xref: /openbmc/qemu/target/arm/helper.c (revision 8498321421e95a822dc7a5dd3184890766a029bb)
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
20 #include "qemu/range.h"
21 
22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
23 
24 #ifndef CONFIG_USER_ONLY
25 /* Cacheability and shareability attributes for a memory access */
26 typedef struct ARMCacheAttrs {
27     unsigned int attrs:8; /* as in the MAIR register encoding */
28     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
29 } ARMCacheAttrs;
30 
31 static bool get_phys_addr(CPUARMState *env, target_ulong address,
32                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
33                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
34                           target_ulong *page_size,
35                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
36 
37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
38                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
39                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
40                                target_ulong *page_size_ptr,
41                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
42 
43 /* Security attributes for an address, as returned by v8m_security_lookup. */
44 typedef struct V8M_SAttributes {
45     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
46     bool ns;
47     bool nsc;
48     uint8_t sregion;
49     bool srvalid;
50     uint8_t iregion;
51     bool irvalid;
52 } V8M_SAttributes;
53 
54 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
55                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
56                                 V8M_SAttributes *sattrs);
57 #endif
58 
59 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
60 {
61     int nregs;
62 
63     /* VFP data registers are always little-endian.  */
64     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
65     if (reg < nregs) {
66         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
67         return 8;
68     }
69     if (arm_feature(env, ARM_FEATURE_NEON)) {
70         /* Aliases for Q regs.  */
71         nregs += 16;
72         if (reg < nregs) {
73             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
74             stq_le_p(buf, q[0]);
75             stq_le_p(buf + 8, q[1]);
76             return 16;
77         }
78     }
79     switch (reg - nregs) {
80     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
83     }
84     return 0;
85 }
86 
87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
88 {
89     int nregs;
90 
91     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
92     if (reg < nregs) {
93         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
94         return 8;
95     }
96     if (arm_feature(env, ARM_FEATURE_NEON)) {
97         nregs += 16;
98         if (reg < nregs) {
99             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
100             q[0] = ldq_le_p(buf);
101             q[1] = ldq_le_p(buf + 8);
102             return 16;
103         }
104     }
105     switch (reg - nregs) {
106     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
107     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
108     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
109     }
110     return 0;
111 }
112 
113 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
114 {
115     switch (reg) {
116     case 0 ... 31:
117         /* 128 bit FP register */
118         {
119             uint64_t *q = aa64_vfp_qreg(env, reg);
120             stq_le_p(buf, q[0]);
121             stq_le_p(buf + 8, q[1]);
122             return 16;
123         }
124     case 32:
125         /* FPSR */
126         stl_p(buf, vfp_get_fpsr(env));
127         return 4;
128     case 33:
129         /* FPCR */
130         stl_p(buf, vfp_get_fpcr(env));
131         return 4;
132     default:
133         return 0;
134     }
135 }
136 
137 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
138 {
139     switch (reg) {
140     case 0 ... 31:
141         /* 128 bit FP register */
142         {
143             uint64_t *q = aa64_vfp_qreg(env, reg);
144             q[0] = ldq_le_p(buf);
145             q[1] = ldq_le_p(buf + 8);
146             return 16;
147         }
148     case 32:
149         /* FPSR */
150         vfp_set_fpsr(env, ldl_p(buf));
151         return 4;
152     case 33:
153         /* FPCR */
154         vfp_set_fpcr(env, ldl_p(buf));
155         return 4;
156     default:
157         return 0;
158     }
159 }
160 
161 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
162 {
163     assert(ri->fieldoffset);
164     if (cpreg_field_is_64bit(ri)) {
165         return CPREG_FIELD64(env, ri);
166     } else {
167         return CPREG_FIELD32(env, ri);
168     }
169 }
170 
171 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
172                       uint64_t value)
173 {
174     assert(ri->fieldoffset);
175     if (cpreg_field_is_64bit(ri)) {
176         CPREG_FIELD64(env, ri) = value;
177     } else {
178         CPREG_FIELD32(env, ri) = value;
179     }
180 }
181 
182 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
183 {
184     return (char *)env + ri->fieldoffset;
185 }
186 
187 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
188 {
189     /* Raw read of a coprocessor register (as needed for migration, etc). */
190     if (ri->type & ARM_CP_CONST) {
191         return ri->resetvalue;
192     } else if (ri->raw_readfn) {
193         return ri->raw_readfn(env, ri);
194     } else if (ri->readfn) {
195         return ri->readfn(env, ri);
196     } else {
197         return raw_read(env, ri);
198     }
199 }
200 
201 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
202                              uint64_t v)
203 {
204     /* Raw write of a coprocessor register (as needed for migration, etc).
205      * Note that constant registers are treated as write-ignored; the
206      * caller should check for success by whether a readback gives the
207      * value written.
208      */
209     if (ri->type & ARM_CP_CONST) {
210         return;
211     } else if (ri->raw_writefn) {
212         ri->raw_writefn(env, ri, v);
213     } else if (ri->writefn) {
214         ri->writefn(env, ri, v);
215     } else {
216         raw_write(env, ri, v);
217     }
218 }
219 
220 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
221 {
222     ARMCPU *cpu = arm_env_get_cpu(env);
223     const ARMCPRegInfo *ri;
224     uint32_t key;
225 
226     key = cpu->dyn_xml.cpregs_keys[reg];
227     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228     if (ri) {
229         if (cpreg_field_is_64bit(ri)) {
230             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231         } else {
232             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
233         }
234     }
235     return 0;
236 }
237 
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
239 {
240     return 0;
241 }
242 
243 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
244 {
245    /* Return true if the regdef would cause an assertion if you called
246     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
247     * program bug for it not to have the NO_RAW flag).
248     * NB that returning false here doesn't necessarily mean that calling
249     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
250     * read/write access functions which are safe for raw use" from "has
251     * read/write access functions which have side effects but has forgotten
252     * to provide raw access functions".
253     * The tests here line up with the conditions in read/write_raw_cp_reg()
254     * and assertions in raw_read()/raw_write().
255     */
256     if ((ri->type & ARM_CP_CONST) ||
257         ri->fieldoffset ||
258         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
259         return false;
260     }
261     return true;
262 }
263 
264 bool write_cpustate_to_list(ARMCPU *cpu)
265 {
266     /* Write the coprocessor state from cpu->env to the (index,value) list. */
267     int i;
268     bool ok = true;
269 
270     for (i = 0; i < cpu->cpreg_array_len; i++) {
271         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
272         const ARMCPRegInfo *ri;
273 
274         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275         if (!ri) {
276             ok = false;
277             continue;
278         }
279         if (ri->type & ARM_CP_NO_RAW) {
280             continue;
281         }
282         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
283     }
284     return ok;
285 }
286 
287 bool write_list_to_cpustate(ARMCPU *cpu)
288 {
289     int i;
290     bool ok = true;
291 
292     for (i = 0; i < cpu->cpreg_array_len; i++) {
293         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
294         uint64_t v = cpu->cpreg_values[i];
295         const ARMCPRegInfo *ri;
296 
297         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
298         if (!ri) {
299             ok = false;
300             continue;
301         }
302         if (ri->type & ARM_CP_NO_RAW) {
303             continue;
304         }
305         /* Write value and confirm it reads back as written
306          * (to catch read-only registers and partially read-only
307          * registers where the incoming migration value doesn't match)
308          */
309         write_raw_cp_reg(&cpu->env, ri, v);
310         if (read_raw_cp_reg(&cpu->env, ri) != v) {
311             ok = false;
312         }
313     }
314     return ok;
315 }
316 
317 static void add_cpreg_to_list(gpointer key, gpointer opaque)
318 {
319     ARMCPU *cpu = opaque;
320     uint64_t regidx;
321     const ARMCPRegInfo *ri;
322 
323     regidx = *(uint32_t *)key;
324     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
325 
326     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
327         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
328         /* The value array need not be initialized at this point */
329         cpu->cpreg_array_len++;
330     }
331 }
332 
333 static void count_cpreg(gpointer key, gpointer opaque)
334 {
335     ARMCPU *cpu = opaque;
336     uint64_t regidx;
337     const ARMCPRegInfo *ri;
338 
339     regidx = *(uint32_t *)key;
340     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
341 
342     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
343         cpu->cpreg_array_len++;
344     }
345 }
346 
347 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
348 {
349     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
350     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
351 
352     if (aidx > bidx) {
353         return 1;
354     }
355     if (aidx < bidx) {
356         return -1;
357     }
358     return 0;
359 }
360 
361 void init_cpreg_list(ARMCPU *cpu)
362 {
363     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
364      * Note that we require cpreg_tuples[] to be sorted by key ID.
365      */
366     GList *keys;
367     int arraylen;
368 
369     keys = g_hash_table_get_keys(cpu->cp_regs);
370     keys = g_list_sort(keys, cpreg_key_compare);
371 
372     cpu->cpreg_array_len = 0;
373 
374     g_list_foreach(keys, count_cpreg, cpu);
375 
376     arraylen = cpu->cpreg_array_len;
377     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
378     cpu->cpreg_values = g_new(uint64_t, arraylen);
379     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
380     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
381     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
382     cpu->cpreg_array_len = 0;
383 
384     g_list_foreach(keys, add_cpreg_to_list, cpu);
385 
386     assert(cpu->cpreg_array_len == arraylen);
387 
388     g_list_free(keys);
389 }
390 
391 /*
392  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
393  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
394  *
395  * access_el3_aa32ns: Used to check AArch32 register views.
396  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
397  */
398 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
399                                         const ARMCPRegInfo *ri,
400                                         bool isread)
401 {
402     bool secure = arm_is_secure_below_el3(env);
403 
404     assert(!arm_el_is_aa64(env, 3));
405     if (secure) {
406         return CP_ACCESS_TRAP_UNCATEGORIZED;
407     }
408     return CP_ACCESS_OK;
409 }
410 
411 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
412                                                 const ARMCPRegInfo *ri,
413                                                 bool isread)
414 {
415     if (!arm_el_is_aa64(env, 3)) {
416         return access_el3_aa32ns(env, ri, isread);
417     }
418     return CP_ACCESS_OK;
419 }
420 
421 /* Some secure-only AArch32 registers trap to EL3 if used from
422  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
423  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
424  * We assume that the .access field is set to PL1_RW.
425  */
426 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
427                                             const ARMCPRegInfo *ri,
428                                             bool isread)
429 {
430     if (arm_current_el(env) == 3) {
431         return CP_ACCESS_OK;
432     }
433     if (arm_is_secure_below_el3(env)) {
434         return CP_ACCESS_TRAP_EL3;
435     }
436     /* This will be EL1 NS and EL2 NS, which just UNDEF */
437     return CP_ACCESS_TRAP_UNCATEGORIZED;
438 }
439 
440 /* Check for traps to "powerdown debug" registers, which are controlled
441  * by MDCR.TDOSA
442  */
443 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
444                                    bool isread)
445 {
446     int el = arm_current_el(env);
447     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
448         (env->cp15.mdcr_el2 & MDCR_TDE) ||
449         (env->cp15.hcr_el2 & HCR_TGE);
450 
451     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
452         return CP_ACCESS_TRAP_EL2;
453     }
454     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
455         return CP_ACCESS_TRAP_EL3;
456     }
457     return CP_ACCESS_OK;
458 }
459 
460 /* Check for traps to "debug ROM" registers, which are controlled
461  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
462  */
463 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
464                                   bool isread)
465 {
466     int el = arm_current_el(env);
467     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
468         (env->cp15.mdcr_el2 & MDCR_TDE) ||
469         (env->cp15.hcr_el2 & HCR_TGE);
470 
471     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
472         return CP_ACCESS_TRAP_EL2;
473     }
474     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
475         return CP_ACCESS_TRAP_EL3;
476     }
477     return CP_ACCESS_OK;
478 }
479 
480 /* Check for traps to general debug registers, which are controlled
481  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
482  */
483 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
484                                   bool isread)
485 {
486     int el = arm_current_el(env);
487     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
488         (env->cp15.mdcr_el2 & MDCR_TDE) ||
489         (env->cp15.hcr_el2 & HCR_TGE);
490 
491     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
492         return CP_ACCESS_TRAP_EL2;
493     }
494     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
495         return CP_ACCESS_TRAP_EL3;
496     }
497     return CP_ACCESS_OK;
498 }
499 
500 /* Check for traps to performance monitor registers, which are controlled
501  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
502  */
503 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
504                                  bool isread)
505 {
506     int el = arm_current_el(env);
507 
508     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
509         && !arm_is_secure_below_el3(env)) {
510         return CP_ACCESS_TRAP_EL2;
511     }
512     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
513         return CP_ACCESS_TRAP_EL3;
514     }
515     return CP_ACCESS_OK;
516 }
517 
518 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
519 {
520     ARMCPU *cpu = arm_env_get_cpu(env);
521 
522     raw_write(env, ri, value);
523     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
524 }
525 
526 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
527 {
528     ARMCPU *cpu = arm_env_get_cpu(env);
529 
530     if (raw_read(env, ri) != value) {
531         /* Unlike real hardware the qemu TLB uses virtual addresses,
532          * not modified virtual addresses, so this causes a TLB flush.
533          */
534         tlb_flush(CPU(cpu));
535         raw_write(env, ri, value);
536     }
537 }
538 
539 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                              uint64_t value)
541 {
542     ARMCPU *cpu = arm_env_get_cpu(env);
543 
544     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
545         && !extended_addresses_enabled(env)) {
546         /* For VMSA (when not using the LPAE long descriptor page table
547          * format) this register includes the ASID, so do a TLB flush.
548          * For PMSA it is purely a process ID and no action is needed.
549          */
550         tlb_flush(CPU(cpu));
551     }
552     raw_write(env, ri, value);
553 }
554 
555 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
556                           uint64_t value)
557 {
558     /* Invalidate all (TLBIALL) */
559     ARMCPU *cpu = arm_env_get_cpu(env);
560 
561     tlb_flush(CPU(cpu));
562 }
563 
564 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                           uint64_t value)
566 {
567     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
568     ARMCPU *cpu = arm_env_get_cpu(env);
569 
570     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
571 }
572 
573 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
574                            uint64_t value)
575 {
576     /* Invalidate by ASID (TLBIASID) */
577     ARMCPU *cpu = arm_env_get_cpu(env);
578 
579     tlb_flush(CPU(cpu));
580 }
581 
582 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                            uint64_t value)
584 {
585     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
586     ARMCPU *cpu = arm_env_get_cpu(env);
587 
588     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
589 }
590 
591 /* IS variants of TLB operations must affect all cores */
592 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
593                              uint64_t value)
594 {
595     CPUState *cs = ENV_GET_CPU(env);
596 
597     tlb_flush_all_cpus_synced(cs);
598 }
599 
600 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
601                              uint64_t value)
602 {
603     CPUState *cs = ENV_GET_CPU(env);
604 
605     tlb_flush_all_cpus_synced(cs);
606 }
607 
608 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
609                              uint64_t value)
610 {
611     CPUState *cs = ENV_GET_CPU(env);
612 
613     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
614 }
615 
616 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
617                              uint64_t value)
618 {
619     CPUState *cs = ENV_GET_CPU(env);
620 
621     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
622 }
623 
624 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
625                                uint64_t value)
626 {
627     CPUState *cs = ENV_GET_CPU(env);
628 
629     tlb_flush_by_mmuidx(cs,
630                         ARMMMUIdxBit_S12NSE1 |
631                         ARMMMUIdxBit_S12NSE0 |
632                         ARMMMUIdxBit_S2NS);
633 }
634 
635 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636                                   uint64_t value)
637 {
638     CPUState *cs = ENV_GET_CPU(env);
639 
640     tlb_flush_by_mmuidx_all_cpus_synced(cs,
641                                         ARMMMUIdxBit_S12NSE1 |
642                                         ARMMMUIdxBit_S12NSE0 |
643                                         ARMMMUIdxBit_S2NS);
644 }
645 
646 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
647                             uint64_t value)
648 {
649     /* Invalidate by IPA. This has to invalidate any structures that
650      * contain only stage 2 translation information, but does not need
651      * to apply to structures that contain combined stage 1 and stage 2
652      * translation information.
653      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
654      */
655     CPUState *cs = ENV_GET_CPU(env);
656     uint64_t pageaddr;
657 
658     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
659         return;
660     }
661 
662     pageaddr = sextract64(value << 12, 0, 40);
663 
664     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
665 }
666 
667 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
668                                uint64_t value)
669 {
670     CPUState *cs = ENV_GET_CPU(env);
671     uint64_t pageaddr;
672 
673     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
674         return;
675     }
676 
677     pageaddr = sextract64(value << 12, 0, 40);
678 
679     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
680                                              ARMMMUIdxBit_S2NS);
681 }
682 
683 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
684                               uint64_t value)
685 {
686     CPUState *cs = ENV_GET_CPU(env);
687 
688     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
689 }
690 
691 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
692                                  uint64_t value)
693 {
694     CPUState *cs = ENV_GET_CPU(env);
695 
696     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
697 }
698 
699 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
700                               uint64_t value)
701 {
702     CPUState *cs = ENV_GET_CPU(env);
703     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
704 
705     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
706 }
707 
708 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
709                                  uint64_t value)
710 {
711     CPUState *cs = ENV_GET_CPU(env);
712     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
713 
714     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
715                                              ARMMMUIdxBit_S1E2);
716 }
717 
718 static const ARMCPRegInfo cp_reginfo[] = {
719     /* Define the secure and non-secure FCSE identifier CP registers
720      * separately because there is no secure bank in V8 (no _EL3).  This allows
721      * the secure register to be properly reset and migrated. There is also no
722      * v8 EL1 version of the register so the non-secure instance stands alone.
723      */
724     { .name = "FCSEIDR",
725       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
726       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
727       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
728       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
729     { .name = "FCSEIDR_S",
730       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
731       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
732       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
733       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
734     /* Define the secure and non-secure context identifier CP registers
735      * separately because there is no secure bank in V8 (no _EL3).  This allows
736      * the secure register to be properly reset and migrated.  In the
737      * non-secure case, the 32-bit register will have reset and migration
738      * disabled during registration as it is handled by the 64-bit instance.
739      */
740     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
741       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
742       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
743       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
744       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
745     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
746       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
747       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
748       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
749       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
750     REGINFO_SENTINEL
751 };
752 
753 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
754     /* NB: Some of these registers exist in v8 but with more precise
755      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
756      */
757     /* MMU Domain access control / MPU write buffer control */
758     { .name = "DACR",
759       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
760       .access = PL1_RW, .resetvalue = 0,
761       .writefn = dacr_write, .raw_writefn = raw_write,
762       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
763                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
764     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
765      * For v6 and v5, these mappings are overly broad.
766      */
767     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
768       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
769     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
770       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
771     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
772       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
773     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
774       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
775     /* Cache maintenance ops; some of this space may be overridden later. */
776     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
777       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
778       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
779     REGINFO_SENTINEL
780 };
781 
782 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
783     /* Not all pre-v6 cores implemented this WFI, so this is slightly
784      * over-broad.
785      */
786     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
787       .access = PL1_W, .type = ARM_CP_WFI },
788     REGINFO_SENTINEL
789 };
790 
791 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
792     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
793      * is UNPREDICTABLE; we choose to NOP as most implementations do).
794      */
795     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
796       .access = PL1_W, .type = ARM_CP_WFI },
797     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
798      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
799      * OMAPCP will override this space.
800      */
801     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
802       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
803       .resetvalue = 0 },
804     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
805       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
806       .resetvalue = 0 },
807     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
808     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
809       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
810       .resetvalue = 0 },
811     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
812      * implementing it as RAZ means the "debug architecture version" bits
813      * will read as a reserved value, which should cause Linux to not try
814      * to use the debug hardware.
815      */
816     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
817       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
818     /* MMU TLB control. Note that the wildcarding means we cover not just
819      * the unified TLB ops but also the dside/iside/inner-shareable variants.
820      */
821     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
822       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
823       .type = ARM_CP_NO_RAW },
824     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
825       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
826       .type = ARM_CP_NO_RAW },
827     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
828       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
829       .type = ARM_CP_NO_RAW },
830     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
831       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
832       .type = ARM_CP_NO_RAW },
833     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
834       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
835     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
836       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
837     REGINFO_SENTINEL
838 };
839 
840 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
841                         uint64_t value)
842 {
843     uint32_t mask = 0;
844 
845     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
846     if (!arm_feature(env, ARM_FEATURE_V8)) {
847         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
848          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
849          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
850          */
851         if (arm_feature(env, ARM_FEATURE_VFP)) {
852             /* VFP coprocessor: cp10 & cp11 [23:20] */
853             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
854 
855             if (!arm_feature(env, ARM_FEATURE_NEON)) {
856                 /* ASEDIS [31] bit is RAO/WI */
857                 value |= (1 << 31);
858             }
859 
860             /* VFPv3 and upwards with NEON implement 32 double precision
861              * registers (D0-D31).
862              */
863             if (!arm_feature(env, ARM_FEATURE_NEON) ||
864                     !arm_feature(env, ARM_FEATURE_VFP3)) {
865                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
866                 value |= (1 << 30);
867             }
868         }
869         value &= mask;
870     }
871     env->cp15.cpacr_el1 = value;
872 }
873 
874 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
875 {
876     /* Call cpacr_write() so that we reset with the correct RAO bits set
877      * for our CPU features.
878      */
879     cpacr_write(env, ri, 0);
880 }
881 
882 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
883                                    bool isread)
884 {
885     if (arm_feature(env, ARM_FEATURE_V8)) {
886         /* Check if CPACR accesses are to be trapped to EL2 */
887         if (arm_current_el(env) == 1 &&
888             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
889             return CP_ACCESS_TRAP_EL2;
890         /* Check if CPACR accesses are to be trapped to EL3 */
891         } else if (arm_current_el(env) < 3 &&
892                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
893             return CP_ACCESS_TRAP_EL3;
894         }
895     }
896 
897     return CP_ACCESS_OK;
898 }
899 
900 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
901                                   bool isread)
902 {
903     /* Check if CPTR accesses are set to trap to EL3 */
904     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
905         return CP_ACCESS_TRAP_EL3;
906     }
907 
908     return CP_ACCESS_OK;
909 }
910 
911 static const ARMCPRegInfo v6_cp_reginfo[] = {
912     /* prefetch by MVA in v6, NOP in v7 */
913     { .name = "MVA_prefetch",
914       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
915       .access = PL1_W, .type = ARM_CP_NOP },
916     /* We need to break the TB after ISB to execute self-modifying code
917      * correctly and also to take any pending interrupts immediately.
918      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
919      */
920     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
921       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
922     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
923       .access = PL0_W, .type = ARM_CP_NOP },
924     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
925       .access = PL0_W, .type = ARM_CP_NOP },
926     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
927       .access = PL1_RW,
928       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
929                              offsetof(CPUARMState, cp15.ifar_ns) },
930       .resetvalue = 0, },
931     /* Watchpoint Fault Address Register : should actually only be present
932      * for 1136, 1176, 11MPCore.
933      */
934     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
935       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
936     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
937       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
938       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
939       .resetfn = cpacr_reset, .writefn = cpacr_write },
940     REGINFO_SENTINEL
941 };
942 
943 /* Definitions for the PMU registers */
944 #define PMCRN_MASK  0xf800
945 #define PMCRN_SHIFT 11
946 #define PMCRD   0x8
947 #define PMCRC   0x4
948 #define PMCRE   0x1
949 
950 static inline uint32_t pmu_num_counters(CPUARMState *env)
951 {
952   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
953 }
954 
955 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
956 static inline uint64_t pmu_counter_mask(CPUARMState *env)
957 {
958   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
959 }
960 
961 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
962                                    bool isread)
963 {
964     /* Performance monitor registers user accessibility is controlled
965      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
966      * trapping to EL2 or EL3 for other accesses.
967      */
968     int el = arm_current_el(env);
969 
970     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
971         return CP_ACCESS_TRAP;
972     }
973     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
974         && !arm_is_secure_below_el3(env)) {
975         return CP_ACCESS_TRAP_EL2;
976     }
977     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
978         return CP_ACCESS_TRAP_EL3;
979     }
980 
981     return CP_ACCESS_OK;
982 }
983 
984 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
985                                            const ARMCPRegInfo *ri,
986                                            bool isread)
987 {
988     /* ER: event counter read trap control */
989     if (arm_feature(env, ARM_FEATURE_V8)
990         && arm_current_el(env) == 0
991         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
992         && isread) {
993         return CP_ACCESS_OK;
994     }
995 
996     return pmreg_access(env, ri, isread);
997 }
998 
999 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1000                                          const ARMCPRegInfo *ri,
1001                                          bool isread)
1002 {
1003     /* SW: software increment write trap control */
1004     if (arm_feature(env, ARM_FEATURE_V8)
1005         && arm_current_el(env) == 0
1006         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1007         && !isread) {
1008         return CP_ACCESS_OK;
1009     }
1010 
1011     return pmreg_access(env, ri, isread);
1012 }
1013 
1014 #ifndef CONFIG_USER_ONLY
1015 
1016 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1017                                         const ARMCPRegInfo *ri,
1018                                         bool isread)
1019 {
1020     /* ER: event counter read trap control */
1021     if (arm_feature(env, ARM_FEATURE_V8)
1022         && arm_current_el(env) == 0
1023         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1024         return CP_ACCESS_OK;
1025     }
1026 
1027     return pmreg_access(env, ri, isread);
1028 }
1029 
1030 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1031                                          const ARMCPRegInfo *ri,
1032                                          bool isread)
1033 {
1034     /* CR: cycle counter read trap control */
1035     if (arm_feature(env, ARM_FEATURE_V8)
1036         && arm_current_el(env) == 0
1037         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1038         && isread) {
1039         return CP_ACCESS_OK;
1040     }
1041 
1042     return pmreg_access(env, ri, isread);
1043 }
1044 
1045 static inline bool arm_ccnt_enabled(CPUARMState *env)
1046 {
1047     /* This does not support checking PMCCFILTR_EL0 register */
1048 
1049     if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) {
1050         return false;
1051     }
1052 
1053     return true;
1054 }
1055 
1056 void pmccntr_sync(CPUARMState *env)
1057 {
1058     uint64_t temp_ticks;
1059 
1060     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1061                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1062 
1063     if (env->cp15.c9_pmcr & PMCRD) {
1064         /* Increment once every 64 processor clock cycles */
1065         temp_ticks /= 64;
1066     }
1067 
1068     if (arm_ccnt_enabled(env)) {
1069         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1070     }
1071 }
1072 
1073 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1074                        uint64_t value)
1075 {
1076     pmccntr_sync(env);
1077 
1078     if (value & PMCRC) {
1079         /* The counter has been reset */
1080         env->cp15.c15_ccnt = 0;
1081     }
1082 
1083     /* only the DP, X, D and E bits are writable */
1084     env->cp15.c9_pmcr &= ~0x39;
1085     env->cp15.c9_pmcr |= (value & 0x39);
1086 
1087     pmccntr_sync(env);
1088 }
1089 
1090 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1091 {
1092     uint64_t total_ticks;
1093 
1094     if (!arm_ccnt_enabled(env)) {
1095         /* Counter is disabled, do not change value */
1096         return env->cp15.c15_ccnt;
1097     }
1098 
1099     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1100                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1101 
1102     if (env->cp15.c9_pmcr & PMCRD) {
1103         /* Increment once every 64 processor clock cycles */
1104         total_ticks /= 64;
1105     }
1106     return total_ticks - env->cp15.c15_ccnt;
1107 }
1108 
1109 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1110                          uint64_t value)
1111 {
1112     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1113      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1114      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1115      * accessed.
1116      */
1117     env->cp15.c9_pmselr = value & 0x1f;
1118 }
1119 
1120 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1121                         uint64_t value)
1122 {
1123     uint64_t total_ticks;
1124 
1125     if (!arm_ccnt_enabled(env)) {
1126         /* Counter is disabled, set the absolute value */
1127         env->cp15.c15_ccnt = value;
1128         return;
1129     }
1130 
1131     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1132                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1133 
1134     if (env->cp15.c9_pmcr & PMCRD) {
1135         /* Increment once every 64 processor clock cycles */
1136         total_ticks /= 64;
1137     }
1138     env->cp15.c15_ccnt = total_ticks - value;
1139 }
1140 
1141 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1142                             uint64_t value)
1143 {
1144     uint64_t cur_val = pmccntr_read(env, NULL);
1145 
1146     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1147 }
1148 
1149 #else /* CONFIG_USER_ONLY */
1150 
1151 void pmccntr_sync(CPUARMState *env)
1152 {
1153 }
1154 
1155 #endif
1156 
1157 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158                             uint64_t value)
1159 {
1160     pmccntr_sync(env);
1161     env->cp15.pmccfiltr_el0 = value & 0xfc000000;
1162     pmccntr_sync(env);
1163 }
1164 
1165 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166                             uint64_t value)
1167 {
1168     value &= pmu_counter_mask(env);
1169     env->cp15.c9_pmcnten |= value;
1170 }
1171 
1172 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1173                              uint64_t value)
1174 {
1175     value &= pmu_counter_mask(env);
1176     env->cp15.c9_pmcnten &= ~value;
1177 }
1178 
1179 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1180                          uint64_t value)
1181 {
1182     env->cp15.c9_pmovsr &= ~value;
1183 }
1184 
1185 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1186                              uint64_t value)
1187 {
1188     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1189      * PMSELR value is equal to or greater than the number of implemented
1190      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1191      */
1192     if (env->cp15.c9_pmselr == 0x1f) {
1193         pmccfiltr_write(env, ri, value);
1194     }
1195 }
1196 
1197 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1198 {
1199     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1200      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1201      */
1202     if (env->cp15.c9_pmselr == 0x1f) {
1203         return env->cp15.pmccfiltr_el0;
1204     } else {
1205         return 0;
1206     }
1207 }
1208 
1209 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1210                             uint64_t value)
1211 {
1212     if (arm_feature(env, ARM_FEATURE_V8)) {
1213         env->cp15.c9_pmuserenr = value & 0xf;
1214     } else {
1215         env->cp15.c9_pmuserenr = value & 1;
1216     }
1217 }
1218 
1219 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220                              uint64_t value)
1221 {
1222     /* We have no event counters so only the C bit can be changed */
1223     value &= pmu_counter_mask(env);
1224     env->cp15.c9_pminten |= value;
1225 }
1226 
1227 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1228                              uint64_t value)
1229 {
1230     value &= pmu_counter_mask(env);
1231     env->cp15.c9_pminten &= ~value;
1232 }
1233 
1234 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1235                        uint64_t value)
1236 {
1237     /* Note that even though the AArch64 view of this register has bits
1238      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1239      * architectural requirements for bits which are RES0 only in some
1240      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1241      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1242      */
1243     raw_write(env, ri, value & ~0x1FULL);
1244 }
1245 
1246 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1247 {
1248     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1249      * For bits that vary between AArch32/64, code needs to check the
1250      * current execution mode before directly using the feature bit.
1251      */
1252     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1253 
1254     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1255         valid_mask &= ~SCR_HCE;
1256 
1257         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1258          * supported if EL2 exists. The bit is UNK/SBZP when
1259          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1260          * when EL2 is unavailable.
1261          * On ARMv8, this bit is always available.
1262          */
1263         if (arm_feature(env, ARM_FEATURE_V7) &&
1264             !arm_feature(env, ARM_FEATURE_V8)) {
1265             valid_mask &= ~SCR_SMD;
1266         }
1267     }
1268 
1269     /* Clear all-context RES0 bits.  */
1270     value &= valid_mask;
1271     raw_write(env, ri, value);
1272 }
1273 
1274 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1275 {
1276     ARMCPU *cpu = arm_env_get_cpu(env);
1277 
1278     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1279      * bank
1280      */
1281     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1282                                         ri->secure & ARM_CP_SECSTATE_S);
1283 
1284     return cpu->ccsidr[index];
1285 }
1286 
1287 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1288                          uint64_t value)
1289 {
1290     raw_write(env, ri, value & 0xf);
1291 }
1292 
1293 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1294 {
1295     CPUState *cs = ENV_GET_CPU(env);
1296     uint64_t ret = 0;
1297 
1298     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1299         ret |= CPSR_I;
1300     }
1301     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1302         ret |= CPSR_F;
1303     }
1304     /* External aborts are not possible in QEMU so A bit is always clear */
1305     return ret;
1306 }
1307 
1308 static const ARMCPRegInfo v7_cp_reginfo[] = {
1309     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1310     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1311       .access = PL1_W, .type = ARM_CP_NOP },
1312     /* Performance monitors are implementation defined in v7,
1313      * but with an ARM recommended set of registers, which we
1314      * follow (although we don't actually implement any counters)
1315      *
1316      * Performance registers fall into three categories:
1317      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1318      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1319      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1320      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1321      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1322      */
1323     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1324       .access = PL0_RW, .type = ARM_CP_ALIAS,
1325       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1326       .writefn = pmcntenset_write,
1327       .accessfn = pmreg_access,
1328       .raw_writefn = raw_write },
1329     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1330       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1331       .access = PL0_RW, .accessfn = pmreg_access,
1332       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1333       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1334     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1335       .access = PL0_RW,
1336       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1337       .accessfn = pmreg_access,
1338       .writefn = pmcntenclr_write,
1339       .type = ARM_CP_ALIAS },
1340     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1341       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1342       .access = PL0_RW, .accessfn = pmreg_access,
1343       .type = ARM_CP_ALIAS,
1344       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1345       .writefn = pmcntenclr_write },
1346     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1347       .access = PL0_RW,
1348       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1349       .accessfn = pmreg_access,
1350       .writefn = pmovsr_write,
1351       .raw_writefn = raw_write },
1352     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1353       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1354       .access = PL0_RW, .accessfn = pmreg_access,
1355       .type = ARM_CP_ALIAS,
1356       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1357       .writefn = pmovsr_write,
1358       .raw_writefn = raw_write },
1359     /* Unimplemented so WI. */
1360     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1361       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1362 #ifndef CONFIG_USER_ONLY
1363     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1364       .access = PL0_RW, .type = ARM_CP_ALIAS,
1365       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1366       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1367       .raw_writefn = raw_write},
1368     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1369       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1370       .access = PL0_RW, .accessfn = pmreg_access_selr,
1371       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1372       .writefn = pmselr_write, .raw_writefn = raw_write, },
1373     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1374       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1375       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1376       .accessfn = pmreg_access_ccntr },
1377     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1378       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1379       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1380       .type = ARM_CP_IO,
1381       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1382 #endif
1383     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1384       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1385       .writefn = pmccfiltr_write,
1386       .access = PL0_RW, .accessfn = pmreg_access,
1387       .type = ARM_CP_IO,
1388       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1389       .resetvalue = 0, },
1390     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1391       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1392       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1393     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1394       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1395       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1396       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1397     /* Unimplemented, RAZ/WI. */
1398     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1399       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1400       .accessfn = pmreg_access_xevcntr },
1401     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1402       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1403       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1404       .resetvalue = 0,
1405       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1406     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1407       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1408       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1409       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1410       .resetvalue = 0,
1411       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1412     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1413       .access = PL1_RW, .accessfn = access_tpm,
1414       .type = ARM_CP_ALIAS | ARM_CP_IO,
1415       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1416       .resetvalue = 0,
1417       .writefn = pmintenset_write, .raw_writefn = raw_write },
1418     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1419       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1420       .access = PL1_RW, .accessfn = access_tpm,
1421       .type = ARM_CP_IO,
1422       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1423       .writefn = pmintenset_write, .raw_writefn = raw_write,
1424       .resetvalue = 0x0 },
1425     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1426       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1427       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1428       .writefn = pmintenclr_write, },
1429     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1430       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1431       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1432       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1433       .writefn = pmintenclr_write },
1434     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1435       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1436       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1437     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1438       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1439       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1440       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1441                              offsetof(CPUARMState, cp15.csselr_ns) } },
1442     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1443      * just RAZ for all cores:
1444      */
1445     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1446       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1447       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1448     /* Auxiliary fault status registers: these also are IMPDEF, and we
1449      * choose to RAZ/WI for all cores.
1450      */
1451     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1452       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1453       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1454     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1455       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1456       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1457     /* MAIR can just read-as-written because we don't implement caches
1458      * and so don't need to care about memory attributes.
1459      */
1460     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1461       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1462       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1463       .resetvalue = 0 },
1464     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1465       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1466       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1467       .resetvalue = 0 },
1468     /* For non-long-descriptor page tables these are PRRR and NMRR;
1469      * regardless they still act as reads-as-written for QEMU.
1470      */
1471      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1472       * allows them to assign the correct fieldoffset based on the endianness
1473       * handled in the field definitions.
1474       */
1475     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1476       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1477       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1478                              offsetof(CPUARMState, cp15.mair0_ns) },
1479       .resetfn = arm_cp_reset_ignore },
1480     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1481       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1482       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1483                              offsetof(CPUARMState, cp15.mair1_ns) },
1484       .resetfn = arm_cp_reset_ignore },
1485     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1486       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1487       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1488     /* 32 bit ITLB invalidates */
1489     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1490       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1491     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1492       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1493     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1494       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1495     /* 32 bit DTLB invalidates */
1496     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1497       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1498     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1499       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1500     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1501       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1502     /* 32 bit TLB invalidates */
1503     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1504       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1505     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1506       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1507     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1508       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1509     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1510       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1511     REGINFO_SENTINEL
1512 };
1513 
1514 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1515     /* 32 bit TLB invalidates, Inner Shareable */
1516     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1517       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1518     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1519       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1520     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1521       .type = ARM_CP_NO_RAW, .access = PL1_W,
1522       .writefn = tlbiasid_is_write },
1523     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1524       .type = ARM_CP_NO_RAW, .access = PL1_W,
1525       .writefn = tlbimvaa_is_write },
1526     REGINFO_SENTINEL
1527 };
1528 
1529 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1530                         uint64_t value)
1531 {
1532     value &= 1;
1533     env->teecr = value;
1534 }
1535 
1536 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1537                                     bool isread)
1538 {
1539     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1540         return CP_ACCESS_TRAP;
1541     }
1542     return CP_ACCESS_OK;
1543 }
1544 
1545 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1546     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1547       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1548       .resetvalue = 0,
1549       .writefn = teecr_write },
1550     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1551       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1552       .accessfn = teehbr_access, .resetvalue = 0 },
1553     REGINFO_SENTINEL
1554 };
1555 
1556 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1557     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1558       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1559       .access = PL0_RW,
1560       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1561     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1562       .access = PL0_RW,
1563       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1564                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1565       .resetfn = arm_cp_reset_ignore },
1566     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1567       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1568       .access = PL0_R|PL1_W,
1569       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1570       .resetvalue = 0},
1571     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1572       .access = PL0_R|PL1_W,
1573       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1574                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1575       .resetfn = arm_cp_reset_ignore },
1576     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1577       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1578       .access = PL1_RW,
1579       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1580     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1581       .access = PL1_RW,
1582       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1583                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1584       .resetvalue = 0 },
1585     REGINFO_SENTINEL
1586 };
1587 
1588 #ifndef CONFIG_USER_ONLY
1589 
1590 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1591                                        bool isread)
1592 {
1593     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1594      * Writable only at the highest implemented exception level.
1595      */
1596     int el = arm_current_el(env);
1597 
1598     switch (el) {
1599     case 0:
1600         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1601             return CP_ACCESS_TRAP;
1602         }
1603         break;
1604     case 1:
1605         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1606             arm_is_secure_below_el3(env)) {
1607             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1608             return CP_ACCESS_TRAP_UNCATEGORIZED;
1609         }
1610         break;
1611     case 2:
1612     case 3:
1613         break;
1614     }
1615 
1616     if (!isread && el < arm_highest_el(env)) {
1617         return CP_ACCESS_TRAP_UNCATEGORIZED;
1618     }
1619 
1620     return CP_ACCESS_OK;
1621 }
1622 
1623 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1624                                         bool isread)
1625 {
1626     unsigned int cur_el = arm_current_el(env);
1627     bool secure = arm_is_secure(env);
1628 
1629     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1630     if (cur_el == 0 &&
1631         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1632         return CP_ACCESS_TRAP;
1633     }
1634 
1635     if (arm_feature(env, ARM_FEATURE_EL2) &&
1636         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1637         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1638         return CP_ACCESS_TRAP_EL2;
1639     }
1640     return CP_ACCESS_OK;
1641 }
1642 
1643 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1644                                       bool isread)
1645 {
1646     unsigned int cur_el = arm_current_el(env);
1647     bool secure = arm_is_secure(env);
1648 
1649     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1650      * EL0[PV]TEN is zero.
1651      */
1652     if (cur_el == 0 &&
1653         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1654         return CP_ACCESS_TRAP;
1655     }
1656 
1657     if (arm_feature(env, ARM_FEATURE_EL2) &&
1658         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1659         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1660         return CP_ACCESS_TRAP_EL2;
1661     }
1662     return CP_ACCESS_OK;
1663 }
1664 
1665 static CPAccessResult gt_pct_access(CPUARMState *env,
1666                                     const ARMCPRegInfo *ri,
1667                                     bool isread)
1668 {
1669     return gt_counter_access(env, GTIMER_PHYS, isread);
1670 }
1671 
1672 static CPAccessResult gt_vct_access(CPUARMState *env,
1673                                     const ARMCPRegInfo *ri,
1674                                     bool isread)
1675 {
1676     return gt_counter_access(env, GTIMER_VIRT, isread);
1677 }
1678 
1679 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1680                                        bool isread)
1681 {
1682     return gt_timer_access(env, GTIMER_PHYS, isread);
1683 }
1684 
1685 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1686                                        bool isread)
1687 {
1688     return gt_timer_access(env, GTIMER_VIRT, isread);
1689 }
1690 
1691 static CPAccessResult gt_stimer_access(CPUARMState *env,
1692                                        const ARMCPRegInfo *ri,
1693                                        bool isread)
1694 {
1695     /* The AArch64 register view of the secure physical timer is
1696      * always accessible from EL3, and configurably accessible from
1697      * Secure EL1.
1698      */
1699     switch (arm_current_el(env)) {
1700     case 1:
1701         if (!arm_is_secure(env)) {
1702             return CP_ACCESS_TRAP;
1703         }
1704         if (!(env->cp15.scr_el3 & SCR_ST)) {
1705             return CP_ACCESS_TRAP_EL3;
1706         }
1707         return CP_ACCESS_OK;
1708     case 0:
1709     case 2:
1710         return CP_ACCESS_TRAP;
1711     case 3:
1712         return CP_ACCESS_OK;
1713     default:
1714         g_assert_not_reached();
1715     }
1716 }
1717 
1718 static uint64_t gt_get_countervalue(CPUARMState *env)
1719 {
1720     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1721 }
1722 
1723 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1724 {
1725     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1726 
1727     if (gt->ctl & 1) {
1728         /* Timer enabled: calculate and set current ISTATUS, irq, and
1729          * reset timer to when ISTATUS next has to change
1730          */
1731         uint64_t offset = timeridx == GTIMER_VIRT ?
1732                                       cpu->env.cp15.cntvoff_el2 : 0;
1733         uint64_t count = gt_get_countervalue(&cpu->env);
1734         /* Note that this must be unsigned 64 bit arithmetic: */
1735         int istatus = count - offset >= gt->cval;
1736         uint64_t nexttick;
1737         int irqstate;
1738 
1739         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1740 
1741         irqstate = (istatus && !(gt->ctl & 2));
1742         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1743 
1744         if (istatus) {
1745             /* Next transition is when count rolls back over to zero */
1746             nexttick = UINT64_MAX;
1747         } else {
1748             /* Next transition is when we hit cval */
1749             nexttick = gt->cval + offset;
1750         }
1751         /* Note that the desired next expiry time might be beyond the
1752          * signed-64-bit range of a QEMUTimer -- in this case we just
1753          * set the timer for as far in the future as possible. When the
1754          * timer expires we will reset the timer for any remaining period.
1755          */
1756         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1757             nexttick = INT64_MAX / GTIMER_SCALE;
1758         }
1759         timer_mod(cpu->gt_timer[timeridx], nexttick);
1760         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1761     } else {
1762         /* Timer disabled: ISTATUS and timer output always clear */
1763         gt->ctl &= ~4;
1764         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1765         timer_del(cpu->gt_timer[timeridx]);
1766         trace_arm_gt_recalc_disabled(timeridx);
1767     }
1768 }
1769 
1770 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1771                            int timeridx)
1772 {
1773     ARMCPU *cpu = arm_env_get_cpu(env);
1774 
1775     timer_del(cpu->gt_timer[timeridx]);
1776 }
1777 
1778 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780     return gt_get_countervalue(env);
1781 }
1782 
1783 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1784 {
1785     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1786 }
1787 
1788 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789                           int timeridx,
1790                           uint64_t value)
1791 {
1792     trace_arm_gt_cval_write(timeridx, value);
1793     env->cp15.c14_timer[timeridx].cval = value;
1794     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1795 }
1796 
1797 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1798                              int timeridx)
1799 {
1800     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1801 
1802     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1803                       (gt_get_countervalue(env) - offset));
1804 }
1805 
1806 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                           int timeridx,
1808                           uint64_t value)
1809 {
1810     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1811 
1812     trace_arm_gt_tval_write(timeridx, value);
1813     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1814                                          sextract64(value, 0, 32);
1815     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1816 }
1817 
1818 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1819                          int timeridx,
1820                          uint64_t value)
1821 {
1822     ARMCPU *cpu = arm_env_get_cpu(env);
1823     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1824 
1825     trace_arm_gt_ctl_write(timeridx, value);
1826     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1827     if ((oldval ^ value) & 1) {
1828         /* Enable toggled */
1829         gt_recalc_timer(cpu, timeridx);
1830     } else if ((oldval ^ value) & 2) {
1831         /* IMASK toggled: don't need to recalculate,
1832          * just set the interrupt line based on ISTATUS
1833          */
1834         int irqstate = (oldval & 4) && !(value & 2);
1835 
1836         trace_arm_gt_imask_toggle(timeridx, irqstate);
1837         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1838     }
1839 }
1840 
1841 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1842 {
1843     gt_timer_reset(env, ri, GTIMER_PHYS);
1844 }
1845 
1846 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847                                uint64_t value)
1848 {
1849     gt_cval_write(env, ri, GTIMER_PHYS, value);
1850 }
1851 
1852 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1853 {
1854     return gt_tval_read(env, ri, GTIMER_PHYS);
1855 }
1856 
1857 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858                                uint64_t value)
1859 {
1860     gt_tval_write(env, ri, GTIMER_PHYS, value);
1861 }
1862 
1863 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1864                               uint64_t value)
1865 {
1866     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1867 }
1868 
1869 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1870 {
1871     gt_timer_reset(env, ri, GTIMER_VIRT);
1872 }
1873 
1874 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875                                uint64_t value)
1876 {
1877     gt_cval_write(env, ri, GTIMER_VIRT, value);
1878 }
1879 
1880 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1881 {
1882     return gt_tval_read(env, ri, GTIMER_VIRT);
1883 }
1884 
1885 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1886                                uint64_t value)
1887 {
1888     gt_tval_write(env, ri, GTIMER_VIRT, value);
1889 }
1890 
1891 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1892                               uint64_t value)
1893 {
1894     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1895 }
1896 
1897 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1898                               uint64_t value)
1899 {
1900     ARMCPU *cpu = arm_env_get_cpu(env);
1901 
1902     trace_arm_gt_cntvoff_write(value);
1903     raw_write(env, ri, value);
1904     gt_recalc_timer(cpu, GTIMER_VIRT);
1905 }
1906 
1907 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1908 {
1909     gt_timer_reset(env, ri, GTIMER_HYP);
1910 }
1911 
1912 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913                               uint64_t value)
1914 {
1915     gt_cval_write(env, ri, GTIMER_HYP, value);
1916 }
1917 
1918 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1919 {
1920     return gt_tval_read(env, ri, GTIMER_HYP);
1921 }
1922 
1923 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1924                               uint64_t value)
1925 {
1926     gt_tval_write(env, ri, GTIMER_HYP, value);
1927 }
1928 
1929 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1930                               uint64_t value)
1931 {
1932     gt_ctl_write(env, ri, GTIMER_HYP, value);
1933 }
1934 
1935 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1936 {
1937     gt_timer_reset(env, ri, GTIMER_SEC);
1938 }
1939 
1940 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1941                               uint64_t value)
1942 {
1943     gt_cval_write(env, ri, GTIMER_SEC, value);
1944 }
1945 
1946 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1947 {
1948     return gt_tval_read(env, ri, GTIMER_SEC);
1949 }
1950 
1951 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1952                               uint64_t value)
1953 {
1954     gt_tval_write(env, ri, GTIMER_SEC, value);
1955 }
1956 
1957 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1958                               uint64_t value)
1959 {
1960     gt_ctl_write(env, ri, GTIMER_SEC, value);
1961 }
1962 
1963 void arm_gt_ptimer_cb(void *opaque)
1964 {
1965     ARMCPU *cpu = opaque;
1966 
1967     gt_recalc_timer(cpu, GTIMER_PHYS);
1968 }
1969 
1970 void arm_gt_vtimer_cb(void *opaque)
1971 {
1972     ARMCPU *cpu = opaque;
1973 
1974     gt_recalc_timer(cpu, GTIMER_VIRT);
1975 }
1976 
1977 void arm_gt_htimer_cb(void *opaque)
1978 {
1979     ARMCPU *cpu = opaque;
1980 
1981     gt_recalc_timer(cpu, GTIMER_HYP);
1982 }
1983 
1984 void arm_gt_stimer_cb(void *opaque)
1985 {
1986     ARMCPU *cpu = opaque;
1987 
1988     gt_recalc_timer(cpu, GTIMER_SEC);
1989 }
1990 
1991 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1992     /* Note that CNTFRQ is purely reads-as-written for the benefit
1993      * of software; writing it doesn't actually change the timer frequency.
1994      * Our reset value matches the fixed frequency we implement the timer at.
1995      */
1996     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1997       .type = ARM_CP_ALIAS,
1998       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1999       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2000     },
2001     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2002       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2003       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2004       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2005       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2006     },
2007     /* overall control: mostly access permissions */
2008     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2009       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2010       .access = PL1_RW,
2011       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2012       .resetvalue = 0,
2013     },
2014     /* per-timer control */
2015     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2016       .secure = ARM_CP_SECSTATE_NS,
2017       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2018       .accessfn = gt_ptimer_access,
2019       .fieldoffset = offsetoflow32(CPUARMState,
2020                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2021       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2022     },
2023     { .name = "CNTP_CTL_S",
2024       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2025       .secure = ARM_CP_SECSTATE_S,
2026       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2027       .accessfn = gt_ptimer_access,
2028       .fieldoffset = offsetoflow32(CPUARMState,
2029                                    cp15.c14_timer[GTIMER_SEC].ctl),
2030       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2031     },
2032     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2033       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2034       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2035       .accessfn = gt_ptimer_access,
2036       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2037       .resetvalue = 0,
2038       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2039     },
2040     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2041       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2042       .accessfn = gt_vtimer_access,
2043       .fieldoffset = offsetoflow32(CPUARMState,
2044                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2045       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2046     },
2047     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2048       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2049       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2050       .accessfn = gt_vtimer_access,
2051       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2052       .resetvalue = 0,
2053       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2054     },
2055     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2056     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2057       .secure = ARM_CP_SECSTATE_NS,
2058       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2059       .accessfn = gt_ptimer_access,
2060       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2061     },
2062     { .name = "CNTP_TVAL_S",
2063       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2064       .secure = ARM_CP_SECSTATE_S,
2065       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2066       .accessfn = gt_ptimer_access,
2067       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2068     },
2069     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2070       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2071       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2072       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2073       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2074     },
2075     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2076       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2077       .accessfn = gt_vtimer_access,
2078       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2079     },
2080     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2081       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2082       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2083       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2084       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2085     },
2086     /* The counter itself */
2087     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2088       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2089       .accessfn = gt_pct_access,
2090       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2091     },
2092     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2093       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2094       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2095       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2096     },
2097     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2098       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2099       .accessfn = gt_vct_access,
2100       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2101     },
2102     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2103       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2104       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2105       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2106     },
2107     /* Comparison value, indicating when the timer goes off */
2108     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2109       .secure = ARM_CP_SECSTATE_NS,
2110       .access = PL1_RW | PL0_R,
2111       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2112       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2113       .accessfn = gt_ptimer_access,
2114       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2115     },
2116     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2117       .secure = ARM_CP_SECSTATE_S,
2118       .access = PL1_RW | PL0_R,
2119       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2120       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2121       .accessfn = gt_ptimer_access,
2122       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2123     },
2124     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2125       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2126       .access = PL1_RW | PL0_R,
2127       .type = ARM_CP_IO,
2128       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2129       .resetvalue = 0, .accessfn = gt_ptimer_access,
2130       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2131     },
2132     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2133       .access = PL1_RW | PL0_R,
2134       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2135       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2136       .accessfn = gt_vtimer_access,
2137       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2138     },
2139     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2140       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2141       .access = PL1_RW | PL0_R,
2142       .type = ARM_CP_IO,
2143       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2144       .resetvalue = 0, .accessfn = gt_vtimer_access,
2145       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2146     },
2147     /* Secure timer -- this is actually restricted to only EL3
2148      * and configurably Secure-EL1 via the accessfn.
2149      */
2150     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2151       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2152       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2153       .accessfn = gt_stimer_access,
2154       .readfn = gt_sec_tval_read,
2155       .writefn = gt_sec_tval_write,
2156       .resetfn = gt_sec_timer_reset,
2157     },
2158     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2159       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2160       .type = ARM_CP_IO, .access = PL1_RW,
2161       .accessfn = gt_stimer_access,
2162       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2163       .resetvalue = 0,
2164       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2165     },
2166     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2167       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2168       .type = ARM_CP_IO, .access = PL1_RW,
2169       .accessfn = gt_stimer_access,
2170       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2171       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2172     },
2173     REGINFO_SENTINEL
2174 };
2175 
2176 #else
2177 
2178 /* In user-mode most of the generic timer registers are inaccessible
2179  * however modern kernels (4.12+) allow access to cntvct_el0
2180  */
2181 
2182 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2183 {
2184     /* Currently we have no support for QEMUTimer in linux-user so we
2185      * can't call gt_get_countervalue(env), instead we directly
2186      * call the lower level functions.
2187      */
2188     return cpu_get_clock() / GTIMER_SCALE;
2189 }
2190 
2191 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2192     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2193       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2194       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2195       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2196       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2197     },
2198     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2199       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2200       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2201       .readfn = gt_virt_cnt_read,
2202     },
2203     REGINFO_SENTINEL
2204 };
2205 
2206 #endif
2207 
2208 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2209 {
2210     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2211         raw_write(env, ri, value);
2212     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2213         raw_write(env, ri, value & 0xfffff6ff);
2214     } else {
2215         raw_write(env, ri, value & 0xfffff1ff);
2216     }
2217 }
2218 
2219 #ifndef CONFIG_USER_ONLY
2220 /* get_phys_addr() isn't present for user-mode-only targets */
2221 
2222 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2223                                  bool isread)
2224 {
2225     if (ri->opc2 & 4) {
2226         /* The ATS12NSO* operations must trap to EL3 if executed in
2227          * Secure EL1 (which can only happen if EL3 is AArch64).
2228          * They are simply UNDEF if executed from NS EL1.
2229          * They function normally from EL2 or EL3.
2230          */
2231         if (arm_current_el(env) == 1) {
2232             if (arm_is_secure_below_el3(env)) {
2233                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2234             }
2235             return CP_ACCESS_TRAP_UNCATEGORIZED;
2236         }
2237     }
2238     return CP_ACCESS_OK;
2239 }
2240 
2241 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2242                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2243 {
2244     hwaddr phys_addr;
2245     target_ulong page_size;
2246     int prot;
2247     bool ret;
2248     uint64_t par64;
2249     bool format64 = false;
2250     MemTxAttrs attrs = {};
2251     ARMMMUFaultInfo fi = {};
2252     ARMCacheAttrs cacheattrs = {};
2253 
2254     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2255                         &prot, &page_size, &fi, &cacheattrs);
2256 
2257     if (is_a64(env)) {
2258         format64 = true;
2259     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2260         /*
2261          * ATS1Cxx:
2262          * * TTBCR.EAE determines whether the result is returned using the
2263          *   32-bit or the 64-bit PAR format
2264          * * Instructions executed in Hyp mode always use the 64bit format
2265          *
2266          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2267          * * The Non-secure TTBCR.EAE bit is set to 1
2268          * * The implementation includes EL2, and the value of HCR.VM is 1
2269          *
2270          * ATS1Hx always uses the 64bit format (not supported yet).
2271          */
2272         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2273 
2274         if (arm_feature(env, ARM_FEATURE_EL2)) {
2275             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2276                 format64 |= env->cp15.hcr_el2 & HCR_VM;
2277             } else {
2278                 format64 |= arm_current_el(env) == 2;
2279             }
2280         }
2281     }
2282 
2283     if (format64) {
2284         /* Create a 64-bit PAR */
2285         par64 = (1 << 11); /* LPAE bit always set */
2286         if (!ret) {
2287             par64 |= phys_addr & ~0xfffULL;
2288             if (!attrs.secure) {
2289                 par64 |= (1 << 9); /* NS */
2290             }
2291             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2292             par64 |= cacheattrs.shareability << 7; /* SH */
2293         } else {
2294             uint32_t fsr = arm_fi_to_lfsc(&fi);
2295 
2296             par64 |= 1; /* F */
2297             par64 |= (fsr & 0x3f) << 1; /* FS */
2298             /* Note that S2WLK and FSTAGE are always zero, because we don't
2299              * implement virtualization and therefore there can't be a stage 2
2300              * fault.
2301              */
2302         }
2303     } else {
2304         /* fsr is a DFSR/IFSR value for the short descriptor
2305          * translation table format (with WnR always clear).
2306          * Convert it to a 32-bit PAR.
2307          */
2308         if (!ret) {
2309             /* We do not set any attribute bits in the PAR */
2310             if (page_size == (1 << 24)
2311                 && arm_feature(env, ARM_FEATURE_V7)) {
2312                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2313             } else {
2314                 par64 = phys_addr & 0xfffff000;
2315             }
2316             if (!attrs.secure) {
2317                 par64 |= (1 << 9); /* NS */
2318             }
2319         } else {
2320             uint32_t fsr = arm_fi_to_sfsc(&fi);
2321 
2322             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2323                     ((fsr & 0xf) << 1) | 1;
2324         }
2325     }
2326     return par64;
2327 }
2328 
2329 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2330 {
2331     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2332     uint64_t par64;
2333     ARMMMUIdx mmu_idx;
2334     int el = arm_current_el(env);
2335     bool secure = arm_is_secure_below_el3(env);
2336 
2337     switch (ri->opc2 & 6) {
2338     case 0:
2339         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2340         switch (el) {
2341         case 3:
2342             mmu_idx = ARMMMUIdx_S1E3;
2343             break;
2344         case 2:
2345             mmu_idx = ARMMMUIdx_S1NSE1;
2346             break;
2347         case 1:
2348             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2349             break;
2350         default:
2351             g_assert_not_reached();
2352         }
2353         break;
2354     case 2:
2355         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2356         switch (el) {
2357         case 3:
2358             mmu_idx = ARMMMUIdx_S1SE0;
2359             break;
2360         case 2:
2361             mmu_idx = ARMMMUIdx_S1NSE0;
2362             break;
2363         case 1:
2364             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2365             break;
2366         default:
2367             g_assert_not_reached();
2368         }
2369         break;
2370     case 4:
2371         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2372         mmu_idx = ARMMMUIdx_S12NSE1;
2373         break;
2374     case 6:
2375         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2376         mmu_idx = ARMMMUIdx_S12NSE0;
2377         break;
2378     default:
2379         g_assert_not_reached();
2380     }
2381 
2382     par64 = do_ats_write(env, value, access_type, mmu_idx);
2383 
2384     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2385 }
2386 
2387 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2388                         uint64_t value)
2389 {
2390     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2391     uint64_t par64;
2392 
2393     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2394 
2395     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2396 }
2397 
2398 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2399                                      bool isread)
2400 {
2401     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2402         return CP_ACCESS_TRAP;
2403     }
2404     return CP_ACCESS_OK;
2405 }
2406 
2407 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2408                         uint64_t value)
2409 {
2410     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2411     ARMMMUIdx mmu_idx;
2412     int secure = arm_is_secure_below_el3(env);
2413 
2414     switch (ri->opc2 & 6) {
2415     case 0:
2416         switch (ri->opc1) {
2417         case 0: /* AT S1E1R, AT S1E1W */
2418             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2419             break;
2420         case 4: /* AT S1E2R, AT S1E2W */
2421             mmu_idx = ARMMMUIdx_S1E2;
2422             break;
2423         case 6: /* AT S1E3R, AT S1E3W */
2424             mmu_idx = ARMMMUIdx_S1E3;
2425             break;
2426         default:
2427             g_assert_not_reached();
2428         }
2429         break;
2430     case 2: /* AT S1E0R, AT S1E0W */
2431         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2432         break;
2433     case 4: /* AT S12E1R, AT S12E1W */
2434         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2435         break;
2436     case 6: /* AT S12E0R, AT S12E0W */
2437         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2438         break;
2439     default:
2440         g_assert_not_reached();
2441     }
2442 
2443     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2444 }
2445 #endif
2446 
2447 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2448     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2449       .access = PL1_RW, .resetvalue = 0,
2450       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2451                              offsetoflow32(CPUARMState, cp15.par_ns) },
2452       .writefn = par_write },
2453 #ifndef CONFIG_USER_ONLY
2454     /* This underdecoding is safe because the reginfo is NO_RAW. */
2455     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2456       .access = PL1_W, .accessfn = ats_access,
2457       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2458 #endif
2459     REGINFO_SENTINEL
2460 };
2461 
2462 /* Return basic MPU access permission bits.  */
2463 static uint32_t simple_mpu_ap_bits(uint32_t val)
2464 {
2465     uint32_t ret;
2466     uint32_t mask;
2467     int i;
2468     ret = 0;
2469     mask = 3;
2470     for (i = 0; i < 16; i += 2) {
2471         ret |= (val >> i) & mask;
2472         mask <<= 2;
2473     }
2474     return ret;
2475 }
2476 
2477 /* Pad basic MPU access permission bits to extended format.  */
2478 static uint32_t extended_mpu_ap_bits(uint32_t val)
2479 {
2480     uint32_t ret;
2481     uint32_t mask;
2482     int i;
2483     ret = 0;
2484     mask = 3;
2485     for (i = 0; i < 16; i += 2) {
2486         ret |= (val & mask) << i;
2487         mask <<= 2;
2488     }
2489     return ret;
2490 }
2491 
2492 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2493                                  uint64_t value)
2494 {
2495     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2496 }
2497 
2498 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2499 {
2500     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2501 }
2502 
2503 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2504                                  uint64_t value)
2505 {
2506     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2507 }
2508 
2509 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2510 {
2511     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2512 }
2513 
2514 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2515 {
2516     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2517 
2518     if (!u32p) {
2519         return 0;
2520     }
2521 
2522     u32p += env->pmsav7.rnr[M_REG_NS];
2523     return *u32p;
2524 }
2525 
2526 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2527                          uint64_t value)
2528 {
2529     ARMCPU *cpu = arm_env_get_cpu(env);
2530     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2531 
2532     if (!u32p) {
2533         return;
2534     }
2535 
2536     u32p += env->pmsav7.rnr[M_REG_NS];
2537     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2538     *u32p = value;
2539 }
2540 
2541 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542                               uint64_t value)
2543 {
2544     ARMCPU *cpu = arm_env_get_cpu(env);
2545     uint32_t nrgs = cpu->pmsav7_dregion;
2546 
2547     if (value >= nrgs) {
2548         qemu_log_mask(LOG_GUEST_ERROR,
2549                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2550                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2551         return;
2552     }
2553 
2554     raw_write(env, ri, value);
2555 }
2556 
2557 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2558     /* Reset for all these registers is handled in arm_cpu_reset(),
2559      * because the PMSAv7 is also used by M-profile CPUs, which do
2560      * not register cpregs but still need the state to be reset.
2561      */
2562     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2563       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2564       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2565       .readfn = pmsav7_read, .writefn = pmsav7_write,
2566       .resetfn = arm_cp_reset_ignore },
2567     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2568       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2569       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2570       .readfn = pmsav7_read, .writefn = pmsav7_write,
2571       .resetfn = arm_cp_reset_ignore },
2572     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2573       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2574       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2575       .readfn = pmsav7_read, .writefn = pmsav7_write,
2576       .resetfn = arm_cp_reset_ignore },
2577     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2578       .access = PL1_RW,
2579       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2580       .writefn = pmsav7_rgnr_write,
2581       .resetfn = arm_cp_reset_ignore },
2582     REGINFO_SENTINEL
2583 };
2584 
2585 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2586     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2587       .access = PL1_RW, .type = ARM_CP_ALIAS,
2588       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2589       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2590     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2591       .access = PL1_RW, .type = ARM_CP_ALIAS,
2592       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2593       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2594     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2595       .access = PL1_RW,
2596       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2597       .resetvalue = 0, },
2598     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2599       .access = PL1_RW,
2600       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2601       .resetvalue = 0, },
2602     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2603       .access = PL1_RW,
2604       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2605     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2606       .access = PL1_RW,
2607       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2608     /* Protection region base and size registers */
2609     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2610       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2611       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2612     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2613       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2614       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2615     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2616       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2617       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2618     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2619       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2620       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2621     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2622       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2623       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2624     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2625       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2626       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2627     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2628       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2629       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2630     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2631       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2632       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2633     REGINFO_SENTINEL
2634 };
2635 
2636 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2637                                  uint64_t value)
2638 {
2639     TCR *tcr = raw_ptr(env, ri);
2640     int maskshift = extract32(value, 0, 3);
2641 
2642     if (!arm_feature(env, ARM_FEATURE_V8)) {
2643         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2644             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2645              * using Long-desciptor translation table format */
2646             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2647         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2648             /* In an implementation that includes the Security Extensions
2649              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2650              * Short-descriptor translation table format.
2651              */
2652             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2653         } else {
2654             value &= TTBCR_N;
2655         }
2656     }
2657 
2658     /* Update the masks corresponding to the TCR bank being written
2659      * Note that we always calculate mask and base_mask, but
2660      * they are only used for short-descriptor tables (ie if EAE is 0);
2661      * for long-descriptor tables the TCR fields are used differently
2662      * and the mask and base_mask values are meaningless.
2663      */
2664     tcr->raw_tcr = value;
2665     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2666     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2667 }
2668 
2669 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2670                              uint64_t value)
2671 {
2672     ARMCPU *cpu = arm_env_get_cpu(env);
2673 
2674     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2675         /* With LPAE the TTBCR could result in a change of ASID
2676          * via the TTBCR.A1 bit, so do a TLB flush.
2677          */
2678         tlb_flush(CPU(cpu));
2679     }
2680     vmsa_ttbcr_raw_write(env, ri, value);
2681 }
2682 
2683 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2684 {
2685     TCR *tcr = raw_ptr(env, ri);
2686 
2687     /* Reset both the TCR as well as the masks corresponding to the bank of
2688      * the TCR being reset.
2689      */
2690     tcr->raw_tcr = 0;
2691     tcr->mask = 0;
2692     tcr->base_mask = 0xffffc000u;
2693 }
2694 
2695 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2696                                uint64_t value)
2697 {
2698     ARMCPU *cpu = arm_env_get_cpu(env);
2699     TCR *tcr = raw_ptr(env, ri);
2700 
2701     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2702     tlb_flush(CPU(cpu));
2703     tcr->raw_tcr = value;
2704 }
2705 
2706 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2707                             uint64_t value)
2708 {
2709     /* 64 bit accesses to the TTBRs can change the ASID and so we
2710      * must flush the TLB.
2711      */
2712     if (cpreg_field_is_64bit(ri)) {
2713         ARMCPU *cpu = arm_env_get_cpu(env);
2714 
2715         tlb_flush(CPU(cpu));
2716     }
2717     raw_write(env, ri, value);
2718 }
2719 
2720 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721                         uint64_t value)
2722 {
2723     ARMCPU *cpu = arm_env_get_cpu(env);
2724     CPUState *cs = CPU(cpu);
2725 
2726     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2727     if (raw_read(env, ri) != value) {
2728         tlb_flush_by_mmuidx(cs,
2729                             ARMMMUIdxBit_S12NSE1 |
2730                             ARMMMUIdxBit_S12NSE0 |
2731                             ARMMMUIdxBit_S2NS);
2732         raw_write(env, ri, value);
2733     }
2734 }
2735 
2736 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2737     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2738       .access = PL1_RW, .type = ARM_CP_ALIAS,
2739       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2740                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2741     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2742       .access = PL1_RW, .resetvalue = 0,
2743       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2744                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2745     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2746       .access = PL1_RW, .resetvalue = 0,
2747       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2748                              offsetof(CPUARMState, cp15.dfar_ns) } },
2749     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2750       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2751       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2752       .resetvalue = 0, },
2753     REGINFO_SENTINEL
2754 };
2755 
2756 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2757     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2758       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2759       .access = PL1_RW,
2760       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2761     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2762       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2763       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2764       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2765                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2766     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2767       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2768       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2769       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2770                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2771     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2772       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2773       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2774       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2775       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2776     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2777       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2778       .raw_writefn = vmsa_ttbcr_raw_write,
2779       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2780                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2781     REGINFO_SENTINEL
2782 };
2783 
2784 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2785                                 uint64_t value)
2786 {
2787     env->cp15.c15_ticonfig = value & 0xe7;
2788     /* The OS_TYPE bit in this register changes the reported CPUID! */
2789     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2790         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2791 }
2792 
2793 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2794                                 uint64_t value)
2795 {
2796     env->cp15.c15_threadid = value & 0xffff;
2797 }
2798 
2799 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2800                            uint64_t value)
2801 {
2802     /* Wait-for-interrupt (deprecated) */
2803     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2804 }
2805 
2806 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2807                                   uint64_t value)
2808 {
2809     /* On OMAP there are registers indicating the max/min index of dcache lines
2810      * containing a dirty line; cache flush operations have to reset these.
2811      */
2812     env->cp15.c15_i_max = 0x000;
2813     env->cp15.c15_i_min = 0xff0;
2814 }
2815 
2816 static const ARMCPRegInfo omap_cp_reginfo[] = {
2817     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2818       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2819       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2820       .resetvalue = 0, },
2821     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2822       .access = PL1_RW, .type = ARM_CP_NOP },
2823     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2824       .access = PL1_RW,
2825       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2826       .writefn = omap_ticonfig_write },
2827     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2828       .access = PL1_RW,
2829       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2830     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2831       .access = PL1_RW, .resetvalue = 0xff0,
2832       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2833     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2834       .access = PL1_RW,
2835       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2836       .writefn = omap_threadid_write },
2837     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2838       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2839       .type = ARM_CP_NO_RAW,
2840       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2841     /* TODO: Peripheral port remap register:
2842      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2843      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2844      * when MMU is off.
2845      */
2846     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2847       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2848       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2849       .writefn = omap_cachemaint_write },
2850     { .name = "C9", .cp = 15, .crn = 9,
2851       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2852       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2853     REGINFO_SENTINEL
2854 };
2855 
2856 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857                               uint64_t value)
2858 {
2859     env->cp15.c15_cpar = value & 0x3fff;
2860 }
2861 
2862 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2863     { .name = "XSCALE_CPAR",
2864       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2865       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2866       .writefn = xscale_cpar_write, },
2867     { .name = "XSCALE_AUXCR",
2868       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2869       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2870       .resetvalue = 0, },
2871     /* XScale specific cache-lockdown: since we have no cache we NOP these
2872      * and hope the guest does not really rely on cache behaviour.
2873      */
2874     { .name = "XSCALE_LOCK_ICACHE_LINE",
2875       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2876       .access = PL1_W, .type = ARM_CP_NOP },
2877     { .name = "XSCALE_UNLOCK_ICACHE",
2878       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2879       .access = PL1_W, .type = ARM_CP_NOP },
2880     { .name = "XSCALE_DCACHE_LOCK",
2881       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2882       .access = PL1_RW, .type = ARM_CP_NOP },
2883     { .name = "XSCALE_UNLOCK_DCACHE",
2884       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2885       .access = PL1_W, .type = ARM_CP_NOP },
2886     REGINFO_SENTINEL
2887 };
2888 
2889 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2890     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2891      * implementation of this implementation-defined space.
2892      * Ideally this should eventually disappear in favour of actually
2893      * implementing the correct behaviour for all cores.
2894      */
2895     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2896       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2897       .access = PL1_RW,
2898       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2899       .resetvalue = 0 },
2900     REGINFO_SENTINEL
2901 };
2902 
2903 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2904     /* Cache status: RAZ because we have no cache so it's always clean */
2905     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2906       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2907       .resetvalue = 0 },
2908     REGINFO_SENTINEL
2909 };
2910 
2911 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2912     /* We never have a a block transfer operation in progress */
2913     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2914       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2915       .resetvalue = 0 },
2916     /* The cache ops themselves: these all NOP for QEMU */
2917     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2918       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2919     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2920       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2921     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2922       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2923     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2924       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2925     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2926       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2927     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2928       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2929     REGINFO_SENTINEL
2930 };
2931 
2932 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2933     /* The cache test-and-clean instructions always return (1 << 30)
2934      * to indicate that there are no dirty cache lines.
2935      */
2936     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2937       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2938       .resetvalue = (1 << 30) },
2939     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2940       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2941       .resetvalue = (1 << 30) },
2942     REGINFO_SENTINEL
2943 };
2944 
2945 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2946     /* Ignore ReadBuffer accesses */
2947     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2948       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2949       .access = PL1_RW, .resetvalue = 0,
2950       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2951     REGINFO_SENTINEL
2952 };
2953 
2954 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2955 {
2956     ARMCPU *cpu = arm_env_get_cpu(env);
2957     unsigned int cur_el = arm_current_el(env);
2958     bool secure = arm_is_secure(env);
2959 
2960     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2961         return env->cp15.vpidr_el2;
2962     }
2963     return raw_read(env, ri);
2964 }
2965 
2966 static uint64_t mpidr_read_val(CPUARMState *env)
2967 {
2968     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2969     uint64_t mpidr = cpu->mp_affinity;
2970 
2971     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2972         mpidr |= (1U << 31);
2973         /* Cores which are uniprocessor (non-coherent)
2974          * but still implement the MP extensions set
2975          * bit 30. (For instance, Cortex-R5).
2976          */
2977         if (cpu->mp_is_up) {
2978             mpidr |= (1u << 30);
2979         }
2980     }
2981     return mpidr;
2982 }
2983 
2984 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2985 {
2986     unsigned int cur_el = arm_current_el(env);
2987     bool secure = arm_is_secure(env);
2988 
2989     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2990         return env->cp15.vmpidr_el2;
2991     }
2992     return mpidr_read_val(env);
2993 }
2994 
2995 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2996     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2997       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2998       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2999     REGINFO_SENTINEL
3000 };
3001 
3002 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3003     /* NOP AMAIR0/1 */
3004     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3005       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3006       .access = PL1_RW, .type = ARM_CP_CONST,
3007       .resetvalue = 0 },
3008     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3009     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3010       .access = PL1_RW, .type = ARM_CP_CONST,
3011       .resetvalue = 0 },
3012     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3013       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3014       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3015                              offsetof(CPUARMState, cp15.par_ns)} },
3016     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3017       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3018       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3019                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3020       .writefn = vmsa_ttbr_write, },
3021     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3022       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3023       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3024                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3025       .writefn = vmsa_ttbr_write, },
3026     REGINFO_SENTINEL
3027 };
3028 
3029 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3030 {
3031     return vfp_get_fpcr(env);
3032 }
3033 
3034 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3035                             uint64_t value)
3036 {
3037     vfp_set_fpcr(env, value);
3038 }
3039 
3040 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3041 {
3042     return vfp_get_fpsr(env);
3043 }
3044 
3045 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3046                             uint64_t value)
3047 {
3048     vfp_set_fpsr(env, value);
3049 }
3050 
3051 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3052                                        bool isread)
3053 {
3054     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3055         return CP_ACCESS_TRAP;
3056     }
3057     return CP_ACCESS_OK;
3058 }
3059 
3060 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061                             uint64_t value)
3062 {
3063     env->daif = value & PSTATE_DAIF;
3064 }
3065 
3066 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3067                                           const ARMCPRegInfo *ri,
3068                                           bool isread)
3069 {
3070     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3071      * SCTLR_EL1.UCI is set.
3072      */
3073     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3074         return CP_ACCESS_TRAP;
3075     }
3076     return CP_ACCESS_OK;
3077 }
3078 
3079 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3080  * Page D4-1736 (DDI0487A.b)
3081  */
3082 
3083 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3084                                     uint64_t value)
3085 {
3086     CPUState *cs = ENV_GET_CPU(env);
3087 
3088     if (arm_is_secure_below_el3(env)) {
3089         tlb_flush_by_mmuidx(cs,
3090                             ARMMMUIdxBit_S1SE1 |
3091                             ARMMMUIdxBit_S1SE0);
3092     } else {
3093         tlb_flush_by_mmuidx(cs,
3094                             ARMMMUIdxBit_S12NSE1 |
3095                             ARMMMUIdxBit_S12NSE0);
3096     }
3097 }
3098 
3099 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3100                                       uint64_t value)
3101 {
3102     CPUState *cs = ENV_GET_CPU(env);
3103     bool sec = arm_is_secure_below_el3(env);
3104 
3105     if (sec) {
3106         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3107                                             ARMMMUIdxBit_S1SE1 |
3108                                             ARMMMUIdxBit_S1SE0);
3109     } else {
3110         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3111                                             ARMMMUIdxBit_S12NSE1 |
3112                                             ARMMMUIdxBit_S12NSE0);
3113     }
3114 }
3115 
3116 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3117                                   uint64_t value)
3118 {
3119     /* Note that the 'ALL' scope must invalidate both stage 1 and
3120      * stage 2 translations, whereas most other scopes only invalidate
3121      * stage 1 translations.
3122      */
3123     ARMCPU *cpu = arm_env_get_cpu(env);
3124     CPUState *cs = CPU(cpu);
3125 
3126     if (arm_is_secure_below_el3(env)) {
3127         tlb_flush_by_mmuidx(cs,
3128                             ARMMMUIdxBit_S1SE1 |
3129                             ARMMMUIdxBit_S1SE0);
3130     } else {
3131         if (arm_feature(env, ARM_FEATURE_EL2)) {
3132             tlb_flush_by_mmuidx(cs,
3133                                 ARMMMUIdxBit_S12NSE1 |
3134                                 ARMMMUIdxBit_S12NSE0 |
3135                                 ARMMMUIdxBit_S2NS);
3136         } else {
3137             tlb_flush_by_mmuidx(cs,
3138                                 ARMMMUIdxBit_S12NSE1 |
3139                                 ARMMMUIdxBit_S12NSE0);
3140         }
3141     }
3142 }
3143 
3144 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145                                   uint64_t value)
3146 {
3147     ARMCPU *cpu = arm_env_get_cpu(env);
3148     CPUState *cs = CPU(cpu);
3149 
3150     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3151 }
3152 
3153 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3154                                   uint64_t value)
3155 {
3156     ARMCPU *cpu = arm_env_get_cpu(env);
3157     CPUState *cs = CPU(cpu);
3158 
3159     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3160 }
3161 
3162 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3163                                     uint64_t value)
3164 {
3165     /* Note that the 'ALL' scope must invalidate both stage 1 and
3166      * stage 2 translations, whereas most other scopes only invalidate
3167      * stage 1 translations.
3168      */
3169     CPUState *cs = ENV_GET_CPU(env);
3170     bool sec = arm_is_secure_below_el3(env);
3171     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3172 
3173     if (sec) {
3174         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3175                                             ARMMMUIdxBit_S1SE1 |
3176                                             ARMMMUIdxBit_S1SE0);
3177     } else if (has_el2) {
3178         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3179                                             ARMMMUIdxBit_S12NSE1 |
3180                                             ARMMMUIdxBit_S12NSE0 |
3181                                             ARMMMUIdxBit_S2NS);
3182     } else {
3183           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3184                                               ARMMMUIdxBit_S12NSE1 |
3185                                               ARMMMUIdxBit_S12NSE0);
3186     }
3187 }
3188 
3189 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3190                                     uint64_t value)
3191 {
3192     CPUState *cs = ENV_GET_CPU(env);
3193 
3194     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3195 }
3196 
3197 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3198                                     uint64_t value)
3199 {
3200     CPUState *cs = ENV_GET_CPU(env);
3201 
3202     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3203 }
3204 
3205 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3206                                  uint64_t value)
3207 {
3208     /* Invalidate by VA, EL1&0 (AArch64 version).
3209      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3210      * since we don't support flush-for-specific-ASID-only or
3211      * flush-last-level-only.
3212      */
3213     ARMCPU *cpu = arm_env_get_cpu(env);
3214     CPUState *cs = CPU(cpu);
3215     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3216 
3217     if (arm_is_secure_below_el3(env)) {
3218         tlb_flush_page_by_mmuidx(cs, pageaddr,
3219                                  ARMMMUIdxBit_S1SE1 |
3220                                  ARMMMUIdxBit_S1SE0);
3221     } else {
3222         tlb_flush_page_by_mmuidx(cs, pageaddr,
3223                                  ARMMMUIdxBit_S12NSE1 |
3224                                  ARMMMUIdxBit_S12NSE0);
3225     }
3226 }
3227 
3228 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3229                                  uint64_t value)
3230 {
3231     /* Invalidate by VA, EL2
3232      * Currently handles both VAE2 and VALE2, since we don't support
3233      * flush-last-level-only.
3234      */
3235     ARMCPU *cpu = arm_env_get_cpu(env);
3236     CPUState *cs = CPU(cpu);
3237     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3238 
3239     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3240 }
3241 
3242 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3243                                  uint64_t value)
3244 {
3245     /* Invalidate by VA, EL3
3246      * Currently handles both VAE3 and VALE3, since we don't support
3247      * flush-last-level-only.
3248      */
3249     ARMCPU *cpu = arm_env_get_cpu(env);
3250     CPUState *cs = CPU(cpu);
3251     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3252 
3253     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3254 }
3255 
3256 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3257                                    uint64_t value)
3258 {
3259     ARMCPU *cpu = arm_env_get_cpu(env);
3260     CPUState *cs = CPU(cpu);
3261     bool sec = arm_is_secure_below_el3(env);
3262     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3263 
3264     if (sec) {
3265         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3266                                                  ARMMMUIdxBit_S1SE1 |
3267                                                  ARMMMUIdxBit_S1SE0);
3268     } else {
3269         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3270                                                  ARMMMUIdxBit_S12NSE1 |
3271                                                  ARMMMUIdxBit_S12NSE0);
3272     }
3273 }
3274 
3275 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3276                                    uint64_t value)
3277 {
3278     CPUState *cs = ENV_GET_CPU(env);
3279     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3280 
3281     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3282                                              ARMMMUIdxBit_S1E2);
3283 }
3284 
3285 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3286                                    uint64_t value)
3287 {
3288     CPUState *cs = ENV_GET_CPU(env);
3289     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3290 
3291     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3292                                              ARMMMUIdxBit_S1E3);
3293 }
3294 
3295 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3296                                     uint64_t value)
3297 {
3298     /* Invalidate by IPA. This has to invalidate any structures that
3299      * contain only stage 2 translation information, but does not need
3300      * to apply to structures that contain combined stage 1 and stage 2
3301      * translation information.
3302      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3303      */
3304     ARMCPU *cpu = arm_env_get_cpu(env);
3305     CPUState *cs = CPU(cpu);
3306     uint64_t pageaddr;
3307 
3308     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3309         return;
3310     }
3311 
3312     pageaddr = sextract64(value << 12, 0, 48);
3313 
3314     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3315 }
3316 
3317 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3318                                       uint64_t value)
3319 {
3320     CPUState *cs = ENV_GET_CPU(env);
3321     uint64_t pageaddr;
3322 
3323     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3324         return;
3325     }
3326 
3327     pageaddr = sextract64(value << 12, 0, 48);
3328 
3329     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3330                                              ARMMMUIdxBit_S2NS);
3331 }
3332 
3333 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3334                                       bool isread)
3335 {
3336     /* We don't implement EL2, so the only control on DC ZVA is the
3337      * bit in the SCTLR which can prohibit access for EL0.
3338      */
3339     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3340         return CP_ACCESS_TRAP;
3341     }
3342     return CP_ACCESS_OK;
3343 }
3344 
3345 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3346 {
3347     ARMCPU *cpu = arm_env_get_cpu(env);
3348     int dzp_bit = 1 << 4;
3349 
3350     /* DZP indicates whether DC ZVA access is allowed */
3351     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3352         dzp_bit = 0;
3353     }
3354     return cpu->dcz_blocksize | dzp_bit;
3355 }
3356 
3357 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3358                                     bool isread)
3359 {
3360     if (!(env->pstate & PSTATE_SP)) {
3361         /* Access to SP_EL0 is undefined if it's being used as
3362          * the stack pointer.
3363          */
3364         return CP_ACCESS_TRAP_UNCATEGORIZED;
3365     }
3366     return CP_ACCESS_OK;
3367 }
3368 
3369 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3370 {
3371     return env->pstate & PSTATE_SP;
3372 }
3373 
3374 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3375 {
3376     update_spsel(env, val);
3377 }
3378 
3379 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3380                         uint64_t value)
3381 {
3382     ARMCPU *cpu = arm_env_get_cpu(env);
3383 
3384     if (raw_read(env, ri) == value) {
3385         /* Skip the TLB flush if nothing actually changed; Linux likes
3386          * to do a lot of pointless SCTLR writes.
3387          */
3388         return;
3389     }
3390 
3391     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3392         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3393         value &= ~SCTLR_M;
3394     }
3395 
3396     raw_write(env, ri, value);
3397     /* ??? Lots of these bits are not implemented.  */
3398     /* This may enable/disable the MMU, so do a TLB flush.  */
3399     tlb_flush(CPU(cpu));
3400 }
3401 
3402 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3403                                      bool isread)
3404 {
3405     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3406         return CP_ACCESS_TRAP_FP_EL2;
3407     }
3408     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3409         return CP_ACCESS_TRAP_FP_EL3;
3410     }
3411     return CP_ACCESS_OK;
3412 }
3413 
3414 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3415                        uint64_t value)
3416 {
3417     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3418 }
3419 
3420 static const ARMCPRegInfo v8_cp_reginfo[] = {
3421     /* Minimal set of EL0-visible registers. This will need to be expanded
3422      * significantly for system emulation of AArch64 CPUs.
3423      */
3424     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3425       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3426       .access = PL0_RW, .type = ARM_CP_NZCV },
3427     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3428       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3429       .type = ARM_CP_NO_RAW,
3430       .access = PL0_RW, .accessfn = aa64_daif_access,
3431       .fieldoffset = offsetof(CPUARMState, daif),
3432       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3433     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3434       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3435       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3436       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3437     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3438       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3439       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3440       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3441     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3442       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3443       .access = PL0_R, .type = ARM_CP_NO_RAW,
3444       .readfn = aa64_dczid_read },
3445     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3446       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3447       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3448 #ifndef CONFIG_USER_ONLY
3449       /* Avoid overhead of an access check that always passes in user-mode */
3450       .accessfn = aa64_zva_access,
3451 #endif
3452     },
3453     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3454       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3455       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3456     /* Cache ops: all NOPs since we don't emulate caches */
3457     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3458       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3459       .access = PL1_W, .type = ARM_CP_NOP },
3460     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3461       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3462       .access = PL1_W, .type = ARM_CP_NOP },
3463     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3464       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3465       .access = PL0_W, .type = ARM_CP_NOP,
3466       .accessfn = aa64_cacheop_access },
3467     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3468       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3469       .access = PL1_W, .type = ARM_CP_NOP },
3470     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3471       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3472       .access = PL1_W, .type = ARM_CP_NOP },
3473     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3474       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3475       .access = PL0_W, .type = ARM_CP_NOP,
3476       .accessfn = aa64_cacheop_access },
3477     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3478       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3479       .access = PL1_W, .type = ARM_CP_NOP },
3480     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3481       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3482       .access = PL0_W, .type = ARM_CP_NOP,
3483       .accessfn = aa64_cacheop_access },
3484     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3485       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3486       .access = PL0_W, .type = ARM_CP_NOP,
3487       .accessfn = aa64_cacheop_access },
3488     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3489       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3490       .access = PL1_W, .type = ARM_CP_NOP },
3491     /* TLBI operations */
3492     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3493       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3494       .access = PL1_W, .type = ARM_CP_NO_RAW,
3495       .writefn = tlbi_aa64_vmalle1is_write },
3496     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3497       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3498       .access = PL1_W, .type = ARM_CP_NO_RAW,
3499       .writefn = tlbi_aa64_vae1is_write },
3500     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3501       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3502       .access = PL1_W, .type = ARM_CP_NO_RAW,
3503       .writefn = tlbi_aa64_vmalle1is_write },
3504     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3505       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3506       .access = PL1_W, .type = ARM_CP_NO_RAW,
3507       .writefn = tlbi_aa64_vae1is_write },
3508     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3509       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3510       .access = PL1_W, .type = ARM_CP_NO_RAW,
3511       .writefn = tlbi_aa64_vae1is_write },
3512     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3513       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3514       .access = PL1_W, .type = ARM_CP_NO_RAW,
3515       .writefn = tlbi_aa64_vae1is_write },
3516     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3517       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3518       .access = PL1_W, .type = ARM_CP_NO_RAW,
3519       .writefn = tlbi_aa64_vmalle1_write },
3520     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3521       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3522       .access = PL1_W, .type = ARM_CP_NO_RAW,
3523       .writefn = tlbi_aa64_vae1_write },
3524     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3525       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3526       .access = PL1_W, .type = ARM_CP_NO_RAW,
3527       .writefn = tlbi_aa64_vmalle1_write },
3528     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3529       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3530       .access = PL1_W, .type = ARM_CP_NO_RAW,
3531       .writefn = tlbi_aa64_vae1_write },
3532     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3533       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3534       .access = PL1_W, .type = ARM_CP_NO_RAW,
3535       .writefn = tlbi_aa64_vae1_write },
3536     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3537       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3538       .access = PL1_W, .type = ARM_CP_NO_RAW,
3539       .writefn = tlbi_aa64_vae1_write },
3540     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3541       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3542       .access = PL2_W, .type = ARM_CP_NO_RAW,
3543       .writefn = tlbi_aa64_ipas2e1is_write },
3544     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3545       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3546       .access = PL2_W, .type = ARM_CP_NO_RAW,
3547       .writefn = tlbi_aa64_ipas2e1is_write },
3548     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3549       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3550       .access = PL2_W, .type = ARM_CP_NO_RAW,
3551       .writefn = tlbi_aa64_alle1is_write },
3552     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3553       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3554       .access = PL2_W, .type = ARM_CP_NO_RAW,
3555       .writefn = tlbi_aa64_alle1is_write },
3556     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3557       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3558       .access = PL2_W, .type = ARM_CP_NO_RAW,
3559       .writefn = tlbi_aa64_ipas2e1_write },
3560     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3561       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3562       .access = PL2_W, .type = ARM_CP_NO_RAW,
3563       .writefn = tlbi_aa64_ipas2e1_write },
3564     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3565       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3566       .access = PL2_W, .type = ARM_CP_NO_RAW,
3567       .writefn = tlbi_aa64_alle1_write },
3568     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3569       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3570       .access = PL2_W, .type = ARM_CP_NO_RAW,
3571       .writefn = tlbi_aa64_alle1is_write },
3572 #ifndef CONFIG_USER_ONLY
3573     /* 64 bit address translation operations */
3574     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3575       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3576       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3577     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3578       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3579       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3580     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3581       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3582       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3583     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3584       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3585       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3586     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3587       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3588       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3589     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3590       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3591       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3592     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3593       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3594       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3595     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3596       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3597       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3598     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3599     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3600       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3601       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3602     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3603       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3604       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3605     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3606       .type = ARM_CP_ALIAS,
3607       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3608       .access = PL1_RW, .resetvalue = 0,
3609       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3610       .writefn = par_write },
3611 #endif
3612     /* TLB invalidate last level of translation table walk */
3613     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3614       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3615     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3616       .type = ARM_CP_NO_RAW, .access = PL1_W,
3617       .writefn = tlbimvaa_is_write },
3618     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3619       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3620     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3621       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3622     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3623       .type = ARM_CP_NO_RAW, .access = PL2_W,
3624       .writefn = tlbimva_hyp_write },
3625     { .name = "TLBIMVALHIS",
3626       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3627       .type = ARM_CP_NO_RAW, .access = PL2_W,
3628       .writefn = tlbimva_hyp_is_write },
3629     { .name = "TLBIIPAS2",
3630       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3631       .type = ARM_CP_NO_RAW, .access = PL2_W,
3632       .writefn = tlbiipas2_write },
3633     { .name = "TLBIIPAS2IS",
3634       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3635       .type = ARM_CP_NO_RAW, .access = PL2_W,
3636       .writefn = tlbiipas2_is_write },
3637     { .name = "TLBIIPAS2L",
3638       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3639       .type = ARM_CP_NO_RAW, .access = PL2_W,
3640       .writefn = tlbiipas2_write },
3641     { .name = "TLBIIPAS2LIS",
3642       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3643       .type = ARM_CP_NO_RAW, .access = PL2_W,
3644       .writefn = tlbiipas2_is_write },
3645     /* 32 bit cache operations */
3646     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3647       .type = ARM_CP_NOP, .access = PL1_W },
3648     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3649       .type = ARM_CP_NOP, .access = PL1_W },
3650     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3651       .type = ARM_CP_NOP, .access = PL1_W },
3652     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3653       .type = ARM_CP_NOP, .access = PL1_W },
3654     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3655       .type = ARM_CP_NOP, .access = PL1_W },
3656     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3657       .type = ARM_CP_NOP, .access = PL1_W },
3658     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3659       .type = ARM_CP_NOP, .access = PL1_W },
3660     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3661       .type = ARM_CP_NOP, .access = PL1_W },
3662     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3663       .type = ARM_CP_NOP, .access = PL1_W },
3664     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3665       .type = ARM_CP_NOP, .access = PL1_W },
3666     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3667       .type = ARM_CP_NOP, .access = PL1_W },
3668     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3669       .type = ARM_CP_NOP, .access = PL1_W },
3670     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3671       .type = ARM_CP_NOP, .access = PL1_W },
3672     /* MMU Domain access control / MPU write buffer control */
3673     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3674       .access = PL1_RW, .resetvalue = 0,
3675       .writefn = dacr_write, .raw_writefn = raw_write,
3676       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3677                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3678     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3679       .type = ARM_CP_ALIAS,
3680       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3681       .access = PL1_RW,
3682       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3683     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3684       .type = ARM_CP_ALIAS,
3685       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3686       .access = PL1_RW,
3687       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3688     /* We rely on the access checks not allowing the guest to write to the
3689      * state field when SPSel indicates that it's being used as the stack
3690      * pointer.
3691      */
3692     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3693       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3694       .access = PL1_RW, .accessfn = sp_el0_access,
3695       .type = ARM_CP_ALIAS,
3696       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3697     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3698       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3699       .access = PL2_RW, .type = ARM_CP_ALIAS,
3700       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3701     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3702       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3703       .type = ARM_CP_NO_RAW,
3704       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3705     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3706       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3707       .type = ARM_CP_ALIAS,
3708       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3709       .access = PL2_RW, .accessfn = fpexc32_access },
3710     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3711       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3712       .access = PL2_RW, .resetvalue = 0,
3713       .writefn = dacr_write, .raw_writefn = raw_write,
3714       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3715     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3716       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3717       .access = PL2_RW, .resetvalue = 0,
3718       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3719     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3720       .type = ARM_CP_ALIAS,
3721       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3722       .access = PL2_RW,
3723       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3724     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3725       .type = ARM_CP_ALIAS,
3726       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3727       .access = PL2_RW,
3728       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3729     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3730       .type = ARM_CP_ALIAS,
3731       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3732       .access = PL2_RW,
3733       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3734     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3735       .type = ARM_CP_ALIAS,
3736       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3737       .access = PL2_RW,
3738       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3739     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3740       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3741       .resetvalue = 0,
3742       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3743     { .name = "SDCR", .type = ARM_CP_ALIAS,
3744       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3745       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3746       .writefn = sdcr_write,
3747       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3748     REGINFO_SENTINEL
3749 };
3750 
3751 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3752 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3753     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
3754       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3755       .access = PL2_RW,
3756       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3757     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3758       .type = ARM_CP_NO_RAW,
3759       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3760       .access = PL2_RW,
3761       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3762     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
3763       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3764       .access = PL2_RW,
3765       .type = ARM_CP_CONST, .resetvalue = 0 },
3766     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3767       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3768       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3769     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3770       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3771       .access = PL2_RW, .type = ARM_CP_CONST,
3772       .resetvalue = 0 },
3773     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3774       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3775       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3776     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3777       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3778       .access = PL2_RW, .type = ARM_CP_CONST,
3779       .resetvalue = 0 },
3780     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
3781       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3782       .access = PL2_RW, .type = ARM_CP_CONST,
3783       .resetvalue = 0 },
3784     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3785       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3786       .access = PL2_RW, .type = ARM_CP_CONST,
3787       .resetvalue = 0 },
3788     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3789       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3790       .access = PL2_RW, .type = ARM_CP_CONST,
3791       .resetvalue = 0 },
3792     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3793       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3794       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3795     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3796       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3797       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3798       .type = ARM_CP_CONST, .resetvalue = 0 },
3799     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3800       .cp = 15, .opc1 = 6, .crm = 2,
3801       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3802       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3803     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3804       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3805       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3806     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3807       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3808       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3809     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3810       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3811       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3812     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3813       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3814       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3815     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3816       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3817       .resetvalue = 0 },
3818     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3819       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3820       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3821     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3822       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3823       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3824     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3825       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3826       .resetvalue = 0 },
3827     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3828       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3829       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3830     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3831       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3832       .resetvalue = 0 },
3833     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3834       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3835       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3836     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3837       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3838       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3839     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3840       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3841       .access = PL2_RW, .accessfn = access_tda,
3842       .type = ARM_CP_CONST, .resetvalue = 0 },
3843     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3844       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3845       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3846       .type = ARM_CP_CONST, .resetvalue = 0 },
3847     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3848       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3849       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3850     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
3851       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3852       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3853     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
3854       .type = ARM_CP_CONST,
3855       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
3856       .access = PL2_RW, .resetvalue = 0 },
3857     REGINFO_SENTINEL
3858 };
3859 
3860 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3861 {
3862     ARMCPU *cpu = arm_env_get_cpu(env);
3863     uint64_t valid_mask = HCR_MASK;
3864 
3865     if (arm_feature(env, ARM_FEATURE_EL3)) {
3866         valid_mask &= ~HCR_HCD;
3867     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3868         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3869          * However, if we're using the SMC PSCI conduit then QEMU is
3870          * effectively acting like EL3 firmware and so the guest at
3871          * EL2 should retain the ability to prevent EL1 from being
3872          * able to make SMC calls into the ersatz firmware, so in
3873          * that case HCR.TSC should be read/write.
3874          */
3875         valid_mask &= ~HCR_TSC;
3876     }
3877 
3878     /* Clear RES0 bits.  */
3879     value &= valid_mask;
3880 
3881     /* These bits change the MMU setup:
3882      * HCR_VM enables stage 2 translation
3883      * HCR_PTW forbids certain page-table setups
3884      * HCR_DC Disables stage1 and enables stage2 translation
3885      */
3886     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3887         tlb_flush(CPU(cpu));
3888     }
3889     raw_write(env, ri, value);
3890 }
3891 
3892 static const ARMCPRegInfo el2_cp_reginfo[] = {
3893     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3894       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3895       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3896       .writefn = hcr_write },
3897     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3898       .type = ARM_CP_ALIAS,
3899       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3900       .access = PL2_RW,
3901       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3902     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
3903       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3904       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3905     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
3906       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3907       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3908     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
3909       .type = ARM_CP_ALIAS,
3910       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
3911       .access = PL2_RW,
3912       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
3913     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3914       .type = ARM_CP_ALIAS,
3915       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3916       .access = PL2_RW,
3917       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3918     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
3919       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3920       .access = PL2_RW, .writefn = vbar_write,
3921       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3922       .resetvalue = 0 },
3923     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3924       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3925       .access = PL3_RW, .type = ARM_CP_ALIAS,
3926       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3927     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3928       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3929       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3930       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3931     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3932       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3933       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3934       .resetvalue = 0 },
3935     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3936       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3937       .access = PL2_RW, .type = ARM_CP_ALIAS,
3938       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3939     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3940       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3941       .access = PL2_RW, .type = ARM_CP_CONST,
3942       .resetvalue = 0 },
3943     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3944     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
3945       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3946       .access = PL2_RW, .type = ARM_CP_CONST,
3947       .resetvalue = 0 },
3948     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3949       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3950       .access = PL2_RW, .type = ARM_CP_CONST,
3951       .resetvalue = 0 },
3952     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3953       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3954       .access = PL2_RW, .type = ARM_CP_CONST,
3955       .resetvalue = 0 },
3956     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3957       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3958       .access = PL2_RW,
3959       /* no .writefn needed as this can't cause an ASID change;
3960        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3961        */
3962       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3963     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3964       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3965       .type = ARM_CP_ALIAS,
3966       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3967       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3968     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3969       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3970       .access = PL2_RW,
3971       /* no .writefn needed as this can't cause an ASID change;
3972        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3973        */
3974       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3975     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3976       .cp = 15, .opc1 = 6, .crm = 2,
3977       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3978       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3979       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3980       .writefn = vttbr_write },
3981     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3982       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3983       .access = PL2_RW, .writefn = vttbr_write,
3984       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3985     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3986       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3987       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3988       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3989     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3990       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3991       .access = PL2_RW, .resetvalue = 0,
3992       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3993     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3994       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3995       .access = PL2_RW, .resetvalue = 0,
3996       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3997     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3998       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3999       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4000     { .name = "TLBIALLNSNH",
4001       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4002       .type = ARM_CP_NO_RAW, .access = PL2_W,
4003       .writefn = tlbiall_nsnh_write },
4004     { .name = "TLBIALLNSNHIS",
4005       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4006       .type = ARM_CP_NO_RAW, .access = PL2_W,
4007       .writefn = tlbiall_nsnh_is_write },
4008     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4009       .type = ARM_CP_NO_RAW, .access = PL2_W,
4010       .writefn = tlbiall_hyp_write },
4011     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4012       .type = ARM_CP_NO_RAW, .access = PL2_W,
4013       .writefn = tlbiall_hyp_is_write },
4014     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4015       .type = ARM_CP_NO_RAW, .access = PL2_W,
4016       .writefn = tlbimva_hyp_write },
4017     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4018       .type = ARM_CP_NO_RAW, .access = PL2_W,
4019       .writefn = tlbimva_hyp_is_write },
4020     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4021       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4022       .type = ARM_CP_NO_RAW, .access = PL2_W,
4023       .writefn = tlbi_aa64_alle2_write },
4024     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4025       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4026       .type = ARM_CP_NO_RAW, .access = PL2_W,
4027       .writefn = tlbi_aa64_vae2_write },
4028     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4029       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4030       .access = PL2_W, .type = ARM_CP_NO_RAW,
4031       .writefn = tlbi_aa64_vae2_write },
4032     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4033       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4034       .access = PL2_W, .type = ARM_CP_NO_RAW,
4035       .writefn = tlbi_aa64_alle2is_write },
4036     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4037       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4038       .type = ARM_CP_NO_RAW, .access = PL2_W,
4039       .writefn = tlbi_aa64_vae2is_write },
4040     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4041       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4042       .access = PL2_W, .type = ARM_CP_NO_RAW,
4043       .writefn = tlbi_aa64_vae2is_write },
4044 #ifndef CONFIG_USER_ONLY
4045     /* Unlike the other EL2-related AT operations, these must
4046      * UNDEF from EL3 if EL2 is not implemented, which is why we
4047      * define them here rather than with the rest of the AT ops.
4048      */
4049     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4050       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4051       .access = PL2_W, .accessfn = at_s1e2_access,
4052       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4053     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4054       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4055       .access = PL2_W, .accessfn = at_s1e2_access,
4056       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4057     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4058      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4059      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4060      * to behave as if SCR.NS was 1.
4061      */
4062     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4063       .access = PL2_W,
4064       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4065     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4066       .access = PL2_W,
4067       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4068     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4069       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4070       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4071        * reset values as IMPDEF. We choose to reset to 3 to comply with
4072        * both ARMv7 and ARMv8.
4073        */
4074       .access = PL2_RW, .resetvalue = 3,
4075       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4076     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4077       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4078       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4079       .writefn = gt_cntvoff_write,
4080       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4081     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4082       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4083       .writefn = gt_cntvoff_write,
4084       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4085     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4086       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4087       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4088       .type = ARM_CP_IO, .access = PL2_RW,
4089       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4090     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4091       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4092       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4093       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4094     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4095       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4096       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4097       .resetfn = gt_hyp_timer_reset,
4098       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4099     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4100       .type = ARM_CP_IO,
4101       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4102       .access = PL2_RW,
4103       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4104       .resetvalue = 0,
4105       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4106 #endif
4107     /* The only field of MDCR_EL2 that has a defined architectural reset value
4108      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4109      * don't impelment any PMU event counters, so using zero as a reset
4110      * value for MDCR_EL2 is okay
4111      */
4112     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4113       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4114       .access = PL2_RW, .resetvalue = 0,
4115       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4116     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4117       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4118       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4119       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4120     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4121       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4122       .access = PL2_RW,
4123       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4124     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4125       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4126       .access = PL2_RW,
4127       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4128     REGINFO_SENTINEL
4129 };
4130 
4131 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4132                                    bool isread)
4133 {
4134     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4135      * At Secure EL1 it traps to EL3.
4136      */
4137     if (arm_current_el(env) == 3) {
4138         return CP_ACCESS_OK;
4139     }
4140     if (arm_is_secure_below_el3(env)) {
4141         return CP_ACCESS_TRAP_EL3;
4142     }
4143     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4144     if (isread) {
4145         return CP_ACCESS_OK;
4146     }
4147     return CP_ACCESS_TRAP_UNCATEGORIZED;
4148 }
4149 
4150 static const ARMCPRegInfo el3_cp_reginfo[] = {
4151     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4152       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4153       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4154       .resetvalue = 0, .writefn = scr_write },
4155     { .name = "SCR",  .type = ARM_CP_ALIAS,
4156       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4157       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4158       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4159       .writefn = scr_write },
4160     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4161       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4162       .access = PL3_RW, .resetvalue = 0,
4163       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4164     { .name = "SDER",
4165       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4166       .access = PL3_RW, .resetvalue = 0,
4167       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4168     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4169       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4170       .writefn = vbar_write, .resetvalue = 0,
4171       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4172     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4173       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4174       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4175       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4176     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4177       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4178       .access = PL3_RW,
4179       /* no .writefn needed as this can't cause an ASID change;
4180        * we must provide a .raw_writefn and .resetfn because we handle
4181        * reset and migration for the AArch32 TTBCR(S), which might be
4182        * using mask and base_mask.
4183        */
4184       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4185       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4186     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4187       .type = ARM_CP_ALIAS,
4188       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4189       .access = PL3_RW,
4190       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4191     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4192       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4193       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4194     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4195       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4196       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4197     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4198       .type = ARM_CP_ALIAS,
4199       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4200       .access = PL3_RW,
4201       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4202     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4203       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4204       .access = PL3_RW, .writefn = vbar_write,
4205       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4206       .resetvalue = 0 },
4207     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4208       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4209       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4210       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4211     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4212       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4213       .access = PL3_RW, .resetvalue = 0,
4214       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4215     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4216       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4217       .access = PL3_RW, .type = ARM_CP_CONST,
4218       .resetvalue = 0 },
4219     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4220       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4221       .access = PL3_RW, .type = ARM_CP_CONST,
4222       .resetvalue = 0 },
4223     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4224       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4225       .access = PL3_RW, .type = ARM_CP_CONST,
4226       .resetvalue = 0 },
4227     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4228       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4229       .access = PL3_W, .type = ARM_CP_NO_RAW,
4230       .writefn = tlbi_aa64_alle3is_write },
4231     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4232       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4233       .access = PL3_W, .type = ARM_CP_NO_RAW,
4234       .writefn = tlbi_aa64_vae3is_write },
4235     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4236       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4237       .access = PL3_W, .type = ARM_CP_NO_RAW,
4238       .writefn = tlbi_aa64_vae3is_write },
4239     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4240       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4241       .access = PL3_W, .type = ARM_CP_NO_RAW,
4242       .writefn = tlbi_aa64_alle3_write },
4243     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4244       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4245       .access = PL3_W, .type = ARM_CP_NO_RAW,
4246       .writefn = tlbi_aa64_vae3_write },
4247     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4248       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4249       .access = PL3_W, .type = ARM_CP_NO_RAW,
4250       .writefn = tlbi_aa64_vae3_write },
4251     REGINFO_SENTINEL
4252 };
4253 
4254 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4255                                      bool isread)
4256 {
4257     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4258      * but the AArch32 CTR has its own reginfo struct)
4259      */
4260     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4261         return CP_ACCESS_TRAP;
4262     }
4263     return CP_ACCESS_OK;
4264 }
4265 
4266 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4267                         uint64_t value)
4268 {
4269     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4270      * read via a bit in OSLSR_EL1.
4271      */
4272     int oslock;
4273 
4274     if (ri->state == ARM_CP_STATE_AA32) {
4275         oslock = (value == 0xC5ACCE55);
4276     } else {
4277         oslock = value & 1;
4278     }
4279 
4280     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4281 }
4282 
4283 static const ARMCPRegInfo debug_cp_reginfo[] = {
4284     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4285      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4286      * unlike DBGDRAR it is never accessible from EL0.
4287      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4288      * accessor.
4289      */
4290     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4291       .access = PL0_R, .accessfn = access_tdra,
4292       .type = ARM_CP_CONST, .resetvalue = 0 },
4293     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4294       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4295       .access = PL1_R, .accessfn = access_tdra,
4296       .type = ARM_CP_CONST, .resetvalue = 0 },
4297     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4298       .access = PL0_R, .accessfn = access_tdra,
4299       .type = ARM_CP_CONST, .resetvalue = 0 },
4300     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4301     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4302       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4303       .access = PL1_RW, .accessfn = access_tda,
4304       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4305       .resetvalue = 0 },
4306     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4307      * We don't implement the configurable EL0 access.
4308      */
4309     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4310       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4311       .type = ARM_CP_ALIAS,
4312       .access = PL1_R, .accessfn = access_tda,
4313       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4314     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4315       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4316       .access = PL1_W, .type = ARM_CP_NO_RAW,
4317       .accessfn = access_tdosa,
4318       .writefn = oslar_write },
4319     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4320       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4321       .access = PL1_R, .resetvalue = 10,
4322       .accessfn = access_tdosa,
4323       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4324     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4325     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4326       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4327       .access = PL1_RW, .accessfn = access_tdosa,
4328       .type = ARM_CP_NOP },
4329     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4330      * implement vector catch debug events yet.
4331      */
4332     { .name = "DBGVCR",
4333       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4334       .access = PL1_RW, .accessfn = access_tda,
4335       .type = ARM_CP_NOP },
4336     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4337      * to save and restore a 32-bit guest's DBGVCR)
4338      */
4339     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4340       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4341       .access = PL2_RW, .accessfn = access_tda,
4342       .type = ARM_CP_NOP },
4343     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4344      * Channel but Linux may try to access this register. The 32-bit
4345      * alias is DBGDCCINT.
4346      */
4347     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4348       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4349       .access = PL1_RW, .accessfn = access_tda,
4350       .type = ARM_CP_NOP },
4351     REGINFO_SENTINEL
4352 };
4353 
4354 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4355     /* 64 bit access versions of the (dummy) debug registers */
4356     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4357       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4358     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4359       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4360     REGINFO_SENTINEL
4361 };
4362 
4363 /* Return the exception level to which SVE-disabled exceptions should
4364  * be taken, or 0 if SVE is enabled.
4365  */
4366 static int sve_exception_el(CPUARMState *env)
4367 {
4368 #ifndef CONFIG_USER_ONLY
4369     unsigned current_el = arm_current_el(env);
4370 
4371     /* The CPACR.ZEN controls traps to EL1:
4372      * 0, 2 : trap EL0 and EL1 accesses
4373      * 1    : trap only EL0 accesses
4374      * 3    : trap no accesses
4375      */
4376     switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
4377     default:
4378         if (current_el <= 1) {
4379             /* Trap to PL1, which might be EL1 or EL3 */
4380             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4381                 return 3;
4382             }
4383             return 1;
4384         }
4385         break;
4386     case 1:
4387         if (current_el == 0) {
4388             return 1;
4389         }
4390         break;
4391     case 3:
4392         break;
4393     }
4394 
4395     /* Similarly for CPACR.FPEN, after having checked ZEN.  */
4396     switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
4397     default:
4398         if (current_el <= 1) {
4399             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4400                 return 3;
4401             }
4402             return 1;
4403         }
4404         break;
4405     case 1:
4406         if (current_el == 0) {
4407             return 1;
4408         }
4409         break;
4410     case 3:
4411         break;
4412     }
4413 
4414     /* CPTR_EL2.  Check both TZ and TFP.  */
4415     if (current_el <= 2
4416         && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
4417         && !arm_is_secure_below_el3(env)) {
4418         return 2;
4419     }
4420 
4421     /* CPTR_EL3.  Check both EZ and TFP.  */
4422     if (!(env->cp15.cptr_el[3] & CPTR_EZ)
4423         || (env->cp15.cptr_el[3] & CPTR_TFP)) {
4424         return 3;
4425     }
4426 #endif
4427     return 0;
4428 }
4429 
4430 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4431                       uint64_t value)
4432 {
4433     /* Bits other than [3:0] are RAZ/WI.  */
4434     raw_write(env, ri, value & 0xf);
4435 }
4436 
4437 static const ARMCPRegInfo zcr_el1_reginfo = {
4438     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4439     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4440     .access = PL1_RW, .type = ARM_CP_SVE,
4441     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4442     .writefn = zcr_write, .raw_writefn = raw_write
4443 };
4444 
4445 static const ARMCPRegInfo zcr_el2_reginfo = {
4446     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4447     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4448     .access = PL2_RW, .type = ARM_CP_SVE,
4449     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4450     .writefn = zcr_write, .raw_writefn = raw_write
4451 };
4452 
4453 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4454     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4455     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4456     .access = PL2_RW, .type = ARM_CP_SVE,
4457     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4458 };
4459 
4460 static const ARMCPRegInfo zcr_el3_reginfo = {
4461     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4462     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4463     .access = PL3_RW, .type = ARM_CP_SVE,
4464     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4465     .writefn = zcr_write, .raw_writefn = raw_write
4466 };
4467 
4468 void hw_watchpoint_update(ARMCPU *cpu, int n)
4469 {
4470     CPUARMState *env = &cpu->env;
4471     vaddr len = 0;
4472     vaddr wvr = env->cp15.dbgwvr[n];
4473     uint64_t wcr = env->cp15.dbgwcr[n];
4474     int mask;
4475     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4476 
4477     if (env->cpu_watchpoint[n]) {
4478         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4479         env->cpu_watchpoint[n] = NULL;
4480     }
4481 
4482     if (!extract64(wcr, 0, 1)) {
4483         /* E bit clear : watchpoint disabled */
4484         return;
4485     }
4486 
4487     switch (extract64(wcr, 3, 2)) {
4488     case 0:
4489         /* LSC 00 is reserved and must behave as if the wp is disabled */
4490         return;
4491     case 1:
4492         flags |= BP_MEM_READ;
4493         break;
4494     case 2:
4495         flags |= BP_MEM_WRITE;
4496         break;
4497     case 3:
4498         flags |= BP_MEM_ACCESS;
4499         break;
4500     }
4501 
4502     /* Attempts to use both MASK and BAS fields simultaneously are
4503      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4504      * thus generating a watchpoint for every byte in the masked region.
4505      */
4506     mask = extract64(wcr, 24, 4);
4507     if (mask == 1 || mask == 2) {
4508         /* Reserved values of MASK; we must act as if the mask value was
4509          * some non-reserved value, or as if the watchpoint were disabled.
4510          * We choose the latter.
4511          */
4512         return;
4513     } else if (mask) {
4514         /* Watchpoint covers an aligned area up to 2GB in size */
4515         len = 1ULL << mask;
4516         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4517          * whether the watchpoint fires when the unmasked bits match; we opt
4518          * to generate the exceptions.
4519          */
4520         wvr &= ~(len - 1);
4521     } else {
4522         /* Watchpoint covers bytes defined by the byte address select bits */
4523         int bas = extract64(wcr, 5, 8);
4524         int basstart;
4525 
4526         if (bas == 0) {
4527             /* This must act as if the watchpoint is disabled */
4528             return;
4529         }
4530 
4531         if (extract64(wvr, 2, 1)) {
4532             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4533              * ignored, and BAS[3:0] define which bytes to watch.
4534              */
4535             bas &= 0xf;
4536         }
4537         /* The BAS bits are supposed to be programmed to indicate a contiguous
4538          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4539          * we fire for each byte in the word/doubleword addressed by the WVR.
4540          * We choose to ignore any non-zero bits after the first range of 1s.
4541          */
4542         basstart = ctz32(bas);
4543         len = cto32(bas >> basstart);
4544         wvr += basstart;
4545     }
4546 
4547     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4548                           &env->cpu_watchpoint[n]);
4549 }
4550 
4551 void hw_watchpoint_update_all(ARMCPU *cpu)
4552 {
4553     int i;
4554     CPUARMState *env = &cpu->env;
4555 
4556     /* Completely clear out existing QEMU watchpoints and our array, to
4557      * avoid possible stale entries following migration load.
4558      */
4559     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4560     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4561 
4562     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4563         hw_watchpoint_update(cpu, i);
4564     }
4565 }
4566 
4567 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4568                          uint64_t value)
4569 {
4570     ARMCPU *cpu = arm_env_get_cpu(env);
4571     int i = ri->crm;
4572 
4573     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4574      * register reads and behaves as if values written are sign extended.
4575      * Bits [1:0] are RES0.
4576      */
4577     value = sextract64(value, 0, 49) & ~3ULL;
4578 
4579     raw_write(env, ri, value);
4580     hw_watchpoint_update(cpu, i);
4581 }
4582 
4583 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4584                          uint64_t value)
4585 {
4586     ARMCPU *cpu = arm_env_get_cpu(env);
4587     int i = ri->crm;
4588 
4589     raw_write(env, ri, value);
4590     hw_watchpoint_update(cpu, i);
4591 }
4592 
4593 void hw_breakpoint_update(ARMCPU *cpu, int n)
4594 {
4595     CPUARMState *env = &cpu->env;
4596     uint64_t bvr = env->cp15.dbgbvr[n];
4597     uint64_t bcr = env->cp15.dbgbcr[n];
4598     vaddr addr;
4599     int bt;
4600     int flags = BP_CPU;
4601 
4602     if (env->cpu_breakpoint[n]) {
4603         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4604         env->cpu_breakpoint[n] = NULL;
4605     }
4606 
4607     if (!extract64(bcr, 0, 1)) {
4608         /* E bit clear : watchpoint disabled */
4609         return;
4610     }
4611 
4612     bt = extract64(bcr, 20, 4);
4613 
4614     switch (bt) {
4615     case 4: /* unlinked address mismatch (reserved if AArch64) */
4616     case 5: /* linked address mismatch (reserved if AArch64) */
4617         qemu_log_mask(LOG_UNIMP,
4618                       "arm: address mismatch breakpoint types not implemented\n");
4619         return;
4620     case 0: /* unlinked address match */
4621     case 1: /* linked address match */
4622     {
4623         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4624          * we behave as if the register was sign extended. Bits [1:0] are
4625          * RES0. The BAS field is used to allow setting breakpoints on 16
4626          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4627          * a bp will fire if the addresses covered by the bp and the addresses
4628          * covered by the insn overlap but the insn doesn't start at the
4629          * start of the bp address range. We choose to require the insn and
4630          * the bp to have the same address. The constraints on writing to
4631          * BAS enforced in dbgbcr_write mean we have only four cases:
4632          *  0b0000  => no breakpoint
4633          *  0b0011  => breakpoint on addr
4634          *  0b1100  => breakpoint on addr + 2
4635          *  0b1111  => breakpoint on addr
4636          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4637          */
4638         int bas = extract64(bcr, 5, 4);
4639         addr = sextract64(bvr, 0, 49) & ~3ULL;
4640         if (bas == 0) {
4641             return;
4642         }
4643         if (bas == 0xc) {
4644             addr += 2;
4645         }
4646         break;
4647     }
4648     case 2: /* unlinked context ID match */
4649     case 8: /* unlinked VMID match (reserved if no EL2) */
4650     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4651         qemu_log_mask(LOG_UNIMP,
4652                       "arm: unlinked context breakpoint types not implemented\n");
4653         return;
4654     case 9: /* linked VMID match (reserved if no EL2) */
4655     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4656     case 3: /* linked context ID match */
4657     default:
4658         /* We must generate no events for Linked context matches (unless
4659          * they are linked to by some other bp/wp, which is handled in
4660          * updates for the linking bp/wp). We choose to also generate no events
4661          * for reserved values.
4662          */
4663         return;
4664     }
4665 
4666     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4667 }
4668 
4669 void hw_breakpoint_update_all(ARMCPU *cpu)
4670 {
4671     int i;
4672     CPUARMState *env = &cpu->env;
4673 
4674     /* Completely clear out existing QEMU breakpoints and our array, to
4675      * avoid possible stale entries following migration load.
4676      */
4677     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4678     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4679 
4680     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4681         hw_breakpoint_update(cpu, i);
4682     }
4683 }
4684 
4685 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4686                          uint64_t value)
4687 {
4688     ARMCPU *cpu = arm_env_get_cpu(env);
4689     int i = ri->crm;
4690 
4691     raw_write(env, ri, value);
4692     hw_breakpoint_update(cpu, i);
4693 }
4694 
4695 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4696                          uint64_t value)
4697 {
4698     ARMCPU *cpu = arm_env_get_cpu(env);
4699     int i = ri->crm;
4700 
4701     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4702      * copy of BAS[0].
4703      */
4704     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4705     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4706 
4707     raw_write(env, ri, value);
4708     hw_breakpoint_update(cpu, i);
4709 }
4710 
4711 static void define_debug_regs(ARMCPU *cpu)
4712 {
4713     /* Define v7 and v8 architectural debug registers.
4714      * These are just dummy implementations for now.
4715      */
4716     int i;
4717     int wrps, brps, ctx_cmps;
4718     ARMCPRegInfo dbgdidr = {
4719         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4720         .access = PL0_R, .accessfn = access_tda,
4721         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4722     };
4723 
4724     /* Note that all these register fields hold "number of Xs minus 1". */
4725     brps = extract32(cpu->dbgdidr, 24, 4);
4726     wrps = extract32(cpu->dbgdidr, 28, 4);
4727     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4728 
4729     assert(ctx_cmps <= brps);
4730 
4731     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4732      * of the debug registers such as number of breakpoints;
4733      * check that if they both exist then they agree.
4734      */
4735     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4736         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4737         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4738         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4739     }
4740 
4741     define_one_arm_cp_reg(cpu, &dbgdidr);
4742     define_arm_cp_regs(cpu, debug_cp_reginfo);
4743 
4744     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4745         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4746     }
4747 
4748     for (i = 0; i < brps + 1; i++) {
4749         ARMCPRegInfo dbgregs[] = {
4750             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4751               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4752               .access = PL1_RW, .accessfn = access_tda,
4753               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4754               .writefn = dbgbvr_write, .raw_writefn = raw_write
4755             },
4756             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4757               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4758               .access = PL1_RW, .accessfn = access_tda,
4759               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4760               .writefn = dbgbcr_write, .raw_writefn = raw_write
4761             },
4762             REGINFO_SENTINEL
4763         };
4764         define_arm_cp_regs(cpu, dbgregs);
4765     }
4766 
4767     for (i = 0; i < wrps + 1; i++) {
4768         ARMCPRegInfo dbgregs[] = {
4769             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4770               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4771               .access = PL1_RW, .accessfn = access_tda,
4772               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4773               .writefn = dbgwvr_write, .raw_writefn = raw_write
4774             },
4775             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4776               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4777               .access = PL1_RW, .accessfn = access_tda,
4778               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4779               .writefn = dbgwcr_write, .raw_writefn = raw_write
4780             },
4781             REGINFO_SENTINEL
4782         };
4783         define_arm_cp_regs(cpu, dbgregs);
4784     }
4785 }
4786 
4787 /* We don't know until after realize whether there's a GICv3
4788  * attached, and that is what registers the gicv3 sysregs.
4789  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4790  * at runtime.
4791  */
4792 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4793 {
4794     ARMCPU *cpu = arm_env_get_cpu(env);
4795     uint64_t pfr1 = cpu->id_pfr1;
4796 
4797     if (env->gicv3state) {
4798         pfr1 |= 1 << 28;
4799     }
4800     return pfr1;
4801 }
4802 
4803 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4804 {
4805     ARMCPU *cpu = arm_env_get_cpu(env);
4806     uint64_t pfr0 = cpu->id_aa64pfr0;
4807 
4808     if (env->gicv3state) {
4809         pfr0 |= 1 << 24;
4810     }
4811     return pfr0;
4812 }
4813 
4814 void register_cp_regs_for_features(ARMCPU *cpu)
4815 {
4816     /* Register all the coprocessor registers based on feature bits */
4817     CPUARMState *env = &cpu->env;
4818     if (arm_feature(env, ARM_FEATURE_M)) {
4819         /* M profile has no coprocessor registers */
4820         return;
4821     }
4822 
4823     define_arm_cp_regs(cpu, cp_reginfo);
4824     if (!arm_feature(env, ARM_FEATURE_V8)) {
4825         /* Must go early as it is full of wildcards that may be
4826          * overridden by later definitions.
4827          */
4828         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4829     }
4830 
4831     if (arm_feature(env, ARM_FEATURE_V6)) {
4832         /* The ID registers all have impdef reset values */
4833         ARMCPRegInfo v6_idregs[] = {
4834             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4835               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4836               .access = PL1_R, .type = ARM_CP_CONST,
4837               .resetvalue = cpu->id_pfr0 },
4838             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4839              * the value of the GIC field until after we define these regs.
4840              */
4841             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4842               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4843               .access = PL1_R, .type = ARM_CP_NO_RAW,
4844               .readfn = id_pfr1_read,
4845               .writefn = arm_cp_write_ignore },
4846             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4847               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4848               .access = PL1_R, .type = ARM_CP_CONST,
4849               .resetvalue = cpu->id_dfr0 },
4850             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4851               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4852               .access = PL1_R, .type = ARM_CP_CONST,
4853               .resetvalue = cpu->id_afr0 },
4854             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4855               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4856               .access = PL1_R, .type = ARM_CP_CONST,
4857               .resetvalue = cpu->id_mmfr0 },
4858             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4859               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4860               .access = PL1_R, .type = ARM_CP_CONST,
4861               .resetvalue = cpu->id_mmfr1 },
4862             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4863               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4864               .access = PL1_R, .type = ARM_CP_CONST,
4865               .resetvalue = cpu->id_mmfr2 },
4866             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4867               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4868               .access = PL1_R, .type = ARM_CP_CONST,
4869               .resetvalue = cpu->id_mmfr3 },
4870             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4871               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4872               .access = PL1_R, .type = ARM_CP_CONST,
4873               .resetvalue = cpu->id_isar0 },
4874             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4875               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4876               .access = PL1_R, .type = ARM_CP_CONST,
4877               .resetvalue = cpu->id_isar1 },
4878             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4879               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4880               .access = PL1_R, .type = ARM_CP_CONST,
4881               .resetvalue = cpu->id_isar2 },
4882             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4883               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4884               .access = PL1_R, .type = ARM_CP_CONST,
4885               .resetvalue = cpu->id_isar3 },
4886             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4887               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4888               .access = PL1_R, .type = ARM_CP_CONST,
4889               .resetvalue = cpu->id_isar4 },
4890             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4891               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4892               .access = PL1_R, .type = ARM_CP_CONST,
4893               .resetvalue = cpu->id_isar5 },
4894             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4895               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4896               .access = PL1_R, .type = ARM_CP_CONST,
4897               .resetvalue = cpu->id_mmfr4 },
4898             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
4899               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4900               .access = PL1_R, .type = ARM_CP_CONST,
4901               .resetvalue = cpu->id_isar6 },
4902             REGINFO_SENTINEL
4903         };
4904         define_arm_cp_regs(cpu, v6_idregs);
4905         define_arm_cp_regs(cpu, v6_cp_reginfo);
4906     } else {
4907         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4908     }
4909     if (arm_feature(env, ARM_FEATURE_V6K)) {
4910         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4911     }
4912     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4913         !arm_feature(env, ARM_FEATURE_PMSA)) {
4914         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4915     }
4916     if (arm_feature(env, ARM_FEATURE_V7)) {
4917         /* v7 performance monitor control register: same implementor
4918          * field as main ID register, and we implement only the cycle
4919          * count register.
4920          */
4921 #ifndef CONFIG_USER_ONLY
4922         ARMCPRegInfo pmcr = {
4923             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4924             .access = PL0_RW,
4925             .type = ARM_CP_IO | ARM_CP_ALIAS,
4926             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4927             .accessfn = pmreg_access, .writefn = pmcr_write,
4928             .raw_writefn = raw_write,
4929         };
4930         ARMCPRegInfo pmcr64 = {
4931             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4932             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4933             .access = PL0_RW, .accessfn = pmreg_access,
4934             .type = ARM_CP_IO,
4935             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4936             .resetvalue = cpu->midr & 0xff000000,
4937             .writefn = pmcr_write, .raw_writefn = raw_write,
4938         };
4939         define_one_arm_cp_reg(cpu, &pmcr);
4940         define_one_arm_cp_reg(cpu, &pmcr64);
4941 #endif
4942         ARMCPRegInfo clidr = {
4943             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4944             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4945             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4946         };
4947         define_one_arm_cp_reg(cpu, &clidr);
4948         define_arm_cp_regs(cpu, v7_cp_reginfo);
4949         define_debug_regs(cpu);
4950     } else {
4951         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4952     }
4953     if (arm_feature(env, ARM_FEATURE_V8)) {
4954         /* AArch64 ID registers, which all have impdef reset values.
4955          * Note that within the ID register ranges the unused slots
4956          * must all RAZ, not UNDEF; future architecture versions may
4957          * define new registers here.
4958          */
4959         ARMCPRegInfo v8_idregs[] = {
4960             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4961              * know the right value for the GIC field until after we
4962              * define these regs.
4963              */
4964             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4965               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4966               .access = PL1_R, .type = ARM_CP_NO_RAW,
4967               .readfn = id_aa64pfr0_read,
4968               .writefn = arm_cp_write_ignore },
4969             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4970               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4971               .access = PL1_R, .type = ARM_CP_CONST,
4972               .resetvalue = cpu->id_aa64pfr1},
4973             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4974               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4975               .access = PL1_R, .type = ARM_CP_CONST,
4976               .resetvalue = 0 },
4977             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4978               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4979               .access = PL1_R, .type = ARM_CP_CONST,
4980               .resetvalue = 0 },
4981             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4982               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4983               .access = PL1_R, .type = ARM_CP_CONST,
4984               .resetvalue = 0 },
4985             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4986               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4987               .access = PL1_R, .type = ARM_CP_CONST,
4988               .resetvalue = 0 },
4989             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4990               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4991               .access = PL1_R, .type = ARM_CP_CONST,
4992               .resetvalue = 0 },
4993             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4994               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4995               .access = PL1_R, .type = ARM_CP_CONST,
4996               .resetvalue = 0 },
4997             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4998               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4999               .access = PL1_R, .type = ARM_CP_CONST,
5000               .resetvalue = cpu->id_aa64dfr0 },
5001             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
5002               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
5003               .access = PL1_R, .type = ARM_CP_CONST,
5004               .resetvalue = cpu->id_aa64dfr1 },
5005             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5006               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5007               .access = PL1_R, .type = ARM_CP_CONST,
5008               .resetvalue = 0 },
5009             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5010               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5011               .access = PL1_R, .type = ARM_CP_CONST,
5012               .resetvalue = 0 },
5013             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
5014               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
5015               .access = PL1_R, .type = ARM_CP_CONST,
5016               .resetvalue = cpu->id_aa64afr0 },
5017             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
5018               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
5019               .access = PL1_R, .type = ARM_CP_CONST,
5020               .resetvalue = cpu->id_aa64afr1 },
5021             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5022               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
5023               .access = PL1_R, .type = ARM_CP_CONST,
5024               .resetvalue = 0 },
5025             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5026               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
5027               .access = PL1_R, .type = ARM_CP_CONST,
5028               .resetvalue = 0 },
5029             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
5030               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
5031               .access = PL1_R, .type = ARM_CP_CONST,
5032               .resetvalue = cpu->id_aa64isar0 },
5033             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
5034               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
5035               .access = PL1_R, .type = ARM_CP_CONST,
5036               .resetvalue = cpu->id_aa64isar1 },
5037             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5038               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
5039               .access = PL1_R, .type = ARM_CP_CONST,
5040               .resetvalue = 0 },
5041             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5042               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
5043               .access = PL1_R, .type = ARM_CP_CONST,
5044               .resetvalue = 0 },
5045             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5046               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
5047               .access = PL1_R, .type = ARM_CP_CONST,
5048               .resetvalue = 0 },
5049             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5050               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
5051               .access = PL1_R, .type = ARM_CP_CONST,
5052               .resetvalue = 0 },
5053             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5054               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
5055               .access = PL1_R, .type = ARM_CP_CONST,
5056               .resetvalue = 0 },
5057             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5058               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
5059               .access = PL1_R, .type = ARM_CP_CONST,
5060               .resetvalue = 0 },
5061             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
5062               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5063               .access = PL1_R, .type = ARM_CP_CONST,
5064               .resetvalue = cpu->id_aa64mmfr0 },
5065             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
5066               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
5067               .access = PL1_R, .type = ARM_CP_CONST,
5068               .resetvalue = cpu->id_aa64mmfr1 },
5069             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5070               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
5071               .access = PL1_R, .type = ARM_CP_CONST,
5072               .resetvalue = 0 },
5073             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5074               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
5075               .access = PL1_R, .type = ARM_CP_CONST,
5076               .resetvalue = 0 },
5077             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5078               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5079               .access = PL1_R, .type = ARM_CP_CONST,
5080               .resetvalue = 0 },
5081             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5082               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5083               .access = PL1_R, .type = ARM_CP_CONST,
5084               .resetvalue = 0 },
5085             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5086               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5087               .access = PL1_R, .type = ARM_CP_CONST,
5088               .resetvalue = 0 },
5089             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5090               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5091               .access = PL1_R, .type = ARM_CP_CONST,
5092               .resetvalue = 0 },
5093             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5094               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5095               .access = PL1_R, .type = ARM_CP_CONST,
5096               .resetvalue = cpu->mvfr0 },
5097             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5098               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5099               .access = PL1_R, .type = ARM_CP_CONST,
5100               .resetvalue = cpu->mvfr1 },
5101             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5102               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5103               .access = PL1_R, .type = ARM_CP_CONST,
5104               .resetvalue = cpu->mvfr2 },
5105             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5106               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5107               .access = PL1_R, .type = ARM_CP_CONST,
5108               .resetvalue = 0 },
5109             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5110               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5111               .access = PL1_R, .type = ARM_CP_CONST,
5112               .resetvalue = 0 },
5113             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5114               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5115               .access = PL1_R, .type = ARM_CP_CONST,
5116               .resetvalue = 0 },
5117             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5118               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5119               .access = PL1_R, .type = ARM_CP_CONST,
5120               .resetvalue = 0 },
5121             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5122               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5123               .access = PL1_R, .type = ARM_CP_CONST,
5124               .resetvalue = 0 },
5125             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5126               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5127               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5128               .resetvalue = cpu->pmceid0 },
5129             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5130               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5131               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5132               .resetvalue = cpu->pmceid0 },
5133             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5134               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5135               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5136               .resetvalue = cpu->pmceid1 },
5137             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5138               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5139               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5140               .resetvalue = cpu->pmceid1 },
5141             REGINFO_SENTINEL
5142         };
5143         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5144         if (!arm_feature(env, ARM_FEATURE_EL3) &&
5145             !arm_feature(env, ARM_FEATURE_EL2)) {
5146             ARMCPRegInfo rvbar = {
5147                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5148                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5149                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5150             };
5151             define_one_arm_cp_reg(cpu, &rvbar);
5152         }
5153         define_arm_cp_regs(cpu, v8_idregs);
5154         define_arm_cp_regs(cpu, v8_cp_reginfo);
5155     }
5156     if (arm_feature(env, ARM_FEATURE_EL2)) {
5157         uint64_t vmpidr_def = mpidr_read_val(env);
5158         ARMCPRegInfo vpidr_regs[] = {
5159             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5160               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5161               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5162               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
5163               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
5164             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5165               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5166               .access = PL2_RW, .resetvalue = cpu->midr,
5167               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5168             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5169               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5170               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5171               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
5172               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
5173             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5174               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5175               .access = PL2_RW,
5176               .resetvalue = vmpidr_def,
5177               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5178             REGINFO_SENTINEL
5179         };
5180         define_arm_cp_regs(cpu, vpidr_regs);
5181         define_arm_cp_regs(cpu, el2_cp_reginfo);
5182         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5183         if (!arm_feature(env, ARM_FEATURE_EL3)) {
5184             ARMCPRegInfo rvbar = {
5185                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5186                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5187                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5188             };
5189             define_one_arm_cp_reg(cpu, &rvbar);
5190         }
5191     } else {
5192         /* If EL2 is missing but higher ELs are enabled, we need to
5193          * register the no_el2 reginfos.
5194          */
5195         if (arm_feature(env, ARM_FEATURE_EL3)) {
5196             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5197              * of MIDR_EL1 and MPIDR_EL1.
5198              */
5199             ARMCPRegInfo vpidr_regs[] = {
5200                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5201                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5202                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5203                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5204                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5205                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5206                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5207                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5208                   .type = ARM_CP_NO_RAW,
5209                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5210                 REGINFO_SENTINEL
5211             };
5212             define_arm_cp_regs(cpu, vpidr_regs);
5213             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5214         }
5215     }
5216     if (arm_feature(env, ARM_FEATURE_EL3)) {
5217         define_arm_cp_regs(cpu, el3_cp_reginfo);
5218         ARMCPRegInfo el3_regs[] = {
5219             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5220               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5221               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5222             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5223               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5224               .access = PL3_RW,
5225               .raw_writefn = raw_write, .writefn = sctlr_write,
5226               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5227               .resetvalue = cpu->reset_sctlr },
5228             REGINFO_SENTINEL
5229         };
5230 
5231         define_arm_cp_regs(cpu, el3_regs);
5232     }
5233     /* The behaviour of NSACR is sufficiently various that we don't
5234      * try to describe it in a single reginfo:
5235      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
5236      *     reads as constant 0xc00 from NS EL1 and NS EL2
5237      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5238      *  if v7 without EL3, register doesn't exist
5239      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5240      */
5241     if (arm_feature(env, ARM_FEATURE_EL3)) {
5242         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5243             ARMCPRegInfo nsacr = {
5244                 .name = "NSACR", .type = ARM_CP_CONST,
5245                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5246                 .access = PL1_RW, .accessfn = nsacr_access,
5247                 .resetvalue = 0xc00
5248             };
5249             define_one_arm_cp_reg(cpu, &nsacr);
5250         } else {
5251             ARMCPRegInfo nsacr = {
5252                 .name = "NSACR",
5253                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5254                 .access = PL3_RW | PL1_R,
5255                 .resetvalue = 0,
5256                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5257             };
5258             define_one_arm_cp_reg(cpu, &nsacr);
5259         }
5260     } else {
5261         if (arm_feature(env, ARM_FEATURE_V8)) {
5262             ARMCPRegInfo nsacr = {
5263                 .name = "NSACR", .type = ARM_CP_CONST,
5264                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5265                 .access = PL1_R,
5266                 .resetvalue = 0xc00
5267             };
5268             define_one_arm_cp_reg(cpu, &nsacr);
5269         }
5270     }
5271 
5272     if (arm_feature(env, ARM_FEATURE_PMSA)) {
5273         if (arm_feature(env, ARM_FEATURE_V6)) {
5274             /* PMSAv6 not implemented */
5275             assert(arm_feature(env, ARM_FEATURE_V7));
5276             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5277             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5278         } else {
5279             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5280         }
5281     } else {
5282         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5283         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5284     }
5285     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5286         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5287     }
5288     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5289         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5290     }
5291     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5292         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5293     }
5294     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5295         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5296     }
5297     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5298         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5299     }
5300     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5301         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5302     }
5303     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5304         define_arm_cp_regs(cpu, omap_cp_reginfo);
5305     }
5306     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5307         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5308     }
5309     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5310         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5311     }
5312     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5313         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5314     }
5315     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5316         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5317     }
5318     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5319      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5320      * be read-only (ie write causes UNDEF exception).
5321      */
5322     {
5323         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5324             /* Pre-v8 MIDR space.
5325              * Note that the MIDR isn't a simple constant register because
5326              * of the TI925 behaviour where writes to another register can
5327              * cause the MIDR value to change.
5328              *
5329              * Unimplemented registers in the c15 0 0 0 space default to
5330              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5331              * and friends override accordingly.
5332              */
5333             { .name = "MIDR",
5334               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5335               .access = PL1_R, .resetvalue = cpu->midr,
5336               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5337               .readfn = midr_read,
5338               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5339               .type = ARM_CP_OVERRIDE },
5340             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5341             { .name = "DUMMY",
5342               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5343               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5344             { .name = "DUMMY",
5345               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5346               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5347             { .name = "DUMMY",
5348               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5349               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5350             { .name = "DUMMY",
5351               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5352               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5353             { .name = "DUMMY",
5354               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5355               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5356             REGINFO_SENTINEL
5357         };
5358         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5359             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5360               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5361               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5362               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5363               .readfn = midr_read },
5364             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5365             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5366               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5367               .access = PL1_R, .resetvalue = cpu->midr },
5368             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5369               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5370               .access = PL1_R, .resetvalue = cpu->midr },
5371             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5372               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5373               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5374             REGINFO_SENTINEL
5375         };
5376         ARMCPRegInfo id_cp_reginfo[] = {
5377             /* These are common to v8 and pre-v8 */
5378             { .name = "CTR",
5379               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5380               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5381             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5382               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5383               .access = PL0_R, .accessfn = ctr_el0_access,
5384               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5385             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5386             { .name = "TCMTR",
5387               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5388               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5389             REGINFO_SENTINEL
5390         };
5391         /* TLBTR is specific to VMSA */
5392         ARMCPRegInfo id_tlbtr_reginfo = {
5393               .name = "TLBTR",
5394               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5395               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5396         };
5397         /* MPUIR is specific to PMSA V6+ */
5398         ARMCPRegInfo id_mpuir_reginfo = {
5399               .name = "MPUIR",
5400               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5401               .access = PL1_R, .type = ARM_CP_CONST,
5402               .resetvalue = cpu->pmsav7_dregion << 8
5403         };
5404         ARMCPRegInfo crn0_wi_reginfo = {
5405             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5406             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5407             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5408         };
5409         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5410             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5411             ARMCPRegInfo *r;
5412             /* Register the blanket "writes ignored" value first to cover the
5413              * whole space. Then update the specific ID registers to allow write
5414              * access, so that they ignore writes rather than causing them to
5415              * UNDEF.
5416              */
5417             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5418             for (r = id_pre_v8_midr_cp_reginfo;
5419                  r->type != ARM_CP_SENTINEL; r++) {
5420                 r->access = PL1_RW;
5421             }
5422             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5423                 r->access = PL1_RW;
5424             }
5425             id_mpuir_reginfo.access = PL1_RW;
5426             id_tlbtr_reginfo.access = PL1_RW;
5427         }
5428         if (arm_feature(env, ARM_FEATURE_V8)) {
5429             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5430         } else {
5431             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5432         }
5433         define_arm_cp_regs(cpu, id_cp_reginfo);
5434         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5435             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5436         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5437             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5438         }
5439     }
5440 
5441     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5442         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5443     }
5444 
5445     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5446         ARMCPRegInfo auxcr_reginfo[] = {
5447             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5448               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5449               .access = PL1_RW, .type = ARM_CP_CONST,
5450               .resetvalue = cpu->reset_auxcr },
5451             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5452               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5453               .access = PL2_RW, .type = ARM_CP_CONST,
5454               .resetvalue = 0 },
5455             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5456               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5457               .access = PL3_RW, .type = ARM_CP_CONST,
5458               .resetvalue = 0 },
5459             REGINFO_SENTINEL
5460         };
5461         define_arm_cp_regs(cpu, auxcr_reginfo);
5462     }
5463 
5464     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5465         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5466             /* 32 bit view is [31:18] 0...0 [43:32]. */
5467             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5468                 | extract64(cpu->reset_cbar, 32, 12);
5469             ARMCPRegInfo cbar_reginfo[] = {
5470                 { .name = "CBAR",
5471                   .type = ARM_CP_CONST,
5472                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5473                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5474                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5475                   .type = ARM_CP_CONST,
5476                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5477                   .access = PL1_R, .resetvalue = cbar32 },
5478                 REGINFO_SENTINEL
5479             };
5480             /* We don't implement a r/w 64 bit CBAR currently */
5481             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5482             define_arm_cp_regs(cpu, cbar_reginfo);
5483         } else {
5484             ARMCPRegInfo cbar = {
5485                 .name = "CBAR",
5486                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5487                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5488                 .fieldoffset = offsetof(CPUARMState,
5489                                         cp15.c15_config_base_address)
5490             };
5491             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5492                 cbar.access = PL1_R;
5493                 cbar.fieldoffset = 0;
5494                 cbar.type = ARM_CP_CONST;
5495             }
5496             define_one_arm_cp_reg(cpu, &cbar);
5497         }
5498     }
5499 
5500     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5501         ARMCPRegInfo vbar_cp_reginfo[] = {
5502             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5503               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5504               .access = PL1_RW, .writefn = vbar_write,
5505               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5506                                      offsetof(CPUARMState, cp15.vbar_ns) },
5507               .resetvalue = 0 },
5508             REGINFO_SENTINEL
5509         };
5510         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5511     }
5512 
5513     /* Generic registers whose values depend on the implementation */
5514     {
5515         ARMCPRegInfo sctlr = {
5516             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5517             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5518             .access = PL1_RW,
5519             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5520                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5521             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5522             .raw_writefn = raw_write,
5523         };
5524         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5525             /* Normally we would always end the TB on an SCTLR write, but Linux
5526              * arch/arm/mach-pxa/sleep.S expects two instructions following
5527              * an MMU enable to execute from cache.  Imitate this behaviour.
5528              */
5529             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5530         }
5531         define_one_arm_cp_reg(cpu, &sctlr);
5532     }
5533 
5534     if (arm_feature(env, ARM_FEATURE_SVE)) {
5535         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5536         if (arm_feature(env, ARM_FEATURE_EL2)) {
5537             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5538         } else {
5539             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5540         }
5541         if (arm_feature(env, ARM_FEATURE_EL3)) {
5542             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5543         }
5544     }
5545 }
5546 
5547 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5548 {
5549     CPUState *cs = CPU(cpu);
5550     CPUARMState *env = &cpu->env;
5551 
5552     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5553         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5554                                  aarch64_fpu_gdb_set_reg,
5555                                  34, "aarch64-fpu.xml", 0);
5556     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5557         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5558                                  51, "arm-neon.xml", 0);
5559     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5560         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5561                                  35, "arm-vfp3.xml", 0);
5562     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5563         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5564                                  19, "arm-vfp.xml", 0);
5565     }
5566     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
5567                              arm_gen_dynamic_xml(cs),
5568                              "system-registers.xml", 0);
5569 }
5570 
5571 /* Sort alphabetically by type name, except for "any". */
5572 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5573 {
5574     ObjectClass *class_a = (ObjectClass *)a;
5575     ObjectClass *class_b = (ObjectClass *)b;
5576     const char *name_a, *name_b;
5577 
5578     name_a = object_class_get_name(class_a);
5579     name_b = object_class_get_name(class_b);
5580     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5581         return 1;
5582     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5583         return -1;
5584     } else {
5585         return strcmp(name_a, name_b);
5586     }
5587 }
5588 
5589 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5590 {
5591     ObjectClass *oc = data;
5592     CPUListState *s = user_data;
5593     const char *typename;
5594     char *name;
5595 
5596     typename = object_class_get_name(oc);
5597     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5598     (*s->cpu_fprintf)(s->file, "  %s\n",
5599                       name);
5600     g_free(name);
5601 }
5602 
5603 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5604 {
5605     CPUListState s = {
5606         .file = f,
5607         .cpu_fprintf = cpu_fprintf,
5608     };
5609     GSList *list;
5610 
5611     list = object_class_get_list(TYPE_ARM_CPU, false);
5612     list = g_slist_sort(list, arm_cpu_list_compare);
5613     (*cpu_fprintf)(f, "Available CPUs:\n");
5614     g_slist_foreach(list, arm_cpu_list_entry, &s);
5615     g_slist_free(list);
5616 }
5617 
5618 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5619 {
5620     ObjectClass *oc = data;
5621     CpuDefinitionInfoList **cpu_list = user_data;
5622     CpuDefinitionInfoList *entry;
5623     CpuDefinitionInfo *info;
5624     const char *typename;
5625 
5626     typename = object_class_get_name(oc);
5627     info = g_malloc0(sizeof(*info));
5628     info->name = g_strndup(typename,
5629                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5630     info->q_typename = g_strdup(typename);
5631 
5632     entry = g_malloc0(sizeof(*entry));
5633     entry->value = info;
5634     entry->next = *cpu_list;
5635     *cpu_list = entry;
5636 }
5637 
5638 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5639 {
5640     CpuDefinitionInfoList *cpu_list = NULL;
5641     GSList *list;
5642 
5643     list = object_class_get_list(TYPE_ARM_CPU, false);
5644     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5645     g_slist_free(list);
5646 
5647     return cpu_list;
5648 }
5649 
5650 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5651                                    void *opaque, int state, int secstate,
5652                                    int crm, int opc1, int opc2,
5653                                    const char *name)
5654 {
5655     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5656      * add a single reginfo struct to the hash table.
5657      */
5658     uint32_t *key = g_new(uint32_t, 1);
5659     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5660     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5661     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5662 
5663     r2->name = g_strdup(name);
5664     /* Reset the secure state to the specific incoming state.  This is
5665      * necessary as the register may have been defined with both states.
5666      */
5667     r2->secure = secstate;
5668 
5669     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5670         /* Register is banked (using both entries in array).
5671          * Overwriting fieldoffset as the array is only used to define
5672          * banked registers but later only fieldoffset is used.
5673          */
5674         r2->fieldoffset = r->bank_fieldoffsets[ns];
5675     }
5676 
5677     if (state == ARM_CP_STATE_AA32) {
5678         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5679             /* If the register is banked then we don't need to migrate or
5680              * reset the 32-bit instance in certain cases:
5681              *
5682              * 1) If the register has both 32-bit and 64-bit instances then we
5683              *    can count on the 64-bit instance taking care of the
5684              *    non-secure bank.
5685              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5686              *    taking care of the secure bank.  This requires that separate
5687              *    32 and 64-bit definitions are provided.
5688              */
5689             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5690                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5691                 r2->type |= ARM_CP_ALIAS;
5692             }
5693         } else if ((secstate != r->secure) && !ns) {
5694             /* The register is not banked so we only want to allow migration of
5695              * the non-secure instance.
5696              */
5697             r2->type |= ARM_CP_ALIAS;
5698         }
5699 
5700         if (r->state == ARM_CP_STATE_BOTH) {
5701             /* We assume it is a cp15 register if the .cp field is left unset.
5702              */
5703             if (r2->cp == 0) {
5704                 r2->cp = 15;
5705             }
5706 
5707 #ifdef HOST_WORDS_BIGENDIAN
5708             if (r2->fieldoffset) {
5709                 r2->fieldoffset += sizeof(uint32_t);
5710             }
5711 #endif
5712         }
5713     }
5714     if (state == ARM_CP_STATE_AA64) {
5715         /* To allow abbreviation of ARMCPRegInfo
5716          * definitions, we treat cp == 0 as equivalent to
5717          * the value for "standard guest-visible sysreg".
5718          * STATE_BOTH definitions are also always "standard
5719          * sysreg" in their AArch64 view (the .cp value may
5720          * be non-zero for the benefit of the AArch32 view).
5721          */
5722         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5723             r2->cp = CP_REG_ARM64_SYSREG_CP;
5724         }
5725         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5726                                   r2->opc0, opc1, opc2);
5727     } else {
5728         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5729     }
5730     if (opaque) {
5731         r2->opaque = opaque;
5732     }
5733     /* reginfo passed to helpers is correct for the actual access,
5734      * and is never ARM_CP_STATE_BOTH:
5735      */
5736     r2->state = state;
5737     /* Make sure reginfo passed to helpers for wildcarded regs
5738      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5739      */
5740     r2->crm = crm;
5741     r2->opc1 = opc1;
5742     r2->opc2 = opc2;
5743     /* By convention, for wildcarded registers only the first
5744      * entry is used for migration; the others are marked as
5745      * ALIAS so we don't try to transfer the register
5746      * multiple times. Special registers (ie NOP/WFI) are
5747      * never migratable and not even raw-accessible.
5748      */
5749     if ((r->type & ARM_CP_SPECIAL)) {
5750         r2->type |= ARM_CP_NO_RAW;
5751     }
5752     if (((r->crm == CP_ANY) && crm != 0) ||
5753         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5754         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5755         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
5756     }
5757 
5758     /* Check that raw accesses are either forbidden or handled. Note that
5759      * we can't assert this earlier because the setup of fieldoffset for
5760      * banked registers has to be done first.
5761      */
5762     if (!(r2->type & ARM_CP_NO_RAW)) {
5763         assert(!raw_accessors_invalid(r2));
5764     }
5765 
5766     /* Overriding of an existing definition must be explicitly
5767      * requested.
5768      */
5769     if (!(r->type & ARM_CP_OVERRIDE)) {
5770         ARMCPRegInfo *oldreg;
5771         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5772         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5773             fprintf(stderr, "Register redefined: cp=%d %d bit "
5774                     "crn=%d crm=%d opc1=%d opc2=%d, "
5775                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5776                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5777                     oldreg->name, r2->name);
5778             g_assert_not_reached();
5779         }
5780     }
5781     g_hash_table_insert(cpu->cp_regs, key, r2);
5782 }
5783 
5784 
5785 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5786                                        const ARMCPRegInfo *r, void *opaque)
5787 {
5788     /* Define implementations of coprocessor registers.
5789      * We store these in a hashtable because typically
5790      * there are less than 150 registers in a space which
5791      * is 16*16*16*8*8 = 262144 in size.
5792      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5793      * If a register is defined twice then the second definition is
5794      * used, so this can be used to define some generic registers and
5795      * then override them with implementation specific variations.
5796      * At least one of the original and the second definition should
5797      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5798      * against accidental use.
5799      *
5800      * The state field defines whether the register is to be
5801      * visible in the AArch32 or AArch64 execution state. If the
5802      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5803      * reginfo structure for the AArch32 view, which sees the lower
5804      * 32 bits of the 64 bit register.
5805      *
5806      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5807      * be wildcarded. AArch64 registers are always considered to be 64
5808      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5809      * the register, if any.
5810      */
5811     int crm, opc1, opc2, state;
5812     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5813     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5814     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5815     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5816     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5817     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5818     /* 64 bit registers have only CRm and Opc1 fields */
5819     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5820     /* op0 only exists in the AArch64 encodings */
5821     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5822     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5823     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5824     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5825      * encodes a minimum access level for the register. We roll this
5826      * runtime check into our general permission check code, so check
5827      * here that the reginfo's specified permissions are strict enough
5828      * to encompass the generic architectural permission check.
5829      */
5830     if (r->state != ARM_CP_STATE_AA32) {
5831         int mask = 0;
5832         switch (r->opc1) {
5833         case 0: case 1: case 2:
5834             /* min_EL EL1 */
5835             mask = PL1_RW;
5836             break;
5837         case 3:
5838             /* min_EL EL0 */
5839             mask = PL0_RW;
5840             break;
5841         case 4:
5842             /* min_EL EL2 */
5843             mask = PL2_RW;
5844             break;
5845         case 5:
5846             /* unallocated encoding, so not possible */
5847             assert(false);
5848             break;
5849         case 6:
5850             /* min_EL EL3 */
5851             mask = PL3_RW;
5852             break;
5853         case 7:
5854             /* min_EL EL1, secure mode only (we don't check the latter) */
5855             mask = PL1_RW;
5856             break;
5857         default:
5858             /* broken reginfo with out-of-range opc1 */
5859             assert(false);
5860             break;
5861         }
5862         /* assert our permissions are not too lax (stricter is fine) */
5863         assert((r->access & ~mask) == 0);
5864     }
5865 
5866     /* Check that the register definition has enough info to handle
5867      * reads and writes if they are permitted.
5868      */
5869     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5870         if (r->access & PL3_R) {
5871             assert((r->fieldoffset ||
5872                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5873                    r->readfn);
5874         }
5875         if (r->access & PL3_W) {
5876             assert((r->fieldoffset ||
5877                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5878                    r->writefn);
5879         }
5880     }
5881     /* Bad type field probably means missing sentinel at end of reg list */
5882     assert(cptype_valid(r->type));
5883     for (crm = crmmin; crm <= crmmax; crm++) {
5884         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5885             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5886                 for (state = ARM_CP_STATE_AA32;
5887                      state <= ARM_CP_STATE_AA64; state++) {
5888                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5889                         continue;
5890                     }
5891                     if (state == ARM_CP_STATE_AA32) {
5892                         /* Under AArch32 CP registers can be common
5893                          * (same for secure and non-secure world) or banked.
5894                          */
5895                         char *name;
5896 
5897                         switch (r->secure) {
5898                         case ARM_CP_SECSTATE_S:
5899                         case ARM_CP_SECSTATE_NS:
5900                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5901                                                    r->secure, crm, opc1, opc2,
5902                                                    r->name);
5903                             break;
5904                         default:
5905                             name = g_strdup_printf("%s_S", r->name);
5906                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5907                                                    ARM_CP_SECSTATE_S,
5908                                                    crm, opc1, opc2, name);
5909                             g_free(name);
5910                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5911                                                    ARM_CP_SECSTATE_NS,
5912                                                    crm, opc1, opc2, r->name);
5913                             break;
5914                         }
5915                     } else {
5916                         /* AArch64 registers get mapped to non-secure instance
5917                          * of AArch32 */
5918                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5919                                                ARM_CP_SECSTATE_NS,
5920                                                crm, opc1, opc2, r->name);
5921                     }
5922                 }
5923             }
5924         }
5925     }
5926 }
5927 
5928 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5929                                     const ARMCPRegInfo *regs, void *opaque)
5930 {
5931     /* Define a whole list of registers */
5932     const ARMCPRegInfo *r;
5933     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5934         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5935     }
5936 }
5937 
5938 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5939 {
5940     return g_hash_table_lookup(cpregs, &encoded_cp);
5941 }
5942 
5943 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5944                          uint64_t value)
5945 {
5946     /* Helper coprocessor write function for write-ignore registers */
5947 }
5948 
5949 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5950 {
5951     /* Helper coprocessor write function for read-as-zero registers */
5952     return 0;
5953 }
5954 
5955 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5956 {
5957     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5958 }
5959 
5960 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5961 {
5962     /* Return true if it is not valid for us to switch to
5963      * this CPU mode (ie all the UNPREDICTABLE cases in
5964      * the ARM ARM CPSRWriteByInstr pseudocode).
5965      */
5966 
5967     /* Changes to or from Hyp via MSR and CPS are illegal. */
5968     if (write_type == CPSRWriteByInstr &&
5969         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5970          mode == ARM_CPU_MODE_HYP)) {
5971         return 1;
5972     }
5973 
5974     switch (mode) {
5975     case ARM_CPU_MODE_USR:
5976         return 0;
5977     case ARM_CPU_MODE_SYS:
5978     case ARM_CPU_MODE_SVC:
5979     case ARM_CPU_MODE_ABT:
5980     case ARM_CPU_MODE_UND:
5981     case ARM_CPU_MODE_IRQ:
5982     case ARM_CPU_MODE_FIQ:
5983         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5984          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5985          */
5986         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5987          * and CPS are treated as illegal mode changes.
5988          */
5989         if (write_type == CPSRWriteByInstr &&
5990             (env->cp15.hcr_el2 & HCR_TGE) &&
5991             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5992             !arm_is_secure_below_el3(env)) {
5993             return 1;
5994         }
5995         return 0;
5996     case ARM_CPU_MODE_HYP:
5997         return !arm_feature(env, ARM_FEATURE_EL2)
5998             || arm_current_el(env) < 2 || arm_is_secure(env);
5999     case ARM_CPU_MODE_MON:
6000         return arm_current_el(env) < 3;
6001     default:
6002         return 1;
6003     }
6004 }
6005 
6006 uint32_t cpsr_read(CPUARMState *env)
6007 {
6008     int ZF;
6009     ZF = (env->ZF == 0);
6010     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
6011         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
6012         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
6013         | ((env->condexec_bits & 0xfc) << 8)
6014         | (env->GE << 16) | (env->daif & CPSR_AIF);
6015 }
6016 
6017 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
6018                 CPSRWriteType write_type)
6019 {
6020     uint32_t changed_daif;
6021 
6022     if (mask & CPSR_NZCV) {
6023         env->ZF = (~val) & CPSR_Z;
6024         env->NF = val;
6025         env->CF = (val >> 29) & 1;
6026         env->VF = (val << 3) & 0x80000000;
6027     }
6028     if (mask & CPSR_Q)
6029         env->QF = ((val & CPSR_Q) != 0);
6030     if (mask & CPSR_T)
6031         env->thumb = ((val & CPSR_T) != 0);
6032     if (mask & CPSR_IT_0_1) {
6033         env->condexec_bits &= ~3;
6034         env->condexec_bits |= (val >> 25) & 3;
6035     }
6036     if (mask & CPSR_IT_2_7) {
6037         env->condexec_bits &= 3;
6038         env->condexec_bits |= (val >> 8) & 0xfc;
6039     }
6040     if (mask & CPSR_GE) {
6041         env->GE = (val >> 16) & 0xf;
6042     }
6043 
6044     /* In a V7 implementation that includes the security extensions but does
6045      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6046      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6047      * bits respectively.
6048      *
6049      * In a V8 implementation, it is permitted for privileged software to
6050      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6051      */
6052     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6053         arm_feature(env, ARM_FEATURE_EL3) &&
6054         !arm_feature(env, ARM_FEATURE_EL2) &&
6055         !arm_is_secure(env)) {
6056 
6057         changed_daif = (env->daif ^ val) & mask;
6058 
6059         if (changed_daif & CPSR_A) {
6060             /* Check to see if we are allowed to change the masking of async
6061              * abort exceptions from a non-secure state.
6062              */
6063             if (!(env->cp15.scr_el3 & SCR_AW)) {
6064                 qemu_log_mask(LOG_GUEST_ERROR,
6065                               "Ignoring attempt to switch CPSR_A flag from "
6066                               "non-secure world with SCR.AW bit clear\n");
6067                 mask &= ~CPSR_A;
6068             }
6069         }
6070 
6071         if (changed_daif & CPSR_F) {
6072             /* Check to see if we are allowed to change the masking of FIQ
6073              * exceptions from a non-secure state.
6074              */
6075             if (!(env->cp15.scr_el3 & SCR_FW)) {
6076                 qemu_log_mask(LOG_GUEST_ERROR,
6077                               "Ignoring attempt to switch CPSR_F flag from "
6078                               "non-secure world with SCR.FW bit clear\n");
6079                 mask &= ~CPSR_F;
6080             }
6081 
6082             /* Check whether non-maskable FIQ (NMFI) support is enabled.
6083              * If this bit is set software is not allowed to mask
6084              * FIQs, but is allowed to set CPSR_F to 0.
6085              */
6086             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6087                 (val & CPSR_F)) {
6088                 qemu_log_mask(LOG_GUEST_ERROR,
6089                               "Ignoring attempt to enable CPSR_F flag "
6090                               "(non-maskable FIQ [NMFI] support enabled)\n");
6091                 mask &= ~CPSR_F;
6092             }
6093         }
6094     }
6095 
6096     env->daif &= ~(CPSR_AIF & mask);
6097     env->daif |= val & CPSR_AIF & mask;
6098 
6099     if (write_type != CPSRWriteRaw &&
6100         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6101         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6102             /* Note that we can only get here in USR mode if this is a
6103              * gdb stub write; for this case we follow the architectural
6104              * behaviour for guest writes in USR mode of ignoring an attempt
6105              * to switch mode. (Those are caught by translate.c for writes
6106              * triggered by guest instructions.)
6107              */
6108             mask &= ~CPSR_M;
6109         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6110             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6111              * v7, and has defined behaviour in v8:
6112              *  + leave CPSR.M untouched
6113              *  + allow changes to the other CPSR fields
6114              *  + set PSTATE.IL
6115              * For user changes via the GDB stub, we don't set PSTATE.IL,
6116              * as this would be unnecessarily harsh for a user error.
6117              */
6118             mask &= ~CPSR_M;
6119             if (write_type != CPSRWriteByGDBStub &&
6120                 arm_feature(env, ARM_FEATURE_V8)) {
6121                 mask |= CPSR_IL;
6122                 val |= CPSR_IL;
6123             }
6124         } else {
6125             switch_mode(env, val & CPSR_M);
6126         }
6127     }
6128     mask &= ~CACHED_CPSR_BITS;
6129     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6130 }
6131 
6132 /* Sign/zero extend */
6133 uint32_t HELPER(sxtb16)(uint32_t x)
6134 {
6135     uint32_t res;
6136     res = (uint16_t)(int8_t)x;
6137     res |= (uint32_t)(int8_t)(x >> 16) << 16;
6138     return res;
6139 }
6140 
6141 uint32_t HELPER(uxtb16)(uint32_t x)
6142 {
6143     uint32_t res;
6144     res = (uint16_t)(uint8_t)x;
6145     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6146     return res;
6147 }
6148 
6149 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6150 {
6151     if (den == 0)
6152       return 0;
6153     if (num == INT_MIN && den == -1)
6154       return INT_MIN;
6155     return num / den;
6156 }
6157 
6158 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6159 {
6160     if (den == 0)
6161       return 0;
6162     return num / den;
6163 }
6164 
6165 uint32_t HELPER(rbit)(uint32_t x)
6166 {
6167     return revbit32(x);
6168 }
6169 
6170 #if defined(CONFIG_USER_ONLY)
6171 
6172 /* These should probably raise undefined insn exceptions.  */
6173 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6174 {
6175     ARMCPU *cpu = arm_env_get_cpu(env);
6176 
6177     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6178 }
6179 
6180 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6181 {
6182     ARMCPU *cpu = arm_env_get_cpu(env);
6183 
6184     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6185     return 0;
6186 }
6187 
6188 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6189 {
6190     /* translate.c should never generate calls here in user-only mode */
6191     g_assert_not_reached();
6192 }
6193 
6194 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6195 {
6196     /* translate.c should never generate calls here in user-only mode */
6197     g_assert_not_reached();
6198 }
6199 
6200 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6201 {
6202     /* The TT instructions can be used by unprivileged code, but in
6203      * user-only emulation we don't have the MPU.
6204      * Luckily since we know we are NonSecure unprivileged (and that in
6205      * turn means that the A flag wasn't specified), all the bits in the
6206      * register must be zero:
6207      *  IREGION: 0 because IRVALID is 0
6208      *  IRVALID: 0 because NS
6209      *  S: 0 because NS
6210      *  NSRW: 0 because NS
6211      *  NSR: 0 because NS
6212      *  RW: 0 because unpriv and A flag not set
6213      *  R: 0 because unpriv and A flag not set
6214      *  SRVALID: 0 because NS
6215      *  MRVALID: 0 because unpriv and A flag not set
6216      *  SREGION: 0 becaus SRVALID is 0
6217      *  MREGION: 0 because MRVALID is 0
6218      */
6219     return 0;
6220 }
6221 
6222 void switch_mode(CPUARMState *env, int mode)
6223 {
6224     ARMCPU *cpu = arm_env_get_cpu(env);
6225 
6226     if (mode != ARM_CPU_MODE_USR) {
6227         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6228     }
6229 }
6230 
6231 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6232                                  uint32_t cur_el, bool secure)
6233 {
6234     return 1;
6235 }
6236 
6237 void aarch64_sync_64_to_32(CPUARMState *env)
6238 {
6239     g_assert_not_reached();
6240 }
6241 
6242 #else
6243 
6244 void switch_mode(CPUARMState *env, int mode)
6245 {
6246     int old_mode;
6247     int i;
6248 
6249     old_mode = env->uncached_cpsr & CPSR_M;
6250     if (mode == old_mode)
6251         return;
6252 
6253     if (old_mode == ARM_CPU_MODE_FIQ) {
6254         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6255         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6256     } else if (mode == ARM_CPU_MODE_FIQ) {
6257         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6258         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6259     }
6260 
6261     i = bank_number(old_mode);
6262     env->banked_r13[i] = env->regs[13];
6263     env->banked_r14[i] = env->regs[14];
6264     env->banked_spsr[i] = env->spsr;
6265 
6266     i = bank_number(mode);
6267     env->regs[13] = env->banked_r13[i];
6268     env->regs[14] = env->banked_r14[i];
6269     env->spsr = env->banked_spsr[i];
6270 }
6271 
6272 /* Physical Interrupt Target EL Lookup Table
6273  *
6274  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6275  *
6276  * The below multi-dimensional table is used for looking up the target
6277  * exception level given numerous condition criteria.  Specifically, the
6278  * target EL is based on SCR and HCR routing controls as well as the
6279  * currently executing EL and secure state.
6280  *
6281  *    Dimensions:
6282  *    target_el_table[2][2][2][2][2][4]
6283  *                    |  |  |  |  |  +--- Current EL
6284  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
6285  *                    |  |  |  +--------- HCR mask override
6286  *                    |  |  +------------ SCR exec state control
6287  *                    |  +--------------- SCR mask override
6288  *                    +------------------ 32-bit(0)/64-bit(1) EL3
6289  *
6290  *    The table values are as such:
6291  *    0-3 = EL0-EL3
6292  *     -1 = Cannot occur
6293  *
6294  * The ARM ARM target EL table includes entries indicating that an "exception
6295  * is not taken".  The two cases where this is applicable are:
6296  *    1) An exception is taken from EL3 but the SCR does not have the exception
6297  *    routed to EL3.
6298  *    2) An exception is taken from EL2 but the HCR does not have the exception
6299  *    routed to EL2.
6300  * In these two cases, the below table contain a target of EL1.  This value is
6301  * returned as it is expected that the consumer of the table data will check
6302  * for "target EL >= current EL" to ensure the exception is not taken.
6303  *
6304  *            SCR     HCR
6305  *         64  EA     AMO                 From
6306  *        BIT IRQ     IMO      Non-secure         Secure
6307  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
6308  */
6309 static const int8_t target_el_table[2][2][2][2][2][4] = {
6310     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6311        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
6312       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6313        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
6314      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6315        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
6316       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6317        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
6318     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
6319        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
6320       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
6321        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
6322      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6323        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
6324       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6325        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
6326 };
6327 
6328 /*
6329  * Determine the target EL for physical exceptions
6330  */
6331 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6332                                  uint32_t cur_el, bool secure)
6333 {
6334     CPUARMState *env = cs->env_ptr;
6335     int rw;
6336     int scr;
6337     int hcr;
6338     int target_el;
6339     /* Is the highest EL AArch64? */
6340     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6341 
6342     if (arm_feature(env, ARM_FEATURE_EL3)) {
6343         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6344     } else {
6345         /* Either EL2 is the highest EL (and so the EL2 register width
6346          * is given by is64); or there is no EL2 or EL3, in which case
6347          * the value of 'rw' does not affect the table lookup anyway.
6348          */
6349         rw = is64;
6350     }
6351 
6352     switch (excp_idx) {
6353     case EXCP_IRQ:
6354         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6355         hcr = arm_hcr_el2_imo(env);
6356         break;
6357     case EXCP_FIQ:
6358         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6359         hcr = arm_hcr_el2_fmo(env);
6360         break;
6361     default:
6362         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6363         hcr = arm_hcr_el2_amo(env);
6364         break;
6365     };
6366 
6367     /* If HCR.TGE is set then HCR is treated as being 1 */
6368     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6369 
6370     /* Perform a table-lookup for the target EL given the current state */
6371     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6372 
6373     assert(target_el > 0);
6374 
6375     return target_el;
6376 }
6377 
6378 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6379                             ARMMMUIdx mmu_idx, bool ignfault)
6380 {
6381     CPUState *cs = CPU(cpu);
6382     CPUARMState *env = &cpu->env;
6383     MemTxAttrs attrs = {};
6384     MemTxResult txres;
6385     target_ulong page_size;
6386     hwaddr physaddr;
6387     int prot;
6388     ARMMMUFaultInfo fi;
6389     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6390     int exc;
6391     bool exc_secure;
6392 
6393     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6394                       &attrs, &prot, &page_size, &fi, NULL)) {
6395         /* MPU/SAU lookup failed */
6396         if (fi.type == ARMFault_QEMU_SFault) {
6397             qemu_log_mask(CPU_LOG_INT,
6398                           "...SecureFault with SFSR.AUVIOL during stacking\n");
6399             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6400             env->v7m.sfar = addr;
6401             exc = ARMV7M_EXCP_SECURE;
6402             exc_secure = false;
6403         } else {
6404             qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6405             env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6406             exc = ARMV7M_EXCP_MEM;
6407             exc_secure = secure;
6408         }
6409         goto pend_fault;
6410     }
6411     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6412                          attrs, &txres);
6413     if (txres != MEMTX_OK) {
6414         /* BusFault trying to write the data */
6415         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6416         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6417         exc = ARMV7M_EXCP_BUS;
6418         exc_secure = false;
6419         goto pend_fault;
6420     }
6421     return true;
6422 
6423 pend_fault:
6424     /* By pending the exception at this point we are making
6425      * the IMPDEF choice "overridden exceptions pended" (see the
6426      * MergeExcInfo() pseudocode). The other choice would be to not
6427      * pend them now and then make a choice about which to throw away
6428      * later if we have two derived exceptions.
6429      * The only case when we must not pend the exception but instead
6430      * throw it away is if we are doing the push of the callee registers
6431      * and we've already generated a derived exception. Even in this
6432      * case we will still update the fault status registers.
6433      */
6434     if (!ignfault) {
6435         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6436     }
6437     return false;
6438 }
6439 
6440 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6441                            ARMMMUIdx mmu_idx)
6442 {
6443     CPUState *cs = CPU(cpu);
6444     CPUARMState *env = &cpu->env;
6445     MemTxAttrs attrs = {};
6446     MemTxResult txres;
6447     target_ulong page_size;
6448     hwaddr physaddr;
6449     int prot;
6450     ARMMMUFaultInfo fi;
6451     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6452     int exc;
6453     bool exc_secure;
6454     uint32_t value;
6455 
6456     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6457                       &attrs, &prot, &page_size, &fi, NULL)) {
6458         /* MPU/SAU lookup failed */
6459         if (fi.type == ARMFault_QEMU_SFault) {
6460             qemu_log_mask(CPU_LOG_INT,
6461                           "...SecureFault with SFSR.AUVIOL during unstack\n");
6462             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6463             env->v7m.sfar = addr;
6464             exc = ARMV7M_EXCP_SECURE;
6465             exc_secure = false;
6466         } else {
6467             qemu_log_mask(CPU_LOG_INT,
6468                           "...MemManageFault with CFSR.MUNSTKERR\n");
6469             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6470             exc = ARMV7M_EXCP_MEM;
6471             exc_secure = secure;
6472         }
6473         goto pend_fault;
6474     }
6475 
6476     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6477                               attrs, &txres);
6478     if (txres != MEMTX_OK) {
6479         /* BusFault trying to read the data */
6480         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6481         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6482         exc = ARMV7M_EXCP_BUS;
6483         exc_secure = false;
6484         goto pend_fault;
6485     }
6486 
6487     *dest = value;
6488     return true;
6489 
6490 pend_fault:
6491     /* By pending the exception at this point we are making
6492      * the IMPDEF choice "overridden exceptions pended" (see the
6493      * MergeExcInfo() pseudocode). The other choice would be to not
6494      * pend them now and then make a choice about which to throw away
6495      * later if we have two derived exceptions.
6496      */
6497     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6498     return false;
6499 }
6500 
6501 /* Return true if we're using the process stack pointer (not the MSP) */
6502 static bool v7m_using_psp(CPUARMState *env)
6503 {
6504     /* Handler mode always uses the main stack; for thread mode
6505      * the CONTROL.SPSEL bit determines the answer.
6506      * Note that in v7M it is not possible to be in Handler mode with
6507      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6508      */
6509     return !arm_v7m_is_handler_mode(env) &&
6510         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6511 }
6512 
6513 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6514  * This may change the current stack pointer between Main and Process
6515  * stack pointers if it is done for the CONTROL register for the current
6516  * security state.
6517  */
6518 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6519                                                  bool new_spsel,
6520                                                  bool secstate)
6521 {
6522     bool old_is_psp = v7m_using_psp(env);
6523 
6524     env->v7m.control[secstate] =
6525         deposit32(env->v7m.control[secstate],
6526                   R_V7M_CONTROL_SPSEL_SHIFT,
6527                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6528 
6529     if (secstate == env->v7m.secure) {
6530         bool new_is_psp = v7m_using_psp(env);
6531         uint32_t tmp;
6532 
6533         if (old_is_psp != new_is_psp) {
6534             tmp = env->v7m.other_sp;
6535             env->v7m.other_sp = env->regs[13];
6536             env->regs[13] = tmp;
6537         }
6538     }
6539 }
6540 
6541 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6542  * stack pointer between Main and Process stack pointers.
6543  */
6544 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6545 {
6546     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6547 }
6548 
6549 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6550 {
6551     /* Write a new value to v7m.exception, thus transitioning into or out
6552      * of Handler mode; this may result in a change of active stack pointer.
6553      */
6554     bool new_is_psp, old_is_psp = v7m_using_psp(env);
6555     uint32_t tmp;
6556 
6557     env->v7m.exception = new_exc;
6558 
6559     new_is_psp = v7m_using_psp(env);
6560 
6561     if (old_is_psp != new_is_psp) {
6562         tmp = env->v7m.other_sp;
6563         env->v7m.other_sp = env->regs[13];
6564         env->regs[13] = tmp;
6565     }
6566 }
6567 
6568 /* Switch M profile security state between NS and S */
6569 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6570 {
6571     uint32_t new_ss_msp, new_ss_psp;
6572 
6573     if (env->v7m.secure == new_secstate) {
6574         return;
6575     }
6576 
6577     /* All the banked state is accessed by looking at env->v7m.secure
6578      * except for the stack pointer; rearrange the SP appropriately.
6579      */
6580     new_ss_msp = env->v7m.other_ss_msp;
6581     new_ss_psp = env->v7m.other_ss_psp;
6582 
6583     if (v7m_using_psp(env)) {
6584         env->v7m.other_ss_psp = env->regs[13];
6585         env->v7m.other_ss_msp = env->v7m.other_sp;
6586     } else {
6587         env->v7m.other_ss_msp = env->regs[13];
6588         env->v7m.other_ss_psp = env->v7m.other_sp;
6589     }
6590 
6591     env->v7m.secure = new_secstate;
6592 
6593     if (v7m_using_psp(env)) {
6594         env->regs[13] = new_ss_psp;
6595         env->v7m.other_sp = new_ss_msp;
6596     } else {
6597         env->regs[13] = new_ss_msp;
6598         env->v7m.other_sp = new_ss_psp;
6599     }
6600 }
6601 
6602 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6603 {
6604     /* Handle v7M BXNS:
6605      *  - if the return value is a magic value, do exception return (like BX)
6606      *  - otherwise bit 0 of the return value is the target security state
6607      */
6608     uint32_t min_magic;
6609 
6610     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6611         /* Covers FNC_RETURN and EXC_RETURN magic */
6612         min_magic = FNC_RETURN_MIN_MAGIC;
6613     } else {
6614         /* EXC_RETURN magic only */
6615         min_magic = EXC_RETURN_MIN_MAGIC;
6616     }
6617 
6618     if (dest >= min_magic) {
6619         /* This is an exception return magic value; put it where
6620          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6621          * Note that if we ever add gen_ss_advance() singlestep support to
6622          * M profile this should count as an "instruction execution complete"
6623          * event (compare gen_bx_excret_final_code()).
6624          */
6625         env->regs[15] = dest & ~1;
6626         env->thumb = dest & 1;
6627         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6628         /* notreached */
6629     }
6630 
6631     /* translate.c should have made BXNS UNDEF unless we're secure */
6632     assert(env->v7m.secure);
6633 
6634     switch_v7m_security_state(env, dest & 1);
6635     env->thumb = 1;
6636     env->regs[15] = dest & ~1;
6637 }
6638 
6639 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6640 {
6641     /* Handle v7M BLXNS:
6642      *  - bit 0 of the destination address is the target security state
6643      */
6644 
6645     /* At this point regs[15] is the address just after the BLXNS */
6646     uint32_t nextinst = env->regs[15] | 1;
6647     uint32_t sp = env->regs[13] - 8;
6648     uint32_t saved_psr;
6649 
6650     /* translate.c will have made BLXNS UNDEF unless we're secure */
6651     assert(env->v7m.secure);
6652 
6653     if (dest & 1) {
6654         /* target is Secure, so this is just a normal BLX,
6655          * except that the low bit doesn't indicate Thumb/not.
6656          */
6657         env->regs[14] = nextinst;
6658         env->thumb = 1;
6659         env->regs[15] = dest & ~1;
6660         return;
6661     }
6662 
6663     /* Target is non-secure: first push a stack frame */
6664     if (!QEMU_IS_ALIGNED(sp, 8)) {
6665         qemu_log_mask(LOG_GUEST_ERROR,
6666                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
6667     }
6668 
6669     saved_psr = env->v7m.exception;
6670     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6671         saved_psr |= XPSR_SFPA;
6672     }
6673 
6674     /* Note that these stores can throw exceptions on MPU faults */
6675     cpu_stl_data(env, sp, nextinst);
6676     cpu_stl_data(env, sp + 4, saved_psr);
6677 
6678     env->regs[13] = sp;
6679     env->regs[14] = 0xfeffffff;
6680     if (arm_v7m_is_handler_mode(env)) {
6681         /* Write a dummy value to IPSR, to avoid leaking the current secure
6682          * exception number to non-secure code. This is guaranteed not
6683          * to cause write_v7m_exception() to actually change stacks.
6684          */
6685         write_v7m_exception(env, 1);
6686     }
6687     switch_v7m_security_state(env, 0);
6688     env->thumb = 1;
6689     env->regs[15] = dest;
6690 }
6691 
6692 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6693                                 bool spsel)
6694 {
6695     /* Return a pointer to the location where we currently store the
6696      * stack pointer for the requested security state and thread mode.
6697      * This pointer will become invalid if the CPU state is updated
6698      * such that the stack pointers are switched around (eg changing
6699      * the SPSEL control bit).
6700      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6701      * Unlike that pseudocode, we require the caller to pass us in the
6702      * SPSEL control bit value; this is because we also use this
6703      * function in handling of pushing of the callee-saves registers
6704      * part of the v8M stack frame (pseudocode PushCalleeStack()),
6705      * and in the tailchain codepath the SPSEL bit comes from the exception
6706      * return magic LR value from the previous exception. The pseudocode
6707      * opencodes the stack-selection in PushCalleeStack(), but we prefer
6708      * to make this utility function generic enough to do the job.
6709      */
6710     bool want_psp = threadmode && spsel;
6711 
6712     if (secure == env->v7m.secure) {
6713         if (want_psp == v7m_using_psp(env)) {
6714             return &env->regs[13];
6715         } else {
6716             return &env->v7m.other_sp;
6717         }
6718     } else {
6719         if (want_psp) {
6720             return &env->v7m.other_ss_psp;
6721         } else {
6722             return &env->v7m.other_ss_msp;
6723         }
6724     }
6725 }
6726 
6727 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6728                                 uint32_t *pvec)
6729 {
6730     CPUState *cs = CPU(cpu);
6731     CPUARMState *env = &cpu->env;
6732     MemTxResult result;
6733     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6734     uint32_t vector_entry;
6735     MemTxAttrs attrs = {};
6736     ARMMMUIdx mmu_idx;
6737     bool exc_secure;
6738 
6739     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6740 
6741     /* We don't do a get_phys_addr() here because the rules for vector
6742      * loads are special: they always use the default memory map, and
6743      * the default memory map permits reads from all addresses.
6744      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6745      * that we want this special case which would always say "yes",
6746      * we just do the SAU lookup here followed by a direct physical load.
6747      */
6748     attrs.secure = targets_secure;
6749     attrs.user = false;
6750 
6751     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6752         V8M_SAttributes sattrs = {};
6753 
6754         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6755         if (sattrs.ns) {
6756             attrs.secure = false;
6757         } else if (!targets_secure) {
6758             /* NS access to S memory */
6759             goto load_fail;
6760         }
6761     }
6762 
6763     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6764                                      attrs, &result);
6765     if (result != MEMTX_OK) {
6766         goto load_fail;
6767     }
6768     *pvec = vector_entry;
6769     return true;
6770 
6771 load_fail:
6772     /* All vector table fetch fails are reported as HardFault, with
6773      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6774      * technically the underlying exception is a MemManage or BusFault
6775      * that is escalated to HardFault.) This is a terminal exception,
6776      * so we will either take the HardFault immediately or else enter
6777      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6778      */
6779     exc_secure = targets_secure ||
6780         !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6781     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6782     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6783     return false;
6784 }
6785 
6786 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6787                                   bool ignore_faults)
6788 {
6789     /* For v8M, push the callee-saves register part of the stack frame.
6790      * Compare the v8M pseudocode PushCalleeStack().
6791      * In the tailchaining case this may not be the current stack.
6792      */
6793     CPUARMState *env = &cpu->env;
6794     uint32_t *frame_sp_p;
6795     uint32_t frameptr;
6796     ARMMMUIdx mmu_idx;
6797     bool stacked_ok;
6798 
6799     if (dotailchain) {
6800         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6801         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6802             !mode;
6803 
6804         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6805         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6806                                     lr & R_V7M_EXCRET_SPSEL_MASK);
6807     } else {
6808         mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6809         frame_sp_p = &env->regs[13];
6810     }
6811 
6812     frameptr = *frame_sp_p - 0x28;
6813 
6814     /* Write as much of the stack frame as we can. A write failure may
6815      * cause us to pend a derived exception.
6816      */
6817     stacked_ok =
6818         v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
6819         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
6820                         ignore_faults) &&
6821         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
6822                         ignore_faults) &&
6823         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
6824                         ignore_faults) &&
6825         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
6826                         ignore_faults) &&
6827         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
6828                         ignore_faults) &&
6829         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
6830                         ignore_faults) &&
6831         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
6832                         ignore_faults) &&
6833         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
6834                         ignore_faults);
6835 
6836     /* Update SP regardless of whether any of the stack accesses failed.
6837      * When we implement v8M stack limit checking then this attempt to
6838      * update SP might also fail and result in a derived exception.
6839      */
6840     *frame_sp_p = frameptr;
6841 
6842     return !stacked_ok;
6843 }
6844 
6845 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6846                                 bool ignore_stackfaults)
6847 {
6848     /* Do the "take the exception" parts of exception entry,
6849      * but not the pushing of state to the stack. This is
6850      * similar to the pseudocode ExceptionTaken() function.
6851      */
6852     CPUARMState *env = &cpu->env;
6853     uint32_t addr;
6854     bool targets_secure;
6855     int exc;
6856     bool push_failed = false;
6857 
6858     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6859     qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
6860                   targets_secure ? "secure" : "nonsecure", exc);
6861 
6862     if (arm_feature(env, ARM_FEATURE_V8)) {
6863         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6864             (lr & R_V7M_EXCRET_S_MASK)) {
6865             /* The background code (the owner of the registers in the
6866              * exception frame) is Secure. This means it may either already
6867              * have or now needs to push callee-saves registers.
6868              */
6869             if (targets_secure) {
6870                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6871                     /* We took an exception from Secure to NonSecure
6872                      * (which means the callee-saved registers got stacked)
6873                      * and are now tailchaining to a Secure exception.
6874                      * Clear DCRS so eventual return from this Secure
6875                      * exception unstacks the callee-saved registers.
6876                      */
6877                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
6878                 }
6879             } else {
6880                 /* We're going to a non-secure exception; push the
6881                  * callee-saves registers to the stack now, if they're
6882                  * not already saved.
6883                  */
6884                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6885                     !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6886                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
6887                                                         ignore_stackfaults);
6888                 }
6889                 lr |= R_V7M_EXCRET_DCRS_MASK;
6890             }
6891         }
6892 
6893         lr &= ~R_V7M_EXCRET_ES_MASK;
6894         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6895             lr |= R_V7M_EXCRET_ES_MASK;
6896         }
6897         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6898         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6899             lr |= R_V7M_EXCRET_SPSEL_MASK;
6900         }
6901 
6902         /* Clear registers if necessary to prevent non-secure exception
6903          * code being able to see register values from secure code.
6904          * Where register values become architecturally UNKNOWN we leave
6905          * them with their previous values.
6906          */
6907         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6908             if (!targets_secure) {
6909                 /* Always clear the caller-saved registers (they have been
6910                  * pushed to the stack earlier in v7m_push_stack()).
6911                  * Clear callee-saved registers if the background code is
6912                  * Secure (in which case these regs were saved in
6913                  * v7m_push_callee_stack()).
6914                  */
6915                 int i;
6916 
6917                 for (i = 0; i < 13; i++) {
6918                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6919                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6920                         env->regs[i] = 0;
6921                     }
6922                 }
6923                 /* Clear EAPSR */
6924                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6925             }
6926         }
6927     }
6928 
6929     if (push_failed && !ignore_stackfaults) {
6930         /* Derived exception on callee-saves register stacking:
6931          * we might now want to take a different exception which
6932          * targets a different security state, so try again from the top.
6933          */
6934         qemu_log_mask(CPU_LOG_INT,
6935                       "...derived exception on callee-saves register stacking");
6936         v7m_exception_taken(cpu, lr, true, true);
6937         return;
6938     }
6939 
6940     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
6941         /* Vector load failed: derived exception */
6942         qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
6943         v7m_exception_taken(cpu, lr, true, true);
6944         return;
6945     }
6946 
6947     /* Now we've done everything that might cause a derived exception
6948      * we can go ahead and activate whichever exception we're going to
6949      * take (which might now be the derived exception).
6950      */
6951     armv7m_nvic_acknowledge_irq(env->nvic);
6952 
6953     /* Switch to target security state -- must do this before writing SPSEL */
6954     switch_v7m_security_state(env, targets_secure);
6955     write_v7m_control_spsel(env, 0);
6956     arm_clear_exclusive(env);
6957     /* Clear IT bits */
6958     env->condexec_bits = 0;
6959     env->regs[14] = lr;
6960     env->regs[15] = addr & 0xfffffffe;
6961     env->thumb = addr & 1;
6962 }
6963 
6964 static bool v7m_push_stack(ARMCPU *cpu)
6965 {
6966     /* Do the "set up stack frame" part of exception entry,
6967      * similar to pseudocode PushStack().
6968      * Return true if we generate a derived exception (and so
6969      * should ignore further stack faults trying to process
6970      * that derived exception.)
6971      */
6972     bool stacked_ok;
6973     CPUARMState *env = &cpu->env;
6974     uint32_t xpsr = xpsr_read(env);
6975     uint32_t frameptr = env->regs[13];
6976     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6977 
6978     /* Align stack pointer if the guest wants that */
6979     if ((frameptr & 4) &&
6980         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6981         frameptr -= 4;
6982         xpsr |= XPSR_SPREALIGN;
6983     }
6984 
6985     frameptr -= 0x20;
6986 
6987     /* Write as much of the stack frame as we can. If we fail a stack
6988      * write this will result in a derived exception being pended
6989      * (which may be taken in preference to the one we started with
6990      * if it has higher priority).
6991      */
6992     stacked_ok =
6993         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
6994         v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
6995         v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
6996         v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
6997         v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
6998         v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
6999         v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
7000         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
7001 
7002     /* Update SP regardless of whether any of the stack accesses failed.
7003      * When we implement v8M stack limit checking then this attempt to
7004      * update SP might also fail and result in a derived exception.
7005      */
7006     env->regs[13] = frameptr;
7007 
7008     return !stacked_ok;
7009 }
7010 
7011 static void do_v7m_exception_exit(ARMCPU *cpu)
7012 {
7013     CPUARMState *env = &cpu->env;
7014     uint32_t excret;
7015     uint32_t xpsr;
7016     bool ufault = false;
7017     bool sfault = false;
7018     bool return_to_sp_process;
7019     bool return_to_handler;
7020     bool rettobase = false;
7021     bool exc_secure = false;
7022     bool return_to_secure;
7023 
7024     /* If we're not in Handler mode then jumps to magic exception-exit
7025      * addresses don't have magic behaviour. However for the v8M
7026      * security extensions the magic secure-function-return has to
7027      * work in thread mode too, so to avoid doing an extra check in
7028      * the generated code we allow exception-exit magic to also cause the
7029      * internal exception and bring us here in thread mode. Correct code
7030      * will never try to do this (the following insn fetch will always
7031      * fault) so we the overhead of having taken an unnecessary exception
7032      * doesn't matter.
7033      */
7034     if (!arm_v7m_is_handler_mode(env)) {
7035         return;
7036     }
7037 
7038     /* In the spec pseudocode ExceptionReturn() is called directly
7039      * from BXWritePC() and gets the full target PC value including
7040      * bit zero. In QEMU's implementation we treat it as a normal
7041      * jump-to-register (which is then caught later on), and so split
7042      * the target value up between env->regs[15] and env->thumb in
7043      * gen_bx(). Reconstitute it.
7044      */
7045     excret = env->regs[15];
7046     if (env->thumb) {
7047         excret |= 1;
7048     }
7049 
7050     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
7051                   " previous exception %d\n",
7052                   excret, env->v7m.exception);
7053 
7054     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
7055         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
7056                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
7057                       excret);
7058     }
7059 
7060     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7061         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
7062          * we pick which FAULTMASK to clear.
7063          */
7064         if (!env->v7m.secure &&
7065             ((excret & R_V7M_EXCRET_ES_MASK) ||
7066              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
7067             sfault = 1;
7068             /* For all other purposes, treat ES as 0 (R_HXSR) */
7069             excret &= ~R_V7M_EXCRET_ES_MASK;
7070         }
7071         exc_secure = excret & R_V7M_EXCRET_ES_MASK;
7072     }
7073 
7074     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
7075         /* Auto-clear FAULTMASK on return from other than NMI.
7076          * If the security extension is implemented then this only
7077          * happens if the raw execution priority is >= 0; the
7078          * value of the ES bit in the exception return value indicates
7079          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
7080          */
7081         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7082             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
7083                 env->v7m.faultmask[exc_secure] = 0;
7084             }
7085         } else {
7086             env->v7m.faultmask[M_REG_NS] = 0;
7087         }
7088     }
7089 
7090     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
7091                                      exc_secure)) {
7092     case -1:
7093         /* attempt to exit an exception that isn't active */
7094         ufault = true;
7095         break;
7096     case 0:
7097         /* still an irq active now */
7098         break;
7099     case 1:
7100         /* we returned to base exception level, no nesting.
7101          * (In the pseudocode this is written using "NestedActivation != 1"
7102          * where we have 'rettobase == false'.)
7103          */
7104         rettobase = true;
7105         break;
7106     default:
7107         g_assert_not_reached();
7108     }
7109 
7110     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7111     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7112     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7113         (excret & R_V7M_EXCRET_S_MASK);
7114 
7115     if (arm_feature(env, ARM_FEATURE_V8)) {
7116         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7117             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7118              * we choose to take the UsageFault.
7119              */
7120             if ((excret & R_V7M_EXCRET_S_MASK) ||
7121                 (excret & R_V7M_EXCRET_ES_MASK) ||
7122                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7123                 ufault = true;
7124             }
7125         }
7126         if (excret & R_V7M_EXCRET_RES0_MASK) {
7127             ufault = true;
7128         }
7129     } else {
7130         /* For v7M we only recognize certain combinations of the low bits */
7131         switch (excret & 0xf) {
7132         case 1: /* Return to Handler */
7133             break;
7134         case 13: /* Return to Thread using Process stack */
7135         case 9: /* Return to Thread using Main stack */
7136             /* We only need to check NONBASETHRDENA for v7M, because in
7137              * v8M this bit does not exist (it is RES1).
7138              */
7139             if (!rettobase &&
7140                 !(env->v7m.ccr[env->v7m.secure] &
7141                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
7142                 ufault = true;
7143             }
7144             break;
7145         default:
7146             ufault = true;
7147         }
7148     }
7149 
7150     /*
7151      * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7152      * Handler mode (and will be until we write the new XPSR.Interrupt
7153      * field) this does not switch around the current stack pointer.
7154      * We must do this before we do any kind of tailchaining, including
7155      * for the derived exceptions on integrity check failures, or we will
7156      * give the guest an incorrect EXCRET.SPSEL value on exception entry.
7157      */
7158     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7159 
7160     if (sfault) {
7161         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7162         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7163         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7164                       "stackframe: failed EXC_RETURN.ES validity check\n");
7165         v7m_exception_taken(cpu, excret, true, false);
7166         return;
7167     }
7168 
7169     if (ufault) {
7170         /* Bad exception return: instead of popping the exception
7171          * stack, directly take a usage fault on the current stack.
7172          */
7173         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7174         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7175         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7176                       "stackframe: failed exception return integrity check\n");
7177         v7m_exception_taken(cpu, excret, true, false);
7178         return;
7179     }
7180 
7181     /*
7182      * Tailchaining: if there is currently a pending exception that
7183      * is high enough priority to preempt execution at the level we're
7184      * about to return to, then just directly take that exception now,
7185      * avoiding an unstack-and-then-stack. Note that now we have
7186      * deactivated the previous exception by calling armv7m_nvic_complete_irq()
7187      * our current execution priority is already the execution priority we are
7188      * returning to -- none of the state we would unstack or set based on
7189      * the EXCRET value affects it.
7190      */
7191     if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
7192         qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
7193         v7m_exception_taken(cpu, excret, true, false);
7194         return;
7195     }
7196 
7197     switch_v7m_security_state(env, return_to_secure);
7198 
7199     {
7200         /* The stack pointer we should be reading the exception frame from
7201          * depends on bits in the magic exception return type value (and
7202          * for v8M isn't necessarily the stack pointer we will eventually
7203          * end up resuming execution with). Get a pointer to the location
7204          * in the CPU state struct where the SP we need is currently being
7205          * stored; we will use and modify it in place.
7206          * We use this limited C variable scope so we don't accidentally
7207          * use 'frame_sp_p' after we do something that makes it invalid.
7208          */
7209         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7210                                               return_to_secure,
7211                                               !return_to_handler,
7212                                               return_to_sp_process);
7213         uint32_t frameptr = *frame_sp_p;
7214         bool pop_ok = true;
7215         ARMMMUIdx mmu_idx;
7216         bool return_to_priv = return_to_handler ||
7217             !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
7218 
7219         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7220                                                         return_to_priv);
7221 
7222         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7223             arm_feature(env, ARM_FEATURE_V8)) {
7224             qemu_log_mask(LOG_GUEST_ERROR,
7225                           "M profile exception return with non-8-aligned SP "
7226                           "for destination state is UNPREDICTABLE\n");
7227         }
7228 
7229         /* Do we need to pop callee-saved registers? */
7230         if (return_to_secure &&
7231             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7232              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7233             uint32_t expected_sig = 0xfefa125b;
7234             uint32_t actual_sig;
7235 
7236             pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
7237 
7238             if (pop_ok && expected_sig != actual_sig) {
7239                 /* Take a SecureFault on the current stack */
7240                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7241                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7242                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7243                               "stackframe: failed exception return integrity "
7244                               "signature check\n");
7245                 v7m_exception_taken(cpu, excret, true, false);
7246                 return;
7247             }
7248 
7249             pop_ok = pop_ok &&
7250                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7251                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7252                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7253                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7254                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7255                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7256                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7257                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7258                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7259 
7260             frameptr += 0x28;
7261         }
7262 
7263         /* Pop registers */
7264         pop_ok = pop_ok &&
7265             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7266             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7267             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7268             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7269             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7270             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7271             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7272             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7273 
7274         if (!pop_ok) {
7275             /* v7m_stack_read() pended a fault, so take it (as a tail
7276              * chained exception on the same stack frame)
7277              */
7278             qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
7279             v7m_exception_taken(cpu, excret, true, false);
7280             return;
7281         }
7282 
7283         /* Returning from an exception with a PC with bit 0 set is defined
7284          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7285          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7286          * the lsbit, and there are several RTOSes out there which incorrectly
7287          * assume the r15 in the stack frame should be a Thumb-style "lsbit
7288          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7289          * complain about the badly behaved guest.
7290          */
7291         if (env->regs[15] & 1) {
7292             env->regs[15] &= ~1U;
7293             if (!arm_feature(env, ARM_FEATURE_V8)) {
7294                 qemu_log_mask(LOG_GUEST_ERROR,
7295                               "M profile return from interrupt with misaligned "
7296                               "PC is UNPREDICTABLE on v7M\n");
7297             }
7298         }
7299 
7300         if (arm_feature(env, ARM_FEATURE_V8)) {
7301             /* For v8M we have to check whether the xPSR exception field
7302              * matches the EXCRET value for return to handler/thread
7303              * before we commit to changing the SP and xPSR.
7304              */
7305             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7306             if (return_to_handler != will_be_handler) {
7307                 /* Take an INVPC UsageFault on the current stack.
7308                  * By this point we will have switched to the security state
7309                  * for the background state, so this UsageFault will target
7310                  * that state.
7311                  */
7312                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7313                                         env->v7m.secure);
7314                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7315                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7316                               "stackframe: failed exception return integrity "
7317                               "check\n");
7318                 v7m_exception_taken(cpu, excret, true, false);
7319                 return;
7320             }
7321         }
7322 
7323         /* Commit to consuming the stack frame */
7324         frameptr += 0x20;
7325         /* Undo stack alignment (the SPREALIGN bit indicates that the original
7326          * pre-exception SP was not 8-aligned and we added a padding word to
7327          * align it, so we undo this by ORing in the bit that increases it
7328          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7329          * would work too but a logical OR is how the pseudocode specifies it.)
7330          */
7331         if (xpsr & XPSR_SPREALIGN) {
7332             frameptr |= 4;
7333         }
7334         *frame_sp_p = frameptr;
7335     }
7336     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7337     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7338 
7339     /* The restored xPSR exception field will be zero if we're
7340      * resuming in Thread mode. If that doesn't match what the
7341      * exception return excret specified then this is a UsageFault.
7342      * v7M requires we make this check here; v8M did it earlier.
7343      */
7344     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7345         /* Take an INVPC UsageFault by pushing the stack again;
7346          * we know we're v7M so this is never a Secure UsageFault.
7347          */
7348         bool ignore_stackfaults;
7349 
7350         assert(!arm_feature(env, ARM_FEATURE_V8));
7351         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7352         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7353         ignore_stackfaults = v7m_push_stack(cpu);
7354         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7355                       "failed exception return integrity check\n");
7356         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7357         return;
7358     }
7359 
7360     /* Otherwise, we have a successful exception exit. */
7361     arm_clear_exclusive(env);
7362     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7363 }
7364 
7365 static bool do_v7m_function_return(ARMCPU *cpu)
7366 {
7367     /* v8M security extensions magic function return.
7368      * We may either:
7369      *  (1) throw an exception (longjump)
7370      *  (2) return true if we successfully handled the function return
7371      *  (3) return false if we failed a consistency check and have
7372      *      pended a UsageFault that needs to be taken now
7373      *
7374      * At this point the magic return value is split between env->regs[15]
7375      * and env->thumb. We don't bother to reconstitute it because we don't
7376      * need it (all values are handled the same way).
7377      */
7378     CPUARMState *env = &cpu->env;
7379     uint32_t newpc, newpsr, newpsr_exc;
7380 
7381     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7382 
7383     {
7384         bool threadmode, spsel;
7385         TCGMemOpIdx oi;
7386         ARMMMUIdx mmu_idx;
7387         uint32_t *frame_sp_p;
7388         uint32_t frameptr;
7389 
7390         /* Pull the return address and IPSR from the Secure stack */
7391         threadmode = !arm_v7m_is_handler_mode(env);
7392         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7393 
7394         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7395         frameptr = *frame_sp_p;
7396 
7397         /* These loads may throw an exception (for MPU faults). We want to
7398          * do them as secure, so work out what MMU index that is.
7399          */
7400         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7401         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7402         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7403         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7404 
7405         /* Consistency checks on new IPSR */
7406         newpsr_exc = newpsr & XPSR_EXCP;
7407         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7408               (env->v7m.exception == 1 && newpsr_exc != 0))) {
7409             /* Pend the fault and tell our caller to take it */
7410             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7411             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7412                                     env->v7m.secure);
7413             qemu_log_mask(CPU_LOG_INT,
7414                           "...taking INVPC UsageFault: "
7415                           "IPSR consistency check failed\n");
7416             return false;
7417         }
7418 
7419         *frame_sp_p = frameptr + 8;
7420     }
7421 
7422     /* This invalidates frame_sp_p */
7423     switch_v7m_security_state(env, true);
7424     env->v7m.exception = newpsr_exc;
7425     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7426     if (newpsr & XPSR_SFPA) {
7427         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7428     }
7429     xpsr_write(env, 0, XPSR_IT);
7430     env->thumb = newpc & 1;
7431     env->regs[15] = newpc & ~1;
7432 
7433     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7434     return true;
7435 }
7436 
7437 static void arm_log_exception(int idx)
7438 {
7439     if (qemu_loglevel_mask(CPU_LOG_INT)) {
7440         const char *exc = NULL;
7441         static const char * const excnames[] = {
7442             [EXCP_UDEF] = "Undefined Instruction",
7443             [EXCP_SWI] = "SVC",
7444             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7445             [EXCP_DATA_ABORT] = "Data Abort",
7446             [EXCP_IRQ] = "IRQ",
7447             [EXCP_FIQ] = "FIQ",
7448             [EXCP_BKPT] = "Breakpoint",
7449             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7450             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7451             [EXCP_HVC] = "Hypervisor Call",
7452             [EXCP_HYP_TRAP] = "Hypervisor Trap",
7453             [EXCP_SMC] = "Secure Monitor Call",
7454             [EXCP_VIRQ] = "Virtual IRQ",
7455             [EXCP_VFIQ] = "Virtual FIQ",
7456             [EXCP_SEMIHOST] = "Semihosting call",
7457             [EXCP_NOCP] = "v7M NOCP UsageFault",
7458             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7459         };
7460 
7461         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7462             exc = excnames[idx];
7463         }
7464         if (!exc) {
7465             exc = "unknown";
7466         }
7467         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7468     }
7469 }
7470 
7471 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7472                                uint32_t addr, uint16_t *insn)
7473 {
7474     /* Load a 16-bit portion of a v7M instruction, returning true on success,
7475      * or false on failure (in which case we will have pended the appropriate
7476      * exception).
7477      * We need to do the instruction fetch's MPU and SAU checks
7478      * like this because there is no MMU index that would allow
7479      * doing the load with a single function call. Instead we must
7480      * first check that the security attributes permit the load
7481      * and that they don't mismatch on the two halves of the instruction,
7482      * and then we do the load as a secure load (ie using the security
7483      * attributes of the address, not the CPU, as architecturally required).
7484      */
7485     CPUState *cs = CPU(cpu);
7486     CPUARMState *env = &cpu->env;
7487     V8M_SAttributes sattrs = {};
7488     MemTxAttrs attrs = {};
7489     ARMMMUFaultInfo fi = {};
7490     MemTxResult txres;
7491     target_ulong page_size;
7492     hwaddr physaddr;
7493     int prot;
7494 
7495     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7496     if (!sattrs.nsc || sattrs.ns) {
7497         /* This must be the second half of the insn, and it straddles a
7498          * region boundary with the second half not being S&NSC.
7499          */
7500         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7501         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7502         qemu_log_mask(CPU_LOG_INT,
7503                       "...really SecureFault with SFSR.INVEP\n");
7504         return false;
7505     }
7506     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7507                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7508         /* the MPU lookup failed */
7509         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7510         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7511         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7512         return false;
7513     }
7514     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7515                                  attrs, &txres);
7516     if (txres != MEMTX_OK) {
7517         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7518         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7519         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7520         return false;
7521     }
7522     return true;
7523 }
7524 
7525 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7526 {
7527     /* Check whether this attempt to execute code in a Secure & NS-Callable
7528      * memory region is for an SG instruction; if so, then emulate the
7529      * effect of the SG instruction and return true. Otherwise pend
7530      * the correct kind of exception and return false.
7531      */
7532     CPUARMState *env = &cpu->env;
7533     ARMMMUIdx mmu_idx;
7534     uint16_t insn;
7535 
7536     /* We should never get here unless get_phys_addr_pmsav8() caused
7537      * an exception for NS executing in S&NSC memory.
7538      */
7539     assert(!env->v7m.secure);
7540     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7541 
7542     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7543     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7544 
7545     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7546         return false;
7547     }
7548 
7549     if (!env->thumb) {
7550         goto gen_invep;
7551     }
7552 
7553     if (insn != 0xe97f) {
7554         /* Not an SG instruction first half (we choose the IMPDEF
7555          * early-SG-check option).
7556          */
7557         goto gen_invep;
7558     }
7559 
7560     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7561         return false;
7562     }
7563 
7564     if (insn != 0xe97f) {
7565         /* Not an SG instruction second half (yes, both halves of the SG
7566          * insn have the same hex value)
7567          */
7568         goto gen_invep;
7569     }
7570 
7571     /* OK, we have confirmed that we really have an SG instruction.
7572      * We know we're NS in S memory so don't need to repeat those checks.
7573      */
7574     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7575                   ", executing it\n", env->regs[15]);
7576     env->regs[14] &= ~1;
7577     switch_v7m_security_state(env, true);
7578     xpsr_write(env, 0, XPSR_IT);
7579     env->regs[15] += 4;
7580     return true;
7581 
7582 gen_invep:
7583     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7584     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7585     qemu_log_mask(CPU_LOG_INT,
7586                   "...really SecureFault with SFSR.INVEP\n");
7587     return false;
7588 }
7589 
7590 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7591 {
7592     ARMCPU *cpu = ARM_CPU(cs);
7593     CPUARMState *env = &cpu->env;
7594     uint32_t lr;
7595     bool ignore_stackfaults;
7596 
7597     arm_log_exception(cs->exception_index);
7598 
7599     /* For exceptions we just mark as pending on the NVIC, and let that
7600        handle it.  */
7601     switch (cs->exception_index) {
7602     case EXCP_UDEF:
7603         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7604         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7605         break;
7606     case EXCP_NOCP:
7607         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7608         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7609         break;
7610     case EXCP_INVSTATE:
7611         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7612         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7613         break;
7614     case EXCP_SWI:
7615         /* The PC already points to the next instruction.  */
7616         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7617         break;
7618     case EXCP_PREFETCH_ABORT:
7619     case EXCP_DATA_ABORT:
7620         /* Note that for M profile we don't have a guest facing FSR, but
7621          * the env->exception.fsr will be populated by the code that
7622          * raises the fault, in the A profile short-descriptor format.
7623          */
7624         switch (env->exception.fsr & 0xf) {
7625         case M_FAKE_FSR_NSC_EXEC:
7626             /* Exception generated when we try to execute code at an address
7627              * which is marked as Secure & Non-Secure Callable and the CPU
7628              * is in the Non-Secure state. The only instruction which can
7629              * be executed like this is SG (and that only if both halves of
7630              * the SG instruction have the same security attributes.)
7631              * Everything else must generate an INVEP SecureFault, so we
7632              * emulate the SG instruction here.
7633              */
7634             if (v7m_handle_execute_nsc(cpu)) {
7635                 return;
7636             }
7637             break;
7638         case M_FAKE_FSR_SFAULT:
7639             /* Various flavours of SecureFault for attempts to execute or
7640              * access data in the wrong security state.
7641              */
7642             switch (cs->exception_index) {
7643             case EXCP_PREFETCH_ABORT:
7644                 if (env->v7m.secure) {
7645                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7646                     qemu_log_mask(CPU_LOG_INT,
7647                                   "...really SecureFault with SFSR.INVTRAN\n");
7648                 } else {
7649                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7650                     qemu_log_mask(CPU_LOG_INT,
7651                                   "...really SecureFault with SFSR.INVEP\n");
7652                 }
7653                 break;
7654             case EXCP_DATA_ABORT:
7655                 /* This must be an NS access to S memory */
7656                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7657                 qemu_log_mask(CPU_LOG_INT,
7658                               "...really SecureFault with SFSR.AUVIOL\n");
7659                 break;
7660             }
7661             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7662             break;
7663         case 0x8: /* External Abort */
7664             switch (cs->exception_index) {
7665             case EXCP_PREFETCH_ABORT:
7666                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7667                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7668                 break;
7669             case EXCP_DATA_ABORT:
7670                 env->v7m.cfsr[M_REG_NS] |=
7671                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7672                 env->v7m.bfar = env->exception.vaddress;
7673                 qemu_log_mask(CPU_LOG_INT,
7674                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
7675                               env->v7m.bfar);
7676                 break;
7677             }
7678             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7679             break;
7680         default:
7681             /* All other FSR values are either MPU faults or "can't happen
7682              * for M profile" cases.
7683              */
7684             switch (cs->exception_index) {
7685             case EXCP_PREFETCH_ABORT:
7686                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7687                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7688                 break;
7689             case EXCP_DATA_ABORT:
7690                 env->v7m.cfsr[env->v7m.secure] |=
7691                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7692                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7693                 qemu_log_mask(CPU_LOG_INT,
7694                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7695                               env->v7m.mmfar[env->v7m.secure]);
7696                 break;
7697             }
7698             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7699                                     env->v7m.secure);
7700             break;
7701         }
7702         break;
7703     case EXCP_BKPT:
7704         if (semihosting_enabled()) {
7705             int nr;
7706             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7707             if (nr == 0xab) {
7708                 env->regs[15] += 2;
7709                 qemu_log_mask(CPU_LOG_INT,
7710                               "...handling as semihosting call 0x%x\n",
7711                               env->regs[0]);
7712                 env->regs[0] = do_arm_semihosting(env);
7713                 return;
7714             }
7715         }
7716         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7717         break;
7718     case EXCP_IRQ:
7719         break;
7720     case EXCP_EXCEPTION_EXIT:
7721         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7722             /* Must be v8M security extension function return */
7723             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7724             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7725             if (do_v7m_function_return(cpu)) {
7726                 return;
7727             }
7728         } else {
7729             do_v7m_exception_exit(cpu);
7730             return;
7731         }
7732         break;
7733     default:
7734         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7735         return; /* Never happens.  Keep compiler happy.  */
7736     }
7737 
7738     if (arm_feature(env, ARM_FEATURE_V8)) {
7739         lr = R_V7M_EXCRET_RES1_MASK |
7740             R_V7M_EXCRET_DCRS_MASK |
7741             R_V7M_EXCRET_FTYPE_MASK;
7742         /* The S bit indicates whether we should return to Secure
7743          * or NonSecure (ie our current state).
7744          * The ES bit indicates whether we're taking this exception
7745          * to Secure or NonSecure (ie our target state). We set it
7746          * later, in v7m_exception_taken().
7747          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7748          * This corresponds to the ARM ARM pseudocode for v8M setting
7749          * some LR bits in PushStack() and some in ExceptionTaken();
7750          * the distinction matters for the tailchain cases where we
7751          * can take an exception without pushing the stack.
7752          */
7753         if (env->v7m.secure) {
7754             lr |= R_V7M_EXCRET_S_MASK;
7755         }
7756     } else {
7757         lr = R_V7M_EXCRET_RES1_MASK |
7758             R_V7M_EXCRET_S_MASK |
7759             R_V7M_EXCRET_DCRS_MASK |
7760             R_V7M_EXCRET_FTYPE_MASK |
7761             R_V7M_EXCRET_ES_MASK;
7762         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7763             lr |= R_V7M_EXCRET_SPSEL_MASK;
7764         }
7765     }
7766     if (!arm_v7m_is_handler_mode(env)) {
7767         lr |= R_V7M_EXCRET_MODE_MASK;
7768     }
7769 
7770     ignore_stackfaults = v7m_push_stack(cpu);
7771     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7772 }
7773 
7774 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7775  * register set.  This is necessary when switching between AArch32 and AArch64
7776  * execution state.
7777  */
7778 void aarch64_sync_32_to_64(CPUARMState *env)
7779 {
7780     int i;
7781     uint32_t mode = env->uncached_cpsr & CPSR_M;
7782 
7783     /* We can blanket copy R[0:7] to X[0:7] */
7784     for (i = 0; i < 8; i++) {
7785         env->xregs[i] = env->regs[i];
7786     }
7787 
7788     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7789      * Otherwise, they come from the banked user regs.
7790      */
7791     if (mode == ARM_CPU_MODE_FIQ) {
7792         for (i = 8; i < 13; i++) {
7793             env->xregs[i] = env->usr_regs[i - 8];
7794         }
7795     } else {
7796         for (i = 8; i < 13; i++) {
7797             env->xregs[i] = env->regs[i];
7798         }
7799     }
7800 
7801     /* Registers x13-x23 are the various mode SP and FP registers. Registers
7802      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7803      * from the mode banked register.
7804      */
7805     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7806         env->xregs[13] = env->regs[13];
7807         env->xregs[14] = env->regs[14];
7808     } else {
7809         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7810         /* HYP is an exception in that it is copied from r14 */
7811         if (mode == ARM_CPU_MODE_HYP) {
7812             env->xregs[14] = env->regs[14];
7813         } else {
7814             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7815         }
7816     }
7817 
7818     if (mode == ARM_CPU_MODE_HYP) {
7819         env->xregs[15] = env->regs[13];
7820     } else {
7821         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7822     }
7823 
7824     if (mode == ARM_CPU_MODE_IRQ) {
7825         env->xregs[16] = env->regs[14];
7826         env->xregs[17] = env->regs[13];
7827     } else {
7828         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7829         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7830     }
7831 
7832     if (mode == ARM_CPU_MODE_SVC) {
7833         env->xregs[18] = env->regs[14];
7834         env->xregs[19] = env->regs[13];
7835     } else {
7836         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7837         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7838     }
7839 
7840     if (mode == ARM_CPU_MODE_ABT) {
7841         env->xregs[20] = env->regs[14];
7842         env->xregs[21] = env->regs[13];
7843     } else {
7844         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7845         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7846     }
7847 
7848     if (mode == ARM_CPU_MODE_UND) {
7849         env->xregs[22] = env->regs[14];
7850         env->xregs[23] = env->regs[13];
7851     } else {
7852         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7853         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7854     }
7855 
7856     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7857      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7858      * FIQ bank for r8-r14.
7859      */
7860     if (mode == ARM_CPU_MODE_FIQ) {
7861         for (i = 24; i < 31; i++) {
7862             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7863         }
7864     } else {
7865         for (i = 24; i < 29; i++) {
7866             env->xregs[i] = env->fiq_regs[i - 24];
7867         }
7868         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7869         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7870     }
7871 
7872     env->pc = env->regs[15];
7873 }
7874 
7875 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7876  * register set.  This is necessary when switching between AArch32 and AArch64
7877  * execution state.
7878  */
7879 void aarch64_sync_64_to_32(CPUARMState *env)
7880 {
7881     int i;
7882     uint32_t mode = env->uncached_cpsr & CPSR_M;
7883 
7884     /* We can blanket copy X[0:7] to R[0:7] */
7885     for (i = 0; i < 8; i++) {
7886         env->regs[i] = env->xregs[i];
7887     }
7888 
7889     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7890      * Otherwise, we copy x8-x12 into the banked user regs.
7891      */
7892     if (mode == ARM_CPU_MODE_FIQ) {
7893         for (i = 8; i < 13; i++) {
7894             env->usr_regs[i - 8] = env->xregs[i];
7895         }
7896     } else {
7897         for (i = 8; i < 13; i++) {
7898             env->regs[i] = env->xregs[i];
7899         }
7900     }
7901 
7902     /* Registers r13 & r14 depend on the current mode.
7903      * If we are in a given mode, we copy the corresponding x registers to r13
7904      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7905      * for the mode.
7906      */
7907     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7908         env->regs[13] = env->xregs[13];
7909         env->regs[14] = env->xregs[14];
7910     } else {
7911         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7912 
7913         /* HYP is an exception in that it does not have its own banked r14 but
7914          * shares the USR r14
7915          */
7916         if (mode == ARM_CPU_MODE_HYP) {
7917             env->regs[14] = env->xregs[14];
7918         } else {
7919             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7920         }
7921     }
7922 
7923     if (mode == ARM_CPU_MODE_HYP) {
7924         env->regs[13] = env->xregs[15];
7925     } else {
7926         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7927     }
7928 
7929     if (mode == ARM_CPU_MODE_IRQ) {
7930         env->regs[14] = env->xregs[16];
7931         env->regs[13] = env->xregs[17];
7932     } else {
7933         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7934         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7935     }
7936 
7937     if (mode == ARM_CPU_MODE_SVC) {
7938         env->regs[14] = env->xregs[18];
7939         env->regs[13] = env->xregs[19];
7940     } else {
7941         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7942         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7943     }
7944 
7945     if (mode == ARM_CPU_MODE_ABT) {
7946         env->regs[14] = env->xregs[20];
7947         env->regs[13] = env->xregs[21];
7948     } else {
7949         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7950         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7951     }
7952 
7953     if (mode == ARM_CPU_MODE_UND) {
7954         env->regs[14] = env->xregs[22];
7955         env->regs[13] = env->xregs[23];
7956     } else {
7957         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7958         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7959     }
7960 
7961     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7962      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
7963      * FIQ bank for r8-r14.
7964      */
7965     if (mode == ARM_CPU_MODE_FIQ) {
7966         for (i = 24; i < 31; i++) {
7967             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
7968         }
7969     } else {
7970         for (i = 24; i < 29; i++) {
7971             env->fiq_regs[i - 24] = env->xregs[i];
7972         }
7973         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7974         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7975     }
7976 
7977     env->regs[15] = env->pc;
7978 }
7979 
7980 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7981 {
7982     ARMCPU *cpu = ARM_CPU(cs);
7983     CPUARMState *env = &cpu->env;
7984     uint32_t addr;
7985     uint32_t mask;
7986     int new_mode;
7987     uint32_t offset;
7988     uint32_t moe;
7989 
7990     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7991     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7992     case EC_BREAKPOINT:
7993     case EC_BREAKPOINT_SAME_EL:
7994         moe = 1;
7995         break;
7996     case EC_WATCHPOINT:
7997     case EC_WATCHPOINT_SAME_EL:
7998         moe = 10;
7999         break;
8000     case EC_AA32_BKPT:
8001         moe = 3;
8002         break;
8003     case EC_VECTORCATCH:
8004         moe = 5;
8005         break;
8006     default:
8007         moe = 0;
8008         break;
8009     }
8010 
8011     if (moe) {
8012         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8013     }
8014 
8015     /* TODO: Vectored interrupt controller.  */
8016     switch (cs->exception_index) {
8017     case EXCP_UDEF:
8018         new_mode = ARM_CPU_MODE_UND;
8019         addr = 0x04;
8020         mask = CPSR_I;
8021         if (env->thumb)
8022             offset = 2;
8023         else
8024             offset = 4;
8025         break;
8026     case EXCP_SWI:
8027         new_mode = ARM_CPU_MODE_SVC;
8028         addr = 0x08;
8029         mask = CPSR_I;
8030         /* The PC already points to the next instruction.  */
8031         offset = 0;
8032         break;
8033     case EXCP_BKPT:
8034         /* Fall through to prefetch abort.  */
8035     case EXCP_PREFETCH_ABORT:
8036         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8037         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8038         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8039                       env->exception.fsr, (uint32_t)env->exception.vaddress);
8040         new_mode = ARM_CPU_MODE_ABT;
8041         addr = 0x0c;
8042         mask = CPSR_A | CPSR_I;
8043         offset = 4;
8044         break;
8045     case EXCP_DATA_ABORT:
8046         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8047         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8048         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8049                       env->exception.fsr,
8050                       (uint32_t)env->exception.vaddress);
8051         new_mode = ARM_CPU_MODE_ABT;
8052         addr = 0x10;
8053         mask = CPSR_A | CPSR_I;
8054         offset = 8;
8055         break;
8056     case EXCP_IRQ:
8057         new_mode = ARM_CPU_MODE_IRQ;
8058         addr = 0x18;
8059         /* Disable IRQ and imprecise data aborts.  */
8060         mask = CPSR_A | CPSR_I;
8061         offset = 4;
8062         if (env->cp15.scr_el3 & SCR_IRQ) {
8063             /* IRQ routed to monitor mode */
8064             new_mode = ARM_CPU_MODE_MON;
8065             mask |= CPSR_F;
8066         }
8067         break;
8068     case EXCP_FIQ:
8069         new_mode = ARM_CPU_MODE_FIQ;
8070         addr = 0x1c;
8071         /* Disable FIQ, IRQ and imprecise data aborts.  */
8072         mask = CPSR_A | CPSR_I | CPSR_F;
8073         if (env->cp15.scr_el3 & SCR_FIQ) {
8074             /* FIQ routed to monitor mode */
8075             new_mode = ARM_CPU_MODE_MON;
8076         }
8077         offset = 4;
8078         break;
8079     case EXCP_VIRQ:
8080         new_mode = ARM_CPU_MODE_IRQ;
8081         addr = 0x18;
8082         /* Disable IRQ and imprecise data aborts.  */
8083         mask = CPSR_A | CPSR_I;
8084         offset = 4;
8085         break;
8086     case EXCP_VFIQ:
8087         new_mode = ARM_CPU_MODE_FIQ;
8088         addr = 0x1c;
8089         /* Disable FIQ, IRQ and imprecise data aborts.  */
8090         mask = CPSR_A | CPSR_I | CPSR_F;
8091         offset = 4;
8092         break;
8093     case EXCP_SMC:
8094         new_mode = ARM_CPU_MODE_MON;
8095         addr = 0x08;
8096         mask = CPSR_A | CPSR_I | CPSR_F;
8097         offset = 0;
8098         break;
8099     default:
8100         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8101         return; /* Never happens.  Keep compiler happy.  */
8102     }
8103 
8104     if (new_mode == ARM_CPU_MODE_MON) {
8105         addr += env->cp15.mvbar;
8106     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8107         /* High vectors. When enabled, base address cannot be remapped. */
8108         addr += 0xffff0000;
8109     } else {
8110         /* ARM v7 architectures provide a vector base address register to remap
8111          * the interrupt vector table.
8112          * This register is only followed in non-monitor mode, and is banked.
8113          * Note: only bits 31:5 are valid.
8114          */
8115         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8116     }
8117 
8118     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8119         env->cp15.scr_el3 &= ~SCR_NS;
8120     }
8121 
8122     switch_mode (env, new_mode);
8123     /* For exceptions taken to AArch32 we must clear the SS bit in both
8124      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8125      */
8126     env->uncached_cpsr &= ~PSTATE_SS;
8127     env->spsr = cpsr_read(env);
8128     /* Clear IT bits.  */
8129     env->condexec_bits = 0;
8130     /* Switch to the new mode, and to the correct instruction set.  */
8131     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8132     /* Set new mode endianness */
8133     env->uncached_cpsr &= ~CPSR_E;
8134     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8135         env->uncached_cpsr |= CPSR_E;
8136     }
8137     env->daif |= mask;
8138     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
8139      * and we should just guard the thumb mode on V4 */
8140     if (arm_feature(env, ARM_FEATURE_V4T)) {
8141         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8142     }
8143     env->regs[14] = env->regs[15] + offset;
8144     env->regs[15] = addr;
8145 }
8146 
8147 /* Handle exception entry to a target EL which is using AArch64 */
8148 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8149 {
8150     ARMCPU *cpu = ARM_CPU(cs);
8151     CPUARMState *env = &cpu->env;
8152     unsigned int new_el = env->exception.target_el;
8153     target_ulong addr = env->cp15.vbar_el[new_el];
8154     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8155 
8156     if (arm_current_el(env) < new_el) {
8157         /* Entry vector offset depends on whether the implemented EL
8158          * immediately lower than the target level is using AArch32 or AArch64
8159          */
8160         bool is_aa64;
8161 
8162         switch (new_el) {
8163         case 3:
8164             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8165             break;
8166         case 2:
8167             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8168             break;
8169         case 1:
8170             is_aa64 = is_a64(env);
8171             break;
8172         default:
8173             g_assert_not_reached();
8174         }
8175 
8176         if (is_aa64) {
8177             addr += 0x400;
8178         } else {
8179             addr += 0x600;
8180         }
8181     } else if (pstate_read(env) & PSTATE_SP) {
8182         addr += 0x200;
8183     }
8184 
8185     switch (cs->exception_index) {
8186     case EXCP_PREFETCH_ABORT:
8187     case EXCP_DATA_ABORT:
8188         env->cp15.far_el[new_el] = env->exception.vaddress;
8189         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8190                       env->cp15.far_el[new_el]);
8191         /* fall through */
8192     case EXCP_BKPT:
8193     case EXCP_UDEF:
8194     case EXCP_SWI:
8195     case EXCP_HVC:
8196     case EXCP_HYP_TRAP:
8197     case EXCP_SMC:
8198         env->cp15.esr_el[new_el] = env->exception.syndrome;
8199         break;
8200     case EXCP_IRQ:
8201     case EXCP_VIRQ:
8202         addr += 0x80;
8203         break;
8204     case EXCP_FIQ:
8205     case EXCP_VFIQ:
8206         addr += 0x100;
8207         break;
8208     case EXCP_SEMIHOST:
8209         qemu_log_mask(CPU_LOG_INT,
8210                       "...handling as semihosting call 0x%" PRIx64 "\n",
8211                       env->xregs[0]);
8212         env->xregs[0] = do_arm_semihosting(env);
8213         return;
8214     default:
8215         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8216     }
8217 
8218     if (is_a64(env)) {
8219         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8220         aarch64_save_sp(env, arm_current_el(env));
8221         env->elr_el[new_el] = env->pc;
8222     } else {
8223         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8224         env->elr_el[new_el] = env->regs[15];
8225 
8226         aarch64_sync_32_to_64(env);
8227 
8228         env->condexec_bits = 0;
8229     }
8230     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8231                   env->elr_el[new_el]);
8232 
8233     pstate_write(env, PSTATE_DAIF | new_mode);
8234     env->aarch64 = 1;
8235     aarch64_restore_sp(env, new_el);
8236 
8237     env->pc = addr;
8238 
8239     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8240                   new_el, env->pc, pstate_read(env));
8241 }
8242 
8243 static inline bool check_for_semihosting(CPUState *cs)
8244 {
8245     /* Check whether this exception is a semihosting call; if so
8246      * then handle it and return true; otherwise return false.
8247      */
8248     ARMCPU *cpu = ARM_CPU(cs);
8249     CPUARMState *env = &cpu->env;
8250 
8251     if (is_a64(env)) {
8252         if (cs->exception_index == EXCP_SEMIHOST) {
8253             /* This is always the 64-bit semihosting exception.
8254              * The "is this usermode" and "is semihosting enabled"
8255              * checks have been done at translate time.
8256              */
8257             qemu_log_mask(CPU_LOG_INT,
8258                           "...handling as semihosting call 0x%" PRIx64 "\n",
8259                           env->xregs[0]);
8260             env->xregs[0] = do_arm_semihosting(env);
8261             return true;
8262         }
8263         return false;
8264     } else {
8265         uint32_t imm;
8266 
8267         /* Only intercept calls from privileged modes, to provide some
8268          * semblance of security.
8269          */
8270         if (cs->exception_index != EXCP_SEMIHOST &&
8271             (!semihosting_enabled() ||
8272              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8273             return false;
8274         }
8275 
8276         switch (cs->exception_index) {
8277         case EXCP_SEMIHOST:
8278             /* This is always a semihosting call; the "is this usermode"
8279              * and "is semihosting enabled" checks have been done at
8280              * translate time.
8281              */
8282             break;
8283         case EXCP_SWI:
8284             /* Check for semihosting interrupt.  */
8285             if (env->thumb) {
8286                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8287                     & 0xff;
8288                 if (imm == 0xab) {
8289                     break;
8290                 }
8291             } else {
8292                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8293                     & 0xffffff;
8294                 if (imm == 0x123456) {
8295                     break;
8296                 }
8297             }
8298             return false;
8299         case EXCP_BKPT:
8300             /* See if this is a semihosting syscall.  */
8301             if (env->thumb) {
8302                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8303                     & 0xff;
8304                 if (imm == 0xab) {
8305                     env->regs[15] += 2;
8306                     break;
8307                 }
8308             }
8309             return false;
8310         default:
8311             return false;
8312         }
8313 
8314         qemu_log_mask(CPU_LOG_INT,
8315                       "...handling as semihosting call 0x%x\n",
8316                       env->regs[0]);
8317         env->regs[0] = do_arm_semihosting(env);
8318         return true;
8319     }
8320 }
8321 
8322 /* Handle a CPU exception for A and R profile CPUs.
8323  * Do any appropriate logging, handle PSCI calls, and then hand off
8324  * to the AArch64-entry or AArch32-entry function depending on the
8325  * target exception level's register width.
8326  */
8327 void arm_cpu_do_interrupt(CPUState *cs)
8328 {
8329     ARMCPU *cpu = ARM_CPU(cs);
8330     CPUARMState *env = &cpu->env;
8331     unsigned int new_el = env->exception.target_el;
8332 
8333     assert(!arm_feature(env, ARM_FEATURE_M));
8334 
8335     arm_log_exception(cs->exception_index);
8336     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8337                   new_el);
8338     if (qemu_loglevel_mask(CPU_LOG_INT)
8339         && !excp_is_internal(cs->exception_index)) {
8340         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8341                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
8342                       env->exception.syndrome);
8343     }
8344 
8345     if (arm_is_psci_call(cpu, cs->exception_index)) {
8346         arm_handle_psci_call(cpu);
8347         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8348         return;
8349     }
8350 
8351     /* Semihosting semantics depend on the register width of the
8352      * code that caused the exception, not the target exception level,
8353      * so must be handled here.
8354      */
8355     if (check_for_semihosting(cs)) {
8356         return;
8357     }
8358 
8359     /* Hooks may change global state so BQL should be held, also the
8360      * BQL needs to be held for any modification of
8361      * cs->interrupt_request.
8362      */
8363     g_assert(qemu_mutex_iothread_locked());
8364 
8365     arm_call_pre_el_change_hook(cpu);
8366 
8367     assert(!excp_is_internal(cs->exception_index));
8368     if (arm_el_is_aa64(env, new_el)) {
8369         arm_cpu_do_interrupt_aarch64(cs);
8370     } else {
8371         arm_cpu_do_interrupt_aarch32(cs);
8372     }
8373 
8374     arm_call_el_change_hook(cpu);
8375 
8376     if (!kvm_enabled()) {
8377         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8378     }
8379 }
8380 
8381 /* Return the exception level which controls this address translation regime */
8382 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8383 {
8384     switch (mmu_idx) {
8385     case ARMMMUIdx_S2NS:
8386     case ARMMMUIdx_S1E2:
8387         return 2;
8388     case ARMMMUIdx_S1E3:
8389         return 3;
8390     case ARMMMUIdx_S1SE0:
8391         return arm_el_is_aa64(env, 3) ? 1 : 3;
8392     case ARMMMUIdx_S1SE1:
8393     case ARMMMUIdx_S1NSE0:
8394     case ARMMMUIdx_S1NSE1:
8395     case ARMMMUIdx_MPrivNegPri:
8396     case ARMMMUIdx_MUserNegPri:
8397     case ARMMMUIdx_MPriv:
8398     case ARMMMUIdx_MUser:
8399     case ARMMMUIdx_MSPrivNegPri:
8400     case ARMMMUIdx_MSUserNegPri:
8401     case ARMMMUIdx_MSPriv:
8402     case ARMMMUIdx_MSUser:
8403         return 1;
8404     default:
8405         g_assert_not_reached();
8406     }
8407 }
8408 
8409 /* Return the SCTLR value which controls this address translation regime */
8410 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8411 {
8412     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8413 }
8414 
8415 /* Return true if the specified stage of address translation is disabled */
8416 static inline bool regime_translation_disabled(CPUARMState *env,
8417                                                ARMMMUIdx mmu_idx)
8418 {
8419     if (arm_feature(env, ARM_FEATURE_M)) {
8420         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8421                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8422         case R_V7M_MPU_CTRL_ENABLE_MASK:
8423             /* Enabled, but not for HardFault and NMI */
8424             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8425         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8426             /* Enabled for all cases */
8427             return false;
8428         case 0:
8429         default:
8430             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8431              * we warned about that in armv7m_nvic.c when the guest set it.
8432              */
8433             return true;
8434         }
8435     }
8436 
8437     if (mmu_idx == ARMMMUIdx_S2NS) {
8438         return (env->cp15.hcr_el2 & HCR_VM) == 0;
8439     }
8440 
8441     if (env->cp15.hcr_el2 & HCR_TGE) {
8442         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8443         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8444             return true;
8445         }
8446     }
8447 
8448     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8449 }
8450 
8451 static inline bool regime_translation_big_endian(CPUARMState *env,
8452                                                  ARMMMUIdx mmu_idx)
8453 {
8454     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8455 }
8456 
8457 /* Return the TCR controlling this translation regime */
8458 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8459 {
8460     if (mmu_idx == ARMMMUIdx_S2NS) {
8461         return &env->cp15.vtcr_el2;
8462     }
8463     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8464 }
8465 
8466 /* Convert a possible stage1+2 MMU index into the appropriate
8467  * stage 1 MMU index
8468  */
8469 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8470 {
8471     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8472         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8473     }
8474     return mmu_idx;
8475 }
8476 
8477 /* Returns TBI0 value for current regime el */
8478 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8479 {
8480     TCR *tcr;
8481     uint32_t el;
8482 
8483     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8484      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8485      */
8486     mmu_idx = stage_1_mmu_idx(mmu_idx);
8487 
8488     tcr = regime_tcr(env, mmu_idx);
8489     el = regime_el(env, mmu_idx);
8490 
8491     if (el > 1) {
8492         return extract64(tcr->raw_tcr, 20, 1);
8493     } else {
8494         return extract64(tcr->raw_tcr, 37, 1);
8495     }
8496 }
8497 
8498 /* Returns TBI1 value for current regime el */
8499 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8500 {
8501     TCR *tcr;
8502     uint32_t el;
8503 
8504     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8505      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8506      */
8507     mmu_idx = stage_1_mmu_idx(mmu_idx);
8508 
8509     tcr = regime_tcr(env, mmu_idx);
8510     el = regime_el(env, mmu_idx);
8511 
8512     if (el > 1) {
8513         return 0;
8514     } else {
8515         return extract64(tcr->raw_tcr, 38, 1);
8516     }
8517 }
8518 
8519 /* Return the TTBR associated with this translation regime */
8520 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8521                                    int ttbrn)
8522 {
8523     if (mmu_idx == ARMMMUIdx_S2NS) {
8524         return env->cp15.vttbr_el2;
8525     }
8526     if (ttbrn == 0) {
8527         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8528     } else {
8529         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8530     }
8531 }
8532 
8533 /* Return true if the translation regime is using LPAE format page tables */
8534 static inline bool regime_using_lpae_format(CPUARMState *env,
8535                                             ARMMMUIdx mmu_idx)
8536 {
8537     int el = regime_el(env, mmu_idx);
8538     if (el == 2 || arm_el_is_aa64(env, el)) {
8539         return true;
8540     }
8541     if (arm_feature(env, ARM_FEATURE_LPAE)
8542         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8543         return true;
8544     }
8545     return false;
8546 }
8547 
8548 /* Returns true if the stage 1 translation regime is using LPAE format page
8549  * tables. Used when raising alignment exceptions, whose FSR changes depending
8550  * on whether the long or short descriptor format is in use. */
8551 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8552 {
8553     mmu_idx = stage_1_mmu_idx(mmu_idx);
8554 
8555     return regime_using_lpae_format(env, mmu_idx);
8556 }
8557 
8558 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8559 {
8560     switch (mmu_idx) {
8561     case ARMMMUIdx_S1SE0:
8562     case ARMMMUIdx_S1NSE0:
8563     case ARMMMUIdx_MUser:
8564     case ARMMMUIdx_MSUser:
8565     case ARMMMUIdx_MUserNegPri:
8566     case ARMMMUIdx_MSUserNegPri:
8567         return true;
8568     default:
8569         return false;
8570     case ARMMMUIdx_S12NSE0:
8571     case ARMMMUIdx_S12NSE1:
8572         g_assert_not_reached();
8573     }
8574 }
8575 
8576 /* Translate section/page access permissions to page
8577  * R/W protection flags
8578  *
8579  * @env:         CPUARMState
8580  * @mmu_idx:     MMU index indicating required translation regime
8581  * @ap:          The 3-bit access permissions (AP[2:0])
8582  * @domain_prot: The 2-bit domain access permissions
8583  */
8584 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8585                                 int ap, int domain_prot)
8586 {
8587     bool is_user = regime_is_user(env, mmu_idx);
8588 
8589     if (domain_prot == 3) {
8590         return PAGE_READ | PAGE_WRITE;
8591     }
8592 
8593     switch (ap) {
8594     case 0:
8595         if (arm_feature(env, ARM_FEATURE_V7)) {
8596             return 0;
8597         }
8598         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8599         case SCTLR_S:
8600             return is_user ? 0 : PAGE_READ;
8601         case SCTLR_R:
8602             return PAGE_READ;
8603         default:
8604             return 0;
8605         }
8606     case 1:
8607         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8608     case 2:
8609         if (is_user) {
8610             return PAGE_READ;
8611         } else {
8612             return PAGE_READ | PAGE_WRITE;
8613         }
8614     case 3:
8615         return PAGE_READ | PAGE_WRITE;
8616     case 4: /* Reserved.  */
8617         return 0;
8618     case 5:
8619         return is_user ? 0 : PAGE_READ;
8620     case 6:
8621         return PAGE_READ;
8622     case 7:
8623         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8624             return 0;
8625         }
8626         return PAGE_READ;
8627     default:
8628         g_assert_not_reached();
8629     }
8630 }
8631 
8632 /* Translate section/page access permissions to page
8633  * R/W protection flags.
8634  *
8635  * @ap:      The 2-bit simple AP (AP[2:1])
8636  * @is_user: TRUE if accessing from PL0
8637  */
8638 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8639 {
8640     switch (ap) {
8641     case 0:
8642         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8643     case 1:
8644         return PAGE_READ | PAGE_WRITE;
8645     case 2:
8646         return is_user ? 0 : PAGE_READ;
8647     case 3:
8648         return PAGE_READ;
8649     default:
8650         g_assert_not_reached();
8651     }
8652 }
8653 
8654 static inline int
8655 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8656 {
8657     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8658 }
8659 
8660 /* Translate S2 section/page access permissions to protection flags
8661  *
8662  * @env:     CPUARMState
8663  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8664  * @xn:      XN (execute-never) bit
8665  */
8666 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8667 {
8668     int prot = 0;
8669 
8670     if (s2ap & 1) {
8671         prot |= PAGE_READ;
8672     }
8673     if (s2ap & 2) {
8674         prot |= PAGE_WRITE;
8675     }
8676     if (!xn) {
8677         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8678             prot |= PAGE_EXEC;
8679         }
8680     }
8681     return prot;
8682 }
8683 
8684 /* Translate section/page access permissions to protection flags
8685  *
8686  * @env:     CPUARMState
8687  * @mmu_idx: MMU index indicating required translation regime
8688  * @is_aa64: TRUE if AArch64
8689  * @ap:      The 2-bit simple AP (AP[2:1])
8690  * @ns:      NS (non-secure) bit
8691  * @xn:      XN (execute-never) bit
8692  * @pxn:     PXN (privileged execute-never) bit
8693  */
8694 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8695                       int ap, int ns, int xn, int pxn)
8696 {
8697     bool is_user = regime_is_user(env, mmu_idx);
8698     int prot_rw, user_rw;
8699     bool have_wxn;
8700     int wxn = 0;
8701 
8702     assert(mmu_idx != ARMMMUIdx_S2NS);
8703 
8704     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8705     if (is_user) {
8706         prot_rw = user_rw;
8707     } else {
8708         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8709     }
8710 
8711     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8712         return prot_rw;
8713     }
8714 
8715     /* TODO have_wxn should be replaced with
8716      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8717      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8718      * compatible processors have EL2, which is required for [U]WXN.
8719      */
8720     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8721 
8722     if (have_wxn) {
8723         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8724     }
8725 
8726     if (is_aa64) {
8727         switch (regime_el(env, mmu_idx)) {
8728         case 1:
8729             if (!is_user) {
8730                 xn = pxn || (user_rw & PAGE_WRITE);
8731             }
8732             break;
8733         case 2:
8734         case 3:
8735             break;
8736         }
8737     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8738         switch (regime_el(env, mmu_idx)) {
8739         case 1:
8740         case 3:
8741             if (is_user) {
8742                 xn = xn || !(user_rw & PAGE_READ);
8743             } else {
8744                 int uwxn = 0;
8745                 if (have_wxn) {
8746                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8747                 }
8748                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8749                      (uwxn && (user_rw & PAGE_WRITE));
8750             }
8751             break;
8752         case 2:
8753             break;
8754         }
8755     } else {
8756         xn = wxn = 0;
8757     }
8758 
8759     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8760         return prot_rw;
8761     }
8762     return prot_rw | PAGE_EXEC;
8763 }
8764 
8765 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8766                                      uint32_t *table, uint32_t address)
8767 {
8768     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8769     TCR *tcr = regime_tcr(env, mmu_idx);
8770 
8771     if (address & tcr->mask) {
8772         if (tcr->raw_tcr & TTBCR_PD1) {
8773             /* Translation table walk disabled for TTBR1 */
8774             return false;
8775         }
8776         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8777     } else {
8778         if (tcr->raw_tcr & TTBCR_PD0) {
8779             /* Translation table walk disabled for TTBR0 */
8780             return false;
8781         }
8782         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8783     }
8784     *table |= (address >> 18) & 0x3ffc;
8785     return true;
8786 }
8787 
8788 /* Translate a S1 pagetable walk through S2 if needed.  */
8789 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8790                                hwaddr addr, MemTxAttrs txattrs,
8791                                ARMMMUFaultInfo *fi)
8792 {
8793     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8794         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8795         target_ulong s2size;
8796         hwaddr s2pa;
8797         int s2prot;
8798         int ret;
8799 
8800         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8801                                  &txattrs, &s2prot, &s2size, fi, NULL);
8802         if (ret) {
8803             assert(fi->type != ARMFault_None);
8804             fi->s2addr = addr;
8805             fi->stage2 = true;
8806             fi->s1ptw = true;
8807             return ~0;
8808         }
8809         addr = s2pa;
8810     }
8811     return addr;
8812 }
8813 
8814 /* All loads done in the course of a page table walk go through here. */
8815 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8816                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8817 {
8818     ARMCPU *cpu = ARM_CPU(cs);
8819     CPUARMState *env = &cpu->env;
8820     MemTxAttrs attrs = {};
8821     MemTxResult result = MEMTX_OK;
8822     AddressSpace *as;
8823     uint32_t data;
8824 
8825     attrs.secure = is_secure;
8826     as = arm_addressspace(cs, attrs);
8827     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8828     if (fi->s1ptw) {
8829         return 0;
8830     }
8831     if (regime_translation_big_endian(env, mmu_idx)) {
8832         data = address_space_ldl_be(as, addr, attrs, &result);
8833     } else {
8834         data = address_space_ldl_le(as, addr, attrs, &result);
8835     }
8836     if (result == MEMTX_OK) {
8837         return data;
8838     }
8839     fi->type = ARMFault_SyncExternalOnWalk;
8840     fi->ea = arm_extabort_type(result);
8841     return 0;
8842 }
8843 
8844 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8845                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8846 {
8847     ARMCPU *cpu = ARM_CPU(cs);
8848     CPUARMState *env = &cpu->env;
8849     MemTxAttrs attrs = {};
8850     MemTxResult result = MEMTX_OK;
8851     AddressSpace *as;
8852     uint64_t data;
8853 
8854     attrs.secure = is_secure;
8855     as = arm_addressspace(cs, attrs);
8856     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8857     if (fi->s1ptw) {
8858         return 0;
8859     }
8860     if (regime_translation_big_endian(env, mmu_idx)) {
8861         data = address_space_ldq_be(as, addr, attrs, &result);
8862     } else {
8863         data = address_space_ldq_le(as, addr, attrs, &result);
8864     }
8865     if (result == MEMTX_OK) {
8866         return data;
8867     }
8868     fi->type = ARMFault_SyncExternalOnWalk;
8869     fi->ea = arm_extabort_type(result);
8870     return 0;
8871 }
8872 
8873 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8874                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8875                              hwaddr *phys_ptr, int *prot,
8876                              target_ulong *page_size,
8877                              ARMMMUFaultInfo *fi)
8878 {
8879     CPUState *cs = CPU(arm_env_get_cpu(env));
8880     int level = 1;
8881     uint32_t table;
8882     uint32_t desc;
8883     int type;
8884     int ap;
8885     int domain = 0;
8886     int domain_prot;
8887     hwaddr phys_addr;
8888     uint32_t dacr;
8889 
8890     /* Pagetable walk.  */
8891     /* Lookup l1 descriptor.  */
8892     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8893         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8894         fi->type = ARMFault_Translation;
8895         goto do_fault;
8896     }
8897     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8898                        mmu_idx, fi);
8899     if (fi->type != ARMFault_None) {
8900         goto do_fault;
8901     }
8902     type = (desc & 3);
8903     domain = (desc >> 5) & 0x0f;
8904     if (regime_el(env, mmu_idx) == 1) {
8905         dacr = env->cp15.dacr_ns;
8906     } else {
8907         dacr = env->cp15.dacr_s;
8908     }
8909     domain_prot = (dacr >> (domain * 2)) & 3;
8910     if (type == 0) {
8911         /* Section translation fault.  */
8912         fi->type = ARMFault_Translation;
8913         goto do_fault;
8914     }
8915     if (type != 2) {
8916         level = 2;
8917     }
8918     if (domain_prot == 0 || domain_prot == 2) {
8919         fi->type = ARMFault_Domain;
8920         goto do_fault;
8921     }
8922     if (type == 2) {
8923         /* 1Mb section.  */
8924         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8925         ap = (desc >> 10) & 3;
8926         *page_size = 1024 * 1024;
8927     } else {
8928         /* Lookup l2 entry.  */
8929         if (type == 1) {
8930             /* Coarse pagetable.  */
8931             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8932         } else {
8933             /* Fine pagetable.  */
8934             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8935         }
8936         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8937                            mmu_idx, fi);
8938         if (fi->type != ARMFault_None) {
8939             goto do_fault;
8940         }
8941         switch (desc & 3) {
8942         case 0: /* Page translation fault.  */
8943             fi->type = ARMFault_Translation;
8944             goto do_fault;
8945         case 1: /* 64k page.  */
8946             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8947             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8948             *page_size = 0x10000;
8949             break;
8950         case 2: /* 4k page.  */
8951             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8952             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8953             *page_size = 0x1000;
8954             break;
8955         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8956             if (type == 1) {
8957                 /* ARMv6/XScale extended small page format */
8958                 if (arm_feature(env, ARM_FEATURE_XSCALE)
8959                     || arm_feature(env, ARM_FEATURE_V6)) {
8960                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8961                     *page_size = 0x1000;
8962                 } else {
8963                     /* UNPREDICTABLE in ARMv5; we choose to take a
8964                      * page translation fault.
8965                      */
8966                     fi->type = ARMFault_Translation;
8967                     goto do_fault;
8968                 }
8969             } else {
8970                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8971                 *page_size = 0x400;
8972             }
8973             ap = (desc >> 4) & 3;
8974             break;
8975         default:
8976             /* Never happens, but compiler isn't smart enough to tell.  */
8977             abort();
8978         }
8979     }
8980     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8981     *prot |= *prot ? PAGE_EXEC : 0;
8982     if (!(*prot & (1 << access_type))) {
8983         /* Access permission fault.  */
8984         fi->type = ARMFault_Permission;
8985         goto do_fault;
8986     }
8987     *phys_ptr = phys_addr;
8988     return false;
8989 do_fault:
8990     fi->domain = domain;
8991     fi->level = level;
8992     return true;
8993 }
8994 
8995 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8996                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8997                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8998                              target_ulong *page_size, ARMMMUFaultInfo *fi)
8999 {
9000     CPUState *cs = CPU(arm_env_get_cpu(env));
9001     int level = 1;
9002     uint32_t table;
9003     uint32_t desc;
9004     uint32_t xn;
9005     uint32_t pxn = 0;
9006     int type;
9007     int ap;
9008     int domain = 0;
9009     int domain_prot;
9010     hwaddr phys_addr;
9011     uint32_t dacr;
9012     bool ns;
9013 
9014     /* Pagetable walk.  */
9015     /* Lookup l1 descriptor.  */
9016     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9017         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9018         fi->type = ARMFault_Translation;
9019         goto do_fault;
9020     }
9021     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9022                        mmu_idx, fi);
9023     if (fi->type != ARMFault_None) {
9024         goto do_fault;
9025     }
9026     type = (desc & 3);
9027     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9028         /* Section translation fault, or attempt to use the encoding
9029          * which is Reserved on implementations without PXN.
9030          */
9031         fi->type = ARMFault_Translation;
9032         goto do_fault;
9033     }
9034     if ((type == 1) || !(desc & (1 << 18))) {
9035         /* Page or Section.  */
9036         domain = (desc >> 5) & 0x0f;
9037     }
9038     if (regime_el(env, mmu_idx) == 1) {
9039         dacr = env->cp15.dacr_ns;
9040     } else {
9041         dacr = env->cp15.dacr_s;
9042     }
9043     if (type == 1) {
9044         level = 2;
9045     }
9046     domain_prot = (dacr >> (domain * 2)) & 3;
9047     if (domain_prot == 0 || domain_prot == 2) {
9048         /* Section or Page domain fault */
9049         fi->type = ARMFault_Domain;
9050         goto do_fault;
9051     }
9052     if (type != 1) {
9053         if (desc & (1 << 18)) {
9054             /* Supersection.  */
9055             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9056             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9057             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9058             *page_size = 0x1000000;
9059         } else {
9060             /* Section.  */
9061             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9062             *page_size = 0x100000;
9063         }
9064         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9065         xn = desc & (1 << 4);
9066         pxn = desc & 1;
9067         ns = extract32(desc, 19, 1);
9068     } else {
9069         if (arm_feature(env, ARM_FEATURE_PXN)) {
9070             pxn = (desc >> 2) & 1;
9071         }
9072         ns = extract32(desc, 3, 1);
9073         /* Lookup l2 entry.  */
9074         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9075         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9076                            mmu_idx, fi);
9077         if (fi->type != ARMFault_None) {
9078             goto do_fault;
9079         }
9080         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9081         switch (desc & 3) {
9082         case 0: /* Page translation fault.  */
9083             fi->type = ARMFault_Translation;
9084             goto do_fault;
9085         case 1: /* 64k page.  */
9086             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9087             xn = desc & (1 << 15);
9088             *page_size = 0x10000;
9089             break;
9090         case 2: case 3: /* 4k page.  */
9091             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9092             xn = desc & 1;
9093             *page_size = 0x1000;
9094             break;
9095         default:
9096             /* Never happens, but compiler isn't smart enough to tell.  */
9097             abort();
9098         }
9099     }
9100     if (domain_prot == 3) {
9101         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9102     } else {
9103         if (pxn && !regime_is_user(env, mmu_idx)) {
9104             xn = 1;
9105         }
9106         if (xn && access_type == MMU_INST_FETCH) {
9107             fi->type = ARMFault_Permission;
9108             goto do_fault;
9109         }
9110 
9111         if (arm_feature(env, ARM_FEATURE_V6K) &&
9112                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9113             /* The simplified model uses AP[0] as an access control bit.  */
9114             if ((ap & 1) == 0) {
9115                 /* Access flag fault.  */
9116                 fi->type = ARMFault_AccessFlag;
9117                 goto do_fault;
9118             }
9119             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9120         } else {
9121             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9122         }
9123         if (*prot && !xn) {
9124             *prot |= PAGE_EXEC;
9125         }
9126         if (!(*prot & (1 << access_type))) {
9127             /* Access permission fault.  */
9128             fi->type = ARMFault_Permission;
9129             goto do_fault;
9130         }
9131     }
9132     if (ns) {
9133         /* The NS bit will (as required by the architecture) have no effect if
9134          * the CPU doesn't support TZ or this is a non-secure translation
9135          * regime, because the attribute will already be non-secure.
9136          */
9137         attrs->secure = false;
9138     }
9139     *phys_ptr = phys_addr;
9140     return false;
9141 do_fault:
9142     fi->domain = domain;
9143     fi->level = level;
9144     return true;
9145 }
9146 
9147 /*
9148  * check_s2_mmu_setup
9149  * @cpu:        ARMCPU
9150  * @is_aa64:    True if the translation regime is in AArch64 state
9151  * @startlevel: Suggested starting level
9152  * @inputsize:  Bitsize of IPAs
9153  * @stride:     Page-table stride (See the ARM ARM)
9154  *
9155  * Returns true if the suggested S2 translation parameters are OK and
9156  * false otherwise.
9157  */
9158 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9159                                int inputsize, int stride)
9160 {
9161     const int grainsize = stride + 3;
9162     int startsizecheck;
9163 
9164     /* Negative levels are never allowed.  */
9165     if (level < 0) {
9166         return false;
9167     }
9168 
9169     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9170     if (startsizecheck < 1 || startsizecheck > stride + 4) {
9171         return false;
9172     }
9173 
9174     if (is_aa64) {
9175         CPUARMState *env = &cpu->env;
9176         unsigned int pamax = arm_pamax(cpu);
9177 
9178         switch (stride) {
9179         case 13: /* 64KB Pages.  */
9180             if (level == 0 || (level == 1 && pamax <= 42)) {
9181                 return false;
9182             }
9183             break;
9184         case 11: /* 16KB Pages.  */
9185             if (level == 0 || (level == 1 && pamax <= 40)) {
9186                 return false;
9187             }
9188             break;
9189         case 9: /* 4KB Pages.  */
9190             if (level == 0 && pamax <= 42) {
9191                 return false;
9192             }
9193             break;
9194         default:
9195             g_assert_not_reached();
9196         }
9197 
9198         /* Inputsize checks.  */
9199         if (inputsize > pamax &&
9200             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9201             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
9202             return false;
9203         }
9204     } else {
9205         /* AArch32 only supports 4KB pages. Assert on that.  */
9206         assert(stride == 9);
9207 
9208         if (level == 0) {
9209             return false;
9210         }
9211     }
9212     return true;
9213 }
9214 
9215 /* Translate from the 4-bit stage 2 representation of
9216  * memory attributes (without cache-allocation hints) to
9217  * the 8-bit representation of the stage 1 MAIR registers
9218  * (which includes allocation hints).
9219  *
9220  * ref: shared/translation/attrs/S2AttrDecode()
9221  *      .../S2ConvertAttrsHints()
9222  */
9223 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9224 {
9225     uint8_t hiattr = extract32(s2attrs, 2, 2);
9226     uint8_t loattr = extract32(s2attrs, 0, 2);
9227     uint8_t hihint = 0, lohint = 0;
9228 
9229     if (hiattr != 0) { /* normal memory */
9230         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9231             hiattr = loattr = 1; /* non-cacheable */
9232         } else {
9233             if (hiattr != 1) { /* Write-through or write-back */
9234                 hihint = 3; /* RW allocate */
9235             }
9236             if (loattr != 1) { /* Write-through or write-back */
9237                 lohint = 3; /* RW allocate */
9238             }
9239         }
9240     }
9241 
9242     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9243 }
9244 
9245 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9246                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
9247                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9248                                target_ulong *page_size_ptr,
9249                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9250 {
9251     ARMCPU *cpu = arm_env_get_cpu(env);
9252     CPUState *cs = CPU(cpu);
9253     /* Read an LPAE long-descriptor translation table. */
9254     ARMFaultType fault_type = ARMFault_Translation;
9255     uint32_t level;
9256     uint32_t epd = 0;
9257     int32_t t0sz, t1sz;
9258     uint32_t tg;
9259     uint64_t ttbr;
9260     int ttbr_select;
9261     hwaddr descaddr, indexmask, indexmask_grainsize;
9262     uint32_t tableattrs;
9263     target_ulong page_size;
9264     uint32_t attrs;
9265     int32_t stride = 9;
9266     int32_t addrsize;
9267     int inputsize;
9268     int32_t tbi = 0;
9269     TCR *tcr = regime_tcr(env, mmu_idx);
9270     int ap, ns, xn, pxn;
9271     uint32_t el = regime_el(env, mmu_idx);
9272     bool ttbr1_valid = true;
9273     uint64_t descaddrmask;
9274     bool aarch64 = arm_el_is_aa64(env, el);
9275 
9276     /* TODO:
9277      * This code does not handle the different format TCR for VTCR_EL2.
9278      * This code also does not support shareability levels.
9279      * Attribute and permission bit handling should also be checked when adding
9280      * support for those page table walks.
9281      */
9282     if (aarch64) {
9283         level = 0;
9284         addrsize = 64;
9285         if (el > 1) {
9286             if (mmu_idx != ARMMMUIdx_S2NS) {
9287                 tbi = extract64(tcr->raw_tcr, 20, 1);
9288             }
9289         } else {
9290             if (extract64(address, 55, 1)) {
9291                 tbi = extract64(tcr->raw_tcr, 38, 1);
9292             } else {
9293                 tbi = extract64(tcr->raw_tcr, 37, 1);
9294             }
9295         }
9296         tbi *= 8;
9297 
9298         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9299          * invalid.
9300          */
9301         if (el > 1) {
9302             ttbr1_valid = false;
9303         }
9304     } else {
9305         level = 1;
9306         addrsize = 32;
9307         /* There is no TTBR1 for EL2 */
9308         if (el == 2) {
9309             ttbr1_valid = false;
9310         }
9311     }
9312 
9313     /* Determine whether this address is in the region controlled by
9314      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9315      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9316      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9317      */
9318     if (aarch64) {
9319         /* AArch64 translation.  */
9320         t0sz = extract32(tcr->raw_tcr, 0, 6);
9321         t0sz = MIN(t0sz, 39);
9322         t0sz = MAX(t0sz, 16);
9323     } else if (mmu_idx != ARMMMUIdx_S2NS) {
9324         /* AArch32 stage 1 translation.  */
9325         t0sz = extract32(tcr->raw_tcr, 0, 3);
9326     } else {
9327         /* AArch32 stage 2 translation.  */
9328         bool sext = extract32(tcr->raw_tcr, 4, 1);
9329         bool sign = extract32(tcr->raw_tcr, 3, 1);
9330         /* Address size is 40-bit for a stage 2 translation,
9331          * and t0sz can be negative (from -8 to 7),
9332          * so we need to adjust it to use the TTBR selecting logic below.
9333          */
9334         addrsize = 40;
9335         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9336 
9337         /* If the sign-extend bit is not the same as t0sz[3], the result
9338          * is unpredictable. Flag this as a guest error.  */
9339         if (sign != sext) {
9340             qemu_log_mask(LOG_GUEST_ERROR,
9341                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9342         }
9343     }
9344     t1sz = extract32(tcr->raw_tcr, 16, 6);
9345     if (aarch64) {
9346         t1sz = MIN(t1sz, 39);
9347         t1sz = MAX(t1sz, 16);
9348     }
9349     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9350         /* there is a ttbr0 region and we are in it (high bits all zero) */
9351         ttbr_select = 0;
9352     } else if (ttbr1_valid && t1sz &&
9353                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9354         /* there is a ttbr1 region and we are in it (high bits all one) */
9355         ttbr_select = 1;
9356     } else if (!t0sz) {
9357         /* ttbr0 region is "everything not in the ttbr1 region" */
9358         ttbr_select = 0;
9359     } else if (!t1sz && ttbr1_valid) {
9360         /* ttbr1 region is "everything not in the ttbr0 region" */
9361         ttbr_select = 1;
9362     } else {
9363         /* in the gap between the two regions, this is a Translation fault */
9364         fault_type = ARMFault_Translation;
9365         goto do_fault;
9366     }
9367 
9368     /* Note that QEMU ignores shareability and cacheability attributes,
9369      * so we don't need to do anything with the SH, ORGN, IRGN fields
9370      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
9371      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9372      * implement any ASID-like capability so we can ignore it (instead
9373      * we will always flush the TLB any time the ASID is changed).
9374      */
9375     if (ttbr_select == 0) {
9376         ttbr = regime_ttbr(env, mmu_idx, 0);
9377         if (el < 2) {
9378             epd = extract32(tcr->raw_tcr, 7, 1);
9379         }
9380         inputsize = addrsize - t0sz;
9381 
9382         tg = extract32(tcr->raw_tcr, 14, 2);
9383         if (tg == 1) { /* 64KB pages */
9384             stride = 13;
9385         }
9386         if (tg == 2) { /* 16KB pages */
9387             stride = 11;
9388         }
9389     } else {
9390         /* We should only be here if TTBR1 is valid */
9391         assert(ttbr1_valid);
9392 
9393         ttbr = regime_ttbr(env, mmu_idx, 1);
9394         epd = extract32(tcr->raw_tcr, 23, 1);
9395         inputsize = addrsize - t1sz;
9396 
9397         tg = extract32(tcr->raw_tcr, 30, 2);
9398         if (tg == 3)  { /* 64KB pages */
9399             stride = 13;
9400         }
9401         if (tg == 1) { /* 16KB pages */
9402             stride = 11;
9403         }
9404     }
9405 
9406     /* Here we should have set up all the parameters for the translation:
9407      * inputsize, ttbr, epd, stride, tbi
9408      */
9409 
9410     if (epd) {
9411         /* Translation table walk disabled => Translation fault on TLB miss
9412          * Note: This is always 0 on 64-bit EL2 and EL3.
9413          */
9414         goto do_fault;
9415     }
9416 
9417     if (mmu_idx != ARMMMUIdx_S2NS) {
9418         /* The starting level depends on the virtual address size (which can
9419          * be up to 48 bits) and the translation granule size. It indicates
9420          * the number of strides (stride bits at a time) needed to
9421          * consume the bits of the input address. In the pseudocode this is:
9422          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
9423          * where their 'inputsize' is our 'inputsize', 'grainsize' is
9424          * our 'stride + 3' and 'stride' is our 'stride'.
9425          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9426          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9427          * = 4 - (inputsize - 4) / stride;
9428          */
9429         level = 4 - (inputsize - 4) / stride;
9430     } else {
9431         /* For stage 2 translations the starting level is specified by the
9432          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9433          */
9434         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9435         uint32_t startlevel;
9436         bool ok;
9437 
9438         if (!aarch64 || stride == 9) {
9439             /* AArch32 or 4KB pages */
9440             startlevel = 2 - sl0;
9441         } else {
9442             /* 16KB or 64KB pages */
9443             startlevel = 3 - sl0;
9444         }
9445 
9446         /* Check that the starting level is valid. */
9447         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9448                                 inputsize, stride);
9449         if (!ok) {
9450             fault_type = ARMFault_Translation;
9451             goto do_fault;
9452         }
9453         level = startlevel;
9454     }
9455 
9456     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9457     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9458 
9459     /* Now we can extract the actual base address from the TTBR */
9460     descaddr = extract64(ttbr, 0, 48);
9461     descaddr &= ~indexmask;
9462 
9463     /* The address field in the descriptor goes up to bit 39 for ARMv7
9464      * but up to bit 47 for ARMv8, but we use the descaddrmask
9465      * up to bit 39 for AArch32, because we don't need other bits in that case
9466      * to construct next descriptor address (anyway they should be all zeroes).
9467      */
9468     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9469                    ~indexmask_grainsize;
9470 
9471     /* Secure accesses start with the page table in secure memory and
9472      * can be downgraded to non-secure at any step. Non-secure accesses
9473      * remain non-secure. We implement this by just ORing in the NSTable/NS
9474      * bits at each step.
9475      */
9476     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9477     for (;;) {
9478         uint64_t descriptor;
9479         bool nstable;
9480 
9481         descaddr |= (address >> (stride * (4 - level))) & indexmask;
9482         descaddr &= ~7ULL;
9483         nstable = extract32(tableattrs, 4, 1);
9484         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9485         if (fi->type != ARMFault_None) {
9486             goto do_fault;
9487         }
9488 
9489         if (!(descriptor & 1) ||
9490             (!(descriptor & 2) && (level == 3))) {
9491             /* Invalid, or the Reserved level 3 encoding */
9492             goto do_fault;
9493         }
9494         descaddr = descriptor & descaddrmask;
9495 
9496         if ((descriptor & 2) && (level < 3)) {
9497             /* Table entry. The top five bits are attributes which  may
9498              * propagate down through lower levels of the table (and
9499              * which are all arranged so that 0 means "no effect", so
9500              * we can gather them up by ORing in the bits at each level).
9501              */
9502             tableattrs |= extract64(descriptor, 59, 5);
9503             level++;
9504             indexmask = indexmask_grainsize;
9505             continue;
9506         }
9507         /* Block entry at level 1 or 2, or page entry at level 3.
9508          * These are basically the same thing, although the number
9509          * of bits we pull in from the vaddr varies.
9510          */
9511         page_size = (1ULL << ((stride * (4 - level)) + 3));
9512         descaddr |= (address & (page_size - 1));
9513         /* Extract attributes from the descriptor */
9514         attrs = extract64(descriptor, 2, 10)
9515             | (extract64(descriptor, 52, 12) << 10);
9516 
9517         if (mmu_idx == ARMMMUIdx_S2NS) {
9518             /* Stage 2 table descriptors do not include any attribute fields */
9519             break;
9520         }
9521         /* Merge in attributes from table descriptors */
9522         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9523         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9524         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9525          * means "force PL1 access only", which means forcing AP[1] to 0.
9526          */
9527         if (extract32(tableattrs, 2, 1)) {
9528             attrs &= ~(1 << 4);
9529         }
9530         attrs |= nstable << 3; /* NS */
9531         break;
9532     }
9533     /* Here descaddr is the final physical address, and attributes
9534      * are all in attrs.
9535      */
9536     fault_type = ARMFault_AccessFlag;
9537     if ((attrs & (1 << 8)) == 0) {
9538         /* Access flag */
9539         goto do_fault;
9540     }
9541 
9542     ap = extract32(attrs, 4, 2);
9543     xn = extract32(attrs, 12, 1);
9544 
9545     if (mmu_idx == ARMMMUIdx_S2NS) {
9546         ns = true;
9547         *prot = get_S2prot(env, ap, xn);
9548     } else {
9549         ns = extract32(attrs, 3, 1);
9550         pxn = extract32(attrs, 11, 1);
9551         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9552     }
9553 
9554     fault_type = ARMFault_Permission;
9555     if (!(*prot & (1 << access_type))) {
9556         goto do_fault;
9557     }
9558 
9559     if (ns) {
9560         /* The NS bit will (as required by the architecture) have no effect if
9561          * the CPU doesn't support TZ or this is a non-secure translation
9562          * regime, because the attribute will already be non-secure.
9563          */
9564         txattrs->secure = false;
9565     }
9566 
9567     if (cacheattrs != NULL) {
9568         if (mmu_idx == ARMMMUIdx_S2NS) {
9569             cacheattrs->attrs = convert_stage2_attrs(env,
9570                                                      extract32(attrs, 0, 4));
9571         } else {
9572             /* Index into MAIR registers for cache attributes */
9573             uint8_t attrindx = extract32(attrs, 0, 3);
9574             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9575             assert(attrindx <= 7);
9576             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9577         }
9578         cacheattrs->shareability = extract32(attrs, 6, 2);
9579     }
9580 
9581     *phys_ptr = descaddr;
9582     *page_size_ptr = page_size;
9583     return false;
9584 
9585 do_fault:
9586     fi->type = fault_type;
9587     fi->level = level;
9588     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9589     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9590     return true;
9591 }
9592 
9593 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9594                                                 ARMMMUIdx mmu_idx,
9595                                                 int32_t address, int *prot)
9596 {
9597     if (!arm_feature(env, ARM_FEATURE_M)) {
9598         *prot = PAGE_READ | PAGE_WRITE;
9599         switch (address) {
9600         case 0xF0000000 ... 0xFFFFFFFF:
9601             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9602                 /* hivecs execing is ok */
9603                 *prot |= PAGE_EXEC;
9604             }
9605             break;
9606         case 0x00000000 ... 0x7FFFFFFF:
9607             *prot |= PAGE_EXEC;
9608             break;
9609         }
9610     } else {
9611         /* Default system address map for M profile cores.
9612          * The architecture specifies which regions are execute-never;
9613          * at the MPU level no other checks are defined.
9614          */
9615         switch (address) {
9616         case 0x00000000 ... 0x1fffffff: /* ROM */
9617         case 0x20000000 ... 0x3fffffff: /* SRAM */
9618         case 0x60000000 ... 0x7fffffff: /* RAM */
9619         case 0x80000000 ... 0x9fffffff: /* RAM */
9620             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9621             break;
9622         case 0x40000000 ... 0x5fffffff: /* Peripheral */
9623         case 0xa0000000 ... 0xbfffffff: /* Device */
9624         case 0xc0000000 ... 0xdfffffff: /* Device */
9625         case 0xe0000000 ... 0xffffffff: /* System */
9626             *prot = PAGE_READ | PAGE_WRITE;
9627             break;
9628         default:
9629             g_assert_not_reached();
9630         }
9631     }
9632 }
9633 
9634 static bool pmsav7_use_background_region(ARMCPU *cpu,
9635                                          ARMMMUIdx mmu_idx, bool is_user)
9636 {
9637     /* Return true if we should use the default memory map as a
9638      * "background" region if there are no hits against any MPU regions.
9639      */
9640     CPUARMState *env = &cpu->env;
9641 
9642     if (is_user) {
9643         return false;
9644     }
9645 
9646     if (arm_feature(env, ARM_FEATURE_M)) {
9647         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9648             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9649     } else {
9650         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9651     }
9652 }
9653 
9654 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9655 {
9656     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9657     return arm_feature(env, ARM_FEATURE_M) &&
9658         extract32(address, 20, 12) == 0xe00;
9659 }
9660 
9661 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9662 {
9663     /* True if address is in the M profile system region
9664      * 0xe0000000 - 0xffffffff
9665      */
9666     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9667 }
9668 
9669 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9670                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9671                                  hwaddr *phys_ptr, int *prot,
9672                                  target_ulong *page_size,
9673                                  ARMMMUFaultInfo *fi)
9674 {
9675     ARMCPU *cpu = arm_env_get_cpu(env);
9676     int n;
9677     bool is_user = regime_is_user(env, mmu_idx);
9678 
9679     *phys_ptr = address;
9680     *page_size = TARGET_PAGE_SIZE;
9681     *prot = 0;
9682 
9683     if (regime_translation_disabled(env, mmu_idx) ||
9684         m_is_ppb_region(env, address)) {
9685         /* MPU disabled or M profile PPB access: use default memory map.
9686          * The other case which uses the default memory map in the
9687          * v7M ARM ARM pseudocode is exception vector reads from the vector
9688          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9689          * which always does a direct read using address_space_ldl(), rather
9690          * than going via this function, so we don't need to check that here.
9691          */
9692         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9693     } else { /* MPU enabled */
9694         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9695             /* region search */
9696             uint32_t base = env->pmsav7.drbar[n];
9697             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9698             uint32_t rmask;
9699             bool srdis = false;
9700 
9701             if (!(env->pmsav7.drsr[n] & 0x1)) {
9702                 continue;
9703             }
9704 
9705             if (!rsize) {
9706                 qemu_log_mask(LOG_GUEST_ERROR,
9707                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9708                 continue;
9709             }
9710             rsize++;
9711             rmask = (1ull << rsize) - 1;
9712 
9713             if (base & rmask) {
9714                 qemu_log_mask(LOG_GUEST_ERROR,
9715                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9716                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9717                               n, base, rmask);
9718                 continue;
9719             }
9720 
9721             if (address < base || address > base + rmask) {
9722                 /*
9723                  * Address not in this region. We must check whether the
9724                  * region covers addresses in the same page as our address.
9725                  * In that case we must not report a size that covers the
9726                  * whole page for a subsequent hit against a different MPU
9727                  * region or the background region, because it would result in
9728                  * incorrect TLB hits for subsequent accesses to addresses that
9729                  * are in this MPU region.
9730                  */
9731                 if (ranges_overlap(base, rmask,
9732                                    address & TARGET_PAGE_MASK,
9733                                    TARGET_PAGE_SIZE)) {
9734                     *page_size = 1;
9735                 }
9736                 continue;
9737             }
9738 
9739             /* Region matched */
9740 
9741             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9742                 int i, snd;
9743                 uint32_t srdis_mask;
9744 
9745                 rsize -= 3; /* sub region size (power of 2) */
9746                 snd = ((address - base) >> rsize) & 0x7;
9747                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9748 
9749                 srdis_mask = srdis ? 0x3 : 0x0;
9750                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9751                     /* This will check in groups of 2, 4 and then 8, whether
9752                      * the subregion bits are consistent. rsize is incremented
9753                      * back up to give the region size, considering consistent
9754                      * adjacent subregions as one region. Stop testing if rsize
9755                      * is already big enough for an entire QEMU page.
9756                      */
9757                     int snd_rounded = snd & ~(i - 1);
9758                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9759                                                      snd_rounded + 8, i);
9760                     if (srdis_mask ^ srdis_multi) {
9761                         break;
9762                     }
9763                     srdis_mask = (srdis_mask << i) | srdis_mask;
9764                     rsize++;
9765                 }
9766             }
9767             if (srdis) {
9768                 continue;
9769             }
9770             if (rsize < TARGET_PAGE_BITS) {
9771                 *page_size = 1 << rsize;
9772             }
9773             break;
9774         }
9775 
9776         if (n == -1) { /* no hits */
9777             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9778                 /* background fault */
9779                 fi->type = ARMFault_Background;
9780                 return true;
9781             }
9782             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9783         } else { /* a MPU hit! */
9784             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9785             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9786 
9787             if (m_is_system_region(env, address)) {
9788                 /* System space is always execute never */
9789                 xn = 1;
9790             }
9791 
9792             if (is_user) { /* User mode AP bit decoding */
9793                 switch (ap) {
9794                 case 0:
9795                 case 1:
9796                 case 5:
9797                     break; /* no access */
9798                 case 3:
9799                     *prot |= PAGE_WRITE;
9800                     /* fall through */
9801                 case 2:
9802                 case 6:
9803                     *prot |= PAGE_READ | PAGE_EXEC;
9804                     break;
9805                 case 7:
9806                     /* for v7M, same as 6; for R profile a reserved value */
9807                     if (arm_feature(env, ARM_FEATURE_M)) {
9808                         *prot |= PAGE_READ | PAGE_EXEC;
9809                         break;
9810                     }
9811                     /* fall through */
9812                 default:
9813                     qemu_log_mask(LOG_GUEST_ERROR,
9814                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9815                                   PRIx32 "\n", n, ap);
9816                 }
9817             } else { /* Priv. mode AP bits decoding */
9818                 switch (ap) {
9819                 case 0:
9820                     break; /* no access */
9821                 case 1:
9822                 case 2:
9823                 case 3:
9824                     *prot |= PAGE_WRITE;
9825                     /* fall through */
9826                 case 5:
9827                 case 6:
9828                     *prot |= PAGE_READ | PAGE_EXEC;
9829                     break;
9830                 case 7:
9831                     /* for v7M, same as 6; for R profile a reserved value */
9832                     if (arm_feature(env, ARM_FEATURE_M)) {
9833                         *prot |= PAGE_READ | PAGE_EXEC;
9834                         break;
9835                     }
9836                     /* fall through */
9837                 default:
9838                     qemu_log_mask(LOG_GUEST_ERROR,
9839                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9840                                   PRIx32 "\n", n, ap);
9841                 }
9842             }
9843 
9844             /* execute never */
9845             if (xn) {
9846                 *prot &= ~PAGE_EXEC;
9847             }
9848         }
9849     }
9850 
9851     fi->type = ARMFault_Permission;
9852     fi->level = 1;
9853     return !(*prot & (1 << access_type));
9854 }
9855 
9856 static bool v8m_is_sau_exempt(CPUARMState *env,
9857                               uint32_t address, MMUAccessType access_type)
9858 {
9859     /* The architecture specifies that certain address ranges are
9860      * exempt from v8M SAU/IDAU checks.
9861      */
9862     return
9863         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9864         (address >= 0xe0000000 && address <= 0xe0002fff) ||
9865         (address >= 0xe000e000 && address <= 0xe000efff) ||
9866         (address >= 0xe002e000 && address <= 0xe002efff) ||
9867         (address >= 0xe0040000 && address <= 0xe0041fff) ||
9868         (address >= 0xe00ff000 && address <= 0xe00fffff);
9869 }
9870 
9871 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9872                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9873                                 V8M_SAttributes *sattrs)
9874 {
9875     /* Look up the security attributes for this address. Compare the
9876      * pseudocode SecurityCheck() function.
9877      * We assume the caller has zero-initialized *sattrs.
9878      */
9879     ARMCPU *cpu = arm_env_get_cpu(env);
9880     int r;
9881     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
9882     int idau_region = IREGION_NOTVALID;
9883     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
9884     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
9885 
9886     if (cpu->idau) {
9887         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
9888         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
9889 
9890         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
9891                    &idau_nsc);
9892     }
9893 
9894     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9895         /* 0xf0000000..0xffffffff is always S for insn fetches */
9896         return;
9897     }
9898 
9899     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
9900         sattrs->ns = !regime_is_secure(env, mmu_idx);
9901         return;
9902     }
9903 
9904     if (idau_region != IREGION_NOTVALID) {
9905         sattrs->irvalid = true;
9906         sattrs->iregion = idau_region;
9907     }
9908 
9909     switch (env->sau.ctrl & 3) {
9910     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9911         break;
9912     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9913         sattrs->ns = true;
9914         break;
9915     default: /* SAU.ENABLE == 1 */
9916         for (r = 0; r < cpu->sau_sregion; r++) {
9917             if (env->sau.rlar[r] & 1) {
9918                 uint32_t base = env->sau.rbar[r] & ~0x1f;
9919                 uint32_t limit = env->sau.rlar[r] | 0x1f;
9920 
9921                 if (base <= address && limit >= address) {
9922                     if (base > addr_page_base || limit < addr_page_limit) {
9923                         sattrs->subpage = true;
9924                     }
9925                     if (sattrs->srvalid) {
9926                         /* If we hit in more than one region then we must report
9927                          * as Secure, not NS-Callable, with no valid region
9928                          * number info.
9929                          */
9930                         sattrs->ns = false;
9931                         sattrs->nsc = false;
9932                         sattrs->sregion = 0;
9933                         sattrs->srvalid = false;
9934                         break;
9935                     } else {
9936                         if (env->sau.rlar[r] & 2) {
9937                             sattrs->nsc = true;
9938                         } else {
9939                             sattrs->ns = true;
9940                         }
9941                         sattrs->srvalid = true;
9942                         sattrs->sregion = r;
9943                     }
9944                 } else {
9945                     /*
9946                      * Address not in this region. We must check whether the
9947                      * region covers addresses in the same page as our address.
9948                      * In that case we must not report a size that covers the
9949                      * whole page for a subsequent hit against a different MPU
9950                      * region or the background region, because it would result
9951                      * in incorrect TLB hits for subsequent accesses to
9952                      * addresses that are in this MPU region.
9953                      */
9954                     if (limit >= base &&
9955                         ranges_overlap(base, limit - base + 1,
9956                                        addr_page_base,
9957                                        TARGET_PAGE_SIZE)) {
9958                         sattrs->subpage = true;
9959                     }
9960                 }
9961             }
9962         }
9963 
9964         /* The IDAU will override the SAU lookup results if it specifies
9965          * higher security than the SAU does.
9966          */
9967         if (!idau_ns) {
9968             if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
9969                 sattrs->ns = false;
9970                 sattrs->nsc = idau_nsc;
9971             }
9972         }
9973         break;
9974     }
9975 }
9976 
9977 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9978                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
9979                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
9980                               int *prot, bool *is_subpage,
9981                               ARMMMUFaultInfo *fi, uint32_t *mregion)
9982 {
9983     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9984      * that a full phys-to-virt translation does).
9985      * mregion is (if not NULL) set to the region number which matched,
9986      * or -1 if no region number is returned (MPU off, address did not
9987      * hit a region, address hit in multiple regions).
9988      * We set is_subpage to true if the region hit doesn't cover the
9989      * entire TARGET_PAGE the address is within.
9990      */
9991     ARMCPU *cpu = arm_env_get_cpu(env);
9992     bool is_user = regime_is_user(env, mmu_idx);
9993     uint32_t secure = regime_is_secure(env, mmu_idx);
9994     int n;
9995     int matchregion = -1;
9996     bool hit = false;
9997     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
9998     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
9999 
10000     *is_subpage = false;
10001     *phys_ptr = address;
10002     *prot = 0;
10003     if (mregion) {
10004         *mregion = -1;
10005     }
10006 
10007     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10008      * was an exception vector read from the vector table (which is always
10009      * done using the default system address map), because those accesses
10010      * are done in arm_v7m_load_vector(), which always does a direct
10011      * read using address_space_ldl(), rather than going via this function.
10012      */
10013     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10014         hit = true;
10015     } else if (m_is_ppb_region(env, address)) {
10016         hit = true;
10017     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10018         hit = true;
10019     } else {
10020         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10021             /* region search */
10022             /* Note that the base address is bits [31:5] from the register
10023              * with bits [4:0] all zeroes, but the limit address is bits
10024              * [31:5] from the register with bits [4:0] all ones.
10025              */
10026             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10027             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10028 
10029             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10030                 /* Region disabled */
10031                 continue;
10032             }
10033 
10034             if (address < base || address > limit) {
10035                 /*
10036                  * Address not in this region. We must check whether the
10037                  * region covers addresses in the same page as our address.
10038                  * In that case we must not report a size that covers the
10039                  * whole page for a subsequent hit against a different MPU
10040                  * region or the background region, because it would result in
10041                  * incorrect TLB hits for subsequent accesses to addresses that
10042                  * are in this MPU region.
10043                  */
10044                 if (limit >= base &&
10045                     ranges_overlap(base, limit - base + 1,
10046                                    addr_page_base,
10047                                    TARGET_PAGE_SIZE)) {
10048                     *is_subpage = true;
10049                 }
10050                 continue;
10051             }
10052 
10053             if (base > addr_page_base || limit < addr_page_limit) {
10054                 *is_subpage = true;
10055             }
10056 
10057             if (hit) {
10058                 /* Multiple regions match -- always a failure (unlike
10059                  * PMSAv7 where highest-numbered-region wins)
10060                  */
10061                 fi->type = ARMFault_Permission;
10062                 fi->level = 1;
10063                 return true;
10064             }
10065 
10066             matchregion = n;
10067             hit = true;
10068         }
10069     }
10070 
10071     if (!hit) {
10072         /* background fault */
10073         fi->type = ARMFault_Background;
10074         return true;
10075     }
10076 
10077     if (matchregion == -1) {
10078         /* hit using the background region */
10079         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10080     } else {
10081         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10082         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10083 
10084         if (m_is_system_region(env, address)) {
10085             /* System space is always execute never */
10086             xn = 1;
10087         }
10088 
10089         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10090         if (*prot && !xn) {
10091             *prot |= PAGE_EXEC;
10092         }
10093         /* We don't need to look the attribute up in the MAIR0/MAIR1
10094          * registers because that only tells us about cacheability.
10095          */
10096         if (mregion) {
10097             *mregion = matchregion;
10098         }
10099     }
10100 
10101     fi->type = ARMFault_Permission;
10102     fi->level = 1;
10103     return !(*prot & (1 << access_type));
10104 }
10105 
10106 
10107 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10108                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10109                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
10110                                  int *prot, target_ulong *page_size,
10111                                  ARMMMUFaultInfo *fi)
10112 {
10113     uint32_t secure = regime_is_secure(env, mmu_idx);
10114     V8M_SAttributes sattrs = {};
10115     bool ret;
10116     bool mpu_is_subpage;
10117 
10118     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10119         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10120         if (access_type == MMU_INST_FETCH) {
10121             /* Instruction fetches always use the MMU bank and the
10122              * transaction attribute determined by the fetch address,
10123              * regardless of CPU state. This is painful for QEMU
10124              * to handle, because it would mean we need to encode
10125              * into the mmu_idx not just the (user, negpri) information
10126              * for the current security state but also that for the
10127              * other security state, which would balloon the number
10128              * of mmu_idx values needed alarmingly.
10129              * Fortunately we can avoid this because it's not actually
10130              * possible to arbitrarily execute code from memory with
10131              * the wrong security attribute: it will always generate
10132              * an exception of some kind or another, apart from the
10133              * special case of an NS CPU executing an SG instruction
10134              * in S&NSC memory. So we always just fail the translation
10135              * here and sort things out in the exception handler
10136              * (including possibly emulating an SG instruction).
10137              */
10138             if (sattrs.ns != !secure) {
10139                 if (sattrs.nsc) {
10140                     fi->type = ARMFault_QEMU_NSCExec;
10141                 } else {
10142                     fi->type = ARMFault_QEMU_SFault;
10143                 }
10144                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10145                 *phys_ptr = address;
10146                 *prot = 0;
10147                 return true;
10148             }
10149         } else {
10150             /* For data accesses we always use the MMU bank indicated
10151              * by the current CPU state, but the security attributes
10152              * might downgrade a secure access to nonsecure.
10153              */
10154             if (sattrs.ns) {
10155                 txattrs->secure = false;
10156             } else if (!secure) {
10157                 /* NS access to S memory must fault.
10158                  * Architecturally we should first check whether the
10159                  * MPU information for this address indicates that we
10160                  * are doing an unaligned access to Device memory, which
10161                  * should generate a UsageFault instead. QEMU does not
10162                  * currently check for that kind of unaligned access though.
10163                  * If we added it we would need to do so as a special case
10164                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10165                  */
10166                 fi->type = ARMFault_QEMU_SFault;
10167                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10168                 *phys_ptr = address;
10169                 *prot = 0;
10170                 return true;
10171             }
10172         }
10173     }
10174 
10175     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10176                             txattrs, prot, &mpu_is_subpage, fi, NULL);
10177     /*
10178      * TODO: this is a temporary hack to ignore the fact that the SAU region
10179      * is smaller than a page if this is an executable region. We never
10180      * supported small MPU regions, but we did (accidentally) allow small
10181      * SAU regions, and if we now made small SAU regions not be executable
10182      * then this would break previously working guest code. We can't
10183      * remove this until/unless we implement support for execution from
10184      * small regions.
10185      */
10186     if (*prot & PAGE_EXEC) {
10187         sattrs.subpage = false;
10188     }
10189     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10190     return ret;
10191 }
10192 
10193 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10194                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10195                                  hwaddr *phys_ptr, int *prot,
10196                                  ARMMMUFaultInfo *fi)
10197 {
10198     int n;
10199     uint32_t mask;
10200     uint32_t base;
10201     bool is_user = regime_is_user(env, mmu_idx);
10202 
10203     if (regime_translation_disabled(env, mmu_idx)) {
10204         /* MPU disabled.  */
10205         *phys_ptr = address;
10206         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10207         return false;
10208     }
10209 
10210     *phys_ptr = address;
10211     for (n = 7; n >= 0; n--) {
10212         base = env->cp15.c6_region[n];
10213         if ((base & 1) == 0) {
10214             continue;
10215         }
10216         mask = 1 << ((base >> 1) & 0x1f);
10217         /* Keep this shift separate from the above to avoid an
10218            (undefined) << 32.  */
10219         mask = (mask << 1) - 1;
10220         if (((base ^ address) & ~mask) == 0) {
10221             break;
10222         }
10223     }
10224     if (n < 0) {
10225         fi->type = ARMFault_Background;
10226         return true;
10227     }
10228 
10229     if (access_type == MMU_INST_FETCH) {
10230         mask = env->cp15.pmsav5_insn_ap;
10231     } else {
10232         mask = env->cp15.pmsav5_data_ap;
10233     }
10234     mask = (mask >> (n * 4)) & 0xf;
10235     switch (mask) {
10236     case 0:
10237         fi->type = ARMFault_Permission;
10238         fi->level = 1;
10239         return true;
10240     case 1:
10241         if (is_user) {
10242             fi->type = ARMFault_Permission;
10243             fi->level = 1;
10244             return true;
10245         }
10246         *prot = PAGE_READ | PAGE_WRITE;
10247         break;
10248     case 2:
10249         *prot = PAGE_READ;
10250         if (!is_user) {
10251             *prot |= PAGE_WRITE;
10252         }
10253         break;
10254     case 3:
10255         *prot = PAGE_READ | PAGE_WRITE;
10256         break;
10257     case 5:
10258         if (is_user) {
10259             fi->type = ARMFault_Permission;
10260             fi->level = 1;
10261             return true;
10262         }
10263         *prot = PAGE_READ;
10264         break;
10265     case 6:
10266         *prot = PAGE_READ;
10267         break;
10268     default:
10269         /* Bad permission.  */
10270         fi->type = ARMFault_Permission;
10271         fi->level = 1;
10272         return true;
10273     }
10274     *prot |= PAGE_EXEC;
10275     return false;
10276 }
10277 
10278 /* Combine either inner or outer cacheability attributes for normal
10279  * memory, according to table D4-42 and pseudocode procedure
10280  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10281  *
10282  * NB: only stage 1 includes allocation hints (RW bits), leading to
10283  * some asymmetry.
10284  */
10285 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10286 {
10287     if (s1 == 4 || s2 == 4) {
10288         /* non-cacheable has precedence */
10289         return 4;
10290     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10291         /* stage 1 write-through takes precedence */
10292         return s1;
10293     } else if (extract32(s2, 2, 2) == 2) {
10294         /* stage 2 write-through takes precedence, but the allocation hint
10295          * is still taken from stage 1
10296          */
10297         return (2 << 2) | extract32(s1, 0, 2);
10298     } else { /* write-back */
10299         return s1;
10300     }
10301 }
10302 
10303 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10304  * and CombineS1S2Desc()
10305  *
10306  * @s1:      Attributes from stage 1 walk
10307  * @s2:      Attributes from stage 2 walk
10308  */
10309 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10310 {
10311     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10312     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10313     ARMCacheAttrs ret;
10314 
10315     /* Combine shareability attributes (table D4-43) */
10316     if (s1.shareability == 2 || s2.shareability == 2) {
10317         /* if either are outer-shareable, the result is outer-shareable */
10318         ret.shareability = 2;
10319     } else if (s1.shareability == 3 || s2.shareability == 3) {
10320         /* if either are inner-shareable, the result is inner-shareable */
10321         ret.shareability = 3;
10322     } else {
10323         /* both non-shareable */
10324         ret.shareability = 0;
10325     }
10326 
10327     /* Combine memory type and cacheability attributes */
10328     if (s1hi == 0 || s2hi == 0) {
10329         /* Device has precedence over normal */
10330         if (s1lo == 0 || s2lo == 0) {
10331             /* nGnRnE has precedence over anything */
10332             ret.attrs = 0;
10333         } else if (s1lo == 4 || s2lo == 4) {
10334             /* non-Reordering has precedence over Reordering */
10335             ret.attrs = 4;  /* nGnRE */
10336         } else if (s1lo == 8 || s2lo == 8) {
10337             /* non-Gathering has precedence over Gathering */
10338             ret.attrs = 8;  /* nGRE */
10339         } else {
10340             ret.attrs = 0xc; /* GRE */
10341         }
10342 
10343         /* Any location for which the resultant memory type is any
10344          * type of Device memory is always treated as Outer Shareable.
10345          */
10346         ret.shareability = 2;
10347     } else { /* Normal memory */
10348         /* Outer/inner cacheability combine independently */
10349         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10350                   | combine_cacheattr_nibble(s1lo, s2lo);
10351 
10352         if (ret.attrs == 0x44) {
10353             /* Any location for which the resultant memory type is Normal
10354              * Inner Non-cacheable, Outer Non-cacheable is always treated
10355              * as Outer Shareable.
10356              */
10357             ret.shareability = 2;
10358         }
10359     }
10360 
10361     return ret;
10362 }
10363 
10364 
10365 /* get_phys_addr - get the physical address for this virtual address
10366  *
10367  * Find the physical address corresponding to the given virtual address,
10368  * by doing a translation table walk on MMU based systems or using the
10369  * MPU state on MPU based systems.
10370  *
10371  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10372  * prot and page_size may not be filled in, and the populated fsr value provides
10373  * information on why the translation aborted, in the format of a
10374  * DFSR/IFSR fault register, with the following caveats:
10375  *  * we honour the short vs long DFSR format differences.
10376  *  * the WnR bit is never set (the caller must do this).
10377  *  * for PSMAv5 based systems we don't bother to return a full FSR format
10378  *    value.
10379  *
10380  * @env: CPUARMState
10381  * @address: virtual address to get physical address for
10382  * @access_type: 0 for read, 1 for write, 2 for execute
10383  * @mmu_idx: MMU index indicating required translation regime
10384  * @phys_ptr: set to the physical address corresponding to the virtual address
10385  * @attrs: set to the memory transaction attributes to use
10386  * @prot: set to the permissions for the page containing phys_ptr
10387  * @page_size: set to the size of the page containing phys_ptr
10388  * @fi: set to fault info if the translation fails
10389  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10390  */
10391 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10392                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
10393                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10394                           target_ulong *page_size,
10395                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10396 {
10397     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10398         /* Call ourselves recursively to do the stage 1 and then stage 2
10399          * translations.
10400          */
10401         if (arm_feature(env, ARM_FEATURE_EL2)) {
10402             hwaddr ipa;
10403             int s2_prot;
10404             int ret;
10405             ARMCacheAttrs cacheattrs2 = {};
10406 
10407             ret = get_phys_addr(env, address, access_type,
10408                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10409                                 prot, page_size, fi, cacheattrs);
10410 
10411             /* If S1 fails or S2 is disabled, return early.  */
10412             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10413                 *phys_ptr = ipa;
10414                 return ret;
10415             }
10416 
10417             /* S1 is done. Now do S2 translation.  */
10418             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10419                                      phys_ptr, attrs, &s2_prot,
10420                                      page_size, fi,
10421                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
10422             fi->s2addr = ipa;
10423             /* Combine the S1 and S2 perms.  */
10424             *prot &= s2_prot;
10425 
10426             /* Combine the S1 and S2 cache attributes, if needed */
10427             if (!ret && cacheattrs != NULL) {
10428                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10429             }
10430 
10431             return ret;
10432         } else {
10433             /*
10434              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10435              */
10436             mmu_idx = stage_1_mmu_idx(mmu_idx);
10437         }
10438     }
10439 
10440     /* The page table entries may downgrade secure to non-secure, but
10441      * cannot upgrade an non-secure translation regime's attributes
10442      * to secure.
10443      */
10444     attrs->secure = regime_is_secure(env, mmu_idx);
10445     attrs->user = regime_is_user(env, mmu_idx);
10446 
10447     /* Fast Context Switch Extension. This doesn't exist at all in v8.
10448      * In v7 and earlier it affects all stage 1 translations.
10449      */
10450     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10451         && !arm_feature(env, ARM_FEATURE_V8)) {
10452         if (regime_el(env, mmu_idx) == 3) {
10453             address += env->cp15.fcseidr_s;
10454         } else {
10455             address += env->cp15.fcseidr_ns;
10456         }
10457     }
10458 
10459     if (arm_feature(env, ARM_FEATURE_PMSA)) {
10460         bool ret;
10461         *page_size = TARGET_PAGE_SIZE;
10462 
10463         if (arm_feature(env, ARM_FEATURE_V8)) {
10464             /* PMSAv8 */
10465             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10466                                        phys_ptr, attrs, prot, page_size, fi);
10467         } else if (arm_feature(env, ARM_FEATURE_V7)) {
10468             /* PMSAv7 */
10469             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10470                                        phys_ptr, prot, page_size, fi);
10471         } else {
10472             /* Pre-v7 MPU */
10473             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10474                                        phys_ptr, prot, fi);
10475         }
10476         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10477                       " mmu_idx %u -> %s (prot %c%c%c)\n",
10478                       access_type == MMU_DATA_LOAD ? "reading" :
10479                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10480                       (uint32_t)address, mmu_idx,
10481                       ret ? "Miss" : "Hit",
10482                       *prot & PAGE_READ ? 'r' : '-',
10483                       *prot & PAGE_WRITE ? 'w' : '-',
10484                       *prot & PAGE_EXEC ? 'x' : '-');
10485 
10486         return ret;
10487     }
10488 
10489     /* Definitely a real MMU, not an MPU */
10490 
10491     if (regime_translation_disabled(env, mmu_idx)) {
10492         /* MMU disabled. */
10493         *phys_ptr = address;
10494         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10495         *page_size = TARGET_PAGE_SIZE;
10496         return 0;
10497     }
10498 
10499     if (regime_using_lpae_format(env, mmu_idx)) {
10500         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10501                                   phys_ptr, attrs, prot, page_size,
10502                                   fi, cacheattrs);
10503     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10504         return get_phys_addr_v6(env, address, access_type, mmu_idx,
10505                                 phys_ptr, attrs, prot, page_size, fi);
10506     } else {
10507         return get_phys_addr_v5(env, address, access_type, mmu_idx,
10508                                     phys_ptr, prot, page_size, fi);
10509     }
10510 }
10511 
10512 /* Walk the page table and (if the mapping exists) add the page
10513  * to the TLB. Return false on success, or true on failure. Populate
10514  * fsr with ARM DFSR/IFSR fault register format value on failure.
10515  */
10516 bool arm_tlb_fill(CPUState *cs, vaddr address,
10517                   MMUAccessType access_type, int mmu_idx,
10518                   ARMMMUFaultInfo *fi)
10519 {
10520     ARMCPU *cpu = ARM_CPU(cs);
10521     CPUARMState *env = &cpu->env;
10522     hwaddr phys_addr;
10523     target_ulong page_size;
10524     int prot;
10525     int ret;
10526     MemTxAttrs attrs = {};
10527 
10528     ret = get_phys_addr(env, address, access_type,
10529                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10530                         &attrs, &prot, &page_size, fi, NULL);
10531     if (!ret) {
10532         /*
10533          * Map a single [sub]page. Regions smaller than our declared
10534          * target page size are handled specially, so for those we
10535          * pass in the exact addresses.
10536          */
10537         if (page_size >= TARGET_PAGE_SIZE) {
10538             phys_addr &= TARGET_PAGE_MASK;
10539             address &= TARGET_PAGE_MASK;
10540         }
10541         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10542                                 prot, mmu_idx, page_size);
10543         return 0;
10544     }
10545 
10546     return ret;
10547 }
10548 
10549 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10550                                          MemTxAttrs *attrs)
10551 {
10552     ARMCPU *cpu = ARM_CPU(cs);
10553     CPUARMState *env = &cpu->env;
10554     hwaddr phys_addr;
10555     target_ulong page_size;
10556     int prot;
10557     bool ret;
10558     ARMMMUFaultInfo fi = {};
10559     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10560 
10561     *attrs = (MemTxAttrs) {};
10562 
10563     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10564                         attrs, &prot, &page_size, &fi, NULL);
10565 
10566     if (ret) {
10567         return -1;
10568     }
10569     return phys_addr;
10570 }
10571 
10572 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10573 {
10574     uint32_t mask;
10575     unsigned el = arm_current_el(env);
10576 
10577     /* First handle registers which unprivileged can read */
10578 
10579     switch (reg) {
10580     case 0 ... 7: /* xPSR sub-fields */
10581         mask = 0;
10582         if ((reg & 1) && el) {
10583             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10584         }
10585         if (!(reg & 4)) {
10586             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10587         }
10588         /* EPSR reads as zero */
10589         return xpsr_read(env) & mask;
10590         break;
10591     case 20: /* CONTROL */
10592         return env->v7m.control[env->v7m.secure];
10593     case 0x94: /* CONTROL_NS */
10594         /* We have to handle this here because unprivileged Secure code
10595          * can read the NS CONTROL register.
10596          */
10597         if (!env->v7m.secure) {
10598             return 0;
10599         }
10600         return env->v7m.control[M_REG_NS];
10601     }
10602 
10603     if (el == 0) {
10604         return 0; /* unprivileged reads others as zero */
10605     }
10606 
10607     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10608         switch (reg) {
10609         case 0x88: /* MSP_NS */
10610             if (!env->v7m.secure) {
10611                 return 0;
10612             }
10613             return env->v7m.other_ss_msp;
10614         case 0x89: /* PSP_NS */
10615             if (!env->v7m.secure) {
10616                 return 0;
10617             }
10618             return env->v7m.other_ss_psp;
10619         case 0x8a: /* MSPLIM_NS */
10620             if (!env->v7m.secure) {
10621                 return 0;
10622             }
10623             return env->v7m.msplim[M_REG_NS];
10624         case 0x8b: /* PSPLIM_NS */
10625             if (!env->v7m.secure) {
10626                 return 0;
10627             }
10628             return env->v7m.psplim[M_REG_NS];
10629         case 0x90: /* PRIMASK_NS */
10630             if (!env->v7m.secure) {
10631                 return 0;
10632             }
10633             return env->v7m.primask[M_REG_NS];
10634         case 0x91: /* BASEPRI_NS */
10635             if (!env->v7m.secure) {
10636                 return 0;
10637             }
10638             return env->v7m.basepri[M_REG_NS];
10639         case 0x93: /* FAULTMASK_NS */
10640             if (!env->v7m.secure) {
10641                 return 0;
10642             }
10643             return env->v7m.faultmask[M_REG_NS];
10644         case 0x98: /* SP_NS */
10645         {
10646             /* This gives the non-secure SP selected based on whether we're
10647              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10648              */
10649             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10650 
10651             if (!env->v7m.secure) {
10652                 return 0;
10653             }
10654             if (!arm_v7m_is_handler_mode(env) && spsel) {
10655                 return env->v7m.other_ss_psp;
10656             } else {
10657                 return env->v7m.other_ss_msp;
10658             }
10659         }
10660         default:
10661             break;
10662         }
10663     }
10664 
10665     switch (reg) {
10666     case 8: /* MSP */
10667         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10668     case 9: /* PSP */
10669         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10670     case 10: /* MSPLIM */
10671         if (!arm_feature(env, ARM_FEATURE_V8)) {
10672             goto bad_reg;
10673         }
10674         return env->v7m.msplim[env->v7m.secure];
10675     case 11: /* PSPLIM */
10676         if (!arm_feature(env, ARM_FEATURE_V8)) {
10677             goto bad_reg;
10678         }
10679         return env->v7m.psplim[env->v7m.secure];
10680     case 16: /* PRIMASK */
10681         return env->v7m.primask[env->v7m.secure];
10682     case 17: /* BASEPRI */
10683     case 18: /* BASEPRI_MAX */
10684         return env->v7m.basepri[env->v7m.secure];
10685     case 19: /* FAULTMASK */
10686         return env->v7m.faultmask[env->v7m.secure];
10687     default:
10688     bad_reg:
10689         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10690                                        " register %d\n", reg);
10691         return 0;
10692     }
10693 }
10694 
10695 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10696 {
10697     /* We're passed bits [11..0] of the instruction; extract
10698      * SYSm and the mask bits.
10699      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10700      * we choose to treat them as if the mask bits were valid.
10701      * NB that the pseudocode 'mask' variable is bits [11..10],
10702      * whereas ours is [11..8].
10703      */
10704     uint32_t mask = extract32(maskreg, 8, 4);
10705     uint32_t reg = extract32(maskreg, 0, 8);
10706 
10707     if (arm_current_el(env) == 0 && reg > 7) {
10708         /* only xPSR sub-fields may be written by unprivileged */
10709         return;
10710     }
10711 
10712     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10713         switch (reg) {
10714         case 0x88: /* MSP_NS */
10715             if (!env->v7m.secure) {
10716                 return;
10717             }
10718             env->v7m.other_ss_msp = val;
10719             return;
10720         case 0x89: /* PSP_NS */
10721             if (!env->v7m.secure) {
10722                 return;
10723             }
10724             env->v7m.other_ss_psp = val;
10725             return;
10726         case 0x8a: /* MSPLIM_NS */
10727             if (!env->v7m.secure) {
10728                 return;
10729             }
10730             env->v7m.msplim[M_REG_NS] = val & ~7;
10731             return;
10732         case 0x8b: /* PSPLIM_NS */
10733             if (!env->v7m.secure) {
10734                 return;
10735             }
10736             env->v7m.psplim[M_REG_NS] = val & ~7;
10737             return;
10738         case 0x90: /* PRIMASK_NS */
10739             if (!env->v7m.secure) {
10740                 return;
10741             }
10742             env->v7m.primask[M_REG_NS] = val & 1;
10743             return;
10744         case 0x91: /* BASEPRI_NS */
10745             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
10746                 return;
10747             }
10748             env->v7m.basepri[M_REG_NS] = val & 0xff;
10749             return;
10750         case 0x93: /* FAULTMASK_NS */
10751             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
10752                 return;
10753             }
10754             env->v7m.faultmask[M_REG_NS] = val & 1;
10755             return;
10756         case 0x94: /* CONTROL_NS */
10757             if (!env->v7m.secure) {
10758                 return;
10759             }
10760             write_v7m_control_spsel_for_secstate(env,
10761                                                  val & R_V7M_CONTROL_SPSEL_MASK,
10762                                                  M_REG_NS);
10763             if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
10764                 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
10765                 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
10766             }
10767             return;
10768         case 0x98: /* SP_NS */
10769         {
10770             /* This gives the non-secure SP selected based on whether we're
10771              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10772              */
10773             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10774 
10775             if (!env->v7m.secure) {
10776                 return;
10777             }
10778             if (!arm_v7m_is_handler_mode(env) && spsel) {
10779                 env->v7m.other_ss_psp = val;
10780             } else {
10781                 env->v7m.other_ss_msp = val;
10782             }
10783             return;
10784         }
10785         default:
10786             break;
10787         }
10788     }
10789 
10790     switch (reg) {
10791     case 0 ... 7: /* xPSR sub-fields */
10792         /* only APSR is actually writable */
10793         if (!(reg & 4)) {
10794             uint32_t apsrmask = 0;
10795 
10796             if (mask & 8) {
10797                 apsrmask |= XPSR_NZCV | XPSR_Q;
10798             }
10799             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10800                 apsrmask |= XPSR_GE;
10801             }
10802             xpsr_write(env, val, apsrmask);
10803         }
10804         break;
10805     case 8: /* MSP */
10806         if (v7m_using_psp(env)) {
10807             env->v7m.other_sp = val;
10808         } else {
10809             env->regs[13] = val;
10810         }
10811         break;
10812     case 9: /* PSP */
10813         if (v7m_using_psp(env)) {
10814             env->regs[13] = val;
10815         } else {
10816             env->v7m.other_sp = val;
10817         }
10818         break;
10819     case 10: /* MSPLIM */
10820         if (!arm_feature(env, ARM_FEATURE_V8)) {
10821             goto bad_reg;
10822         }
10823         env->v7m.msplim[env->v7m.secure] = val & ~7;
10824         break;
10825     case 11: /* PSPLIM */
10826         if (!arm_feature(env, ARM_FEATURE_V8)) {
10827             goto bad_reg;
10828         }
10829         env->v7m.psplim[env->v7m.secure] = val & ~7;
10830         break;
10831     case 16: /* PRIMASK */
10832         env->v7m.primask[env->v7m.secure] = val & 1;
10833         break;
10834     case 17: /* BASEPRI */
10835         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10836             goto bad_reg;
10837         }
10838         env->v7m.basepri[env->v7m.secure] = val & 0xff;
10839         break;
10840     case 18: /* BASEPRI_MAX */
10841         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10842             goto bad_reg;
10843         }
10844         val &= 0xff;
10845         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10846                          || env->v7m.basepri[env->v7m.secure] == 0)) {
10847             env->v7m.basepri[env->v7m.secure] = val;
10848         }
10849         break;
10850     case 19: /* FAULTMASK */
10851         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10852             goto bad_reg;
10853         }
10854         env->v7m.faultmask[env->v7m.secure] = val & 1;
10855         break;
10856     case 20: /* CONTROL */
10857         /* Writing to the SPSEL bit only has an effect if we are in
10858          * thread mode; other bits can be updated by any privileged code.
10859          * write_v7m_control_spsel() deals with updating the SPSEL bit in
10860          * env->v7m.control, so we only need update the others.
10861          * For v7M, we must just ignore explicit writes to SPSEL in handler
10862          * mode; for v8M the write is permitted but will have no effect.
10863          */
10864         if (arm_feature(env, ARM_FEATURE_V8) ||
10865             !arm_v7m_is_handler_mode(env)) {
10866             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10867         }
10868         if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
10869             env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10870             env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10871         }
10872         break;
10873     default:
10874     bad_reg:
10875         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10876                                        " register %d\n", reg);
10877         return;
10878     }
10879 }
10880 
10881 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10882 {
10883     /* Implement the TT instruction. op is bits [7:6] of the insn. */
10884     bool forceunpriv = op & 1;
10885     bool alt = op & 2;
10886     V8M_SAttributes sattrs = {};
10887     uint32_t tt_resp;
10888     bool r, rw, nsr, nsrw, mrvalid;
10889     int prot;
10890     ARMMMUFaultInfo fi = {};
10891     MemTxAttrs attrs = {};
10892     hwaddr phys_addr;
10893     ARMMMUIdx mmu_idx;
10894     uint32_t mregion;
10895     bool targetpriv;
10896     bool targetsec = env->v7m.secure;
10897     bool is_subpage;
10898 
10899     /* Work out what the security state and privilege level we're
10900      * interested in is...
10901      */
10902     if (alt) {
10903         targetsec = !targetsec;
10904     }
10905 
10906     if (forceunpriv) {
10907         targetpriv = false;
10908     } else {
10909         targetpriv = arm_v7m_is_handler_mode(env) ||
10910             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10911     }
10912 
10913     /* ...and then figure out which MMU index this is */
10914     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10915 
10916     /* We know that the MPU and SAU don't care about the access type
10917      * for our purposes beyond that we don't want to claim to be
10918      * an insn fetch, so we arbitrarily call this a read.
10919      */
10920 
10921     /* MPU region info only available for privileged or if
10922      * inspecting the other MPU state.
10923      */
10924     if (arm_current_el(env) != 0 || alt) {
10925         /* We can ignore the return value as prot is always set */
10926         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10927                           &phys_addr, &attrs, &prot, &is_subpage,
10928                           &fi, &mregion);
10929         if (mregion == -1) {
10930             mrvalid = false;
10931             mregion = 0;
10932         } else {
10933             mrvalid = true;
10934         }
10935         r = prot & PAGE_READ;
10936         rw = prot & PAGE_WRITE;
10937     } else {
10938         r = false;
10939         rw = false;
10940         mrvalid = false;
10941         mregion = 0;
10942     }
10943 
10944     if (env->v7m.secure) {
10945         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10946         nsr = sattrs.ns && r;
10947         nsrw = sattrs.ns && rw;
10948     } else {
10949         sattrs.ns = true;
10950         nsr = false;
10951         nsrw = false;
10952     }
10953 
10954     tt_resp = (sattrs.iregion << 24) |
10955         (sattrs.irvalid << 23) |
10956         ((!sattrs.ns) << 22) |
10957         (nsrw << 21) |
10958         (nsr << 20) |
10959         (rw << 19) |
10960         (r << 18) |
10961         (sattrs.srvalid << 17) |
10962         (mrvalid << 16) |
10963         (sattrs.sregion << 8) |
10964         mregion;
10965 
10966     return tt_resp;
10967 }
10968 
10969 #endif
10970 
10971 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10972 {
10973     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10974      * Note that we do not implement the (architecturally mandated)
10975      * alignment fault for attempts to use this on Device memory
10976      * (which matches the usual QEMU behaviour of not implementing either
10977      * alignment faults or any memory attribute handling).
10978      */
10979 
10980     ARMCPU *cpu = arm_env_get_cpu(env);
10981     uint64_t blocklen = 4 << cpu->dcz_blocksize;
10982     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10983 
10984 #ifndef CONFIG_USER_ONLY
10985     {
10986         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10987          * the block size so we might have to do more than one TLB lookup.
10988          * We know that in fact for any v8 CPU the page size is at least 4K
10989          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10990          * 1K as an artefact of legacy v5 subpage support being present in the
10991          * same QEMU executable.
10992          */
10993         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10994         void *hostaddr[maxidx];
10995         int try, i;
10996         unsigned mmu_idx = cpu_mmu_index(env, false);
10997         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10998 
10999         for (try = 0; try < 2; try++) {
11000 
11001             for (i = 0; i < maxidx; i++) {
11002                 hostaddr[i] = tlb_vaddr_to_host(env,
11003                                                 vaddr + TARGET_PAGE_SIZE * i,
11004                                                 1, mmu_idx);
11005                 if (!hostaddr[i]) {
11006                     break;
11007                 }
11008             }
11009             if (i == maxidx) {
11010                 /* If it's all in the TLB it's fair game for just writing to;
11011                  * we know we don't need to update dirty status, etc.
11012                  */
11013                 for (i = 0; i < maxidx - 1; i++) {
11014                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
11015                 }
11016                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
11017                 return;
11018             }
11019             /* OK, try a store and see if we can populate the tlb. This
11020              * might cause an exception if the memory isn't writable,
11021              * in which case we will longjmp out of here. We must for
11022              * this purpose use the actual register value passed to us
11023              * so that we get the fault address right.
11024              */
11025             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
11026             /* Now we can populate the other TLB entries, if any */
11027             for (i = 0; i < maxidx; i++) {
11028                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
11029                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
11030                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
11031                 }
11032             }
11033         }
11034 
11035         /* Slow path (probably attempt to do this to an I/O device or
11036          * similar, or clearing of a block of code we have translations
11037          * cached for). Just do a series of byte writes as the architecture
11038          * demands. It's not worth trying to use a cpu_physical_memory_map(),
11039          * memset(), unmap() sequence here because:
11040          *  + we'd need to account for the blocksize being larger than a page
11041          *  + the direct-RAM access case is almost always going to be dealt
11042          *    with in the fastpath code above, so there's no speed benefit
11043          *  + we would have to deal with the map returning NULL because the
11044          *    bounce buffer was in use
11045          */
11046         for (i = 0; i < blocklen; i++) {
11047             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
11048         }
11049     }
11050 #else
11051     memset(g2h(vaddr), 0, blocklen);
11052 #endif
11053 }
11054 
11055 /* Note that signed overflow is undefined in C.  The following routines are
11056    careful to use unsigned types where modulo arithmetic is required.
11057    Failure to do so _will_ break on newer gcc.  */
11058 
11059 /* Signed saturating arithmetic.  */
11060 
11061 /* Perform 16-bit signed saturating addition.  */
11062 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11063 {
11064     uint16_t res;
11065 
11066     res = a + b;
11067     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11068         if (a & 0x8000)
11069             res = 0x8000;
11070         else
11071             res = 0x7fff;
11072     }
11073     return res;
11074 }
11075 
11076 /* Perform 8-bit signed saturating addition.  */
11077 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11078 {
11079     uint8_t res;
11080 
11081     res = a + b;
11082     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11083         if (a & 0x80)
11084             res = 0x80;
11085         else
11086             res = 0x7f;
11087     }
11088     return res;
11089 }
11090 
11091 /* Perform 16-bit signed saturating subtraction.  */
11092 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11093 {
11094     uint16_t res;
11095 
11096     res = a - b;
11097     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11098         if (a & 0x8000)
11099             res = 0x8000;
11100         else
11101             res = 0x7fff;
11102     }
11103     return res;
11104 }
11105 
11106 /* Perform 8-bit signed saturating subtraction.  */
11107 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11108 {
11109     uint8_t res;
11110 
11111     res = a - b;
11112     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11113         if (a & 0x80)
11114             res = 0x80;
11115         else
11116             res = 0x7f;
11117     }
11118     return res;
11119 }
11120 
11121 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11122 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11123 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11124 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11125 #define PFX q
11126 
11127 #include "op_addsub.h"
11128 
11129 /* Unsigned saturating arithmetic.  */
11130 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11131 {
11132     uint16_t res;
11133     res = a + b;
11134     if (res < a)
11135         res = 0xffff;
11136     return res;
11137 }
11138 
11139 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11140 {
11141     if (a > b)
11142         return a - b;
11143     else
11144         return 0;
11145 }
11146 
11147 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11148 {
11149     uint8_t res;
11150     res = a + b;
11151     if (res < a)
11152         res = 0xff;
11153     return res;
11154 }
11155 
11156 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11157 {
11158     if (a > b)
11159         return a - b;
11160     else
11161         return 0;
11162 }
11163 
11164 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11165 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11166 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11167 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11168 #define PFX uq
11169 
11170 #include "op_addsub.h"
11171 
11172 /* Signed modulo arithmetic.  */
11173 #define SARITH16(a, b, n, op) do { \
11174     int32_t sum; \
11175     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11176     RESULT(sum, n, 16); \
11177     if (sum >= 0) \
11178         ge |= 3 << (n * 2); \
11179     } while(0)
11180 
11181 #define SARITH8(a, b, n, op) do { \
11182     int32_t sum; \
11183     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11184     RESULT(sum, n, 8); \
11185     if (sum >= 0) \
11186         ge |= 1 << n; \
11187     } while(0)
11188 
11189 
11190 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11191 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11192 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11193 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11194 #define PFX s
11195 #define ARITH_GE
11196 
11197 #include "op_addsub.h"
11198 
11199 /* Unsigned modulo arithmetic.  */
11200 #define ADD16(a, b, n) do { \
11201     uint32_t sum; \
11202     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11203     RESULT(sum, n, 16); \
11204     if ((sum >> 16) == 1) \
11205         ge |= 3 << (n * 2); \
11206     } while(0)
11207 
11208 #define ADD8(a, b, n) do { \
11209     uint32_t sum; \
11210     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11211     RESULT(sum, n, 8); \
11212     if ((sum >> 8) == 1) \
11213         ge |= 1 << n; \
11214     } while(0)
11215 
11216 #define SUB16(a, b, n) do { \
11217     uint32_t sum; \
11218     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11219     RESULT(sum, n, 16); \
11220     if ((sum >> 16) == 0) \
11221         ge |= 3 << (n * 2); \
11222     } while(0)
11223 
11224 #define SUB8(a, b, n) do { \
11225     uint32_t sum; \
11226     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11227     RESULT(sum, n, 8); \
11228     if ((sum >> 8) == 0) \
11229         ge |= 1 << n; \
11230     } while(0)
11231 
11232 #define PFX u
11233 #define ARITH_GE
11234 
11235 #include "op_addsub.h"
11236 
11237 /* Halved signed arithmetic.  */
11238 #define ADD16(a, b, n) \
11239   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11240 #define SUB16(a, b, n) \
11241   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11242 #define ADD8(a, b, n) \
11243   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11244 #define SUB8(a, b, n) \
11245   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11246 #define PFX sh
11247 
11248 #include "op_addsub.h"
11249 
11250 /* Halved unsigned arithmetic.  */
11251 #define ADD16(a, b, n) \
11252   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11253 #define SUB16(a, b, n) \
11254   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11255 #define ADD8(a, b, n) \
11256   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11257 #define SUB8(a, b, n) \
11258   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11259 #define PFX uh
11260 
11261 #include "op_addsub.h"
11262 
11263 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11264 {
11265     if (a > b)
11266         return a - b;
11267     else
11268         return b - a;
11269 }
11270 
11271 /* Unsigned sum of absolute byte differences.  */
11272 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11273 {
11274     uint32_t sum;
11275     sum = do_usad(a, b);
11276     sum += do_usad(a >> 8, b >> 8);
11277     sum += do_usad(a >> 16, b >>16);
11278     sum += do_usad(a >> 24, b >> 24);
11279     return sum;
11280 }
11281 
11282 /* For ARMv6 SEL instruction.  */
11283 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11284 {
11285     uint32_t mask;
11286 
11287     mask = 0;
11288     if (flags & 1)
11289         mask |= 0xff;
11290     if (flags & 2)
11291         mask |= 0xff00;
11292     if (flags & 4)
11293         mask |= 0xff0000;
11294     if (flags & 8)
11295         mask |= 0xff000000;
11296     return (a & mask) | (b & ~mask);
11297 }
11298 
11299 /* VFP support.  We follow the convention used for VFP instructions:
11300    Single precision routines have a "s" suffix, double precision a
11301    "d" suffix.  */
11302 
11303 /* Convert host exception flags to vfp form.  */
11304 static inline int vfp_exceptbits_from_host(int host_bits)
11305 {
11306     int target_bits = 0;
11307 
11308     if (host_bits & float_flag_invalid)
11309         target_bits |= 1;
11310     if (host_bits & float_flag_divbyzero)
11311         target_bits |= 2;
11312     if (host_bits & float_flag_overflow)
11313         target_bits |= 4;
11314     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11315         target_bits |= 8;
11316     if (host_bits & float_flag_inexact)
11317         target_bits |= 0x10;
11318     if (host_bits & float_flag_input_denormal)
11319         target_bits |= 0x80;
11320     return target_bits;
11321 }
11322 
11323 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11324 {
11325     int i;
11326     uint32_t fpscr;
11327 
11328     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11329             | (env->vfp.vec_len << 16)
11330             | (env->vfp.vec_stride << 20);
11331 
11332     i = get_float_exception_flags(&env->vfp.fp_status);
11333     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11334     /* FZ16 does not generate an input denormal exception.  */
11335     i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
11336           & ~float_flag_input_denormal);
11337 
11338     fpscr |= vfp_exceptbits_from_host(i);
11339     return fpscr;
11340 }
11341 
11342 uint32_t vfp_get_fpscr(CPUARMState *env)
11343 {
11344     return HELPER(vfp_get_fpscr)(env);
11345 }
11346 
11347 /* Convert vfp exception flags to target form.  */
11348 static inline int vfp_exceptbits_to_host(int target_bits)
11349 {
11350     int host_bits = 0;
11351 
11352     if (target_bits & 1)
11353         host_bits |= float_flag_invalid;
11354     if (target_bits & 2)
11355         host_bits |= float_flag_divbyzero;
11356     if (target_bits & 4)
11357         host_bits |= float_flag_overflow;
11358     if (target_bits & 8)
11359         host_bits |= float_flag_underflow;
11360     if (target_bits & 0x10)
11361         host_bits |= float_flag_inexact;
11362     if (target_bits & 0x80)
11363         host_bits |= float_flag_input_denormal;
11364     return host_bits;
11365 }
11366 
11367 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11368 {
11369     int i;
11370     uint32_t changed;
11371 
11372     /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
11373     if (!arm_feature(env, ARM_FEATURE_V8_FP16)) {
11374         val &= ~FPCR_FZ16;
11375     }
11376 
11377     changed = env->vfp.xregs[ARM_VFP_FPSCR];
11378     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11379     env->vfp.vec_len = (val >> 16) & 7;
11380     env->vfp.vec_stride = (val >> 20) & 3;
11381 
11382     changed ^= val;
11383     if (changed & (3 << 22)) {
11384         i = (val >> 22) & 3;
11385         switch (i) {
11386         case FPROUNDING_TIEEVEN:
11387             i = float_round_nearest_even;
11388             break;
11389         case FPROUNDING_POSINF:
11390             i = float_round_up;
11391             break;
11392         case FPROUNDING_NEGINF:
11393             i = float_round_down;
11394             break;
11395         case FPROUNDING_ZERO:
11396             i = float_round_to_zero;
11397             break;
11398         }
11399         set_float_rounding_mode(i, &env->vfp.fp_status);
11400         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
11401     }
11402     if (changed & FPCR_FZ16) {
11403         bool ftz_enabled = val & FPCR_FZ16;
11404         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11405         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11406     }
11407     if (changed & FPCR_FZ) {
11408         bool ftz_enabled = val & FPCR_FZ;
11409         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
11410         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
11411     }
11412     if (changed & FPCR_DN) {
11413         bool dnan_enabled = val & FPCR_DN;
11414         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
11415         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11416     }
11417 
11418     /* The exception flags are ORed together when we read fpscr so we
11419      * only need to preserve the current state in one of our
11420      * float_status values.
11421      */
11422     i = vfp_exceptbits_to_host(val);
11423     set_float_exception_flags(i, &env->vfp.fp_status);
11424     set_float_exception_flags(0, &env->vfp.fp_status_f16);
11425     set_float_exception_flags(0, &env->vfp.standard_fp_status);
11426 }
11427 
11428 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11429 {
11430     HELPER(vfp_set_fpscr)(env, val);
11431 }
11432 
11433 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11434 
11435 #define VFP_BINOP(name) \
11436 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11437 { \
11438     float_status *fpst = fpstp; \
11439     return float32_ ## name(a, b, fpst); \
11440 } \
11441 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11442 { \
11443     float_status *fpst = fpstp; \
11444     return float64_ ## name(a, b, fpst); \
11445 }
11446 VFP_BINOP(add)
11447 VFP_BINOP(sub)
11448 VFP_BINOP(mul)
11449 VFP_BINOP(div)
11450 VFP_BINOP(min)
11451 VFP_BINOP(max)
11452 VFP_BINOP(minnum)
11453 VFP_BINOP(maxnum)
11454 #undef VFP_BINOP
11455 
11456 float32 VFP_HELPER(neg, s)(float32 a)
11457 {
11458     return float32_chs(a);
11459 }
11460 
11461 float64 VFP_HELPER(neg, d)(float64 a)
11462 {
11463     return float64_chs(a);
11464 }
11465 
11466 float32 VFP_HELPER(abs, s)(float32 a)
11467 {
11468     return float32_abs(a);
11469 }
11470 
11471 float64 VFP_HELPER(abs, d)(float64 a)
11472 {
11473     return float64_abs(a);
11474 }
11475 
11476 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11477 {
11478     return float32_sqrt(a, &env->vfp.fp_status);
11479 }
11480 
11481 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11482 {
11483     return float64_sqrt(a, &env->vfp.fp_status);
11484 }
11485 
11486 /* XXX: check quiet/signaling case */
11487 #define DO_VFP_cmp(p, type) \
11488 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
11489 { \
11490     uint32_t flags; \
11491     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11492     case 0: flags = 0x6; break; \
11493     case -1: flags = 0x8; break; \
11494     case 1: flags = 0x2; break; \
11495     default: case 2: flags = 0x3; break; \
11496     } \
11497     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11498         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11499 } \
11500 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11501 { \
11502     uint32_t flags; \
11503     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11504     case 0: flags = 0x6; break; \
11505     case -1: flags = 0x8; break; \
11506     case 1: flags = 0x2; break; \
11507     default: case 2: flags = 0x3; break; \
11508     } \
11509     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11510         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11511 }
11512 DO_VFP_cmp(s, float32)
11513 DO_VFP_cmp(d, float64)
11514 #undef DO_VFP_cmp
11515 
11516 /* Integer to float and float to integer conversions */
11517 
11518 #define CONV_ITOF(name, ftype, fsz, sign)                           \
11519 ftype HELPER(name)(uint32_t x, void *fpstp)                         \
11520 {                                                                   \
11521     float_status *fpst = fpstp;                                     \
11522     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
11523 }
11524 
11525 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
11526 sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
11527 {                                                               \
11528     float_status *fpst = fpstp;                                 \
11529     if (float##fsz##_is_any_nan(x)) {                           \
11530         float_raise(float_flag_invalid, fpst);                  \
11531         return 0;                                               \
11532     }                                                           \
11533     return float##fsz##_to_##sign##int32##round(x, fpst);       \
11534 }
11535 
11536 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
11537     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
11538     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
11539     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
11540 
11541 FLOAT_CONVS(si, h, uint32_t, 16, )
11542 FLOAT_CONVS(si, s, float32, 32, )
11543 FLOAT_CONVS(si, d, float64, 64, )
11544 FLOAT_CONVS(ui, h, uint32_t, 16, u)
11545 FLOAT_CONVS(ui, s, float32, 32, u)
11546 FLOAT_CONVS(ui, d, float64, 64, u)
11547 
11548 #undef CONV_ITOF
11549 #undef CONV_FTOI
11550 #undef FLOAT_CONVS
11551 
11552 /* floating point conversion */
11553 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11554 {
11555     return float32_to_float64(x, &env->vfp.fp_status);
11556 }
11557 
11558 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11559 {
11560     return float64_to_float32(x, &env->vfp.fp_status);
11561 }
11562 
11563 /* VFP3 fixed point conversion.  */
11564 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11565 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
11566                                      void *fpstp) \
11567 { \
11568     float_status *fpst = fpstp; \
11569     float##fsz tmp; \
11570     tmp = itype##_to_##float##fsz(x, fpst); \
11571     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
11572 }
11573 
11574 /* Notice that we want only input-denormal exception flags from the
11575  * scalbn operation: the other possible flags (overflow+inexact if
11576  * we overflow to infinity, output-denormal) aren't correct for the
11577  * complete scale-and-convert operation.
11578  */
11579 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
11580 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
11581                                              uint32_t shift, \
11582                                              void *fpstp) \
11583 { \
11584     float_status *fpst = fpstp; \
11585     int old_exc_flags = get_float_exception_flags(fpst); \
11586     float##fsz tmp; \
11587     if (float##fsz##_is_any_nan(x)) { \
11588         float_raise(float_flag_invalid, fpst); \
11589         return 0; \
11590     } \
11591     tmp = float##fsz##_scalbn(x, shift, fpst); \
11592     old_exc_flags |= get_float_exception_flags(fpst) \
11593         & float_flag_input_denormal; \
11594     set_float_exception_flags(old_exc_flags, fpst); \
11595     return float##fsz##_to_##itype##round(tmp, fpst); \
11596 }
11597 
11598 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
11599 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11600 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
11601 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11602 
11603 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
11604 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11605 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11606 
11607 VFP_CONV_FIX(sh, d, 64, 64, int16)
11608 VFP_CONV_FIX(sl, d, 64, 64, int32)
11609 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11610 VFP_CONV_FIX(uh, d, 64, 64, uint16)
11611 VFP_CONV_FIX(ul, d, 64, 64, uint32)
11612 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11613 VFP_CONV_FIX(sh, s, 32, 32, int16)
11614 VFP_CONV_FIX(sl, s, 32, 32, int32)
11615 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11616 VFP_CONV_FIX(uh, s, 32, 32, uint16)
11617 VFP_CONV_FIX(ul, s, 32, 32, uint32)
11618 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11619 
11620 #undef VFP_CONV_FIX
11621 #undef VFP_CONV_FIX_FLOAT
11622 #undef VFP_CONV_FLOAT_FIX_ROUND
11623 #undef VFP_CONV_FIX_A64
11624 
11625 /* Conversion to/from f16 can overflow to infinity before/after scaling.
11626  * Therefore we convert to f64, scale, and then convert f64 to f16; or
11627  * vice versa for conversion to integer.
11628  *
11629  * For 16- and 32-bit integers, the conversion to f64 never rounds.
11630  * For 64-bit integers, any integer that would cause rounding will also
11631  * overflow to f16 infinity, so there is no double rounding problem.
11632  */
11633 
11634 static float16 do_postscale_fp16(float64 f, int shift, float_status *fpst)
11635 {
11636     return float64_to_float16(float64_scalbn(f, -shift, fpst), true, fpst);
11637 }
11638 
11639 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
11640 {
11641     return do_postscale_fp16(int32_to_float64(x, fpst), shift, fpst);
11642 }
11643 
11644 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
11645 {
11646     return do_postscale_fp16(uint32_to_float64(x, fpst), shift, fpst);
11647 }
11648 
11649 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
11650 {
11651     return do_postscale_fp16(int64_to_float64(x, fpst), shift, fpst);
11652 }
11653 
11654 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
11655 {
11656     return do_postscale_fp16(uint64_to_float64(x, fpst), shift, fpst);
11657 }
11658 
11659 static float64 do_prescale_fp16(float16 f, int shift, float_status *fpst)
11660 {
11661     if (unlikely(float16_is_any_nan(f))) {
11662         float_raise(float_flag_invalid, fpst);
11663         return 0;
11664     } else {
11665         int old_exc_flags = get_float_exception_flags(fpst);
11666         float64 ret;
11667 
11668         ret = float16_to_float64(f, true, fpst);
11669         ret = float64_scalbn(ret, shift, fpst);
11670         old_exc_flags |= get_float_exception_flags(fpst)
11671             & float_flag_input_denormal;
11672         set_float_exception_flags(old_exc_flags, fpst);
11673 
11674         return ret;
11675     }
11676 }
11677 
11678 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
11679 {
11680     return float64_to_int16(do_prescale_fp16(x, shift, fpst), fpst);
11681 }
11682 
11683 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
11684 {
11685     return float64_to_uint16(do_prescale_fp16(x, shift, fpst), fpst);
11686 }
11687 
11688 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
11689 {
11690     return float64_to_int32(do_prescale_fp16(x, shift, fpst), fpst);
11691 }
11692 
11693 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
11694 {
11695     return float64_to_uint32(do_prescale_fp16(x, shift, fpst), fpst);
11696 }
11697 
11698 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
11699 {
11700     return float64_to_int64(do_prescale_fp16(x, shift, fpst), fpst);
11701 }
11702 
11703 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
11704 {
11705     return float64_to_uint64(do_prescale_fp16(x, shift, fpst), fpst);
11706 }
11707 
11708 /* Set the current fp rounding mode and return the old one.
11709  * The argument is a softfloat float_round_ value.
11710  */
11711 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
11712 {
11713     float_status *fp_status = fpstp;
11714 
11715     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11716     set_float_rounding_mode(rmode, fp_status);
11717 
11718     return prev_rmode;
11719 }
11720 
11721 /* Set the current fp rounding mode in the standard fp status and return
11722  * the old one. This is for NEON instructions that need to change the
11723  * rounding mode but wish to use the standard FPSCR values for everything
11724  * else. Always set the rounding mode back to the correct value after
11725  * modifying it.
11726  * The argument is a softfloat float_round_ value.
11727  */
11728 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
11729 {
11730     float_status *fp_status = &env->vfp.standard_fp_status;
11731 
11732     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11733     set_float_rounding_mode(rmode, fp_status);
11734 
11735     return prev_rmode;
11736 }
11737 
11738 /* Half precision conversions.  */
11739 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11740 {
11741     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11742      * it would affect flushing input denormals.
11743      */
11744     float_status *fpst = fpstp;
11745     flag save = get_flush_inputs_to_zero(fpst);
11746     set_flush_inputs_to_zero(false, fpst);
11747     float32 r = float16_to_float32(a, !ahp_mode, fpst);
11748     set_flush_inputs_to_zero(save, fpst);
11749     return r;
11750 }
11751 
11752 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
11753 {
11754     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11755      * it would affect flushing output denormals.
11756      */
11757     float_status *fpst = fpstp;
11758     flag save = get_flush_to_zero(fpst);
11759     set_flush_to_zero(false, fpst);
11760     float16 r = float32_to_float16(a, !ahp_mode, fpst);
11761     set_flush_to_zero(save, fpst);
11762     return r;
11763 }
11764 
11765 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11766 {
11767     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11768      * it would affect flushing input denormals.
11769      */
11770     float_status *fpst = fpstp;
11771     flag save = get_flush_inputs_to_zero(fpst);
11772     set_flush_inputs_to_zero(false, fpst);
11773     float64 r = float16_to_float64(a, !ahp_mode, fpst);
11774     set_flush_inputs_to_zero(save, fpst);
11775     return r;
11776 }
11777 
11778 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
11779 {
11780     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11781      * it would affect flushing output denormals.
11782      */
11783     float_status *fpst = fpstp;
11784     flag save = get_flush_to_zero(fpst);
11785     set_flush_to_zero(false, fpst);
11786     float16 r = float64_to_float16(a, !ahp_mode, fpst);
11787     set_flush_to_zero(save, fpst);
11788     return r;
11789 }
11790 
11791 #define float32_two make_float32(0x40000000)
11792 #define float32_three make_float32(0x40400000)
11793 #define float32_one_point_five make_float32(0x3fc00000)
11794 
11795 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11796 {
11797     float_status *s = &env->vfp.standard_fp_status;
11798     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11799         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11800         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11801             float_raise(float_flag_input_denormal, s);
11802         }
11803         return float32_two;
11804     }
11805     return float32_sub(float32_two, float32_mul(a, b, s), s);
11806 }
11807 
11808 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11809 {
11810     float_status *s = &env->vfp.standard_fp_status;
11811     float32 product;
11812     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11813         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11814         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11815             float_raise(float_flag_input_denormal, s);
11816         }
11817         return float32_one_point_five;
11818     }
11819     product = float32_mul(a, b, s);
11820     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11821 }
11822 
11823 /* NEON helpers.  */
11824 
11825 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11826  * int->float conversions at run-time.  */
11827 #define float64_256 make_float64(0x4070000000000000LL)
11828 #define float64_512 make_float64(0x4080000000000000LL)
11829 #define float16_maxnorm make_float16(0x7bff)
11830 #define float32_maxnorm make_float32(0x7f7fffff)
11831 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11832 
11833 /* Reciprocal functions
11834  *
11835  * The algorithm that must be used to calculate the estimate
11836  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
11837  */
11838 
11839 /* See RecipEstimate()
11840  *
11841  * input is a 9 bit fixed point number
11842  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
11843  * result range 256 .. 511 for a number from 1.0 to 511/256.
11844  */
11845 
11846 static int recip_estimate(int input)
11847 {
11848     int a, b, r;
11849     assert(256 <= input && input < 512);
11850     a = (input * 2) + 1;
11851     b = (1 << 19) / a;
11852     r = (b + 1) >> 1;
11853     assert(256 <= r && r < 512);
11854     return r;
11855 }
11856 
11857 /*
11858  * Common wrapper to call recip_estimate
11859  *
11860  * The parameters are exponent and 64 bit fraction (without implicit
11861  * bit) where the binary point is nominally at bit 52. Returns a
11862  * float64 which can then be rounded to the appropriate size by the
11863  * callee.
11864  */
11865 
11866 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
11867 {
11868     uint32_t scaled, estimate;
11869     uint64_t result_frac;
11870     int result_exp;
11871 
11872     /* Handle sub-normals */
11873     if (*exp == 0) {
11874         if (extract64(frac, 51, 1) == 0) {
11875             *exp = -1;
11876             frac <<= 2;
11877         } else {
11878             frac <<= 1;
11879         }
11880     }
11881 
11882     /* scaled = UInt('1':fraction<51:44>) */
11883     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
11884     estimate = recip_estimate(scaled);
11885 
11886     result_exp = exp_off - *exp;
11887     result_frac = deposit64(0, 44, 8, estimate);
11888     if (result_exp == 0) {
11889         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
11890     } else if (result_exp == -1) {
11891         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
11892         result_exp = 0;
11893     }
11894 
11895     *exp = result_exp;
11896 
11897     return result_frac;
11898 }
11899 
11900 static bool round_to_inf(float_status *fpst, bool sign_bit)
11901 {
11902     switch (fpst->float_rounding_mode) {
11903     case float_round_nearest_even: /* Round to Nearest */
11904         return true;
11905     case float_round_up: /* Round to +Inf */
11906         return !sign_bit;
11907     case float_round_down: /* Round to -Inf */
11908         return sign_bit;
11909     case float_round_to_zero: /* Round to Zero */
11910         return false;
11911     }
11912 
11913     g_assert_not_reached();
11914 }
11915 
11916 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
11917 {
11918     float_status *fpst = fpstp;
11919     float16 f16 = float16_squash_input_denormal(input, fpst);
11920     uint32_t f16_val = float16_val(f16);
11921     uint32_t f16_sign = float16_is_neg(f16);
11922     int f16_exp = extract32(f16_val, 10, 5);
11923     uint32_t f16_frac = extract32(f16_val, 0, 10);
11924     uint64_t f64_frac;
11925 
11926     if (float16_is_any_nan(f16)) {
11927         float16 nan = f16;
11928         if (float16_is_signaling_nan(f16, fpst)) {
11929             float_raise(float_flag_invalid, fpst);
11930             nan = float16_silence_nan(f16, fpst);
11931         }
11932         if (fpst->default_nan_mode) {
11933             nan =  float16_default_nan(fpst);
11934         }
11935         return nan;
11936     } else if (float16_is_infinity(f16)) {
11937         return float16_set_sign(float16_zero, float16_is_neg(f16));
11938     } else if (float16_is_zero(f16)) {
11939         float_raise(float_flag_divbyzero, fpst);
11940         return float16_set_sign(float16_infinity, float16_is_neg(f16));
11941     } else if (float16_abs(f16) < (1 << 8)) {
11942         /* Abs(value) < 2.0^-16 */
11943         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11944         if (round_to_inf(fpst, f16_sign)) {
11945             return float16_set_sign(float16_infinity, f16_sign);
11946         } else {
11947             return float16_set_sign(float16_maxnorm, f16_sign);
11948         }
11949     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
11950         float_raise(float_flag_underflow, fpst);
11951         return float16_set_sign(float16_zero, float16_is_neg(f16));
11952     }
11953 
11954     f64_frac = call_recip_estimate(&f16_exp, 29,
11955                                    ((uint64_t) f16_frac) << (52 - 10));
11956 
11957     /* result = sign : result_exp<4:0> : fraction<51:42> */
11958     f16_val = deposit32(0, 15, 1, f16_sign);
11959     f16_val = deposit32(f16_val, 10, 5, f16_exp);
11960     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
11961     return make_float16(f16_val);
11962 }
11963 
11964 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11965 {
11966     float_status *fpst = fpstp;
11967     float32 f32 = float32_squash_input_denormal(input, fpst);
11968     uint32_t f32_val = float32_val(f32);
11969     bool f32_sign = float32_is_neg(f32);
11970     int f32_exp = extract32(f32_val, 23, 8);
11971     uint32_t f32_frac = extract32(f32_val, 0, 23);
11972     uint64_t f64_frac;
11973 
11974     if (float32_is_any_nan(f32)) {
11975         float32 nan = f32;
11976         if (float32_is_signaling_nan(f32, fpst)) {
11977             float_raise(float_flag_invalid, fpst);
11978             nan = float32_silence_nan(f32, fpst);
11979         }
11980         if (fpst->default_nan_mode) {
11981             nan =  float32_default_nan(fpst);
11982         }
11983         return nan;
11984     } else if (float32_is_infinity(f32)) {
11985         return float32_set_sign(float32_zero, float32_is_neg(f32));
11986     } else if (float32_is_zero(f32)) {
11987         float_raise(float_flag_divbyzero, fpst);
11988         return float32_set_sign(float32_infinity, float32_is_neg(f32));
11989     } else if (float32_abs(f32) < (1ULL << 21)) {
11990         /* Abs(value) < 2.0^-128 */
11991         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11992         if (round_to_inf(fpst, f32_sign)) {
11993             return float32_set_sign(float32_infinity, f32_sign);
11994         } else {
11995             return float32_set_sign(float32_maxnorm, f32_sign);
11996         }
11997     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11998         float_raise(float_flag_underflow, fpst);
11999         return float32_set_sign(float32_zero, float32_is_neg(f32));
12000     }
12001 
12002     f64_frac = call_recip_estimate(&f32_exp, 253,
12003                                    ((uint64_t) f32_frac) << (52 - 23));
12004 
12005     /* result = sign : result_exp<7:0> : fraction<51:29> */
12006     f32_val = deposit32(0, 31, 1, f32_sign);
12007     f32_val = deposit32(f32_val, 23, 8, f32_exp);
12008     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
12009     return make_float32(f32_val);
12010 }
12011 
12012 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
12013 {
12014     float_status *fpst = fpstp;
12015     float64 f64 = float64_squash_input_denormal(input, fpst);
12016     uint64_t f64_val = float64_val(f64);
12017     bool f64_sign = float64_is_neg(f64);
12018     int f64_exp = extract64(f64_val, 52, 11);
12019     uint64_t f64_frac = extract64(f64_val, 0, 52);
12020 
12021     /* Deal with any special cases */
12022     if (float64_is_any_nan(f64)) {
12023         float64 nan = f64;
12024         if (float64_is_signaling_nan(f64, fpst)) {
12025             float_raise(float_flag_invalid, fpst);
12026             nan = float64_silence_nan(f64, fpst);
12027         }
12028         if (fpst->default_nan_mode) {
12029             nan =  float64_default_nan(fpst);
12030         }
12031         return nan;
12032     } else if (float64_is_infinity(f64)) {
12033         return float64_set_sign(float64_zero, float64_is_neg(f64));
12034     } else if (float64_is_zero(f64)) {
12035         float_raise(float_flag_divbyzero, fpst);
12036         return float64_set_sign(float64_infinity, float64_is_neg(f64));
12037     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
12038         /* Abs(value) < 2.0^-1024 */
12039         float_raise(float_flag_overflow | float_flag_inexact, fpst);
12040         if (round_to_inf(fpst, f64_sign)) {
12041             return float64_set_sign(float64_infinity, f64_sign);
12042         } else {
12043             return float64_set_sign(float64_maxnorm, f64_sign);
12044         }
12045     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
12046         float_raise(float_flag_underflow, fpst);
12047         return float64_set_sign(float64_zero, float64_is_neg(f64));
12048     }
12049 
12050     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
12051 
12052     /* result = sign : result_exp<10:0> : fraction<51:0>; */
12053     f64_val = deposit64(0, 63, 1, f64_sign);
12054     f64_val = deposit64(f64_val, 52, 11, f64_exp);
12055     f64_val = deposit64(f64_val, 0, 52, f64_frac);
12056     return make_float64(f64_val);
12057 }
12058 
12059 /* The algorithm that must be used to calculate the estimate
12060  * is specified by the ARM ARM.
12061  */
12062 
12063 static int do_recip_sqrt_estimate(int a)
12064 {
12065     int b, estimate;
12066 
12067     assert(128 <= a && a < 512);
12068     if (a < 256) {
12069         a = a * 2 + 1;
12070     } else {
12071         a = (a >> 1) << 1;
12072         a = (a + 1) * 2;
12073     }
12074     b = 512;
12075     while (a * (b + 1) * (b + 1) < (1 << 28)) {
12076         b += 1;
12077     }
12078     estimate = (b + 1) / 2;
12079     assert(256 <= estimate && estimate < 512);
12080 
12081     return estimate;
12082 }
12083 
12084 
12085 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
12086 {
12087     int estimate;
12088     uint32_t scaled;
12089 
12090     if (*exp == 0) {
12091         while (extract64(frac, 51, 1) == 0) {
12092             frac = frac << 1;
12093             *exp -= 1;
12094         }
12095         frac = extract64(frac, 0, 51) << 1;
12096     }
12097 
12098     if (*exp & 1) {
12099         /* scaled = UInt('01':fraction<51:45>) */
12100         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
12101     } else {
12102         /* scaled = UInt('1':fraction<51:44>) */
12103         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12104     }
12105     estimate = do_recip_sqrt_estimate(scaled);
12106 
12107     *exp = (exp_off - *exp) / 2;
12108     return extract64(estimate, 0, 8) << 44;
12109 }
12110 
12111 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
12112 {
12113     float_status *s = fpstp;
12114     float16 f16 = float16_squash_input_denormal(input, s);
12115     uint16_t val = float16_val(f16);
12116     bool f16_sign = float16_is_neg(f16);
12117     int f16_exp = extract32(val, 10, 5);
12118     uint16_t f16_frac = extract32(val, 0, 10);
12119     uint64_t f64_frac;
12120 
12121     if (float16_is_any_nan(f16)) {
12122         float16 nan = f16;
12123         if (float16_is_signaling_nan(f16, s)) {
12124             float_raise(float_flag_invalid, s);
12125             nan = float16_silence_nan(f16, s);
12126         }
12127         if (s->default_nan_mode) {
12128             nan =  float16_default_nan(s);
12129         }
12130         return nan;
12131     } else if (float16_is_zero(f16)) {
12132         float_raise(float_flag_divbyzero, s);
12133         return float16_set_sign(float16_infinity, f16_sign);
12134     } else if (f16_sign) {
12135         float_raise(float_flag_invalid, s);
12136         return float16_default_nan(s);
12137     } else if (float16_is_infinity(f16)) {
12138         return float16_zero;
12139     }
12140 
12141     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12142      * preserving the parity of the exponent.  */
12143 
12144     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
12145 
12146     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
12147 
12148     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
12149     val = deposit32(0, 15, 1, f16_sign);
12150     val = deposit32(val, 10, 5, f16_exp);
12151     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
12152     return make_float16(val);
12153 }
12154 
12155 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
12156 {
12157     float_status *s = fpstp;
12158     float32 f32 = float32_squash_input_denormal(input, s);
12159     uint32_t val = float32_val(f32);
12160     uint32_t f32_sign = float32_is_neg(f32);
12161     int f32_exp = extract32(val, 23, 8);
12162     uint32_t f32_frac = extract32(val, 0, 23);
12163     uint64_t f64_frac;
12164 
12165     if (float32_is_any_nan(f32)) {
12166         float32 nan = f32;
12167         if (float32_is_signaling_nan(f32, s)) {
12168             float_raise(float_flag_invalid, s);
12169             nan = float32_silence_nan(f32, s);
12170         }
12171         if (s->default_nan_mode) {
12172             nan =  float32_default_nan(s);
12173         }
12174         return nan;
12175     } else if (float32_is_zero(f32)) {
12176         float_raise(float_flag_divbyzero, s);
12177         return float32_set_sign(float32_infinity, float32_is_neg(f32));
12178     } else if (float32_is_neg(f32)) {
12179         float_raise(float_flag_invalid, s);
12180         return float32_default_nan(s);
12181     } else if (float32_is_infinity(f32)) {
12182         return float32_zero;
12183     }
12184 
12185     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12186      * preserving the parity of the exponent.  */
12187 
12188     f64_frac = ((uint64_t) f32_frac) << 29;
12189 
12190     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
12191 
12192     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
12193     val = deposit32(0, 31, 1, f32_sign);
12194     val = deposit32(val, 23, 8, f32_exp);
12195     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
12196     return make_float32(val);
12197 }
12198 
12199 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
12200 {
12201     float_status *s = fpstp;
12202     float64 f64 = float64_squash_input_denormal(input, s);
12203     uint64_t val = float64_val(f64);
12204     bool f64_sign = float64_is_neg(f64);
12205     int f64_exp = extract64(val, 52, 11);
12206     uint64_t f64_frac = extract64(val, 0, 52);
12207 
12208     if (float64_is_any_nan(f64)) {
12209         float64 nan = f64;
12210         if (float64_is_signaling_nan(f64, s)) {
12211             float_raise(float_flag_invalid, s);
12212             nan = float64_silence_nan(f64, s);
12213         }
12214         if (s->default_nan_mode) {
12215             nan =  float64_default_nan(s);
12216         }
12217         return nan;
12218     } else if (float64_is_zero(f64)) {
12219         float_raise(float_flag_divbyzero, s);
12220         return float64_set_sign(float64_infinity, float64_is_neg(f64));
12221     } else if (float64_is_neg(f64)) {
12222         float_raise(float_flag_invalid, s);
12223         return float64_default_nan(s);
12224     } else if (float64_is_infinity(f64)) {
12225         return float64_zero;
12226     }
12227 
12228     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
12229 
12230     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
12231     val = deposit64(0, 61, 1, f64_sign);
12232     val = deposit64(val, 52, 11, f64_exp);
12233     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
12234     return make_float64(val);
12235 }
12236 
12237 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
12238 {
12239     /* float_status *s = fpstp; */
12240     int input, estimate;
12241 
12242     if ((a & 0x80000000) == 0) {
12243         return 0xffffffff;
12244     }
12245 
12246     input = extract32(a, 23, 9);
12247     estimate = recip_estimate(input);
12248 
12249     return deposit32(0, (32 - 9), 9, estimate);
12250 }
12251 
12252 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
12253 {
12254     int estimate;
12255 
12256     if ((a & 0xc0000000) == 0) {
12257         return 0xffffffff;
12258     }
12259 
12260     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
12261 
12262     return deposit32(0, 23, 9, estimate);
12263 }
12264 
12265 /* VFPv4 fused multiply-accumulate */
12266 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
12267 {
12268     float_status *fpst = fpstp;
12269     return float32_muladd(a, b, c, 0, fpst);
12270 }
12271 
12272 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
12273 {
12274     float_status *fpst = fpstp;
12275     return float64_muladd(a, b, c, 0, fpst);
12276 }
12277 
12278 /* ARMv8 round to integral */
12279 float32 HELPER(rints_exact)(float32 x, void *fp_status)
12280 {
12281     return float32_round_to_int(x, fp_status);
12282 }
12283 
12284 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
12285 {
12286     return float64_round_to_int(x, fp_status);
12287 }
12288 
12289 float32 HELPER(rints)(float32 x, void *fp_status)
12290 {
12291     int old_flags = get_float_exception_flags(fp_status), new_flags;
12292     float32 ret;
12293 
12294     ret = float32_round_to_int(x, fp_status);
12295 
12296     /* Suppress any inexact exceptions the conversion produced */
12297     if (!(old_flags & float_flag_inexact)) {
12298         new_flags = get_float_exception_flags(fp_status);
12299         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12300     }
12301 
12302     return ret;
12303 }
12304 
12305 float64 HELPER(rintd)(float64 x, void *fp_status)
12306 {
12307     int old_flags = get_float_exception_flags(fp_status), new_flags;
12308     float64 ret;
12309 
12310     ret = float64_round_to_int(x, fp_status);
12311 
12312     new_flags = get_float_exception_flags(fp_status);
12313 
12314     /* Suppress any inexact exceptions the conversion produced */
12315     if (!(old_flags & float_flag_inexact)) {
12316         new_flags = get_float_exception_flags(fp_status);
12317         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12318     }
12319 
12320     return ret;
12321 }
12322 
12323 /* Convert ARM rounding mode to softfloat */
12324 int arm_rmode_to_sf(int rmode)
12325 {
12326     switch (rmode) {
12327     case FPROUNDING_TIEAWAY:
12328         rmode = float_round_ties_away;
12329         break;
12330     case FPROUNDING_ODD:
12331         /* FIXME: add support for TIEAWAY and ODD */
12332         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
12333                       rmode);
12334     case FPROUNDING_TIEEVEN:
12335     default:
12336         rmode = float_round_nearest_even;
12337         break;
12338     case FPROUNDING_POSINF:
12339         rmode = float_round_up;
12340         break;
12341     case FPROUNDING_NEGINF:
12342         rmode = float_round_down;
12343         break;
12344     case FPROUNDING_ZERO:
12345         rmode = float_round_to_zero;
12346         break;
12347     }
12348     return rmode;
12349 }
12350 
12351 /* CRC helpers.
12352  * The upper bytes of val (above the number specified by 'bytes') must have
12353  * been zeroed out by the caller.
12354  */
12355 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12356 {
12357     uint8_t buf[4];
12358 
12359     stl_le_p(buf, val);
12360 
12361     /* zlib crc32 converts the accumulator and output to one's complement.  */
12362     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12363 }
12364 
12365 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12366 {
12367     uint8_t buf[4];
12368 
12369     stl_le_p(buf, val);
12370 
12371     /* Linux crc32c converts the output to one's complement.  */
12372     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12373 }
12374 
12375 /* Return the exception level to which FP-disabled exceptions should
12376  * be taken, or 0 if FP is enabled.
12377  */
12378 static inline int fp_exception_el(CPUARMState *env)
12379 {
12380 #ifndef CONFIG_USER_ONLY
12381     int fpen;
12382     int cur_el = arm_current_el(env);
12383 
12384     /* CPACR and the CPTR registers don't exist before v6, so FP is
12385      * always accessible
12386      */
12387     if (!arm_feature(env, ARM_FEATURE_V6)) {
12388         return 0;
12389     }
12390 
12391     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12392      * 0, 2 : trap EL0 and EL1/PL1 accesses
12393      * 1    : trap only EL0 accesses
12394      * 3    : trap no accesses
12395      */
12396     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12397     switch (fpen) {
12398     case 0:
12399     case 2:
12400         if (cur_el == 0 || cur_el == 1) {
12401             /* Trap to PL1, which might be EL1 or EL3 */
12402             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12403                 return 3;
12404             }
12405             return 1;
12406         }
12407         if (cur_el == 3 && !is_a64(env)) {
12408             /* Secure PL1 running at EL3 */
12409             return 3;
12410         }
12411         break;
12412     case 1:
12413         if (cur_el == 0) {
12414             return 1;
12415         }
12416         break;
12417     case 3:
12418         break;
12419     }
12420 
12421     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12422      * check because zero bits in the registers mean "don't trap".
12423      */
12424 
12425     /* CPTR_EL2 : present in v7VE or v8 */
12426     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12427         && !arm_is_secure_below_el3(env)) {
12428         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12429         return 2;
12430     }
12431 
12432     /* CPTR_EL3 : present in v8 */
12433     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12434         /* Trap all FP ops to EL3 */
12435         return 3;
12436     }
12437 #endif
12438     return 0;
12439 }
12440 
12441 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12442                           target_ulong *cs_base, uint32_t *pflags)
12443 {
12444     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12445     int fp_el = fp_exception_el(env);
12446     uint32_t flags;
12447 
12448     if (is_a64(env)) {
12449         int sve_el = sve_exception_el(env);
12450         uint32_t zcr_len;
12451 
12452         *pc = env->pc;
12453         flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12454         /* Get control bits for tagged addresses */
12455         flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12456         flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12457         flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12458 
12459         /* If SVE is disabled, but FP is enabled,
12460            then the effective len is 0.  */
12461         if (sve_el != 0 && fp_el == 0) {
12462             zcr_len = 0;
12463         } else {
12464             int current_el = arm_current_el(env);
12465             ARMCPU *cpu = arm_env_get_cpu(env);
12466 
12467             zcr_len = cpu->sve_max_vq - 1;
12468             if (current_el <= 1) {
12469                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
12470             }
12471             if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
12472                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
12473             }
12474             if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
12475                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
12476             }
12477         }
12478         flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12479     } else {
12480         *pc = env->regs[15];
12481         flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12482             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12483             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12484             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12485             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12486         if (!(access_secure_reg(env))) {
12487             flags |= ARM_TBFLAG_NS_MASK;
12488         }
12489         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12490             || arm_el_is_aa64(env, 1)) {
12491             flags |= ARM_TBFLAG_VFPEN_MASK;
12492         }
12493         flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12494                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12495     }
12496 
12497     flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12498 
12499     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12500      * states defined in the ARM ARM for software singlestep:
12501      *  SS_ACTIVE   PSTATE.SS   State
12502      *     0            x       Inactive (the TB flag for SS is always 0)
12503      *     1            0       Active-pending
12504      *     1            1       Active-not-pending
12505      */
12506     if (arm_singlestep_active(env)) {
12507         flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12508         if (is_a64(env)) {
12509             if (env->pstate & PSTATE_SS) {
12510                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12511             }
12512         } else {
12513             if (env->uncached_cpsr & PSTATE_SS) {
12514                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12515             }
12516         }
12517     }
12518     if (arm_cpu_data_is_big_endian(env)) {
12519         flags |= ARM_TBFLAG_BE_DATA_MASK;
12520     }
12521     flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12522 
12523     if (arm_v7m_is_handler_mode(env)) {
12524         flags |= ARM_TBFLAG_HANDLER_MASK;
12525     }
12526 
12527     *pflags = flags;
12528     *cs_base = 0;
12529 }
12530