* NB: Some of these registers exist in v8 but with more precise 646 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 647 */ 648 /* MMU Domain access control / MPU write buffer control */ 649 { .name = "DACR", 650 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 651 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 652 .writefn = dacr_write, .raw_writefn = raw_write, 653 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 654 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 655 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 656 * For v6 and v5, these mappings are overly broad. 657 */ 658 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 659 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 660 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 661 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 662 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 663 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 666 /* Cache maintenance ops; some of this space may be overridden later. */ 667 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 668 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 669 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 670 }; 671 672 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 673 /* Not all pre-v6 cores implemented this WFI, so this is slightly 674 * over-broad. 675 */ 676 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 677 .access = PL1_W, .type = ARM_CP_WFI }, 678 }; 679 680 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 681 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 682 * is UNPREDICTABLE; we choose to NOP as most implementations do). 683 */ 684 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 685 .access = PL1_W, .type = ARM_CP_WFI }, 686 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 687 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 688 * OMAPCP will override this space. 689 */ 690 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 691 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 692 .resetvalue = 0 }, 693 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 694 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 695 .resetvalue = 0 }, 696 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 697 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 698 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 699 .resetvalue = 0 }, 700 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 701 * implementing it as RAZ means the "debug architecture version" bits 702 * will read as a reserved value, which should cause Linux to not try 703 * to use the debug hardware. 704 */ 705 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 706 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 707 /* MMU TLB control. Note that the wildcarding means we cover not just 708 * the unified TLB ops but also the dside/iside/inner-shareable variants. 709 */ 710 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 711 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 712 .type = ARM_CP_NO_RAW }, 713 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 714 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 715 .type = ARM_CP_NO_RAW }, 716 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 717 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 718 .type = ARM_CP_NO_RAW }, 719 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 720 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 721 .type = ARM_CP_NO_RAW }, 722 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 723 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 724 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 725 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 726 }; 727 728 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 729 uint64_t value) 730 { 731 uint32_t mask = 0; 732 733 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 734 if (!arm_feature(env, ARM_FEATURE_V8)) { 735 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 736 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 737 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 738 */ 739 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 740 /* VFP coprocessor: cp10 & cp11 [23:20] */ 741 mask |= R_CPACR_ASEDIS_MASK | 742 R_CPACR_D32DIS_MASK | 743 R_CPACR_CP11_MASK | 744 R_CPACR_CP10_MASK; 745 746 if (!arm_feature(env, ARM_FEATURE_NEON)) { 747 /* ASEDIS [31] bit is RAO/WI */ 748 value |= R_CPACR_ASEDIS_MASK; 749 } 750 751 /* VFPv3 and upwards with NEON implement 32 double precision 752 * registers (D0-D31). 753 */ 754 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 755 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 756 value |= R_CPACR_D32DIS_MASK; 757 } 758 } 759 value &= mask; 760 } 761 762 /* 763 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 764 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 765 */ 766 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 767 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 768 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 769 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 770 } 771 772 env->cp15.cpacr_el1 = value; 773 } 774 775 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 776 { 777 /* 778 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 779 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 780 */ 781 uint64_t value = env->cp15.cpacr_el1; 782 783 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 784 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 785 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 786 } 787 return value; 788 } 789 790 791 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 792 { 793 /* Call cpacr_write() so that we reset with the correct RAO bits set 794 * for our CPU features. 795 */ 796 cpacr_write(env, ri, 0); 797 } 798 799 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 800 bool isread) 801 { 802 if (arm_feature(env, ARM_FEATURE_V8)) { 803 /* Check if CPACR accesses are to be trapped to EL2 */ 804 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 805 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 806 return CP_ACCESS_TRAP_EL2; 807 /* Check if CPACR accesses are to be trapped to EL3 */ 808 } else if (arm_current_el(env) < 3 && 809 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 810 return CP_ACCESS_TRAP_EL3; 811 } 812 } 813 814 return CP_ACCESS_OK; 815 } 816 817 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 818 bool isread) 819 { 820 /* Check if CPTR accesses are set to trap to EL3 */ 821 if (arm_current_el(env) == 2 && 822 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 823 return CP_ACCESS_TRAP_EL3; 824 } 825 826 return CP_ACCESS_OK; 827 } 828 829 static const ARMCPRegInfo v6_cp_reginfo[] = { 830 /* prefetch by MVA in v6, NOP in v7 */ 831 { .name = "MVA_prefetch", 832 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 833 .access = PL1_W, .type = ARM_CP_NOP }, 834 /* We need to break the TB after ISB to execute self-modifying code 835 * correctly and also to take any pending interrupts immediately. 836 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 837 */ 838 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 839 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 840 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 841 .access = PL0_W, .type = ARM_CP_NOP }, 842 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 843 .access = PL0_W, .type = ARM_CP_NOP }, 844 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 845 .access = PL1_RW, .accessfn = access_tvm_trvm, 846 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 847 offsetof(CPUARMState, cp15.ifar_ns) }, 848 .resetvalue = 0, }, 849 /* Watchpoint Fault Address Register : should actually only be present 850 * for 1136, 1176, 11MPCore. 851 */ 852 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 853 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 854 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 855 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 856 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 857 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 858 }; 859 860 typedef struct pm_event { 861 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 862 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 863 bool (*supported)(CPUARMState *); 864 /* 865 * Retrieve the current count of the underlying event. The programmed 866 * counters hold a difference from the return value from this function 867 */ 868 uint64_t (*get_count)(CPUARMState *); 869 /* 870 * Return how many nanoseconds it will take (at a minimum) for count events 871 * to occur. A negative value indicates the counter will never overflow, or 872 * that the counter has otherwise arranged for the overflow bit to be set 873 * and the PMU interrupt to be raised on overflow. 874 */ 875 int64_t (*ns_per_count)(uint64_t); 876 } pm_event; 877 878 static bool event_always_supported(CPUARMState *env) 879 { 880 return true; 881 } 882 883 static uint64_t swinc_get_count(CPUARMState *env) 884 { 885 /* 886 * SW_INCR events are written directly to the pmevcntr's by writes to 887 * PMSWINC, so there is no underlying count maintained by the PMU itself 888 */ 889 return 0; 890 } 891 892 static int64_t swinc_ns_per(uint64_t ignored) 893 { 894 return -1; 895 } 896 897 /* 898 * Return the underlying cycle count for the PMU cycle counters. If we're in 899 * usermode, simply return 0. 900 */ 901 static uint64_t cycles_get_count(CPUARMState *env) 902 { 903 #ifndef CONFIG_USER_ONLY 904 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 905 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 906 #else 907 return cpu_get_host_ticks(); 908 #endif 909 } 910 911 #ifndef CONFIG_USER_ONLY 912 static int64_t cycles_ns_per(uint64_t cycles) 913 { 914 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 915 } 916 917 static bool instructions_supported(CPUARMState *env) 918 { 919 return icount_enabled() == 1; /* Precise instruction counting */ 920 } 921 922 static uint64_t instructions_get_count(CPUARMState *env) 923 { 924 return (uint64_t)icount_get_raw(); 925 } 926 927 static int64_t instructions_ns_per(uint64_t icount) 928 { 929 return icount_to_ns((int64_t)icount); 930 } 931 #endif 932 933 static bool pmuv3p1_events_supported(CPUARMState *env) 934 { 935 /* For events which are supported in any v8.1 PMU */ 936 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 937 } 938 939 static bool pmuv3p4_events_supported(CPUARMState *env) 940 { 941 /* For events which are supported in any v8.1 PMU */ 942 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 943 } 944 945 static uint64_t zero_event_get_count(CPUARMState *env) 946 { 947 /* For events which on QEMU never fire, so their count is always zero */ 948 return 0; 949 } 950 951 static int64_t zero_event_ns_per(uint64_t cycles) 952 { 953 /* An event which never fires can never overflow */ 954 return -1; 955 } 956 957 static const pm_event pm_events[] = { 958 { .number = 0x000, /* SW_INCR */ 959 .supported = event_always_supported, 960 .get_count = swinc_get_count, 961 .ns_per_count = swinc_ns_per, 962 }, 963 #ifndef CONFIG_USER_ONLY 964 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 965 .supported = instructions_supported, 966 .get_count = instructions_get_count, 967 .ns_per_count = instructions_ns_per, 968 }, 969 { .number = 0x011, /* CPU_CYCLES, Cycle */ 970 .supported = event_always_supported, 971 .get_count = cycles_get_count, 972 .ns_per_count = cycles_ns_per, 973 }, 974 #endif 975 { .number = 0x023, /* STALL_FRONTEND */ 976 .supported = pmuv3p1_events_supported, 977 .get_count = zero_event_get_count, 978 .ns_per_count = zero_event_ns_per, 979 }, 980 { .number = 0x024, /* STALL_BACKEND */ 981 .supported = pmuv3p1_events_supported, 982 .get_count = zero_event_get_count, 983 .ns_per_count = zero_event_ns_per, 984 }, 985 { .number = 0x03c, /* STALL */ 986 .supported = pmuv3p4_events_supported, 987 .get_count = zero_event_get_count, 988 .ns_per_count = zero_event_ns_per, 989 }, 990 }; 991 992 /* 993 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 994 * events (i.e. the statistical profiling extension), this implementation 995 * should first be updated to something sparse instead of the current 996 * supported_event_map[] array. 997 */ 998 #define MAX_EVENT_ID 0x3c 999 #define UNSUPPORTED_EVENT UINT16_MAX 1000 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1001 1002 /* 1003 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1004 * of ARM event numbers to indices in our pm_events array. 1005 * 1006 * Note: Events in the 0x40XX range are not currently supported. 1007 */ 1008 void pmu_init(ARMCPU *cpu) 1009 { 1010 unsigned int i; 1011 1012 /* 1013 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1014 * events to them 1015 */ 1016 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1017 supported_event_map[i] = UNSUPPORTED_EVENT; 1018 } 1019 cpu->pmceid0 = 0; 1020 cpu->pmceid1 = 0; 1021 1022 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1023 const pm_event *cnt = &pm_events[i]; 1024 assert(cnt->number <= MAX_EVENT_ID); 1025 /* We do not currently support events in the 0x40xx range */ 1026 assert(cnt->number <= 0x3f); 1027 1028 if (cnt->supported(&cpu->env)) { 1029 supported_event_map[cnt->number] = i; 1030 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1031 if (cnt->number & 0x20) { 1032 cpu->pmceid1 |= event_mask; 1033 } else { 1034 cpu->pmceid0 |= event_mask; 1035 } 1036 } 1037 } 1038 } 1039 1040 /* 1041 * Check at runtime whether a PMU event is supported for the current machine 1042 */ 1043 static bool event_supported(uint16_t number) 1044 { 1045 if (number > MAX_EVENT_ID) { 1046 return false; 1047 } 1048 return supported_event_map[number] != UNSUPPORTED_EVENT; 1049 } 1050 1051 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1052 bool isread) 1053 { 1054 /* Performance monitor registers user accessibility is controlled 1055 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1056 * trapping to EL2 or EL3 for other accesses. 1057 */ 1058 int el = arm_current_el(env); 1059 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1060 1061 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1062 return CP_ACCESS_TRAP; 1063 } 1064 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1065 return CP_ACCESS_TRAP_EL2; 1066 } 1067 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1068 return CP_ACCESS_TRAP_EL3; 1069 } 1070 1071 return CP_ACCESS_OK; 1072 } 1073 1074 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1075 const ARMCPRegInfo *ri, 1076 bool isread) 1077 { 1078 /* ER: event counter read trap control */ 1079 if (arm_feature(env, ARM_FEATURE_V8) 1080 && arm_current_el(env) == 0 1081 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1082 && isread) { 1083 return CP_ACCESS_OK; 1084 } 1085 1086 return pmreg_access(env, ri, isread); 1087 } 1088 1089 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1090 const ARMCPRegInfo *ri, 1091 bool isread) 1092 { 1093 /* SW: software increment write trap control */ 1094 if (arm_feature(env, ARM_FEATURE_V8) 1095 && arm_current_el(env) == 0 1096 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1097 && !isread) { 1098 return CP_ACCESS_OK; 1099 } 1100 1101 return pmreg_access(env, ri, isread); 1102 } 1103 1104 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1105 const ARMCPRegInfo *ri, 1106 bool isread) 1107 { 1108 /* ER: event counter read trap control */ 1109 if (arm_feature(env, ARM_FEATURE_V8) 1110 && arm_current_el(env) == 0 1111 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1112 return CP_ACCESS_OK; 1113 } 1114 1115 return pmreg_access(env, ri, isread); 1116 } 1117 1118 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1119 const ARMCPRegInfo *ri, 1120 bool isread) 1121 { 1122 /* CR: cycle counter read trap control */ 1123 if (arm_feature(env, ARM_FEATURE_V8) 1124 && arm_current_el(env) == 0 1125 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1126 && isread) { 1127 return CP_ACCESS_OK; 1128 } 1129 1130 return pmreg_access(env, ri, isread); 1131 } 1132 1133 /* 1134 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1135 * We use these to decide whether we need to wrap a write to MDCR_EL2 1136 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1137 */ 1138 #define MDCR_EL2_PMU_ENABLE_BITS \ 1139 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1140 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1141 1142 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1143 * the current EL, security state, and register configuration. 1144 */ 1145 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1146 { 1147 uint64_t filter; 1148 bool e, p, u, nsk, nsu, nsh, m; 1149 bool enabled, prohibited = false, filtered; 1150 bool secure = arm_is_secure(env); 1151 int el = arm_current_el(env); 1152 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1153 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1154 1155 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1156 return false; 1157 } 1158 1159 if (!arm_feature(env, ARM_FEATURE_EL2) || 1160 (counter < hpmn || counter == 31)) { 1161 e = env->cp15.c9_pmcr & PMCRE; 1162 } else { 1163 e = mdcr_el2 & MDCR_HPME; 1164 } 1165 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1166 1167 /* Is event counting prohibited? */ 1168 if (el == 2 && (counter < hpmn || counter == 31)) { 1169 prohibited = mdcr_el2 & MDCR_HPMD; 1170 } 1171 if (secure) { 1172 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1173 } 1174 1175 if (counter == 31) { 1176 /* 1177 * The cycle counter defaults to running. PMCR.DP says "disable 1178 * the cycle counter when event counting is prohibited". 1179 * Some MDCR bits disable the cycle counter specifically. 1180 */ 1181 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1182 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1183 if (secure) { 1184 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1185 } 1186 if (el == 2) { 1187 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1188 } 1189 } 1190 } 1191 1192 if (counter == 31) { 1193 filter = env->cp15.pmccfiltr_el0; 1194 } else { 1195 filter = env->cp15.c14_pmevtyper[counter]; 1196 } 1197 1198 p = filter & PMXEVTYPER_P; 1199 u = filter & PMXEVTYPER_U; 1200 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1201 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1202 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1203 m = arm_el_is_aa64(env, 1) && 1204 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1205 1206 if (el == 0) { 1207 filtered = secure ? u : u != nsu; 1208 } else if (el == 1) { 1209 filtered = secure ? p : p != nsk; 1210 } else if (el == 2) { 1211 filtered = !nsh; 1212 } else { /* EL3 */ 1213 filtered = m != p; 1214 } 1215 1216 if (counter != 31) { 1217 /* 1218 * If not checking PMCCNTR, ensure the counter is setup to an event we 1219 * support 1220 */ 1221 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1222 if (!event_supported(event)) { 1223 return false; 1224 } 1225 } 1226 1227 return enabled && !prohibited && !filtered; 1228 } 1229 1230 static void pmu_update_irq(CPUARMState *env) 1231 { 1232 ARMCPU *cpu = env_archcpu(env); 1233 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1234 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1235 } 1236 1237 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1238 { 1239 /* 1240 * Return true if the clock divider is enabled and the cycle counter 1241 * is supposed to tick only once every 64 clock cycles. This is 1242 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1243 * (64-bit) cycle counter PMCR.D has no effect. 1244 */ 1245 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1246 } 1247 1248 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1249 { 1250 /* Return true if the specified event counter is configured to be 64 bit */ 1251 1252 /* This isn't intended to be used with the cycle counter */ 1253 assert(counter < 31); 1254 1255 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1256 return false; 1257 } 1258 1259 if (arm_feature(env, ARM_FEATURE_EL2)) { 1260 /* 1261 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1262 * current security state, so we don't use arm_mdcr_el2_eff() here. 1263 */ 1264 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1265 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1266 1267 if (hpmn != 0 && counter >= hpmn) { 1268 return hlp; 1269 } 1270 } 1271 return env->cp15.c9_pmcr & PMCRLP; 1272 } 1273 1274 /* 1275 * Ensure c15_ccnt is the guest-visible count so that operations such as 1276 * enabling/disabling the counter or filtering, modifying the count itself, 1277 * etc. can be done logically. This is essentially a no-op if the counter is 1278 * not enabled at the time of the call. 1279 */ 1280 static void pmccntr_op_start(CPUARMState *env) 1281 { 1282 uint64_t cycles = cycles_get_count(env); 1283 1284 if (pmu_counter_enabled(env, 31)) { 1285 uint64_t eff_cycles = cycles; 1286 if (pmccntr_clockdiv_enabled(env)) { 1287 eff_cycles /= 64; 1288 } 1289 1290 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1291 1292 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1293 1ull << 63 : 1ull << 31; 1294 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1295 env->cp15.c9_pmovsr |= (1ULL << 31); 1296 pmu_update_irq(env); 1297 } 1298 1299 env->cp15.c15_ccnt = new_pmccntr; 1300 } 1301 env->cp15.c15_ccnt_delta = cycles; 1302 } 1303 1304 /* 1305 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1306 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1307 * pmccntr_op_start. 1308 */ 1309 static void pmccntr_op_finish(CPUARMState *env) 1310 { 1311 if (pmu_counter_enabled(env, 31)) { 1312 #ifndef CONFIG_USER_ONLY 1313 /* Calculate when the counter will next overflow */ 1314 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1315 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1316 remaining_cycles = (uint32_t)remaining_cycles; 1317 } 1318 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1319 1320 if (overflow_in > 0) { 1321 int64_t overflow_at; 1322 1323 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1324 overflow_in, &overflow_at)) { 1325 ARMCPU *cpu = env_archcpu(env); 1326 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1327 } 1328 } 1329 #endif 1330 1331 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1332 if (pmccntr_clockdiv_enabled(env)) { 1333 prev_cycles /= 64; 1334 } 1335 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1336 } 1337 } 1338 1339 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1340 { 1341 1342 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1343 uint64_t count = 0; 1344 if (event_supported(event)) { 1345 uint16_t event_idx = supported_event_map[event]; 1346 count = pm_events[event_idx].get_count(env); 1347 } 1348 1349 if (pmu_counter_enabled(env, counter)) { 1350 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1351 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1352 1ULL << 63 : 1ULL << 31; 1353 1354 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1355 env->cp15.c9_pmovsr |= (1 << counter); 1356 pmu_update_irq(env); 1357 } 1358 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1359 } 1360 env->cp15.c14_pmevcntr_delta[counter] = count; 1361 } 1362 1363 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1364 { 1365 if (pmu_counter_enabled(env, counter)) { 1366 #ifndef CONFIG_USER_ONLY 1367 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1368 uint16_t event_idx = supported_event_map[event]; 1369 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1370 int64_t overflow_in; 1371 1372 if (!pmevcntr_is_64_bit(env, counter)) { 1373 delta = (uint32_t)delta; 1374 } 1375 overflow_in = pm_events[event_idx].ns_per_count(delta); 1376 1377 if (overflow_in > 0) { 1378 int64_t overflow_at; 1379 1380 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1381 overflow_in, &overflow_at)) { 1382 ARMCPU *cpu = env_archcpu(env); 1383 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1384 } 1385 } 1386 #endif 1387 1388 env->cp15.c14_pmevcntr_delta[counter] -= 1389 env->cp15.c14_pmevcntr[counter]; 1390 } 1391 } 1392 1393 void pmu_op_start(CPUARMState *env) 1394 { 1395 unsigned int i; 1396 pmccntr_op_start(env); 1397 for (i = 0; i < pmu_num_counters(env); i++) { 1398 pmevcntr_op_start(env, i); 1399 } 1400 } 1401 1402 void pmu_op_finish(CPUARMState *env) 1403 { 1404 unsigned int i; 1405 pmccntr_op_finish(env); 1406 for (i = 0; i < pmu_num_counters(env); i++) { 1407 pmevcntr_op_finish(env, i); 1408 } 1409 } 1410 1411 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1412 { 1413 pmu_op_start(&cpu->env); 1414 } 1415 1416 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1417 { 1418 pmu_op_finish(&cpu->env); 1419 } 1420 1421 void arm_pmu_timer_cb(void *opaque) 1422 { 1423 ARMCPU *cpu = opaque; 1424 1425 /* 1426 * Update all the counter values based on the current underlying counts, 1427 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1428 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1429 * counter may expire. 1430 */ 1431 pmu_op_start(&cpu->env); 1432 pmu_op_finish(&cpu->env); 1433 } 1434 1435 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1436 uint64_t value) 1437 { 1438 pmu_op_start(env); 1439 1440 if (value & PMCRC) { 1441 /* The counter has been reset */ 1442 env->cp15.c15_ccnt = 0; 1443 } 1444 1445 if (value & PMCRP) { 1446 unsigned int i; 1447 for (i = 0; i < pmu_num_counters(env); i++) { 1448 env->cp15.c14_pmevcntr[i] = 0; 1449 } 1450 } 1451 1452 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1453 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1454 1455 pmu_op_finish(env); 1456 } 1457 1458 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1459 uint64_t value) 1460 { 1461 unsigned int i; 1462 uint64_t overflow_mask, new_pmswinc; 1463 1464 for (i = 0; i < pmu_num_counters(env); i++) { 1465 /* Increment a counter's count iff: */ 1466 if ((value & (1 << i)) && /* counter's bit is set */ 1467 /* counter is enabled and not filtered */ 1468 pmu_counter_enabled(env, i) && 1469 /* counter is SW_INCR */ 1470 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1471 pmevcntr_op_start(env, i); 1472 1473 /* 1474 * Detect if this write causes an overflow since we can't predict 1475 * PMSWINC overflows like we can for other events 1476 */ 1477 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1478 1479 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1480 1ULL << 63 : 1ULL << 31; 1481 1482 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1483 env->cp15.c9_pmovsr |= (1 << i); 1484 pmu_update_irq(env); 1485 } 1486 1487 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1488 1489 pmevcntr_op_finish(env, i); 1490 } 1491 } 1492 } 1493 1494 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1495 { 1496 uint64_t ret; 1497 pmccntr_op_start(env); 1498 ret = env->cp15.c15_ccnt; 1499 pmccntr_op_finish(env); 1500 return ret; 1501 } 1502 1503 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1504 uint64_t value) 1505 { 1506 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1507 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1508 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1509 * accessed. 1510 */ 1511 env->cp15.c9_pmselr = value & 0x1f; 1512 } 1513 1514 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1515 uint64_t value) 1516 { 1517 pmccntr_op_start(env); 1518 env->cp15.c15_ccnt = value; 1519 pmccntr_op_finish(env); 1520 } 1521 1522 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 uint64_t cur_val = pmccntr_read(env, NULL); 1526 1527 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1528 } 1529 1530 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1531 uint64_t value) 1532 { 1533 pmccntr_op_start(env); 1534 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1535 pmccntr_op_finish(env); 1536 } 1537 1538 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1539 uint64_t value) 1540 { 1541 pmccntr_op_start(env); 1542 /* M is not accessible from AArch32 */ 1543 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1544 (value & PMCCFILTR); 1545 pmccntr_op_finish(env); 1546 } 1547 1548 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1549 { 1550 /* M is not visible in AArch32 */ 1551 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1552 } 1553 1554 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1555 uint64_t value) 1556 { 1557 pmu_op_start(env); 1558 value &= pmu_counter_mask(env); 1559 env->cp15.c9_pmcnten |= value; 1560 pmu_op_finish(env); 1561 } 1562 1563 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1564 uint64_t value) 1565 { 1566 pmu_op_start(env); 1567 value &= pmu_counter_mask(env); 1568 env->cp15.c9_pmcnten &= ~value; 1569 pmu_op_finish(env); 1570 } 1571 1572 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1573 uint64_t value) 1574 { 1575 value &= pmu_counter_mask(env); 1576 env->cp15.c9_pmovsr &= ~value; 1577 pmu_update_irq(env); 1578 } 1579 1580 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1581 uint64_t value) 1582 { 1583 value &= pmu_counter_mask(env); 1584 env->cp15.c9_pmovsr |= value; 1585 pmu_update_irq(env); 1586 } 1587 1588 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1589 uint64_t value, const uint8_t counter) 1590 { 1591 if (counter == 31) { 1592 pmccfiltr_write(env, ri, value); 1593 } else if (counter < pmu_num_counters(env)) { 1594 pmevcntr_op_start(env, counter); 1595 1596 /* 1597 * If this counter's event type is changing, store the current 1598 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1599 * pmevcntr_op_finish has the correct baseline when it converts back to 1600 * a delta. 1601 */ 1602 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1603 PMXEVTYPER_EVTCOUNT; 1604 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1605 if (old_event != new_event) { 1606 uint64_t count = 0; 1607 if (event_supported(new_event)) { 1608 uint16_t event_idx = supported_event_map[new_event]; 1609 count = pm_events[event_idx].get_count(env); 1610 } 1611 env->cp15.c14_pmevcntr_delta[counter] = count; 1612 } 1613 1614 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1615 pmevcntr_op_finish(env, counter); 1616 } 1617 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1618 * PMSELR value is equal to or greater than the number of implemented 1619 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1620 */ 1621 } 1622 1623 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1624 const uint8_t counter) 1625 { 1626 if (counter == 31) { 1627 return env->cp15.pmccfiltr_el0; 1628 } else if (counter < pmu_num_counters(env)) { 1629 return env->cp15.c14_pmevtyper[counter]; 1630 } else { 1631 /* 1632 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1633 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1634 */ 1635 return 0; 1636 } 1637 } 1638 1639 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1640 uint64_t value) 1641 { 1642 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1643 pmevtyper_write(env, ri, value, counter); 1644 } 1645 1646 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1647 uint64_t value) 1648 { 1649 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1650 env->cp15.c14_pmevtyper[counter] = value; 1651 1652 /* 1653 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1654 * pmu_op_finish calls when loading saved state for a migration. Because 1655 * we're potentially updating the type of event here, the value written to 1656 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1657 * different counter type. Therefore, we need to set this value to the 1658 * current count for the counter type we're writing so that pmu_op_finish 1659 * has the correct count for its calculation. 1660 */ 1661 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1662 if (event_supported(event)) { 1663 uint16_t event_idx = supported_event_map[event]; 1664 env->cp15.c14_pmevcntr_delta[counter] = 1665 pm_events[event_idx].get_count(env); 1666 } 1667 } 1668 1669 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1670 { 1671 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1672 return pmevtyper_read(env, ri, counter); 1673 } 1674 1675 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1676 uint64_t value) 1677 { 1678 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1679 } 1680 1681 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1682 { 1683 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1684 } 1685 1686 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1687 uint64_t value, uint8_t counter) 1688 { 1689 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1690 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1691 value &= MAKE_64BIT_MASK(0, 32); 1692 } 1693 if (counter < pmu_num_counters(env)) { 1694 pmevcntr_op_start(env, counter); 1695 env->cp15.c14_pmevcntr[counter] = value; 1696 pmevcntr_op_finish(env, counter); 1697 } 1698 /* 1699 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1700 * are CONSTRAINED UNPREDICTABLE. 1701 */ 1702 } 1703 1704 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1705 uint8_t counter) 1706 { 1707 if (counter < pmu_num_counters(env)) { 1708 uint64_t ret; 1709 pmevcntr_op_start(env, counter); 1710 ret = env->cp15.c14_pmevcntr[counter]; 1711 pmevcntr_op_finish(env, counter); 1712 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1713 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1714 ret &= MAKE_64BIT_MASK(0, 32); 1715 } 1716 return ret; 1717 } else { 1718 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1719 * are CONSTRAINED UNPREDICTABLE. */ 1720 return 0; 1721 } 1722 } 1723 1724 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1725 uint64_t value) 1726 { 1727 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1728 pmevcntr_write(env, ri, value, counter); 1729 } 1730 1731 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1732 { 1733 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1734 return pmevcntr_read(env, ri, counter); 1735 } 1736 1737 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1738 uint64_t value) 1739 { 1740 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1741 assert(counter < pmu_num_counters(env)); 1742 env->cp15.c14_pmevcntr[counter] = value; 1743 pmevcntr_write(env, ri, value, counter); 1744 } 1745 1746 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1747 { 1748 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1749 assert(counter < pmu_num_counters(env)); 1750 return env->cp15.c14_pmevcntr[counter]; 1751 } 1752 1753 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1754 uint64_t value) 1755 { 1756 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1757 } 1758 1759 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1760 { 1761 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1762 } 1763 1764 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1765 uint64_t value) 1766 { 1767 if (arm_feature(env, ARM_FEATURE_V8)) { 1768 env->cp15.c9_pmuserenr = value & 0xf; 1769 } else { 1770 env->cp15.c9_pmuserenr = value & 1; 1771 } 1772 } 1773 1774 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1775 uint64_t value) 1776 { 1777 /* We have no event counters so only the C bit can be changed */ 1778 value &= pmu_counter_mask(env); 1779 env->cp15.c9_pminten |= value; 1780 pmu_update_irq(env); 1781 } 1782 1783 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1784 uint64_t value) 1785 { 1786 value &= pmu_counter_mask(env); 1787 env->cp15.c9_pminten &= ~value; 1788 pmu_update_irq(env); 1789 } 1790 1791 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1792 uint64_t value) 1793 { 1794 /* Note that even though the AArch64 view of this register has bits 1795 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1796 * architectural requirements for bits which are RES0 only in some 1797 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1798 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1799 */ 1800 raw_write(env, ri, value & ~0x1FULL); 1801 } 1802 1803 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1804 { 1805 /* Begin with base v8.0 state. */ 1806 uint64_t valid_mask = 0x3fff; 1807 ARMCPU *cpu = env_archcpu(env); 1808 uint64_t changed; 1809 1810 /* 1811 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1812 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1813 * Instead, choose the format based on the mode of EL3. 1814 */ 1815 if (arm_el_is_aa64(env, 3)) { 1816 value |= SCR_FW | SCR_AW; /* RES1 */ 1817 valid_mask &= ~SCR_NET; /* RES0 */ 1818 1819 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1820 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1821 value |= SCR_RW; /* RAO/WI */ 1822 } 1823 if (cpu_isar_feature(aa64_ras, cpu)) { 1824 valid_mask |= SCR_TERR; 1825 } 1826 if (cpu_isar_feature(aa64_lor, cpu)) { 1827 valid_mask |= SCR_TLOR; 1828 } 1829 if (cpu_isar_feature(aa64_pauth, cpu)) { 1830 valid_mask |= SCR_API | SCR_APK; 1831 } 1832 if (cpu_isar_feature(aa64_sel2, cpu)) { 1833 valid_mask |= SCR_EEL2; 1834 } 1835 if (cpu_isar_feature(aa64_mte, cpu)) { 1836 valid_mask |= SCR_ATA; 1837 } 1838 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1839 valid_mask |= SCR_ENSCXT; 1840 } 1841 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1842 valid_mask |= SCR_EASE | SCR_NMEA; 1843 } 1844 if (cpu_isar_feature(aa64_sme, cpu)) { 1845 valid_mask |= SCR_ENTP2; 1846 } 1847 } else { 1848 valid_mask &= ~(SCR_RW | SCR_ST); 1849 if (cpu_isar_feature(aa32_ras, cpu)) { 1850 valid_mask |= SCR_TERR; 1851 } 1852 } 1853 1854 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1855 valid_mask &= ~SCR_HCE; 1856 1857 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1858 * supported if EL2 exists. The bit is UNK/SBZP when 1859 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1860 * when EL2 is unavailable. 1861 * On ARMv8, this bit is always available. 1862 */ 1863 if (arm_feature(env, ARM_FEATURE_V7) && 1864 !arm_feature(env, ARM_FEATURE_V8)) { 1865 valid_mask &= ~SCR_SMD; 1866 } 1867 } 1868 1869 /* Clear all-context RES0 bits. */ 1870 value &= valid_mask; 1871 changed = env->cp15.scr_el3 ^ value; 1872 env->cp15.scr_el3 = value; 1873 1874 /* 1875 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then 1876 * we must invalidate all TLBs below EL3. 1877 */ 1878 if (changed & SCR_NS) { 1879 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1880 ARMMMUIdxBit_E20_0 | 1881 ARMMMUIdxBit_E10_1 | 1882 ARMMMUIdxBit_E20_2 | 1883 ARMMMUIdxBit_E10_1_PAN | 1884 ARMMMUIdxBit_E20_2_PAN | 1885 ARMMMUIdxBit_E2)); 1886 } 1887 } 1888 1889 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1890 { 1891 /* 1892 * scr_write will set the RES1 bits on an AArch64-only CPU. 1893 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1894 */ 1895 scr_write(env, ri, 0); 1896 } 1897 1898 static CPAccessResult access_tid4(CPUARMState *env, 1899 const ARMCPRegInfo *ri, 1900 bool isread) 1901 { 1902 if (arm_current_el(env) == 1 && 1903 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1904 return CP_ACCESS_TRAP_EL2; 1905 } 1906 1907 return CP_ACCESS_OK; 1908 } 1909 1910 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1911 { 1912 ARMCPU *cpu = env_archcpu(env); 1913 1914 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1915 * bank 1916 */ 1917 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1918 ri->secure & ARM_CP_SECSTATE_S); 1919 1920 return cpu->ccsidr[index]; 1921 } 1922 1923 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1924 uint64_t value) 1925 { 1926 raw_write(env, ri, value & 0xf); 1927 } 1928 1929 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1930 { 1931 CPUState *cs = env_cpu(env); 1932 bool el1 = arm_current_el(env) == 1; 1933 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1934 uint64_t ret = 0; 1935 1936 if (hcr_el2 & HCR_IMO) { 1937 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1938 ret |= CPSR_I; 1939 } 1940 } else { 1941 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1942 ret |= CPSR_I; 1943 } 1944 } 1945 1946 if (hcr_el2 & HCR_FMO) { 1947 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1948 ret |= CPSR_F; 1949 } 1950 } else { 1951 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1952 ret |= CPSR_F; 1953 } 1954 } 1955 1956 if (hcr_el2 & HCR_AMO) { 1957 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1958 ret |= CPSR_A; 1959 } 1960 } 1961 1962 return ret; 1963 } 1964 1965 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1966 bool isread) 1967 { 1968 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1969 return CP_ACCESS_TRAP_EL2; 1970 } 1971 1972 return CP_ACCESS_OK; 1973 } 1974 1975 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1976 bool isread) 1977 { 1978 if (arm_feature(env, ARM_FEATURE_V8)) { 1979 return access_aa64_tid1(env, ri, isread); 1980 } 1981 1982 return CP_ACCESS_OK; 1983 } 1984 1985 static const ARMCPRegInfo v7_cp_reginfo[] = { 1986 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1987 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1988 .access = PL1_W, .type = ARM_CP_NOP }, 1989 /* Performance monitors are implementation defined in v7, 1990 * but with an ARM recommended set of registers, which we 1991 * follow. 1992 * 1993 * Performance registers fall into three categories: 1994 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1995 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1996 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1997 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1998 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1999 */ 2000 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2001 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2002 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2003 .writefn = pmcntenset_write, 2004 .accessfn = pmreg_access, 2005 .raw_writefn = raw_write }, 2006 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2007 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2008 .access = PL0_RW, .accessfn = pmreg_access, 2009 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2010 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2011 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2012 .access = PL0_RW, 2013 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2014 .accessfn = pmreg_access, 2015 .writefn = pmcntenclr_write, 2016 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2017 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2019 .access = PL0_RW, .accessfn = pmreg_access, 2020 .type = ARM_CP_ALIAS | ARM_CP_IO, 2021 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2022 .writefn = pmcntenclr_write }, 2023 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2024 .access = PL0_RW, .type = ARM_CP_IO, 2025 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2026 .accessfn = pmreg_access, 2027 .writefn = pmovsr_write, 2028 .raw_writefn = raw_write }, 2029 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2030 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2031 .access = PL0_RW, .accessfn = pmreg_access, 2032 .type = ARM_CP_ALIAS | ARM_CP_IO, 2033 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2034 .writefn = pmovsr_write, 2035 .raw_writefn = raw_write }, 2036 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2037 .access = PL0_W, .accessfn = pmreg_access_swinc, 2038 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2039 .writefn = pmswinc_write }, 2040 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2042 .access = PL0_W, .accessfn = pmreg_access_swinc, 2043 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2044 .writefn = pmswinc_write }, 2045 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2046 .access = PL0_RW, .type = ARM_CP_ALIAS, 2047 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2048 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2049 .raw_writefn = raw_write}, 2050 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2051 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2052 .access = PL0_RW, .accessfn = pmreg_access_selr, 2053 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2054 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2055 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2056 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2057 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2058 .accessfn = pmreg_access_ccntr }, 2059 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2061 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2062 .type = ARM_CP_IO, 2063 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2064 .readfn = pmccntr_read, .writefn = pmccntr_write, 2065 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2066 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2067 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2068 .access = PL0_RW, .accessfn = pmreg_access, 2069 .type = ARM_CP_ALIAS | ARM_CP_IO, 2070 .resetvalue = 0, }, 2071 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2072 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2073 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2074 .access = PL0_RW, .accessfn = pmreg_access, 2075 .type = ARM_CP_IO, 2076 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2077 .resetvalue = 0, }, 2078 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2079 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2080 .accessfn = pmreg_access, 2081 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2082 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2083 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2084 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2085 .accessfn = pmreg_access, 2086 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2087 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2088 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2089 .accessfn = pmreg_access_xevcntr, 2090 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2091 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2092 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2093 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2094 .accessfn = pmreg_access_xevcntr, 2095 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2096 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2097 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2098 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2099 .resetvalue = 0, 2100 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2101 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2102 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2103 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2104 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2105 .resetvalue = 0, 2106 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2107 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2108 .access = PL1_RW, .accessfn = access_tpm, 2109 .type = ARM_CP_ALIAS | ARM_CP_IO, 2110 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2111 .resetvalue = 0, 2112 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2113 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2114 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2115 .access = PL1_RW, .accessfn = access_tpm, 2116 .type = ARM_CP_IO, 2117 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2118 .writefn = pmintenset_write, .raw_writefn = raw_write, 2119 .resetvalue = 0x0 }, 2120 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2121 .access = PL1_RW, .accessfn = access_tpm, 2122 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2123 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2124 .writefn = pmintenclr_write, }, 2125 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2126 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2127 .access = PL1_RW, .accessfn = access_tpm, 2128 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2129 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2130 .writefn = pmintenclr_write }, 2131 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2132 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2133 .access = PL1_R, 2134 .accessfn = access_tid4, 2135 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2136 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2137 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2138 .access = PL1_RW, 2139 .accessfn = access_tid4, 2140 .writefn = csselr_write, .resetvalue = 0, 2141 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2142 offsetof(CPUARMState, cp15.csselr_ns) } }, 2143 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2144 * just RAZ for all cores: 2145 */ 2146 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2147 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2148 .access = PL1_R, .type = ARM_CP_CONST, 2149 .accessfn = access_aa64_tid1, 2150 .resetvalue = 0 }, 2151 /* Auxiliary fault status registers: these also are IMPDEF, and we 2152 * choose to RAZ/WI for all cores. 2153 */ 2154 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2155 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2156 .access = PL1_RW, .accessfn = access_tvm_trvm, 2157 .type = ARM_CP_CONST, .resetvalue = 0 }, 2158 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2159 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2160 .access = PL1_RW, .accessfn = access_tvm_trvm, 2161 .type = ARM_CP_CONST, .resetvalue = 0 }, 2162 /* MAIR can just read-as-written because we don't implement caches 2163 * and so don't need to care about memory attributes. 2164 */ 2165 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2166 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2167 .access = PL1_RW, .accessfn = access_tvm_trvm, 2168 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2169 .resetvalue = 0 }, 2170 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2171 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2172 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2173 .resetvalue = 0 }, 2174 /* For non-long-descriptor page tables these are PRRR and NMRR; 2175 * regardless they still act as reads-as-written for QEMU. 2176 */ 2177 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2178 * allows them to assign the correct fieldoffset based on the endianness 2179 * handled in the field definitions. 2180 */ 2181 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2182 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2183 .access = PL1_RW, .accessfn = access_tvm_trvm, 2184 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2185 offsetof(CPUARMState, cp15.mair0_ns) }, 2186 .resetfn = arm_cp_reset_ignore }, 2187 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2188 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2189 .access = PL1_RW, .accessfn = access_tvm_trvm, 2190 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2191 offsetof(CPUARMState, cp15.mair1_ns) }, 2192 .resetfn = arm_cp_reset_ignore }, 2193 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2194 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2195 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2196 /* 32 bit ITLB invalidates */ 2197 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2198 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2199 .writefn = tlbiall_write }, 2200 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2201 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2202 .writefn = tlbimva_write }, 2203 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2204 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2205 .writefn = tlbiasid_write }, 2206 /* 32 bit DTLB invalidates */ 2207 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2208 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2209 .writefn = tlbiall_write }, 2210 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2211 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2212 .writefn = tlbimva_write }, 2213 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2214 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2215 .writefn = tlbiasid_write }, 2216 /* 32 bit TLB invalidates */ 2217 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2218 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2219 .writefn = tlbiall_write }, 2220 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2221 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2222 .writefn = tlbimva_write }, 2223 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2224 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2225 .writefn = tlbiasid_write }, 2226 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2227 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2228 .writefn = tlbimvaa_write }, 2229 }; 2230 2231 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2232 /* 32 bit TLB invalidates, Inner Shareable */ 2233 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2234 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2235 .writefn = tlbiall_is_write }, 2236 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2237 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2238 .writefn = tlbimva_is_write }, 2239 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2240 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2241 .writefn = tlbiasid_is_write }, 2242 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2243 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2244 .writefn = tlbimvaa_is_write }, 2245 }; 2246 2247 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2248 /* PMOVSSET is not implemented in v7 before v7ve */ 2249 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2250 .access = PL0_RW, .accessfn = pmreg_access, 2251 .type = ARM_CP_ALIAS | ARM_CP_IO, 2252 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2253 .writefn = pmovsset_write, 2254 .raw_writefn = raw_write }, 2255 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2256 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2257 .access = PL0_RW, .accessfn = pmreg_access, 2258 .type = ARM_CP_ALIAS | ARM_CP_IO, 2259 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2260 .writefn = pmovsset_write, 2261 .raw_writefn = raw_write }, 2262 }; 2263 2264 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2265 uint64_t value) 2266 { 2267 value &= 1; 2268 env->teecr = value; 2269 } 2270 2271 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2272 bool isread) 2273 { 2274 /* 2275 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2276 * at all, so we don't need to check whether we're v8A. 2277 */ 2278 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2279 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2280 return CP_ACCESS_TRAP_EL2; 2281 } 2282 return CP_ACCESS_OK; 2283 } 2284 2285 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2286 bool isread) 2287 { 2288 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2289 return CP_ACCESS_TRAP; 2290 } 2291 return teecr_access(env, ri, isread); 2292 } 2293 2294 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2295 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2296 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2297 .resetvalue = 0, 2298 .writefn = teecr_write, .accessfn = teecr_access }, 2299 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2300 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2301 .accessfn = teehbr_access, .resetvalue = 0 }, 2302 }; 2303 2304 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2305 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2306 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2307 .access = PL0_RW, 2308 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2309 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2310 .access = PL0_RW, 2311 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2312 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2313 .resetfn = arm_cp_reset_ignore }, 2314 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2315 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2316 .access = PL0_R|PL1_W, 2317 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2318 .resetvalue = 0}, 2319 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2320 .access = PL0_R|PL1_W, 2321 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2322 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2323 .resetfn = arm_cp_reset_ignore }, 2324 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2325 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2326 .access = PL1_RW, 2327 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2328 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2329 .access = PL1_RW, 2330 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2331 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2332 .resetvalue = 0 }, 2333 }; 2334 2335 #ifndef CONFIG_USER_ONLY 2336 2337 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2338 bool isread) 2339 { 2340 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2341 * Writable only at the highest implemented exception level. 2342 */ 2343 int el = arm_current_el(env); 2344 uint64_t hcr; 2345 uint32_t cntkctl; 2346 2347 switch (el) { 2348 case 0: 2349 hcr = arm_hcr_el2_eff(env); 2350 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2351 cntkctl = env->cp15.cnthctl_el2; 2352 } else { 2353 cntkctl = env->cp15.c14_cntkctl; 2354 } 2355 if (!extract32(cntkctl, 0, 2)) { 2356 return CP_ACCESS_TRAP; 2357 } 2358 break; 2359 case 1: 2360 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2361 arm_is_secure_below_el3(env)) { 2362 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2363 return CP_ACCESS_TRAP_UNCATEGORIZED; 2364 } 2365 break; 2366 case 2: 2367 case 3: 2368 break; 2369 } 2370 2371 if (!isread && el < arm_highest_el(env)) { 2372 return CP_ACCESS_TRAP_UNCATEGORIZED; 2373 } 2374 2375 return CP_ACCESS_OK; 2376 } 2377 2378 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2379 bool isread) 2380 { 2381 unsigned int cur_el = arm_current_el(env); 2382 bool has_el2 = arm_is_el2_enabled(env); 2383 uint64_t hcr = arm_hcr_el2_eff(env); 2384 2385 switch (cur_el) { 2386 case 0: 2387 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2388 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2389 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2390 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2391 } 2392 2393 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2394 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2395 return CP_ACCESS_TRAP; 2396 } 2397 2398 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2399 if (hcr & HCR_E2H) { 2400 if (timeridx == GTIMER_PHYS && 2401 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2402 return CP_ACCESS_TRAP_EL2; 2403 } 2404 } else { 2405 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2406 if (has_el2 && timeridx == GTIMER_PHYS && 2407 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2408 return CP_ACCESS_TRAP_EL2; 2409 } 2410 } 2411 break; 2412 2413 case 1: 2414 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2415 if (has_el2 && timeridx == GTIMER_PHYS && 2416 (hcr & HCR_E2H 2417 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2418 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2419 return CP_ACCESS_TRAP_EL2; 2420 } 2421 break; 2422 } 2423 return CP_ACCESS_OK; 2424 } 2425 2426 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2427 bool isread) 2428 { 2429 unsigned int cur_el = arm_current_el(env); 2430 bool has_el2 = arm_is_el2_enabled(env); 2431 uint64_t hcr = arm_hcr_el2_eff(env); 2432 2433 switch (cur_el) { 2434 case 0: 2435 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2436 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2437 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2438 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2439 } 2440 2441 /* 2442 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2443 * EL0 if EL0[PV]TEN is zero. 2444 */ 2445 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2446 return CP_ACCESS_TRAP; 2447 } 2448 /* fall through */ 2449 2450 case 1: 2451 if (has_el2 && timeridx == GTIMER_PHYS) { 2452 if (hcr & HCR_E2H) { 2453 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2454 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2455 return CP_ACCESS_TRAP_EL2; 2456 } 2457 } else { 2458 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2459 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2460 return CP_ACCESS_TRAP_EL2; 2461 } 2462 } 2463 } 2464 break; 2465 } 2466 return CP_ACCESS_OK; 2467 } 2468 2469 static CPAccessResult gt_pct_access(CPUARMState *env, 2470 const ARMCPRegInfo *ri, 2471 bool isread) 2472 { 2473 return gt_counter_access(env, GTIMER_PHYS, isread); 2474 } 2475 2476 static CPAccessResult gt_vct_access(CPUARMState *env, 2477 const ARMCPRegInfo *ri, 2478 bool isread) 2479 { 2480 return gt_counter_access(env, GTIMER_VIRT, isread); 2481 } 2482 2483 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2484 bool isread) 2485 { 2486 return gt_timer_access(env, GTIMER_PHYS, isread); 2487 } 2488 2489 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2490 bool isread) 2491 { 2492 return gt_timer_access(env, GTIMER_VIRT, isread); 2493 } 2494 2495 static CPAccessResult gt_stimer_access(CPUARMState *env, 2496 const ARMCPRegInfo *ri, 2497 bool isread) 2498 { 2499 /* The AArch64 register view of the secure physical timer is 2500 * always accessible from EL3, and configurably accessible from 2501 * Secure EL1. 2502 */ 2503 switch (arm_current_el(env)) { 2504 case 1: 2505 if (!arm_is_secure(env)) { 2506 return CP_ACCESS_TRAP; 2507 } 2508 if (!(env->cp15.scr_el3 & SCR_ST)) { 2509 return CP_ACCESS_TRAP_EL3; 2510 } 2511 return CP_ACCESS_OK; 2512 case 0: 2513 case 2: 2514 return CP_ACCESS_TRAP; 2515 case 3: 2516 return CP_ACCESS_OK; 2517 default: 2518 g_assert_not_reached(); 2519 } 2520 } 2521 2522 static uint64_t gt_get_countervalue(CPUARMState *env) 2523 { 2524 ARMCPU *cpu = env_archcpu(env); 2525 2526 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2527 } 2528 2529 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2530 { 2531 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2532 2533 if (gt->ctl & 1) { 2534 /* Timer enabled: calculate and set current ISTATUS, irq, and 2535 * reset timer to when ISTATUS next has to change 2536 */ 2537 uint64_t offset = timeridx == GTIMER_VIRT ? 2538 cpu->env.cp15.cntvoff_el2 : 0; 2539 uint64_t count = gt_get_countervalue(&cpu->env); 2540 /* Note that this must be unsigned 64 bit arithmetic: */ 2541 int istatus = count - offset >= gt->cval; 2542 uint64_t nexttick; 2543 int irqstate; 2544 2545 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2546 2547 irqstate = (istatus && !(gt->ctl & 2)); 2548 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2549 2550 if (istatus) { 2551 /* Next transition is when count rolls back over to zero */ 2552 nexttick = UINT64_MAX; 2553 } else { 2554 /* Next transition is when we hit cval */ 2555 nexttick = gt->cval + offset; 2556 } 2557 /* Note that the desired next expiry time might be beyond the 2558 * signed-64-bit range of a QEMUTimer -- in this case we just 2559 * set the timer for as far in the future as possible. When the 2560 * timer expires we will reset the timer for any remaining period. 2561 */ 2562 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2563 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2564 } else { 2565 timer_mod(cpu->gt_timer[timeridx], nexttick); 2566 } 2567 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2568 } else { 2569 /* Timer disabled: ISTATUS and timer output always clear */ 2570 gt->ctl &= ~4; 2571 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2572 timer_del(cpu->gt_timer[timeridx]); 2573 trace_arm_gt_recalc_disabled(timeridx); 2574 } 2575 } 2576 2577 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2578 int timeridx) 2579 { 2580 ARMCPU *cpu = env_archcpu(env); 2581 2582 timer_del(cpu->gt_timer[timeridx]); 2583 } 2584 2585 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2586 { 2587 return gt_get_countervalue(env); 2588 } 2589 2590 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2591 { 2592 uint64_t hcr; 2593 2594 switch (arm_current_el(env)) { 2595 case 2: 2596 hcr = arm_hcr_el2_eff(env); 2597 if (hcr & HCR_E2H) { 2598 return 0; 2599 } 2600 break; 2601 case 0: 2602 hcr = arm_hcr_el2_eff(env); 2603 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2604 return 0; 2605 } 2606 break; 2607 } 2608 2609 return env->cp15.cntvoff_el2; 2610 } 2611 2612 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2613 { 2614 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2615 } 2616 2617 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2618 int timeridx, 2619 uint64_t value) 2620 { 2621 trace_arm_gt_cval_write(timeridx, value); 2622 env->cp15.c14_timer[timeridx].cval = value; 2623 gt_recalc_timer(env_archcpu(env), timeridx); 2624 } 2625 2626 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2627 int timeridx) 2628 { 2629 uint64_t offset = 0; 2630 2631 switch (timeridx) { 2632 case GTIMER_VIRT: 2633 case GTIMER_HYPVIRT: 2634 offset = gt_virt_cnt_offset(env); 2635 break; 2636 } 2637 2638 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2639 (gt_get_countervalue(env) - offset)); 2640 } 2641 2642 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2643 int timeridx, 2644 uint64_t value) 2645 { 2646 uint64_t offset = 0; 2647 2648 switch (timeridx) { 2649 case GTIMER_VIRT: 2650 case GTIMER_HYPVIRT: 2651 offset = gt_virt_cnt_offset(env); 2652 break; 2653 } 2654 2655 trace_arm_gt_tval_write(timeridx, value); 2656 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2657 sextract64(value, 0, 32); 2658 gt_recalc_timer(env_archcpu(env), timeridx); 2659 } 2660 2661 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2662 int timeridx, 2663 uint64_t value) 2664 { 2665 ARMCPU *cpu = env_archcpu(env); 2666 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2667 2668 trace_arm_gt_ctl_write(timeridx, value); 2669 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2670 if ((oldval ^ value) & 1) { 2671 /* Enable toggled */ 2672 gt_recalc_timer(cpu, timeridx); 2673 } else if ((oldval ^ value) & 2) { 2674 /* IMASK toggled: don't need to recalculate, 2675 * just set the interrupt line based on ISTATUS 2676 */ 2677 int irqstate = (oldval & 4) && !(value & 2); 2678 2679 trace_arm_gt_imask_toggle(timeridx, irqstate); 2680 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2681 } 2682 } 2683 2684 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2685 { 2686 gt_timer_reset(env, ri, GTIMER_PHYS); 2687 } 2688 2689 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2690 uint64_t value) 2691 { 2692 gt_cval_write(env, ri, GTIMER_PHYS, value); 2693 } 2694 2695 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2696 { 2697 return gt_tval_read(env, ri, GTIMER_PHYS); 2698 } 2699 2700 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2701 uint64_t value) 2702 { 2703 gt_tval_write(env, ri, GTIMER_PHYS, value); 2704 } 2705 2706 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2707 uint64_t value) 2708 { 2709 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2710 } 2711 2712 static int gt_phys_redir_timeridx(CPUARMState *env) 2713 { 2714 switch (arm_mmu_idx(env)) { 2715 case ARMMMUIdx_E20_0: 2716 case ARMMMUIdx_E20_2: 2717 case ARMMMUIdx_E20_2_PAN: 2718 return GTIMER_HYP; 2719 default: 2720 return GTIMER_PHYS; 2721 } 2722 } 2723 2724 static int gt_virt_redir_timeridx(CPUARMState *env) 2725 { 2726 switch (arm_mmu_idx(env)) { 2727 case ARMMMUIdx_E20_0: 2728 case ARMMMUIdx_E20_2: 2729 case ARMMMUIdx_E20_2_PAN: 2730 return GTIMER_HYPVIRT; 2731 default: 2732 return GTIMER_VIRT; 2733 } 2734 } 2735 2736 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2737 const ARMCPRegInfo *ri) 2738 { 2739 int timeridx = gt_phys_redir_timeridx(env); 2740 return env->cp15.c14_timer[timeridx].cval; 2741 } 2742 2743 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2744 uint64_t value) 2745 { 2746 int timeridx = gt_phys_redir_timeridx(env); 2747 gt_cval_write(env, ri, timeridx, value); 2748 } 2749 2750 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2751 const ARMCPRegInfo *ri) 2752 { 2753 int timeridx = gt_phys_redir_timeridx(env); 2754 return gt_tval_read(env, ri, timeridx); 2755 } 2756 2757 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2758 uint64_t value) 2759 { 2760 int timeridx = gt_phys_redir_timeridx(env); 2761 gt_tval_write(env, ri, timeridx, value); 2762 } 2763 2764 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2765 const ARMCPRegInfo *ri) 2766 { 2767 int timeridx = gt_phys_redir_timeridx(env); 2768 return env->cp15.c14_timer[timeridx].ctl; 2769 } 2770 2771 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2772 uint64_t value) 2773 { 2774 int timeridx = gt_phys_redir_timeridx(env); 2775 gt_ctl_write(env, ri, timeridx, value); 2776 } 2777 2778 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 gt_timer_reset(env, ri, GTIMER_VIRT); 2781 } 2782 2783 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 uint64_t value) 2785 { 2786 gt_cval_write(env, ri, GTIMER_VIRT, value); 2787 } 2788 2789 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2790 { 2791 return gt_tval_read(env, ri, GTIMER_VIRT); 2792 } 2793 2794 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2795 uint64_t value) 2796 { 2797 gt_tval_write(env, ri, GTIMER_VIRT, value); 2798 } 2799 2800 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2801 uint64_t value) 2802 { 2803 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2804 } 2805 2806 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2807 uint64_t value) 2808 { 2809 ARMCPU *cpu = env_archcpu(env); 2810 2811 trace_arm_gt_cntvoff_write(value); 2812 raw_write(env, ri, value); 2813 gt_recalc_timer(cpu, GTIMER_VIRT); 2814 } 2815 2816 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2817 const ARMCPRegInfo *ri) 2818 { 2819 int timeridx = gt_virt_redir_timeridx(env); 2820 return env->cp15.c14_timer[timeridx].cval; 2821 } 2822 2823 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2824 uint64_t value) 2825 { 2826 int timeridx = gt_virt_redir_timeridx(env); 2827 gt_cval_write(env, ri, timeridx, value); 2828 } 2829 2830 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2831 const ARMCPRegInfo *ri) 2832 { 2833 int timeridx = gt_virt_redir_timeridx(env); 2834 return gt_tval_read(env, ri, timeridx); 2835 } 2836 2837 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 int timeridx = gt_virt_redir_timeridx(env); 2841 gt_tval_write(env, ri, timeridx, value); 2842 } 2843 2844 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2845 const ARMCPRegInfo *ri) 2846 { 2847 int timeridx = gt_virt_redir_timeridx(env); 2848 return env->cp15.c14_timer[timeridx].ctl; 2849 } 2850 2851 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2852 uint64_t value) 2853 { 2854 int timeridx = gt_virt_redir_timeridx(env); 2855 gt_ctl_write(env, ri, timeridx, value); 2856 } 2857 2858 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2859 { 2860 gt_timer_reset(env, ri, GTIMER_HYP); 2861 } 2862 2863 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2864 uint64_t value) 2865 { 2866 gt_cval_write(env, ri, GTIMER_HYP, value); 2867 } 2868 2869 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2870 { 2871 return gt_tval_read(env, ri, GTIMER_HYP); 2872 } 2873 2874 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2875 uint64_t value) 2876 { 2877 gt_tval_write(env, ri, GTIMER_HYP, value); 2878 } 2879 2880 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2881 uint64_t value) 2882 { 2883 gt_ctl_write(env, ri, GTIMER_HYP, value); 2884 } 2885 2886 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2887 { 2888 gt_timer_reset(env, ri, GTIMER_SEC); 2889 } 2890 2891 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2892 uint64_t value) 2893 { 2894 gt_cval_write(env, ri, GTIMER_SEC, value); 2895 } 2896 2897 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2898 { 2899 return gt_tval_read(env, ri, GTIMER_SEC); 2900 } 2901 2902 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2903 uint64_t value) 2904 { 2905 gt_tval_write(env, ri, GTIMER_SEC, value); 2906 } 2907 2908 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2909 uint64_t value) 2910 { 2911 gt_ctl_write(env, ri, GTIMER_SEC, value); 2912 } 2913 2914 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2915 { 2916 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2917 } 2918 2919 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2920 uint64_t value) 2921 { 2922 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2923 } 2924 2925 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2926 { 2927 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2928 } 2929 2930 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2931 uint64_t value) 2932 { 2933 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2934 } 2935 2936 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2937 uint64_t value) 2938 { 2939 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2940 } 2941 2942 void arm_gt_ptimer_cb(void *opaque) 2943 { 2944 ARMCPU *cpu = opaque; 2945 2946 gt_recalc_timer(cpu, GTIMER_PHYS); 2947 } 2948 2949 void arm_gt_vtimer_cb(void *opaque) 2950 { 2951 ARMCPU *cpu = opaque; 2952 2953 gt_recalc_timer(cpu, GTIMER_VIRT); 2954 } 2955 2956 void arm_gt_htimer_cb(void *opaque) 2957 { 2958 ARMCPU *cpu = opaque; 2959 2960 gt_recalc_timer(cpu, GTIMER_HYP); 2961 } 2962 2963 void arm_gt_stimer_cb(void *opaque) 2964 { 2965 ARMCPU *cpu = opaque; 2966 2967 gt_recalc_timer(cpu, GTIMER_SEC); 2968 } 2969 2970 void arm_gt_hvtimer_cb(void *opaque) 2971 { 2972 ARMCPU *cpu = opaque; 2973 2974 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2975 } 2976 2977 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2978 { 2979 ARMCPU *cpu = env_archcpu(env); 2980 2981 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2982 } 2983 2984 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2985 /* Note that CNTFRQ is purely reads-as-written for the benefit 2986 * of software; writing it doesn't actually change the timer frequency. 2987 * Our reset value matches the fixed frequency we implement the timer at. 2988 */ 2989 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2990 .type = ARM_CP_ALIAS, 2991 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2992 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2993 }, 2994 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2995 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2996 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2997 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2998 .resetfn = arm_gt_cntfrq_reset, 2999 }, 3000 /* overall control: mostly access permissions */ 3001 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3002 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3003 .access = PL1_RW, 3004 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3005 .resetvalue = 0, 3006 }, 3007 /* per-timer control */ 3008 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3009 .secure = ARM_CP_SECSTATE_NS, 3010 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3011 .accessfn = gt_ptimer_access, 3012 .fieldoffset = offsetoflow32(CPUARMState, 3013 cp15.c14_timer[GTIMER_PHYS].ctl), 3014 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3015 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3016 }, 3017 { .name = "CNTP_CTL_S", 3018 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3019 .secure = ARM_CP_SECSTATE_S, 3020 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3021 .accessfn = gt_ptimer_access, 3022 .fieldoffset = offsetoflow32(CPUARMState, 3023 cp15.c14_timer[GTIMER_SEC].ctl), 3024 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3025 }, 3026 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3027 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3028 .type = ARM_CP_IO, .access = PL0_RW, 3029 .accessfn = gt_ptimer_access, 3030 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3031 .resetvalue = 0, 3032 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3033 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3034 }, 3035 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3036 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3037 .accessfn = gt_vtimer_access, 3038 .fieldoffset = offsetoflow32(CPUARMState, 3039 cp15.c14_timer[GTIMER_VIRT].ctl), 3040 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3041 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3042 }, 3043 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3044 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3045 .type = ARM_CP_IO, .access = PL0_RW, 3046 .accessfn = gt_vtimer_access, 3047 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3048 .resetvalue = 0, 3049 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3050 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3051 }, 3052 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3053 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3054 .secure = ARM_CP_SECSTATE_NS, 3055 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3056 .accessfn = gt_ptimer_access, 3057 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3058 }, 3059 { .name = "CNTP_TVAL_S", 3060 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3061 .secure = ARM_CP_SECSTATE_S, 3062 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3063 .accessfn = gt_ptimer_access, 3064 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3065 }, 3066 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3067 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3068 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3069 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3070 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3071 }, 3072 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3073 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3074 .accessfn = gt_vtimer_access, 3075 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3076 }, 3077 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3078 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3079 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3080 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3081 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3082 }, 3083 /* The counter itself */ 3084 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3085 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3086 .accessfn = gt_pct_access, 3087 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3088 }, 3089 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3090 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3091 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3092 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3093 }, 3094 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3095 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3096 .accessfn = gt_vct_access, 3097 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3098 }, 3099 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3100 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3101 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3102 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3103 }, 3104 /* Comparison value, indicating when the timer goes off */ 3105 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3106 .secure = ARM_CP_SECSTATE_NS, 3107 .access = PL0_RW, 3108 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3109 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3110 .accessfn = gt_ptimer_access, 3111 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3112 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3113 }, 3114 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3115 .secure = ARM_CP_SECSTATE_S, 3116 .access = PL0_RW, 3117 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3118 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3119 .accessfn = gt_ptimer_access, 3120 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3121 }, 3122 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3123 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3124 .access = PL0_RW, 3125 .type = ARM_CP_IO, 3126 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3127 .resetvalue = 0, .accessfn = gt_ptimer_access, 3128 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3129 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3130 }, 3131 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3132 .access = PL0_RW, 3133 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3134 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3135 .accessfn = gt_vtimer_access, 3136 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3137 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3138 }, 3139 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3141 .access = PL0_RW, 3142 .type = ARM_CP_IO, 3143 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3144 .resetvalue = 0, .accessfn = gt_vtimer_access, 3145 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3146 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3147 }, 3148 /* Secure timer -- this is actually restricted to only EL3 3149 * and configurably Secure-EL1 via the accessfn. 3150 */ 3151 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3152 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3153 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3154 .accessfn = gt_stimer_access, 3155 .readfn = gt_sec_tval_read, 3156 .writefn = gt_sec_tval_write, 3157 .resetfn = gt_sec_timer_reset, 3158 }, 3159 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3160 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3161 .type = ARM_CP_IO, .access = PL1_RW, 3162 .accessfn = gt_stimer_access, 3163 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3164 .resetvalue = 0, 3165 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3166 }, 3167 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3168 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3169 .type = ARM_CP_IO, .access = PL1_RW, 3170 .accessfn = gt_stimer_access, 3171 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3172 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3173 }, 3174 }; 3175 3176 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3177 bool isread) 3178 { 3179 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3180 return CP_ACCESS_TRAP; 3181 } 3182 return CP_ACCESS_OK; 3183 } 3184 3185 #else 3186 3187 /* In user-mode most of the generic timer registers are inaccessible 3188 * however modern kernels (4.12+) allow access to cntvct_el0 3189 */ 3190 3191 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3192 { 3193 ARMCPU *cpu = env_archcpu(env); 3194 3195 /* Currently we have no support for QEMUTimer in linux-user so we 3196 * can't call gt_get_countervalue(env), instead we directly 3197 * call the lower level functions. 3198 */ 3199 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3200 } 3201 3202 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3203 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3204 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3205 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3206 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3207 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3208 }, 3209 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3210 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3211 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3212 .readfn = gt_virt_cnt_read, 3213 }, 3214 }; 3215 3216 #endif 3217 3218 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3219 { 3220 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3221 raw_write(env, ri, value); 3222 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3223 raw_write(env, ri, value & 0xfffff6ff); 3224 } else { 3225 raw_write(env, ri, value & 0xfffff1ff); 3226 } 3227 } 3228 3229 #ifndef CONFIG_USER_ONLY 3230 /* get_phys_addr() isn't present for user-mode-only targets */ 3231 3232 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3233 bool isread) 3234 { 3235 if (ri->opc2 & 4) { 3236 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3237 * Secure EL1 (which can only happen if EL3 is AArch64). 3238 * They are simply UNDEF if executed from NS EL1. 3239 * They function normally from EL2 or EL3. 3240 */ 3241 if (arm_current_el(env) == 1) { 3242 if (arm_is_secure_below_el3(env)) { 3243 if (env->cp15.scr_el3 & SCR_EEL2) { 3244 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3245 } 3246 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3247 } 3248 return CP_ACCESS_TRAP_UNCATEGORIZED; 3249 } 3250 } 3251 return CP_ACCESS_OK; 3252 } 3253 3254 #ifdef CONFIG_TCG 3255 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3256 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3257 bool is_secure) 3258 { 3259 bool ret; 3260 uint64_t par64; 3261 bool format64 = false; 3262 ARMMMUFaultInfo fi = {}; 3263 GetPhysAddrResult res = {}; 3264 3265 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3266 is_secure, &res, &fi); 3267 3268 /* 3269 * ATS operations only do S1 or S1+S2 translations, so we never 3270 * have to deal with the ARMCacheAttrs format for S2 only. 3271 */ 3272 assert(!res.cacheattrs.is_s2_format); 3273 3274 if (ret) { 3275 /* 3276 * Some kinds of translation fault must cause exceptions rather 3277 * than being reported in the PAR. 3278 */ 3279 int current_el = arm_current_el(env); 3280 int target_el; 3281 uint32_t syn, fsr, fsc; 3282 bool take_exc = false; 3283 3284 if (fi.s1ptw && current_el == 1 3285 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3286 /* 3287 * Synchronous stage 2 fault on an access made as part of the 3288 * translation table walk for AT S1E0* or AT S1E1* insn 3289 * executed from NS EL1. If this is a synchronous external abort 3290 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3291 * to EL3. Otherwise the fault is taken as an exception to EL2, 3292 * and HPFAR_EL2 holds the faulting IPA. 3293 */ 3294 if (fi.type == ARMFault_SyncExternalOnWalk && 3295 (env->cp15.scr_el3 & SCR_EA)) { 3296 target_el = 3; 3297 } else { 3298 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3299 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3300 env->cp15.hpfar_el2 |= HPFAR_NS; 3301 } 3302 target_el = 2; 3303 } 3304 take_exc = true; 3305 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3306 /* 3307 * Synchronous external aborts during a translation table walk 3308 * are taken as Data Abort exceptions. 3309 */ 3310 if (fi.stage2) { 3311 if (current_el == 3) { 3312 target_el = 3; 3313 } else { 3314 target_el = 2; 3315 } 3316 } else { 3317 target_el = exception_target_el(env); 3318 } 3319 take_exc = true; 3320 } 3321 3322 if (take_exc) { 3323 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3324 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3325 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3326 fsr = arm_fi_to_lfsc(&fi); 3327 fsc = extract32(fsr, 0, 6); 3328 } else { 3329 fsr = arm_fi_to_sfsc(&fi); 3330 fsc = 0x3f; 3331 } 3332 /* 3333 * Report exception with ESR indicating a fault due to a 3334 * translation table walk for a cache maintenance instruction. 3335 */ 3336 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3337 fi.ea, 1, fi.s1ptw, 1, fsc); 3338 env->exception.vaddress = value; 3339 env->exception.fsr = fsr; 3340 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3341 } 3342 } 3343 3344 if (is_a64(env)) { 3345 format64 = true; 3346 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3347 /* 3348 * ATS1Cxx: 3349 * * TTBCR.EAE determines whether the result is returned using the 3350 * 32-bit or the 64-bit PAR format 3351 * * Instructions executed in Hyp mode always use the 64bit format 3352 * 3353 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3354 * * The Non-secure TTBCR.EAE bit is set to 1 3355 * * The implementation includes EL2, and the value of HCR.VM is 1 3356 * 3357 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3358 * 3359 * ATS1Hx always uses the 64bit format. 3360 */ 3361 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3362 3363 if (arm_feature(env, ARM_FEATURE_EL2)) { 3364 if (mmu_idx == ARMMMUIdx_E10_0 || 3365 mmu_idx == ARMMMUIdx_E10_1 || 3366 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3367 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3368 } else { 3369 format64 |= arm_current_el(env) == 2; 3370 } 3371 } 3372 } 3373 3374 if (format64) { 3375 /* Create a 64-bit PAR */ 3376 par64 = (1 << 11); /* LPAE bit always set */ 3377 if (!ret) { 3378 par64 |= res.f.phys_addr & ~0xfffULL; 3379 if (!res.f.attrs.secure) { 3380 par64 |= (1 << 9); /* NS */ 3381 } 3382 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3383 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3384 } else { 3385 uint32_t fsr = arm_fi_to_lfsc(&fi); 3386 3387 par64 |= 1; /* F */ 3388 par64 |= (fsr & 0x3f) << 1; /* FS */ 3389 if (fi.stage2) { 3390 par64 |= (1 << 9); /* S */ 3391 } 3392 if (fi.s1ptw) { 3393 par64 |= (1 << 8); /* PTW */ 3394 } 3395 } 3396 } else { 3397 /* fsr is a DFSR/IFSR value for the short descriptor 3398 * translation table format (with WnR always clear). 3399 * Convert it to a 32-bit PAR. 3400 */ 3401 if (!ret) { 3402 /* We do not set any attribute bits in the PAR */ 3403 if (res.f.lg_page_size == 24 3404 && arm_feature(env, ARM_FEATURE_V7)) { 3405 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3406 } else { 3407 par64 = res.f.phys_addr & 0xfffff000; 3408 } 3409 if (!res.f.attrs.secure) { 3410 par64 |= (1 << 9); /* NS */ 3411 } 3412 } else { 3413 uint32_t fsr = arm_fi_to_sfsc(&fi); 3414 3415 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3416 ((fsr & 0xf) << 1) | 1; 3417 } 3418 } 3419 return par64; 3420 } 3421 #endif /* CONFIG_TCG */ 3422 3423 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3424 { 3425 #ifdef CONFIG_TCG 3426 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3427 uint64_t par64; 3428 ARMMMUIdx mmu_idx; 3429 int el = arm_current_el(env); 3430 bool secure = arm_is_secure_below_el3(env); 3431 3432 switch (ri->opc2 & 6) { 3433 case 0: 3434 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3435 switch (el) { 3436 case 3: 3437 mmu_idx = ARMMMUIdx_E3; 3438 secure = true; 3439 break; 3440 case 2: 3441 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3442 /* fall through */ 3443 case 1: 3444 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3445 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3446 } else { 3447 mmu_idx = ARMMMUIdx_Stage1_E1; 3448 } 3449 break; 3450 default: 3451 g_assert_not_reached(); 3452 } 3453 break; 3454 case 2: 3455 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3456 switch (el) { 3457 case 3: 3458 mmu_idx = ARMMMUIdx_E10_0; 3459 secure = true; 3460 break; 3461 case 2: 3462 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3463 mmu_idx = ARMMMUIdx_Stage1_E0; 3464 break; 3465 case 1: 3466 mmu_idx = ARMMMUIdx_Stage1_E0; 3467 break; 3468 default: 3469 g_assert_not_reached(); 3470 } 3471 break; 3472 case 4: 3473 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3474 mmu_idx = ARMMMUIdx_E10_1; 3475 secure = false; 3476 break; 3477 case 6: 3478 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3479 mmu_idx = ARMMMUIdx_E10_0; 3480 secure = false; 3481 break; 3482 default: 3483 g_assert_not_reached(); 3484 } 3485 3486 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3487 3488 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3489 #else 3490 /* Handled by hardware accelerator. */ 3491 g_assert_not_reached(); 3492 #endif /* CONFIG_TCG */ 3493 } 3494 3495 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3496 uint64_t value) 3497 { 3498 #ifdef CONFIG_TCG 3499 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3500 uint64_t par64; 3501 3502 /* There is no SecureEL2 for AArch32. */ 3503 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3504 3505 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3506 #else 3507 /* Handled by hardware accelerator. */ 3508 g_assert_not_reached(); 3509 #endif /* CONFIG_TCG */ 3510 } 3511 3512 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3513 bool isread) 3514 { 3515 if (arm_current_el(env) == 3 && 3516 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3517 return CP_ACCESS_TRAP; 3518 } 3519 return CP_ACCESS_OK; 3520 } 3521 3522 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3523 uint64_t value) 3524 { 3525 #ifdef CONFIG_TCG 3526 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3527 ARMMMUIdx mmu_idx; 3528 int secure = arm_is_secure_below_el3(env); 3529 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3530 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3531 3532 switch (ri->opc2 & 6) { 3533 case 0: 3534 switch (ri->opc1) { 3535 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3536 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3537 mmu_idx = regime_e20 ? 3538 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3539 } else { 3540 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3541 } 3542 break; 3543 case 4: /* AT S1E2R, AT S1E2W */ 3544 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3545 break; 3546 case 6: /* AT S1E3R, AT S1E3W */ 3547 mmu_idx = ARMMMUIdx_E3; 3548 secure = true; 3549 break; 3550 default: 3551 g_assert_not_reached(); 3552 } 3553 break; 3554 case 2: /* AT S1E0R, AT S1E0W */ 3555 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3556 break; 3557 case 4: /* AT S12E1R, AT S12E1W */ 3558 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3559 break; 3560 case 6: /* AT S12E0R, AT S12E0W */ 3561 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3562 break; 3563 default: 3564 g_assert_not_reached(); 3565 } 3566 3567 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3568 mmu_idx, secure); 3569 #else 3570 /* Handled by hardware accelerator. */ 3571 g_assert_not_reached(); 3572 #endif /* CONFIG_TCG */ 3573 } 3574 #endif 3575 3576 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3577 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3578 .access = PL1_RW, .resetvalue = 0, 3579 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3580 offsetoflow32(CPUARMState, cp15.par_ns) }, 3581 .writefn = par_write }, 3582 #ifndef CONFIG_USER_ONLY 3583 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3584 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3585 .access = PL1_W, .accessfn = ats_access, 3586 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3587 #endif 3588 }; 3589 3590 /* Return basic MPU access permission bits. */ 3591 static uint32_t simple_mpu_ap_bits(uint32_t val) 3592 { 3593 uint32_t ret; 3594 uint32_t mask; 3595 int i; 3596 ret = 0; 3597 mask = 3; 3598 for (i = 0; i < 16; i += 2) { 3599 ret |= (val >> i) & mask; 3600 mask <<= 2; 3601 } 3602 return ret; 3603 } 3604 3605 /* Pad basic MPU access permission bits to extended format. */ 3606 static uint32_t extended_mpu_ap_bits(uint32_t val) 3607 { 3608 uint32_t ret; 3609 uint32_t mask; 3610 int i; 3611 ret = 0; 3612 mask = 3; 3613 for (i = 0; i < 16; i += 2) { 3614 ret |= (val & mask) << i; 3615 mask <<= 2; 3616 } 3617 return ret; 3618 } 3619 3620 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3621 uint64_t value) 3622 { 3623 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3624 } 3625 3626 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3627 { 3628 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3629 } 3630 3631 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3632 uint64_t value) 3633 { 3634 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3635 } 3636 3637 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3638 { 3639 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3640 } 3641 3642 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3643 { 3644 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3645 3646 if (!u32p) { 3647 return 0; 3648 } 3649 3650 u32p += env->pmsav7.rnr[M_REG_NS]; 3651 return *u32p; 3652 } 3653 3654 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3655 uint64_t value) 3656 { 3657 ARMCPU *cpu = env_archcpu(env); 3658 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3659 3660 if (!u32p) { 3661 return; 3662 } 3663 3664 u32p += env->pmsav7.rnr[M_REG_NS]; 3665 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3666 *u32p = value; 3667 } 3668 3669 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3670 uint64_t value) 3671 { 3672 ARMCPU *cpu = env_archcpu(env); 3673 uint32_t nrgs = cpu->pmsav7_dregion; 3674 3675 if (value >= nrgs) { 3676 qemu_log_mask(LOG_GUEST_ERROR, 3677 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3678 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3679 return; 3680 } 3681 3682 raw_write(env, ri, value); 3683 } 3684 3685 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3686 /* Reset for all these registers is handled in arm_cpu_reset(), 3687 * because the PMSAv7 is also used by M-profile CPUs, which do 3688 * not register cpregs but still need the state to be reset. 3689 */ 3690 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3691 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3692 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3693 .readfn = pmsav7_read, .writefn = pmsav7_write, 3694 .resetfn = arm_cp_reset_ignore }, 3695 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3696 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3697 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3698 .readfn = pmsav7_read, .writefn = pmsav7_write, 3699 .resetfn = arm_cp_reset_ignore }, 3700 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3701 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3702 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3703 .readfn = pmsav7_read, .writefn = pmsav7_write, 3704 .resetfn = arm_cp_reset_ignore }, 3705 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3706 .access = PL1_RW, 3707 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3708 .writefn = pmsav7_rgnr_write, 3709 .resetfn = arm_cp_reset_ignore }, 3710 }; 3711 3712 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3713 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3714 .access = PL1_RW, .type = ARM_CP_ALIAS, 3715 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3716 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3717 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3718 .access = PL1_RW, .type = ARM_CP_ALIAS, 3719 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3720 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3721 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3722 .access = PL1_RW, 3723 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3724 .resetvalue = 0, }, 3725 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3726 .access = PL1_RW, 3727 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3728 .resetvalue = 0, }, 3729 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3730 .access = PL1_RW, 3731 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3732 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3733 .access = PL1_RW, 3734 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3735 /* Protection region base and size registers */ 3736 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3737 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3738 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3739 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3740 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3741 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3742 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3743 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3744 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3745 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3746 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3747 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3748 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3749 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3750 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3751 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3752 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3753 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3754 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3755 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3756 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3757 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3758 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3759 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3760 }; 3761 3762 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3763 uint64_t value) 3764 { 3765 ARMCPU *cpu = env_archcpu(env); 3766 3767 if (!arm_feature(env, ARM_FEATURE_V8)) { 3768 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3769 /* 3770 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3771 * using Long-descriptor translation table format 3772 */ 3773 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3774 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3775 /* 3776 * In an implementation that includes the Security Extensions 3777 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3778 * Short-descriptor translation table format. 3779 */ 3780 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3781 } else { 3782 value &= TTBCR_N; 3783 } 3784 } 3785 3786 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3787 /* With LPAE the TTBCR could result in a change of ASID 3788 * via the TTBCR.A1 bit, so do a TLB flush. 3789 */ 3790 tlb_flush(CPU(cpu)); 3791 } 3792 raw_write(env, ri, value); 3793 } 3794 3795 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3796 uint64_t value) 3797 { 3798 ARMCPU *cpu = env_archcpu(env); 3799 3800 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3801 tlb_flush(CPU(cpu)); 3802 raw_write(env, ri, value); 3803 } 3804 3805 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3806 uint64_t value) 3807 { 3808 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3809 if (cpreg_field_is_64bit(ri) && 3810 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3811 ARMCPU *cpu = env_archcpu(env); 3812 tlb_flush(CPU(cpu)); 3813 } 3814 raw_write(env, ri, value); 3815 } 3816 3817 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3818 uint64_t value) 3819 { 3820 /* 3821 * If we are running with E2&0 regime, then an ASID is active. 3822 * Flush if that might be changing. Note we're not checking 3823 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3824 * holds the active ASID, only checking the field that might. 3825 */ 3826 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3827 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3828 uint16_t mask = ARMMMUIdxBit_E20_2 | 3829 ARMMMUIdxBit_E20_2_PAN | 3830 ARMMMUIdxBit_E20_0; 3831 tlb_flush_by_mmuidx(env_cpu(env), mask); 3832 } 3833 raw_write(env, ri, value); 3834 } 3835 3836 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3837 uint64_t value) 3838 { 3839 ARMCPU *cpu = env_archcpu(env); 3840 CPUState *cs = CPU(cpu); 3841 3842 /* 3843 * A change in VMID to the stage2 page table (Stage2) invalidates 3844 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 3845 */ 3846 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3847 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 3848 } 3849 raw_write(env, ri, value); 3850 } 3851 3852 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3853 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3854 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3855 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3856 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3857 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3858 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3859 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3860 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3861 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3862 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3863 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3864 offsetof(CPUARMState, cp15.dfar_ns) } }, 3865 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3866 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3867 .access = PL1_RW, .accessfn = access_tvm_trvm, 3868 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3869 .resetvalue = 0, }, 3870 }; 3871 3872 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3873 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3874 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3875 .access = PL1_RW, .accessfn = access_tvm_trvm, 3876 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3877 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3878 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3879 .access = PL1_RW, .accessfn = access_tvm_trvm, 3880 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3881 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3882 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3883 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3884 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3885 .access = PL1_RW, .accessfn = access_tvm_trvm, 3886 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3887 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3888 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3889 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3890 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3891 .access = PL1_RW, .accessfn = access_tvm_trvm, 3892 .writefn = vmsa_tcr_el12_write, 3893 .raw_writefn = raw_write, 3894 .resetvalue = 0, 3895 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3896 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3897 .access = PL1_RW, .accessfn = access_tvm_trvm, 3898 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3899 .raw_writefn = raw_write, 3900 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3901 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3902 }; 3903 3904 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3905 * qemu tlbs nor adjusting cached masks. 3906 */ 3907 static const ARMCPRegInfo ttbcr2_reginfo = { 3908 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3909 .access = PL1_RW, .accessfn = access_tvm_trvm, 3910 .type = ARM_CP_ALIAS, 3911 .bank_fieldoffsets = { 3912 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3913 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 3914 }, 3915 }; 3916 3917 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3918 uint64_t value) 3919 { 3920 env->cp15.c15_ticonfig = value & 0xe7; 3921 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3922 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3923 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3924 } 3925 3926 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3927 uint64_t value) 3928 { 3929 env->cp15.c15_threadid = value & 0xffff; 3930 } 3931 3932 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3933 uint64_t value) 3934 { 3935 /* Wait-for-interrupt (deprecated) */ 3936 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3937 } 3938 3939 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3940 uint64_t value) 3941 { 3942 /* On OMAP there are registers indicating the max/min index of dcache lines 3943 * containing a dirty line; cache flush operations have to reset these. 3944 */ 3945 env->cp15.c15_i_max = 0x000; 3946 env->cp15.c15_i_min = 0xff0; 3947 } 3948 3949 static const ARMCPRegInfo omap_cp_reginfo[] = { 3950 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3951 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3952 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3953 .resetvalue = 0, }, 3954 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3955 .access = PL1_RW, .type = ARM_CP_NOP }, 3956 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3957 .access = PL1_RW, 3958 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3959 .writefn = omap_ticonfig_write }, 3960 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3961 .access = PL1_RW, 3962 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3963 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3964 .access = PL1_RW, .resetvalue = 0xff0, 3965 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3966 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3967 .access = PL1_RW, 3968 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3969 .writefn = omap_threadid_write }, 3970 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3971 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3972 .type = ARM_CP_NO_RAW, 3973 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3974 /* TODO: Peripheral port remap register: 3975 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3976 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3977 * when MMU is off. 3978 */ 3979 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3980 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3981 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3982 .writefn = omap_cachemaint_write }, 3983 { .name = "C9", .cp = 15, .crn = 9, 3984 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3985 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3986 }; 3987 3988 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3989 uint64_t value) 3990 { 3991 env->cp15.c15_cpar = value & 0x3fff; 3992 } 3993 3994 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3995 { .name = "XSCALE_CPAR", 3996 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3997 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3998 .writefn = xscale_cpar_write, }, 3999 { .name = "XSCALE_AUXCR", 4000 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4001 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4002 .resetvalue = 0, }, 4003 /* XScale specific cache-lockdown: since we have no cache we NOP these 4004 * and hope the guest does not really rely on cache behaviour. 4005 */ 4006 { .name = "XSCALE_LOCK_ICACHE_LINE", 4007 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4008 .access = PL1_W, .type = ARM_CP_NOP }, 4009 { .name = "XSCALE_UNLOCK_ICACHE", 4010 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4011 .access = PL1_W, .type = ARM_CP_NOP }, 4012 { .name = "XSCALE_DCACHE_LOCK", 4013 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4014 .access = PL1_RW, .type = ARM_CP_NOP }, 4015 { .name = "XSCALE_UNLOCK_DCACHE", 4016 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4017 .access = PL1_W, .type = ARM_CP_NOP }, 4018 }; 4019 4020 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4021 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4022 * implementation of this implementation-defined space. 4023 * Ideally this should eventually disappear in favour of actually 4024 * implementing the correct behaviour for all cores. 4025 */ 4026 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4027 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4028 .access = PL1_RW, 4029 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4030 .resetvalue = 0 }, 4031 }; 4032 4033 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4034 /* Cache status: RAZ because we have no cache so it's always clean */ 4035 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4036 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4037 .resetvalue = 0 }, 4038 }; 4039 4040 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4041 /* We never have a block transfer operation in progress */ 4042 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4043 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4044 .resetvalue = 0 }, 4045 /* The cache ops themselves: these all NOP for QEMU */ 4046 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4047 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4048 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4049 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4050 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4051 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4052 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4053 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4054 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4055 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4056 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4057 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4058 }; 4059 4060 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4061 /* The cache test-and-clean instructions always return (1 << 30) 4062 * to indicate that there are no dirty cache lines. 4063 */ 4064 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4065 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4066 .resetvalue = (1 << 30) }, 4067 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4068 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4069 .resetvalue = (1 << 30) }, 4070 }; 4071 4072 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4073 /* Ignore ReadBuffer accesses */ 4074 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4075 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4076 .access = PL1_RW, .resetvalue = 0, 4077 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4078 }; 4079 4080 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4081 { 4082 unsigned int cur_el = arm_current_el(env); 4083 4084 if (arm_is_el2_enabled(env) && cur_el == 1) { 4085 return env->cp15.vpidr_el2; 4086 } 4087 return raw_read(env, ri); 4088 } 4089 4090 static uint64_t mpidr_read_val(CPUARMState *env) 4091 { 4092 ARMCPU *cpu = env_archcpu(env); 4093 uint64_t mpidr = cpu->mp_affinity; 4094 4095 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4096 mpidr |= (1U << 31); 4097 /* Cores which are uniprocessor (non-coherent) 4098 * but still implement the MP extensions set 4099 * bit 30. (For instance, Cortex-R5). 4100 */ 4101 if (cpu->mp_is_up) { 4102 mpidr |= (1u << 30); 4103 } 4104 } 4105 return mpidr; 4106 } 4107 4108 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4109 { 4110 unsigned int cur_el = arm_current_el(env); 4111 4112 if (arm_is_el2_enabled(env) && cur_el == 1) { 4113 return env->cp15.vmpidr_el2; 4114 } 4115 return mpidr_read_val(env); 4116 } 4117 4118 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4119 /* NOP AMAIR0/1 */ 4120 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4121 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4122 .access = PL1_RW, .accessfn = access_tvm_trvm, 4123 .type = ARM_CP_CONST, .resetvalue = 0 }, 4124 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4125 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4126 .access = PL1_RW, .accessfn = access_tvm_trvm, 4127 .type = ARM_CP_CONST, .resetvalue = 0 }, 4128 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4129 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4130 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4131 offsetof(CPUARMState, cp15.par_ns)} }, 4132 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4133 .access = PL1_RW, .accessfn = access_tvm_trvm, 4134 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4135 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4136 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4137 .writefn = vmsa_ttbr_write, }, 4138 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4139 .access = PL1_RW, .accessfn = access_tvm_trvm, 4140 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4141 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4142 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4143 .writefn = vmsa_ttbr_write, }, 4144 }; 4145 4146 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4147 { 4148 return vfp_get_fpcr(env); 4149 } 4150 4151 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4152 uint64_t value) 4153 { 4154 vfp_set_fpcr(env, value); 4155 } 4156 4157 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4158 { 4159 return vfp_get_fpsr(env); 4160 } 4161 4162 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4163 uint64_t value) 4164 { 4165 vfp_set_fpsr(env, value); 4166 } 4167 4168 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4169 bool isread) 4170 { 4171 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4172 return CP_ACCESS_TRAP; 4173 } 4174 return CP_ACCESS_OK; 4175 } 4176 4177 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4178 uint64_t value) 4179 { 4180 env->daif = value & PSTATE_DAIF; 4181 } 4182 4183 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4184 { 4185 return env->pstate & PSTATE_PAN; 4186 } 4187 4188 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4189 uint64_t value) 4190 { 4191 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4192 } 4193 4194 static const ARMCPRegInfo pan_reginfo = { 4195 .name = "PAN", .state = ARM_CP_STATE_AA64, 4196 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4197 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4198 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4199 }; 4200 4201 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4202 { 4203 return env->pstate & PSTATE_UAO; 4204 } 4205 4206 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4207 uint64_t value) 4208 { 4209 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4210 } 4211 4212 static const ARMCPRegInfo uao_reginfo = { 4213 .name = "UAO", .state = ARM_CP_STATE_AA64, 4214 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4215 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4216 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4217 }; 4218 4219 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4220 { 4221 return env->pstate & PSTATE_DIT; 4222 } 4223 4224 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4225 uint64_t value) 4226 { 4227 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4228 } 4229 4230 static const ARMCPRegInfo dit_reginfo = { 4231 .name = "DIT", .state = ARM_CP_STATE_AA64, 4232 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4233 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4234 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4235 }; 4236 4237 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4238 { 4239 return env->pstate & PSTATE_SSBS; 4240 } 4241 4242 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4243 uint64_t value) 4244 { 4245 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4246 } 4247 4248 static const ARMCPRegInfo ssbs_reginfo = { 4249 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4250 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4251 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4252 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4253 }; 4254 4255 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4256 const ARMCPRegInfo *ri, 4257 bool isread) 4258 { 4259 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4260 switch (arm_current_el(env)) { 4261 case 0: 4262 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4263 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4264 return CP_ACCESS_TRAP; 4265 } 4266 /* fall through */ 4267 case 1: 4268 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4269 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4270 return CP_ACCESS_TRAP_EL2; 4271 } 4272 break; 4273 } 4274 return CP_ACCESS_OK; 4275 } 4276 4277 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4278 { 4279 /* Cache invalidate/clean to Point of Unification... */ 4280 switch (arm_current_el(env)) { 4281 case 0: 4282 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4283 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4284 return CP_ACCESS_TRAP; 4285 } 4286 /* fall through */ 4287 case 1: 4288 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4289 if (arm_hcr_el2_eff(env) & hcrflags) { 4290 return CP_ACCESS_TRAP_EL2; 4291 } 4292 break; 4293 } 4294 return CP_ACCESS_OK; 4295 } 4296 4297 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4298 bool isread) 4299 { 4300 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4301 } 4302 4303 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4304 bool isread) 4305 { 4306 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4307 } 4308 4309 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4310 * Page D4-1736 (DDI0487A.b) 4311 */ 4312 4313 static int vae1_tlbmask(CPUARMState *env) 4314 { 4315 uint64_t hcr = arm_hcr_el2_eff(env); 4316 uint16_t mask; 4317 4318 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4319 mask = ARMMMUIdxBit_E20_2 | 4320 ARMMMUIdxBit_E20_2_PAN | 4321 ARMMMUIdxBit_E20_0; 4322 } else { 4323 mask = ARMMMUIdxBit_E10_1 | 4324 ARMMMUIdxBit_E10_1_PAN | 4325 ARMMMUIdxBit_E10_0; 4326 } 4327 return mask; 4328 } 4329 4330 /* Return 56 if TBI is enabled, 64 otherwise. */ 4331 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4332 uint64_t addr) 4333 { 4334 uint64_t tcr = regime_tcr(env, mmu_idx); 4335 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4336 int select = extract64(addr, 55, 1); 4337 4338 return (tbi >> select) & 1 ? 56 : 64; 4339 } 4340 4341 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4342 { 4343 uint64_t hcr = arm_hcr_el2_eff(env); 4344 ARMMMUIdx mmu_idx; 4345 4346 /* Only the regime of the mmu_idx below is significant. */ 4347 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4348 mmu_idx = ARMMMUIdx_E20_0; 4349 } else { 4350 mmu_idx = ARMMMUIdx_E10_0; 4351 } 4352 4353 return tlbbits_for_regime(env, mmu_idx, addr); 4354 } 4355 4356 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4357 uint64_t value) 4358 { 4359 CPUState *cs = env_cpu(env); 4360 int mask = vae1_tlbmask(env); 4361 4362 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4363 } 4364 4365 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4366 uint64_t value) 4367 { 4368 CPUState *cs = env_cpu(env); 4369 int mask = vae1_tlbmask(env); 4370 4371 if (tlb_force_broadcast(env)) { 4372 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4373 } else { 4374 tlb_flush_by_mmuidx(cs, mask); 4375 } 4376 } 4377 4378 static int e2_tlbmask(CPUARMState *env) 4379 { 4380 return (ARMMMUIdxBit_E20_0 | 4381 ARMMMUIdxBit_E20_2 | 4382 ARMMMUIdxBit_E20_2_PAN | 4383 ARMMMUIdxBit_E2); 4384 } 4385 4386 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4387 uint64_t value) 4388 { 4389 CPUState *cs = env_cpu(env); 4390 int mask = alle1_tlbmask(env); 4391 4392 tlb_flush_by_mmuidx(cs, mask); 4393 } 4394 4395 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4396 uint64_t value) 4397 { 4398 CPUState *cs = env_cpu(env); 4399 int mask = e2_tlbmask(env); 4400 4401 tlb_flush_by_mmuidx(cs, mask); 4402 } 4403 4404 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4405 uint64_t value) 4406 { 4407 ARMCPU *cpu = env_archcpu(env); 4408 CPUState *cs = CPU(cpu); 4409 4410 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4411 } 4412 4413 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 CPUState *cs = env_cpu(env); 4417 int mask = alle1_tlbmask(env); 4418 4419 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4420 } 4421 4422 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4423 uint64_t value) 4424 { 4425 CPUState *cs = env_cpu(env); 4426 int mask = e2_tlbmask(env); 4427 4428 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4429 } 4430 4431 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4432 uint64_t value) 4433 { 4434 CPUState *cs = env_cpu(env); 4435 4436 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4437 } 4438 4439 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4440 uint64_t value) 4441 { 4442 /* Invalidate by VA, EL2 4443 * Currently handles both VAE2 and VALE2, since we don't support 4444 * flush-last-level-only. 4445 */ 4446 CPUState *cs = env_cpu(env); 4447 int mask = e2_tlbmask(env); 4448 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4449 4450 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4451 } 4452 4453 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4454 uint64_t value) 4455 { 4456 /* Invalidate by VA, EL3 4457 * Currently handles both VAE3 and VALE3, since we don't support 4458 * flush-last-level-only. 4459 */ 4460 ARMCPU *cpu = env_archcpu(env); 4461 CPUState *cs = CPU(cpu); 4462 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4463 4464 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4465 } 4466 4467 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4468 uint64_t value) 4469 { 4470 CPUState *cs = env_cpu(env); 4471 int mask = vae1_tlbmask(env); 4472 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4473 int bits = vae1_tlbbits(env, pageaddr); 4474 4475 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4476 } 4477 4478 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4479 uint64_t value) 4480 { 4481 /* Invalidate by VA, EL1&0 (AArch64 version). 4482 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4483 * since we don't support flush-for-specific-ASID-only or 4484 * flush-last-level-only. 4485 */ 4486 CPUState *cs = env_cpu(env); 4487 int mask = vae1_tlbmask(env); 4488 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4489 int bits = vae1_tlbbits(env, pageaddr); 4490 4491 if (tlb_force_broadcast(env)) { 4492 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4493 } else { 4494 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4495 } 4496 } 4497 4498 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4499 uint64_t value) 4500 { 4501 CPUState *cs = env_cpu(env); 4502 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4503 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4504 4505 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4506 ARMMMUIdxBit_E2, bits); 4507 } 4508 4509 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4510 uint64_t value) 4511 { 4512 CPUState *cs = env_cpu(env); 4513 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4514 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4515 4516 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4517 ARMMMUIdxBit_E3, bits); 4518 } 4519 4520 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4521 { 4522 /* 4523 * The MSB of value is the NS field, which only applies if SEL2 4524 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4525 */ 4526 return (value >= 0 4527 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4528 && arm_is_secure_below_el3(env) 4529 ? ARMMMUIdxBit_Stage2_S 4530 : ARMMMUIdxBit_Stage2); 4531 } 4532 4533 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4534 uint64_t value) 4535 { 4536 CPUState *cs = env_cpu(env); 4537 int mask = ipas2e1_tlbmask(env, value); 4538 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4539 4540 if (tlb_force_broadcast(env)) { 4541 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4542 } else { 4543 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4544 } 4545 } 4546 4547 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4548 uint64_t value) 4549 { 4550 CPUState *cs = env_cpu(env); 4551 int mask = ipas2e1_tlbmask(env, value); 4552 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4553 4554 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4555 } 4556 4557 #ifdef TARGET_AARCH64 4558 typedef struct { 4559 uint64_t base; 4560 uint64_t length; 4561 } TLBIRange; 4562 4563 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4564 { 4565 /* 4566 * Note that the TLBI range TG field encoding differs from both 4567 * TG0 and TG1 encodings. 4568 */ 4569 switch (tg) { 4570 case 1: 4571 return Gran4K; 4572 case 2: 4573 return Gran16K; 4574 case 3: 4575 return Gran64K; 4576 default: 4577 return GranInvalid; 4578 } 4579 } 4580 4581 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4582 uint64_t value) 4583 { 4584 unsigned int page_size_granule, page_shift, num, scale, exponent; 4585 /* Extract one bit to represent the va selector in use. */ 4586 uint64_t select = sextract64(value, 36, 1); 4587 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4588 TLBIRange ret = { }; 4589 ARMGranuleSize gran; 4590 4591 page_size_granule = extract64(value, 46, 2); 4592 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4593 4594 /* The granule encoded in value must match the granule in use. */ 4595 if (gran != param.gran) { 4596 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4597 page_size_granule); 4598 return ret; 4599 } 4600 4601 page_shift = arm_granule_bits(gran); 4602 num = extract64(value, 39, 5); 4603 scale = extract64(value, 44, 2); 4604 exponent = (5 * scale) + 1; 4605 4606 ret.length = (num + 1) << (exponent + page_shift); 4607 4608 if (param.select) { 4609 ret.base = sextract64(value, 0, 37); 4610 } else { 4611 ret.base = extract64(value, 0, 37); 4612 } 4613 if (param.ds) { 4614 /* 4615 * With DS=1, BaseADDR is always shifted 16 so that it is able 4616 * to address all 52 va bits. The input address is perforce 4617 * aligned on a 64k boundary regardless of translation granule. 4618 */ 4619 page_shift = 16; 4620 } 4621 ret.base <<= page_shift; 4622 4623 return ret; 4624 } 4625 4626 static void do_rvae_write(CPUARMState *env, uint64_t value, 4627 int idxmap, bool synced) 4628 { 4629 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4630 TLBIRange range; 4631 int bits; 4632 4633 range = tlbi_aa64_get_range(env, one_idx, value); 4634 bits = tlbbits_for_regime(env, one_idx, range.base); 4635 4636 if (synced) { 4637 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4638 range.base, 4639 range.length, 4640 idxmap, 4641 bits); 4642 } else { 4643 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4644 range.length, idxmap, bits); 4645 } 4646 } 4647 4648 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4649 const ARMCPRegInfo *ri, 4650 uint64_t value) 4651 { 4652 /* 4653 * Invalidate by VA range, EL1&0. 4654 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4655 * since we don't support flush-for-specific-ASID-only or 4656 * flush-last-level-only. 4657 */ 4658 4659 do_rvae_write(env, value, vae1_tlbmask(env), 4660 tlb_force_broadcast(env)); 4661 } 4662 4663 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4664 const ARMCPRegInfo *ri, 4665 uint64_t value) 4666 { 4667 /* 4668 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4669 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4670 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4671 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4672 * shareable specific flushes. 4673 */ 4674 4675 do_rvae_write(env, value, vae1_tlbmask(env), true); 4676 } 4677 4678 static int vae2_tlbmask(CPUARMState *env) 4679 { 4680 return ARMMMUIdxBit_E2; 4681 } 4682 4683 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4684 const ARMCPRegInfo *ri, 4685 uint64_t value) 4686 { 4687 /* 4688 * Invalidate by VA range, EL2. 4689 * Currently handles all of RVAE2 and RVALE2, 4690 * since we don't support flush-for-specific-ASID-only or 4691 * flush-last-level-only. 4692 */ 4693 4694 do_rvae_write(env, value, vae2_tlbmask(env), 4695 tlb_force_broadcast(env)); 4696 4697 4698 } 4699 4700 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4701 const ARMCPRegInfo *ri, 4702 uint64_t value) 4703 { 4704 /* 4705 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4706 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4707 * since we don't support flush-for-specific-ASID-only, 4708 * flush-last-level-only or inner/outer shareable specific flushes. 4709 */ 4710 4711 do_rvae_write(env, value, vae2_tlbmask(env), true); 4712 4713 } 4714 4715 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4716 const ARMCPRegInfo *ri, 4717 uint64_t value) 4718 { 4719 /* 4720 * Invalidate by VA range, EL3. 4721 * Currently handles all of RVAE3 and RVALE3, 4722 * since we don't support flush-for-specific-ASID-only or 4723 * flush-last-level-only. 4724 */ 4725 4726 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 4727 } 4728 4729 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4730 const ARMCPRegInfo *ri, 4731 uint64_t value) 4732 { 4733 /* 4734 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4735 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4736 * since we don't support flush-for-specific-ASID-only, 4737 * flush-last-level-only or inner/outer specific flushes. 4738 */ 4739 4740 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 4741 } 4742 4743 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4744 uint64_t value) 4745 { 4746 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 4747 tlb_force_broadcast(env)); 4748 } 4749 4750 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 4751 const ARMCPRegInfo *ri, 4752 uint64_t value) 4753 { 4754 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 4755 } 4756 #endif 4757 4758 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4759 bool isread) 4760 { 4761 int cur_el = arm_current_el(env); 4762 4763 if (cur_el < 2) { 4764 uint64_t hcr = arm_hcr_el2_eff(env); 4765 4766 if (cur_el == 0) { 4767 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4768 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4769 return CP_ACCESS_TRAP_EL2; 4770 } 4771 } else { 4772 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4773 return CP_ACCESS_TRAP; 4774 } 4775 if (hcr & HCR_TDZ) { 4776 return CP_ACCESS_TRAP_EL2; 4777 } 4778 } 4779 } else if (hcr & HCR_TDZ) { 4780 return CP_ACCESS_TRAP_EL2; 4781 } 4782 } 4783 return CP_ACCESS_OK; 4784 } 4785 4786 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4787 { 4788 ARMCPU *cpu = env_archcpu(env); 4789 int dzp_bit = 1 << 4; 4790 4791 /* DZP indicates whether DC ZVA access is allowed */ 4792 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4793 dzp_bit = 0; 4794 } 4795 return cpu->dcz_blocksize | dzp_bit; 4796 } 4797 4798 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4799 bool isread) 4800 { 4801 if (!(env->pstate & PSTATE_SP)) { 4802 /* Access to SP_EL0 is undefined if it's being used as 4803 * the stack pointer. 4804 */ 4805 return CP_ACCESS_TRAP_UNCATEGORIZED; 4806 } 4807 return CP_ACCESS_OK; 4808 } 4809 4810 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4811 { 4812 return env->pstate & PSTATE_SP; 4813 } 4814 4815 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4816 { 4817 update_spsel(env, val); 4818 } 4819 4820 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4821 uint64_t value) 4822 { 4823 ARMCPU *cpu = env_archcpu(env); 4824 4825 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4826 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4827 value &= ~SCTLR_M; 4828 } 4829 4830 /* ??? Lots of these bits are not implemented. */ 4831 4832 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4833 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4834 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4835 } else { 4836 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4837 SCTLR_ATA0 | SCTLR_ATA); 4838 } 4839 } 4840 4841 if (raw_read(env, ri) == value) { 4842 /* Skip the TLB flush if nothing actually changed; Linux likes 4843 * to do a lot of pointless SCTLR writes. 4844 */ 4845 return; 4846 } 4847 4848 raw_write(env, ri, value); 4849 4850 /* This may enable/disable the MMU, so do a TLB flush. */ 4851 tlb_flush(CPU(cpu)); 4852 4853 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4854 /* 4855 * Normally we would always end the TB on an SCTLR write; see the 4856 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4857 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4858 * of hflags from the translator, so do it here. 4859 */ 4860 arm_rebuild_hflags(env); 4861 } 4862 } 4863 4864 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4865 uint64_t value) 4866 { 4867 /* 4868 * Some MDCR_EL3 bits affect whether PMU counters are running: 4869 * if we are trying to change any of those then we must 4870 * bracket this update with PMU start/finish calls. 4871 */ 4872 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4873 4874 if (pmu_op) { 4875 pmu_op_start(env); 4876 } 4877 env->cp15.mdcr_el3 = value; 4878 if (pmu_op) { 4879 pmu_op_finish(env); 4880 } 4881 } 4882 4883 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4884 uint64_t value) 4885 { 4886 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 4887 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 4888 } 4889 4890 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4891 uint64_t value) 4892 { 4893 /* 4894 * Some MDCR_EL2 bits affect whether PMU counters are running: 4895 * if we are trying to change any of those then we must 4896 * bracket this update with PMU start/finish calls. 4897 */ 4898 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4899 4900 if (pmu_op) { 4901 pmu_op_start(env); 4902 } 4903 env->cp15.mdcr_el2 = value; 4904 if (pmu_op) { 4905 pmu_op_finish(env); 4906 } 4907 } 4908 4909 static const ARMCPRegInfo v8_cp_reginfo[] = { 4910 /* Minimal set of EL0-visible registers. This will need to be expanded 4911 * significantly for system emulation of AArch64 CPUs. 4912 */ 4913 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4915 .access = PL0_RW, .type = ARM_CP_NZCV }, 4916 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4918 .type = ARM_CP_NO_RAW, 4919 .access = PL0_RW, .accessfn = aa64_daif_access, 4920 .fieldoffset = offsetof(CPUARMState, daif), 4921 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4922 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4923 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4924 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4925 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4926 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4927 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4928 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4929 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4930 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4932 .access = PL0_R, .type = ARM_CP_NO_RAW, 4933 .readfn = aa64_dczid_read }, 4934 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4936 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4937 #ifndef CONFIG_USER_ONLY 4938 /* Avoid overhead of an access check that always passes in user-mode */ 4939 .accessfn = aa64_zva_access, 4940 #endif 4941 }, 4942 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4944 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4945 /* Cache ops: all NOPs since we don't emulate caches */ 4946 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4948 .access = PL1_W, .type = ARM_CP_NOP, 4949 .accessfn = access_ticab }, 4950 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4952 .access = PL1_W, .type = ARM_CP_NOP, 4953 .accessfn = access_tocu }, 4954 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4956 .access = PL0_W, .type = ARM_CP_NOP, 4957 .accessfn = access_tocu }, 4958 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4960 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4961 .type = ARM_CP_NOP }, 4962 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4964 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4965 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4966 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4967 .access = PL0_W, .type = ARM_CP_NOP, 4968 .accessfn = aa64_cacheop_poc_access }, 4969 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4970 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4971 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4972 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4973 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4974 .access = PL0_W, .type = ARM_CP_NOP, 4975 .accessfn = access_tocu }, 4976 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4977 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4978 .access = PL0_W, .type = ARM_CP_NOP, 4979 .accessfn = aa64_cacheop_poc_access }, 4980 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4981 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4982 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4983 /* TLBI operations */ 4984 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4985 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4986 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 4987 .writefn = tlbi_aa64_vmalle1is_write }, 4988 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4989 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4990 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 4991 .writefn = tlbi_aa64_vae1is_write }, 4992 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4993 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4994 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 4995 .writefn = tlbi_aa64_vmalle1is_write }, 4996 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4997 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4998 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 4999 .writefn = tlbi_aa64_vae1is_write }, 5000 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5001 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5002 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5003 .writefn = tlbi_aa64_vae1is_write }, 5004 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5005 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5006 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5007 .writefn = tlbi_aa64_vae1is_write }, 5008 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5009 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5010 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5011 .writefn = tlbi_aa64_vmalle1_write }, 5012 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5013 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5014 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5015 .writefn = tlbi_aa64_vae1_write }, 5016 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5017 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5018 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5019 .writefn = tlbi_aa64_vmalle1_write }, 5020 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5021 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5022 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5023 .writefn = tlbi_aa64_vae1_write }, 5024 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5025 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5026 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5027 .writefn = tlbi_aa64_vae1_write }, 5028 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5029 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5030 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5031 .writefn = tlbi_aa64_vae1_write }, 5032 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5033 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5034 .access = PL2_W, .type = ARM_CP_NO_RAW, 5035 .writefn = tlbi_aa64_ipas2e1is_write }, 5036 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5037 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5038 .access = PL2_W, .type = ARM_CP_NO_RAW, 5039 .writefn = tlbi_aa64_ipas2e1is_write }, 5040 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5041 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5042 .access = PL2_W, .type = ARM_CP_NO_RAW, 5043 .writefn = tlbi_aa64_alle1is_write }, 5044 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5045 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5046 .access = PL2_W, .type = ARM_CP_NO_RAW, 5047 .writefn = tlbi_aa64_alle1is_write }, 5048 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5049 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5050 .access = PL2_W, .type = ARM_CP_NO_RAW, 5051 .writefn = tlbi_aa64_ipas2e1_write }, 5052 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5053 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5054 .access = PL2_W, .type = ARM_CP_NO_RAW, 5055 .writefn = tlbi_aa64_ipas2e1_write }, 5056 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5057 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5058 .access = PL2_W, .type = ARM_CP_NO_RAW, 5059 .writefn = tlbi_aa64_alle1_write }, 5060 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5061 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5062 .access = PL2_W, .type = ARM_CP_NO_RAW, 5063 .writefn = tlbi_aa64_alle1is_write }, 5064 #ifndef CONFIG_USER_ONLY 5065 /* 64 bit address translation operations */ 5066 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5067 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5068 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5069 .writefn = ats_write64 }, 5070 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5071 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5072 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5073 .writefn = ats_write64 }, 5074 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5075 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5076 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5077 .writefn = ats_write64 }, 5078 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5079 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5080 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5081 .writefn = ats_write64 }, 5082 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5083 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5084 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5085 .writefn = ats_write64 }, 5086 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5087 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5088 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5089 .writefn = ats_write64 }, 5090 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5091 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5092 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5093 .writefn = ats_write64 }, 5094 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5095 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5096 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5097 .writefn = ats_write64 }, 5098 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5099 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5100 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5101 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5102 .writefn = ats_write64 }, 5103 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5104 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5105 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5106 .writefn = ats_write64 }, 5107 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5108 .type = ARM_CP_ALIAS, 5109 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5110 .access = PL1_RW, .resetvalue = 0, 5111 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5112 .writefn = par_write }, 5113 #endif 5114 /* TLB invalidate last level of translation table walk */ 5115 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5116 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5117 .writefn = tlbimva_is_write }, 5118 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5119 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5120 .writefn = tlbimvaa_is_write }, 5121 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5122 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5123 .writefn = tlbimva_write }, 5124 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5125 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5126 .writefn = tlbimvaa_write }, 5127 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5128 .type = ARM_CP_NO_RAW, .access = PL2_W, 5129 .writefn = tlbimva_hyp_write }, 5130 { .name = "TLBIMVALHIS", 5131 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5132 .type = ARM_CP_NO_RAW, .access = PL2_W, 5133 .writefn = tlbimva_hyp_is_write }, 5134 { .name = "TLBIIPAS2", 5135 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5136 .type = ARM_CP_NO_RAW, .access = PL2_W, 5137 .writefn = tlbiipas2_hyp_write }, 5138 { .name = "TLBIIPAS2IS", 5139 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5140 .type = ARM_CP_NO_RAW, .access = PL2_W, 5141 .writefn = tlbiipas2is_hyp_write }, 5142 { .name = "TLBIIPAS2L", 5143 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5144 .type = ARM_CP_NO_RAW, .access = PL2_W, 5145 .writefn = tlbiipas2_hyp_write }, 5146 { .name = "TLBIIPAS2LIS", 5147 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5148 .type = ARM_CP_NO_RAW, .access = PL2_W, 5149 .writefn = tlbiipas2is_hyp_write }, 5150 /* 32 bit cache operations */ 5151 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5152 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5153 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5154 .type = ARM_CP_NOP, .access = PL1_W }, 5155 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5156 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5157 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5158 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5159 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5160 .type = ARM_CP_NOP, .access = PL1_W }, 5161 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5162 .type = ARM_CP_NOP, .access = PL1_W }, 5163 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5164 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5165 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5166 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5167 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5168 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5169 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5170 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5171 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5172 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5173 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5174 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5175 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5176 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5177 /* MMU Domain access control / MPU write buffer control */ 5178 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5179 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5180 .writefn = dacr_write, .raw_writefn = raw_write, 5181 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5182 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5183 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5184 .type = ARM_CP_ALIAS, 5185 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5186 .access = PL1_RW, 5187 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5188 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5189 .type = ARM_CP_ALIAS, 5190 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5191 .access = PL1_RW, 5192 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5193 /* We rely on the access checks not allowing the guest to write to the 5194 * state field when SPSel indicates that it's being used as the stack 5195 * pointer. 5196 */ 5197 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5198 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5199 .access = PL1_RW, .accessfn = sp_el0_access, 5200 .type = ARM_CP_ALIAS, 5201 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5202 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5203 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5204 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5205 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5206 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5207 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5208 .type = ARM_CP_NO_RAW, 5209 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5210 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5211 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5212 .access = PL2_RW, 5213 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5214 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5215 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5216 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5217 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5218 .writefn = dacr_write, .raw_writefn = raw_write, 5219 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5220 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5221 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5222 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5223 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5224 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5225 .type = ARM_CP_ALIAS, 5226 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5227 .access = PL2_RW, 5228 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5229 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5230 .type = ARM_CP_ALIAS, 5231 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5232 .access = PL2_RW, 5233 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5234 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5235 .type = ARM_CP_ALIAS, 5236 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5237 .access = PL2_RW, 5238 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5239 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5240 .type = ARM_CP_ALIAS, 5241 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5242 .access = PL2_RW, 5243 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5244 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5245 .type = ARM_CP_IO, 5246 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5247 .resetvalue = 0, 5248 .access = PL3_RW, 5249 .writefn = mdcr_el3_write, 5250 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5251 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5252 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5253 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5254 .writefn = sdcr_write, 5255 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5256 }; 5257 5258 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5259 { 5260 ARMCPU *cpu = env_archcpu(env); 5261 5262 if (arm_feature(env, ARM_FEATURE_V8)) { 5263 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5264 } else { 5265 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5266 } 5267 5268 if (arm_feature(env, ARM_FEATURE_EL3)) { 5269 valid_mask &= ~HCR_HCD; 5270 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5271 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5272 * However, if we're using the SMC PSCI conduit then QEMU is 5273 * effectively acting like EL3 firmware and so the guest at 5274 * EL2 should retain the ability to prevent EL1 from being 5275 * able to make SMC calls into the ersatz firmware, so in 5276 * that case HCR.TSC should be read/write. 5277 */ 5278 valid_mask &= ~HCR_TSC; 5279 } 5280 5281 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5282 if (cpu_isar_feature(aa64_vh, cpu)) { 5283 valid_mask |= HCR_E2H; 5284 } 5285 if (cpu_isar_feature(aa64_ras, cpu)) { 5286 valid_mask |= HCR_TERR | HCR_TEA; 5287 } 5288 if (cpu_isar_feature(aa64_lor, cpu)) { 5289 valid_mask |= HCR_TLOR; 5290 } 5291 if (cpu_isar_feature(aa64_pauth, cpu)) { 5292 valid_mask |= HCR_API | HCR_APK; 5293 } 5294 if (cpu_isar_feature(aa64_mte, cpu)) { 5295 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5296 } 5297 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5298 valid_mask |= HCR_ENSCXT; 5299 } 5300 if (cpu_isar_feature(aa64_fwb, cpu)) { 5301 valid_mask |= HCR_FWB; 5302 } 5303 } 5304 5305 if (cpu_isar_feature(any_evt, cpu)) { 5306 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5307 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5308 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5309 } 5310 5311 /* Clear RES0 bits. */ 5312 value &= valid_mask; 5313 5314 /* 5315 * These bits change the MMU setup: 5316 * HCR_VM enables stage 2 translation 5317 * HCR_PTW forbids certain page-table setups 5318 * HCR_DC disables stage1 and enables stage2 translation 5319 * HCR_DCT enables tagging on (disabled) stage1 translation 5320 * HCR_FWB changes the interpretation of stage2 descriptor bits 5321 */ 5322 if ((env->cp15.hcr_el2 ^ value) & 5323 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5324 tlb_flush(CPU(cpu)); 5325 } 5326 env->cp15.hcr_el2 = value; 5327 5328 /* 5329 * Updates to VI and VF require us to update the status of 5330 * virtual interrupts, which are the logical OR of these bits 5331 * and the state of the input lines from the GIC. (This requires 5332 * that we have the iothread lock, which is done by marking the 5333 * reginfo structs as ARM_CP_IO.) 5334 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5335 * possible for it to be taken immediately, because VIRQ and 5336 * VFIQ are masked unless running at EL0 or EL1, and HCR 5337 * can only be written at EL2. 5338 */ 5339 g_assert(qemu_mutex_iothread_locked()); 5340 arm_cpu_update_virq(cpu); 5341 arm_cpu_update_vfiq(cpu); 5342 arm_cpu_update_vserr(cpu); 5343 } 5344 5345 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5346 { 5347 do_hcr_write(env, value, 0); 5348 } 5349 5350 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5351 uint64_t value) 5352 { 5353 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5354 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5355 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5356 } 5357 5358 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5359 uint64_t value) 5360 { 5361 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5362 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5363 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5364 } 5365 5366 /* 5367 * Return the effective value of HCR_EL2, at the given security state. 5368 * Bits that are not included here: 5369 * RW (read from SCR_EL3.RW as needed) 5370 */ 5371 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5372 { 5373 uint64_t ret = env->cp15.hcr_el2; 5374 5375 if (!arm_is_el2_enabled_secstate(env, secure)) { 5376 /* 5377 * "This register has no effect if EL2 is not enabled in the 5378 * current Security state". This is ARMv8.4-SecEL2 speak for 5379 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5380 * 5381 * Prior to that, the language was "In an implementation that 5382 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5383 * as if this field is 0 for all purposes other than a direct 5384 * read or write access of HCR_EL2". With lots of enumeration 5385 * on a per-field basis. In current QEMU, this is condition 5386 * is arm_is_secure_below_el3. 5387 * 5388 * Since the v8.4 language applies to the entire register, and 5389 * appears to be backward compatible, use that. 5390 */ 5391 return 0; 5392 } 5393 5394 /* 5395 * For a cpu that supports both aarch64 and aarch32, we can set bits 5396 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5397 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5398 */ 5399 if (!arm_el_is_aa64(env, 2)) { 5400 uint64_t aa32_valid; 5401 5402 /* 5403 * These bits are up-to-date as of ARMv8.6. 5404 * For HCR, it's easiest to list just the 2 bits that are invalid. 5405 * For HCR2, list those that are valid. 5406 */ 5407 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5408 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5409 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5410 ret &= aa32_valid; 5411 } 5412 5413 if (ret & HCR_TGE) { 5414 /* These bits are up-to-date as of ARMv8.6. */ 5415 if (ret & HCR_E2H) { 5416 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5417 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5418 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5419 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5420 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5421 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5422 } else { 5423 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5424 } 5425 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5426 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5427 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5428 HCR_TLOR); 5429 } 5430 5431 return ret; 5432 } 5433 5434 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5435 { 5436 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5437 } 5438 5439 /* 5440 * Corresponds to ARM pseudocode function ELIsInHost(). 5441 */ 5442 bool el_is_in_host(CPUARMState *env, int el) 5443 { 5444 uint64_t mask; 5445 5446 /* 5447 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5448 * Perform the simplest bit tests first, and validate EL2 afterward. 5449 */ 5450 if (el & 1) { 5451 return false; /* EL1 or EL3 */ 5452 } 5453 5454 /* 5455 * Note that hcr_write() checks isar_feature_aa64_vh(), 5456 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5457 */ 5458 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5459 if ((env->cp15.hcr_el2 & mask) != mask) { 5460 return false; 5461 } 5462 5463 /* TGE and/or E2H set: double check those bits are currently legal. */ 5464 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5465 } 5466 5467 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5468 uint64_t value) 5469 { 5470 uint64_t valid_mask = 0; 5471 5472 /* No features adding bits to HCRX are implemented. */ 5473 5474 /* Clear RES0 bits. */ 5475 env->cp15.hcrx_el2 = value & valid_mask; 5476 } 5477 5478 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5479 bool isread) 5480 { 5481 if (arm_current_el(env) < 3 5482 && arm_feature(env, ARM_FEATURE_EL3) 5483 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5484 return CP_ACCESS_TRAP_EL3; 5485 } 5486 return CP_ACCESS_OK; 5487 } 5488 5489 static const ARMCPRegInfo hcrx_el2_reginfo = { 5490 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5491 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5492 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5493 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5494 }; 5495 5496 /* Return the effective value of HCRX_EL2. */ 5497 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5498 { 5499 /* 5500 * The bits in this register behave as 0 for all purposes other than 5501 * direct reads of the register if: 5502 * - EL2 is not enabled in the current security state, 5503 * - SCR_EL3.HXEn is 0. 5504 */ 5505 if (!arm_is_el2_enabled(env) 5506 || (arm_feature(env, ARM_FEATURE_EL3) 5507 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5508 return 0; 5509 } 5510 return env->cp15.hcrx_el2; 5511 } 5512 5513 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5514 uint64_t value) 5515 { 5516 /* 5517 * For A-profile AArch32 EL3, if NSACR.CP10 5518 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5519 */ 5520 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5521 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5522 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5523 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5524 } 5525 env->cp15.cptr_el[2] = value; 5526 } 5527 5528 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5529 { 5530 /* 5531 * For A-profile AArch32 EL3, if NSACR.CP10 5532 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5533 */ 5534 uint64_t value = env->cp15.cptr_el[2]; 5535 5536 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5537 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5538 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5539 } 5540 return value; 5541 } 5542 5543 static const ARMCPRegInfo el2_cp_reginfo[] = { 5544 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5545 .type = ARM_CP_IO, 5546 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5547 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5548 .writefn = hcr_write }, 5549 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5550 .type = ARM_CP_ALIAS | ARM_CP_IO, 5551 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5552 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5553 .writefn = hcr_writelow }, 5554 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5555 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5556 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5557 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5558 .type = ARM_CP_ALIAS, 5559 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5560 .access = PL2_RW, 5561 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5562 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5563 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5564 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5565 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5566 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5567 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5568 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5569 .type = ARM_CP_ALIAS, 5570 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5571 .access = PL2_RW, 5572 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5573 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5574 .type = ARM_CP_ALIAS, 5575 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5576 .access = PL2_RW, 5577 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5578 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5579 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5580 .access = PL2_RW, .writefn = vbar_write, 5581 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5582 .resetvalue = 0 }, 5583 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5584 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5585 .access = PL3_RW, .type = ARM_CP_ALIAS, 5586 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5587 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5588 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5589 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5590 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5591 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5592 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5593 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5594 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5595 .resetvalue = 0 }, 5596 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5597 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5598 .access = PL2_RW, .type = ARM_CP_ALIAS, 5599 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5600 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5601 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5602 .access = PL2_RW, .type = ARM_CP_CONST, 5603 .resetvalue = 0 }, 5604 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5605 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5606 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5607 .access = PL2_RW, .type = ARM_CP_CONST, 5608 .resetvalue = 0 }, 5609 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5610 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5611 .access = PL2_RW, .type = ARM_CP_CONST, 5612 .resetvalue = 0 }, 5613 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5614 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5615 .access = PL2_RW, .type = ARM_CP_CONST, 5616 .resetvalue = 0 }, 5617 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5618 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5619 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5620 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5621 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5622 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5623 .type = ARM_CP_ALIAS, 5624 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5625 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5626 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5627 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5628 .access = PL2_RW, 5629 /* no .writefn needed as this can't cause an ASID change */ 5630 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5631 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5632 .cp = 15, .opc1 = 6, .crm = 2, 5633 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5634 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5635 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5636 .writefn = vttbr_write }, 5637 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5638 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5639 .access = PL2_RW, .writefn = vttbr_write, 5640 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5641 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5642 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5643 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5644 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5645 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5646 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5647 .access = PL2_RW, .resetvalue = 0, 5648 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5649 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5650 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5651 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5652 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5653 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5654 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5655 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5656 { .name = "TLBIALLNSNH", 5657 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5658 .type = ARM_CP_NO_RAW, .access = PL2_W, 5659 .writefn = tlbiall_nsnh_write }, 5660 { .name = "TLBIALLNSNHIS", 5661 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5662 .type = ARM_CP_NO_RAW, .access = PL2_W, 5663 .writefn = tlbiall_nsnh_is_write }, 5664 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5665 .type = ARM_CP_NO_RAW, .access = PL2_W, 5666 .writefn = tlbiall_hyp_write }, 5667 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5668 .type = ARM_CP_NO_RAW, .access = PL2_W, 5669 .writefn = tlbiall_hyp_is_write }, 5670 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5671 .type = ARM_CP_NO_RAW, .access = PL2_W, 5672 .writefn = tlbimva_hyp_write }, 5673 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5674 .type = ARM_CP_NO_RAW, .access = PL2_W, 5675 .writefn = tlbimva_hyp_is_write }, 5676 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5677 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5678 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5679 .writefn = tlbi_aa64_alle2_write }, 5680 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5681 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5682 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5683 .writefn = tlbi_aa64_vae2_write }, 5684 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5685 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5686 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5687 .writefn = tlbi_aa64_vae2_write }, 5688 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5689 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5690 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5691 .writefn = tlbi_aa64_alle2is_write }, 5692 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5693 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5694 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5695 .writefn = tlbi_aa64_vae2is_write }, 5696 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5697 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5698 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5699 .writefn = tlbi_aa64_vae2is_write }, 5700 #ifndef CONFIG_USER_ONLY 5701 /* Unlike the other EL2-related AT operations, these must 5702 * UNDEF from EL3 if EL2 is not implemented, which is why we 5703 * define them here rather than with the rest of the AT ops. 5704 */ 5705 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5706 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5707 .access = PL2_W, .accessfn = at_s1e2_access, 5708 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5709 .writefn = ats_write64 }, 5710 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5711 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5712 .access = PL2_W, .accessfn = at_s1e2_access, 5713 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5714 .writefn = ats_write64 }, 5715 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5716 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5717 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5718 * to behave as if SCR.NS was 1. 5719 */ 5720 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5721 .access = PL2_W, 5722 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5723 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5724 .access = PL2_W, 5725 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5726 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5727 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5728 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5729 * reset values as IMPDEF. We choose to reset to 3 to comply with 5730 * both ARMv7 and ARMv8. 5731 */ 5732 .access = PL2_RW, .resetvalue = 3, 5733 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5734 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5735 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5736 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5737 .writefn = gt_cntvoff_write, 5738 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5739 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5740 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5741 .writefn = gt_cntvoff_write, 5742 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5743 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5744 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5745 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5746 .type = ARM_CP_IO, .access = PL2_RW, 5747 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5748 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5749 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5750 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5751 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5752 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5753 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5754 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5755 .resetfn = gt_hyp_timer_reset, 5756 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5757 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5758 .type = ARM_CP_IO, 5759 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5760 .access = PL2_RW, 5761 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5762 .resetvalue = 0, 5763 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5764 #endif 5765 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5766 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5767 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5768 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5769 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5770 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5771 .access = PL2_RW, 5772 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5773 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5774 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5775 .access = PL2_RW, 5776 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5777 }; 5778 5779 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5780 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5781 .type = ARM_CP_ALIAS | ARM_CP_IO, 5782 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5783 .access = PL2_RW, 5784 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5785 .writefn = hcr_writehigh }, 5786 }; 5787 5788 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5789 bool isread) 5790 { 5791 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5792 return CP_ACCESS_OK; 5793 } 5794 return CP_ACCESS_TRAP_UNCATEGORIZED; 5795 } 5796 5797 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5798 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5799 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5800 .access = PL2_RW, .accessfn = sel2_access, 5801 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5802 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5803 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5804 .access = PL2_RW, .accessfn = sel2_access, 5805 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5806 }; 5807 5808 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5809 bool isread) 5810 { 5811 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5812 * At Secure EL1 it traps to EL3 or EL2. 5813 */ 5814 if (arm_current_el(env) == 3) { 5815 return CP_ACCESS_OK; 5816 } 5817 if (arm_is_secure_below_el3(env)) { 5818 if (env->cp15.scr_el3 & SCR_EEL2) { 5819 return CP_ACCESS_TRAP_EL2; 5820 } 5821 return CP_ACCESS_TRAP_EL3; 5822 } 5823 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5824 if (isread) { 5825 return CP_ACCESS_OK; 5826 } 5827 return CP_ACCESS_TRAP_UNCATEGORIZED; 5828 } 5829 5830 static const ARMCPRegInfo el3_cp_reginfo[] = { 5831 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5832 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5833 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5834 .resetfn = scr_reset, .writefn = scr_write }, 5835 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5836 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5837 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5838 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5839 .writefn = scr_write }, 5840 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5841 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5842 .access = PL3_RW, .resetvalue = 0, 5843 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5844 { .name = "SDER", 5845 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5846 .access = PL3_RW, .resetvalue = 0, 5847 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5848 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5849 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5850 .writefn = vbar_write, .resetvalue = 0, 5851 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5852 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5853 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5854 .access = PL3_RW, .resetvalue = 0, 5855 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5856 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5857 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5858 .access = PL3_RW, 5859 /* no .writefn needed as this can't cause an ASID change */ 5860 .resetvalue = 0, 5861 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5862 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5863 .type = ARM_CP_ALIAS, 5864 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5865 .access = PL3_RW, 5866 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5867 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5868 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5869 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5870 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5871 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5872 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5873 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5874 .type = ARM_CP_ALIAS, 5875 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5876 .access = PL3_RW, 5877 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5878 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5879 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5880 .access = PL3_RW, .writefn = vbar_write, 5881 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5882 .resetvalue = 0 }, 5883 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5884 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5885 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5886 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5887 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5888 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5889 .access = PL3_RW, .resetvalue = 0, 5890 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5891 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5892 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5893 .access = PL3_RW, .type = ARM_CP_CONST, 5894 .resetvalue = 0 }, 5895 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5896 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5897 .access = PL3_RW, .type = ARM_CP_CONST, 5898 .resetvalue = 0 }, 5899 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5900 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5901 .access = PL3_RW, .type = ARM_CP_CONST, 5902 .resetvalue = 0 }, 5903 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5904 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5905 .access = PL3_W, .type = ARM_CP_NO_RAW, 5906 .writefn = tlbi_aa64_alle3is_write }, 5907 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5908 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5909 .access = PL3_W, .type = ARM_CP_NO_RAW, 5910 .writefn = tlbi_aa64_vae3is_write }, 5911 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5912 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5913 .access = PL3_W, .type = ARM_CP_NO_RAW, 5914 .writefn = tlbi_aa64_vae3is_write }, 5915 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5916 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5917 .access = PL3_W, .type = ARM_CP_NO_RAW, 5918 .writefn = tlbi_aa64_alle3_write }, 5919 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5920 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5921 .access = PL3_W, .type = ARM_CP_NO_RAW, 5922 .writefn = tlbi_aa64_vae3_write }, 5923 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5924 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5925 .access = PL3_W, .type = ARM_CP_NO_RAW, 5926 .writefn = tlbi_aa64_vae3_write }, 5927 }; 5928 5929 #ifndef CONFIG_USER_ONLY 5930 /* Test if system register redirection is to occur in the current state. */ 5931 static bool redirect_for_e2h(CPUARMState *env) 5932 { 5933 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5934 } 5935 5936 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5937 { 5938 CPReadFn *readfn; 5939 5940 if (redirect_for_e2h(env)) { 5941 /* Switch to the saved EL2 version of the register. */ 5942 ri = ri->opaque; 5943 readfn = ri->readfn; 5944 } else { 5945 readfn = ri->orig_readfn; 5946 } 5947 if (readfn == NULL) { 5948 readfn = raw_read; 5949 } 5950 return readfn(env, ri); 5951 } 5952 5953 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5954 uint64_t value) 5955 { 5956 CPWriteFn *writefn; 5957 5958 if (redirect_for_e2h(env)) { 5959 /* Switch to the saved EL2 version of the register. */ 5960 ri = ri->opaque; 5961 writefn = ri->writefn; 5962 } else { 5963 writefn = ri->orig_writefn; 5964 } 5965 if (writefn == NULL) { 5966 writefn = raw_write; 5967 } 5968 writefn(env, ri, value); 5969 } 5970 5971 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5972 { 5973 struct E2HAlias { 5974 uint32_t src_key, dst_key, new_key; 5975 const char *src_name, *dst_name, *new_name; 5976 bool (*feature)(const ARMISARegisters *id); 5977 }; 5978 5979 #define K(op0, op1, crn, crm, op2) \ 5980 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5981 5982 static const struct E2HAlias aliases[] = { 5983 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5984 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5985 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5986 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5987 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5988 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5989 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5990 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5991 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5992 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5993 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5994 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5995 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5996 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5997 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5998 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5999 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6000 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6001 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6002 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6003 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6004 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6005 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6006 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6007 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6008 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6009 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6010 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6011 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6012 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6013 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6014 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6015 6016 /* 6017 * Note that redirection of ZCR is mentioned in the description 6018 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6019 * not in the summary table. 6020 */ 6021 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6022 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6023 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6024 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6025 6026 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6027 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6028 6029 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6030 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6031 isar_feature_aa64_scxtnum }, 6032 6033 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6034 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6035 }; 6036 #undef K 6037 6038 size_t i; 6039 6040 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6041 const struct E2HAlias *a = &aliases[i]; 6042 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6043 bool ok; 6044 6045 if (a->feature && !a->feature(&cpu->isar)) { 6046 continue; 6047 } 6048 6049 src_reg = g_hash_table_lookup(cpu->cp_regs, 6050 (gpointer)(uintptr_t)a->src_key); 6051 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6052 (gpointer)(uintptr_t)a->dst_key); 6053 g_assert(src_reg != NULL); 6054 g_assert(dst_reg != NULL); 6055 6056 /* Cross-compare names to detect typos in the keys. */ 6057 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6058 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6059 6060 /* None of the core system registers use opaque; we will. */ 6061 g_assert(src_reg->opaque == NULL); 6062 6063 /* Create alias before redirection so we dup the right data. */ 6064 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6065 6066 new_reg->name = a->new_name; 6067 new_reg->type |= ARM_CP_ALIAS; 6068 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6069 new_reg->access &= PL2_RW | PL3_RW; 6070 6071 ok = g_hash_table_insert(cpu->cp_regs, 6072 (gpointer)(uintptr_t)a->new_key, new_reg); 6073 g_assert(ok); 6074 6075 src_reg->opaque = dst_reg; 6076 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6077 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6078 if (!src_reg->raw_readfn) { 6079 src_reg->raw_readfn = raw_read; 6080 } 6081 if (!src_reg->raw_writefn) { 6082 src_reg->raw_writefn = raw_write; 6083 } 6084 src_reg->readfn = el2_e2h_read; 6085 src_reg->writefn = el2_e2h_write; 6086 } 6087 } 6088 #endif 6089 6090 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6091 bool isread) 6092 { 6093 int cur_el = arm_current_el(env); 6094 6095 if (cur_el < 2) { 6096 uint64_t hcr = arm_hcr_el2_eff(env); 6097 6098 if (cur_el == 0) { 6099 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6100 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6101 return CP_ACCESS_TRAP_EL2; 6102 } 6103 } else { 6104 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6105 return CP_ACCESS_TRAP; 6106 } 6107 if (hcr & HCR_TID2) { 6108 return CP_ACCESS_TRAP_EL2; 6109 } 6110 } 6111 } else if (hcr & HCR_TID2) { 6112 return CP_ACCESS_TRAP_EL2; 6113 } 6114 } 6115 6116 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6117 return CP_ACCESS_TRAP_EL2; 6118 } 6119 6120 return CP_ACCESS_OK; 6121 } 6122 6123 /* 6124 * Check for traps to RAS registers, which are controlled 6125 * by HCR_EL2.TERR and SCR_EL3.TERR. 6126 */ 6127 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6128 bool isread) 6129 { 6130 int el = arm_current_el(env); 6131 6132 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6133 return CP_ACCESS_TRAP_EL2; 6134 } 6135 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6136 return CP_ACCESS_TRAP_EL3; 6137 } 6138 return CP_ACCESS_OK; 6139 } 6140 6141 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6142 { 6143 int el = arm_current_el(env); 6144 6145 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6146 return env->cp15.vdisr_el2; 6147 } 6148 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6149 return 0; /* RAZ/WI */ 6150 } 6151 return env->cp15.disr_el1; 6152 } 6153 6154 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6155 { 6156 int el = arm_current_el(env); 6157 6158 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6159 env->cp15.vdisr_el2 = val; 6160 return; 6161 } 6162 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6163 return; /* RAZ/WI */ 6164 } 6165 env->cp15.disr_el1 = val; 6166 } 6167 6168 /* 6169 * Minimal RAS implementation with no Error Records. 6170 * Which means that all of the Error Record registers: 6171 * ERXADDR_EL1 6172 * ERXCTLR_EL1 6173 * ERXFR_EL1 6174 * ERXMISC0_EL1 6175 * ERXMISC1_EL1 6176 * ERXMISC2_EL1 6177 * ERXMISC3_EL1 6178 * ERXPFGCDN_EL1 (RASv1p1) 6179 * ERXPFGCTL_EL1 (RASv1p1) 6180 * ERXPFGF_EL1 (RASv1p1) 6181 * ERXSTATUS_EL1 6182 * and 6183 * ERRSELR_EL1 6184 * may generate UNDEFINED, which is the effect we get by not 6185 * listing them at all. 6186 */ 6187 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6188 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6189 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6190 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6191 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6192 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6193 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6194 .access = PL1_R, .accessfn = access_terr, 6195 .type = ARM_CP_CONST, .resetvalue = 0 }, 6196 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6197 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6198 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6199 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6200 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6201 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6202 }; 6203 6204 /* 6205 * Return the exception level to which exceptions should be taken 6206 * via SVEAccessTrap. This excludes the check for whether the exception 6207 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6208 * be found by testing 0 < fp_exception_el < sve_exception_el. 6209 * 6210 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6211 * pseudocode does *not* separate out the FP trap checks, but has them 6212 * all in one function. 6213 */ 6214 int sve_exception_el(CPUARMState *env, int el) 6215 { 6216 #ifndef CONFIG_USER_ONLY 6217 if (el <= 1 && !el_is_in_host(env, el)) { 6218 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6219 case 1: 6220 if (el != 0) { 6221 break; 6222 } 6223 /* fall through */ 6224 case 0: 6225 case 2: 6226 return 1; 6227 } 6228 } 6229 6230 if (el <= 2 && arm_is_el2_enabled(env)) { 6231 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6232 if (env->cp15.hcr_el2 & HCR_E2H) { 6233 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6234 case 1: 6235 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6236 break; 6237 } 6238 /* fall through */ 6239 case 0: 6240 case 2: 6241 return 2; 6242 } 6243 } else { 6244 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6245 return 2; 6246 } 6247 } 6248 } 6249 6250 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6251 if (arm_feature(env, ARM_FEATURE_EL3) 6252 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6253 return 3; 6254 } 6255 #endif 6256 return 0; 6257 } 6258 6259 /* 6260 * Return the exception level to which exceptions should be taken for SME. 6261 * C.f. the ARM pseudocode function CheckSMEAccess. 6262 */ 6263 int sme_exception_el(CPUARMState *env, int el) 6264 { 6265 #ifndef CONFIG_USER_ONLY 6266 if (el <= 1 && !el_is_in_host(env, el)) { 6267 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6268 case 1: 6269 if (el != 0) { 6270 break; 6271 } 6272 /* fall through */ 6273 case 0: 6274 case 2: 6275 return 1; 6276 } 6277 } 6278 6279 if (el <= 2 && arm_is_el2_enabled(env)) { 6280 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6281 if (env->cp15.hcr_el2 & HCR_E2H) { 6282 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6283 case 1: 6284 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6285 break; 6286 } 6287 /* fall through */ 6288 case 0: 6289 case 2: 6290 return 2; 6291 } 6292 } else { 6293 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6294 return 2; 6295 } 6296 } 6297 } 6298 6299 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6300 if (arm_feature(env, ARM_FEATURE_EL3) 6301 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6302 return 3; 6303 } 6304 #endif 6305 return 0; 6306 } 6307 6308 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ 6309 static bool sme_fa64(CPUARMState *env, int el) 6310 { 6311 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { 6312 return false; 6313 } 6314 6315 if (el <= 1 && !el_is_in_host(env, el)) { 6316 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { 6317 return false; 6318 } 6319 } 6320 if (el <= 2 && arm_is_el2_enabled(env)) { 6321 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { 6322 return false; 6323 } 6324 } 6325 if (arm_feature(env, ARM_FEATURE_EL3)) { 6326 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { 6327 return false; 6328 } 6329 } 6330 6331 return true; 6332 } 6333 6334 /* 6335 * Given that SVE is enabled, return the vector length for EL. 6336 */ 6337 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6338 { 6339 ARMCPU *cpu = env_archcpu(env); 6340 uint64_t *cr = env->vfp.zcr_el; 6341 uint32_t map = cpu->sve_vq.map; 6342 uint32_t len = ARM_MAX_VQ - 1; 6343 6344 if (sm) { 6345 cr = env->vfp.smcr_el; 6346 map = cpu->sme_vq.map; 6347 } 6348 6349 if (el <= 1 && !el_is_in_host(env, el)) { 6350 len = MIN(len, 0xf & (uint32_t)cr[1]); 6351 } 6352 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6353 len = MIN(len, 0xf & (uint32_t)cr[2]); 6354 } 6355 if (arm_feature(env, ARM_FEATURE_EL3)) { 6356 len = MIN(len, 0xf & (uint32_t)cr[3]); 6357 } 6358 6359 map &= MAKE_64BIT_MASK(0, len + 1); 6360 if (map != 0) { 6361 return 31 - clz32(map); 6362 } 6363 6364 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6365 assert(sm); 6366 return ctz32(cpu->sme_vq.map); 6367 } 6368 6369 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6370 { 6371 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6372 } 6373 6374 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6375 uint64_t value) 6376 { 6377 int cur_el = arm_current_el(env); 6378 int old_len = sve_vqm1_for_el(env, cur_el); 6379 int new_len; 6380 6381 /* Bits other than [3:0] are RAZ/WI. */ 6382 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6383 raw_write(env, ri, value & 0xf); 6384 6385 /* 6386 * Because we arrived here, we know both FP and SVE are enabled; 6387 * otherwise we would have trapped access to the ZCR_ELn register. 6388 */ 6389 new_len = sve_vqm1_for_el(env, cur_el); 6390 if (new_len < old_len) { 6391 aarch64_sve_narrow_vq(env, new_len + 1); 6392 } 6393 } 6394 6395 static const ARMCPRegInfo zcr_reginfo[] = { 6396 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6397 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6398 .access = PL1_RW, .type = ARM_CP_SVE, 6399 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6400 .writefn = zcr_write, .raw_writefn = raw_write }, 6401 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6402 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6403 .access = PL2_RW, .type = ARM_CP_SVE, 6404 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6405 .writefn = zcr_write, .raw_writefn = raw_write }, 6406 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6407 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6408 .access = PL3_RW, .type = ARM_CP_SVE, 6409 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6410 .writefn = zcr_write, .raw_writefn = raw_write }, 6411 }; 6412 6413 #ifdef TARGET_AARCH64 6414 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6415 bool isread) 6416 { 6417 int el = arm_current_el(env); 6418 6419 if (el == 0) { 6420 uint64_t sctlr = arm_sctlr(env, el); 6421 if (!(sctlr & SCTLR_EnTP2)) { 6422 return CP_ACCESS_TRAP; 6423 } 6424 } 6425 /* TODO: FEAT_FGT */ 6426 if (el < 3 6427 && arm_feature(env, ARM_FEATURE_EL3) 6428 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6429 return CP_ACCESS_TRAP_EL3; 6430 } 6431 return CP_ACCESS_OK; 6432 } 6433 6434 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6435 bool isread) 6436 { 6437 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6438 if (arm_current_el(env) < 3 6439 && arm_feature(env, ARM_FEATURE_EL3) 6440 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6441 return CP_ACCESS_TRAP_EL3; 6442 } 6443 return CP_ACCESS_OK; 6444 } 6445 6446 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6447 uint64_t value) 6448 { 6449 helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM)); 6450 helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA)); 6451 arm_rebuild_hflags(env); 6452 } 6453 6454 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6455 uint64_t value) 6456 { 6457 int cur_el = arm_current_el(env); 6458 int old_len = sve_vqm1_for_el(env, cur_el); 6459 int new_len; 6460 6461 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6462 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6463 raw_write(env, ri, value); 6464 6465 /* 6466 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6467 * when SVL is widened (old values kept, or zeros). Choose to keep the 6468 * current values for simplicity. But for QEMU internals, we must still 6469 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6470 * above aarch64_sve_narrow_vq. 6471 */ 6472 new_len = sve_vqm1_for_el(env, cur_el); 6473 if (new_len < old_len) { 6474 aarch64_sve_narrow_vq(env, new_len + 1); 6475 } 6476 } 6477 6478 static const ARMCPRegInfo sme_reginfo[] = { 6479 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6480 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6481 .access = PL0_RW, .accessfn = access_tpidr2, 6482 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6483 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6484 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6485 .access = PL0_RW, .type = ARM_CP_SME, 6486 .fieldoffset = offsetof(CPUARMState, svcr), 6487 .writefn = svcr_write, .raw_writefn = raw_write }, 6488 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6489 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6490 .access = PL1_RW, .type = ARM_CP_SME, 6491 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6492 .writefn = smcr_write, .raw_writefn = raw_write }, 6493 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6494 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6495 .access = PL2_RW, .type = ARM_CP_SME, 6496 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6497 .writefn = smcr_write, .raw_writefn = raw_write }, 6498 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6499 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6500 .access = PL3_RW, .type = ARM_CP_SME, 6501 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6502 .writefn = smcr_write, .raw_writefn = raw_write }, 6503 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6504 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6505 .access = PL1_R, .accessfn = access_aa64_tid1, 6506 /* 6507 * IMPLEMENTOR = 0 (software) 6508 * REVISION = 0 (implementation defined) 6509 * SMPS = 0 (no streaming execution priority in QEMU) 6510 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6511 */ 6512 .type = ARM_CP_CONST, .resetvalue = 0, }, 6513 /* 6514 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6515 */ 6516 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6517 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6518 .access = PL1_RW, .accessfn = access_esm, 6519 .type = ARM_CP_CONST, .resetvalue = 0 }, 6520 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6521 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6522 .access = PL2_RW, .accessfn = access_esm, 6523 .type = ARM_CP_CONST, .resetvalue = 0 }, 6524 }; 6525 #endif /* TARGET_AARCH64 */ 6526 6527 static void define_pmu_regs(ARMCPU *cpu) 6528 { 6529 /* 6530 * v7 performance monitor control register: same implementor 6531 * field as main ID register, and we implement four counters in 6532 * addition to the cycle count register. 6533 */ 6534 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6535 ARMCPRegInfo pmcr = { 6536 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6537 .access = PL0_RW, 6538 .type = ARM_CP_IO | ARM_CP_ALIAS, 6539 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6540 .accessfn = pmreg_access, .writefn = pmcr_write, 6541 .raw_writefn = raw_write, 6542 }; 6543 ARMCPRegInfo pmcr64 = { 6544 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6545 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6546 .access = PL0_RW, .accessfn = pmreg_access, 6547 .type = ARM_CP_IO, 6548 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6549 .resetvalue = cpu->isar.reset_pmcr_el0, 6550 .writefn = pmcr_write, .raw_writefn = raw_write, 6551 }; 6552 6553 define_one_arm_cp_reg(cpu, &pmcr); 6554 define_one_arm_cp_reg(cpu, &pmcr64); 6555 for (i = 0; i < pmcrn; i++) { 6556 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6557 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6558 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6559 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6560 ARMCPRegInfo pmev_regs[] = { 6561 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6562 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6563 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6564 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6565 .accessfn = pmreg_access_xevcntr }, 6566 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6567 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6568 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6569 .type = ARM_CP_IO, 6570 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6571 .raw_readfn = pmevcntr_rawread, 6572 .raw_writefn = pmevcntr_rawwrite }, 6573 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6574 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6575 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6576 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6577 .accessfn = pmreg_access }, 6578 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6579 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6580 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6581 .type = ARM_CP_IO, 6582 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6583 .raw_writefn = pmevtyper_rawwrite }, 6584 }; 6585 define_arm_cp_regs(cpu, pmev_regs); 6586 g_free(pmevcntr_name); 6587 g_free(pmevcntr_el0_name); 6588 g_free(pmevtyper_name); 6589 g_free(pmevtyper_el0_name); 6590 } 6591 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6592 ARMCPRegInfo v81_pmu_regs[] = { 6593 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6594 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6595 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6596 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6597 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6598 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6599 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6600 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6601 }; 6602 define_arm_cp_regs(cpu, v81_pmu_regs); 6603 } 6604 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6605 static const ARMCPRegInfo v84_pmmir = { 6606 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6607 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6608 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6609 .resetvalue = 0 6610 }; 6611 define_one_arm_cp_reg(cpu, &v84_pmmir); 6612 } 6613 } 6614 6615 /* We don't know until after realize whether there's a GICv3 6616 * attached, and that is what registers the gicv3 sysregs. 6617 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6618 * at runtime. 6619 */ 6620 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6621 { 6622 ARMCPU *cpu = env_archcpu(env); 6623 uint64_t pfr1 = cpu->isar.id_pfr1; 6624 6625 if (env->gicv3state) { 6626 pfr1 |= 1 << 28; 6627 } 6628 return pfr1; 6629 } 6630 6631 #ifndef CONFIG_USER_ONLY 6632 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6633 { 6634 ARMCPU *cpu = env_archcpu(env); 6635 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6636 6637 if (env->gicv3state) { 6638 pfr0 |= 1 << 24; 6639 } 6640 return pfr0; 6641 } 6642 #endif 6643 6644 /* Shared logic between LORID and the rest of the LOR* registers. 6645 * Secure state exclusion has already been dealt with. 6646 */ 6647 static CPAccessResult access_lor_ns(CPUARMState *env, 6648 const ARMCPRegInfo *ri, bool isread) 6649 { 6650 int el = arm_current_el(env); 6651 6652 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6653 return CP_ACCESS_TRAP_EL2; 6654 } 6655 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6656 return CP_ACCESS_TRAP_EL3; 6657 } 6658 return CP_ACCESS_OK; 6659 } 6660 6661 static CPAccessResult access_lor_other(CPUARMState *env, 6662 const ARMCPRegInfo *ri, bool isread) 6663 { 6664 if (arm_is_secure_below_el3(env)) { 6665 /* Access denied in secure mode. */ 6666 return CP_ACCESS_TRAP; 6667 } 6668 return access_lor_ns(env, ri, isread); 6669 } 6670 6671 /* 6672 * A trivial implementation of ARMv8.1-LOR leaves all of these 6673 * registers fixed at 0, which indicates that there are zero 6674 * supported Limited Ordering regions. 6675 */ 6676 static const ARMCPRegInfo lor_reginfo[] = { 6677 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6678 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6679 .access = PL1_RW, .accessfn = access_lor_other, 6680 .type = ARM_CP_CONST, .resetvalue = 0 }, 6681 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6682 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6683 .access = PL1_RW, .accessfn = access_lor_other, 6684 .type = ARM_CP_CONST, .resetvalue = 0 }, 6685 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6686 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6687 .access = PL1_RW, .accessfn = access_lor_other, 6688 .type = ARM_CP_CONST, .resetvalue = 0 }, 6689 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6690 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6691 .access = PL1_RW, .accessfn = access_lor_other, 6692 .type = ARM_CP_CONST, .resetvalue = 0 }, 6693 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6694 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6695 .access = PL1_R, .accessfn = access_lor_ns, 6696 .type = ARM_CP_CONST, .resetvalue = 0 }, 6697 }; 6698 6699 #ifdef TARGET_AARCH64 6700 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6701 bool isread) 6702 { 6703 int el = arm_current_el(env); 6704 6705 if (el < 2 && 6706 arm_is_el2_enabled(env) && 6707 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6708 return CP_ACCESS_TRAP_EL2; 6709 } 6710 if (el < 3 && 6711 arm_feature(env, ARM_FEATURE_EL3) && 6712 !(env->cp15.scr_el3 & SCR_APK)) { 6713 return CP_ACCESS_TRAP_EL3; 6714 } 6715 return CP_ACCESS_OK; 6716 } 6717 6718 static const ARMCPRegInfo pauth_reginfo[] = { 6719 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6720 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6721 .access = PL1_RW, .accessfn = access_pauth, 6722 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6723 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6724 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6725 .access = PL1_RW, .accessfn = access_pauth, 6726 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6727 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6728 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6729 .access = PL1_RW, .accessfn = access_pauth, 6730 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6731 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6732 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6733 .access = PL1_RW, .accessfn = access_pauth, 6734 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6735 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6736 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6737 .access = PL1_RW, .accessfn = access_pauth, 6738 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6739 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6740 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6741 .access = PL1_RW, .accessfn = access_pauth, 6742 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6743 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6744 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6745 .access = PL1_RW, .accessfn = access_pauth, 6746 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6747 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6748 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6749 .access = PL1_RW, .accessfn = access_pauth, 6750 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6751 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6752 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6753 .access = PL1_RW, .accessfn = access_pauth, 6754 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6755 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6756 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6757 .access = PL1_RW, .accessfn = access_pauth, 6758 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6759 }; 6760 6761 static const ARMCPRegInfo tlbirange_reginfo[] = { 6762 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6763 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6764 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 6765 .writefn = tlbi_aa64_rvae1is_write }, 6766 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6767 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6768 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 6769 .writefn = tlbi_aa64_rvae1is_write }, 6770 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6771 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6772 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 6773 .writefn = tlbi_aa64_rvae1is_write }, 6774 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6775 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6776 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 6777 .writefn = tlbi_aa64_rvae1is_write }, 6778 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6779 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6780 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 6781 .writefn = tlbi_aa64_rvae1is_write }, 6782 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6783 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6784 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 6785 .writefn = tlbi_aa64_rvae1is_write }, 6786 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6787 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6788 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 6789 .writefn = tlbi_aa64_rvae1is_write }, 6790 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6791 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6792 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 6793 .writefn = tlbi_aa64_rvae1is_write }, 6794 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6795 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6796 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6797 .writefn = tlbi_aa64_rvae1_write }, 6798 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6799 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6800 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6801 .writefn = tlbi_aa64_rvae1_write }, 6802 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6803 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6804 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6805 .writefn = tlbi_aa64_rvae1_write }, 6806 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6807 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6808 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6809 .writefn = tlbi_aa64_rvae1_write }, 6810 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6811 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6812 .access = PL2_W, .type = ARM_CP_NO_RAW, 6813 .writefn = tlbi_aa64_ripas2e1is_write }, 6814 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6815 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6816 .access = PL2_W, .type = ARM_CP_NO_RAW, 6817 .writefn = tlbi_aa64_ripas2e1is_write }, 6818 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6819 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6820 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6821 .writefn = tlbi_aa64_rvae2is_write }, 6822 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6823 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6824 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6825 .writefn = tlbi_aa64_rvae2is_write }, 6826 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6827 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6828 .access = PL2_W, .type = ARM_CP_NO_RAW, 6829 .writefn = tlbi_aa64_ripas2e1_write }, 6830 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6831 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6832 .access = PL2_W, .type = ARM_CP_NO_RAW, 6833 .writefn = tlbi_aa64_ripas2e1_write }, 6834 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6835 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6836 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6837 .writefn = tlbi_aa64_rvae2is_write }, 6838 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6839 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6840 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6841 .writefn = tlbi_aa64_rvae2is_write }, 6842 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6843 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6844 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6845 .writefn = tlbi_aa64_rvae2_write }, 6846 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6847 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6848 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6849 .writefn = tlbi_aa64_rvae2_write }, 6850 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6851 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6852 .access = PL3_W, .type = ARM_CP_NO_RAW, 6853 .writefn = tlbi_aa64_rvae3is_write }, 6854 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6855 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6856 .access = PL3_W, .type = ARM_CP_NO_RAW, 6857 .writefn = tlbi_aa64_rvae3is_write }, 6858 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6859 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6860 .access = PL3_W, .type = ARM_CP_NO_RAW, 6861 .writefn = tlbi_aa64_rvae3is_write }, 6862 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6863 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6864 .access = PL3_W, .type = ARM_CP_NO_RAW, 6865 .writefn = tlbi_aa64_rvae3is_write }, 6866 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6867 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6868 .access = PL3_W, .type = ARM_CP_NO_RAW, 6869 .writefn = tlbi_aa64_rvae3_write }, 6870 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6871 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6872 .access = PL3_W, .type = ARM_CP_NO_RAW, 6873 .writefn = tlbi_aa64_rvae3_write }, 6874 }; 6875 6876 static const ARMCPRegInfo tlbios_reginfo[] = { 6877 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6879 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 6880 .writefn = tlbi_aa64_vmalle1is_write }, 6881 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6883 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 6884 .writefn = tlbi_aa64_vae1is_write }, 6885 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6887 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 6888 .writefn = tlbi_aa64_vmalle1is_write }, 6889 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6891 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 6892 .writefn = tlbi_aa64_vae1is_write }, 6893 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6895 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 6896 .writefn = tlbi_aa64_vae1is_write }, 6897 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6899 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 6900 .writefn = tlbi_aa64_vae1is_write }, 6901 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6902 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6903 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6904 .writefn = tlbi_aa64_alle2is_write }, 6905 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6906 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6907 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6908 .writefn = tlbi_aa64_vae2is_write }, 6909 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6910 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6911 .access = PL2_W, .type = ARM_CP_NO_RAW, 6912 .writefn = tlbi_aa64_alle1is_write }, 6913 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6914 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6915 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6916 .writefn = tlbi_aa64_vae2is_write }, 6917 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6918 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6919 .access = PL2_W, .type = ARM_CP_NO_RAW, 6920 .writefn = tlbi_aa64_alle1is_write }, 6921 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6922 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6923 .access = PL2_W, .type = ARM_CP_NOP }, 6924 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6926 .access = PL2_W, .type = ARM_CP_NOP }, 6927 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6929 .access = PL2_W, .type = ARM_CP_NOP }, 6930 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 6932 .access = PL2_W, .type = ARM_CP_NOP }, 6933 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 6934 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 6935 .access = PL3_W, .type = ARM_CP_NO_RAW, 6936 .writefn = tlbi_aa64_alle3is_write }, 6937 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 6938 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 6939 .access = PL3_W, .type = ARM_CP_NO_RAW, 6940 .writefn = tlbi_aa64_vae3is_write }, 6941 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 6942 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 6943 .access = PL3_W, .type = ARM_CP_NO_RAW, 6944 .writefn = tlbi_aa64_vae3is_write }, 6945 }; 6946 6947 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6948 { 6949 Error *err = NULL; 6950 uint64_t ret; 6951 6952 /* Success sets NZCV = 0000. */ 6953 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6954 6955 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6956 /* 6957 * ??? Failed, for unknown reasons in the crypto subsystem. 6958 * The best we can do is log the reason and return the 6959 * timed-out indication to the guest. There is no reason 6960 * we know to expect this failure to be transitory, so the 6961 * guest may well hang retrying the operation. 6962 */ 6963 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6964 ri->name, error_get_pretty(err)); 6965 error_free(err); 6966 6967 env->ZF = 0; /* NZCF = 0100 */ 6968 return 0; 6969 } 6970 return ret; 6971 } 6972 6973 /* We do not support re-seeding, so the two registers operate the same. */ 6974 static const ARMCPRegInfo rndr_reginfo[] = { 6975 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6976 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6977 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6978 .access = PL0_R, .readfn = rndr_readfn }, 6979 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6980 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6981 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6982 .access = PL0_R, .readfn = rndr_readfn }, 6983 }; 6984 6985 #ifndef CONFIG_USER_ONLY 6986 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6987 uint64_t value) 6988 { 6989 ARMCPU *cpu = env_archcpu(env); 6990 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6991 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6992 uint64_t vaddr_in = (uint64_t) value; 6993 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6994 void *haddr; 6995 int mem_idx = cpu_mmu_index(env, false); 6996 6997 /* This won't be crossing page boundaries */ 6998 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6999 if (haddr) { 7000 7001 ram_addr_t offset; 7002 MemoryRegion *mr; 7003 7004 /* RCU lock is already being held */ 7005 mr = memory_region_from_host(haddr, &offset); 7006 7007 if (mr) { 7008 memory_region_writeback(mr, offset, dline_size); 7009 } 7010 } 7011 } 7012 7013 static const ARMCPRegInfo dcpop_reg[] = { 7014 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7015 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7016 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7017 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7018 }; 7019 7020 static const ARMCPRegInfo dcpodp_reg[] = { 7021 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7022 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7023 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7024 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7025 }; 7026 #endif /*CONFIG_USER_ONLY*/ 7027 7028 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7029 bool isread) 7030 { 7031 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7032 return CP_ACCESS_TRAP_EL2; 7033 } 7034 7035 return CP_ACCESS_OK; 7036 } 7037 7038 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7039 bool isread) 7040 { 7041 int el = arm_current_el(env); 7042 7043 if (el < 2 && arm_is_el2_enabled(env)) { 7044 uint64_t hcr = arm_hcr_el2_eff(env); 7045 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7046 return CP_ACCESS_TRAP_EL2; 7047 } 7048 } 7049 if (el < 3 && 7050 arm_feature(env, ARM_FEATURE_EL3) && 7051 !(env->cp15.scr_el3 & SCR_ATA)) { 7052 return CP_ACCESS_TRAP_EL3; 7053 } 7054 return CP_ACCESS_OK; 7055 } 7056 7057 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7058 { 7059 return env->pstate & PSTATE_TCO; 7060 } 7061 7062 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7063 { 7064 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7065 } 7066 7067 static const ARMCPRegInfo mte_reginfo[] = { 7068 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7069 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7070 .access = PL1_RW, .accessfn = access_mte, 7071 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7072 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7073 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7074 .access = PL1_RW, .accessfn = access_mte, 7075 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7076 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7077 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7078 .access = PL2_RW, .accessfn = access_mte, 7079 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7080 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7081 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7082 .access = PL3_RW, 7083 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7084 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7085 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7086 .access = PL1_RW, .accessfn = access_mte, 7087 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7088 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7089 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7090 .access = PL1_RW, .accessfn = access_mte, 7091 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7092 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7093 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7094 .access = PL1_R, .accessfn = access_aa64_tid5, 7095 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7096 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7097 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7098 .type = ARM_CP_NO_RAW, 7099 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7100 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7101 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7102 .type = ARM_CP_NOP, .access = PL1_W, 7103 .accessfn = aa64_cacheop_poc_access }, 7104 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7105 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7106 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7107 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7108 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7109 .type = ARM_CP_NOP, .access = PL1_W, 7110 .accessfn = aa64_cacheop_poc_access }, 7111 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7112 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7113 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7114 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7115 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7116 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7117 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7118 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7119 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7120 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7121 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7122 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7123 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7124 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7125 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7126 }; 7127 7128 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7129 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7130 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7131 .type = ARM_CP_CONST, .access = PL0_RW, }, 7132 }; 7133 7134 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7135 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7136 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7137 .type = ARM_CP_NOP, .access = PL0_W, 7138 .accessfn = aa64_cacheop_poc_access }, 7139 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7140 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7141 .type = ARM_CP_NOP, .access = PL0_W, 7142 .accessfn = aa64_cacheop_poc_access }, 7143 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7144 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7145 .type = ARM_CP_NOP, .access = PL0_W, 7146 .accessfn = aa64_cacheop_poc_access }, 7147 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7148 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7149 .type = ARM_CP_NOP, .access = PL0_W, 7150 .accessfn = aa64_cacheop_poc_access }, 7151 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7152 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7153 .type = ARM_CP_NOP, .access = PL0_W, 7154 .accessfn = aa64_cacheop_poc_access }, 7155 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7156 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7157 .type = ARM_CP_NOP, .access = PL0_W, 7158 .accessfn = aa64_cacheop_poc_access }, 7159 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7160 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7161 .type = ARM_CP_NOP, .access = PL0_W, 7162 .accessfn = aa64_cacheop_poc_access }, 7163 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7164 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7165 .type = ARM_CP_NOP, .access = PL0_W, 7166 .accessfn = aa64_cacheop_poc_access }, 7167 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7168 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7169 .access = PL0_W, .type = ARM_CP_DC_GVA, 7170 #ifndef CONFIG_USER_ONLY 7171 /* Avoid overhead of an access check that always passes in user-mode */ 7172 .accessfn = aa64_zva_access, 7173 #endif 7174 }, 7175 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7176 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7177 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7178 #ifndef CONFIG_USER_ONLY 7179 /* Avoid overhead of an access check that always passes in user-mode */ 7180 .accessfn = aa64_zva_access, 7181 #endif 7182 }, 7183 }; 7184 7185 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7186 bool isread) 7187 { 7188 uint64_t hcr = arm_hcr_el2_eff(env); 7189 int el = arm_current_el(env); 7190 7191 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7192 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7193 if (hcr & HCR_TGE) { 7194 return CP_ACCESS_TRAP_EL2; 7195 } 7196 return CP_ACCESS_TRAP; 7197 } 7198 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7199 return CP_ACCESS_TRAP_EL2; 7200 } 7201 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7202 return CP_ACCESS_TRAP_EL2; 7203 } 7204 if (el < 3 7205 && arm_feature(env, ARM_FEATURE_EL3) 7206 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7207 return CP_ACCESS_TRAP_EL3; 7208 } 7209 return CP_ACCESS_OK; 7210 } 7211 7212 static const ARMCPRegInfo scxtnum_reginfo[] = { 7213 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7214 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7215 .access = PL0_RW, .accessfn = access_scxtnum, 7216 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7217 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7219 .access = PL1_RW, .accessfn = access_scxtnum, 7220 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7221 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7222 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7223 .access = PL2_RW, .accessfn = access_scxtnum, 7224 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7225 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7226 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7227 .access = PL3_RW, 7228 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7229 }; 7230 #endif /* TARGET_AARCH64 */ 7231 7232 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7233 bool isread) 7234 { 7235 int el = arm_current_el(env); 7236 7237 if (el == 0) { 7238 uint64_t sctlr = arm_sctlr(env, el); 7239 if (!(sctlr & SCTLR_EnRCTX)) { 7240 return CP_ACCESS_TRAP; 7241 } 7242 } else if (el == 1) { 7243 uint64_t hcr = arm_hcr_el2_eff(env); 7244 if (hcr & HCR_NV) { 7245 return CP_ACCESS_TRAP_EL2; 7246 } 7247 } 7248 return CP_ACCESS_OK; 7249 } 7250 7251 static const ARMCPRegInfo predinv_reginfo[] = { 7252 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7253 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7254 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7255 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7256 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7257 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7258 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7259 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7260 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7261 /* 7262 * Note the AArch32 opcodes have a different OPC1. 7263 */ 7264 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7265 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7266 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7267 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7268 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7269 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7270 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7271 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7272 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7273 }; 7274 7275 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7276 { 7277 /* Read the high 32 bits of the current CCSIDR */ 7278 return extract64(ccsidr_read(env, ri), 32, 32); 7279 } 7280 7281 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7282 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7283 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7284 .access = PL1_R, 7285 .accessfn = access_tid4, 7286 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7287 }; 7288 7289 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7290 bool isread) 7291 { 7292 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7293 return CP_ACCESS_TRAP_EL2; 7294 } 7295 7296 return CP_ACCESS_OK; 7297 } 7298 7299 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7300 bool isread) 7301 { 7302 if (arm_feature(env, ARM_FEATURE_V8)) { 7303 return access_aa64_tid3(env, ri, isread); 7304 } 7305 7306 return CP_ACCESS_OK; 7307 } 7308 7309 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7310 bool isread) 7311 { 7312 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7313 return CP_ACCESS_TRAP_EL2; 7314 } 7315 7316 return CP_ACCESS_OK; 7317 } 7318 7319 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7320 const ARMCPRegInfo *ri, bool isread) 7321 { 7322 /* 7323 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7324 * in v7A, not in v8A. 7325 */ 7326 if (!arm_feature(env, ARM_FEATURE_V8) && 7327 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7328 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7329 return CP_ACCESS_TRAP_EL2; 7330 } 7331 return CP_ACCESS_OK; 7332 } 7333 7334 static const ARMCPRegInfo jazelle_regs[] = { 7335 { .name = "JIDR", 7336 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7337 .access = PL1_R, .accessfn = access_jazelle, 7338 .type = ARM_CP_CONST, .resetvalue = 0 }, 7339 { .name = "JOSCR", 7340 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7341 .accessfn = access_joscr_jmcr, 7342 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7343 { .name = "JMCR", 7344 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7345 .accessfn = access_joscr_jmcr, 7346 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7347 }; 7348 7349 static const ARMCPRegInfo contextidr_el2 = { 7350 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7351 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7352 .access = PL2_RW, 7353 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7354 }; 7355 7356 static const ARMCPRegInfo vhe_reginfo[] = { 7357 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7358 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7359 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7360 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7361 #ifndef CONFIG_USER_ONLY 7362 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7363 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7364 .fieldoffset = 7365 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7366 .type = ARM_CP_IO, .access = PL2_RW, 7367 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7368 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7369 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7370 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7371 .resetfn = gt_hv_timer_reset, 7372 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7373 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7374 .type = ARM_CP_IO, 7375 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7376 .access = PL2_RW, 7377 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7378 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7379 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7380 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7381 .type = ARM_CP_IO | ARM_CP_ALIAS, 7382 .access = PL2_RW, .accessfn = e2h_access, 7383 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7384 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7385 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7386 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7387 .type = ARM_CP_IO | ARM_CP_ALIAS, 7388 .access = PL2_RW, .accessfn = e2h_access, 7389 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7390 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7391 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7392 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7393 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7394 .access = PL2_RW, .accessfn = e2h_access, 7395 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7396 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7397 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7398 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7399 .access = PL2_RW, .accessfn = e2h_access, 7400 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7401 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7402 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7403 .type = ARM_CP_IO | ARM_CP_ALIAS, 7404 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7405 .access = PL2_RW, .accessfn = e2h_access, 7406 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7407 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7408 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7409 .type = ARM_CP_IO | ARM_CP_ALIAS, 7410 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7411 .access = PL2_RW, .accessfn = e2h_access, 7412 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7413 #endif 7414 }; 7415 7416 #ifndef CONFIG_USER_ONLY 7417 static const ARMCPRegInfo ats1e1_reginfo[] = { 7418 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7419 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7420 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7421 .writefn = ats_write64 }, 7422 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7423 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7424 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7425 .writefn = ats_write64 }, 7426 }; 7427 7428 static const ARMCPRegInfo ats1cp_reginfo[] = { 7429 { .name = "ATS1CPRP", 7430 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7431 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7432 .writefn = ats_write }, 7433 { .name = "ATS1CPWP", 7434 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7435 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7436 .writefn = ats_write }, 7437 }; 7438 #endif 7439 7440 /* 7441 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7442 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7443 * is non-zero, which is never for ARMv7, optionally in ARMv8 7444 * and mandatorily for ARMv8.2 and up. 7445 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7446 * implementation is RAZ/WI we can ignore this detail, as we 7447 * do for ACTLR. 7448 */ 7449 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7450 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7451 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7452 .access = PL1_RW, .accessfn = access_tacr, 7453 .type = ARM_CP_CONST, .resetvalue = 0 }, 7454 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7455 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7456 .access = PL2_RW, .type = ARM_CP_CONST, 7457 .resetvalue = 0 }, 7458 }; 7459 7460 void register_cp_regs_for_features(ARMCPU *cpu) 7461 { 7462 /* Register all the coprocessor registers based on feature bits */ 7463 CPUARMState *env = &cpu->env; 7464 if (arm_feature(env, ARM_FEATURE_M)) { 7465 /* M profile has no coprocessor registers */ 7466 return; 7467 } 7468 7469 define_arm_cp_regs(cpu, cp_reginfo); 7470 if (!arm_feature(env, ARM_FEATURE_V8)) { 7471 /* Must go early as it is full of wildcards that may be 7472 * overridden by later definitions. 7473 */ 7474 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7475 } 7476 7477 if (arm_feature(env, ARM_FEATURE_V6)) { 7478 /* The ID registers all have impdef reset values */ 7479 ARMCPRegInfo v6_idregs[] = { 7480 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7481 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7482 .access = PL1_R, .type = ARM_CP_CONST, 7483 .accessfn = access_aa32_tid3, 7484 .resetvalue = cpu->isar.id_pfr0 }, 7485 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7486 * the value of the GIC field until after we define these regs. 7487 */ 7488 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7489 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7490 .access = PL1_R, .type = ARM_CP_NO_RAW, 7491 .accessfn = access_aa32_tid3, 7492 .readfn = id_pfr1_read, 7493 .writefn = arm_cp_write_ignore }, 7494 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7496 .access = PL1_R, .type = ARM_CP_CONST, 7497 .accessfn = access_aa32_tid3, 7498 .resetvalue = cpu->isar.id_dfr0 }, 7499 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7501 .access = PL1_R, .type = ARM_CP_CONST, 7502 .accessfn = access_aa32_tid3, 7503 .resetvalue = cpu->id_afr0 }, 7504 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7506 .access = PL1_R, .type = ARM_CP_CONST, 7507 .accessfn = access_aa32_tid3, 7508 .resetvalue = cpu->isar.id_mmfr0 }, 7509 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7510 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7511 .access = PL1_R, .type = ARM_CP_CONST, 7512 .accessfn = access_aa32_tid3, 7513 .resetvalue = cpu->isar.id_mmfr1 }, 7514 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7516 .access = PL1_R, .type = ARM_CP_CONST, 7517 .accessfn = access_aa32_tid3, 7518 .resetvalue = cpu->isar.id_mmfr2 }, 7519 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7521 .access = PL1_R, .type = ARM_CP_CONST, 7522 .accessfn = access_aa32_tid3, 7523 .resetvalue = cpu->isar.id_mmfr3 }, 7524 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7525 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7526 .access = PL1_R, .type = ARM_CP_CONST, 7527 .accessfn = access_aa32_tid3, 7528 .resetvalue = cpu->isar.id_isar0 }, 7529 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7531 .access = PL1_R, .type = ARM_CP_CONST, 7532 .accessfn = access_aa32_tid3, 7533 .resetvalue = cpu->isar.id_isar1 }, 7534 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7536 .access = PL1_R, .type = ARM_CP_CONST, 7537 .accessfn = access_aa32_tid3, 7538 .resetvalue = cpu->isar.id_isar2 }, 7539 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7541 .access = PL1_R, .type = ARM_CP_CONST, 7542 .accessfn = access_aa32_tid3, 7543 .resetvalue = cpu->isar.id_isar3 }, 7544 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7546 .access = PL1_R, .type = ARM_CP_CONST, 7547 .accessfn = access_aa32_tid3, 7548 .resetvalue = cpu->isar.id_isar4 }, 7549 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7551 .access = PL1_R, .type = ARM_CP_CONST, 7552 .accessfn = access_aa32_tid3, 7553 .resetvalue = cpu->isar.id_isar5 }, 7554 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7556 .access = PL1_R, .type = ARM_CP_CONST, 7557 .accessfn = access_aa32_tid3, 7558 .resetvalue = cpu->isar.id_mmfr4 }, 7559 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7561 .access = PL1_R, .type = ARM_CP_CONST, 7562 .accessfn = access_aa32_tid3, 7563 .resetvalue = cpu->isar.id_isar6 }, 7564 }; 7565 define_arm_cp_regs(cpu, v6_idregs); 7566 define_arm_cp_regs(cpu, v6_cp_reginfo); 7567 } else { 7568 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7569 } 7570 if (arm_feature(env, ARM_FEATURE_V6K)) { 7571 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7572 } 7573 if (arm_feature(env, ARM_FEATURE_V7MP) && 7574 !arm_feature(env, ARM_FEATURE_PMSA)) { 7575 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7576 } 7577 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7578 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7579 } 7580 if (arm_feature(env, ARM_FEATURE_V7)) { 7581 ARMCPRegInfo clidr = { 7582 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7583 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7584 .access = PL1_R, .type = ARM_CP_CONST, 7585 .accessfn = access_tid4, 7586 .resetvalue = cpu->clidr 7587 }; 7588 define_one_arm_cp_reg(cpu, &clidr); 7589 define_arm_cp_regs(cpu, v7_cp_reginfo); 7590 define_debug_regs(cpu); 7591 define_pmu_regs(cpu); 7592 } else { 7593 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7594 } 7595 if (arm_feature(env, ARM_FEATURE_V8)) { 7596 /* 7597 * v8 ID registers, which all have impdef reset values. 7598 * Note that within the ID register ranges the unused slots 7599 * must all RAZ, not UNDEF; future architecture versions may 7600 * define new registers here. 7601 * ID registers which are AArch64 views of the AArch32 ID registers 7602 * which already existed in v6 and v7 are handled elsewhere, 7603 * in v6_idregs[]. 7604 */ 7605 int i; 7606 ARMCPRegInfo v8_idregs[] = { 7607 /* 7608 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7609 * emulation because we don't know the right value for the 7610 * GIC field until after we define these regs. 7611 */ 7612 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7614 .access = PL1_R, 7615 #ifdef CONFIG_USER_ONLY 7616 .type = ARM_CP_CONST, 7617 .resetvalue = cpu->isar.id_aa64pfr0 7618 #else 7619 .type = ARM_CP_NO_RAW, 7620 .accessfn = access_aa64_tid3, 7621 .readfn = id_aa64pfr0_read, 7622 .writefn = arm_cp_write_ignore 7623 #endif 7624 }, 7625 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7627 .access = PL1_R, .type = ARM_CP_CONST, 7628 .accessfn = access_aa64_tid3, 7629 .resetvalue = cpu->isar.id_aa64pfr1}, 7630 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7632 .access = PL1_R, .type = ARM_CP_CONST, 7633 .accessfn = access_aa64_tid3, 7634 .resetvalue = 0 }, 7635 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7637 .access = PL1_R, .type = ARM_CP_CONST, 7638 .accessfn = access_aa64_tid3, 7639 .resetvalue = 0 }, 7640 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7641 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7642 .access = PL1_R, .type = ARM_CP_CONST, 7643 .accessfn = access_aa64_tid3, 7644 .resetvalue = cpu->isar.id_aa64zfr0 }, 7645 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7646 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7647 .access = PL1_R, .type = ARM_CP_CONST, 7648 .accessfn = access_aa64_tid3, 7649 .resetvalue = cpu->isar.id_aa64smfr0 }, 7650 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7652 .access = PL1_R, .type = ARM_CP_CONST, 7653 .accessfn = access_aa64_tid3, 7654 .resetvalue = 0 }, 7655 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7657 .access = PL1_R, .type = ARM_CP_CONST, 7658 .accessfn = access_aa64_tid3, 7659 .resetvalue = 0 }, 7660 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7661 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7662 .access = PL1_R, .type = ARM_CP_CONST, 7663 .accessfn = access_aa64_tid3, 7664 .resetvalue = cpu->isar.id_aa64dfr0 }, 7665 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7667 .access = PL1_R, .type = ARM_CP_CONST, 7668 .accessfn = access_aa64_tid3, 7669 .resetvalue = cpu->isar.id_aa64dfr1 }, 7670 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7672 .access = PL1_R, .type = ARM_CP_CONST, 7673 .accessfn = access_aa64_tid3, 7674 .resetvalue = 0 }, 7675 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7677 .access = PL1_R, .type = ARM_CP_CONST, 7678 .accessfn = access_aa64_tid3, 7679 .resetvalue = 0 }, 7680 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7681 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7682 .access = PL1_R, .type = ARM_CP_CONST, 7683 .accessfn = access_aa64_tid3, 7684 .resetvalue = cpu->id_aa64afr0 }, 7685 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7687 .access = PL1_R, .type = ARM_CP_CONST, 7688 .accessfn = access_aa64_tid3, 7689 .resetvalue = cpu->id_aa64afr1 }, 7690 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7692 .access = PL1_R, .type = ARM_CP_CONST, 7693 .accessfn = access_aa64_tid3, 7694 .resetvalue = 0 }, 7695 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7696 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7697 .access = PL1_R, .type = ARM_CP_CONST, 7698 .accessfn = access_aa64_tid3, 7699 .resetvalue = 0 }, 7700 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7701 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7702 .access = PL1_R, .type = ARM_CP_CONST, 7703 .accessfn = access_aa64_tid3, 7704 .resetvalue = cpu->isar.id_aa64isar0 }, 7705 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7707 .access = PL1_R, .type = ARM_CP_CONST, 7708 .accessfn = access_aa64_tid3, 7709 .resetvalue = cpu->isar.id_aa64isar1 }, 7710 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7712 .access = PL1_R, .type = ARM_CP_CONST, 7713 .accessfn = access_aa64_tid3, 7714 .resetvalue = 0 }, 7715 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7717 .access = PL1_R, .type = ARM_CP_CONST, 7718 .accessfn = access_aa64_tid3, 7719 .resetvalue = 0 }, 7720 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7722 .access = PL1_R, .type = ARM_CP_CONST, 7723 .accessfn = access_aa64_tid3, 7724 .resetvalue = 0 }, 7725 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7727 .access = PL1_R, .type = ARM_CP_CONST, 7728 .accessfn = access_aa64_tid3, 7729 .resetvalue = 0 }, 7730 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7732 .access = PL1_R, .type = ARM_CP_CONST, 7733 .accessfn = access_aa64_tid3, 7734 .resetvalue = 0 }, 7735 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7737 .access = PL1_R, .type = ARM_CP_CONST, 7738 .accessfn = access_aa64_tid3, 7739 .resetvalue = 0 }, 7740 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7741 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7742 .access = PL1_R, .type = ARM_CP_CONST, 7743 .accessfn = access_aa64_tid3, 7744 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7745 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7747 .access = PL1_R, .type = ARM_CP_CONST, 7748 .accessfn = access_aa64_tid3, 7749 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7750 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7752 .access = PL1_R, .type = ARM_CP_CONST, 7753 .accessfn = access_aa64_tid3, 7754 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7755 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7757 .access = PL1_R, .type = ARM_CP_CONST, 7758 .accessfn = access_aa64_tid3, 7759 .resetvalue = 0 }, 7760 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7762 .access = PL1_R, .type = ARM_CP_CONST, 7763 .accessfn = access_aa64_tid3, 7764 .resetvalue = 0 }, 7765 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7767 .access = PL1_R, .type = ARM_CP_CONST, 7768 .accessfn = access_aa64_tid3, 7769 .resetvalue = 0 }, 7770 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7772 .access = PL1_R, .type = ARM_CP_CONST, 7773 .accessfn = access_aa64_tid3, 7774 .resetvalue = 0 }, 7775 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7777 .access = PL1_R, .type = ARM_CP_CONST, 7778 .accessfn = access_aa64_tid3, 7779 .resetvalue = 0 }, 7780 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7782 .access = PL1_R, .type = ARM_CP_CONST, 7783 .accessfn = access_aa64_tid3, 7784 .resetvalue = cpu->isar.mvfr0 }, 7785 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7787 .access = PL1_R, .type = ARM_CP_CONST, 7788 .accessfn = access_aa64_tid3, 7789 .resetvalue = cpu->isar.mvfr1 }, 7790 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7792 .access = PL1_R, .type = ARM_CP_CONST, 7793 .accessfn = access_aa64_tid3, 7794 .resetvalue = cpu->isar.mvfr2 }, 7795 /* 7796 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 7797 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 7798 * as RAZ, since it is in the "reserved for future ID 7799 * registers, RAZ" part of the AArch32 encoding space. 7800 */ 7801 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 7802 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa64_tid3, 7805 .resetvalue = 0 }, 7806 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 7807 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7808 .access = PL1_R, .type = ARM_CP_CONST, 7809 .accessfn = access_aa64_tid3, 7810 .resetvalue = 0 }, 7811 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 7812 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7813 .access = PL1_R, .type = ARM_CP_CONST, 7814 .accessfn = access_aa64_tid3, 7815 .resetvalue = 0 }, 7816 /* 7817 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 7818 * they're also RAZ for AArch64, and in v8 are gradually 7819 * being filled with AArch64-view-of-AArch32-ID-register 7820 * for new ID registers. 7821 */ 7822 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 7823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7824 .access = PL1_R, .type = ARM_CP_CONST, 7825 .accessfn = access_aa64_tid3, 7826 .resetvalue = 0 }, 7827 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7829 .access = PL1_R, .type = ARM_CP_CONST, 7830 .accessfn = access_aa64_tid3, 7831 .resetvalue = cpu->isar.id_pfr2 }, 7832 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 7833 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7834 .access = PL1_R, .type = ARM_CP_CONST, 7835 .accessfn = access_aa64_tid3, 7836 .resetvalue = cpu->isar.id_dfr1 }, 7837 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 7838 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7839 .access = PL1_R, .type = ARM_CP_CONST, 7840 .accessfn = access_aa64_tid3, 7841 .resetvalue = cpu->isar.id_mmfr5 }, 7842 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 7843 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7844 .access = PL1_R, .type = ARM_CP_CONST, 7845 .accessfn = access_aa64_tid3, 7846 .resetvalue = 0 }, 7847 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7848 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7849 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7850 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7851 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7852 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7853 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7854 .resetvalue = cpu->pmceid0 }, 7855 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7856 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7857 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7858 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7859 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7860 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7861 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7862 .resetvalue = cpu->pmceid1 }, 7863 }; 7864 #ifdef CONFIG_USER_ONLY 7865 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7866 { .name = "ID_AA64PFR0_EL1", 7867 .exported_bits = 0x000f000f00ff0000, 7868 .fixed_bits = 0x0000000000000011 }, 7869 { .name = "ID_AA64PFR1_EL1", 7870 .exported_bits = 0x00000000000000f0 }, 7871 { .name = "ID_AA64PFR*_EL1_RESERVED", 7872 .is_glob = true }, 7873 { .name = "ID_AA64ZFR0_EL1" }, 7874 { .name = "ID_AA64MMFR0_EL1", 7875 .fixed_bits = 0x00000000ff000000 }, 7876 { .name = "ID_AA64MMFR1_EL1" }, 7877 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7878 .is_glob = true }, 7879 { .name = "ID_AA64DFR0_EL1", 7880 .fixed_bits = 0x0000000000000006 }, 7881 { .name = "ID_AA64DFR1_EL1" }, 7882 { .name = "ID_AA64DFR*_EL1_RESERVED", 7883 .is_glob = true }, 7884 { .name = "ID_AA64AFR*", 7885 .is_glob = true }, 7886 { .name = "ID_AA64ISAR0_EL1", 7887 .exported_bits = 0x00fffffff0fffff0 }, 7888 { .name = "ID_AA64ISAR1_EL1", 7889 .exported_bits = 0x000000f0ffffffff }, 7890 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7891 .is_glob = true }, 7892 }; 7893 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7894 #endif 7895 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7896 if (!arm_feature(env, ARM_FEATURE_EL3) && 7897 !arm_feature(env, ARM_FEATURE_EL2)) { 7898 ARMCPRegInfo rvbar = { 7899 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7900 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7901 .access = PL1_R, 7902 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7903 }; 7904 define_one_arm_cp_reg(cpu, &rvbar); 7905 } 7906 define_arm_cp_regs(cpu, v8_idregs); 7907 define_arm_cp_regs(cpu, v8_cp_reginfo); 7908 7909 for (i = 4; i < 16; i++) { 7910 /* 7911 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 7912 * For pre-v8 cores there are RAZ patterns for these in 7913 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 7914 * v8 extends the "must RAZ" part of the ID register space 7915 * to also cover c0, 0, c{8-15}, {0-7}. 7916 * These are STATE_AA32 because in the AArch64 sysreg space 7917 * c4-c7 is where the AArch64 ID registers live (and we've 7918 * already defined those in v8_idregs[]), and c8-c15 are not 7919 * "must RAZ" for AArch64. 7920 */ 7921 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 7922 ARMCPRegInfo v8_aa32_raz_idregs = { 7923 .name = name, 7924 .state = ARM_CP_STATE_AA32, 7925 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 7926 .access = PL1_R, .type = ARM_CP_CONST, 7927 .accessfn = access_aa64_tid3, 7928 .resetvalue = 0 }; 7929 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 7930 } 7931 } 7932 7933 /* 7934 * Register the base EL2 cpregs. 7935 * Pre v8, these registers are implemented only as part of the 7936 * Virtualization Extensions (EL2 present). Beginning with v8, 7937 * if EL2 is missing but EL3 is enabled, mostly these become 7938 * RES0 from EL3, with some specific exceptions. 7939 */ 7940 if (arm_feature(env, ARM_FEATURE_EL2) 7941 || (arm_feature(env, ARM_FEATURE_EL3) 7942 && arm_feature(env, ARM_FEATURE_V8))) { 7943 uint64_t vmpidr_def = mpidr_read_val(env); 7944 ARMCPRegInfo vpidr_regs[] = { 7945 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7946 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7947 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7948 .resetvalue = cpu->midr, 7949 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7950 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7951 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7952 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7953 .access = PL2_RW, .resetvalue = cpu->midr, 7954 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7955 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7956 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7957 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7958 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7959 .resetvalue = vmpidr_def, 7960 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7961 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7962 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7963 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7964 .access = PL2_RW, .resetvalue = vmpidr_def, 7965 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7966 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7967 }; 7968 /* 7969 * The only field of MDCR_EL2 that has a defined architectural reset 7970 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 7971 */ 7972 ARMCPRegInfo mdcr_el2 = { 7973 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 7974 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 7975 .writefn = mdcr_el2_write, 7976 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 7977 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 7978 }; 7979 define_one_arm_cp_reg(cpu, &mdcr_el2); 7980 define_arm_cp_regs(cpu, vpidr_regs); 7981 define_arm_cp_regs(cpu, el2_cp_reginfo); 7982 if (arm_feature(env, ARM_FEATURE_V8)) { 7983 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7984 } 7985 if (cpu_isar_feature(aa64_sel2, cpu)) { 7986 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7987 } 7988 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7989 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7990 ARMCPRegInfo rvbar = { 7991 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7992 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7993 .access = PL2_R, 7994 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7995 }; 7996 define_one_arm_cp_reg(cpu, &rvbar); 7997 } 7998 } 7999 8000 /* Register the base EL3 cpregs. */ 8001 if (arm_feature(env, ARM_FEATURE_EL3)) { 8002 define_arm_cp_regs(cpu, el3_cp_reginfo); 8003 ARMCPRegInfo el3_regs[] = { 8004 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8005 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8006 .access = PL3_R, 8007 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8008 }, 8009 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8010 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8011 .access = PL3_RW, 8012 .raw_writefn = raw_write, .writefn = sctlr_write, 8013 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8014 .resetvalue = cpu->reset_sctlr }, 8015 }; 8016 8017 define_arm_cp_regs(cpu, el3_regs); 8018 } 8019 /* The behaviour of NSACR is sufficiently various that we don't 8020 * try to describe it in a single reginfo: 8021 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8022 * reads as constant 0xc00 from NS EL1 and NS EL2 8023 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8024 * if v7 without EL3, register doesn't exist 8025 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8026 */ 8027 if (arm_feature(env, ARM_FEATURE_EL3)) { 8028 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8029 static const ARMCPRegInfo nsacr = { 8030 .name = "NSACR", .type = ARM_CP_CONST, 8031 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8032 .access = PL1_RW, .accessfn = nsacr_access, 8033 .resetvalue = 0xc00 8034 }; 8035 define_one_arm_cp_reg(cpu, &nsacr); 8036 } else { 8037 static const ARMCPRegInfo nsacr = { 8038 .name = "NSACR", 8039 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8040 .access = PL3_RW | PL1_R, 8041 .resetvalue = 0, 8042 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8043 }; 8044 define_one_arm_cp_reg(cpu, &nsacr); 8045 } 8046 } else { 8047 if (arm_feature(env, ARM_FEATURE_V8)) { 8048 static const ARMCPRegInfo nsacr = { 8049 .name = "NSACR", .type = ARM_CP_CONST, 8050 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8051 .access = PL1_R, 8052 .resetvalue = 0xc00 8053 }; 8054 define_one_arm_cp_reg(cpu, &nsacr); 8055 } 8056 } 8057 8058 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8059 if (arm_feature(env, ARM_FEATURE_V6)) { 8060 /* PMSAv6 not implemented */ 8061 assert(arm_feature(env, ARM_FEATURE_V7)); 8062 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8063 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8064 } else { 8065 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8066 } 8067 } else { 8068 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8069 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8070 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8071 if (cpu_isar_feature(aa32_hpd, cpu)) { 8072 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8073 } 8074 } 8075 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8076 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8077 } 8078 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8079 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8080 } 8081 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8082 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8083 } 8084 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8085 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8086 } 8087 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8088 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8089 } 8090 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8091 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8092 } 8093 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8094 define_arm_cp_regs(cpu, omap_cp_reginfo); 8095 } 8096 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8097 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8098 } 8099 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8100 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8101 } 8102 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8103 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8104 } 8105 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8106 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8107 } 8108 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8109 define_arm_cp_regs(cpu, jazelle_regs); 8110 } 8111 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8112 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8113 * be read-only (ie write causes UNDEF exception). 8114 */ 8115 { 8116 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8117 /* Pre-v8 MIDR space. 8118 * Note that the MIDR isn't a simple constant register because 8119 * of the TI925 behaviour where writes to another register can 8120 * cause the MIDR value to change. 8121 * 8122 * Unimplemented registers in the c15 0 0 0 space default to 8123 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8124 * and friends override accordingly. 8125 */ 8126 { .name = "MIDR", 8127 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8128 .access = PL1_R, .resetvalue = cpu->midr, 8129 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8130 .readfn = midr_read, 8131 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8132 .type = ARM_CP_OVERRIDE }, 8133 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8134 { .name = "DUMMY", 8135 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8136 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8137 { .name = "DUMMY", 8138 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8139 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8140 { .name = "DUMMY", 8141 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8142 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8143 { .name = "DUMMY", 8144 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8145 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8146 { .name = "DUMMY", 8147 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8148 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8149 }; 8150 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8151 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8152 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8153 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8154 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8155 .readfn = midr_read }, 8156 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8157 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8158 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8159 .access = PL1_R, .resetvalue = cpu->midr }, 8160 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8161 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8162 .access = PL1_R, .resetvalue = cpu->midr }, 8163 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8164 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8165 .access = PL1_R, 8166 .accessfn = access_aa64_tid1, 8167 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8168 }; 8169 ARMCPRegInfo id_cp_reginfo[] = { 8170 /* These are common to v8 and pre-v8 */ 8171 { .name = "CTR", 8172 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8173 .access = PL1_R, .accessfn = ctr_el0_access, 8174 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8175 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8176 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8177 .access = PL0_R, .accessfn = ctr_el0_access, 8178 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8179 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8180 { .name = "TCMTR", 8181 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8182 .access = PL1_R, 8183 .accessfn = access_aa32_tid1, 8184 .type = ARM_CP_CONST, .resetvalue = 0 }, 8185 }; 8186 /* TLBTR is specific to VMSA */ 8187 ARMCPRegInfo id_tlbtr_reginfo = { 8188 .name = "TLBTR", 8189 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8190 .access = PL1_R, 8191 .accessfn = access_aa32_tid1, 8192 .type = ARM_CP_CONST, .resetvalue = 0, 8193 }; 8194 /* MPUIR is specific to PMSA V6+ */ 8195 ARMCPRegInfo id_mpuir_reginfo = { 8196 .name = "MPUIR", 8197 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8198 .access = PL1_R, .type = ARM_CP_CONST, 8199 .resetvalue = cpu->pmsav7_dregion << 8 8200 }; 8201 static const ARMCPRegInfo crn0_wi_reginfo = { 8202 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8203 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8204 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8205 }; 8206 #ifdef CONFIG_USER_ONLY 8207 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8208 { .name = "MIDR_EL1", 8209 .exported_bits = 0x00000000ffffffff }, 8210 { .name = "REVIDR_EL1" }, 8211 }; 8212 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8213 #endif 8214 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8215 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8216 size_t i; 8217 /* Register the blanket "writes ignored" value first to cover the 8218 * whole space. Then update the specific ID registers to allow write 8219 * access, so that they ignore writes rather than causing them to 8220 * UNDEF. 8221 */ 8222 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8223 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8224 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8225 } 8226 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8227 id_cp_reginfo[i].access = PL1_RW; 8228 } 8229 id_mpuir_reginfo.access = PL1_RW; 8230 id_tlbtr_reginfo.access = PL1_RW; 8231 } 8232 if (arm_feature(env, ARM_FEATURE_V8)) { 8233 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8234 } else { 8235 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8236 } 8237 define_arm_cp_regs(cpu, id_cp_reginfo); 8238 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8239 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8240 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8241 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8242 } 8243 } 8244 8245 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8246 ARMCPRegInfo mpidr_cp_reginfo[] = { 8247 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8248 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8249 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8250 }; 8251 #ifdef CONFIG_USER_ONLY 8252 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8253 { .name = "MPIDR_EL1", 8254 .fixed_bits = 0x0000000080000000 }, 8255 }; 8256 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8257 #endif 8258 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8259 } 8260 8261 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8262 ARMCPRegInfo auxcr_reginfo[] = { 8263 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8264 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8265 .access = PL1_RW, .accessfn = access_tacr, 8266 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8267 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8268 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8269 .access = PL2_RW, .type = ARM_CP_CONST, 8270 .resetvalue = 0 }, 8271 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8272 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8273 .access = PL3_RW, .type = ARM_CP_CONST, 8274 .resetvalue = 0 }, 8275 }; 8276 define_arm_cp_regs(cpu, auxcr_reginfo); 8277 if (cpu_isar_feature(aa32_ac2, cpu)) { 8278 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8279 } 8280 } 8281 8282 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8283 /* 8284 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8285 * There are two flavours: 8286 * (1) older 32-bit only cores have a simple 32-bit CBAR 8287 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8288 * 32-bit register visible to AArch32 at a different encoding 8289 * to the "flavour 1" register and with the bits rearranged to 8290 * be able to squash a 64-bit address into the 32-bit view. 8291 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8292 * in future if we support AArch32-only configs of some of the 8293 * AArch64 cores we might need to add a specific feature flag 8294 * to indicate cores with "flavour 2" CBAR. 8295 */ 8296 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8297 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8298 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8299 | extract64(cpu->reset_cbar, 32, 12); 8300 ARMCPRegInfo cbar_reginfo[] = { 8301 { .name = "CBAR", 8302 .type = ARM_CP_CONST, 8303 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8304 .access = PL1_R, .resetvalue = cbar32 }, 8305 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8306 .type = ARM_CP_CONST, 8307 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8308 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8309 }; 8310 /* We don't implement a r/w 64 bit CBAR currently */ 8311 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8312 define_arm_cp_regs(cpu, cbar_reginfo); 8313 } else { 8314 ARMCPRegInfo cbar = { 8315 .name = "CBAR", 8316 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8317 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8318 .fieldoffset = offsetof(CPUARMState, 8319 cp15.c15_config_base_address) 8320 }; 8321 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8322 cbar.access = PL1_R; 8323 cbar.fieldoffset = 0; 8324 cbar.type = ARM_CP_CONST; 8325 } 8326 define_one_arm_cp_reg(cpu, &cbar); 8327 } 8328 } 8329 8330 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8331 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8332 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8333 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8334 .access = PL1_RW, .writefn = vbar_write, 8335 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8336 offsetof(CPUARMState, cp15.vbar_ns) }, 8337 .resetvalue = 0 }, 8338 }; 8339 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8340 } 8341 8342 /* Generic registers whose values depend on the implementation */ 8343 { 8344 ARMCPRegInfo sctlr = { 8345 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8346 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8347 .access = PL1_RW, .accessfn = access_tvm_trvm, 8348 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8349 offsetof(CPUARMState, cp15.sctlr_ns) }, 8350 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8351 .raw_writefn = raw_write, 8352 }; 8353 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8354 /* Normally we would always end the TB on an SCTLR write, but Linux 8355 * arch/arm/mach-pxa/sleep.S expects two instructions following 8356 * an MMU enable to execute from cache. Imitate this behaviour. 8357 */ 8358 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8359 } 8360 define_one_arm_cp_reg(cpu, &sctlr); 8361 } 8362 8363 if (cpu_isar_feature(aa64_lor, cpu)) { 8364 define_arm_cp_regs(cpu, lor_reginfo); 8365 } 8366 if (cpu_isar_feature(aa64_pan, cpu)) { 8367 define_one_arm_cp_reg(cpu, &pan_reginfo); 8368 } 8369 #ifndef CONFIG_USER_ONLY 8370 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8371 define_arm_cp_regs(cpu, ats1e1_reginfo); 8372 } 8373 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8374 define_arm_cp_regs(cpu, ats1cp_reginfo); 8375 } 8376 #endif 8377 if (cpu_isar_feature(aa64_uao, cpu)) { 8378 define_one_arm_cp_reg(cpu, &uao_reginfo); 8379 } 8380 8381 if (cpu_isar_feature(aa64_dit, cpu)) { 8382 define_one_arm_cp_reg(cpu, &dit_reginfo); 8383 } 8384 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8385 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8386 } 8387 if (cpu_isar_feature(any_ras, cpu)) { 8388 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8389 } 8390 8391 if (cpu_isar_feature(aa64_vh, cpu) || 8392 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8393 define_one_arm_cp_reg(cpu, &contextidr_el2); 8394 } 8395 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8396 define_arm_cp_regs(cpu, vhe_reginfo); 8397 } 8398 8399 if (cpu_isar_feature(aa64_sve, cpu)) { 8400 define_arm_cp_regs(cpu, zcr_reginfo); 8401 } 8402 8403 if (cpu_isar_feature(aa64_hcx, cpu)) { 8404 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8405 } 8406 8407 #ifdef TARGET_AARCH64 8408 if (cpu_isar_feature(aa64_sme, cpu)) { 8409 define_arm_cp_regs(cpu, sme_reginfo); 8410 } 8411 if (cpu_isar_feature(aa64_pauth, cpu)) { 8412 define_arm_cp_regs(cpu, pauth_reginfo); 8413 } 8414 if (cpu_isar_feature(aa64_rndr, cpu)) { 8415 define_arm_cp_regs(cpu, rndr_reginfo); 8416 } 8417 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8418 define_arm_cp_regs(cpu, tlbirange_reginfo); 8419 } 8420 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8421 define_arm_cp_regs(cpu, tlbios_reginfo); 8422 } 8423 #ifndef CONFIG_USER_ONLY 8424 /* Data Cache clean instructions up to PoP */ 8425 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8426 define_one_arm_cp_reg(cpu, dcpop_reg); 8427 8428 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8429 define_one_arm_cp_reg(cpu, dcpodp_reg); 8430 } 8431 } 8432 #endif /*CONFIG_USER_ONLY*/ 8433 8434 /* 8435 * If full MTE is enabled, add all of the system registers. 8436 * If only "instructions available at EL0" are enabled, 8437 * then define only a RAZ/WI version of PSTATE.TCO. 8438 */ 8439 if (cpu_isar_feature(aa64_mte, cpu)) { 8440 define_arm_cp_regs(cpu, mte_reginfo); 8441 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8442 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8443 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8444 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8445 } 8446 8447 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8448 define_arm_cp_regs(cpu, scxtnum_reginfo); 8449 } 8450 #endif 8451 8452 if (cpu_isar_feature(any_predinv, cpu)) { 8453 define_arm_cp_regs(cpu, predinv_reginfo); 8454 } 8455 8456 if (cpu_isar_feature(any_ccidx, cpu)) { 8457 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8458 } 8459 8460 #ifndef CONFIG_USER_ONLY 8461 /* 8462 * Register redirections and aliases must be done last, 8463 * after the registers from the other extensions have been defined. 8464 */ 8465 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8466 define_arm_vh_e2h_redirects_aliases(cpu); 8467 } 8468 #endif 8469 } 8470 8471 /* Sort alphabetically by type name, except for "any". */ 8472 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8473 { 8474 ObjectClass *class_a = (ObjectClass *)a; 8475 ObjectClass *class_b = (ObjectClass *)b; 8476 const char *name_a, *name_b; 8477 8478 name_a = object_class_get_name(class_a); 8479 name_b = object_class_get_name(class_b); 8480 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8481 return 1; 8482 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8483 return -1; 8484 } else { 8485 return strcmp(name_a, name_b); 8486 } 8487 } 8488 8489 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8490 { 8491 ObjectClass *oc = data; 8492 CPUClass *cc = CPU_CLASS(oc); 8493 const char *typename; 8494 char *name; 8495 8496 typename = object_class_get_name(oc); 8497 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8498 if (cc->deprecation_note) { 8499 qemu_printf(" %s (deprecated)\n", name); 8500 } else { 8501 qemu_printf(" %s\n", name); 8502 } 8503 g_free(name); 8504 } 8505 8506 void arm_cpu_list(void) 8507 { 8508 GSList *list; 8509 8510 list = object_class_get_list(TYPE_ARM_CPU, false); 8511 list = g_slist_sort(list, arm_cpu_list_compare); 8512 qemu_printf("Available CPUs:\n"); 8513 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8514 g_slist_free(list); 8515 } 8516 8517 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8518 { 8519 ObjectClass *oc = data; 8520 CpuDefinitionInfoList **cpu_list = user_data; 8521 CpuDefinitionInfo *info; 8522 const char *typename; 8523 8524 typename = object_class_get_name(oc); 8525 info = g_malloc0(sizeof(*info)); 8526 info->name = g_strndup(typename, 8527 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8528 info->q_typename = g_strdup(typename); 8529 8530 QAPI_LIST_PREPEND(*cpu_list, info); 8531 } 8532 8533 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8534 { 8535 CpuDefinitionInfoList *cpu_list = NULL; 8536 GSList *list; 8537 8538 list = object_class_get_list(TYPE_ARM_CPU, false); 8539 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8540 g_slist_free(list); 8541 8542 return cpu_list; 8543 } 8544 8545 /* 8546 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8547 * add a single reginfo struct to the hash table. 8548 */ 8549 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8550 void *opaque, CPState state, 8551 CPSecureState secstate, 8552 int crm, int opc1, int opc2, 8553 const char *name) 8554 { 8555 CPUARMState *env = &cpu->env; 8556 uint32_t key; 8557 ARMCPRegInfo *r2; 8558 bool is64 = r->type & ARM_CP_64BIT; 8559 bool ns = secstate & ARM_CP_SECSTATE_NS; 8560 int cp = r->cp; 8561 size_t name_len; 8562 bool make_const; 8563 8564 switch (state) { 8565 case ARM_CP_STATE_AA32: 8566 /* We assume it is a cp15 register if the .cp field is left unset. */ 8567 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8568 cp = 15; 8569 } 8570 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8571 break; 8572 case ARM_CP_STATE_AA64: 8573 /* 8574 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8575 * cp == 0 as equivalent to the value for "standard guest-visible 8576 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8577 * in their AArch64 view (the .cp value may be non-zero for the 8578 * benefit of the AArch32 view). 8579 */ 8580 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8581 cp = CP_REG_ARM64_SYSREG_CP; 8582 } 8583 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8584 break; 8585 default: 8586 g_assert_not_reached(); 8587 } 8588 8589 /* Overriding of an existing definition must be explicitly requested. */ 8590 if (!(r->type & ARM_CP_OVERRIDE)) { 8591 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8592 if (oldreg) { 8593 assert(oldreg->type & ARM_CP_OVERRIDE); 8594 } 8595 } 8596 8597 /* 8598 * Eliminate registers that are not present because the EL is missing. 8599 * Doing this here makes it easier to put all registers for a given 8600 * feature into the same ARMCPRegInfo array and define them all at once. 8601 */ 8602 make_const = false; 8603 if (arm_feature(env, ARM_FEATURE_EL3)) { 8604 /* 8605 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8606 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8607 */ 8608 int min_el = ctz32(r->access) / 2; 8609 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8610 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8611 return; 8612 } 8613 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8614 } 8615 } else { 8616 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8617 ? PL2_RW : PL1_RW); 8618 if ((r->access & max_el) == 0) { 8619 return; 8620 } 8621 } 8622 8623 /* Combine cpreg and name into one allocation. */ 8624 name_len = strlen(name) + 1; 8625 r2 = g_malloc(sizeof(*r2) + name_len); 8626 *r2 = *r; 8627 r2->name = memcpy(r2 + 1, name, name_len); 8628 8629 /* 8630 * Update fields to match the instantiation, overwiting wildcards 8631 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8632 */ 8633 r2->cp = cp; 8634 r2->crm = crm; 8635 r2->opc1 = opc1; 8636 r2->opc2 = opc2; 8637 r2->state = state; 8638 r2->secure = secstate; 8639 if (opaque) { 8640 r2->opaque = opaque; 8641 } 8642 8643 if (make_const) { 8644 /* This should not have been a very special register to begin. */ 8645 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8646 assert(old_special == 0 || old_special == ARM_CP_NOP); 8647 /* 8648 * Set the special function to CONST, retaining the other flags. 8649 * This is important for e.g. ARM_CP_SVE so that we still 8650 * take the SVE trap if CPTR_EL3.EZ == 0. 8651 */ 8652 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8653 /* 8654 * Usually, these registers become RES0, but there are a few 8655 * special cases like VPIDR_EL2 which have a constant non-zero 8656 * value with writes ignored. 8657 */ 8658 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8659 r2->resetvalue = 0; 8660 } 8661 /* 8662 * ARM_CP_CONST has precedence, so removing the callbacks and 8663 * offsets are not strictly necessary, but it is potentially 8664 * less confusing to debug later. 8665 */ 8666 r2->readfn = NULL; 8667 r2->writefn = NULL; 8668 r2->raw_readfn = NULL; 8669 r2->raw_writefn = NULL; 8670 r2->resetfn = NULL; 8671 r2->fieldoffset = 0; 8672 r2->bank_fieldoffsets[0] = 0; 8673 r2->bank_fieldoffsets[1] = 0; 8674 } else { 8675 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8676 8677 if (isbanked) { 8678 /* 8679 * Register is banked (using both entries in array). 8680 * Overwriting fieldoffset as the array is only used to define 8681 * banked registers but later only fieldoffset is used. 8682 */ 8683 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8684 } 8685 if (state == ARM_CP_STATE_AA32) { 8686 if (isbanked) { 8687 /* 8688 * If the register is banked then we don't need to migrate or 8689 * reset the 32-bit instance in certain cases: 8690 * 8691 * 1) If the register has both 32-bit and 64-bit instances 8692 * then we can count on the 64-bit instance taking care 8693 * of the non-secure bank. 8694 * 2) If ARMv8 is enabled then we can count on a 64-bit 8695 * version taking care of the secure bank. This requires 8696 * that separate 32 and 64-bit definitions are provided. 8697 */ 8698 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8699 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8700 r2->type |= ARM_CP_ALIAS; 8701 } 8702 } else if ((secstate != r->secure) && !ns) { 8703 /* 8704 * The register is not banked so we only want to allow 8705 * migration of the non-secure instance. 8706 */ 8707 r2->type |= ARM_CP_ALIAS; 8708 } 8709 8710 if (HOST_BIG_ENDIAN && 8711 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8712 r2->fieldoffset += sizeof(uint32_t); 8713 } 8714 } 8715 } 8716 8717 /* 8718 * By convention, for wildcarded registers only the first 8719 * entry is used for migration; the others are marked as 8720 * ALIAS so we don't try to transfer the register 8721 * multiple times. Special registers (ie NOP/WFI) are 8722 * never migratable and not even raw-accessible. 8723 */ 8724 if (r2->type & ARM_CP_SPECIAL_MASK) { 8725 r2->type |= ARM_CP_NO_RAW; 8726 } 8727 if (((r->crm == CP_ANY) && crm != 0) || 8728 ((r->opc1 == CP_ANY) && opc1 != 0) || 8729 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8730 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8731 } 8732 8733 /* 8734 * Check that raw accesses are either forbidden or handled. Note that 8735 * we can't assert this earlier because the setup of fieldoffset for 8736 * banked registers has to be done first. 8737 */ 8738 if (!(r2->type & ARM_CP_NO_RAW)) { 8739 assert(!raw_accessors_invalid(r2)); 8740 } 8741 8742 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8743 } 8744 8745 8746 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8747 const ARMCPRegInfo *r, void *opaque) 8748 { 8749 /* Define implementations of coprocessor registers. 8750 * We store these in a hashtable because typically 8751 * there are less than 150 registers in a space which 8752 * is 16*16*16*8*8 = 262144 in size. 8753 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8754 * If a register is defined twice then the second definition is 8755 * used, so this can be used to define some generic registers and 8756 * then override them with implementation specific variations. 8757 * At least one of the original and the second definition should 8758 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8759 * against accidental use. 8760 * 8761 * The state field defines whether the register is to be 8762 * visible in the AArch32 or AArch64 execution state. If the 8763 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8764 * reginfo structure for the AArch32 view, which sees the lower 8765 * 32 bits of the 64 bit register. 8766 * 8767 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8768 * be wildcarded. AArch64 registers are always considered to be 64 8769 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8770 * the register, if any. 8771 */ 8772 int crm, opc1, opc2; 8773 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8774 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8775 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8776 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8777 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8778 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8779 CPState state; 8780 8781 /* 64 bit registers have only CRm and Opc1 fields */ 8782 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8783 /* op0 only exists in the AArch64 encodings */ 8784 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8785 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8786 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8787 /* 8788 * This API is only for Arm's system coprocessors (14 and 15) or 8789 * (M-profile or v7A-and-earlier only) for implementation defined 8790 * coprocessors in the range 0..7. Our decode assumes this, since 8791 * 8..13 can be used for other insns including VFP and Neon. See 8792 * valid_cp() in translate.c. Assert here that we haven't tried 8793 * to use an invalid coprocessor number. 8794 */ 8795 switch (r->state) { 8796 case ARM_CP_STATE_BOTH: 8797 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8798 if (r->cp == 0) { 8799 break; 8800 } 8801 /* fall through */ 8802 case ARM_CP_STATE_AA32: 8803 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8804 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8805 assert(r->cp >= 14 && r->cp <= 15); 8806 } else { 8807 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8808 } 8809 break; 8810 case ARM_CP_STATE_AA64: 8811 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8812 break; 8813 default: 8814 g_assert_not_reached(); 8815 } 8816 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8817 * encodes a minimum access level for the register. We roll this 8818 * runtime check into our general permission check code, so check 8819 * here that the reginfo's specified permissions are strict enough 8820 * to encompass the generic architectural permission check. 8821 */ 8822 if (r->state != ARM_CP_STATE_AA32) { 8823 CPAccessRights mask; 8824 switch (r->opc1) { 8825 case 0: 8826 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8827 mask = PL0U_R | PL1_RW; 8828 break; 8829 case 1: case 2: 8830 /* min_EL EL1 */ 8831 mask = PL1_RW; 8832 break; 8833 case 3: 8834 /* min_EL EL0 */ 8835 mask = PL0_RW; 8836 break; 8837 case 4: 8838 case 5: 8839 /* min_EL EL2 */ 8840 mask = PL2_RW; 8841 break; 8842 case 6: 8843 /* min_EL EL3 */ 8844 mask = PL3_RW; 8845 break; 8846 case 7: 8847 /* min_EL EL1, secure mode only (we don't check the latter) */ 8848 mask = PL1_RW; 8849 break; 8850 default: 8851 /* broken reginfo with out-of-range opc1 */ 8852 g_assert_not_reached(); 8853 } 8854 /* assert our permissions are not too lax (stricter is fine) */ 8855 assert((r->access & ~mask) == 0); 8856 } 8857 8858 /* Check that the register definition has enough info to handle 8859 * reads and writes if they are permitted. 8860 */ 8861 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8862 if (r->access & PL3_R) { 8863 assert((r->fieldoffset || 8864 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8865 r->readfn); 8866 } 8867 if (r->access & PL3_W) { 8868 assert((r->fieldoffset || 8869 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8870 r->writefn); 8871 } 8872 } 8873 8874 for (crm = crmmin; crm <= crmmax; crm++) { 8875 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8876 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8877 for (state = ARM_CP_STATE_AA32; 8878 state <= ARM_CP_STATE_AA64; state++) { 8879 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8880 continue; 8881 } 8882 if (state == ARM_CP_STATE_AA32) { 8883 /* Under AArch32 CP registers can be common 8884 * (same for secure and non-secure world) or banked. 8885 */ 8886 char *name; 8887 8888 switch (r->secure) { 8889 case ARM_CP_SECSTATE_S: 8890 case ARM_CP_SECSTATE_NS: 8891 add_cpreg_to_hashtable(cpu, r, opaque, state, 8892 r->secure, crm, opc1, opc2, 8893 r->name); 8894 break; 8895 case ARM_CP_SECSTATE_BOTH: 8896 name = g_strdup_printf("%s_S", r->name); 8897 add_cpreg_to_hashtable(cpu, r, opaque, state, 8898 ARM_CP_SECSTATE_S, 8899 crm, opc1, opc2, name); 8900 g_free(name); 8901 add_cpreg_to_hashtable(cpu, r, opaque, state, 8902 ARM_CP_SECSTATE_NS, 8903 crm, opc1, opc2, r->name); 8904 break; 8905 default: 8906 g_assert_not_reached(); 8907 } 8908 } else { 8909 /* AArch64 registers get mapped to non-secure instance 8910 * of AArch32 */ 8911 add_cpreg_to_hashtable(cpu, r, opaque, state, 8912 ARM_CP_SECSTATE_NS, 8913 crm, opc1, opc2, r->name); 8914 } 8915 } 8916 } 8917 } 8918 } 8919 } 8920 8921 /* Define a whole list of registers */ 8922 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8923 void *opaque, size_t len) 8924 { 8925 size_t i; 8926 for (i = 0; i < len; ++i) { 8927 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8928 } 8929 } 8930 8931 /* 8932 * Modify ARMCPRegInfo for access from userspace. 8933 * 8934 * This is a data driven modification directed by 8935 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8936 * user-space cannot alter any values and dynamic values pertaining to 8937 * execution state are hidden from user space view anyway. 8938 */ 8939 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8940 const ARMCPRegUserSpaceInfo *mods, 8941 size_t mods_len) 8942 { 8943 for (size_t mi = 0; mi < mods_len; ++mi) { 8944 const ARMCPRegUserSpaceInfo *m = mods + mi; 8945 GPatternSpec *pat = NULL; 8946 8947 if (m->is_glob) { 8948 pat = g_pattern_spec_new(m->name); 8949 } 8950 for (size_t ri = 0; ri < regs_len; ++ri) { 8951 ARMCPRegInfo *r = regs + ri; 8952 8953 if (pat && g_pattern_match_string(pat, r->name)) { 8954 r->type = ARM_CP_CONST; 8955 r->access = PL0U_R; 8956 r->resetvalue = 0; 8957 /* continue */ 8958 } else if (strcmp(r->name, m->name) == 0) { 8959 r->type = ARM_CP_CONST; 8960 r->access = PL0U_R; 8961 r->resetvalue &= m->exported_bits; 8962 r->resetvalue |= m->fixed_bits; 8963 break; 8964 } 8965 } 8966 if (pat) { 8967 g_pattern_spec_free(pat); 8968 } 8969 } 8970 } 8971 8972 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8973 { 8974 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8975 } 8976 8977 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8978 uint64_t value) 8979 { 8980 /* Helper coprocessor write function for write-ignore registers */ 8981 } 8982 8983 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8984 { 8985 /* Helper coprocessor write function for read-as-zero registers */ 8986 return 0; 8987 } 8988 8989 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8990 { 8991 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8992 } 8993 8994 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8995 { 8996 /* Return true if it is not valid for us to switch to 8997 * this CPU mode (ie all the UNPREDICTABLE cases in 8998 * the ARM ARM CPSRWriteByInstr pseudocode). 8999 */ 9000 9001 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9002 if (write_type == CPSRWriteByInstr && 9003 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9004 mode == ARM_CPU_MODE_HYP)) { 9005 return 1; 9006 } 9007 9008 switch (mode) { 9009 case ARM_CPU_MODE_USR: 9010 return 0; 9011 case ARM_CPU_MODE_SYS: 9012 case ARM_CPU_MODE_SVC: 9013 case ARM_CPU_MODE_ABT: 9014 case ARM_CPU_MODE_UND: 9015 case ARM_CPU_MODE_IRQ: 9016 case ARM_CPU_MODE_FIQ: 9017 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 9018 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9019 */ 9020 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9021 * and CPS are treated as illegal mode changes. 9022 */ 9023 if (write_type == CPSRWriteByInstr && 9024 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9025 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9026 return 1; 9027 } 9028 return 0; 9029 case ARM_CPU_MODE_HYP: 9030 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9031 case ARM_CPU_MODE_MON: 9032 return arm_current_el(env) < 3; 9033 default: 9034 return 1; 9035 } 9036 } 9037 9038 uint32_t cpsr_read(CPUARMState *env) 9039 { 9040 int ZF; 9041 ZF = (env->ZF == 0); 9042 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9043 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9044 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9045 | ((env->condexec_bits & 0xfc) << 8) 9046 | (env->GE << 16) | (env->daif & CPSR_AIF); 9047 } 9048 9049 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9050 CPSRWriteType write_type) 9051 { 9052 uint32_t changed_daif; 9053 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9054 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9055 9056 if (mask & CPSR_NZCV) { 9057 env->ZF = (~val) & CPSR_Z; 9058 env->NF = val; 9059 env->CF = (val >> 29) & 1; 9060 env->VF = (val << 3) & 0x80000000; 9061 } 9062 if (mask & CPSR_Q) 9063 env->QF = ((val & CPSR_Q) != 0); 9064 if (mask & CPSR_T) 9065 env->thumb = ((val & CPSR_T) != 0); 9066 if (mask & CPSR_IT_0_1) { 9067 env->condexec_bits &= ~3; 9068 env->condexec_bits |= (val >> 25) & 3; 9069 } 9070 if (mask & CPSR_IT_2_7) { 9071 env->condexec_bits &= 3; 9072 env->condexec_bits |= (val >> 8) & 0xfc; 9073 } 9074 if (mask & CPSR_GE) { 9075 env->GE = (val >> 16) & 0xf; 9076 } 9077 9078 /* In a V7 implementation that includes the security extensions but does 9079 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9080 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9081 * bits respectively. 9082 * 9083 * In a V8 implementation, it is permitted for privileged software to 9084 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9085 */ 9086 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9087 arm_feature(env, ARM_FEATURE_EL3) && 9088 !arm_feature(env, ARM_FEATURE_EL2) && 9089 !arm_is_secure(env)) { 9090 9091 changed_daif = (env->daif ^ val) & mask; 9092 9093 if (changed_daif & CPSR_A) { 9094 /* Check to see if we are allowed to change the masking of async 9095 * abort exceptions from a non-secure state. 9096 */ 9097 if (!(env->cp15.scr_el3 & SCR_AW)) { 9098 qemu_log_mask(LOG_GUEST_ERROR, 9099 "Ignoring attempt to switch CPSR_A flag from " 9100 "non-secure world with SCR.AW bit clear\n"); 9101 mask &= ~CPSR_A; 9102 } 9103 } 9104 9105 if (changed_daif & CPSR_F) { 9106 /* Check to see if we are allowed to change the masking of FIQ 9107 * exceptions from a non-secure state. 9108 */ 9109 if (!(env->cp15.scr_el3 & SCR_FW)) { 9110 qemu_log_mask(LOG_GUEST_ERROR, 9111 "Ignoring attempt to switch CPSR_F flag from " 9112 "non-secure world with SCR.FW bit clear\n"); 9113 mask &= ~CPSR_F; 9114 } 9115 9116 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9117 * If this bit is set software is not allowed to mask 9118 * FIQs, but is allowed to set CPSR_F to 0. 9119 */ 9120 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9121 (val & CPSR_F)) { 9122 qemu_log_mask(LOG_GUEST_ERROR, 9123 "Ignoring attempt to enable CPSR_F flag " 9124 "(non-maskable FIQ [NMFI] support enabled)\n"); 9125 mask &= ~CPSR_F; 9126 } 9127 } 9128 } 9129 9130 env->daif &= ~(CPSR_AIF & mask); 9131 env->daif |= val & CPSR_AIF & mask; 9132 9133 if (write_type != CPSRWriteRaw && 9134 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9135 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9136 /* Note that we can only get here in USR mode if this is a 9137 * gdb stub write; for this case we follow the architectural 9138 * behaviour for guest writes in USR mode of ignoring an attempt 9139 * to switch mode. (Those are caught by translate.c for writes 9140 * triggered by guest instructions.) 9141 */ 9142 mask &= ~CPSR_M; 9143 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9144 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9145 * v7, and has defined behaviour in v8: 9146 * + leave CPSR.M untouched 9147 * + allow changes to the other CPSR fields 9148 * + set PSTATE.IL 9149 * For user changes via the GDB stub, we don't set PSTATE.IL, 9150 * as this would be unnecessarily harsh for a user error. 9151 */ 9152 mask &= ~CPSR_M; 9153 if (write_type != CPSRWriteByGDBStub && 9154 arm_feature(env, ARM_FEATURE_V8)) { 9155 mask |= CPSR_IL; 9156 val |= CPSR_IL; 9157 } 9158 qemu_log_mask(LOG_GUEST_ERROR, 9159 "Illegal AArch32 mode switch attempt from %s to %s\n", 9160 aarch32_mode_name(env->uncached_cpsr), 9161 aarch32_mode_name(val)); 9162 } else { 9163 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9164 write_type == CPSRWriteExceptionReturn ? 9165 "Exception return from AArch32" : 9166 "AArch32 mode switch from", 9167 aarch32_mode_name(env->uncached_cpsr), 9168 aarch32_mode_name(val), env->regs[15]); 9169 switch_mode(env, val & CPSR_M); 9170 } 9171 } 9172 mask &= ~CACHED_CPSR_BITS; 9173 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9174 if (rebuild_hflags) { 9175 arm_rebuild_hflags(env); 9176 } 9177 } 9178 9179 /* Sign/zero extend */ 9180 uint32_t HELPER(sxtb16)(uint32_t x) 9181 { 9182 uint32_t res; 9183 res = (uint16_t)(int8_t)x; 9184 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9185 return res; 9186 } 9187 9188 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9189 { 9190 /* 9191 * Take a division-by-zero exception if necessary; otherwise return 9192 * to get the usual non-trapping division behaviour (result of 0) 9193 */ 9194 if (arm_feature(env, ARM_FEATURE_M) 9195 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9196 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9197 } 9198 } 9199 9200 uint32_t HELPER(uxtb16)(uint32_t x) 9201 { 9202 uint32_t res; 9203 res = (uint16_t)(uint8_t)x; 9204 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9205 return res; 9206 } 9207 9208 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9209 { 9210 if (den == 0) { 9211 handle_possible_div0_trap(env, GETPC()); 9212 return 0; 9213 } 9214 if (num == INT_MIN && den == -1) { 9215 return INT_MIN; 9216 } 9217 return num / den; 9218 } 9219 9220 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9221 { 9222 if (den == 0) { 9223 handle_possible_div0_trap(env, GETPC()); 9224 return 0; 9225 } 9226 return num / den; 9227 } 9228 9229 uint32_t HELPER(rbit)(uint32_t x) 9230 { 9231 return revbit32(x); 9232 } 9233 9234 #ifdef CONFIG_USER_ONLY 9235 9236 static void switch_mode(CPUARMState *env, int mode) 9237 { 9238 ARMCPU *cpu = env_archcpu(env); 9239 9240 if (mode != ARM_CPU_MODE_USR) { 9241 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9242 } 9243 } 9244 9245 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9246 uint32_t cur_el, bool secure) 9247 { 9248 return 1; 9249 } 9250 9251 void aarch64_sync_64_to_32(CPUARMState *env) 9252 { 9253 g_assert_not_reached(); 9254 } 9255 9256 #else 9257 9258 static void switch_mode(CPUARMState *env, int mode) 9259 { 9260 int old_mode; 9261 int i; 9262 9263 old_mode = env->uncached_cpsr & CPSR_M; 9264 if (mode == old_mode) 9265 return; 9266 9267 if (old_mode == ARM_CPU_MODE_FIQ) { 9268 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9269 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9270 } else if (mode == ARM_CPU_MODE_FIQ) { 9271 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9272 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9273 } 9274 9275 i = bank_number(old_mode); 9276 env->banked_r13[i] = env->regs[13]; 9277 env->banked_spsr[i] = env->spsr; 9278 9279 i = bank_number(mode); 9280 env->regs[13] = env->banked_r13[i]; 9281 env->spsr = env->banked_spsr[i]; 9282 9283 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9284 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9285 } 9286 9287 /* Physical Interrupt Target EL Lookup Table 9288 * 9289 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9290 * 9291 * The below multi-dimensional table is used for looking up the target 9292 * exception level given numerous condition criteria. Specifically, the 9293 * target EL is based on SCR and HCR routing controls as well as the 9294 * currently executing EL and secure state. 9295 * 9296 * Dimensions: 9297 * target_el_table[2][2][2][2][2][4] 9298 * | | | | | +--- Current EL 9299 * | | | | +------ Non-secure(0)/Secure(1) 9300 * | | | +--------- HCR mask override 9301 * | | +------------ SCR exec state control 9302 * | +--------------- SCR mask override 9303 * +------------------ 32-bit(0)/64-bit(1) EL3 9304 * 9305 * The table values are as such: 9306 * 0-3 = EL0-EL3 9307 * -1 = Cannot occur 9308 * 9309 * The ARM ARM target EL table includes entries indicating that an "exception 9310 * is not taken". The two cases where this is applicable are: 9311 * 1) An exception is taken from EL3 but the SCR does not have the exception 9312 * routed to EL3. 9313 * 2) An exception is taken from EL2 but the HCR does not have the exception 9314 * routed to EL2. 9315 * In these two cases, the below table contain a target of EL1. This value is 9316 * returned as it is expected that the consumer of the table data will check 9317 * for "target EL >= current EL" to ensure the exception is not taken. 9318 * 9319 * SCR HCR 9320 * 64 EA AMO From 9321 * BIT IRQ IMO Non-secure Secure 9322 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9323 */ 9324 static const int8_t target_el_table[2][2][2][2][2][4] = { 9325 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9326 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9327 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9328 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9329 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9330 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9331 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9332 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9333 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9334 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9335 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9336 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9337 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9338 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9339 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9340 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9341 }; 9342 9343 /* 9344 * Determine the target EL for physical exceptions 9345 */ 9346 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9347 uint32_t cur_el, bool secure) 9348 { 9349 CPUARMState *env = cs->env_ptr; 9350 bool rw; 9351 bool scr; 9352 bool hcr; 9353 int target_el; 9354 /* Is the highest EL AArch64? */ 9355 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9356 uint64_t hcr_el2; 9357 9358 if (arm_feature(env, ARM_FEATURE_EL3)) { 9359 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9360 } else { 9361 /* Either EL2 is the highest EL (and so the EL2 register width 9362 * is given by is64); or there is no EL2 or EL3, in which case 9363 * the value of 'rw' does not affect the table lookup anyway. 9364 */ 9365 rw = is64; 9366 } 9367 9368 hcr_el2 = arm_hcr_el2_eff(env); 9369 switch (excp_idx) { 9370 case EXCP_IRQ: 9371 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9372 hcr = hcr_el2 & HCR_IMO; 9373 break; 9374 case EXCP_FIQ: 9375 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9376 hcr = hcr_el2 & HCR_FMO; 9377 break; 9378 default: 9379 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9380 hcr = hcr_el2 & HCR_AMO; 9381 break; 9382 }; 9383 9384 /* 9385 * For these purposes, TGE and AMO/IMO/FMO both force the 9386 * interrupt to EL2. Fold TGE into the bit extracted above. 9387 */ 9388 hcr |= (hcr_el2 & HCR_TGE) != 0; 9389 9390 /* Perform a table-lookup for the target EL given the current state */ 9391 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9392 9393 assert(target_el > 0); 9394 9395 return target_el; 9396 } 9397 9398 void arm_log_exception(CPUState *cs) 9399 { 9400 int idx = cs->exception_index; 9401 9402 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9403 const char *exc = NULL; 9404 static const char * const excnames[] = { 9405 [EXCP_UDEF] = "Undefined Instruction", 9406 [EXCP_SWI] = "SVC", 9407 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9408 [EXCP_DATA_ABORT] = "Data Abort", 9409 [EXCP_IRQ] = "IRQ", 9410 [EXCP_FIQ] = "FIQ", 9411 [EXCP_BKPT] = "Breakpoint", 9412 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9413 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9414 [EXCP_HVC] = "Hypervisor Call", 9415 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9416 [EXCP_SMC] = "Secure Monitor Call", 9417 [EXCP_VIRQ] = "Virtual IRQ", 9418 [EXCP_VFIQ] = "Virtual FIQ", 9419 [EXCP_SEMIHOST] = "Semihosting call", 9420 [EXCP_NOCP] = "v7M NOCP UsageFault", 9421 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9422 [EXCP_STKOF] = "v8M STKOF UsageFault", 9423 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9424 [EXCP_LSERR] = "v8M LSERR UsageFault", 9425 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9426 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9427 [EXCP_VSERR] = "Virtual SERR", 9428 }; 9429 9430 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9431 exc = excnames[idx]; 9432 } 9433 if (!exc) { 9434 exc = "unknown"; 9435 } 9436 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9437 idx, exc, cs->cpu_index); 9438 } 9439 } 9440 9441 /* 9442 * Function used to synchronize QEMU's AArch64 register set with AArch32 9443 * register set. This is necessary when switching between AArch32 and AArch64 9444 * execution state. 9445 */ 9446 void aarch64_sync_32_to_64(CPUARMState *env) 9447 { 9448 int i; 9449 uint32_t mode = env->uncached_cpsr & CPSR_M; 9450 9451 /* We can blanket copy R[0:7] to X[0:7] */ 9452 for (i = 0; i < 8; i++) { 9453 env->xregs[i] = env->regs[i]; 9454 } 9455 9456 /* 9457 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9458 * Otherwise, they come from the banked user regs. 9459 */ 9460 if (mode == ARM_CPU_MODE_FIQ) { 9461 for (i = 8; i < 13; i++) { 9462 env->xregs[i] = env->usr_regs[i - 8]; 9463 } 9464 } else { 9465 for (i = 8; i < 13; i++) { 9466 env->xregs[i] = env->regs[i]; 9467 } 9468 } 9469 9470 /* 9471 * Registers x13-x23 are the various mode SP and FP registers. Registers 9472 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9473 * from the mode banked register. 9474 */ 9475 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9476 env->xregs[13] = env->regs[13]; 9477 env->xregs[14] = env->regs[14]; 9478 } else { 9479 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9480 /* HYP is an exception in that it is copied from r14 */ 9481 if (mode == ARM_CPU_MODE_HYP) { 9482 env->xregs[14] = env->regs[14]; 9483 } else { 9484 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9485 } 9486 } 9487 9488 if (mode == ARM_CPU_MODE_HYP) { 9489 env->xregs[15] = env->regs[13]; 9490 } else { 9491 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9492 } 9493 9494 if (mode == ARM_CPU_MODE_IRQ) { 9495 env->xregs[16] = env->regs[14]; 9496 env->xregs[17] = env->regs[13]; 9497 } else { 9498 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9499 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9500 } 9501 9502 if (mode == ARM_CPU_MODE_SVC) { 9503 env->xregs[18] = env->regs[14]; 9504 env->xregs[19] = env->regs[13]; 9505 } else { 9506 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9507 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9508 } 9509 9510 if (mode == ARM_CPU_MODE_ABT) { 9511 env->xregs[20] = env->regs[14]; 9512 env->xregs[21] = env->regs[13]; 9513 } else { 9514 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9515 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9516 } 9517 9518 if (mode == ARM_CPU_MODE_UND) { 9519 env->xregs[22] = env->regs[14]; 9520 env->xregs[23] = env->regs[13]; 9521 } else { 9522 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9523 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9524 } 9525 9526 /* 9527 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9528 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9529 * FIQ bank for r8-r14. 9530 */ 9531 if (mode == ARM_CPU_MODE_FIQ) { 9532 for (i = 24; i < 31; i++) { 9533 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9534 } 9535 } else { 9536 for (i = 24; i < 29; i++) { 9537 env->xregs[i] = env->fiq_regs[i - 24]; 9538 } 9539 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9540 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9541 } 9542 9543 env->pc = env->regs[15]; 9544 } 9545 9546 /* 9547 * Function used to synchronize QEMU's AArch32 register set with AArch64 9548 * register set. This is necessary when switching between AArch32 and AArch64 9549 * execution state. 9550 */ 9551 void aarch64_sync_64_to_32(CPUARMState *env) 9552 { 9553 int i; 9554 uint32_t mode = env->uncached_cpsr & CPSR_M; 9555 9556 /* We can blanket copy X[0:7] to R[0:7] */ 9557 for (i = 0; i < 8; i++) { 9558 env->regs[i] = env->xregs[i]; 9559 } 9560 9561 /* 9562 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9563 * Otherwise, we copy x8-x12 into the banked user regs. 9564 */ 9565 if (mode == ARM_CPU_MODE_FIQ) { 9566 for (i = 8; i < 13; i++) { 9567 env->usr_regs[i - 8] = env->xregs[i]; 9568 } 9569 } else { 9570 for (i = 8; i < 13; i++) { 9571 env->regs[i] = env->xregs[i]; 9572 } 9573 } 9574 9575 /* 9576 * Registers r13 & r14 depend on the current mode. 9577 * If we are in a given mode, we copy the corresponding x registers to r13 9578 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9579 * for the mode. 9580 */ 9581 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9582 env->regs[13] = env->xregs[13]; 9583 env->regs[14] = env->xregs[14]; 9584 } else { 9585 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9586 9587 /* 9588 * HYP is an exception in that it does not have its own banked r14 but 9589 * shares the USR r14 9590 */ 9591 if (mode == ARM_CPU_MODE_HYP) { 9592 env->regs[14] = env->xregs[14]; 9593 } else { 9594 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9595 } 9596 } 9597 9598 if (mode == ARM_CPU_MODE_HYP) { 9599 env->regs[13] = env->xregs[15]; 9600 } else { 9601 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9602 } 9603 9604 if (mode == ARM_CPU_MODE_IRQ) { 9605 env->regs[14] = env->xregs[16]; 9606 env->regs[13] = env->xregs[17]; 9607 } else { 9608 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9609 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9610 } 9611 9612 if (mode == ARM_CPU_MODE_SVC) { 9613 env->regs[14] = env->xregs[18]; 9614 env->regs[13] = env->xregs[19]; 9615 } else { 9616 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9617 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9618 } 9619 9620 if (mode == ARM_CPU_MODE_ABT) { 9621 env->regs[14] = env->xregs[20]; 9622 env->regs[13] = env->xregs[21]; 9623 } else { 9624 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9625 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9626 } 9627 9628 if (mode == ARM_CPU_MODE_UND) { 9629 env->regs[14] = env->xregs[22]; 9630 env->regs[13] = env->xregs[23]; 9631 } else { 9632 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9633 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9634 } 9635 9636 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9637 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9638 * FIQ bank for r8-r14. 9639 */ 9640 if (mode == ARM_CPU_MODE_FIQ) { 9641 for (i = 24; i < 31; i++) { 9642 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9643 } 9644 } else { 9645 for (i = 24; i < 29; i++) { 9646 env->fiq_regs[i - 24] = env->xregs[i]; 9647 } 9648 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9649 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9650 } 9651 9652 env->regs[15] = env->pc; 9653 } 9654 9655 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9656 uint32_t mask, uint32_t offset, 9657 uint32_t newpc) 9658 { 9659 int new_el; 9660 9661 /* Change the CPU state so as to actually take the exception. */ 9662 switch_mode(env, new_mode); 9663 9664 /* 9665 * For exceptions taken to AArch32 we must clear the SS bit in both 9666 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9667 */ 9668 env->pstate &= ~PSTATE_SS; 9669 env->spsr = cpsr_read(env); 9670 /* Clear IT bits. */ 9671 env->condexec_bits = 0; 9672 /* Switch to the new mode, and to the correct instruction set. */ 9673 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9674 9675 /* This must be after mode switching. */ 9676 new_el = arm_current_el(env); 9677 9678 /* Set new mode endianness */ 9679 env->uncached_cpsr &= ~CPSR_E; 9680 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9681 env->uncached_cpsr |= CPSR_E; 9682 } 9683 /* J and IL must always be cleared for exception entry */ 9684 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9685 env->daif |= mask; 9686 9687 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9688 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9689 env->uncached_cpsr |= CPSR_SSBS; 9690 } else { 9691 env->uncached_cpsr &= ~CPSR_SSBS; 9692 } 9693 } 9694 9695 if (new_mode == ARM_CPU_MODE_HYP) { 9696 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9697 env->elr_el[2] = env->regs[15]; 9698 } else { 9699 /* CPSR.PAN is normally preserved preserved unless... */ 9700 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9701 switch (new_el) { 9702 case 3: 9703 if (!arm_is_secure_below_el3(env)) { 9704 /* ... the target is EL3, from non-secure state. */ 9705 env->uncached_cpsr &= ~CPSR_PAN; 9706 break; 9707 } 9708 /* ... the target is EL3, from secure state ... */ 9709 /* fall through */ 9710 case 1: 9711 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9712 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9713 env->uncached_cpsr |= CPSR_PAN; 9714 } 9715 break; 9716 } 9717 } 9718 /* 9719 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9720 * and we should just guard the thumb mode on V4 9721 */ 9722 if (arm_feature(env, ARM_FEATURE_V4T)) { 9723 env->thumb = 9724 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9725 } 9726 env->regs[14] = env->regs[15] + offset; 9727 } 9728 env->regs[15] = newpc; 9729 arm_rebuild_hflags(env); 9730 } 9731 9732 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9733 { 9734 /* 9735 * Handle exception entry to Hyp mode; this is sufficiently 9736 * different to entry to other AArch32 modes that we handle it 9737 * separately here. 9738 * 9739 * The vector table entry used is always the 0x14 Hyp mode entry point, 9740 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9741 * The offset applied to the preferred return address is always zero 9742 * (see DDI0487C.a section G1.12.3). 9743 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9744 */ 9745 uint32_t addr, mask; 9746 ARMCPU *cpu = ARM_CPU(cs); 9747 CPUARMState *env = &cpu->env; 9748 9749 switch (cs->exception_index) { 9750 case EXCP_UDEF: 9751 addr = 0x04; 9752 break; 9753 case EXCP_SWI: 9754 addr = 0x08; 9755 break; 9756 case EXCP_BKPT: 9757 /* Fall through to prefetch abort. */ 9758 case EXCP_PREFETCH_ABORT: 9759 env->cp15.ifar_s = env->exception.vaddress; 9760 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9761 (uint32_t)env->exception.vaddress); 9762 addr = 0x0c; 9763 break; 9764 case EXCP_DATA_ABORT: 9765 env->cp15.dfar_s = env->exception.vaddress; 9766 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9767 (uint32_t)env->exception.vaddress); 9768 addr = 0x10; 9769 break; 9770 case EXCP_IRQ: 9771 addr = 0x18; 9772 break; 9773 case EXCP_FIQ: 9774 addr = 0x1c; 9775 break; 9776 case EXCP_HVC: 9777 addr = 0x08; 9778 break; 9779 case EXCP_HYP_TRAP: 9780 addr = 0x14; 9781 break; 9782 default: 9783 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9784 } 9785 9786 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9787 if (!arm_feature(env, ARM_FEATURE_V8)) { 9788 /* 9789 * QEMU syndrome values are v8-style. v7 has the IL bit 9790 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9791 * If this is a v7 CPU, squash the IL bit in those cases. 9792 */ 9793 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9794 (cs->exception_index == EXCP_DATA_ABORT && 9795 !(env->exception.syndrome & ARM_EL_ISV)) || 9796 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9797 env->exception.syndrome &= ~ARM_EL_IL; 9798 } 9799 } 9800 env->cp15.esr_el[2] = env->exception.syndrome; 9801 } 9802 9803 if (arm_current_el(env) != 2 && addr < 0x14) { 9804 addr = 0x14; 9805 } 9806 9807 mask = 0; 9808 if (!(env->cp15.scr_el3 & SCR_EA)) { 9809 mask |= CPSR_A; 9810 } 9811 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9812 mask |= CPSR_I; 9813 } 9814 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9815 mask |= CPSR_F; 9816 } 9817 9818 addr += env->cp15.hvbar; 9819 9820 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9821 } 9822 9823 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9824 { 9825 ARMCPU *cpu = ARM_CPU(cs); 9826 CPUARMState *env = &cpu->env; 9827 uint32_t addr; 9828 uint32_t mask; 9829 int new_mode; 9830 uint32_t offset; 9831 uint32_t moe; 9832 9833 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9834 switch (syn_get_ec(env->exception.syndrome)) { 9835 case EC_BREAKPOINT: 9836 case EC_BREAKPOINT_SAME_EL: 9837 moe = 1; 9838 break; 9839 case EC_WATCHPOINT: 9840 case EC_WATCHPOINT_SAME_EL: 9841 moe = 10; 9842 break; 9843 case EC_AA32_BKPT: 9844 moe = 3; 9845 break; 9846 case EC_VECTORCATCH: 9847 moe = 5; 9848 break; 9849 default: 9850 moe = 0; 9851 break; 9852 } 9853 9854 if (moe) { 9855 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9856 } 9857 9858 if (env->exception.target_el == 2) { 9859 arm_cpu_do_interrupt_aarch32_hyp(cs); 9860 return; 9861 } 9862 9863 switch (cs->exception_index) { 9864 case EXCP_UDEF: 9865 new_mode = ARM_CPU_MODE_UND; 9866 addr = 0x04; 9867 mask = CPSR_I; 9868 if (env->thumb) 9869 offset = 2; 9870 else 9871 offset = 4; 9872 break; 9873 case EXCP_SWI: 9874 new_mode = ARM_CPU_MODE_SVC; 9875 addr = 0x08; 9876 mask = CPSR_I; 9877 /* The PC already points to the next instruction. */ 9878 offset = 0; 9879 break; 9880 case EXCP_BKPT: 9881 /* Fall through to prefetch abort. */ 9882 case EXCP_PREFETCH_ABORT: 9883 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9884 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9885 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9886 env->exception.fsr, (uint32_t)env->exception.vaddress); 9887 new_mode = ARM_CPU_MODE_ABT; 9888 addr = 0x0c; 9889 mask = CPSR_A | CPSR_I; 9890 offset = 4; 9891 break; 9892 case EXCP_DATA_ABORT: 9893 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9894 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9895 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9896 env->exception.fsr, 9897 (uint32_t)env->exception.vaddress); 9898 new_mode = ARM_CPU_MODE_ABT; 9899 addr = 0x10; 9900 mask = CPSR_A | CPSR_I; 9901 offset = 8; 9902 break; 9903 case EXCP_IRQ: 9904 new_mode = ARM_CPU_MODE_IRQ; 9905 addr = 0x18; 9906 /* Disable IRQ and imprecise data aborts. */ 9907 mask = CPSR_A | CPSR_I; 9908 offset = 4; 9909 if (env->cp15.scr_el3 & SCR_IRQ) { 9910 /* IRQ routed to monitor mode */ 9911 new_mode = ARM_CPU_MODE_MON; 9912 mask |= CPSR_F; 9913 } 9914 break; 9915 case EXCP_FIQ: 9916 new_mode = ARM_CPU_MODE_FIQ; 9917 addr = 0x1c; 9918 /* Disable FIQ, IRQ and imprecise data aborts. */ 9919 mask = CPSR_A | CPSR_I | CPSR_F; 9920 if (env->cp15.scr_el3 & SCR_FIQ) { 9921 /* FIQ routed to monitor mode */ 9922 new_mode = ARM_CPU_MODE_MON; 9923 } 9924 offset = 4; 9925 break; 9926 case EXCP_VIRQ: 9927 new_mode = ARM_CPU_MODE_IRQ; 9928 addr = 0x18; 9929 /* Disable IRQ and imprecise data aborts. */ 9930 mask = CPSR_A | CPSR_I; 9931 offset = 4; 9932 break; 9933 case EXCP_VFIQ: 9934 new_mode = ARM_CPU_MODE_FIQ; 9935 addr = 0x1c; 9936 /* Disable FIQ, IRQ and imprecise data aborts. */ 9937 mask = CPSR_A | CPSR_I | CPSR_F; 9938 offset = 4; 9939 break; 9940 case EXCP_VSERR: 9941 { 9942 /* 9943 * Note that this is reported as a data abort, but the DFAR 9944 * has an UNKNOWN value. Construct the SError syndrome from 9945 * AET and ExT fields. 9946 */ 9947 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9948 9949 if (extended_addresses_enabled(env)) { 9950 env->exception.fsr = arm_fi_to_lfsc(&fi); 9951 } else { 9952 env->exception.fsr = arm_fi_to_sfsc(&fi); 9953 } 9954 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9955 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9956 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9957 env->exception.fsr); 9958 9959 new_mode = ARM_CPU_MODE_ABT; 9960 addr = 0x10; 9961 mask = CPSR_A | CPSR_I; 9962 offset = 8; 9963 } 9964 break; 9965 case EXCP_SMC: 9966 new_mode = ARM_CPU_MODE_MON; 9967 addr = 0x08; 9968 mask = CPSR_A | CPSR_I | CPSR_F; 9969 offset = 0; 9970 break; 9971 default: 9972 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9973 return; /* Never happens. Keep compiler happy. */ 9974 } 9975 9976 if (new_mode == ARM_CPU_MODE_MON) { 9977 addr += env->cp15.mvbar; 9978 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9979 /* High vectors. When enabled, base address cannot be remapped. */ 9980 addr += 0xffff0000; 9981 } else { 9982 /* ARM v7 architectures provide a vector base address register to remap 9983 * the interrupt vector table. 9984 * This register is only followed in non-monitor mode, and is banked. 9985 * Note: only bits 31:5 are valid. 9986 */ 9987 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9988 } 9989 9990 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9991 env->cp15.scr_el3 &= ~SCR_NS; 9992 } 9993 9994 take_aarch32_exception(env, new_mode, mask, offset, addr); 9995 } 9996 9997 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9998 { 9999 /* 10000 * Return the register number of the AArch64 view of the AArch32 10001 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10002 * be that of the AArch32 mode the exception came from. 10003 */ 10004 int mode = env->uncached_cpsr & CPSR_M; 10005 10006 switch (aarch32_reg) { 10007 case 0 ... 7: 10008 return aarch32_reg; 10009 case 8 ... 12: 10010 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10011 case 13: 10012 switch (mode) { 10013 case ARM_CPU_MODE_USR: 10014 case ARM_CPU_MODE_SYS: 10015 return 13; 10016 case ARM_CPU_MODE_HYP: 10017 return 15; 10018 case ARM_CPU_MODE_IRQ: 10019 return 17; 10020 case ARM_CPU_MODE_SVC: 10021 return 19; 10022 case ARM_CPU_MODE_ABT: 10023 return 21; 10024 case ARM_CPU_MODE_UND: 10025 return 23; 10026 case ARM_CPU_MODE_FIQ: 10027 return 29; 10028 default: 10029 g_assert_not_reached(); 10030 } 10031 case 14: 10032 switch (mode) { 10033 case ARM_CPU_MODE_USR: 10034 case ARM_CPU_MODE_SYS: 10035 case ARM_CPU_MODE_HYP: 10036 return 14; 10037 case ARM_CPU_MODE_IRQ: 10038 return 16; 10039 case ARM_CPU_MODE_SVC: 10040 return 18; 10041 case ARM_CPU_MODE_ABT: 10042 return 20; 10043 case ARM_CPU_MODE_UND: 10044 return 22; 10045 case ARM_CPU_MODE_FIQ: 10046 return 30; 10047 default: 10048 g_assert_not_reached(); 10049 } 10050 case 15: 10051 return 31; 10052 default: 10053 g_assert_not_reached(); 10054 } 10055 } 10056 10057 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10058 { 10059 uint32_t ret = cpsr_read(env); 10060 10061 /* Move DIT to the correct location for SPSR_ELx */ 10062 if (ret & CPSR_DIT) { 10063 ret &= ~CPSR_DIT; 10064 ret |= PSTATE_DIT; 10065 } 10066 /* Merge PSTATE.SS into SPSR_ELx */ 10067 ret |= env->pstate & PSTATE_SS; 10068 10069 return ret; 10070 } 10071 10072 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10073 { 10074 /* Return true if this syndrome value is a synchronous external abort */ 10075 switch (syn_get_ec(syndrome)) { 10076 case EC_INSNABORT: 10077 case EC_INSNABORT_SAME_EL: 10078 case EC_DATAABORT: 10079 case EC_DATAABORT_SAME_EL: 10080 /* Look at fault status code for all the synchronous ext abort cases */ 10081 switch (syndrome & 0x3f) { 10082 case 0x10: 10083 case 0x13: 10084 case 0x14: 10085 case 0x15: 10086 case 0x16: 10087 case 0x17: 10088 return true; 10089 default: 10090 return false; 10091 } 10092 default: 10093 return false; 10094 } 10095 } 10096 10097 /* Handle exception entry to a target EL which is using AArch64 */ 10098 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10099 { 10100 ARMCPU *cpu = ARM_CPU(cs); 10101 CPUARMState *env = &cpu->env; 10102 unsigned int new_el = env->exception.target_el; 10103 target_ulong addr = env->cp15.vbar_el[new_el]; 10104 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10105 unsigned int old_mode; 10106 unsigned int cur_el = arm_current_el(env); 10107 int rt; 10108 10109 /* 10110 * Note that new_el can never be 0. If cur_el is 0, then 10111 * el0_a64 is is_a64(), else el0_a64 is ignored. 10112 */ 10113 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10114 10115 if (cur_el < new_el) { 10116 /* Entry vector offset depends on whether the implemented EL 10117 * immediately lower than the target level is using AArch32 or AArch64 10118 */ 10119 bool is_aa64; 10120 uint64_t hcr; 10121 10122 switch (new_el) { 10123 case 3: 10124 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10125 break; 10126 case 2: 10127 hcr = arm_hcr_el2_eff(env); 10128 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10129 is_aa64 = (hcr & HCR_RW) != 0; 10130 break; 10131 } 10132 /* fall through */ 10133 case 1: 10134 is_aa64 = is_a64(env); 10135 break; 10136 default: 10137 g_assert_not_reached(); 10138 } 10139 10140 if (is_aa64) { 10141 addr += 0x400; 10142 } else { 10143 addr += 0x600; 10144 } 10145 } else if (pstate_read(env) & PSTATE_SP) { 10146 addr += 0x200; 10147 } 10148 10149 switch (cs->exception_index) { 10150 case EXCP_PREFETCH_ABORT: 10151 case EXCP_DATA_ABORT: 10152 /* 10153 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10154 * to be taken to the SError vector entrypoint. 10155 */ 10156 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10157 syndrome_is_sync_extabt(env->exception.syndrome)) { 10158 addr += 0x180; 10159 } 10160 env->cp15.far_el[new_el] = env->exception.vaddress; 10161 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10162 env->cp15.far_el[new_el]); 10163 /* fall through */ 10164 case EXCP_BKPT: 10165 case EXCP_UDEF: 10166 case EXCP_SWI: 10167 case EXCP_HVC: 10168 case EXCP_HYP_TRAP: 10169 case EXCP_SMC: 10170 switch (syn_get_ec(env->exception.syndrome)) { 10171 case EC_ADVSIMDFPACCESSTRAP: 10172 /* 10173 * QEMU internal FP/SIMD syndromes from AArch32 include the 10174 * TA and coproc fields which are only exposed if the exception 10175 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10176 * AArch64 format syndrome. 10177 */ 10178 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10179 break; 10180 case EC_CP14RTTRAP: 10181 case EC_CP15RTTRAP: 10182 case EC_CP14DTTRAP: 10183 /* 10184 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10185 * the raw register field from the insn; when taking this to 10186 * AArch64 we must convert it to the AArch64 view of the register 10187 * number. Notice that we read a 4-bit AArch32 register number and 10188 * write back a 5-bit AArch64 one. 10189 */ 10190 rt = extract32(env->exception.syndrome, 5, 4); 10191 rt = aarch64_regnum(env, rt); 10192 env->exception.syndrome = deposit32(env->exception.syndrome, 10193 5, 5, rt); 10194 break; 10195 case EC_CP15RRTTRAP: 10196 case EC_CP14RRTTRAP: 10197 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10198 rt = extract32(env->exception.syndrome, 5, 4); 10199 rt = aarch64_regnum(env, rt); 10200 env->exception.syndrome = deposit32(env->exception.syndrome, 10201 5, 5, rt); 10202 rt = extract32(env->exception.syndrome, 10, 4); 10203 rt = aarch64_regnum(env, rt); 10204 env->exception.syndrome = deposit32(env->exception.syndrome, 10205 10, 5, rt); 10206 break; 10207 } 10208 env->cp15.esr_el[new_el] = env->exception.syndrome; 10209 break; 10210 case EXCP_IRQ: 10211 case EXCP_VIRQ: 10212 addr += 0x80; 10213 break; 10214 case EXCP_FIQ: 10215 case EXCP_VFIQ: 10216 addr += 0x100; 10217 break; 10218 case EXCP_VSERR: 10219 addr += 0x180; 10220 /* Construct the SError syndrome from IDS and ISS fields. */ 10221 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10222 env->cp15.esr_el[new_el] = env->exception.syndrome; 10223 break; 10224 default: 10225 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10226 } 10227 10228 if (is_a64(env)) { 10229 old_mode = pstate_read(env); 10230 aarch64_save_sp(env, arm_current_el(env)); 10231 env->elr_el[new_el] = env->pc; 10232 } else { 10233 old_mode = cpsr_read_for_spsr_elx(env); 10234 env->elr_el[new_el] = env->regs[15]; 10235 10236 aarch64_sync_32_to_64(env); 10237 10238 env->condexec_bits = 0; 10239 } 10240 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10241 10242 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10243 env->elr_el[new_el]); 10244 10245 if (cpu_isar_feature(aa64_pan, cpu)) { 10246 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10247 new_mode |= old_mode & PSTATE_PAN; 10248 switch (new_el) { 10249 case 2: 10250 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10251 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10252 != (HCR_E2H | HCR_TGE)) { 10253 break; 10254 } 10255 /* fall through */ 10256 case 1: 10257 /* ... the target is EL1 ... */ 10258 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10259 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10260 new_mode |= PSTATE_PAN; 10261 } 10262 break; 10263 } 10264 } 10265 if (cpu_isar_feature(aa64_mte, cpu)) { 10266 new_mode |= PSTATE_TCO; 10267 } 10268 10269 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10270 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10271 new_mode |= PSTATE_SSBS; 10272 } else { 10273 new_mode &= ~PSTATE_SSBS; 10274 } 10275 } 10276 10277 pstate_write(env, PSTATE_DAIF | new_mode); 10278 env->aarch64 = true; 10279 aarch64_restore_sp(env, new_el); 10280 helper_rebuild_hflags_a64(env, new_el); 10281 10282 env->pc = addr; 10283 10284 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10285 new_el, env->pc, pstate_read(env)); 10286 } 10287 10288 /* 10289 * Do semihosting call and set the appropriate return value. All the 10290 * permission and validity checks have been done at translate time. 10291 * 10292 * We only see semihosting exceptions in TCG only as they are not 10293 * trapped to the hypervisor in KVM. 10294 */ 10295 #ifdef CONFIG_TCG 10296 static void handle_semihosting(CPUState *cs) 10297 { 10298 ARMCPU *cpu = ARM_CPU(cs); 10299 CPUARMState *env = &cpu->env; 10300 10301 if (is_a64(env)) { 10302 qemu_log_mask(CPU_LOG_INT, 10303 "...handling as semihosting call 0x%" PRIx64 "\n", 10304 env->xregs[0]); 10305 do_common_semihosting(cs); 10306 env->pc += 4; 10307 } else { 10308 qemu_log_mask(CPU_LOG_INT, 10309 "...handling as semihosting call 0x%x\n", 10310 env->regs[0]); 10311 do_common_semihosting(cs); 10312 env->regs[15] += env->thumb ? 2 : 4; 10313 } 10314 } 10315 #endif 10316 10317 /* Handle a CPU exception for A and R profile CPUs. 10318 * Do any appropriate logging, handle PSCI calls, and then hand off 10319 * to the AArch64-entry or AArch32-entry function depending on the 10320 * target exception level's register width. 10321 * 10322 * Note: this is used for both TCG (as the do_interrupt tcg op), 10323 * and KVM to re-inject guest debug exceptions, and to 10324 * inject a Synchronous-External-Abort. 10325 */ 10326 void arm_cpu_do_interrupt(CPUState *cs) 10327 { 10328 ARMCPU *cpu = ARM_CPU(cs); 10329 CPUARMState *env = &cpu->env; 10330 unsigned int new_el = env->exception.target_el; 10331 10332 assert(!arm_feature(env, ARM_FEATURE_M)); 10333 10334 arm_log_exception(cs); 10335 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10336 new_el); 10337 if (qemu_loglevel_mask(CPU_LOG_INT) 10338 && !excp_is_internal(cs->exception_index)) { 10339 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10340 syn_get_ec(env->exception.syndrome), 10341 env->exception.syndrome); 10342 } 10343 10344 if (arm_is_psci_call(cpu, cs->exception_index)) { 10345 arm_handle_psci_call(cpu); 10346 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10347 return; 10348 } 10349 10350 /* 10351 * Semihosting semantics depend on the register width of the code 10352 * that caused the exception, not the target exception level, so 10353 * must be handled here. 10354 */ 10355 #ifdef CONFIG_TCG 10356 if (cs->exception_index == EXCP_SEMIHOST) { 10357 handle_semihosting(cs); 10358 return; 10359 } 10360 #endif 10361 10362 /* Hooks may change global state so BQL should be held, also the 10363 * BQL needs to be held for any modification of 10364 * cs->interrupt_request. 10365 */ 10366 g_assert(qemu_mutex_iothread_locked()); 10367 10368 arm_call_pre_el_change_hook(cpu); 10369 10370 assert(!excp_is_internal(cs->exception_index)); 10371 if (arm_el_is_aa64(env, new_el)) { 10372 arm_cpu_do_interrupt_aarch64(cs); 10373 } else { 10374 arm_cpu_do_interrupt_aarch32(cs); 10375 } 10376 10377 arm_call_el_change_hook(cpu); 10378 10379 if (!kvm_enabled()) { 10380 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10381 } 10382 } 10383 #endif /* !CONFIG_USER_ONLY */ 10384 10385 uint64_t arm_sctlr(CPUARMState *env, int el) 10386 { 10387 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10388 if (el == 0) { 10389 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10390 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 10391 } 10392 return env->cp15.sctlr_el[el]; 10393 } 10394 10395 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10396 { 10397 if (regime_has_2_ranges(mmu_idx)) { 10398 return extract64(tcr, 37, 2); 10399 } else if (regime_is_stage2(mmu_idx)) { 10400 return 0; /* VTCR_EL2 */ 10401 } else { 10402 /* Replicate the single TBI bit so we always have 2 bits. */ 10403 return extract32(tcr, 20, 1) * 3; 10404 } 10405 } 10406 10407 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10408 { 10409 if (regime_has_2_ranges(mmu_idx)) { 10410 return extract64(tcr, 51, 2); 10411 } else if (regime_is_stage2(mmu_idx)) { 10412 return 0; /* VTCR_EL2 */ 10413 } else { 10414 /* Replicate the single TBID bit so we always have 2 bits. */ 10415 return extract32(tcr, 29, 1) * 3; 10416 } 10417 } 10418 10419 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10420 { 10421 if (regime_has_2_ranges(mmu_idx)) { 10422 return extract64(tcr, 57, 2); 10423 } else { 10424 /* Replicate the single TCMA bit so we always have 2 bits. */ 10425 return extract32(tcr, 30, 1) * 3; 10426 } 10427 } 10428 10429 static ARMGranuleSize tg0_to_gran_size(int tg) 10430 { 10431 switch (tg) { 10432 case 0: 10433 return Gran4K; 10434 case 1: 10435 return Gran64K; 10436 case 2: 10437 return Gran16K; 10438 default: 10439 return GranInvalid; 10440 } 10441 } 10442 10443 static ARMGranuleSize tg1_to_gran_size(int tg) 10444 { 10445 switch (tg) { 10446 case 1: 10447 return Gran16K; 10448 case 2: 10449 return Gran4K; 10450 case 3: 10451 return Gran64K; 10452 default: 10453 return GranInvalid; 10454 } 10455 } 10456 10457 static inline bool have4k(ARMCPU *cpu, bool stage2) 10458 { 10459 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 10460 : cpu_isar_feature(aa64_tgran4, cpu); 10461 } 10462 10463 static inline bool have16k(ARMCPU *cpu, bool stage2) 10464 { 10465 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 10466 : cpu_isar_feature(aa64_tgran16, cpu); 10467 } 10468 10469 static inline bool have64k(ARMCPU *cpu, bool stage2) 10470 { 10471 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 10472 : cpu_isar_feature(aa64_tgran64, cpu); 10473 } 10474 10475 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 10476 bool stage2) 10477 { 10478 switch (gran) { 10479 case Gran4K: 10480 if (have4k(cpu, stage2)) { 10481 return gran; 10482 } 10483 break; 10484 case Gran16K: 10485 if (have16k(cpu, stage2)) { 10486 return gran; 10487 } 10488 break; 10489 case Gran64K: 10490 if (have64k(cpu, stage2)) { 10491 return gran; 10492 } 10493 break; 10494 case GranInvalid: 10495 break; 10496 } 10497 /* 10498 * If the guest selects a granule size that isn't implemented, 10499 * the architecture requires that we behave as if it selected one 10500 * that is (with an IMPDEF choice of which one to pick). We choose 10501 * to implement the smallest supported granule size. 10502 */ 10503 if (have4k(cpu, stage2)) { 10504 return Gran4K; 10505 } 10506 if (have16k(cpu, stage2)) { 10507 return Gran16K; 10508 } 10509 assert(have64k(cpu, stage2)); 10510 return Gran64K; 10511 } 10512 10513 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10514 ARMMMUIdx mmu_idx, bool data) 10515 { 10516 uint64_t tcr = regime_tcr(env, mmu_idx); 10517 bool epd, hpd, tsz_oob, ds, ha, hd; 10518 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 10519 ARMGranuleSize gran; 10520 ARMCPU *cpu = env_archcpu(env); 10521 bool stage2 = regime_is_stage2(mmu_idx); 10522 10523 if (!regime_has_2_ranges(mmu_idx)) { 10524 select = 0; 10525 tsz = extract32(tcr, 0, 6); 10526 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10527 if (stage2) { 10528 /* VTCR_EL2 */ 10529 hpd = false; 10530 } else { 10531 hpd = extract32(tcr, 24, 1); 10532 } 10533 epd = false; 10534 sh = extract32(tcr, 12, 2); 10535 ps = extract32(tcr, 16, 3); 10536 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 10537 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 10538 ds = extract64(tcr, 32, 1); 10539 } else { 10540 bool e0pd; 10541 10542 /* 10543 * Bit 55 is always between the two regions, and is canonical for 10544 * determining if address tagging is enabled. 10545 */ 10546 select = extract64(va, 55, 1); 10547 if (!select) { 10548 tsz = extract32(tcr, 0, 6); 10549 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10550 epd = extract32(tcr, 7, 1); 10551 sh = extract32(tcr, 12, 2); 10552 hpd = extract64(tcr, 41, 1); 10553 e0pd = extract64(tcr, 55, 1); 10554 } else { 10555 tsz = extract32(tcr, 16, 6); 10556 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 10557 epd = extract32(tcr, 23, 1); 10558 sh = extract32(tcr, 28, 2); 10559 hpd = extract64(tcr, 42, 1); 10560 e0pd = extract64(tcr, 56, 1); 10561 } 10562 ps = extract64(tcr, 32, 3); 10563 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 10564 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 10565 ds = extract64(tcr, 59, 1); 10566 10567 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 10568 regime_is_user(env, mmu_idx)) { 10569 epd = true; 10570 } 10571 } 10572 10573 gran = sanitize_gran_size(cpu, gran, stage2); 10574 10575 if (cpu_isar_feature(aa64_st, cpu)) { 10576 max_tsz = 48 - (gran == Gran64K); 10577 } else { 10578 max_tsz = 39; 10579 } 10580 10581 /* 10582 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 10583 * adjust the effective value of DS, as documented. 10584 */ 10585 min_tsz = 16; 10586 if (gran == Gran64K) { 10587 if (cpu_isar_feature(aa64_lva, cpu)) { 10588 min_tsz = 12; 10589 } 10590 ds = false; 10591 } else if (ds) { 10592 if (regime_is_stage2(mmu_idx)) { 10593 if (gran == Gran16K) { 10594 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 10595 } else { 10596 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 10597 } 10598 } else { 10599 if (gran == Gran16K) { 10600 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 10601 } else { 10602 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 10603 } 10604 } 10605 if (ds) { 10606 min_tsz = 12; 10607 } 10608 } 10609 10610 if (tsz > max_tsz) { 10611 tsz = max_tsz; 10612 tsz_oob = true; 10613 } else if (tsz < min_tsz) { 10614 tsz = min_tsz; 10615 tsz_oob = true; 10616 } else { 10617 tsz_oob = false; 10618 } 10619 10620 /* Present TBI as a composite with TBID. */ 10621 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10622 if (!data) { 10623 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10624 } 10625 tbi = (tbi >> select) & 1; 10626 10627 return (ARMVAParameters) { 10628 .tsz = tsz, 10629 .ps = ps, 10630 .sh = sh, 10631 .select = select, 10632 .tbi = tbi, 10633 .epd = epd, 10634 .hpd = hpd, 10635 .tsz_oob = tsz_oob, 10636 .ds = ds, 10637 .ha = ha, 10638 .hd = ha && hd, 10639 .gran = gran, 10640 }; 10641 } 10642 10643 /* Note that signed overflow is undefined in C. The following routines are 10644 careful to use unsigned types where modulo arithmetic is required. 10645 Failure to do so _will_ break on newer gcc. */ 10646 10647 /* Signed saturating arithmetic. */ 10648 10649 /* Perform 16-bit signed saturating addition. */ 10650 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10651 { 10652 uint16_t res; 10653 10654 res = a + b; 10655 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10656 if (a & 0x8000) 10657 res = 0x8000; 10658 else 10659 res = 0x7fff; 10660 } 10661 return res; 10662 } 10663 10664 /* Perform 8-bit signed saturating addition. */ 10665 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10666 { 10667 uint8_t res; 10668 10669 res = a + b; 10670 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10671 if (a & 0x80) 10672 res = 0x80; 10673 else 10674 res = 0x7f; 10675 } 10676 return res; 10677 } 10678 10679 /* Perform 16-bit signed saturating subtraction. */ 10680 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10681 { 10682 uint16_t res; 10683 10684 res = a - b; 10685 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10686 if (a & 0x8000) 10687 res = 0x8000; 10688 else 10689 res = 0x7fff; 10690 } 10691 return res; 10692 } 10693 10694 /* Perform 8-bit signed saturating subtraction. */ 10695 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10696 { 10697 uint8_t res; 10698 10699 res = a - b; 10700 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10701 if (a & 0x80) 10702 res = 0x80; 10703 else 10704 res = 0x7f; 10705 } 10706 return res; 10707 } 10708 10709 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10710 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10711 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10712 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10713 #define PFX q 10714 10715 #include "op_addsub.h" 10716 10717 /* Unsigned saturating arithmetic. */ 10718 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10719 { 10720 uint16_t res; 10721 res = a + b; 10722 if (res < a) 10723 res = 0xffff; 10724 return res; 10725 } 10726 10727 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10728 { 10729 if (a > b) 10730 return a - b; 10731 else 10732 return 0; 10733 } 10734 10735 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10736 { 10737 uint8_t res; 10738 res = a + b; 10739 if (res < a) 10740 res = 0xff; 10741 return res; 10742 } 10743 10744 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10745 { 10746 if (a > b) 10747 return a - b; 10748 else 10749 return 0; 10750 } 10751 10752 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10753 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10754 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10755 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10756 #define PFX uq 10757 10758 #include "op_addsub.h" 10759 10760 /* Signed modulo arithmetic. */ 10761 #define SARITH16(a, b, n, op) do { \ 10762 int32_t sum; \ 10763 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10764 RESULT(sum, n, 16); \ 10765 if (sum >= 0) \ 10766 ge |= 3 << (n * 2); \ 10767 } while(0) 10768 10769 #define SARITH8(a, b, n, op) do { \ 10770 int32_t sum; \ 10771 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10772 RESULT(sum, n, 8); \ 10773 if (sum >= 0) \ 10774 ge |= 1 << n; \ 10775 } while(0) 10776 10777 10778 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10779 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10780 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10781 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10782 #define PFX s 10783 #define ARITH_GE 10784 10785 #include "op_addsub.h" 10786 10787 /* Unsigned modulo arithmetic. */ 10788 #define ADD16(a, b, n) do { \ 10789 uint32_t sum; \ 10790 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10791 RESULT(sum, n, 16); \ 10792 if ((sum >> 16) == 1) \ 10793 ge |= 3 << (n * 2); \ 10794 } while(0) 10795 10796 #define ADD8(a, b, n) do { \ 10797 uint32_t sum; \ 10798 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10799 RESULT(sum, n, 8); \ 10800 if ((sum >> 8) == 1) \ 10801 ge |= 1 << n; \ 10802 } while(0) 10803 10804 #define SUB16(a, b, n) do { \ 10805 uint32_t sum; \ 10806 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10807 RESULT(sum, n, 16); \ 10808 if ((sum >> 16) == 0) \ 10809 ge |= 3 << (n * 2); \ 10810 } while(0) 10811 10812 #define SUB8(a, b, n) do { \ 10813 uint32_t sum; \ 10814 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10815 RESULT(sum, n, 8); \ 10816 if ((sum >> 8) == 0) \ 10817 ge |= 1 << n; \ 10818 } while(0) 10819 10820 #define PFX u 10821 #define ARITH_GE 10822 10823 #include "op_addsub.h" 10824 10825 /* Halved signed arithmetic. */ 10826 #define ADD16(a, b, n) \ 10827 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10828 #define SUB16(a, b, n) \ 10829 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10830 #define ADD8(a, b, n) \ 10831 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10832 #define SUB8(a, b, n) \ 10833 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10834 #define PFX sh 10835 10836 #include "op_addsub.h" 10837 10838 /* Halved unsigned arithmetic. */ 10839 #define ADD16(a, b, n) \ 10840 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10841 #define SUB16(a, b, n) \ 10842 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10843 #define ADD8(a, b, n) \ 10844 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10845 #define SUB8(a, b, n) \ 10846 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10847 #define PFX uh 10848 10849 #include "op_addsub.h" 10850 10851 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10852 { 10853 if (a > b) 10854 return a - b; 10855 else 10856 return b - a; 10857 } 10858 10859 /* Unsigned sum of absolute byte differences. */ 10860 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10861 { 10862 uint32_t sum; 10863 sum = do_usad(a, b); 10864 sum += do_usad(a >> 8, b >> 8); 10865 sum += do_usad(a >> 16, b >> 16); 10866 sum += do_usad(a >> 24, b >> 24); 10867 return sum; 10868 } 10869 10870 /* For ARMv6 SEL instruction. */ 10871 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10872 { 10873 uint32_t mask; 10874 10875 mask = 0; 10876 if (flags & 1) 10877 mask |= 0xff; 10878 if (flags & 2) 10879 mask |= 0xff00; 10880 if (flags & 4) 10881 mask |= 0xff0000; 10882 if (flags & 8) 10883 mask |= 0xff000000; 10884 return (a & mask) | (b & ~mask); 10885 } 10886 10887 /* CRC helpers. 10888 * The upper bytes of val (above the number specified by 'bytes') must have 10889 * been zeroed out by the caller. 10890 */ 10891 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10892 { 10893 uint8_t buf[4]; 10894 10895 stl_le_p(buf, val); 10896 10897 /* zlib crc32 converts the accumulator and output to one's complement. */ 10898 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10899 } 10900 10901 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10902 { 10903 uint8_t buf[4]; 10904 10905 stl_le_p(buf, val); 10906 10907 /* Linux crc32c converts the output to one's complement. */ 10908 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10909 } 10910 10911 /* Return the exception level to which FP-disabled exceptions should 10912 * be taken, or 0 if FP is enabled. 10913 */ 10914 int fp_exception_el(CPUARMState *env, int cur_el) 10915 { 10916 #ifndef CONFIG_USER_ONLY 10917 uint64_t hcr_el2; 10918 10919 /* CPACR and the CPTR registers don't exist before v6, so FP is 10920 * always accessible 10921 */ 10922 if (!arm_feature(env, ARM_FEATURE_V6)) { 10923 return 0; 10924 } 10925 10926 if (arm_feature(env, ARM_FEATURE_M)) { 10927 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10928 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10929 return 1; 10930 } 10931 10932 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10933 if (!extract32(env->v7m.nsacr, 10, 1)) { 10934 /* FP insns cause a NOCP UsageFault taken to Secure */ 10935 return 3; 10936 } 10937 } 10938 10939 return 0; 10940 } 10941 10942 hcr_el2 = arm_hcr_el2_eff(env); 10943 10944 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10945 * 0, 2 : trap EL0 and EL1/PL1 accesses 10946 * 1 : trap only EL0 accesses 10947 * 3 : trap no accesses 10948 * This register is ignored if E2H+TGE are both set. 10949 */ 10950 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10951 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 10952 10953 switch (fpen) { 10954 case 1: 10955 if (cur_el != 0) { 10956 break; 10957 } 10958 /* fall through */ 10959 case 0: 10960 case 2: 10961 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 10962 if (!arm_el_is_aa64(env, 3) 10963 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 10964 return 3; 10965 } 10966 if (cur_el <= 1) { 10967 return 1; 10968 } 10969 break; 10970 } 10971 } 10972 10973 /* 10974 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 10975 * to control non-secure access to the FPU. It doesn't have any 10976 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 10977 */ 10978 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 10979 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 10980 if (!extract32(env->cp15.nsacr, 10, 1)) { 10981 /* FP insns act as UNDEF */ 10982 return cur_el == 2 ? 2 : 1; 10983 } 10984 } 10985 10986 /* 10987 * CPTR_EL2 is present in v7VE or v8, and changes format 10988 * with HCR_EL2.E2H (regardless of TGE). 10989 */ 10990 if (cur_el <= 2) { 10991 if (hcr_el2 & HCR_E2H) { 10992 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 10993 case 1: 10994 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 10995 break; 10996 } 10997 /* fall through */ 10998 case 0: 10999 case 2: 11000 return 2; 11001 } 11002 } else if (arm_is_el2_enabled(env)) { 11003 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11004 return 2; 11005 } 11006 } 11007 } 11008 11009 /* CPTR_EL3 : present in v8 */ 11010 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11011 /* Trap all FP ops to EL3 */ 11012 return 3; 11013 } 11014 #endif 11015 return 0; 11016 } 11017 11018 /* Return the exception level we're running at if this is our mmu_idx */ 11019 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11020 { 11021 if (mmu_idx & ARM_MMU_IDX_M) { 11022 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11023 } 11024 11025 switch (mmu_idx) { 11026 case ARMMMUIdx_E10_0: 11027 case ARMMMUIdx_E20_0: 11028 return 0; 11029 case ARMMMUIdx_E10_1: 11030 case ARMMMUIdx_E10_1_PAN: 11031 return 1; 11032 case ARMMMUIdx_E2: 11033 case ARMMMUIdx_E20_2: 11034 case ARMMMUIdx_E20_2_PAN: 11035 return 2; 11036 case ARMMMUIdx_E3: 11037 return 3; 11038 default: 11039 g_assert_not_reached(); 11040 } 11041 } 11042 11043 #ifndef CONFIG_TCG 11044 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11045 { 11046 g_assert_not_reached(); 11047 } 11048 #endif 11049 11050 static bool arm_pan_enabled(CPUARMState *env) 11051 { 11052 if (is_a64(env)) { 11053 return env->pstate & PSTATE_PAN; 11054 } else { 11055 return env->uncached_cpsr & CPSR_PAN; 11056 } 11057 } 11058 11059 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11060 { 11061 ARMMMUIdx idx; 11062 uint64_t hcr; 11063 11064 if (arm_feature(env, ARM_FEATURE_M)) { 11065 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11066 } 11067 11068 /* See ARM pseudo-function ELIsInHost. */ 11069 switch (el) { 11070 case 0: 11071 hcr = arm_hcr_el2_eff(env); 11072 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11073 idx = ARMMMUIdx_E20_0; 11074 } else { 11075 idx = ARMMMUIdx_E10_0; 11076 } 11077 break; 11078 case 1: 11079 if (arm_pan_enabled(env)) { 11080 idx = ARMMMUIdx_E10_1_PAN; 11081 } else { 11082 idx = ARMMMUIdx_E10_1; 11083 } 11084 break; 11085 case 2: 11086 /* Note that TGE does not apply at EL2. */ 11087 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11088 if (arm_pan_enabled(env)) { 11089 idx = ARMMMUIdx_E20_2_PAN; 11090 } else { 11091 idx = ARMMMUIdx_E20_2; 11092 } 11093 } else { 11094 idx = ARMMMUIdx_E2; 11095 } 11096 break; 11097 case 3: 11098 return ARMMMUIdx_E3; 11099 default: 11100 g_assert_not_reached(); 11101 } 11102 11103 return idx; 11104 } 11105 11106 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11107 { 11108 return arm_mmu_idx_el(env, arm_current_el(env)); 11109 } 11110 11111 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 11112 ARMMMUIdx mmu_idx, 11113 CPUARMTBFlags flags) 11114 { 11115 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 11116 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 11117 11118 if (arm_singlestep_active(env)) { 11119 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 11120 } 11121 return flags; 11122 } 11123 11124 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11125 ARMMMUIdx mmu_idx, 11126 CPUARMTBFlags flags) 11127 { 11128 bool sctlr_b = arm_sctlr_b(env); 11129 11130 if (sctlr_b) { 11131 DP_TBFLAG_A32(flags, SCTLR__B, 1); 11132 } 11133 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11134 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11135 } 11136 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 11137 11138 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11139 } 11140 11141 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 11142 ARMMMUIdx mmu_idx) 11143 { 11144 CPUARMTBFlags flags = {}; 11145 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 11146 11147 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 11148 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 11149 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11150 } 11151 11152 if (arm_v7m_is_handler_mode(env)) { 11153 DP_TBFLAG_M32(flags, HANDLER, 1); 11154 } 11155 11156 /* 11157 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11158 * is suppressing them because the requested execution priority 11159 * is less than 0. 11160 */ 11161 if (arm_feature(env, ARM_FEATURE_V8) && 11162 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11163 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11164 DP_TBFLAG_M32(flags, STACKCHECK, 1); 11165 } 11166 11167 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) { 11168 DP_TBFLAG_M32(flags, SECURE, 1); 11169 } 11170 11171 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11172 } 11173 11174 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 11175 ARMMMUIdx mmu_idx) 11176 { 11177 CPUARMTBFlags flags = {}; 11178 int el = arm_current_el(env); 11179 11180 if (arm_sctlr(env, el) & SCTLR_A) { 11181 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11182 } 11183 11184 if (arm_el_is_aa64(env, 1)) { 11185 DP_TBFLAG_A32(flags, VFPEN, 1); 11186 } 11187 11188 if (el < 2 && env->cp15.hstr_el2 && 11189 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11190 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 11191 } 11192 11193 if (env->uncached_cpsr & CPSR_IL) { 11194 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11195 } 11196 11197 /* 11198 * The SME exception we are testing for is raised via 11199 * AArch64.CheckFPAdvSIMDEnabled(), as called from 11200 * AArch32.CheckAdvSIMDOrFPEnabled(). 11201 */ 11202 if (el == 0 11203 && FIELD_EX64(env->svcr, SVCR, SM) 11204 && (!arm_is_el2_enabled(env) 11205 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) 11206 && arm_el_is_aa64(env, 1) 11207 && !sme_fa64(env, el)) { 11208 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); 11209 } 11210 11211 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11212 } 11213 11214 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11215 ARMMMUIdx mmu_idx) 11216 { 11217 CPUARMTBFlags flags = {}; 11218 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11219 uint64_t tcr = regime_tcr(env, mmu_idx); 11220 uint64_t sctlr; 11221 int tbii, tbid; 11222 11223 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 11224 11225 /* Get control bits for tagged addresses. */ 11226 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 11227 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 11228 11229 DP_TBFLAG_A64(flags, TBII, tbii); 11230 DP_TBFLAG_A64(flags, TBID, tbid); 11231 11232 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11233 int sve_el = sve_exception_el(env, el); 11234 11235 /* 11236 * If either FP or SVE are disabled, translator does not need len. 11237 * If SVE EL > FP EL, FP exception has precedence, and translator 11238 * does not need SVE EL. Save potential re-translations by forcing 11239 * the unneeded data to zero. 11240 */ 11241 if (fp_el != 0) { 11242 if (sve_el > fp_el) { 11243 sve_el = 0; 11244 } 11245 } else if (sve_el == 0) { 11246 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 11247 } 11248 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 11249 } 11250 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 11251 int sme_el = sme_exception_el(env, el); 11252 bool sm = FIELD_EX64(env->svcr, SVCR, SM); 11253 11254 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); 11255 if (sme_el == 0) { 11256 /* Similarly, do not compute SVL if SME is disabled. */ 11257 int svl = sve_vqm1_for_el_sm(env, el, true); 11258 DP_TBFLAG_A64(flags, SVL, svl); 11259 if (sm) { 11260 /* If SVE is disabled, we will not have set VL above. */ 11261 DP_TBFLAG_A64(flags, VL, svl); 11262 } 11263 } 11264 if (sm) { 11265 DP_TBFLAG_A64(flags, PSTATE_SM, 1); 11266 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); 11267 } 11268 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); 11269 } 11270 11271 sctlr = regime_sctlr(env, stage1); 11272 11273 if (sctlr & SCTLR_A) { 11274 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11275 } 11276 11277 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11278 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11279 } 11280 11281 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11282 /* 11283 * In order to save space in flags, we record only whether 11284 * pauth is "inactive", meaning all insns are implemented as 11285 * a nop, or "active" when some action must be performed. 11286 * The decision of which action to take is left to a helper. 11287 */ 11288 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11289 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 11290 } 11291 } 11292 11293 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11294 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11295 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11296 DP_TBFLAG_A64(flags, BT, 1); 11297 } 11298 } 11299 11300 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 11301 if (!(env->pstate & PSTATE_UAO)) { 11302 switch (mmu_idx) { 11303 case ARMMMUIdx_E10_1: 11304 case ARMMMUIdx_E10_1_PAN: 11305 /* TODO: ARMv8.3-NV */ 11306 DP_TBFLAG_A64(flags, UNPRIV, 1); 11307 break; 11308 case ARMMMUIdx_E20_2: 11309 case ARMMMUIdx_E20_2_PAN: 11310 /* 11311 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 11312 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 11313 */ 11314 if (env->cp15.hcr_el2 & HCR_TGE) { 11315 DP_TBFLAG_A64(flags, UNPRIV, 1); 11316 } 11317 break; 11318 default: 11319 break; 11320 } 11321 } 11322 11323 if (env->pstate & PSTATE_IL) { 11324 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11325 } 11326 11327 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 11328 /* 11329 * Set MTE_ACTIVE if any access may be Checked, and leave clear 11330 * if all accesses must be Unchecked: 11331 * 1) If no TBI, then there are no tags in the address to check, 11332 * 2) If Tag Check Override, then all accesses are Unchecked, 11333 * 3) If Tag Check Fail == 0, then Checked access have no effect, 11334 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 11335 */ 11336 if (allocation_tag_access_enabled(env, el, sctlr)) { 11337 DP_TBFLAG_A64(flags, ATA, 1); 11338 if (tbid 11339 && !(env->pstate & PSTATE_TCO) 11340 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 11341 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 11342 } 11343 } 11344 /* And again for unprivileged accesses, if required. */ 11345 if (EX_TBFLAG_A64(flags, UNPRIV) 11346 && tbid 11347 && !(env->pstate & PSTATE_TCO) 11348 && (sctlr & SCTLR_TCF0) 11349 && allocation_tag_access_enabled(env, 0, sctlr)) { 11350 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 11351 } 11352 /* Cache TCMA as well as TBI. */ 11353 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 11354 } 11355 11356 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11357 } 11358 11359 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 11360 { 11361 int el = arm_current_el(env); 11362 int fp_el = fp_exception_el(env, el); 11363 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11364 11365 if (is_a64(env)) { 11366 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11367 } else if (arm_feature(env, ARM_FEATURE_M)) { 11368 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11369 } else { 11370 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11371 } 11372 } 11373 11374 void arm_rebuild_hflags(CPUARMState *env) 11375 { 11376 env->hflags = rebuild_hflags_internal(env); 11377 } 11378 11379 /* 11380 * If we have triggered a EL state change we can't rely on the 11381 * translator having passed it to us, we need to recompute. 11382 */ 11383 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 11384 { 11385 int el = arm_current_el(env); 11386 int fp_el = fp_exception_el(env, el); 11387 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11388 11389 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11390 } 11391 11392 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11393 { 11394 int fp_el = fp_exception_el(env, el); 11395 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11396 11397 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11398 } 11399 11400 /* 11401 * If we have triggered a EL state change we can't rely on the 11402 * translator having passed it to us, we need to recompute. 11403 */ 11404 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 11405 { 11406 int el = arm_current_el(env); 11407 int fp_el = fp_exception_el(env, el); 11408 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11409 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11410 } 11411 11412 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11413 { 11414 int fp_el = fp_exception_el(env, el); 11415 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11416 11417 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11418 } 11419 11420 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11421 { 11422 int fp_el = fp_exception_el(env, el); 11423 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11424 11425 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11426 } 11427 11428 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 11429 { 11430 #ifdef CONFIG_DEBUG_TCG 11431 CPUARMTBFlags c = env->hflags; 11432 CPUARMTBFlags r = rebuild_hflags_internal(env); 11433 11434 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 11435 fprintf(stderr, "TCG hflags mismatch " 11436 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 11437 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 11438 c.flags, c.flags2, r.flags, r.flags2); 11439 abort(); 11440 } 11441 #endif 11442 } 11443 11444 static bool mve_no_pred(CPUARMState *env) 11445 { 11446 /* 11447 * Return true if there is definitely no predication of MVE 11448 * instructions by VPR or LTPSIZE. (Returning false even if there 11449 * isn't any predication is OK; generated code will just be 11450 * a little worse.) 11451 * If the CPU does not implement MVE then this TB flag is always 0. 11452 * 11453 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11454 * logic in gen_update_fp_context() needs to be updated to match. 11455 * 11456 * We do not include the effect of the ECI bits here -- they are 11457 * tracked in other TB flags. This simplifies the logic for 11458 * "when did we emit code that changes the MVE_NO_PRED TB flag 11459 * and thus need to end the TB?". 11460 */ 11461 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11462 return false; 11463 } 11464 if (env->v7m.vpr) { 11465 return false; 11466 } 11467 if (env->v7m.ltpsize < 4) { 11468 return false; 11469 } 11470 return true; 11471 } 11472 11473 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11474 target_ulong *cs_base, uint32_t *pflags) 11475 { 11476 CPUARMTBFlags flags; 11477 11478 assert_hflags_rebuild_correctly(env); 11479 flags = env->hflags; 11480 11481 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11482 *pc = env->pc; 11483 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11484 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11485 } 11486 } else { 11487 *pc = env->regs[15]; 11488 11489 if (arm_feature(env, ARM_FEATURE_M)) { 11490 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11491 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11492 != env->v7m.secure) { 11493 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11494 } 11495 11496 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11497 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11498 (env->v7m.secure && 11499 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11500 /* 11501 * ASPEN is set, but FPCA/SFPA indicate that there is no 11502 * active FP context; we must create a new FP context before 11503 * executing any FP insn. 11504 */ 11505 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11506 } 11507 11508 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11509 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11510 DP_TBFLAG_M32(flags, LSPACT, 1); 11511 } 11512 11513 if (mve_no_pred(env)) { 11514 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11515 } 11516 } else { 11517 /* 11518 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11519 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11520 */ 11521 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11522 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11523 } else { 11524 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11525 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11526 } 11527 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11528 DP_TBFLAG_A32(flags, VFPEN, 1); 11529 } 11530 } 11531 11532 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11533 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11534 } 11535 11536 /* 11537 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11538 * states defined in the ARM ARM for software singlestep: 11539 * SS_ACTIVE PSTATE.SS State 11540 * 0 x Inactive (the TB flag for SS is always 0) 11541 * 1 0 Active-pending 11542 * 1 1 Active-not-pending 11543 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11544 */ 11545 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11546 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11547 } 11548 11549 *pflags = flags.flags; 11550 *cs_base = flags.flags2; 11551 } 11552 11553 #ifdef TARGET_AARCH64 11554 /* 11555 * The manual says that when SVE is enabled and VQ is widened the 11556 * implementation is allowed to zero the previously inaccessible 11557 * portion of the registers. The corollary to that is that when 11558 * SVE is enabled and VQ is narrowed we are also allowed to zero 11559 * the now inaccessible portion of the registers. 11560 * 11561 * The intent of this is that no predicate bit beyond VQ is ever set. 11562 * Which means that some operations on predicate registers themselves 11563 * may operate on full uint64_t or even unrolled across the maximum 11564 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11565 * may well be cheaper than conditionals to restrict the operation 11566 * to the relevant portion of a uint16_t[16]. 11567 */ 11568 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11569 { 11570 int i, j; 11571 uint64_t pmask; 11572 11573 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11574 assert(vq <= env_archcpu(env)->sve_max_vq); 11575 11576 /* Zap the high bits of the zregs. */ 11577 for (i = 0; i < 32; i++) { 11578 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11579 } 11580 11581 /* Zap the high bits of the pregs and ffr. */ 11582 pmask = 0; 11583 if (vq & 3) { 11584 pmask = ~(-1ULL << (16 * (vq & 3))); 11585 } 11586 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11587 for (i = 0; i < 17; ++i) { 11588 env->vfp.pregs[i].p[j] &= pmask; 11589 } 11590 pmask = 0; 11591 } 11592 } 11593 11594 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11595 { 11596 int exc_el; 11597 11598 if (sm) { 11599 exc_el = sme_exception_el(env, el); 11600 } else { 11601 exc_el = sve_exception_el(env, el); 11602 } 11603 if (exc_el) { 11604 return 0; /* disabled */ 11605 } 11606 return sve_vqm1_for_el_sm(env, el, sm); 11607 } 11608 11609 /* 11610 * Notice a change in SVE vector size when changing EL. 11611 */ 11612 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11613 int new_el, bool el0_a64) 11614 { 11615 ARMCPU *cpu = env_archcpu(env); 11616 int old_len, new_len; 11617 bool old_a64, new_a64, sm; 11618 11619 /* Nothing to do if no SVE. */ 11620 if (!cpu_isar_feature(aa64_sve, cpu)) { 11621 return; 11622 } 11623 11624 /* Nothing to do if FP is disabled in either EL. */ 11625 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11626 return; 11627 } 11628 11629 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11630 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11631 11632 /* 11633 * Both AArch64.TakeException and AArch64.ExceptionReturn 11634 * invoke ResetSVEState when taking an exception from, or 11635 * returning to, AArch32 state when PSTATE.SM is enabled. 11636 */ 11637 sm = FIELD_EX64(env->svcr, SVCR, SM); 11638 if (old_a64 != new_a64 && sm) { 11639 arm_reset_sve_state(env); 11640 return; 11641 } 11642 11643 /* 11644 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11645 * at ELx, or not available because the EL is in AArch32 state, then 11646 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11647 * has an effective value of 0". 11648 * 11649 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11650 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11651 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11652 * we already have the correct register contents when encountering the 11653 * vq0->vq0 transition between EL0->EL1. 11654 */ 11655 old_len = new_len = 0; 11656 if (old_a64) { 11657 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11658 } 11659 if (new_a64) { 11660 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11661 } 11662 11663 /* When changing vector length, clear inaccessible state. */ 11664 if (new_len < old_len) { 11665 aarch64_sve_narrow_vq(env, new_len + 1); 11666 } 11667 } 11668 #endif 11669