xref: /openbmc/qemu/target/arm/helper.c (revision 83a71719)
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/cpus.h"
19 #include "sysemu/kvm.h"
20 #include "fpu/softfloat.h"
21 #include "qemu/range.h"
22 
23 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
24 
25 #ifndef CONFIG_USER_ONLY
26 /* Cacheability and shareability attributes for a memory access */
27 typedef struct ARMCacheAttrs {
28     unsigned int attrs:8; /* as in the MAIR register encoding */
29     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
30 } ARMCacheAttrs;
31 
32 static bool get_phys_addr(CPUARMState *env, target_ulong address,
33                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
34                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
35                           target_ulong *page_size,
36                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
37 
38 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
39                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
40                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
41                                target_ulong *page_size_ptr,
42                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
43 
44 /* Security attributes for an address, as returned by v8m_security_lookup. */
45 typedef struct V8M_SAttributes {
46     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
47     bool ns;
48     bool nsc;
49     uint8_t sregion;
50     bool srvalid;
51     uint8_t iregion;
52     bool irvalid;
53 } V8M_SAttributes;
54 
55 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
56                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
57                                 V8M_SAttributes *sattrs);
58 #endif
59 
60 static void switch_mode(CPUARMState *env, int mode);
61 
62 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
63 {
64     int nregs;
65 
66     /* VFP data registers are always little-endian.  */
67     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
68     if (reg < nregs) {
69         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
70         return 8;
71     }
72     if (arm_feature(env, ARM_FEATURE_NEON)) {
73         /* Aliases for Q regs.  */
74         nregs += 16;
75         if (reg < nregs) {
76             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
77             stq_le_p(buf, q[0]);
78             stq_le_p(buf + 8, q[1]);
79             return 16;
80         }
81     }
82     switch (reg - nregs) {
83     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
84     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
85     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
86     }
87     return 0;
88 }
89 
90 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
91 {
92     int nregs;
93 
94     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
95     if (reg < nregs) {
96         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
97         return 8;
98     }
99     if (arm_feature(env, ARM_FEATURE_NEON)) {
100         nregs += 16;
101         if (reg < nregs) {
102             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
103             q[0] = ldq_le_p(buf);
104             q[1] = ldq_le_p(buf + 8);
105             return 16;
106         }
107     }
108     switch (reg - nregs) {
109     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
110     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
111     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
112     }
113     return 0;
114 }
115 
116 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
117 {
118     switch (reg) {
119     case 0 ... 31:
120         /* 128 bit FP register */
121         {
122             uint64_t *q = aa64_vfp_qreg(env, reg);
123             stq_le_p(buf, q[0]);
124             stq_le_p(buf + 8, q[1]);
125             return 16;
126         }
127     case 32:
128         /* FPSR */
129         stl_p(buf, vfp_get_fpsr(env));
130         return 4;
131     case 33:
132         /* FPCR */
133         stl_p(buf, vfp_get_fpcr(env));
134         return 4;
135     default:
136         return 0;
137     }
138 }
139 
140 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
141 {
142     switch (reg) {
143     case 0 ... 31:
144         /* 128 bit FP register */
145         {
146             uint64_t *q = aa64_vfp_qreg(env, reg);
147             q[0] = ldq_le_p(buf);
148             q[1] = ldq_le_p(buf + 8);
149             return 16;
150         }
151     case 32:
152         /* FPSR */
153         vfp_set_fpsr(env, ldl_p(buf));
154         return 4;
155     case 33:
156         /* FPCR */
157         vfp_set_fpcr(env, ldl_p(buf));
158         return 4;
159     default:
160         return 0;
161     }
162 }
163 
164 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
165 {
166     assert(ri->fieldoffset);
167     if (cpreg_field_is_64bit(ri)) {
168         return CPREG_FIELD64(env, ri);
169     } else {
170         return CPREG_FIELD32(env, ri);
171     }
172 }
173 
174 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
175                       uint64_t value)
176 {
177     assert(ri->fieldoffset);
178     if (cpreg_field_is_64bit(ri)) {
179         CPREG_FIELD64(env, ri) = value;
180     } else {
181         CPREG_FIELD32(env, ri) = value;
182     }
183 }
184 
185 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
186 {
187     return (char *)env + ri->fieldoffset;
188 }
189 
190 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
191 {
192     /* Raw read of a coprocessor register (as needed for migration, etc). */
193     if (ri->type & ARM_CP_CONST) {
194         return ri->resetvalue;
195     } else if (ri->raw_readfn) {
196         return ri->raw_readfn(env, ri);
197     } else if (ri->readfn) {
198         return ri->readfn(env, ri);
199     } else {
200         return raw_read(env, ri);
201     }
202 }
203 
204 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
205                              uint64_t v)
206 {
207     /* Raw write of a coprocessor register (as needed for migration, etc).
208      * Note that constant registers are treated as write-ignored; the
209      * caller should check for success by whether a readback gives the
210      * value written.
211      */
212     if (ri->type & ARM_CP_CONST) {
213         return;
214     } else if (ri->raw_writefn) {
215         ri->raw_writefn(env, ri, v);
216     } else if (ri->writefn) {
217         ri->writefn(env, ri, v);
218     } else {
219         raw_write(env, ri, v);
220     }
221 }
222 
223 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
224 {
225     ARMCPU *cpu = arm_env_get_cpu(env);
226     const ARMCPRegInfo *ri;
227     uint32_t key;
228 
229     key = cpu->dyn_xml.cpregs_keys[reg];
230     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
231     if (ri) {
232         if (cpreg_field_is_64bit(ri)) {
233             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
234         } else {
235             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
236         }
237     }
238     return 0;
239 }
240 
241 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
242 {
243     return 0;
244 }
245 
246 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
247 {
248    /* Return true if the regdef would cause an assertion if you called
249     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
250     * program bug for it not to have the NO_RAW flag).
251     * NB that returning false here doesn't necessarily mean that calling
252     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
253     * read/write access functions which are safe for raw use" from "has
254     * read/write access functions which have side effects but has forgotten
255     * to provide raw access functions".
256     * The tests here line up with the conditions in read/write_raw_cp_reg()
257     * and assertions in raw_read()/raw_write().
258     */
259     if ((ri->type & ARM_CP_CONST) ||
260         ri->fieldoffset ||
261         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
262         return false;
263     }
264     return true;
265 }
266 
267 bool write_cpustate_to_list(ARMCPU *cpu)
268 {
269     /* Write the coprocessor state from cpu->env to the (index,value) list. */
270     int i;
271     bool ok = true;
272 
273     for (i = 0; i < cpu->cpreg_array_len; i++) {
274         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
275         const ARMCPRegInfo *ri;
276 
277         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
278         if (!ri) {
279             ok = false;
280             continue;
281         }
282         if (ri->type & ARM_CP_NO_RAW) {
283             continue;
284         }
285         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
286     }
287     return ok;
288 }
289 
290 bool write_list_to_cpustate(ARMCPU *cpu)
291 {
292     int i;
293     bool ok = true;
294 
295     for (i = 0; i < cpu->cpreg_array_len; i++) {
296         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
297         uint64_t v = cpu->cpreg_values[i];
298         const ARMCPRegInfo *ri;
299 
300         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
301         if (!ri) {
302             ok = false;
303             continue;
304         }
305         if (ri->type & ARM_CP_NO_RAW) {
306             continue;
307         }
308         /* Write value and confirm it reads back as written
309          * (to catch read-only registers and partially read-only
310          * registers where the incoming migration value doesn't match)
311          */
312         write_raw_cp_reg(&cpu->env, ri, v);
313         if (read_raw_cp_reg(&cpu->env, ri) != v) {
314             ok = false;
315         }
316     }
317     return ok;
318 }
319 
320 static void add_cpreg_to_list(gpointer key, gpointer opaque)
321 {
322     ARMCPU *cpu = opaque;
323     uint64_t regidx;
324     const ARMCPRegInfo *ri;
325 
326     regidx = *(uint32_t *)key;
327     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
328 
329     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
330         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
331         /* The value array need not be initialized at this point */
332         cpu->cpreg_array_len++;
333     }
334 }
335 
336 static void count_cpreg(gpointer key, gpointer opaque)
337 {
338     ARMCPU *cpu = opaque;
339     uint64_t regidx;
340     const ARMCPRegInfo *ri;
341 
342     regidx = *(uint32_t *)key;
343     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
344 
345     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
346         cpu->cpreg_array_len++;
347     }
348 }
349 
350 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
351 {
352     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
353     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
354 
355     if (aidx > bidx) {
356         return 1;
357     }
358     if (aidx < bidx) {
359         return -1;
360     }
361     return 0;
362 }
363 
364 void init_cpreg_list(ARMCPU *cpu)
365 {
366     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
367      * Note that we require cpreg_tuples[] to be sorted by key ID.
368      */
369     GList *keys;
370     int arraylen;
371 
372     keys = g_hash_table_get_keys(cpu->cp_regs);
373     keys = g_list_sort(keys, cpreg_key_compare);
374 
375     cpu->cpreg_array_len = 0;
376 
377     g_list_foreach(keys, count_cpreg, cpu);
378 
379     arraylen = cpu->cpreg_array_len;
380     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
381     cpu->cpreg_values = g_new(uint64_t, arraylen);
382     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
383     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
384     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
385     cpu->cpreg_array_len = 0;
386 
387     g_list_foreach(keys, add_cpreg_to_list, cpu);
388 
389     assert(cpu->cpreg_array_len == arraylen);
390 
391     g_list_free(keys);
392 }
393 
394 /*
395  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
396  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
397  *
398  * access_el3_aa32ns: Used to check AArch32 register views.
399  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
400  */
401 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
402                                         const ARMCPRegInfo *ri,
403                                         bool isread)
404 {
405     bool secure = arm_is_secure_below_el3(env);
406 
407     assert(!arm_el_is_aa64(env, 3));
408     if (secure) {
409         return CP_ACCESS_TRAP_UNCATEGORIZED;
410     }
411     return CP_ACCESS_OK;
412 }
413 
414 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
415                                                 const ARMCPRegInfo *ri,
416                                                 bool isread)
417 {
418     if (!arm_el_is_aa64(env, 3)) {
419         return access_el3_aa32ns(env, ri, isread);
420     }
421     return CP_ACCESS_OK;
422 }
423 
424 /* Some secure-only AArch32 registers trap to EL3 if used from
425  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
426  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
427  * We assume that the .access field is set to PL1_RW.
428  */
429 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
430                                             const ARMCPRegInfo *ri,
431                                             bool isread)
432 {
433     if (arm_current_el(env) == 3) {
434         return CP_ACCESS_OK;
435     }
436     if (arm_is_secure_below_el3(env)) {
437         return CP_ACCESS_TRAP_EL3;
438     }
439     /* This will be EL1 NS and EL2 NS, which just UNDEF */
440     return CP_ACCESS_TRAP_UNCATEGORIZED;
441 }
442 
443 /* Check for traps to "powerdown debug" registers, which are controlled
444  * by MDCR.TDOSA
445  */
446 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
447                                    bool isread)
448 {
449     int el = arm_current_el(env);
450     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
451         (env->cp15.mdcr_el2 & MDCR_TDE) ||
452         (arm_hcr_el2_eff(env) & HCR_TGE);
453 
454     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
455         return CP_ACCESS_TRAP_EL2;
456     }
457     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
458         return CP_ACCESS_TRAP_EL3;
459     }
460     return CP_ACCESS_OK;
461 }
462 
463 /* Check for traps to "debug ROM" registers, which are controlled
464  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
465  */
466 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
467                                   bool isread)
468 {
469     int el = arm_current_el(env);
470     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
471         (env->cp15.mdcr_el2 & MDCR_TDE) ||
472         (arm_hcr_el2_eff(env) & HCR_TGE);
473 
474     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
475         return CP_ACCESS_TRAP_EL2;
476     }
477     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
478         return CP_ACCESS_TRAP_EL3;
479     }
480     return CP_ACCESS_OK;
481 }
482 
483 /* Check for traps to general debug registers, which are controlled
484  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
485  */
486 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
487                                   bool isread)
488 {
489     int el = arm_current_el(env);
490     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
491         (env->cp15.mdcr_el2 & MDCR_TDE) ||
492         (arm_hcr_el2_eff(env) & HCR_TGE);
493 
494     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
495         return CP_ACCESS_TRAP_EL2;
496     }
497     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
498         return CP_ACCESS_TRAP_EL3;
499     }
500     return CP_ACCESS_OK;
501 }
502 
503 /* Check for traps to performance monitor registers, which are controlled
504  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
505  */
506 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
507                                  bool isread)
508 {
509     int el = arm_current_el(env);
510 
511     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
512         && !arm_is_secure_below_el3(env)) {
513         return CP_ACCESS_TRAP_EL2;
514     }
515     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
516         return CP_ACCESS_TRAP_EL3;
517     }
518     return CP_ACCESS_OK;
519 }
520 
521 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
522 {
523     ARMCPU *cpu = arm_env_get_cpu(env);
524 
525     raw_write(env, ri, value);
526     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
527 }
528 
529 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
530 {
531     ARMCPU *cpu = arm_env_get_cpu(env);
532 
533     if (raw_read(env, ri) != value) {
534         /* Unlike real hardware the qemu TLB uses virtual addresses,
535          * not modified virtual addresses, so this causes a TLB flush.
536          */
537         tlb_flush(CPU(cpu));
538         raw_write(env, ri, value);
539     }
540 }
541 
542 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
543                              uint64_t value)
544 {
545     ARMCPU *cpu = arm_env_get_cpu(env);
546 
547     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
548         && !extended_addresses_enabled(env)) {
549         /* For VMSA (when not using the LPAE long descriptor page table
550          * format) this register includes the ASID, so do a TLB flush.
551          * For PMSA it is purely a process ID and no action is needed.
552          */
553         tlb_flush(CPU(cpu));
554     }
555     raw_write(env, ri, value);
556 }
557 
558 /* IS variants of TLB operations must affect all cores */
559 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
560                              uint64_t value)
561 {
562     CPUState *cs = ENV_GET_CPU(env);
563 
564     tlb_flush_all_cpus_synced(cs);
565 }
566 
567 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
568                              uint64_t value)
569 {
570     CPUState *cs = ENV_GET_CPU(env);
571 
572     tlb_flush_all_cpus_synced(cs);
573 }
574 
575 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
576                              uint64_t value)
577 {
578     CPUState *cs = ENV_GET_CPU(env);
579 
580     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
581 }
582 
583 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
584                              uint64_t value)
585 {
586     CPUState *cs = ENV_GET_CPU(env);
587 
588     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
589 }
590 
591 /*
592  * Non-IS variants of TLB operations are upgraded to
593  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
594  * force broadcast of these operations.
595  */
596 static bool tlb_force_broadcast(CPUARMState *env)
597 {
598     return (env->cp15.hcr_el2 & HCR_FB) &&
599         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
600 }
601 
602 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
603                           uint64_t value)
604 {
605     /* Invalidate all (TLBIALL) */
606     ARMCPU *cpu = arm_env_get_cpu(env);
607 
608     if (tlb_force_broadcast(env)) {
609         tlbiall_is_write(env, NULL, value);
610         return;
611     }
612 
613     tlb_flush(CPU(cpu));
614 }
615 
616 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
617                           uint64_t value)
618 {
619     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
620     ARMCPU *cpu = arm_env_get_cpu(env);
621 
622     if (tlb_force_broadcast(env)) {
623         tlbimva_is_write(env, NULL, value);
624         return;
625     }
626 
627     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
628 }
629 
630 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
631                            uint64_t value)
632 {
633     /* Invalidate by ASID (TLBIASID) */
634     ARMCPU *cpu = arm_env_get_cpu(env);
635 
636     if (tlb_force_broadcast(env)) {
637         tlbiasid_is_write(env, NULL, value);
638         return;
639     }
640 
641     tlb_flush(CPU(cpu));
642 }
643 
644 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
645                            uint64_t value)
646 {
647     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
648     ARMCPU *cpu = arm_env_get_cpu(env);
649 
650     if (tlb_force_broadcast(env)) {
651         tlbimvaa_is_write(env, NULL, value);
652         return;
653     }
654 
655     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
656 }
657 
658 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
659                                uint64_t value)
660 {
661     CPUState *cs = ENV_GET_CPU(env);
662 
663     tlb_flush_by_mmuidx(cs,
664                         ARMMMUIdxBit_S12NSE1 |
665                         ARMMMUIdxBit_S12NSE0 |
666                         ARMMMUIdxBit_S2NS);
667 }
668 
669 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
670                                   uint64_t value)
671 {
672     CPUState *cs = ENV_GET_CPU(env);
673 
674     tlb_flush_by_mmuidx_all_cpus_synced(cs,
675                                         ARMMMUIdxBit_S12NSE1 |
676                                         ARMMMUIdxBit_S12NSE0 |
677                                         ARMMMUIdxBit_S2NS);
678 }
679 
680 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
681                             uint64_t value)
682 {
683     /* Invalidate by IPA. This has to invalidate any structures that
684      * contain only stage 2 translation information, but does not need
685      * to apply to structures that contain combined stage 1 and stage 2
686      * translation information.
687      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
688      */
689     CPUState *cs = ENV_GET_CPU(env);
690     uint64_t pageaddr;
691 
692     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
693         return;
694     }
695 
696     pageaddr = sextract64(value << 12, 0, 40);
697 
698     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
699 }
700 
701 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
702                                uint64_t value)
703 {
704     CPUState *cs = ENV_GET_CPU(env);
705     uint64_t pageaddr;
706 
707     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
708         return;
709     }
710 
711     pageaddr = sextract64(value << 12, 0, 40);
712 
713     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
714                                              ARMMMUIdxBit_S2NS);
715 }
716 
717 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
718                               uint64_t value)
719 {
720     CPUState *cs = ENV_GET_CPU(env);
721 
722     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
723 }
724 
725 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
726                                  uint64_t value)
727 {
728     CPUState *cs = ENV_GET_CPU(env);
729 
730     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
731 }
732 
733 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
734                               uint64_t value)
735 {
736     CPUState *cs = ENV_GET_CPU(env);
737     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
738 
739     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
740 }
741 
742 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
743                                  uint64_t value)
744 {
745     CPUState *cs = ENV_GET_CPU(env);
746     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
747 
748     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
749                                              ARMMMUIdxBit_S1E2);
750 }
751 
752 static const ARMCPRegInfo cp_reginfo[] = {
753     /* Define the secure and non-secure FCSE identifier CP registers
754      * separately because there is no secure bank in V8 (no _EL3).  This allows
755      * the secure register to be properly reset and migrated. There is also no
756      * v8 EL1 version of the register so the non-secure instance stands alone.
757      */
758     { .name = "FCSEIDR",
759       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
760       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
761       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
762       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
763     { .name = "FCSEIDR_S",
764       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
765       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
766       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
767       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
768     /* Define the secure and non-secure context identifier CP registers
769      * separately because there is no secure bank in V8 (no _EL3).  This allows
770      * the secure register to be properly reset and migrated.  In the
771      * non-secure case, the 32-bit register will have reset and migration
772      * disabled during registration as it is handled by the 64-bit instance.
773      */
774     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
775       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
776       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
777       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
778       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
779     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
780       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
781       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
782       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
783       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
784     REGINFO_SENTINEL
785 };
786 
787 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
788     /* NB: Some of these registers exist in v8 but with more precise
789      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
790      */
791     /* MMU Domain access control / MPU write buffer control */
792     { .name = "DACR",
793       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
794       .access = PL1_RW, .resetvalue = 0,
795       .writefn = dacr_write, .raw_writefn = raw_write,
796       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
797                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
798     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
799      * For v6 and v5, these mappings are overly broad.
800      */
801     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
802       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
803     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
804       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
805     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
806       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
807     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
808       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
809     /* Cache maintenance ops; some of this space may be overridden later. */
810     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
811       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
812       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
813     REGINFO_SENTINEL
814 };
815 
816 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
817     /* Not all pre-v6 cores implemented this WFI, so this is slightly
818      * over-broad.
819      */
820     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
821       .access = PL1_W, .type = ARM_CP_WFI },
822     REGINFO_SENTINEL
823 };
824 
825 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
826     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
827      * is UNPREDICTABLE; we choose to NOP as most implementations do).
828      */
829     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
830       .access = PL1_W, .type = ARM_CP_WFI },
831     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
832      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
833      * OMAPCP will override this space.
834      */
835     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
836       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
837       .resetvalue = 0 },
838     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
839       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
840       .resetvalue = 0 },
841     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
842     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
843       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
844       .resetvalue = 0 },
845     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
846      * implementing it as RAZ means the "debug architecture version" bits
847      * will read as a reserved value, which should cause Linux to not try
848      * to use the debug hardware.
849      */
850     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
851       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
852     /* MMU TLB control. Note that the wildcarding means we cover not just
853      * the unified TLB ops but also the dside/iside/inner-shareable variants.
854      */
855     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
856       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
857       .type = ARM_CP_NO_RAW },
858     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
859       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
860       .type = ARM_CP_NO_RAW },
861     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
862       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
863       .type = ARM_CP_NO_RAW },
864     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
865       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
866       .type = ARM_CP_NO_RAW },
867     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
868       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
869     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
870       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
871     REGINFO_SENTINEL
872 };
873 
874 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
875                         uint64_t value)
876 {
877     uint32_t mask = 0;
878 
879     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
880     if (!arm_feature(env, ARM_FEATURE_V8)) {
881         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
882          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
883          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
884          */
885         if (arm_feature(env, ARM_FEATURE_VFP)) {
886             /* VFP coprocessor: cp10 & cp11 [23:20] */
887             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
888 
889             if (!arm_feature(env, ARM_FEATURE_NEON)) {
890                 /* ASEDIS [31] bit is RAO/WI */
891                 value |= (1 << 31);
892             }
893 
894             /* VFPv3 and upwards with NEON implement 32 double precision
895              * registers (D0-D31).
896              */
897             if (!arm_feature(env, ARM_FEATURE_NEON) ||
898                     !arm_feature(env, ARM_FEATURE_VFP3)) {
899                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
900                 value |= (1 << 30);
901             }
902         }
903         value &= mask;
904     }
905     env->cp15.cpacr_el1 = value;
906 }
907 
908 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
909 {
910     /* Call cpacr_write() so that we reset with the correct RAO bits set
911      * for our CPU features.
912      */
913     cpacr_write(env, ri, 0);
914 }
915 
916 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
917                                    bool isread)
918 {
919     if (arm_feature(env, ARM_FEATURE_V8)) {
920         /* Check if CPACR accesses are to be trapped to EL2 */
921         if (arm_current_el(env) == 1 &&
922             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
923             return CP_ACCESS_TRAP_EL2;
924         /* Check if CPACR accesses are to be trapped to EL3 */
925         } else if (arm_current_el(env) < 3 &&
926                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
927             return CP_ACCESS_TRAP_EL3;
928         }
929     }
930 
931     return CP_ACCESS_OK;
932 }
933 
934 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
935                                   bool isread)
936 {
937     /* Check if CPTR accesses are set to trap to EL3 */
938     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
939         return CP_ACCESS_TRAP_EL3;
940     }
941 
942     return CP_ACCESS_OK;
943 }
944 
945 static const ARMCPRegInfo v6_cp_reginfo[] = {
946     /* prefetch by MVA in v6, NOP in v7 */
947     { .name = "MVA_prefetch",
948       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
949       .access = PL1_W, .type = ARM_CP_NOP },
950     /* We need to break the TB after ISB to execute self-modifying code
951      * correctly and also to take any pending interrupts immediately.
952      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
953      */
954     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
955       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
956     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
957       .access = PL0_W, .type = ARM_CP_NOP },
958     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
959       .access = PL0_W, .type = ARM_CP_NOP },
960     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
961       .access = PL1_RW,
962       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
963                              offsetof(CPUARMState, cp15.ifar_ns) },
964       .resetvalue = 0, },
965     /* Watchpoint Fault Address Register : should actually only be present
966      * for 1136, 1176, 11MPCore.
967      */
968     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
969       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
970     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
971       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
972       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
973       .resetfn = cpacr_reset, .writefn = cpacr_write },
974     REGINFO_SENTINEL
975 };
976 
977 /* Definitions for the PMU registers */
978 #define PMCRN_MASK  0xf800
979 #define PMCRN_SHIFT 11
980 #define PMCRLC  0x40
981 #define PMCRDP  0x10
982 #define PMCRD   0x8
983 #define PMCRC   0x4
984 #define PMCRP   0x2
985 #define PMCRE   0x1
986 
987 #define PMXEVTYPER_P          0x80000000
988 #define PMXEVTYPER_U          0x40000000
989 #define PMXEVTYPER_NSK        0x20000000
990 #define PMXEVTYPER_NSU        0x10000000
991 #define PMXEVTYPER_NSH        0x08000000
992 #define PMXEVTYPER_M          0x04000000
993 #define PMXEVTYPER_MT         0x02000000
994 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
995 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
996                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
997                                PMXEVTYPER_M | PMXEVTYPER_MT | \
998                                PMXEVTYPER_EVTCOUNT)
999 
1000 #define PMCCFILTR             0xf8000000
1001 #define PMCCFILTR_M           PMXEVTYPER_M
1002 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1003 
1004 static inline uint32_t pmu_num_counters(CPUARMState *env)
1005 {
1006   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1007 }
1008 
1009 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1010 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1011 {
1012   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1013 }
1014 
1015 typedef struct pm_event {
1016     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1017     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1018     bool (*supported)(CPUARMState *);
1019     /*
1020      * Retrieve the current count of the underlying event. The programmed
1021      * counters hold a difference from the return value from this function
1022      */
1023     uint64_t (*get_count)(CPUARMState *);
1024     /*
1025      * Return how many nanoseconds it will take (at a minimum) for count events
1026      * to occur. A negative value indicates the counter will never overflow, or
1027      * that the counter has otherwise arranged for the overflow bit to be set
1028      * and the PMU interrupt to be raised on overflow.
1029      */
1030     int64_t (*ns_per_count)(uint64_t);
1031 } pm_event;
1032 
1033 static bool event_always_supported(CPUARMState *env)
1034 {
1035     return true;
1036 }
1037 
1038 static uint64_t swinc_get_count(CPUARMState *env)
1039 {
1040     /*
1041      * SW_INCR events are written directly to the pmevcntr's by writes to
1042      * PMSWINC, so there is no underlying count maintained by the PMU itself
1043      */
1044     return 0;
1045 }
1046 
1047 static int64_t swinc_ns_per(uint64_t ignored)
1048 {
1049     return -1;
1050 }
1051 
1052 /*
1053  * Return the underlying cycle count for the PMU cycle counters. If we're in
1054  * usermode, simply return 0.
1055  */
1056 static uint64_t cycles_get_count(CPUARMState *env)
1057 {
1058 #ifndef CONFIG_USER_ONLY
1059     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1060                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1061 #else
1062     return cpu_get_host_ticks();
1063 #endif
1064 }
1065 
1066 #ifndef CONFIG_USER_ONLY
1067 static int64_t cycles_ns_per(uint64_t cycles)
1068 {
1069     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1070 }
1071 
1072 static bool instructions_supported(CPUARMState *env)
1073 {
1074     return use_icount == 1 /* Precise instruction counting */;
1075 }
1076 
1077 static uint64_t instructions_get_count(CPUARMState *env)
1078 {
1079     return (uint64_t)cpu_get_icount_raw();
1080 }
1081 
1082 static int64_t instructions_ns_per(uint64_t icount)
1083 {
1084     return cpu_icount_to_ns((int64_t)icount);
1085 }
1086 #endif
1087 
1088 static const pm_event pm_events[] = {
1089     { .number = 0x000, /* SW_INCR */
1090       .supported = event_always_supported,
1091       .get_count = swinc_get_count,
1092       .ns_per_count = swinc_ns_per,
1093     },
1094 #ifndef CONFIG_USER_ONLY
1095     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1096       .supported = instructions_supported,
1097       .get_count = instructions_get_count,
1098       .ns_per_count = instructions_ns_per,
1099     },
1100     { .number = 0x011, /* CPU_CYCLES, Cycle */
1101       .supported = event_always_supported,
1102       .get_count = cycles_get_count,
1103       .ns_per_count = cycles_ns_per,
1104     }
1105 #endif
1106 };
1107 
1108 /*
1109  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1110  * events (i.e. the statistical profiling extension), this implementation
1111  * should first be updated to something sparse instead of the current
1112  * supported_event_map[] array.
1113  */
1114 #define MAX_EVENT_ID 0x11
1115 #define UNSUPPORTED_EVENT UINT16_MAX
1116 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1117 
1118 /*
1119  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1120  * of ARM event numbers to indices in our pm_events array.
1121  *
1122  * Note: Events in the 0x40XX range are not currently supported.
1123  */
1124 void pmu_init(ARMCPU *cpu)
1125 {
1126     unsigned int i;
1127 
1128     /*
1129      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1130      * events to them
1131      */
1132     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1133         supported_event_map[i] = UNSUPPORTED_EVENT;
1134     }
1135     cpu->pmceid0 = 0;
1136     cpu->pmceid1 = 0;
1137 
1138     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1139         const pm_event *cnt = &pm_events[i];
1140         assert(cnt->number <= MAX_EVENT_ID);
1141         /* We do not currently support events in the 0x40xx range */
1142         assert(cnt->number <= 0x3f);
1143 
1144         if (cnt->supported(&cpu->env)) {
1145             supported_event_map[cnt->number] = i;
1146             uint64_t event_mask = 1 << (cnt->number & 0x1f);
1147             if (cnt->number & 0x20) {
1148                 cpu->pmceid1 |= event_mask;
1149             } else {
1150                 cpu->pmceid0 |= event_mask;
1151             }
1152         }
1153     }
1154 }
1155 
1156 /*
1157  * Check at runtime whether a PMU event is supported for the current machine
1158  */
1159 static bool event_supported(uint16_t number)
1160 {
1161     if (number > MAX_EVENT_ID) {
1162         return false;
1163     }
1164     return supported_event_map[number] != UNSUPPORTED_EVENT;
1165 }
1166 
1167 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1168                                    bool isread)
1169 {
1170     /* Performance monitor registers user accessibility is controlled
1171      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1172      * trapping to EL2 or EL3 for other accesses.
1173      */
1174     int el = arm_current_el(env);
1175 
1176     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1177         return CP_ACCESS_TRAP;
1178     }
1179     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1180         && !arm_is_secure_below_el3(env)) {
1181         return CP_ACCESS_TRAP_EL2;
1182     }
1183     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1184         return CP_ACCESS_TRAP_EL3;
1185     }
1186 
1187     return CP_ACCESS_OK;
1188 }
1189 
1190 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1191                                            const ARMCPRegInfo *ri,
1192                                            bool isread)
1193 {
1194     /* ER: event counter read trap control */
1195     if (arm_feature(env, ARM_FEATURE_V8)
1196         && arm_current_el(env) == 0
1197         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1198         && isread) {
1199         return CP_ACCESS_OK;
1200     }
1201 
1202     return pmreg_access(env, ri, isread);
1203 }
1204 
1205 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1206                                          const ARMCPRegInfo *ri,
1207                                          bool isread)
1208 {
1209     /* SW: software increment write trap control */
1210     if (arm_feature(env, ARM_FEATURE_V8)
1211         && arm_current_el(env) == 0
1212         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1213         && !isread) {
1214         return CP_ACCESS_OK;
1215     }
1216 
1217     return pmreg_access(env, ri, isread);
1218 }
1219 
1220 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1221                                         const ARMCPRegInfo *ri,
1222                                         bool isread)
1223 {
1224     /* ER: event counter read trap control */
1225     if (arm_feature(env, ARM_FEATURE_V8)
1226         && arm_current_el(env) == 0
1227         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1228         return CP_ACCESS_OK;
1229     }
1230 
1231     return pmreg_access(env, ri, isread);
1232 }
1233 
1234 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1235                                          const ARMCPRegInfo *ri,
1236                                          bool isread)
1237 {
1238     /* CR: cycle counter read trap control */
1239     if (arm_feature(env, ARM_FEATURE_V8)
1240         && arm_current_el(env) == 0
1241         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1242         && isread) {
1243         return CP_ACCESS_OK;
1244     }
1245 
1246     return pmreg_access(env, ri, isread);
1247 }
1248 
1249 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1250  * the current EL, security state, and register configuration.
1251  */
1252 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1253 {
1254     uint64_t filter;
1255     bool e, p, u, nsk, nsu, nsh, m;
1256     bool enabled, prohibited, filtered;
1257     bool secure = arm_is_secure(env);
1258     int el = arm_current_el(env);
1259     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1260 
1261     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1262             (counter < hpmn || counter == 31)) {
1263         e = env->cp15.c9_pmcr & PMCRE;
1264     } else {
1265         e = env->cp15.mdcr_el2 & MDCR_HPME;
1266     }
1267     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1268 
1269     if (!secure) {
1270         if (el == 2 && (counter < hpmn || counter == 31)) {
1271             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1272         } else {
1273             prohibited = false;
1274         }
1275     } else {
1276         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1277            (env->cp15.mdcr_el3 & MDCR_SPME);
1278     }
1279 
1280     if (prohibited && counter == 31) {
1281         prohibited = env->cp15.c9_pmcr & PMCRDP;
1282     }
1283 
1284     if (counter == 31) {
1285         filter = env->cp15.pmccfiltr_el0;
1286     } else {
1287         filter = env->cp15.c14_pmevtyper[counter];
1288     }
1289 
1290     p   = filter & PMXEVTYPER_P;
1291     u   = filter & PMXEVTYPER_U;
1292     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1293     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1294     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1295     m   = arm_el_is_aa64(env, 1) &&
1296               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1297 
1298     if (el == 0) {
1299         filtered = secure ? u : u != nsu;
1300     } else if (el == 1) {
1301         filtered = secure ? p : p != nsk;
1302     } else if (el == 2) {
1303         filtered = !nsh;
1304     } else { /* EL3 */
1305         filtered = m != p;
1306     }
1307 
1308     if (counter != 31) {
1309         /*
1310          * If not checking PMCCNTR, ensure the counter is setup to an event we
1311          * support
1312          */
1313         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1314         if (!event_supported(event)) {
1315             return false;
1316         }
1317     }
1318 
1319     return enabled && !prohibited && !filtered;
1320 }
1321 
1322 static void pmu_update_irq(CPUARMState *env)
1323 {
1324     ARMCPU *cpu = arm_env_get_cpu(env);
1325     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1326             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1327 }
1328 
1329 /*
1330  * Ensure c15_ccnt is the guest-visible count so that operations such as
1331  * enabling/disabling the counter or filtering, modifying the count itself,
1332  * etc. can be done logically. This is essentially a no-op if the counter is
1333  * not enabled at the time of the call.
1334  */
1335 void pmccntr_op_start(CPUARMState *env)
1336 {
1337     uint64_t cycles = cycles_get_count(env);
1338 
1339     if (pmu_counter_enabled(env, 31)) {
1340         uint64_t eff_cycles = cycles;
1341         if (env->cp15.c9_pmcr & PMCRD) {
1342             /* Increment once every 64 processor clock cycles */
1343             eff_cycles /= 64;
1344         }
1345 
1346         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1347 
1348         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1349                                  1ull << 63 : 1ull << 31;
1350         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1351             env->cp15.c9_pmovsr |= (1 << 31);
1352             pmu_update_irq(env);
1353         }
1354 
1355         env->cp15.c15_ccnt = new_pmccntr;
1356     }
1357     env->cp15.c15_ccnt_delta = cycles;
1358 }
1359 
1360 /*
1361  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1362  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1363  * pmccntr_op_start.
1364  */
1365 void pmccntr_op_finish(CPUARMState *env)
1366 {
1367     if (pmu_counter_enabled(env, 31)) {
1368 #ifndef CONFIG_USER_ONLY
1369         /* Calculate when the counter will next overflow */
1370         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1371         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1372             remaining_cycles = (uint32_t)remaining_cycles;
1373         }
1374         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1375 
1376         if (overflow_in > 0) {
1377             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1378                 overflow_in;
1379             ARMCPU *cpu = arm_env_get_cpu(env);
1380             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1381         }
1382 #endif
1383 
1384         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1385         if (env->cp15.c9_pmcr & PMCRD) {
1386             /* Increment once every 64 processor clock cycles */
1387             prev_cycles /= 64;
1388         }
1389         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1390     }
1391 }
1392 
1393 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1394 {
1395 
1396     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1397     uint64_t count = 0;
1398     if (event_supported(event)) {
1399         uint16_t event_idx = supported_event_map[event];
1400         count = pm_events[event_idx].get_count(env);
1401     }
1402 
1403     if (pmu_counter_enabled(env, counter)) {
1404         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1405 
1406         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1407             env->cp15.c9_pmovsr |= (1 << counter);
1408             pmu_update_irq(env);
1409         }
1410         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1411     }
1412     env->cp15.c14_pmevcntr_delta[counter] = count;
1413 }
1414 
1415 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1416 {
1417     if (pmu_counter_enabled(env, counter)) {
1418 #ifndef CONFIG_USER_ONLY
1419         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1420         uint16_t event_idx = supported_event_map[event];
1421         uint64_t delta = UINT32_MAX -
1422             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1423         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1424 
1425         if (overflow_in > 0) {
1426             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1427                 overflow_in;
1428             ARMCPU *cpu = arm_env_get_cpu(env);
1429             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1430         }
1431 #endif
1432 
1433         env->cp15.c14_pmevcntr_delta[counter] -=
1434             env->cp15.c14_pmevcntr[counter];
1435     }
1436 }
1437 
1438 void pmu_op_start(CPUARMState *env)
1439 {
1440     unsigned int i;
1441     pmccntr_op_start(env);
1442     for (i = 0; i < pmu_num_counters(env); i++) {
1443         pmevcntr_op_start(env, i);
1444     }
1445 }
1446 
1447 void pmu_op_finish(CPUARMState *env)
1448 {
1449     unsigned int i;
1450     pmccntr_op_finish(env);
1451     for (i = 0; i < pmu_num_counters(env); i++) {
1452         pmevcntr_op_finish(env, i);
1453     }
1454 }
1455 
1456 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1457 {
1458     pmu_op_start(&cpu->env);
1459 }
1460 
1461 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1462 {
1463     pmu_op_finish(&cpu->env);
1464 }
1465 
1466 void arm_pmu_timer_cb(void *opaque)
1467 {
1468     ARMCPU *cpu = opaque;
1469 
1470     /*
1471      * Update all the counter values based on the current underlying counts,
1472      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1473      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1474      * counter may expire.
1475      */
1476     pmu_op_start(&cpu->env);
1477     pmu_op_finish(&cpu->env);
1478 }
1479 
1480 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1481                        uint64_t value)
1482 {
1483     pmu_op_start(env);
1484 
1485     if (value & PMCRC) {
1486         /* The counter has been reset */
1487         env->cp15.c15_ccnt = 0;
1488     }
1489 
1490     if (value & PMCRP) {
1491         unsigned int i;
1492         for (i = 0; i < pmu_num_counters(env); i++) {
1493             env->cp15.c14_pmevcntr[i] = 0;
1494         }
1495     }
1496 
1497     /* only the DP, X, D and E bits are writable */
1498     env->cp15.c9_pmcr &= ~0x39;
1499     env->cp15.c9_pmcr |= (value & 0x39);
1500 
1501     pmu_op_finish(env);
1502 }
1503 
1504 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1505                           uint64_t value)
1506 {
1507     unsigned int i;
1508     for (i = 0; i < pmu_num_counters(env); i++) {
1509         /* Increment a counter's count iff: */
1510         if ((value & (1 << i)) && /* counter's bit is set */
1511                 /* counter is enabled and not filtered */
1512                 pmu_counter_enabled(env, i) &&
1513                 /* counter is SW_INCR */
1514                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1515             pmevcntr_op_start(env, i);
1516 
1517             /*
1518              * Detect if this write causes an overflow since we can't predict
1519              * PMSWINC overflows like we can for other events
1520              */
1521             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1522 
1523             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1524                 env->cp15.c9_pmovsr |= (1 << i);
1525                 pmu_update_irq(env);
1526             }
1527 
1528             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1529 
1530             pmevcntr_op_finish(env, i);
1531         }
1532     }
1533 }
1534 
1535 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1536 {
1537     uint64_t ret;
1538     pmccntr_op_start(env);
1539     ret = env->cp15.c15_ccnt;
1540     pmccntr_op_finish(env);
1541     return ret;
1542 }
1543 
1544 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1545                          uint64_t value)
1546 {
1547     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1548      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1549      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1550      * accessed.
1551      */
1552     env->cp15.c9_pmselr = value & 0x1f;
1553 }
1554 
1555 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1556                         uint64_t value)
1557 {
1558     pmccntr_op_start(env);
1559     env->cp15.c15_ccnt = value;
1560     pmccntr_op_finish(env);
1561 }
1562 
1563 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1564                             uint64_t value)
1565 {
1566     uint64_t cur_val = pmccntr_read(env, NULL);
1567 
1568     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1569 }
1570 
1571 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1572                             uint64_t value)
1573 {
1574     pmccntr_op_start(env);
1575     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1576     pmccntr_op_finish(env);
1577 }
1578 
1579 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1580                             uint64_t value)
1581 {
1582     pmccntr_op_start(env);
1583     /* M is not accessible from AArch32 */
1584     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1585         (value & PMCCFILTR);
1586     pmccntr_op_finish(env);
1587 }
1588 
1589 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1590 {
1591     /* M is not visible in AArch32 */
1592     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1593 }
1594 
1595 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1596                             uint64_t value)
1597 {
1598     value &= pmu_counter_mask(env);
1599     env->cp15.c9_pmcnten |= value;
1600 }
1601 
1602 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1603                              uint64_t value)
1604 {
1605     value &= pmu_counter_mask(env);
1606     env->cp15.c9_pmcnten &= ~value;
1607 }
1608 
1609 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610                          uint64_t value)
1611 {
1612     value &= pmu_counter_mask(env);
1613     env->cp15.c9_pmovsr &= ~value;
1614     pmu_update_irq(env);
1615 }
1616 
1617 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618                          uint64_t value)
1619 {
1620     value &= pmu_counter_mask(env);
1621     env->cp15.c9_pmovsr |= value;
1622     pmu_update_irq(env);
1623 }
1624 
1625 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1626                              uint64_t value, const uint8_t counter)
1627 {
1628     if (counter == 31) {
1629         pmccfiltr_write(env, ri, value);
1630     } else if (counter < pmu_num_counters(env)) {
1631         pmevcntr_op_start(env, counter);
1632 
1633         /*
1634          * If this counter's event type is changing, store the current
1635          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1636          * pmevcntr_op_finish has the correct baseline when it converts back to
1637          * a delta.
1638          */
1639         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1640             PMXEVTYPER_EVTCOUNT;
1641         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1642         if (old_event != new_event) {
1643             uint64_t count = 0;
1644             if (event_supported(new_event)) {
1645                 uint16_t event_idx = supported_event_map[new_event];
1646                 count = pm_events[event_idx].get_count(env);
1647             }
1648             env->cp15.c14_pmevcntr_delta[counter] = count;
1649         }
1650 
1651         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1652         pmevcntr_op_finish(env, counter);
1653     }
1654     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1655      * PMSELR value is equal to or greater than the number of implemented
1656      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1657      */
1658 }
1659 
1660 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1661                                const uint8_t counter)
1662 {
1663     if (counter == 31) {
1664         return env->cp15.pmccfiltr_el0;
1665     } else if (counter < pmu_num_counters(env)) {
1666         return env->cp15.c14_pmevtyper[counter];
1667     } else {
1668       /*
1669        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1670        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1671        */
1672         return 0;
1673     }
1674 }
1675 
1676 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1677                               uint64_t value)
1678 {
1679     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1680     pmevtyper_write(env, ri, value, counter);
1681 }
1682 
1683 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1684                                uint64_t value)
1685 {
1686     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1687     env->cp15.c14_pmevtyper[counter] = value;
1688 
1689     /*
1690      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1691      * pmu_op_finish calls when loading saved state for a migration. Because
1692      * we're potentially updating the type of event here, the value written to
1693      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1694      * different counter type. Therefore, we need to set this value to the
1695      * current count for the counter type we're writing so that pmu_op_finish
1696      * has the correct count for its calculation.
1697      */
1698     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1699     if (event_supported(event)) {
1700         uint16_t event_idx = supported_event_map[event];
1701         env->cp15.c14_pmevcntr_delta[counter] =
1702             pm_events[event_idx].get_count(env);
1703     }
1704 }
1705 
1706 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1707 {
1708     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1709     return pmevtyper_read(env, ri, counter);
1710 }
1711 
1712 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1713                              uint64_t value)
1714 {
1715     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1716 }
1717 
1718 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1719 {
1720     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1721 }
1722 
1723 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724                              uint64_t value, uint8_t counter)
1725 {
1726     if (counter < pmu_num_counters(env)) {
1727         pmevcntr_op_start(env, counter);
1728         env->cp15.c14_pmevcntr[counter] = value;
1729         pmevcntr_op_finish(env, counter);
1730     }
1731     /*
1732      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1733      * are CONSTRAINED UNPREDICTABLE.
1734      */
1735 }
1736 
1737 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1738                               uint8_t counter)
1739 {
1740     if (counter < pmu_num_counters(env)) {
1741         uint64_t ret;
1742         pmevcntr_op_start(env, counter);
1743         ret = env->cp15.c14_pmevcntr[counter];
1744         pmevcntr_op_finish(env, counter);
1745         return ret;
1746     } else {
1747       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1748        * are CONSTRAINED UNPREDICTABLE. */
1749         return 0;
1750     }
1751 }
1752 
1753 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1754                              uint64_t value)
1755 {
1756     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757     pmevcntr_write(env, ri, value, counter);
1758 }
1759 
1760 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1761 {
1762     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1763     return pmevcntr_read(env, ri, counter);
1764 }
1765 
1766 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1767                              uint64_t value)
1768 {
1769     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1770     assert(counter < pmu_num_counters(env));
1771     env->cp15.c14_pmevcntr[counter] = value;
1772     pmevcntr_write(env, ri, value, counter);
1773 }
1774 
1775 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1776 {
1777     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1778     assert(counter < pmu_num_counters(env));
1779     return env->cp15.c14_pmevcntr[counter];
1780 }
1781 
1782 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1783                              uint64_t value)
1784 {
1785     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1786 }
1787 
1788 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1789 {
1790     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1791 }
1792 
1793 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1794                             uint64_t value)
1795 {
1796     if (arm_feature(env, ARM_FEATURE_V8)) {
1797         env->cp15.c9_pmuserenr = value & 0xf;
1798     } else {
1799         env->cp15.c9_pmuserenr = value & 1;
1800     }
1801 }
1802 
1803 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1804                              uint64_t value)
1805 {
1806     /* We have no event counters so only the C bit can be changed */
1807     value &= pmu_counter_mask(env);
1808     env->cp15.c9_pminten |= value;
1809     pmu_update_irq(env);
1810 }
1811 
1812 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1813                              uint64_t value)
1814 {
1815     value &= pmu_counter_mask(env);
1816     env->cp15.c9_pminten &= ~value;
1817     pmu_update_irq(env);
1818 }
1819 
1820 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1821                        uint64_t value)
1822 {
1823     /* Note that even though the AArch64 view of this register has bits
1824      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1825      * architectural requirements for bits which are RES0 only in some
1826      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1827      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1828      */
1829     raw_write(env, ri, value & ~0x1FULL);
1830 }
1831 
1832 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1833 {
1834     /* Begin with base v8.0 state.  */
1835     uint32_t valid_mask = 0x3fff;
1836     ARMCPU *cpu = arm_env_get_cpu(env);
1837 
1838     if (arm_el_is_aa64(env, 3)) {
1839         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1840         valid_mask &= ~SCR_NET;
1841     } else {
1842         valid_mask &= ~(SCR_RW | SCR_ST);
1843     }
1844 
1845     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1846         valid_mask &= ~SCR_HCE;
1847 
1848         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1849          * supported if EL2 exists. The bit is UNK/SBZP when
1850          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1851          * when EL2 is unavailable.
1852          * On ARMv8, this bit is always available.
1853          */
1854         if (arm_feature(env, ARM_FEATURE_V7) &&
1855             !arm_feature(env, ARM_FEATURE_V8)) {
1856             valid_mask &= ~SCR_SMD;
1857         }
1858     }
1859     if (cpu_isar_feature(aa64_lor, cpu)) {
1860         valid_mask |= SCR_TLOR;
1861     }
1862     if (cpu_isar_feature(aa64_pauth, cpu)) {
1863         valid_mask |= SCR_API | SCR_APK;
1864     }
1865 
1866     /* Clear all-context RES0 bits.  */
1867     value &= valid_mask;
1868     raw_write(env, ri, value);
1869 }
1870 
1871 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1872 {
1873     ARMCPU *cpu = arm_env_get_cpu(env);
1874 
1875     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1876      * bank
1877      */
1878     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1879                                         ri->secure & ARM_CP_SECSTATE_S);
1880 
1881     return cpu->ccsidr[index];
1882 }
1883 
1884 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1885                          uint64_t value)
1886 {
1887     raw_write(env, ri, value & 0xf);
1888 }
1889 
1890 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1891 {
1892     CPUState *cs = ENV_GET_CPU(env);
1893     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1894     uint64_t ret = 0;
1895 
1896     if (hcr_el2 & HCR_IMO) {
1897         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1898             ret |= CPSR_I;
1899         }
1900     } else {
1901         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1902             ret |= CPSR_I;
1903         }
1904     }
1905 
1906     if (hcr_el2 & HCR_FMO) {
1907         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1908             ret |= CPSR_F;
1909         }
1910     } else {
1911         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1912             ret |= CPSR_F;
1913         }
1914     }
1915 
1916     /* External aborts are not possible in QEMU so A bit is always clear */
1917     return ret;
1918 }
1919 
1920 static const ARMCPRegInfo v7_cp_reginfo[] = {
1921     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1922     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1923       .access = PL1_W, .type = ARM_CP_NOP },
1924     /* Performance monitors are implementation defined in v7,
1925      * but with an ARM recommended set of registers, which we
1926      * follow.
1927      *
1928      * Performance registers fall into three categories:
1929      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1930      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1931      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1932      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1933      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1934      */
1935     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1936       .access = PL0_RW, .type = ARM_CP_ALIAS,
1937       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1938       .writefn = pmcntenset_write,
1939       .accessfn = pmreg_access,
1940       .raw_writefn = raw_write },
1941     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1942       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1943       .access = PL0_RW, .accessfn = pmreg_access,
1944       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1945       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1946     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1947       .access = PL0_RW,
1948       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1949       .accessfn = pmreg_access,
1950       .writefn = pmcntenclr_write,
1951       .type = ARM_CP_ALIAS },
1952     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1953       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1954       .access = PL0_RW, .accessfn = pmreg_access,
1955       .type = ARM_CP_ALIAS,
1956       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1957       .writefn = pmcntenclr_write },
1958     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1959       .access = PL0_RW, .type = ARM_CP_IO,
1960       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1961       .accessfn = pmreg_access,
1962       .writefn = pmovsr_write,
1963       .raw_writefn = raw_write },
1964     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1965       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1966       .access = PL0_RW, .accessfn = pmreg_access,
1967       .type = ARM_CP_ALIAS | ARM_CP_IO,
1968       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1969       .writefn = pmovsr_write,
1970       .raw_writefn = raw_write },
1971     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1972       .access = PL0_W, .accessfn = pmreg_access_swinc,
1973       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1974       .writefn = pmswinc_write },
1975     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1976       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1977       .access = PL0_W, .accessfn = pmreg_access_swinc,
1978       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1979       .writefn = pmswinc_write },
1980     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1981       .access = PL0_RW, .type = ARM_CP_ALIAS,
1982       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1983       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1984       .raw_writefn = raw_write},
1985     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1986       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1987       .access = PL0_RW, .accessfn = pmreg_access_selr,
1988       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1989       .writefn = pmselr_write, .raw_writefn = raw_write, },
1990     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1991       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1992       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1993       .accessfn = pmreg_access_ccntr },
1994     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1995       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1996       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1997       .type = ARM_CP_IO,
1998       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1999       .readfn = pmccntr_read, .writefn = pmccntr_write,
2000       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2001     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2002       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2003       .access = PL0_RW, .accessfn = pmreg_access,
2004       .type = ARM_CP_ALIAS | ARM_CP_IO,
2005       .resetvalue = 0, },
2006     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2007       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2008       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2009       .access = PL0_RW, .accessfn = pmreg_access,
2010       .type = ARM_CP_IO,
2011       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2012       .resetvalue = 0, },
2013     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2014       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2015       .accessfn = pmreg_access,
2016       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2017     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2018       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2019       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2020       .accessfn = pmreg_access,
2021       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2022     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2023       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2024       .accessfn = pmreg_access_xevcntr,
2025       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2026     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2027       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2028       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2029       .accessfn = pmreg_access_xevcntr,
2030       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2031     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2032       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2033       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2034       .resetvalue = 0,
2035       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2036     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2037       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2038       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2039       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2040       .resetvalue = 0,
2041       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2042     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2043       .access = PL1_RW, .accessfn = access_tpm,
2044       .type = ARM_CP_ALIAS | ARM_CP_IO,
2045       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2046       .resetvalue = 0,
2047       .writefn = pmintenset_write, .raw_writefn = raw_write },
2048     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2049       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2050       .access = PL1_RW, .accessfn = access_tpm,
2051       .type = ARM_CP_IO,
2052       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2053       .writefn = pmintenset_write, .raw_writefn = raw_write,
2054       .resetvalue = 0x0 },
2055     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2056       .access = PL1_RW, .accessfn = access_tpm,
2057       .type = ARM_CP_ALIAS | ARM_CP_IO,
2058       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2059       .writefn = pmintenclr_write, },
2060     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2061       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2062       .access = PL1_RW, .accessfn = access_tpm,
2063       .type = ARM_CP_ALIAS | ARM_CP_IO,
2064       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2065       .writefn = pmintenclr_write },
2066     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2067       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2068       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2069     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2070       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2071       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2072       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2073                              offsetof(CPUARMState, cp15.csselr_ns) } },
2074     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2075      * just RAZ for all cores:
2076      */
2077     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2078       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2079       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2080     /* Auxiliary fault status registers: these also are IMPDEF, and we
2081      * choose to RAZ/WI for all cores.
2082      */
2083     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2084       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2085       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2086     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2087       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2088       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2089     /* MAIR can just read-as-written because we don't implement caches
2090      * and so don't need to care about memory attributes.
2091      */
2092     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2093       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2094       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2095       .resetvalue = 0 },
2096     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2097       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2098       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2099       .resetvalue = 0 },
2100     /* For non-long-descriptor page tables these are PRRR and NMRR;
2101      * regardless they still act as reads-as-written for QEMU.
2102      */
2103      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2104       * allows them to assign the correct fieldoffset based on the endianness
2105       * handled in the field definitions.
2106       */
2107     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2108       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2109       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2110                              offsetof(CPUARMState, cp15.mair0_ns) },
2111       .resetfn = arm_cp_reset_ignore },
2112     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2113       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2114       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2115                              offsetof(CPUARMState, cp15.mair1_ns) },
2116       .resetfn = arm_cp_reset_ignore },
2117     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2118       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2119       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2120     /* 32 bit ITLB invalidates */
2121     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2122       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2123     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2124       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2125     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2126       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2127     /* 32 bit DTLB invalidates */
2128     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2129       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2130     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2131       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2132     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2133       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2134     /* 32 bit TLB invalidates */
2135     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2136       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2137     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2138       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2139     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2140       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2141     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2142       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2143     REGINFO_SENTINEL
2144 };
2145 
2146 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2147     /* 32 bit TLB invalidates, Inner Shareable */
2148     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2149       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2150     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2151       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2152     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2153       .type = ARM_CP_NO_RAW, .access = PL1_W,
2154       .writefn = tlbiasid_is_write },
2155     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2156       .type = ARM_CP_NO_RAW, .access = PL1_W,
2157       .writefn = tlbimvaa_is_write },
2158     REGINFO_SENTINEL
2159 };
2160 
2161 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2162     /* PMOVSSET is not implemented in v7 before v7ve */
2163     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2164       .access = PL0_RW, .accessfn = pmreg_access,
2165       .type = ARM_CP_ALIAS | ARM_CP_IO,
2166       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2167       .writefn = pmovsset_write,
2168       .raw_writefn = raw_write },
2169     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2170       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2171       .access = PL0_RW, .accessfn = pmreg_access,
2172       .type = ARM_CP_ALIAS | ARM_CP_IO,
2173       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2174       .writefn = pmovsset_write,
2175       .raw_writefn = raw_write },
2176     REGINFO_SENTINEL
2177 };
2178 
2179 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2180                         uint64_t value)
2181 {
2182     value &= 1;
2183     env->teecr = value;
2184 }
2185 
2186 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2187                                     bool isread)
2188 {
2189     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2190         return CP_ACCESS_TRAP;
2191     }
2192     return CP_ACCESS_OK;
2193 }
2194 
2195 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2196     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2197       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2198       .resetvalue = 0,
2199       .writefn = teecr_write },
2200     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2201       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2202       .accessfn = teehbr_access, .resetvalue = 0 },
2203     REGINFO_SENTINEL
2204 };
2205 
2206 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2207     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2208       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2209       .access = PL0_RW,
2210       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2211     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2212       .access = PL0_RW,
2213       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2214                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2215       .resetfn = arm_cp_reset_ignore },
2216     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2217       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2218       .access = PL0_R|PL1_W,
2219       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2220       .resetvalue = 0},
2221     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2222       .access = PL0_R|PL1_W,
2223       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2224                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2225       .resetfn = arm_cp_reset_ignore },
2226     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2227       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2228       .access = PL1_RW,
2229       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2230     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2231       .access = PL1_RW,
2232       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2233                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2234       .resetvalue = 0 },
2235     REGINFO_SENTINEL
2236 };
2237 
2238 #ifndef CONFIG_USER_ONLY
2239 
2240 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2241                                        bool isread)
2242 {
2243     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2244      * Writable only at the highest implemented exception level.
2245      */
2246     int el = arm_current_el(env);
2247 
2248     switch (el) {
2249     case 0:
2250         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2251             return CP_ACCESS_TRAP;
2252         }
2253         break;
2254     case 1:
2255         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2256             arm_is_secure_below_el3(env)) {
2257             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2258             return CP_ACCESS_TRAP_UNCATEGORIZED;
2259         }
2260         break;
2261     case 2:
2262     case 3:
2263         break;
2264     }
2265 
2266     if (!isread && el < arm_highest_el(env)) {
2267         return CP_ACCESS_TRAP_UNCATEGORIZED;
2268     }
2269 
2270     return CP_ACCESS_OK;
2271 }
2272 
2273 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2274                                         bool isread)
2275 {
2276     unsigned int cur_el = arm_current_el(env);
2277     bool secure = arm_is_secure(env);
2278 
2279     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2280     if (cur_el == 0 &&
2281         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2282         return CP_ACCESS_TRAP;
2283     }
2284 
2285     if (arm_feature(env, ARM_FEATURE_EL2) &&
2286         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2287         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2288         return CP_ACCESS_TRAP_EL2;
2289     }
2290     return CP_ACCESS_OK;
2291 }
2292 
2293 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2294                                       bool isread)
2295 {
2296     unsigned int cur_el = arm_current_el(env);
2297     bool secure = arm_is_secure(env);
2298 
2299     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2300      * EL0[PV]TEN is zero.
2301      */
2302     if (cur_el == 0 &&
2303         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2304         return CP_ACCESS_TRAP;
2305     }
2306 
2307     if (arm_feature(env, ARM_FEATURE_EL2) &&
2308         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2309         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2310         return CP_ACCESS_TRAP_EL2;
2311     }
2312     return CP_ACCESS_OK;
2313 }
2314 
2315 static CPAccessResult gt_pct_access(CPUARMState *env,
2316                                     const ARMCPRegInfo *ri,
2317                                     bool isread)
2318 {
2319     return gt_counter_access(env, GTIMER_PHYS, isread);
2320 }
2321 
2322 static CPAccessResult gt_vct_access(CPUARMState *env,
2323                                     const ARMCPRegInfo *ri,
2324                                     bool isread)
2325 {
2326     return gt_counter_access(env, GTIMER_VIRT, isread);
2327 }
2328 
2329 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2330                                        bool isread)
2331 {
2332     return gt_timer_access(env, GTIMER_PHYS, isread);
2333 }
2334 
2335 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2336                                        bool isread)
2337 {
2338     return gt_timer_access(env, GTIMER_VIRT, isread);
2339 }
2340 
2341 static CPAccessResult gt_stimer_access(CPUARMState *env,
2342                                        const ARMCPRegInfo *ri,
2343                                        bool isread)
2344 {
2345     /* The AArch64 register view of the secure physical timer is
2346      * always accessible from EL3, and configurably accessible from
2347      * Secure EL1.
2348      */
2349     switch (arm_current_el(env)) {
2350     case 1:
2351         if (!arm_is_secure(env)) {
2352             return CP_ACCESS_TRAP;
2353         }
2354         if (!(env->cp15.scr_el3 & SCR_ST)) {
2355             return CP_ACCESS_TRAP_EL3;
2356         }
2357         return CP_ACCESS_OK;
2358     case 0:
2359     case 2:
2360         return CP_ACCESS_TRAP;
2361     case 3:
2362         return CP_ACCESS_OK;
2363     default:
2364         g_assert_not_reached();
2365     }
2366 }
2367 
2368 static uint64_t gt_get_countervalue(CPUARMState *env)
2369 {
2370     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2371 }
2372 
2373 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2374 {
2375     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2376 
2377     if (gt->ctl & 1) {
2378         /* Timer enabled: calculate and set current ISTATUS, irq, and
2379          * reset timer to when ISTATUS next has to change
2380          */
2381         uint64_t offset = timeridx == GTIMER_VIRT ?
2382                                       cpu->env.cp15.cntvoff_el2 : 0;
2383         uint64_t count = gt_get_countervalue(&cpu->env);
2384         /* Note that this must be unsigned 64 bit arithmetic: */
2385         int istatus = count - offset >= gt->cval;
2386         uint64_t nexttick;
2387         int irqstate;
2388 
2389         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2390 
2391         irqstate = (istatus && !(gt->ctl & 2));
2392         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2393 
2394         if (istatus) {
2395             /* Next transition is when count rolls back over to zero */
2396             nexttick = UINT64_MAX;
2397         } else {
2398             /* Next transition is when we hit cval */
2399             nexttick = gt->cval + offset;
2400         }
2401         /* Note that the desired next expiry time might be beyond the
2402          * signed-64-bit range of a QEMUTimer -- in this case we just
2403          * set the timer for as far in the future as possible. When the
2404          * timer expires we will reset the timer for any remaining period.
2405          */
2406         if (nexttick > INT64_MAX / GTIMER_SCALE) {
2407             nexttick = INT64_MAX / GTIMER_SCALE;
2408         }
2409         timer_mod(cpu->gt_timer[timeridx], nexttick);
2410         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2411     } else {
2412         /* Timer disabled: ISTATUS and timer output always clear */
2413         gt->ctl &= ~4;
2414         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2415         timer_del(cpu->gt_timer[timeridx]);
2416         trace_arm_gt_recalc_disabled(timeridx);
2417     }
2418 }
2419 
2420 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2421                            int timeridx)
2422 {
2423     ARMCPU *cpu = arm_env_get_cpu(env);
2424 
2425     timer_del(cpu->gt_timer[timeridx]);
2426 }
2427 
2428 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2429 {
2430     return gt_get_countervalue(env);
2431 }
2432 
2433 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2434 {
2435     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2436 }
2437 
2438 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2439                           int timeridx,
2440                           uint64_t value)
2441 {
2442     trace_arm_gt_cval_write(timeridx, value);
2443     env->cp15.c14_timer[timeridx].cval = value;
2444     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2445 }
2446 
2447 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2448                              int timeridx)
2449 {
2450     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2451 
2452     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2453                       (gt_get_countervalue(env) - offset));
2454 }
2455 
2456 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2457                           int timeridx,
2458                           uint64_t value)
2459 {
2460     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2461 
2462     trace_arm_gt_tval_write(timeridx, value);
2463     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2464                                          sextract64(value, 0, 32);
2465     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2466 }
2467 
2468 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2469                          int timeridx,
2470                          uint64_t value)
2471 {
2472     ARMCPU *cpu = arm_env_get_cpu(env);
2473     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2474 
2475     trace_arm_gt_ctl_write(timeridx, value);
2476     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2477     if ((oldval ^ value) & 1) {
2478         /* Enable toggled */
2479         gt_recalc_timer(cpu, timeridx);
2480     } else if ((oldval ^ value) & 2) {
2481         /* IMASK toggled: don't need to recalculate,
2482          * just set the interrupt line based on ISTATUS
2483          */
2484         int irqstate = (oldval & 4) && !(value & 2);
2485 
2486         trace_arm_gt_imask_toggle(timeridx, irqstate);
2487         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2488     }
2489 }
2490 
2491 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2492 {
2493     gt_timer_reset(env, ri, GTIMER_PHYS);
2494 }
2495 
2496 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2497                                uint64_t value)
2498 {
2499     gt_cval_write(env, ri, GTIMER_PHYS, value);
2500 }
2501 
2502 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2503 {
2504     return gt_tval_read(env, ri, GTIMER_PHYS);
2505 }
2506 
2507 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2508                                uint64_t value)
2509 {
2510     gt_tval_write(env, ri, GTIMER_PHYS, value);
2511 }
2512 
2513 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2514                               uint64_t value)
2515 {
2516     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2517 }
2518 
2519 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2520 {
2521     gt_timer_reset(env, ri, GTIMER_VIRT);
2522 }
2523 
2524 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2525                                uint64_t value)
2526 {
2527     gt_cval_write(env, ri, GTIMER_VIRT, value);
2528 }
2529 
2530 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2531 {
2532     return gt_tval_read(env, ri, GTIMER_VIRT);
2533 }
2534 
2535 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2536                                uint64_t value)
2537 {
2538     gt_tval_write(env, ri, GTIMER_VIRT, value);
2539 }
2540 
2541 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542                               uint64_t value)
2543 {
2544     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2545 }
2546 
2547 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2548                               uint64_t value)
2549 {
2550     ARMCPU *cpu = arm_env_get_cpu(env);
2551 
2552     trace_arm_gt_cntvoff_write(value);
2553     raw_write(env, ri, value);
2554     gt_recalc_timer(cpu, GTIMER_VIRT);
2555 }
2556 
2557 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2558 {
2559     gt_timer_reset(env, ri, GTIMER_HYP);
2560 }
2561 
2562 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2563                               uint64_t value)
2564 {
2565     gt_cval_write(env, ri, GTIMER_HYP, value);
2566 }
2567 
2568 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2569 {
2570     return gt_tval_read(env, ri, GTIMER_HYP);
2571 }
2572 
2573 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2574                               uint64_t value)
2575 {
2576     gt_tval_write(env, ri, GTIMER_HYP, value);
2577 }
2578 
2579 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2580                               uint64_t value)
2581 {
2582     gt_ctl_write(env, ri, GTIMER_HYP, value);
2583 }
2584 
2585 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2586 {
2587     gt_timer_reset(env, ri, GTIMER_SEC);
2588 }
2589 
2590 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2591                               uint64_t value)
2592 {
2593     gt_cval_write(env, ri, GTIMER_SEC, value);
2594 }
2595 
2596 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2597 {
2598     return gt_tval_read(env, ri, GTIMER_SEC);
2599 }
2600 
2601 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2602                               uint64_t value)
2603 {
2604     gt_tval_write(env, ri, GTIMER_SEC, value);
2605 }
2606 
2607 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2608                               uint64_t value)
2609 {
2610     gt_ctl_write(env, ri, GTIMER_SEC, value);
2611 }
2612 
2613 void arm_gt_ptimer_cb(void *opaque)
2614 {
2615     ARMCPU *cpu = opaque;
2616 
2617     gt_recalc_timer(cpu, GTIMER_PHYS);
2618 }
2619 
2620 void arm_gt_vtimer_cb(void *opaque)
2621 {
2622     ARMCPU *cpu = opaque;
2623 
2624     gt_recalc_timer(cpu, GTIMER_VIRT);
2625 }
2626 
2627 void arm_gt_htimer_cb(void *opaque)
2628 {
2629     ARMCPU *cpu = opaque;
2630 
2631     gt_recalc_timer(cpu, GTIMER_HYP);
2632 }
2633 
2634 void arm_gt_stimer_cb(void *opaque)
2635 {
2636     ARMCPU *cpu = opaque;
2637 
2638     gt_recalc_timer(cpu, GTIMER_SEC);
2639 }
2640 
2641 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2642     /* Note that CNTFRQ is purely reads-as-written for the benefit
2643      * of software; writing it doesn't actually change the timer frequency.
2644      * Our reset value matches the fixed frequency we implement the timer at.
2645      */
2646     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2647       .type = ARM_CP_ALIAS,
2648       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2649       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2650     },
2651     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2652       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2653       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2654       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2655       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2656     },
2657     /* overall control: mostly access permissions */
2658     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2659       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2660       .access = PL1_RW,
2661       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2662       .resetvalue = 0,
2663     },
2664     /* per-timer control */
2665     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2666       .secure = ARM_CP_SECSTATE_NS,
2667       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2668       .accessfn = gt_ptimer_access,
2669       .fieldoffset = offsetoflow32(CPUARMState,
2670                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2671       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2672     },
2673     { .name = "CNTP_CTL_S",
2674       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2675       .secure = ARM_CP_SECSTATE_S,
2676       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2677       .accessfn = gt_ptimer_access,
2678       .fieldoffset = offsetoflow32(CPUARMState,
2679                                    cp15.c14_timer[GTIMER_SEC].ctl),
2680       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2681     },
2682     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2683       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2684       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2685       .accessfn = gt_ptimer_access,
2686       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2687       .resetvalue = 0,
2688       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2689     },
2690     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2691       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2692       .accessfn = gt_vtimer_access,
2693       .fieldoffset = offsetoflow32(CPUARMState,
2694                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2695       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2696     },
2697     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2698       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2699       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2700       .accessfn = gt_vtimer_access,
2701       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2702       .resetvalue = 0,
2703       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2704     },
2705     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2706     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2707       .secure = ARM_CP_SECSTATE_NS,
2708       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2709       .accessfn = gt_ptimer_access,
2710       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2711     },
2712     { .name = "CNTP_TVAL_S",
2713       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2714       .secure = ARM_CP_SECSTATE_S,
2715       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2716       .accessfn = gt_ptimer_access,
2717       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2718     },
2719     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2720       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2721       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2722       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2723       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2724     },
2725     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2726       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2727       .accessfn = gt_vtimer_access,
2728       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2729     },
2730     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2731       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2732       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2733       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2734       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2735     },
2736     /* The counter itself */
2737     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2738       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2739       .accessfn = gt_pct_access,
2740       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2741     },
2742     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2743       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2744       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2745       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2746     },
2747     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2748       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2749       .accessfn = gt_vct_access,
2750       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2751     },
2752     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2753       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2754       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2755       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2756     },
2757     /* Comparison value, indicating when the timer goes off */
2758     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2759       .secure = ARM_CP_SECSTATE_NS,
2760       .access = PL1_RW | PL0_R,
2761       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2762       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2763       .accessfn = gt_ptimer_access,
2764       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2765     },
2766     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2767       .secure = ARM_CP_SECSTATE_S,
2768       .access = PL1_RW | PL0_R,
2769       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2770       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2771       .accessfn = gt_ptimer_access,
2772       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2773     },
2774     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2775       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2776       .access = PL1_RW | PL0_R,
2777       .type = ARM_CP_IO,
2778       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2779       .resetvalue = 0, .accessfn = gt_ptimer_access,
2780       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2781     },
2782     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2783       .access = PL1_RW | PL0_R,
2784       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2785       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2786       .accessfn = gt_vtimer_access,
2787       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2788     },
2789     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2790       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2791       .access = PL1_RW | PL0_R,
2792       .type = ARM_CP_IO,
2793       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2794       .resetvalue = 0, .accessfn = gt_vtimer_access,
2795       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2796     },
2797     /* Secure timer -- this is actually restricted to only EL3
2798      * and configurably Secure-EL1 via the accessfn.
2799      */
2800     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2801       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2802       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2803       .accessfn = gt_stimer_access,
2804       .readfn = gt_sec_tval_read,
2805       .writefn = gt_sec_tval_write,
2806       .resetfn = gt_sec_timer_reset,
2807     },
2808     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2809       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2810       .type = ARM_CP_IO, .access = PL1_RW,
2811       .accessfn = gt_stimer_access,
2812       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2813       .resetvalue = 0,
2814       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2815     },
2816     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2817       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2818       .type = ARM_CP_IO, .access = PL1_RW,
2819       .accessfn = gt_stimer_access,
2820       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2821       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2822     },
2823     REGINFO_SENTINEL
2824 };
2825 
2826 #else
2827 
2828 /* In user-mode most of the generic timer registers are inaccessible
2829  * however modern kernels (4.12+) allow access to cntvct_el0
2830  */
2831 
2832 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2833 {
2834     /* Currently we have no support for QEMUTimer in linux-user so we
2835      * can't call gt_get_countervalue(env), instead we directly
2836      * call the lower level functions.
2837      */
2838     return cpu_get_clock() / GTIMER_SCALE;
2839 }
2840 
2841 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2842     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2843       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2844       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2845       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2846       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2847     },
2848     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2849       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2850       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2851       .readfn = gt_virt_cnt_read,
2852     },
2853     REGINFO_SENTINEL
2854 };
2855 
2856 #endif
2857 
2858 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2859 {
2860     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2861         raw_write(env, ri, value);
2862     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2863         raw_write(env, ri, value & 0xfffff6ff);
2864     } else {
2865         raw_write(env, ri, value & 0xfffff1ff);
2866     }
2867 }
2868 
2869 #ifndef CONFIG_USER_ONLY
2870 /* get_phys_addr() isn't present for user-mode-only targets */
2871 
2872 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2873                                  bool isread)
2874 {
2875     if (ri->opc2 & 4) {
2876         /* The ATS12NSO* operations must trap to EL3 if executed in
2877          * Secure EL1 (which can only happen if EL3 is AArch64).
2878          * They are simply UNDEF if executed from NS EL1.
2879          * They function normally from EL2 or EL3.
2880          */
2881         if (arm_current_el(env) == 1) {
2882             if (arm_is_secure_below_el3(env)) {
2883                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2884             }
2885             return CP_ACCESS_TRAP_UNCATEGORIZED;
2886         }
2887     }
2888     return CP_ACCESS_OK;
2889 }
2890 
2891 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2892                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2893 {
2894     hwaddr phys_addr;
2895     target_ulong page_size;
2896     int prot;
2897     bool ret;
2898     uint64_t par64;
2899     bool format64 = false;
2900     MemTxAttrs attrs = {};
2901     ARMMMUFaultInfo fi = {};
2902     ARMCacheAttrs cacheattrs = {};
2903 
2904     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2905                         &prot, &page_size, &fi, &cacheattrs);
2906 
2907     if (is_a64(env)) {
2908         format64 = true;
2909     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2910         /*
2911          * ATS1Cxx:
2912          * * TTBCR.EAE determines whether the result is returned using the
2913          *   32-bit or the 64-bit PAR format
2914          * * Instructions executed in Hyp mode always use the 64bit format
2915          *
2916          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2917          * * The Non-secure TTBCR.EAE bit is set to 1
2918          * * The implementation includes EL2, and the value of HCR.VM is 1
2919          *
2920          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2921          *
2922          * ATS1Hx always uses the 64bit format.
2923          */
2924         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2925 
2926         if (arm_feature(env, ARM_FEATURE_EL2)) {
2927             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2928                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2929             } else {
2930                 format64 |= arm_current_el(env) == 2;
2931             }
2932         }
2933     }
2934 
2935     if (format64) {
2936         /* Create a 64-bit PAR */
2937         par64 = (1 << 11); /* LPAE bit always set */
2938         if (!ret) {
2939             par64 |= phys_addr & ~0xfffULL;
2940             if (!attrs.secure) {
2941                 par64 |= (1 << 9); /* NS */
2942             }
2943             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2944             par64 |= cacheattrs.shareability << 7; /* SH */
2945         } else {
2946             uint32_t fsr = arm_fi_to_lfsc(&fi);
2947 
2948             par64 |= 1; /* F */
2949             par64 |= (fsr & 0x3f) << 1; /* FS */
2950             if (fi.stage2) {
2951                 par64 |= (1 << 9); /* S */
2952             }
2953             if (fi.s1ptw) {
2954                 par64 |= (1 << 8); /* PTW */
2955             }
2956         }
2957     } else {
2958         /* fsr is a DFSR/IFSR value for the short descriptor
2959          * translation table format (with WnR always clear).
2960          * Convert it to a 32-bit PAR.
2961          */
2962         if (!ret) {
2963             /* We do not set any attribute bits in the PAR */
2964             if (page_size == (1 << 24)
2965                 && arm_feature(env, ARM_FEATURE_V7)) {
2966                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2967             } else {
2968                 par64 = phys_addr & 0xfffff000;
2969             }
2970             if (!attrs.secure) {
2971                 par64 |= (1 << 9); /* NS */
2972             }
2973         } else {
2974             uint32_t fsr = arm_fi_to_sfsc(&fi);
2975 
2976             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2977                     ((fsr & 0xf) << 1) | 1;
2978         }
2979     }
2980     return par64;
2981 }
2982 
2983 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2984 {
2985     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2986     uint64_t par64;
2987     ARMMMUIdx mmu_idx;
2988     int el = arm_current_el(env);
2989     bool secure = arm_is_secure_below_el3(env);
2990 
2991     switch (ri->opc2 & 6) {
2992     case 0:
2993         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2994         switch (el) {
2995         case 3:
2996             mmu_idx = ARMMMUIdx_S1E3;
2997             break;
2998         case 2:
2999             mmu_idx = ARMMMUIdx_S1NSE1;
3000             break;
3001         case 1:
3002             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3003             break;
3004         default:
3005             g_assert_not_reached();
3006         }
3007         break;
3008     case 2:
3009         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3010         switch (el) {
3011         case 3:
3012             mmu_idx = ARMMMUIdx_S1SE0;
3013             break;
3014         case 2:
3015             mmu_idx = ARMMMUIdx_S1NSE0;
3016             break;
3017         case 1:
3018             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3019             break;
3020         default:
3021             g_assert_not_reached();
3022         }
3023         break;
3024     case 4:
3025         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3026         mmu_idx = ARMMMUIdx_S12NSE1;
3027         break;
3028     case 6:
3029         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3030         mmu_idx = ARMMMUIdx_S12NSE0;
3031         break;
3032     default:
3033         g_assert_not_reached();
3034     }
3035 
3036     par64 = do_ats_write(env, value, access_type, mmu_idx);
3037 
3038     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3039 }
3040 
3041 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3042                         uint64_t value)
3043 {
3044     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3045     uint64_t par64;
3046 
3047     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3048 
3049     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3050 }
3051 
3052 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3053                                      bool isread)
3054 {
3055     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3056         return CP_ACCESS_TRAP;
3057     }
3058     return CP_ACCESS_OK;
3059 }
3060 
3061 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3062                         uint64_t value)
3063 {
3064     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3065     ARMMMUIdx mmu_idx;
3066     int secure = arm_is_secure_below_el3(env);
3067 
3068     switch (ri->opc2 & 6) {
3069     case 0:
3070         switch (ri->opc1) {
3071         case 0: /* AT S1E1R, AT S1E1W */
3072             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3073             break;
3074         case 4: /* AT S1E2R, AT S1E2W */
3075             mmu_idx = ARMMMUIdx_S1E2;
3076             break;
3077         case 6: /* AT S1E3R, AT S1E3W */
3078             mmu_idx = ARMMMUIdx_S1E3;
3079             break;
3080         default:
3081             g_assert_not_reached();
3082         }
3083         break;
3084     case 2: /* AT S1E0R, AT S1E0W */
3085         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3086         break;
3087     case 4: /* AT S12E1R, AT S12E1W */
3088         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3089         break;
3090     case 6: /* AT S12E0R, AT S12E0W */
3091         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3092         break;
3093     default:
3094         g_assert_not_reached();
3095     }
3096 
3097     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3098 }
3099 #endif
3100 
3101 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3102     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3103       .access = PL1_RW, .resetvalue = 0,
3104       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3105                              offsetoflow32(CPUARMState, cp15.par_ns) },
3106       .writefn = par_write },
3107 #ifndef CONFIG_USER_ONLY
3108     /* This underdecoding is safe because the reginfo is NO_RAW. */
3109     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3110       .access = PL1_W, .accessfn = ats_access,
3111       .writefn = ats_write, .type = ARM_CP_NO_RAW },
3112 #endif
3113     REGINFO_SENTINEL
3114 };
3115 
3116 /* Return basic MPU access permission bits.  */
3117 static uint32_t simple_mpu_ap_bits(uint32_t val)
3118 {
3119     uint32_t ret;
3120     uint32_t mask;
3121     int i;
3122     ret = 0;
3123     mask = 3;
3124     for (i = 0; i < 16; i += 2) {
3125         ret |= (val >> i) & mask;
3126         mask <<= 2;
3127     }
3128     return ret;
3129 }
3130 
3131 /* Pad basic MPU access permission bits to extended format.  */
3132 static uint32_t extended_mpu_ap_bits(uint32_t val)
3133 {
3134     uint32_t ret;
3135     uint32_t mask;
3136     int i;
3137     ret = 0;
3138     mask = 3;
3139     for (i = 0; i < 16; i += 2) {
3140         ret |= (val & mask) << i;
3141         mask <<= 2;
3142     }
3143     return ret;
3144 }
3145 
3146 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3147                                  uint64_t value)
3148 {
3149     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3150 }
3151 
3152 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3153 {
3154     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3155 }
3156 
3157 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3158                                  uint64_t value)
3159 {
3160     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3161 }
3162 
3163 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3164 {
3165     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3166 }
3167 
3168 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3169 {
3170     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3171 
3172     if (!u32p) {
3173         return 0;
3174     }
3175 
3176     u32p += env->pmsav7.rnr[M_REG_NS];
3177     return *u32p;
3178 }
3179 
3180 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3181                          uint64_t value)
3182 {
3183     ARMCPU *cpu = arm_env_get_cpu(env);
3184     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3185 
3186     if (!u32p) {
3187         return;
3188     }
3189 
3190     u32p += env->pmsav7.rnr[M_REG_NS];
3191     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3192     *u32p = value;
3193 }
3194 
3195 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3196                               uint64_t value)
3197 {
3198     ARMCPU *cpu = arm_env_get_cpu(env);
3199     uint32_t nrgs = cpu->pmsav7_dregion;
3200 
3201     if (value >= nrgs) {
3202         qemu_log_mask(LOG_GUEST_ERROR,
3203                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3204                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3205         return;
3206     }
3207 
3208     raw_write(env, ri, value);
3209 }
3210 
3211 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3212     /* Reset for all these registers is handled in arm_cpu_reset(),
3213      * because the PMSAv7 is also used by M-profile CPUs, which do
3214      * not register cpregs but still need the state to be reset.
3215      */
3216     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3217       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3218       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3219       .readfn = pmsav7_read, .writefn = pmsav7_write,
3220       .resetfn = arm_cp_reset_ignore },
3221     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3222       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3223       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3224       .readfn = pmsav7_read, .writefn = pmsav7_write,
3225       .resetfn = arm_cp_reset_ignore },
3226     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3227       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3228       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3229       .readfn = pmsav7_read, .writefn = pmsav7_write,
3230       .resetfn = arm_cp_reset_ignore },
3231     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3232       .access = PL1_RW,
3233       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3234       .writefn = pmsav7_rgnr_write,
3235       .resetfn = arm_cp_reset_ignore },
3236     REGINFO_SENTINEL
3237 };
3238 
3239 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3240     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3241       .access = PL1_RW, .type = ARM_CP_ALIAS,
3242       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3243       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3244     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3245       .access = PL1_RW, .type = ARM_CP_ALIAS,
3246       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3247       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3248     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3249       .access = PL1_RW,
3250       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3251       .resetvalue = 0, },
3252     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3253       .access = PL1_RW,
3254       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3255       .resetvalue = 0, },
3256     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3257       .access = PL1_RW,
3258       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3259     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3260       .access = PL1_RW,
3261       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3262     /* Protection region base and size registers */
3263     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3264       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3265       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3266     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3267       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3268       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3269     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3270       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3271       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3272     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3273       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3274       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3275     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3276       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3277       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3278     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3279       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3280       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3281     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3282       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3283       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3284     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3285       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3286       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3287     REGINFO_SENTINEL
3288 };
3289 
3290 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3291                                  uint64_t value)
3292 {
3293     TCR *tcr = raw_ptr(env, ri);
3294     int maskshift = extract32(value, 0, 3);
3295 
3296     if (!arm_feature(env, ARM_FEATURE_V8)) {
3297         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3298             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3299              * using Long-desciptor translation table format */
3300             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3301         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3302             /* In an implementation that includes the Security Extensions
3303              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3304              * Short-descriptor translation table format.
3305              */
3306             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3307         } else {
3308             value &= TTBCR_N;
3309         }
3310     }
3311 
3312     /* Update the masks corresponding to the TCR bank being written
3313      * Note that we always calculate mask and base_mask, but
3314      * they are only used for short-descriptor tables (ie if EAE is 0);
3315      * for long-descriptor tables the TCR fields are used differently
3316      * and the mask and base_mask values are meaningless.
3317      */
3318     tcr->raw_tcr = value;
3319     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3320     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3321 }
3322 
3323 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3324                              uint64_t value)
3325 {
3326     ARMCPU *cpu = arm_env_get_cpu(env);
3327     TCR *tcr = raw_ptr(env, ri);
3328 
3329     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3330         /* With LPAE the TTBCR could result in a change of ASID
3331          * via the TTBCR.A1 bit, so do a TLB flush.
3332          */
3333         tlb_flush(CPU(cpu));
3334     }
3335     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3336     value = deposit64(tcr->raw_tcr, 0, 32, value);
3337     vmsa_ttbcr_raw_write(env, ri, value);
3338 }
3339 
3340 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3341 {
3342     TCR *tcr = raw_ptr(env, ri);
3343 
3344     /* Reset both the TCR as well as the masks corresponding to the bank of
3345      * the TCR being reset.
3346      */
3347     tcr->raw_tcr = 0;
3348     tcr->mask = 0;
3349     tcr->base_mask = 0xffffc000u;
3350 }
3351 
3352 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3353                                uint64_t value)
3354 {
3355     ARMCPU *cpu = arm_env_get_cpu(env);
3356     TCR *tcr = raw_ptr(env, ri);
3357 
3358     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3359     tlb_flush(CPU(cpu));
3360     tcr->raw_tcr = value;
3361 }
3362 
3363 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3364                             uint64_t value)
3365 {
3366     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3367     if (cpreg_field_is_64bit(ri) &&
3368         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3369         ARMCPU *cpu = arm_env_get_cpu(env);
3370         tlb_flush(CPU(cpu));
3371     }
3372     raw_write(env, ri, value);
3373 }
3374 
3375 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3376                         uint64_t value)
3377 {
3378     ARMCPU *cpu = arm_env_get_cpu(env);
3379     CPUState *cs = CPU(cpu);
3380 
3381     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
3382     if (raw_read(env, ri) != value) {
3383         tlb_flush_by_mmuidx(cs,
3384                             ARMMMUIdxBit_S12NSE1 |
3385                             ARMMMUIdxBit_S12NSE0 |
3386                             ARMMMUIdxBit_S2NS);
3387         raw_write(env, ri, value);
3388     }
3389 }
3390 
3391 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3392     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3393       .access = PL1_RW, .type = ARM_CP_ALIAS,
3394       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3395                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3396     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3397       .access = PL1_RW, .resetvalue = 0,
3398       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3399                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3400     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3401       .access = PL1_RW, .resetvalue = 0,
3402       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3403                              offsetof(CPUARMState, cp15.dfar_ns) } },
3404     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3405       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3406       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3407       .resetvalue = 0, },
3408     REGINFO_SENTINEL
3409 };
3410 
3411 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3412     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3413       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3414       .access = PL1_RW,
3415       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3416     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3417       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3418       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3419       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3420                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3421     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3422       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3423       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3424       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3425                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3426     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3427       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3428       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3429       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3430       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3431     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3432       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3433       .raw_writefn = vmsa_ttbcr_raw_write,
3434       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3435                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3436     REGINFO_SENTINEL
3437 };
3438 
3439 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3440  * qemu tlbs nor adjusting cached masks.
3441  */
3442 static const ARMCPRegInfo ttbcr2_reginfo = {
3443     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3444     .access = PL1_RW, .type = ARM_CP_ALIAS,
3445     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3446                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3447 };
3448 
3449 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3450                                 uint64_t value)
3451 {
3452     env->cp15.c15_ticonfig = value & 0xe7;
3453     /* The OS_TYPE bit in this register changes the reported CPUID! */
3454     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3455         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3456 }
3457 
3458 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3459                                 uint64_t value)
3460 {
3461     env->cp15.c15_threadid = value & 0xffff;
3462 }
3463 
3464 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3465                            uint64_t value)
3466 {
3467     /* Wait-for-interrupt (deprecated) */
3468     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
3469 }
3470 
3471 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3472                                   uint64_t value)
3473 {
3474     /* On OMAP there are registers indicating the max/min index of dcache lines
3475      * containing a dirty line; cache flush operations have to reset these.
3476      */
3477     env->cp15.c15_i_max = 0x000;
3478     env->cp15.c15_i_min = 0xff0;
3479 }
3480 
3481 static const ARMCPRegInfo omap_cp_reginfo[] = {
3482     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3483       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3484       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3485       .resetvalue = 0, },
3486     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3487       .access = PL1_RW, .type = ARM_CP_NOP },
3488     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3489       .access = PL1_RW,
3490       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3491       .writefn = omap_ticonfig_write },
3492     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3493       .access = PL1_RW,
3494       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3495     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3496       .access = PL1_RW, .resetvalue = 0xff0,
3497       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3498     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3499       .access = PL1_RW,
3500       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3501       .writefn = omap_threadid_write },
3502     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3503       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3504       .type = ARM_CP_NO_RAW,
3505       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3506     /* TODO: Peripheral port remap register:
3507      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3508      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3509      * when MMU is off.
3510      */
3511     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3512       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3513       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3514       .writefn = omap_cachemaint_write },
3515     { .name = "C9", .cp = 15, .crn = 9,
3516       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3517       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3518     REGINFO_SENTINEL
3519 };
3520 
3521 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3522                               uint64_t value)
3523 {
3524     env->cp15.c15_cpar = value & 0x3fff;
3525 }
3526 
3527 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3528     { .name = "XSCALE_CPAR",
3529       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3530       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3531       .writefn = xscale_cpar_write, },
3532     { .name = "XSCALE_AUXCR",
3533       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3534       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3535       .resetvalue = 0, },
3536     /* XScale specific cache-lockdown: since we have no cache we NOP these
3537      * and hope the guest does not really rely on cache behaviour.
3538      */
3539     { .name = "XSCALE_LOCK_ICACHE_LINE",
3540       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3541       .access = PL1_W, .type = ARM_CP_NOP },
3542     { .name = "XSCALE_UNLOCK_ICACHE",
3543       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3544       .access = PL1_W, .type = ARM_CP_NOP },
3545     { .name = "XSCALE_DCACHE_LOCK",
3546       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3547       .access = PL1_RW, .type = ARM_CP_NOP },
3548     { .name = "XSCALE_UNLOCK_DCACHE",
3549       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3550       .access = PL1_W, .type = ARM_CP_NOP },
3551     REGINFO_SENTINEL
3552 };
3553 
3554 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3555     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3556      * implementation of this implementation-defined space.
3557      * Ideally this should eventually disappear in favour of actually
3558      * implementing the correct behaviour for all cores.
3559      */
3560     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3561       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3562       .access = PL1_RW,
3563       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3564       .resetvalue = 0 },
3565     REGINFO_SENTINEL
3566 };
3567 
3568 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3569     /* Cache status: RAZ because we have no cache so it's always clean */
3570     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3571       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3572       .resetvalue = 0 },
3573     REGINFO_SENTINEL
3574 };
3575 
3576 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3577     /* We never have a a block transfer operation in progress */
3578     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3579       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3580       .resetvalue = 0 },
3581     /* The cache ops themselves: these all NOP for QEMU */
3582     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3583       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3584     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3585       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3586     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3587       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3588     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3589       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3590     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3591       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3592     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3593       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3594     REGINFO_SENTINEL
3595 };
3596 
3597 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3598     /* The cache test-and-clean instructions always return (1 << 30)
3599      * to indicate that there are no dirty cache lines.
3600      */
3601     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3602       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3603       .resetvalue = (1 << 30) },
3604     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3605       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3606       .resetvalue = (1 << 30) },
3607     REGINFO_SENTINEL
3608 };
3609 
3610 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3611     /* Ignore ReadBuffer accesses */
3612     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3613       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3614       .access = PL1_RW, .resetvalue = 0,
3615       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3616     REGINFO_SENTINEL
3617 };
3618 
3619 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3620 {
3621     ARMCPU *cpu = arm_env_get_cpu(env);
3622     unsigned int cur_el = arm_current_el(env);
3623     bool secure = arm_is_secure(env);
3624 
3625     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3626         return env->cp15.vpidr_el2;
3627     }
3628     return raw_read(env, ri);
3629 }
3630 
3631 static uint64_t mpidr_read_val(CPUARMState *env)
3632 {
3633     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3634     uint64_t mpidr = cpu->mp_affinity;
3635 
3636     if (arm_feature(env, ARM_FEATURE_V7MP)) {
3637         mpidr |= (1U << 31);
3638         /* Cores which are uniprocessor (non-coherent)
3639          * but still implement the MP extensions set
3640          * bit 30. (For instance, Cortex-R5).
3641          */
3642         if (cpu->mp_is_up) {
3643             mpidr |= (1u << 30);
3644         }
3645     }
3646     return mpidr;
3647 }
3648 
3649 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3650 {
3651     unsigned int cur_el = arm_current_el(env);
3652     bool secure = arm_is_secure(env);
3653 
3654     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3655         return env->cp15.vmpidr_el2;
3656     }
3657     return mpidr_read_val(env);
3658 }
3659 
3660 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
3661     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
3662       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
3663       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
3664     REGINFO_SENTINEL
3665 };
3666 
3667 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3668     /* NOP AMAIR0/1 */
3669     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3670       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3671       .access = PL1_RW, .type = ARM_CP_CONST,
3672       .resetvalue = 0 },
3673     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3674     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3675       .access = PL1_RW, .type = ARM_CP_CONST,
3676       .resetvalue = 0 },
3677     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3678       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3679       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3680                              offsetof(CPUARMState, cp15.par_ns)} },
3681     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3682       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3683       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3684                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3685       .writefn = vmsa_ttbr_write, },
3686     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3687       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3688       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3689                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3690       .writefn = vmsa_ttbr_write, },
3691     REGINFO_SENTINEL
3692 };
3693 
3694 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3695 {
3696     return vfp_get_fpcr(env);
3697 }
3698 
3699 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3700                             uint64_t value)
3701 {
3702     vfp_set_fpcr(env, value);
3703 }
3704 
3705 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3706 {
3707     return vfp_get_fpsr(env);
3708 }
3709 
3710 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3711                             uint64_t value)
3712 {
3713     vfp_set_fpsr(env, value);
3714 }
3715 
3716 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3717                                        bool isread)
3718 {
3719     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3720         return CP_ACCESS_TRAP;
3721     }
3722     return CP_ACCESS_OK;
3723 }
3724 
3725 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3726                             uint64_t value)
3727 {
3728     env->daif = value & PSTATE_DAIF;
3729 }
3730 
3731 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3732                                           const ARMCPRegInfo *ri,
3733                                           bool isread)
3734 {
3735     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3736      * SCTLR_EL1.UCI is set.
3737      */
3738     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3739         return CP_ACCESS_TRAP;
3740     }
3741     return CP_ACCESS_OK;
3742 }
3743 
3744 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3745  * Page D4-1736 (DDI0487A.b)
3746  */
3747 
3748 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3749                                       uint64_t value)
3750 {
3751     CPUState *cs = ENV_GET_CPU(env);
3752     bool sec = arm_is_secure_below_el3(env);
3753 
3754     if (sec) {
3755         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3756                                             ARMMMUIdxBit_S1SE1 |
3757                                             ARMMMUIdxBit_S1SE0);
3758     } else {
3759         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3760                                             ARMMMUIdxBit_S12NSE1 |
3761                                             ARMMMUIdxBit_S12NSE0);
3762     }
3763 }
3764 
3765 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3766                                     uint64_t value)
3767 {
3768     CPUState *cs = ENV_GET_CPU(env);
3769 
3770     if (tlb_force_broadcast(env)) {
3771         tlbi_aa64_vmalle1is_write(env, NULL, value);
3772         return;
3773     }
3774 
3775     if (arm_is_secure_below_el3(env)) {
3776         tlb_flush_by_mmuidx(cs,
3777                             ARMMMUIdxBit_S1SE1 |
3778                             ARMMMUIdxBit_S1SE0);
3779     } else {
3780         tlb_flush_by_mmuidx(cs,
3781                             ARMMMUIdxBit_S12NSE1 |
3782                             ARMMMUIdxBit_S12NSE0);
3783     }
3784 }
3785 
3786 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3787                                   uint64_t value)
3788 {
3789     /* Note that the 'ALL' scope must invalidate both stage 1 and
3790      * stage 2 translations, whereas most other scopes only invalidate
3791      * stage 1 translations.
3792      */
3793     ARMCPU *cpu = arm_env_get_cpu(env);
3794     CPUState *cs = CPU(cpu);
3795 
3796     if (arm_is_secure_below_el3(env)) {
3797         tlb_flush_by_mmuidx(cs,
3798                             ARMMMUIdxBit_S1SE1 |
3799                             ARMMMUIdxBit_S1SE0);
3800     } else {
3801         if (arm_feature(env, ARM_FEATURE_EL2)) {
3802             tlb_flush_by_mmuidx(cs,
3803                                 ARMMMUIdxBit_S12NSE1 |
3804                                 ARMMMUIdxBit_S12NSE0 |
3805                                 ARMMMUIdxBit_S2NS);
3806         } else {
3807             tlb_flush_by_mmuidx(cs,
3808                                 ARMMMUIdxBit_S12NSE1 |
3809                                 ARMMMUIdxBit_S12NSE0);
3810         }
3811     }
3812 }
3813 
3814 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3815                                   uint64_t value)
3816 {
3817     ARMCPU *cpu = arm_env_get_cpu(env);
3818     CPUState *cs = CPU(cpu);
3819 
3820     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3821 }
3822 
3823 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3824                                   uint64_t value)
3825 {
3826     ARMCPU *cpu = arm_env_get_cpu(env);
3827     CPUState *cs = CPU(cpu);
3828 
3829     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3830 }
3831 
3832 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3833                                     uint64_t value)
3834 {
3835     /* Note that the 'ALL' scope must invalidate both stage 1 and
3836      * stage 2 translations, whereas most other scopes only invalidate
3837      * stage 1 translations.
3838      */
3839     CPUState *cs = ENV_GET_CPU(env);
3840     bool sec = arm_is_secure_below_el3(env);
3841     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3842 
3843     if (sec) {
3844         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3845                                             ARMMMUIdxBit_S1SE1 |
3846                                             ARMMMUIdxBit_S1SE0);
3847     } else if (has_el2) {
3848         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3849                                             ARMMMUIdxBit_S12NSE1 |
3850                                             ARMMMUIdxBit_S12NSE0 |
3851                                             ARMMMUIdxBit_S2NS);
3852     } else {
3853           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3854                                               ARMMMUIdxBit_S12NSE1 |
3855                                               ARMMMUIdxBit_S12NSE0);
3856     }
3857 }
3858 
3859 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3860                                     uint64_t value)
3861 {
3862     CPUState *cs = ENV_GET_CPU(env);
3863 
3864     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3865 }
3866 
3867 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3868                                     uint64_t value)
3869 {
3870     CPUState *cs = ENV_GET_CPU(env);
3871 
3872     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3873 }
3874 
3875 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3876                                  uint64_t value)
3877 {
3878     /* Invalidate by VA, EL2
3879      * Currently handles both VAE2 and VALE2, since we don't support
3880      * flush-last-level-only.
3881      */
3882     ARMCPU *cpu = arm_env_get_cpu(env);
3883     CPUState *cs = CPU(cpu);
3884     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3885 
3886     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3887 }
3888 
3889 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3890                                  uint64_t value)
3891 {
3892     /* Invalidate by VA, EL3
3893      * Currently handles both VAE3 and VALE3, since we don't support
3894      * flush-last-level-only.
3895      */
3896     ARMCPU *cpu = arm_env_get_cpu(env);
3897     CPUState *cs = CPU(cpu);
3898     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3899 
3900     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3901 }
3902 
3903 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3904                                    uint64_t value)
3905 {
3906     ARMCPU *cpu = arm_env_get_cpu(env);
3907     CPUState *cs = CPU(cpu);
3908     bool sec = arm_is_secure_below_el3(env);
3909     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3910 
3911     if (sec) {
3912         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3913                                                  ARMMMUIdxBit_S1SE1 |
3914                                                  ARMMMUIdxBit_S1SE0);
3915     } else {
3916         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3917                                                  ARMMMUIdxBit_S12NSE1 |
3918                                                  ARMMMUIdxBit_S12NSE0);
3919     }
3920 }
3921 
3922 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3923                                  uint64_t value)
3924 {
3925     /* Invalidate by VA, EL1&0 (AArch64 version).
3926      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3927      * since we don't support flush-for-specific-ASID-only or
3928      * flush-last-level-only.
3929      */
3930     ARMCPU *cpu = arm_env_get_cpu(env);
3931     CPUState *cs = CPU(cpu);
3932     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3933 
3934     if (tlb_force_broadcast(env)) {
3935         tlbi_aa64_vae1is_write(env, NULL, value);
3936         return;
3937     }
3938 
3939     if (arm_is_secure_below_el3(env)) {
3940         tlb_flush_page_by_mmuidx(cs, pageaddr,
3941                                  ARMMMUIdxBit_S1SE1 |
3942                                  ARMMMUIdxBit_S1SE0);
3943     } else {
3944         tlb_flush_page_by_mmuidx(cs, pageaddr,
3945                                  ARMMMUIdxBit_S12NSE1 |
3946                                  ARMMMUIdxBit_S12NSE0);
3947     }
3948 }
3949 
3950 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3951                                    uint64_t value)
3952 {
3953     CPUState *cs = ENV_GET_CPU(env);
3954     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3955 
3956     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3957                                              ARMMMUIdxBit_S1E2);
3958 }
3959 
3960 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3961                                    uint64_t value)
3962 {
3963     CPUState *cs = ENV_GET_CPU(env);
3964     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3965 
3966     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3967                                              ARMMMUIdxBit_S1E3);
3968 }
3969 
3970 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3971                                     uint64_t value)
3972 {
3973     /* Invalidate by IPA. This has to invalidate any structures that
3974      * contain only stage 2 translation information, but does not need
3975      * to apply to structures that contain combined stage 1 and stage 2
3976      * translation information.
3977      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3978      */
3979     ARMCPU *cpu = arm_env_get_cpu(env);
3980     CPUState *cs = CPU(cpu);
3981     uint64_t pageaddr;
3982 
3983     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3984         return;
3985     }
3986 
3987     pageaddr = sextract64(value << 12, 0, 48);
3988 
3989     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3990 }
3991 
3992 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3993                                       uint64_t value)
3994 {
3995     CPUState *cs = ENV_GET_CPU(env);
3996     uint64_t pageaddr;
3997 
3998     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3999         return;
4000     }
4001 
4002     pageaddr = sextract64(value << 12, 0, 48);
4003 
4004     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4005                                              ARMMMUIdxBit_S2NS);
4006 }
4007 
4008 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4009                                       bool isread)
4010 {
4011     /* We don't implement EL2, so the only control on DC ZVA is the
4012      * bit in the SCTLR which can prohibit access for EL0.
4013      */
4014     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4015         return CP_ACCESS_TRAP;
4016     }
4017     return CP_ACCESS_OK;
4018 }
4019 
4020 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4021 {
4022     ARMCPU *cpu = arm_env_get_cpu(env);
4023     int dzp_bit = 1 << 4;
4024 
4025     /* DZP indicates whether DC ZVA access is allowed */
4026     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4027         dzp_bit = 0;
4028     }
4029     return cpu->dcz_blocksize | dzp_bit;
4030 }
4031 
4032 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4033                                     bool isread)
4034 {
4035     if (!(env->pstate & PSTATE_SP)) {
4036         /* Access to SP_EL0 is undefined if it's being used as
4037          * the stack pointer.
4038          */
4039         return CP_ACCESS_TRAP_UNCATEGORIZED;
4040     }
4041     return CP_ACCESS_OK;
4042 }
4043 
4044 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4045 {
4046     return env->pstate & PSTATE_SP;
4047 }
4048 
4049 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4050 {
4051     update_spsel(env, val);
4052 }
4053 
4054 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4055                         uint64_t value)
4056 {
4057     ARMCPU *cpu = arm_env_get_cpu(env);
4058 
4059     if (raw_read(env, ri) == value) {
4060         /* Skip the TLB flush if nothing actually changed; Linux likes
4061          * to do a lot of pointless SCTLR writes.
4062          */
4063         return;
4064     }
4065 
4066     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4067         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4068         value &= ~SCTLR_M;
4069     }
4070 
4071     raw_write(env, ri, value);
4072     /* ??? Lots of these bits are not implemented.  */
4073     /* This may enable/disable the MMU, so do a TLB flush.  */
4074     tlb_flush(CPU(cpu));
4075 }
4076 
4077 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4078                                      bool isread)
4079 {
4080     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4081         return CP_ACCESS_TRAP_FP_EL2;
4082     }
4083     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4084         return CP_ACCESS_TRAP_FP_EL3;
4085     }
4086     return CP_ACCESS_OK;
4087 }
4088 
4089 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4090                        uint64_t value)
4091 {
4092     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4093 }
4094 
4095 static const ARMCPRegInfo v8_cp_reginfo[] = {
4096     /* Minimal set of EL0-visible registers. This will need to be expanded
4097      * significantly for system emulation of AArch64 CPUs.
4098      */
4099     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4100       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4101       .access = PL0_RW, .type = ARM_CP_NZCV },
4102     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4103       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4104       .type = ARM_CP_NO_RAW,
4105       .access = PL0_RW, .accessfn = aa64_daif_access,
4106       .fieldoffset = offsetof(CPUARMState, daif),
4107       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4108     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4109       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4110       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4111       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4112     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4113       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4114       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4115       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4116     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4117       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4118       .access = PL0_R, .type = ARM_CP_NO_RAW,
4119       .readfn = aa64_dczid_read },
4120     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4121       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4122       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4123 #ifndef CONFIG_USER_ONLY
4124       /* Avoid overhead of an access check that always passes in user-mode */
4125       .accessfn = aa64_zva_access,
4126 #endif
4127     },
4128     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4129       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4130       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4131     /* Cache ops: all NOPs since we don't emulate caches */
4132     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4133       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4134       .access = PL1_W, .type = ARM_CP_NOP },
4135     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4136       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4137       .access = PL1_W, .type = ARM_CP_NOP },
4138     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4139       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4140       .access = PL0_W, .type = ARM_CP_NOP,
4141       .accessfn = aa64_cacheop_access },
4142     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4143       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4144       .access = PL1_W, .type = ARM_CP_NOP },
4145     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4146       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4147       .access = PL1_W, .type = ARM_CP_NOP },
4148     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4149       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4150       .access = PL0_W, .type = ARM_CP_NOP,
4151       .accessfn = aa64_cacheop_access },
4152     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4153       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4154       .access = PL1_W, .type = ARM_CP_NOP },
4155     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4156       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4157       .access = PL0_W, .type = ARM_CP_NOP,
4158       .accessfn = aa64_cacheop_access },
4159     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4160       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4161       .access = PL0_W, .type = ARM_CP_NOP,
4162       .accessfn = aa64_cacheop_access },
4163     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4164       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4165       .access = PL1_W, .type = ARM_CP_NOP },
4166     /* TLBI operations */
4167     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4168       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4169       .access = PL1_W, .type = ARM_CP_NO_RAW,
4170       .writefn = tlbi_aa64_vmalle1is_write },
4171     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4172       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4173       .access = PL1_W, .type = ARM_CP_NO_RAW,
4174       .writefn = tlbi_aa64_vae1is_write },
4175     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4176       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4177       .access = PL1_W, .type = ARM_CP_NO_RAW,
4178       .writefn = tlbi_aa64_vmalle1is_write },
4179     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4180       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4181       .access = PL1_W, .type = ARM_CP_NO_RAW,
4182       .writefn = tlbi_aa64_vae1is_write },
4183     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4184       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4185       .access = PL1_W, .type = ARM_CP_NO_RAW,
4186       .writefn = tlbi_aa64_vae1is_write },
4187     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4188       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4189       .access = PL1_W, .type = ARM_CP_NO_RAW,
4190       .writefn = tlbi_aa64_vae1is_write },
4191     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4192       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4193       .access = PL1_W, .type = ARM_CP_NO_RAW,
4194       .writefn = tlbi_aa64_vmalle1_write },
4195     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4196       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4197       .access = PL1_W, .type = ARM_CP_NO_RAW,
4198       .writefn = tlbi_aa64_vae1_write },
4199     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4200       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4201       .access = PL1_W, .type = ARM_CP_NO_RAW,
4202       .writefn = tlbi_aa64_vmalle1_write },
4203     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4204       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4205       .access = PL1_W, .type = ARM_CP_NO_RAW,
4206       .writefn = tlbi_aa64_vae1_write },
4207     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4208       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4209       .access = PL1_W, .type = ARM_CP_NO_RAW,
4210       .writefn = tlbi_aa64_vae1_write },
4211     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4212       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4213       .access = PL1_W, .type = ARM_CP_NO_RAW,
4214       .writefn = tlbi_aa64_vae1_write },
4215     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4216       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4217       .access = PL2_W, .type = ARM_CP_NO_RAW,
4218       .writefn = tlbi_aa64_ipas2e1is_write },
4219     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4220       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4221       .access = PL2_W, .type = ARM_CP_NO_RAW,
4222       .writefn = tlbi_aa64_ipas2e1is_write },
4223     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4224       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4225       .access = PL2_W, .type = ARM_CP_NO_RAW,
4226       .writefn = tlbi_aa64_alle1is_write },
4227     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4228       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4229       .access = PL2_W, .type = ARM_CP_NO_RAW,
4230       .writefn = tlbi_aa64_alle1is_write },
4231     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4232       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4233       .access = PL2_W, .type = ARM_CP_NO_RAW,
4234       .writefn = tlbi_aa64_ipas2e1_write },
4235     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4236       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4237       .access = PL2_W, .type = ARM_CP_NO_RAW,
4238       .writefn = tlbi_aa64_ipas2e1_write },
4239     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4240       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4241       .access = PL2_W, .type = ARM_CP_NO_RAW,
4242       .writefn = tlbi_aa64_alle1_write },
4243     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4244       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4245       .access = PL2_W, .type = ARM_CP_NO_RAW,
4246       .writefn = tlbi_aa64_alle1is_write },
4247 #ifndef CONFIG_USER_ONLY
4248     /* 64 bit address translation operations */
4249     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4250       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4251       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4252     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4253       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4254       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4255     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4256       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4257       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4258     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4259       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4260       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4261     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4262       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4263       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4264     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4265       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4266       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4267     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4268       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4269       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4270     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4271       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4272       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4273     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4274     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4275       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4276       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4277     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4278       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4279       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4280     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4281       .type = ARM_CP_ALIAS,
4282       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4283       .access = PL1_RW, .resetvalue = 0,
4284       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4285       .writefn = par_write },
4286 #endif
4287     /* TLB invalidate last level of translation table walk */
4288     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4289       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4290     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4291       .type = ARM_CP_NO_RAW, .access = PL1_W,
4292       .writefn = tlbimvaa_is_write },
4293     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4294       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4295     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4296       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4297     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4298       .type = ARM_CP_NO_RAW, .access = PL2_W,
4299       .writefn = tlbimva_hyp_write },
4300     { .name = "TLBIMVALHIS",
4301       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4302       .type = ARM_CP_NO_RAW, .access = PL2_W,
4303       .writefn = tlbimva_hyp_is_write },
4304     { .name = "TLBIIPAS2",
4305       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4306       .type = ARM_CP_NO_RAW, .access = PL2_W,
4307       .writefn = tlbiipas2_write },
4308     { .name = "TLBIIPAS2IS",
4309       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4310       .type = ARM_CP_NO_RAW, .access = PL2_W,
4311       .writefn = tlbiipas2_is_write },
4312     { .name = "TLBIIPAS2L",
4313       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4314       .type = ARM_CP_NO_RAW, .access = PL2_W,
4315       .writefn = tlbiipas2_write },
4316     { .name = "TLBIIPAS2LIS",
4317       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4318       .type = ARM_CP_NO_RAW, .access = PL2_W,
4319       .writefn = tlbiipas2_is_write },
4320     /* 32 bit cache operations */
4321     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4322       .type = ARM_CP_NOP, .access = PL1_W },
4323     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4324       .type = ARM_CP_NOP, .access = PL1_W },
4325     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4326       .type = ARM_CP_NOP, .access = PL1_W },
4327     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4328       .type = ARM_CP_NOP, .access = PL1_W },
4329     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4330       .type = ARM_CP_NOP, .access = PL1_W },
4331     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4332       .type = ARM_CP_NOP, .access = PL1_W },
4333     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4334       .type = ARM_CP_NOP, .access = PL1_W },
4335     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4336       .type = ARM_CP_NOP, .access = PL1_W },
4337     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4338       .type = ARM_CP_NOP, .access = PL1_W },
4339     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4340       .type = ARM_CP_NOP, .access = PL1_W },
4341     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4342       .type = ARM_CP_NOP, .access = PL1_W },
4343     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4344       .type = ARM_CP_NOP, .access = PL1_W },
4345     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4346       .type = ARM_CP_NOP, .access = PL1_W },
4347     /* MMU Domain access control / MPU write buffer control */
4348     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4349       .access = PL1_RW, .resetvalue = 0,
4350       .writefn = dacr_write, .raw_writefn = raw_write,
4351       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4352                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4353     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4354       .type = ARM_CP_ALIAS,
4355       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4356       .access = PL1_RW,
4357       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4358     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4359       .type = ARM_CP_ALIAS,
4360       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4361       .access = PL1_RW,
4362       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4363     /* We rely on the access checks not allowing the guest to write to the
4364      * state field when SPSel indicates that it's being used as the stack
4365      * pointer.
4366      */
4367     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4368       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4369       .access = PL1_RW, .accessfn = sp_el0_access,
4370       .type = ARM_CP_ALIAS,
4371       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4372     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4373       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4374       .access = PL2_RW, .type = ARM_CP_ALIAS,
4375       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4376     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4377       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4378       .type = ARM_CP_NO_RAW,
4379       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4380     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4381       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4382       .type = ARM_CP_ALIAS,
4383       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4384       .access = PL2_RW, .accessfn = fpexc32_access },
4385     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4386       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4387       .access = PL2_RW, .resetvalue = 0,
4388       .writefn = dacr_write, .raw_writefn = raw_write,
4389       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4390     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4391       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4392       .access = PL2_RW, .resetvalue = 0,
4393       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4394     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4395       .type = ARM_CP_ALIAS,
4396       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4397       .access = PL2_RW,
4398       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4399     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4400       .type = ARM_CP_ALIAS,
4401       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4402       .access = PL2_RW,
4403       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4404     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4405       .type = ARM_CP_ALIAS,
4406       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4407       .access = PL2_RW,
4408       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4409     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4410       .type = ARM_CP_ALIAS,
4411       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4412       .access = PL2_RW,
4413       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4414     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4415       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4416       .resetvalue = 0,
4417       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4418     { .name = "SDCR", .type = ARM_CP_ALIAS,
4419       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4420       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4421       .writefn = sdcr_write,
4422       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4423     REGINFO_SENTINEL
4424 };
4425 
4426 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
4427 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4428     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4429       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4430       .access = PL2_RW,
4431       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4432     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4433       .type = ARM_CP_NO_RAW,
4434       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4435       .access = PL2_RW,
4436       .type = ARM_CP_CONST, .resetvalue = 0 },
4437     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4438       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4439       .access = PL2_RW,
4440       .type = ARM_CP_CONST, .resetvalue = 0 },
4441     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4442       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4443       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4444     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4445       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4446       .access = PL2_RW, .type = ARM_CP_CONST,
4447       .resetvalue = 0 },
4448     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4449       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4450       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4451     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4452       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4453       .access = PL2_RW, .type = ARM_CP_CONST,
4454       .resetvalue = 0 },
4455     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4456       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4457       .access = PL2_RW, .type = ARM_CP_CONST,
4458       .resetvalue = 0 },
4459     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4460       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4461       .access = PL2_RW, .type = ARM_CP_CONST,
4462       .resetvalue = 0 },
4463     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4464       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4465       .access = PL2_RW, .type = ARM_CP_CONST,
4466       .resetvalue = 0 },
4467     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4468       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4469       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4470     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4471       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4472       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4473       .type = ARM_CP_CONST, .resetvalue = 0 },
4474     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4475       .cp = 15, .opc1 = 6, .crm = 2,
4476       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4477       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4478     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4479       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4480       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4481     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4482       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4483       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4484     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4485       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4486       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4487     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4488       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4489       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4490     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4491       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4492       .resetvalue = 0 },
4493     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4494       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4495       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4496     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4497       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4498       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4499     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4500       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4501       .resetvalue = 0 },
4502     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4503       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4504       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4505     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4506       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4507       .resetvalue = 0 },
4508     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4509       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4510       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4511     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4512       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4513       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4514     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4515       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4516       .access = PL2_RW, .accessfn = access_tda,
4517       .type = ARM_CP_CONST, .resetvalue = 0 },
4518     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4519       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4520       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4521       .type = ARM_CP_CONST, .resetvalue = 0 },
4522     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4523       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4524       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4525     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4526       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4527       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4528     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4529       .type = ARM_CP_CONST,
4530       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4531       .access = PL2_RW, .resetvalue = 0 },
4532     REGINFO_SENTINEL
4533 };
4534 
4535 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4536 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4537     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4538       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4539       .access = PL2_RW,
4540       .type = ARM_CP_CONST, .resetvalue = 0 },
4541     REGINFO_SENTINEL
4542 };
4543 
4544 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4545 {
4546     ARMCPU *cpu = arm_env_get_cpu(env);
4547     uint64_t valid_mask = HCR_MASK;
4548 
4549     if (arm_feature(env, ARM_FEATURE_EL3)) {
4550         valid_mask &= ~HCR_HCD;
4551     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4552         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4553          * However, if we're using the SMC PSCI conduit then QEMU is
4554          * effectively acting like EL3 firmware and so the guest at
4555          * EL2 should retain the ability to prevent EL1 from being
4556          * able to make SMC calls into the ersatz firmware, so in
4557          * that case HCR.TSC should be read/write.
4558          */
4559         valid_mask &= ~HCR_TSC;
4560     }
4561     if (cpu_isar_feature(aa64_lor, cpu)) {
4562         valid_mask |= HCR_TLOR;
4563     }
4564     if (cpu_isar_feature(aa64_pauth, cpu)) {
4565         valid_mask |= HCR_API | HCR_APK;
4566     }
4567 
4568     /* Clear RES0 bits.  */
4569     value &= valid_mask;
4570 
4571     /* These bits change the MMU setup:
4572      * HCR_VM enables stage 2 translation
4573      * HCR_PTW forbids certain page-table setups
4574      * HCR_DC Disables stage1 and enables stage2 translation
4575      */
4576     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4577         tlb_flush(CPU(cpu));
4578     }
4579     env->cp15.hcr_el2 = value;
4580 
4581     /*
4582      * Updates to VI and VF require us to update the status of
4583      * virtual interrupts, which are the logical OR of these bits
4584      * and the state of the input lines from the GIC. (This requires
4585      * that we have the iothread lock, which is done by marking the
4586      * reginfo structs as ARM_CP_IO.)
4587      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4588      * possible for it to be taken immediately, because VIRQ and
4589      * VFIQ are masked unless running at EL0 or EL1, and HCR
4590      * can only be written at EL2.
4591      */
4592     g_assert(qemu_mutex_iothread_locked());
4593     arm_cpu_update_virq(cpu);
4594     arm_cpu_update_vfiq(cpu);
4595 }
4596 
4597 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4598                           uint64_t value)
4599 {
4600     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4601     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4602     hcr_write(env, NULL, value);
4603 }
4604 
4605 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4606                          uint64_t value)
4607 {
4608     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4609     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4610     hcr_write(env, NULL, value);
4611 }
4612 
4613 /*
4614  * Return the effective value of HCR_EL2.
4615  * Bits that are not included here:
4616  * RW       (read from SCR_EL3.RW as needed)
4617  */
4618 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4619 {
4620     uint64_t ret = env->cp15.hcr_el2;
4621 
4622     if (arm_is_secure_below_el3(env)) {
4623         /*
4624          * "This register has no effect if EL2 is not enabled in the
4625          * current Security state".  This is ARMv8.4-SecEL2 speak for
4626          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4627          *
4628          * Prior to that, the language was "In an implementation that
4629          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4630          * as if this field is 0 for all purposes other than a direct
4631          * read or write access of HCR_EL2".  With lots of enumeration
4632          * on a per-field basis.  In current QEMU, this is condition
4633          * is arm_is_secure_below_el3.
4634          *
4635          * Since the v8.4 language applies to the entire register, and
4636          * appears to be backward compatible, use that.
4637          */
4638         ret = 0;
4639     } else if (ret & HCR_TGE) {
4640         /* These bits are up-to-date as of ARMv8.4.  */
4641         if (ret & HCR_E2H) {
4642             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4643                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4644                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4645                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4646         } else {
4647             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4648         }
4649         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4650                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4651                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4652                  HCR_TLOR);
4653     }
4654 
4655     return ret;
4656 }
4657 
4658 static const ARMCPRegInfo el2_cp_reginfo[] = {
4659     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4660       .type = ARM_CP_IO,
4661       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4662       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4663       .writefn = hcr_write },
4664     { .name = "HCR", .state = ARM_CP_STATE_AA32,
4665       .type = ARM_CP_ALIAS | ARM_CP_IO,
4666       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4667       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4668       .writefn = hcr_writelow },
4669     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4670       .type = ARM_CP_ALIAS,
4671       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4672       .access = PL2_RW,
4673       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4674     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4675       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4676       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4677     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4678       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4679       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4680     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4681       .type = ARM_CP_ALIAS,
4682       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4683       .access = PL2_RW,
4684       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4685     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4686       .type = ARM_CP_ALIAS,
4687       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4688       .access = PL2_RW,
4689       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4690     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4691       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4692       .access = PL2_RW, .writefn = vbar_write,
4693       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4694       .resetvalue = 0 },
4695     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4696       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4697       .access = PL3_RW, .type = ARM_CP_ALIAS,
4698       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4699     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4700       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4701       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4702       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4703     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4704       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4705       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4706       .resetvalue = 0 },
4707     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4708       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4709       .access = PL2_RW, .type = ARM_CP_ALIAS,
4710       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4711     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4712       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4713       .access = PL2_RW, .type = ARM_CP_CONST,
4714       .resetvalue = 0 },
4715     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4716     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4717       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4718       .access = PL2_RW, .type = ARM_CP_CONST,
4719       .resetvalue = 0 },
4720     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4721       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4722       .access = PL2_RW, .type = ARM_CP_CONST,
4723       .resetvalue = 0 },
4724     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4725       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4726       .access = PL2_RW, .type = ARM_CP_CONST,
4727       .resetvalue = 0 },
4728     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4729       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4730       .access = PL2_RW,
4731       /* no .writefn needed as this can't cause an ASID change;
4732        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4733        */
4734       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4735     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4736       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4737       .type = ARM_CP_ALIAS,
4738       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4739       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4740     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4741       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4742       .access = PL2_RW,
4743       /* no .writefn needed as this can't cause an ASID change;
4744        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4745        */
4746       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4747     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4748       .cp = 15, .opc1 = 6, .crm = 2,
4749       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4750       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4751       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4752       .writefn = vttbr_write },
4753     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4754       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4755       .access = PL2_RW, .writefn = vttbr_write,
4756       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4757     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4758       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4759       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4760       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4761     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4762       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4763       .access = PL2_RW, .resetvalue = 0,
4764       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4765     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4766       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4767       .access = PL2_RW, .resetvalue = 0,
4768       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4769     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4770       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4771       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4772     { .name = "TLBIALLNSNH",
4773       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4774       .type = ARM_CP_NO_RAW, .access = PL2_W,
4775       .writefn = tlbiall_nsnh_write },
4776     { .name = "TLBIALLNSNHIS",
4777       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4778       .type = ARM_CP_NO_RAW, .access = PL2_W,
4779       .writefn = tlbiall_nsnh_is_write },
4780     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4781       .type = ARM_CP_NO_RAW, .access = PL2_W,
4782       .writefn = tlbiall_hyp_write },
4783     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4784       .type = ARM_CP_NO_RAW, .access = PL2_W,
4785       .writefn = tlbiall_hyp_is_write },
4786     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4787       .type = ARM_CP_NO_RAW, .access = PL2_W,
4788       .writefn = tlbimva_hyp_write },
4789     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4790       .type = ARM_CP_NO_RAW, .access = PL2_W,
4791       .writefn = tlbimva_hyp_is_write },
4792     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4793       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4794       .type = ARM_CP_NO_RAW, .access = PL2_W,
4795       .writefn = tlbi_aa64_alle2_write },
4796     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4797       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4798       .type = ARM_CP_NO_RAW, .access = PL2_W,
4799       .writefn = tlbi_aa64_vae2_write },
4800     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4801       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4802       .access = PL2_W, .type = ARM_CP_NO_RAW,
4803       .writefn = tlbi_aa64_vae2_write },
4804     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4805       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4806       .access = PL2_W, .type = ARM_CP_NO_RAW,
4807       .writefn = tlbi_aa64_alle2is_write },
4808     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4809       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4810       .type = ARM_CP_NO_RAW, .access = PL2_W,
4811       .writefn = tlbi_aa64_vae2is_write },
4812     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4813       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4814       .access = PL2_W, .type = ARM_CP_NO_RAW,
4815       .writefn = tlbi_aa64_vae2is_write },
4816 #ifndef CONFIG_USER_ONLY
4817     /* Unlike the other EL2-related AT operations, these must
4818      * UNDEF from EL3 if EL2 is not implemented, which is why we
4819      * define them here rather than with the rest of the AT ops.
4820      */
4821     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4822       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4823       .access = PL2_W, .accessfn = at_s1e2_access,
4824       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4825     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4826       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4827       .access = PL2_W, .accessfn = at_s1e2_access,
4828       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4829     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4830      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4831      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4832      * to behave as if SCR.NS was 1.
4833      */
4834     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4835       .access = PL2_W,
4836       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4837     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4838       .access = PL2_W,
4839       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4840     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4841       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4842       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4843        * reset values as IMPDEF. We choose to reset to 3 to comply with
4844        * both ARMv7 and ARMv8.
4845        */
4846       .access = PL2_RW, .resetvalue = 3,
4847       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4848     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4849       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4850       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4851       .writefn = gt_cntvoff_write,
4852       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4853     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4854       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4855       .writefn = gt_cntvoff_write,
4856       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4857     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4858       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4859       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4860       .type = ARM_CP_IO, .access = PL2_RW,
4861       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4862     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4863       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4864       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4865       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4866     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4867       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4868       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4869       .resetfn = gt_hyp_timer_reset,
4870       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4871     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4872       .type = ARM_CP_IO,
4873       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4874       .access = PL2_RW,
4875       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4876       .resetvalue = 0,
4877       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4878 #endif
4879     /* The only field of MDCR_EL2 that has a defined architectural reset value
4880      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4881      * don't implement any PMU event counters, so using zero as a reset
4882      * value for MDCR_EL2 is okay
4883      */
4884     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4885       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4886       .access = PL2_RW, .resetvalue = 0,
4887       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4888     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4889       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4890       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4891       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4892     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4893       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4894       .access = PL2_RW,
4895       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4896     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4897       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4898       .access = PL2_RW,
4899       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4900     REGINFO_SENTINEL
4901 };
4902 
4903 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4904     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4905       .type = ARM_CP_ALIAS | ARM_CP_IO,
4906       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4907       .access = PL2_RW,
4908       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4909       .writefn = hcr_writehigh },
4910     REGINFO_SENTINEL
4911 };
4912 
4913 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4914                                    bool isread)
4915 {
4916     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4917      * At Secure EL1 it traps to EL3.
4918      */
4919     if (arm_current_el(env) == 3) {
4920         return CP_ACCESS_OK;
4921     }
4922     if (arm_is_secure_below_el3(env)) {
4923         return CP_ACCESS_TRAP_EL3;
4924     }
4925     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4926     if (isread) {
4927         return CP_ACCESS_OK;
4928     }
4929     return CP_ACCESS_TRAP_UNCATEGORIZED;
4930 }
4931 
4932 static const ARMCPRegInfo el3_cp_reginfo[] = {
4933     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4934       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4935       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4936       .resetvalue = 0, .writefn = scr_write },
4937     { .name = "SCR",  .type = ARM_CP_ALIAS,
4938       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4939       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4940       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4941       .writefn = scr_write },
4942     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4943       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4944       .access = PL3_RW, .resetvalue = 0,
4945       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4946     { .name = "SDER",
4947       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4948       .access = PL3_RW, .resetvalue = 0,
4949       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4950     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4951       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4952       .writefn = vbar_write, .resetvalue = 0,
4953       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4954     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4955       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4956       .access = PL3_RW, .resetvalue = 0,
4957       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4958     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4959       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4960       .access = PL3_RW,
4961       /* no .writefn needed as this can't cause an ASID change;
4962        * we must provide a .raw_writefn and .resetfn because we handle
4963        * reset and migration for the AArch32 TTBCR(S), which might be
4964        * using mask and base_mask.
4965        */
4966       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4967       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4968     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4969       .type = ARM_CP_ALIAS,
4970       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4971       .access = PL3_RW,
4972       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4973     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4974       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4975       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4976     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4977       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4978       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4979     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4980       .type = ARM_CP_ALIAS,
4981       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4982       .access = PL3_RW,
4983       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4984     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4985       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4986       .access = PL3_RW, .writefn = vbar_write,
4987       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4988       .resetvalue = 0 },
4989     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4990       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4991       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4992       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4993     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4994       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4995       .access = PL3_RW, .resetvalue = 0,
4996       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4997     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4998       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4999       .access = PL3_RW, .type = ARM_CP_CONST,
5000       .resetvalue = 0 },
5001     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5002       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5003       .access = PL3_RW, .type = ARM_CP_CONST,
5004       .resetvalue = 0 },
5005     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5006       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5007       .access = PL3_RW, .type = ARM_CP_CONST,
5008       .resetvalue = 0 },
5009     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5010       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5011       .access = PL3_W, .type = ARM_CP_NO_RAW,
5012       .writefn = tlbi_aa64_alle3is_write },
5013     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5014       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5015       .access = PL3_W, .type = ARM_CP_NO_RAW,
5016       .writefn = tlbi_aa64_vae3is_write },
5017     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5018       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5019       .access = PL3_W, .type = ARM_CP_NO_RAW,
5020       .writefn = tlbi_aa64_vae3is_write },
5021     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5022       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5023       .access = PL3_W, .type = ARM_CP_NO_RAW,
5024       .writefn = tlbi_aa64_alle3_write },
5025     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5026       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5027       .access = PL3_W, .type = ARM_CP_NO_RAW,
5028       .writefn = tlbi_aa64_vae3_write },
5029     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5030       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5031       .access = PL3_W, .type = ARM_CP_NO_RAW,
5032       .writefn = tlbi_aa64_vae3_write },
5033     REGINFO_SENTINEL
5034 };
5035 
5036 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5037                                      bool isread)
5038 {
5039     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5040      * but the AArch32 CTR has its own reginfo struct)
5041      */
5042     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5043         return CP_ACCESS_TRAP;
5044     }
5045     return CP_ACCESS_OK;
5046 }
5047 
5048 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5049                         uint64_t value)
5050 {
5051     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5052      * read via a bit in OSLSR_EL1.
5053      */
5054     int oslock;
5055 
5056     if (ri->state == ARM_CP_STATE_AA32) {
5057         oslock = (value == 0xC5ACCE55);
5058     } else {
5059         oslock = value & 1;
5060     }
5061 
5062     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5063 }
5064 
5065 static const ARMCPRegInfo debug_cp_reginfo[] = {
5066     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5067      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5068      * unlike DBGDRAR it is never accessible from EL0.
5069      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5070      * accessor.
5071      */
5072     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5073       .access = PL0_R, .accessfn = access_tdra,
5074       .type = ARM_CP_CONST, .resetvalue = 0 },
5075     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5076       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5077       .access = PL1_R, .accessfn = access_tdra,
5078       .type = ARM_CP_CONST, .resetvalue = 0 },
5079     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5080       .access = PL0_R, .accessfn = access_tdra,
5081       .type = ARM_CP_CONST, .resetvalue = 0 },
5082     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5083     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5084       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5085       .access = PL1_RW, .accessfn = access_tda,
5086       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5087       .resetvalue = 0 },
5088     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5089      * We don't implement the configurable EL0 access.
5090      */
5091     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5092       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5093       .type = ARM_CP_ALIAS,
5094       .access = PL1_R, .accessfn = access_tda,
5095       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5096     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5097       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5098       .access = PL1_W, .type = ARM_CP_NO_RAW,
5099       .accessfn = access_tdosa,
5100       .writefn = oslar_write },
5101     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5102       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5103       .access = PL1_R, .resetvalue = 10,
5104       .accessfn = access_tdosa,
5105       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5106     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5107     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5108       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5109       .access = PL1_RW, .accessfn = access_tdosa,
5110       .type = ARM_CP_NOP },
5111     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5112      * implement vector catch debug events yet.
5113      */
5114     { .name = "DBGVCR",
5115       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5116       .access = PL1_RW, .accessfn = access_tda,
5117       .type = ARM_CP_NOP },
5118     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5119      * to save and restore a 32-bit guest's DBGVCR)
5120      */
5121     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5122       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5123       .access = PL2_RW, .accessfn = access_tda,
5124       .type = ARM_CP_NOP },
5125     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5126      * Channel but Linux may try to access this register. The 32-bit
5127      * alias is DBGDCCINT.
5128      */
5129     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5130       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5131       .access = PL1_RW, .accessfn = access_tda,
5132       .type = ARM_CP_NOP },
5133     REGINFO_SENTINEL
5134 };
5135 
5136 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5137     /* 64 bit access versions of the (dummy) debug registers */
5138     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5139       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5140     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5141       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5142     REGINFO_SENTINEL
5143 };
5144 
5145 /* Return the exception level to which exceptions should be taken
5146  * via SVEAccessTrap.  If an exception should be routed through
5147  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5148  * take care of raising that exception.
5149  * C.f. the ARM pseudocode function CheckSVEEnabled.
5150  */
5151 int sve_exception_el(CPUARMState *env, int el)
5152 {
5153 #ifndef CONFIG_USER_ONLY
5154     if (el <= 1) {
5155         bool disabled = false;
5156 
5157         /* The CPACR.ZEN controls traps to EL1:
5158          * 0, 2 : trap EL0 and EL1 accesses
5159          * 1    : trap only EL0 accesses
5160          * 3    : trap no accesses
5161          */
5162         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5163             disabled = true;
5164         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5165             disabled = el == 0;
5166         }
5167         if (disabled) {
5168             /* route_to_el2 */
5169             return (arm_feature(env, ARM_FEATURE_EL2)
5170                     && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5171         }
5172 
5173         /* Check CPACR.FPEN.  */
5174         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5175             disabled = true;
5176         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5177             disabled = el == 0;
5178         }
5179         if (disabled) {
5180             return 0;
5181         }
5182     }
5183 
5184     /* CPTR_EL2.  Since TZ and TFP are positive,
5185      * they will be zero when EL2 is not present.
5186      */
5187     if (el <= 2 && !arm_is_secure_below_el3(env)) {
5188         if (env->cp15.cptr_el[2] & CPTR_TZ) {
5189             return 2;
5190         }
5191         if (env->cp15.cptr_el[2] & CPTR_TFP) {
5192             return 0;
5193         }
5194     }
5195 
5196     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
5197     if (arm_feature(env, ARM_FEATURE_EL3)
5198         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5199         return 3;
5200     }
5201 #endif
5202     return 0;
5203 }
5204 
5205 /*
5206  * Given that SVE is enabled, return the vector length for EL.
5207  */
5208 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5209 {
5210     ARMCPU *cpu = arm_env_get_cpu(env);
5211     uint32_t zcr_len = cpu->sve_max_vq - 1;
5212 
5213     if (el <= 1) {
5214         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5215     }
5216     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5217         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5218     }
5219     if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5220         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5221     }
5222     return zcr_len;
5223 }
5224 
5225 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5226                       uint64_t value)
5227 {
5228     int cur_el = arm_current_el(env);
5229     int old_len = sve_zcr_len_for_el(env, cur_el);
5230     int new_len;
5231 
5232     /* Bits other than [3:0] are RAZ/WI.  */
5233     raw_write(env, ri, value & 0xf);
5234 
5235     /*
5236      * Because we arrived here, we know both FP and SVE are enabled;
5237      * otherwise we would have trapped access to the ZCR_ELn register.
5238      */
5239     new_len = sve_zcr_len_for_el(env, cur_el);
5240     if (new_len < old_len) {
5241         aarch64_sve_narrow_vq(env, new_len + 1);
5242     }
5243 }
5244 
5245 static const ARMCPRegInfo zcr_el1_reginfo = {
5246     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5247     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5248     .access = PL1_RW, .type = ARM_CP_SVE,
5249     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5250     .writefn = zcr_write, .raw_writefn = raw_write
5251 };
5252 
5253 static const ARMCPRegInfo zcr_el2_reginfo = {
5254     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5255     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5256     .access = PL2_RW, .type = ARM_CP_SVE,
5257     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5258     .writefn = zcr_write, .raw_writefn = raw_write
5259 };
5260 
5261 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5262     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5263     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5264     .access = PL2_RW, .type = ARM_CP_SVE,
5265     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5266 };
5267 
5268 static const ARMCPRegInfo zcr_el3_reginfo = {
5269     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5270     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5271     .access = PL3_RW, .type = ARM_CP_SVE,
5272     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5273     .writefn = zcr_write, .raw_writefn = raw_write
5274 };
5275 
5276 void hw_watchpoint_update(ARMCPU *cpu, int n)
5277 {
5278     CPUARMState *env = &cpu->env;
5279     vaddr len = 0;
5280     vaddr wvr = env->cp15.dbgwvr[n];
5281     uint64_t wcr = env->cp15.dbgwcr[n];
5282     int mask;
5283     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5284 
5285     if (env->cpu_watchpoint[n]) {
5286         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5287         env->cpu_watchpoint[n] = NULL;
5288     }
5289 
5290     if (!extract64(wcr, 0, 1)) {
5291         /* E bit clear : watchpoint disabled */
5292         return;
5293     }
5294 
5295     switch (extract64(wcr, 3, 2)) {
5296     case 0:
5297         /* LSC 00 is reserved and must behave as if the wp is disabled */
5298         return;
5299     case 1:
5300         flags |= BP_MEM_READ;
5301         break;
5302     case 2:
5303         flags |= BP_MEM_WRITE;
5304         break;
5305     case 3:
5306         flags |= BP_MEM_ACCESS;
5307         break;
5308     }
5309 
5310     /* Attempts to use both MASK and BAS fields simultaneously are
5311      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5312      * thus generating a watchpoint for every byte in the masked region.
5313      */
5314     mask = extract64(wcr, 24, 4);
5315     if (mask == 1 || mask == 2) {
5316         /* Reserved values of MASK; we must act as if the mask value was
5317          * some non-reserved value, or as if the watchpoint were disabled.
5318          * We choose the latter.
5319          */
5320         return;
5321     } else if (mask) {
5322         /* Watchpoint covers an aligned area up to 2GB in size */
5323         len = 1ULL << mask;
5324         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5325          * whether the watchpoint fires when the unmasked bits match; we opt
5326          * to generate the exceptions.
5327          */
5328         wvr &= ~(len - 1);
5329     } else {
5330         /* Watchpoint covers bytes defined by the byte address select bits */
5331         int bas = extract64(wcr, 5, 8);
5332         int basstart;
5333 
5334         if (bas == 0) {
5335             /* This must act as if the watchpoint is disabled */
5336             return;
5337         }
5338 
5339         if (extract64(wvr, 2, 1)) {
5340             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5341              * ignored, and BAS[3:0] define which bytes to watch.
5342              */
5343             bas &= 0xf;
5344         }
5345         /* The BAS bits are supposed to be programmed to indicate a contiguous
5346          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5347          * we fire for each byte in the word/doubleword addressed by the WVR.
5348          * We choose to ignore any non-zero bits after the first range of 1s.
5349          */
5350         basstart = ctz32(bas);
5351         len = cto32(bas >> basstart);
5352         wvr += basstart;
5353     }
5354 
5355     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5356                           &env->cpu_watchpoint[n]);
5357 }
5358 
5359 void hw_watchpoint_update_all(ARMCPU *cpu)
5360 {
5361     int i;
5362     CPUARMState *env = &cpu->env;
5363 
5364     /* Completely clear out existing QEMU watchpoints and our array, to
5365      * avoid possible stale entries following migration load.
5366      */
5367     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5368     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5369 
5370     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5371         hw_watchpoint_update(cpu, i);
5372     }
5373 }
5374 
5375 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5376                          uint64_t value)
5377 {
5378     ARMCPU *cpu = arm_env_get_cpu(env);
5379     int i = ri->crm;
5380 
5381     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5382      * register reads and behaves as if values written are sign extended.
5383      * Bits [1:0] are RES0.
5384      */
5385     value = sextract64(value, 0, 49) & ~3ULL;
5386 
5387     raw_write(env, ri, value);
5388     hw_watchpoint_update(cpu, i);
5389 }
5390 
5391 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5392                          uint64_t value)
5393 {
5394     ARMCPU *cpu = arm_env_get_cpu(env);
5395     int i = ri->crm;
5396 
5397     raw_write(env, ri, value);
5398     hw_watchpoint_update(cpu, i);
5399 }
5400 
5401 void hw_breakpoint_update(ARMCPU *cpu, int n)
5402 {
5403     CPUARMState *env = &cpu->env;
5404     uint64_t bvr = env->cp15.dbgbvr[n];
5405     uint64_t bcr = env->cp15.dbgbcr[n];
5406     vaddr addr;
5407     int bt;
5408     int flags = BP_CPU;
5409 
5410     if (env->cpu_breakpoint[n]) {
5411         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5412         env->cpu_breakpoint[n] = NULL;
5413     }
5414 
5415     if (!extract64(bcr, 0, 1)) {
5416         /* E bit clear : watchpoint disabled */
5417         return;
5418     }
5419 
5420     bt = extract64(bcr, 20, 4);
5421 
5422     switch (bt) {
5423     case 4: /* unlinked address mismatch (reserved if AArch64) */
5424     case 5: /* linked address mismatch (reserved if AArch64) */
5425         qemu_log_mask(LOG_UNIMP,
5426                       "arm: address mismatch breakpoint types not implemented\n");
5427         return;
5428     case 0: /* unlinked address match */
5429     case 1: /* linked address match */
5430     {
5431         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5432          * we behave as if the register was sign extended. Bits [1:0] are
5433          * RES0. The BAS field is used to allow setting breakpoints on 16
5434          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5435          * a bp will fire if the addresses covered by the bp and the addresses
5436          * covered by the insn overlap but the insn doesn't start at the
5437          * start of the bp address range. We choose to require the insn and
5438          * the bp to have the same address. The constraints on writing to
5439          * BAS enforced in dbgbcr_write mean we have only four cases:
5440          *  0b0000  => no breakpoint
5441          *  0b0011  => breakpoint on addr
5442          *  0b1100  => breakpoint on addr + 2
5443          *  0b1111  => breakpoint on addr
5444          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5445          */
5446         int bas = extract64(bcr, 5, 4);
5447         addr = sextract64(bvr, 0, 49) & ~3ULL;
5448         if (bas == 0) {
5449             return;
5450         }
5451         if (bas == 0xc) {
5452             addr += 2;
5453         }
5454         break;
5455     }
5456     case 2: /* unlinked context ID match */
5457     case 8: /* unlinked VMID match (reserved if no EL2) */
5458     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5459         qemu_log_mask(LOG_UNIMP,
5460                       "arm: unlinked context breakpoint types not implemented\n");
5461         return;
5462     case 9: /* linked VMID match (reserved if no EL2) */
5463     case 11: /* linked context ID and VMID match (reserved if no EL2) */
5464     case 3: /* linked context ID match */
5465     default:
5466         /* We must generate no events for Linked context matches (unless
5467          * they are linked to by some other bp/wp, which is handled in
5468          * updates for the linking bp/wp). We choose to also generate no events
5469          * for reserved values.
5470          */
5471         return;
5472     }
5473 
5474     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5475 }
5476 
5477 void hw_breakpoint_update_all(ARMCPU *cpu)
5478 {
5479     int i;
5480     CPUARMState *env = &cpu->env;
5481 
5482     /* Completely clear out existing QEMU breakpoints and our array, to
5483      * avoid possible stale entries following migration load.
5484      */
5485     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5486     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5487 
5488     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5489         hw_breakpoint_update(cpu, i);
5490     }
5491 }
5492 
5493 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5494                          uint64_t value)
5495 {
5496     ARMCPU *cpu = arm_env_get_cpu(env);
5497     int i = ri->crm;
5498 
5499     raw_write(env, ri, value);
5500     hw_breakpoint_update(cpu, i);
5501 }
5502 
5503 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5504                          uint64_t value)
5505 {
5506     ARMCPU *cpu = arm_env_get_cpu(env);
5507     int i = ri->crm;
5508 
5509     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5510      * copy of BAS[0].
5511      */
5512     value = deposit64(value, 6, 1, extract64(value, 5, 1));
5513     value = deposit64(value, 8, 1, extract64(value, 7, 1));
5514 
5515     raw_write(env, ri, value);
5516     hw_breakpoint_update(cpu, i);
5517 }
5518 
5519 static void define_debug_regs(ARMCPU *cpu)
5520 {
5521     /* Define v7 and v8 architectural debug registers.
5522      * These are just dummy implementations for now.
5523      */
5524     int i;
5525     int wrps, brps, ctx_cmps;
5526     ARMCPRegInfo dbgdidr = {
5527         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5528         .access = PL0_R, .accessfn = access_tda,
5529         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5530     };
5531 
5532     /* Note that all these register fields hold "number of Xs minus 1". */
5533     brps = extract32(cpu->dbgdidr, 24, 4);
5534     wrps = extract32(cpu->dbgdidr, 28, 4);
5535     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5536 
5537     assert(ctx_cmps <= brps);
5538 
5539     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5540      * of the debug registers such as number of breakpoints;
5541      * check that if they both exist then they agree.
5542      */
5543     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5544         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5545         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5546         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5547     }
5548 
5549     define_one_arm_cp_reg(cpu, &dbgdidr);
5550     define_arm_cp_regs(cpu, debug_cp_reginfo);
5551 
5552     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5553         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5554     }
5555 
5556     for (i = 0; i < brps + 1; i++) {
5557         ARMCPRegInfo dbgregs[] = {
5558             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5559               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5560               .access = PL1_RW, .accessfn = access_tda,
5561               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5562               .writefn = dbgbvr_write, .raw_writefn = raw_write
5563             },
5564             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5565               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5566               .access = PL1_RW, .accessfn = access_tda,
5567               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5568               .writefn = dbgbcr_write, .raw_writefn = raw_write
5569             },
5570             REGINFO_SENTINEL
5571         };
5572         define_arm_cp_regs(cpu, dbgregs);
5573     }
5574 
5575     for (i = 0; i < wrps + 1; i++) {
5576         ARMCPRegInfo dbgregs[] = {
5577             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5578               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5579               .access = PL1_RW, .accessfn = access_tda,
5580               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5581               .writefn = dbgwvr_write, .raw_writefn = raw_write
5582             },
5583             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5584               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5585               .access = PL1_RW, .accessfn = access_tda,
5586               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5587               .writefn = dbgwcr_write, .raw_writefn = raw_write
5588             },
5589             REGINFO_SENTINEL
5590         };
5591         define_arm_cp_regs(cpu, dbgregs);
5592     }
5593 }
5594 
5595 /* We don't know until after realize whether there's a GICv3
5596  * attached, and that is what registers the gicv3 sysregs.
5597  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5598  * at runtime.
5599  */
5600 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5601 {
5602     ARMCPU *cpu = arm_env_get_cpu(env);
5603     uint64_t pfr1 = cpu->id_pfr1;
5604 
5605     if (env->gicv3state) {
5606         pfr1 |= 1 << 28;
5607     }
5608     return pfr1;
5609 }
5610 
5611 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5612 {
5613     ARMCPU *cpu = arm_env_get_cpu(env);
5614     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5615 
5616     if (env->gicv3state) {
5617         pfr0 |= 1 << 24;
5618     }
5619     return pfr0;
5620 }
5621 
5622 /* Shared logic between LORID and the rest of the LOR* registers.
5623  * Secure state has already been delt with.
5624  */
5625 static CPAccessResult access_lor_ns(CPUARMState *env)
5626 {
5627     int el = arm_current_el(env);
5628 
5629     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5630         return CP_ACCESS_TRAP_EL2;
5631     }
5632     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5633         return CP_ACCESS_TRAP_EL3;
5634     }
5635     return CP_ACCESS_OK;
5636 }
5637 
5638 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5639                                    bool isread)
5640 {
5641     if (arm_is_secure_below_el3(env)) {
5642         /* Access ok in secure mode.  */
5643         return CP_ACCESS_OK;
5644     }
5645     return access_lor_ns(env);
5646 }
5647 
5648 static CPAccessResult access_lor_other(CPUARMState *env,
5649                                        const ARMCPRegInfo *ri, bool isread)
5650 {
5651     if (arm_is_secure_below_el3(env)) {
5652         /* Access denied in secure mode.  */
5653         return CP_ACCESS_TRAP;
5654     }
5655     return access_lor_ns(env);
5656 }
5657 
5658 #ifdef TARGET_AARCH64
5659 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5660                                    bool isread)
5661 {
5662     int el = arm_current_el(env);
5663 
5664     if (el < 2 &&
5665         arm_feature(env, ARM_FEATURE_EL2) &&
5666         !(arm_hcr_el2_eff(env) & HCR_APK)) {
5667         return CP_ACCESS_TRAP_EL2;
5668     }
5669     if (el < 3 &&
5670         arm_feature(env, ARM_FEATURE_EL3) &&
5671         !(env->cp15.scr_el3 & SCR_APK)) {
5672         return CP_ACCESS_TRAP_EL3;
5673     }
5674     return CP_ACCESS_OK;
5675 }
5676 
5677 static const ARMCPRegInfo pauth_reginfo[] = {
5678     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5679       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5680       .access = PL1_RW, .accessfn = access_pauth,
5681       .fieldoffset = offsetof(CPUARMState, apda_key.lo) },
5682     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5683       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5684       .access = PL1_RW, .accessfn = access_pauth,
5685       .fieldoffset = offsetof(CPUARMState, apda_key.hi) },
5686     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5687       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5688       .access = PL1_RW, .accessfn = access_pauth,
5689       .fieldoffset = offsetof(CPUARMState, apdb_key.lo) },
5690     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5691       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5692       .access = PL1_RW, .accessfn = access_pauth,
5693       .fieldoffset = offsetof(CPUARMState, apdb_key.hi) },
5694     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5695       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5696       .access = PL1_RW, .accessfn = access_pauth,
5697       .fieldoffset = offsetof(CPUARMState, apga_key.lo) },
5698     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5699       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5700       .access = PL1_RW, .accessfn = access_pauth,
5701       .fieldoffset = offsetof(CPUARMState, apga_key.hi) },
5702     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5703       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5704       .access = PL1_RW, .accessfn = access_pauth,
5705       .fieldoffset = offsetof(CPUARMState, apia_key.lo) },
5706     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5707       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5708       .access = PL1_RW, .accessfn = access_pauth,
5709       .fieldoffset = offsetof(CPUARMState, apia_key.hi) },
5710     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5711       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5712       .access = PL1_RW, .accessfn = access_pauth,
5713       .fieldoffset = offsetof(CPUARMState, apib_key.lo) },
5714     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5715       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5716       .access = PL1_RW, .accessfn = access_pauth,
5717       .fieldoffset = offsetof(CPUARMState, apib_key.hi) },
5718     REGINFO_SENTINEL
5719 };
5720 #endif
5721 
5722 void register_cp_regs_for_features(ARMCPU *cpu)
5723 {
5724     /* Register all the coprocessor registers based on feature bits */
5725     CPUARMState *env = &cpu->env;
5726     if (arm_feature(env, ARM_FEATURE_M)) {
5727         /* M profile has no coprocessor registers */
5728         return;
5729     }
5730 
5731     define_arm_cp_regs(cpu, cp_reginfo);
5732     if (!arm_feature(env, ARM_FEATURE_V8)) {
5733         /* Must go early as it is full of wildcards that may be
5734          * overridden by later definitions.
5735          */
5736         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5737     }
5738 
5739     if (arm_feature(env, ARM_FEATURE_V6)) {
5740         /* The ID registers all have impdef reset values */
5741         ARMCPRegInfo v6_idregs[] = {
5742             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5743               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5744               .access = PL1_R, .type = ARM_CP_CONST,
5745               .resetvalue = cpu->id_pfr0 },
5746             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5747              * the value of the GIC field until after we define these regs.
5748              */
5749             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5750               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5751               .access = PL1_R, .type = ARM_CP_NO_RAW,
5752               .readfn = id_pfr1_read,
5753               .writefn = arm_cp_write_ignore },
5754             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5755               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5756               .access = PL1_R, .type = ARM_CP_CONST,
5757               .resetvalue = cpu->id_dfr0 },
5758             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5759               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5760               .access = PL1_R, .type = ARM_CP_CONST,
5761               .resetvalue = cpu->id_afr0 },
5762             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5763               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5764               .access = PL1_R, .type = ARM_CP_CONST,
5765               .resetvalue = cpu->id_mmfr0 },
5766             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5767               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5768               .access = PL1_R, .type = ARM_CP_CONST,
5769               .resetvalue = cpu->id_mmfr1 },
5770             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5771               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5772               .access = PL1_R, .type = ARM_CP_CONST,
5773               .resetvalue = cpu->id_mmfr2 },
5774             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5775               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5776               .access = PL1_R, .type = ARM_CP_CONST,
5777               .resetvalue = cpu->id_mmfr3 },
5778             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5779               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5780               .access = PL1_R, .type = ARM_CP_CONST,
5781               .resetvalue = cpu->isar.id_isar0 },
5782             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5783               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5784               .access = PL1_R, .type = ARM_CP_CONST,
5785               .resetvalue = cpu->isar.id_isar1 },
5786             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5787               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5788               .access = PL1_R, .type = ARM_CP_CONST,
5789               .resetvalue = cpu->isar.id_isar2 },
5790             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5791               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5792               .access = PL1_R, .type = ARM_CP_CONST,
5793               .resetvalue = cpu->isar.id_isar3 },
5794             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5795               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5796               .access = PL1_R, .type = ARM_CP_CONST,
5797               .resetvalue = cpu->isar.id_isar4 },
5798             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5799               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5800               .access = PL1_R, .type = ARM_CP_CONST,
5801               .resetvalue = cpu->isar.id_isar5 },
5802             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5803               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5804               .access = PL1_R, .type = ARM_CP_CONST,
5805               .resetvalue = cpu->id_mmfr4 },
5806             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5807               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5808               .access = PL1_R, .type = ARM_CP_CONST,
5809               .resetvalue = cpu->isar.id_isar6 },
5810             REGINFO_SENTINEL
5811         };
5812         define_arm_cp_regs(cpu, v6_idregs);
5813         define_arm_cp_regs(cpu, v6_cp_reginfo);
5814     } else {
5815         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5816     }
5817     if (arm_feature(env, ARM_FEATURE_V6K)) {
5818         define_arm_cp_regs(cpu, v6k_cp_reginfo);
5819     }
5820     if (arm_feature(env, ARM_FEATURE_V7MP) &&
5821         !arm_feature(env, ARM_FEATURE_PMSA)) {
5822         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5823     }
5824     if (arm_feature(env, ARM_FEATURE_V7VE)) {
5825         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5826     }
5827     if (arm_feature(env, ARM_FEATURE_V7)) {
5828         /* v7 performance monitor control register: same implementor
5829          * field as main ID register, and we implement four counters in
5830          * addition to the cycle count register.
5831          */
5832         unsigned int i, pmcrn = 4;
5833         ARMCPRegInfo pmcr = {
5834             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5835             .access = PL0_RW,
5836             .type = ARM_CP_IO | ARM_CP_ALIAS,
5837             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5838             .accessfn = pmreg_access, .writefn = pmcr_write,
5839             .raw_writefn = raw_write,
5840         };
5841         ARMCPRegInfo pmcr64 = {
5842             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5843             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5844             .access = PL0_RW, .accessfn = pmreg_access,
5845             .type = ARM_CP_IO,
5846             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5847             .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
5848             .writefn = pmcr_write, .raw_writefn = raw_write,
5849         };
5850         define_one_arm_cp_reg(cpu, &pmcr);
5851         define_one_arm_cp_reg(cpu, &pmcr64);
5852         for (i = 0; i < pmcrn; i++) {
5853             char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5854             char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5855             char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5856             char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5857             ARMCPRegInfo pmev_regs[] = {
5858                 { .name = pmevcntr_name, .cp = 15, .crn = 15,
5859                   .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5860                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5861                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5862                   .accessfn = pmreg_access },
5863                 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
5864                   .opc0 = 3, .opc1 = 3, .crn = 15, .crm = 8 | (3 & (i >> 3)),
5865                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5866                   .type = ARM_CP_IO,
5867                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5868                   .raw_readfn = pmevcntr_rawread,
5869                   .raw_writefn = pmevcntr_rawwrite },
5870                 { .name = pmevtyper_name, .cp = 15, .crn = 15,
5871                   .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5872                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5873                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5874                   .accessfn = pmreg_access },
5875                 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
5876                   .opc0 = 3, .opc1 = 3, .crn = 15, .crm = 12 | (3 & (i >> 3)),
5877                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5878                   .type = ARM_CP_IO,
5879                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5880                   .raw_writefn = pmevtyper_rawwrite },
5881                 REGINFO_SENTINEL
5882             };
5883             define_arm_cp_regs(cpu, pmev_regs);
5884             g_free(pmevcntr_name);
5885             g_free(pmevcntr_el0_name);
5886             g_free(pmevtyper_name);
5887             g_free(pmevtyper_el0_name);
5888         }
5889         ARMCPRegInfo clidr = {
5890             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5891             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5892             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5893         };
5894         define_one_arm_cp_reg(cpu, &clidr);
5895         define_arm_cp_regs(cpu, v7_cp_reginfo);
5896         define_debug_regs(cpu);
5897     } else {
5898         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5899     }
5900     if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
5901             FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
5902         ARMCPRegInfo v81_pmu_regs[] = {
5903             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
5904               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
5905               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5906               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
5907             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
5908               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
5909               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5910               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
5911             REGINFO_SENTINEL
5912         };
5913         define_arm_cp_regs(cpu, v81_pmu_regs);
5914     }
5915     if (arm_feature(env, ARM_FEATURE_V8)) {
5916         /* AArch64 ID registers, which all have impdef reset values.
5917          * Note that within the ID register ranges the unused slots
5918          * must all RAZ, not UNDEF; future architecture versions may
5919          * define new registers here.
5920          */
5921         ARMCPRegInfo v8_idregs[] = {
5922             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5923              * know the right value for the GIC field until after we
5924              * define these regs.
5925              */
5926             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5927               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5928               .access = PL1_R, .type = ARM_CP_NO_RAW,
5929               .readfn = id_aa64pfr0_read,
5930               .writefn = arm_cp_write_ignore },
5931             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5932               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5933               .access = PL1_R, .type = ARM_CP_CONST,
5934               .resetvalue = cpu->isar.id_aa64pfr1},
5935             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5936               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5937               .access = PL1_R, .type = ARM_CP_CONST,
5938               .resetvalue = 0 },
5939             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5940               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5941               .access = PL1_R, .type = ARM_CP_CONST,
5942               .resetvalue = 0 },
5943             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5944               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5945               .access = PL1_R, .type = ARM_CP_CONST,
5946               /* At present, only SVEver == 0 is defined anyway.  */
5947               .resetvalue = 0 },
5948             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5949               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5950               .access = PL1_R, .type = ARM_CP_CONST,
5951               .resetvalue = 0 },
5952             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5953               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
5954               .access = PL1_R, .type = ARM_CP_CONST,
5955               .resetvalue = 0 },
5956             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5957               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
5958               .access = PL1_R, .type = ARM_CP_CONST,
5959               .resetvalue = 0 },
5960             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
5961               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
5962               .access = PL1_R, .type = ARM_CP_CONST,
5963               .resetvalue = cpu->id_aa64dfr0 },
5964             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
5965               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
5966               .access = PL1_R, .type = ARM_CP_CONST,
5967               .resetvalue = cpu->id_aa64dfr1 },
5968             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5969               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5970               .access = PL1_R, .type = ARM_CP_CONST,
5971               .resetvalue = 0 },
5972             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5973               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5974               .access = PL1_R, .type = ARM_CP_CONST,
5975               .resetvalue = 0 },
5976             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
5977               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
5978               .access = PL1_R, .type = ARM_CP_CONST,
5979               .resetvalue = cpu->id_aa64afr0 },
5980             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
5981               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
5982               .access = PL1_R, .type = ARM_CP_CONST,
5983               .resetvalue = cpu->id_aa64afr1 },
5984             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5985               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
5986               .access = PL1_R, .type = ARM_CP_CONST,
5987               .resetvalue = 0 },
5988             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5989               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
5990               .access = PL1_R, .type = ARM_CP_CONST,
5991               .resetvalue = 0 },
5992             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
5993               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
5994               .access = PL1_R, .type = ARM_CP_CONST,
5995               .resetvalue = cpu->isar.id_aa64isar0 },
5996             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
5997               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
5998               .access = PL1_R, .type = ARM_CP_CONST,
5999               .resetvalue = cpu->isar.id_aa64isar1 },
6000             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6001               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6002               .access = PL1_R, .type = ARM_CP_CONST,
6003               .resetvalue = 0 },
6004             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6005               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6006               .access = PL1_R, .type = ARM_CP_CONST,
6007               .resetvalue = 0 },
6008             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6009               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6010               .access = PL1_R, .type = ARM_CP_CONST,
6011               .resetvalue = 0 },
6012             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6013               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6014               .access = PL1_R, .type = ARM_CP_CONST,
6015               .resetvalue = 0 },
6016             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6017               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6018               .access = PL1_R, .type = ARM_CP_CONST,
6019               .resetvalue = 0 },
6020             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6021               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6022               .access = PL1_R, .type = ARM_CP_CONST,
6023               .resetvalue = 0 },
6024             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6025               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6026               .access = PL1_R, .type = ARM_CP_CONST,
6027               .resetvalue = cpu->isar.id_aa64mmfr0 },
6028             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6029               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6030               .access = PL1_R, .type = ARM_CP_CONST,
6031               .resetvalue = cpu->isar.id_aa64mmfr1 },
6032             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6033               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6034               .access = PL1_R, .type = ARM_CP_CONST,
6035               .resetvalue = 0 },
6036             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6037               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6038               .access = PL1_R, .type = ARM_CP_CONST,
6039               .resetvalue = 0 },
6040             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6041               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6042               .access = PL1_R, .type = ARM_CP_CONST,
6043               .resetvalue = 0 },
6044             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6045               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6046               .access = PL1_R, .type = ARM_CP_CONST,
6047               .resetvalue = 0 },
6048             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6049               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6050               .access = PL1_R, .type = ARM_CP_CONST,
6051               .resetvalue = 0 },
6052             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6053               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6054               .access = PL1_R, .type = ARM_CP_CONST,
6055               .resetvalue = 0 },
6056             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6057               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6058               .access = PL1_R, .type = ARM_CP_CONST,
6059               .resetvalue = cpu->isar.mvfr0 },
6060             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6061               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6062               .access = PL1_R, .type = ARM_CP_CONST,
6063               .resetvalue = cpu->isar.mvfr1 },
6064             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6065               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6066               .access = PL1_R, .type = ARM_CP_CONST,
6067               .resetvalue = cpu->isar.mvfr2 },
6068             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6069               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6070               .access = PL1_R, .type = ARM_CP_CONST,
6071               .resetvalue = 0 },
6072             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6073               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6074               .access = PL1_R, .type = ARM_CP_CONST,
6075               .resetvalue = 0 },
6076             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6077               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6078               .access = PL1_R, .type = ARM_CP_CONST,
6079               .resetvalue = 0 },
6080             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6081               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6082               .access = PL1_R, .type = ARM_CP_CONST,
6083               .resetvalue = 0 },
6084             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6085               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6086               .access = PL1_R, .type = ARM_CP_CONST,
6087               .resetvalue = 0 },
6088             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6089               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6090               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6091               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6092             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6093               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6094               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6095               .resetvalue = cpu->pmceid0 },
6096             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6097               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6098               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6099               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6100             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6101               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6102               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6103               .resetvalue = cpu->pmceid1 },
6104             REGINFO_SENTINEL
6105         };
6106         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6107         if (!arm_feature(env, ARM_FEATURE_EL3) &&
6108             !arm_feature(env, ARM_FEATURE_EL2)) {
6109             ARMCPRegInfo rvbar = {
6110                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6111                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6112                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6113             };
6114             define_one_arm_cp_reg(cpu, &rvbar);
6115         }
6116         define_arm_cp_regs(cpu, v8_idregs);
6117         define_arm_cp_regs(cpu, v8_cp_reginfo);
6118     }
6119     if (arm_feature(env, ARM_FEATURE_EL2)) {
6120         uint64_t vmpidr_def = mpidr_read_val(env);
6121         ARMCPRegInfo vpidr_regs[] = {
6122             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6123               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6124               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6125               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6126               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6127             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6128               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6129               .access = PL2_RW, .resetvalue = cpu->midr,
6130               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6131             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6132               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6133               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6134               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6135               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6136             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6137               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6138               .access = PL2_RW,
6139               .resetvalue = vmpidr_def,
6140               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6141             REGINFO_SENTINEL
6142         };
6143         define_arm_cp_regs(cpu, vpidr_regs);
6144         define_arm_cp_regs(cpu, el2_cp_reginfo);
6145         if (arm_feature(env, ARM_FEATURE_V8)) {
6146             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6147         }
6148         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6149         if (!arm_feature(env, ARM_FEATURE_EL3)) {
6150             ARMCPRegInfo rvbar = {
6151                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6152                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6153                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6154             };
6155             define_one_arm_cp_reg(cpu, &rvbar);
6156         }
6157     } else {
6158         /* If EL2 is missing but higher ELs are enabled, we need to
6159          * register the no_el2 reginfos.
6160          */
6161         if (arm_feature(env, ARM_FEATURE_EL3)) {
6162             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6163              * of MIDR_EL1 and MPIDR_EL1.
6164              */
6165             ARMCPRegInfo vpidr_regs[] = {
6166                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6167                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6168                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6169                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6170                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6171                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6172                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6173                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6174                   .type = ARM_CP_NO_RAW,
6175                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6176                 REGINFO_SENTINEL
6177             };
6178             define_arm_cp_regs(cpu, vpidr_regs);
6179             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6180             if (arm_feature(env, ARM_FEATURE_V8)) {
6181                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6182             }
6183         }
6184     }
6185     if (arm_feature(env, ARM_FEATURE_EL3)) {
6186         define_arm_cp_regs(cpu, el3_cp_reginfo);
6187         ARMCPRegInfo el3_regs[] = {
6188             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6189               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6190               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6191             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6192               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6193               .access = PL3_RW,
6194               .raw_writefn = raw_write, .writefn = sctlr_write,
6195               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6196               .resetvalue = cpu->reset_sctlr },
6197             REGINFO_SENTINEL
6198         };
6199 
6200         define_arm_cp_regs(cpu, el3_regs);
6201     }
6202     /* The behaviour of NSACR is sufficiently various that we don't
6203      * try to describe it in a single reginfo:
6204      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
6205      *     reads as constant 0xc00 from NS EL1 and NS EL2
6206      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6207      *  if v7 without EL3, register doesn't exist
6208      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6209      */
6210     if (arm_feature(env, ARM_FEATURE_EL3)) {
6211         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6212             ARMCPRegInfo nsacr = {
6213                 .name = "NSACR", .type = ARM_CP_CONST,
6214                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6215                 .access = PL1_RW, .accessfn = nsacr_access,
6216                 .resetvalue = 0xc00
6217             };
6218             define_one_arm_cp_reg(cpu, &nsacr);
6219         } else {
6220             ARMCPRegInfo nsacr = {
6221                 .name = "NSACR",
6222                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6223                 .access = PL3_RW | PL1_R,
6224                 .resetvalue = 0,
6225                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6226             };
6227             define_one_arm_cp_reg(cpu, &nsacr);
6228         }
6229     } else {
6230         if (arm_feature(env, ARM_FEATURE_V8)) {
6231             ARMCPRegInfo nsacr = {
6232                 .name = "NSACR", .type = ARM_CP_CONST,
6233                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6234                 .access = PL1_R,
6235                 .resetvalue = 0xc00
6236             };
6237             define_one_arm_cp_reg(cpu, &nsacr);
6238         }
6239     }
6240 
6241     if (arm_feature(env, ARM_FEATURE_PMSA)) {
6242         if (arm_feature(env, ARM_FEATURE_V6)) {
6243             /* PMSAv6 not implemented */
6244             assert(arm_feature(env, ARM_FEATURE_V7));
6245             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6246             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6247         } else {
6248             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6249         }
6250     } else {
6251         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6252         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6253         /* TTCBR2 is introduced with ARMv8.2-A32HPD.  */
6254         if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6255             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6256         }
6257     }
6258     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6259         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6260     }
6261     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6262         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6263     }
6264     if (arm_feature(env, ARM_FEATURE_VAPA)) {
6265         define_arm_cp_regs(cpu, vapa_cp_reginfo);
6266     }
6267     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6268         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6269     }
6270     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6271         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6272     }
6273     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6274         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6275     }
6276     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6277         define_arm_cp_regs(cpu, omap_cp_reginfo);
6278     }
6279     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6280         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6281     }
6282     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6283         define_arm_cp_regs(cpu, xscale_cp_reginfo);
6284     }
6285     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6286         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6287     }
6288     if (arm_feature(env, ARM_FEATURE_LPAE)) {
6289         define_arm_cp_regs(cpu, lpae_cp_reginfo);
6290     }
6291     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6292      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6293      * be read-only (ie write causes UNDEF exception).
6294      */
6295     {
6296         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6297             /* Pre-v8 MIDR space.
6298              * Note that the MIDR isn't a simple constant register because
6299              * of the TI925 behaviour where writes to another register can
6300              * cause the MIDR value to change.
6301              *
6302              * Unimplemented registers in the c15 0 0 0 space default to
6303              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6304              * and friends override accordingly.
6305              */
6306             { .name = "MIDR",
6307               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6308               .access = PL1_R, .resetvalue = cpu->midr,
6309               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6310               .readfn = midr_read,
6311               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6312               .type = ARM_CP_OVERRIDE },
6313             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6314             { .name = "DUMMY",
6315               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6316               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6317             { .name = "DUMMY",
6318               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6319               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6320             { .name = "DUMMY",
6321               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6322               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6323             { .name = "DUMMY",
6324               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6325               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6326             { .name = "DUMMY",
6327               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6328               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6329             REGINFO_SENTINEL
6330         };
6331         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6332             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6333               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6334               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6335               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6336               .readfn = midr_read },
6337             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6338             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6339               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6340               .access = PL1_R, .resetvalue = cpu->midr },
6341             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6342               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6343               .access = PL1_R, .resetvalue = cpu->midr },
6344             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6345               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6346               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6347             REGINFO_SENTINEL
6348         };
6349         ARMCPRegInfo id_cp_reginfo[] = {
6350             /* These are common to v8 and pre-v8 */
6351             { .name = "CTR",
6352               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6353               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6354             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6355               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6356               .access = PL0_R, .accessfn = ctr_el0_access,
6357               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6358             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6359             { .name = "TCMTR",
6360               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6361               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6362             REGINFO_SENTINEL
6363         };
6364         /* TLBTR is specific to VMSA */
6365         ARMCPRegInfo id_tlbtr_reginfo = {
6366               .name = "TLBTR",
6367               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6368               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6369         };
6370         /* MPUIR is specific to PMSA V6+ */
6371         ARMCPRegInfo id_mpuir_reginfo = {
6372               .name = "MPUIR",
6373               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6374               .access = PL1_R, .type = ARM_CP_CONST,
6375               .resetvalue = cpu->pmsav7_dregion << 8
6376         };
6377         ARMCPRegInfo crn0_wi_reginfo = {
6378             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6379             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6380             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6381         };
6382         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6383             arm_feature(env, ARM_FEATURE_STRONGARM)) {
6384             ARMCPRegInfo *r;
6385             /* Register the blanket "writes ignored" value first to cover the
6386              * whole space. Then update the specific ID registers to allow write
6387              * access, so that they ignore writes rather than causing them to
6388              * UNDEF.
6389              */
6390             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6391             for (r = id_pre_v8_midr_cp_reginfo;
6392                  r->type != ARM_CP_SENTINEL; r++) {
6393                 r->access = PL1_RW;
6394             }
6395             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6396                 r->access = PL1_RW;
6397             }
6398             id_mpuir_reginfo.access = PL1_RW;
6399             id_tlbtr_reginfo.access = PL1_RW;
6400         }
6401         if (arm_feature(env, ARM_FEATURE_V8)) {
6402             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6403         } else {
6404             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6405         }
6406         define_arm_cp_regs(cpu, id_cp_reginfo);
6407         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6408             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6409         } else if (arm_feature(env, ARM_FEATURE_V7)) {
6410             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6411         }
6412     }
6413 
6414     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6415         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6416     }
6417 
6418     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6419         ARMCPRegInfo auxcr_reginfo[] = {
6420             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6421               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6422               .access = PL1_RW, .type = ARM_CP_CONST,
6423               .resetvalue = cpu->reset_auxcr },
6424             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6425               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6426               .access = PL2_RW, .type = ARM_CP_CONST,
6427               .resetvalue = 0 },
6428             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6429               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6430               .access = PL3_RW, .type = ARM_CP_CONST,
6431               .resetvalue = 0 },
6432             REGINFO_SENTINEL
6433         };
6434         define_arm_cp_regs(cpu, auxcr_reginfo);
6435         if (arm_feature(env, ARM_FEATURE_V8)) {
6436             /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6437             ARMCPRegInfo hactlr2_reginfo = {
6438                 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6439                 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6440                 .access = PL2_RW, .type = ARM_CP_CONST,
6441                 .resetvalue = 0
6442             };
6443             define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6444         }
6445     }
6446 
6447     if (arm_feature(env, ARM_FEATURE_CBAR)) {
6448         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6449             /* 32 bit view is [31:18] 0...0 [43:32]. */
6450             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6451                 | extract64(cpu->reset_cbar, 32, 12);
6452             ARMCPRegInfo cbar_reginfo[] = {
6453                 { .name = "CBAR",
6454                   .type = ARM_CP_CONST,
6455                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6456                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
6457                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6458                   .type = ARM_CP_CONST,
6459                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6460                   .access = PL1_R, .resetvalue = cbar32 },
6461                 REGINFO_SENTINEL
6462             };
6463             /* We don't implement a r/w 64 bit CBAR currently */
6464             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6465             define_arm_cp_regs(cpu, cbar_reginfo);
6466         } else {
6467             ARMCPRegInfo cbar = {
6468                 .name = "CBAR",
6469                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6470                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6471                 .fieldoffset = offsetof(CPUARMState,
6472                                         cp15.c15_config_base_address)
6473             };
6474             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6475                 cbar.access = PL1_R;
6476                 cbar.fieldoffset = 0;
6477                 cbar.type = ARM_CP_CONST;
6478             }
6479             define_one_arm_cp_reg(cpu, &cbar);
6480         }
6481     }
6482 
6483     if (arm_feature(env, ARM_FEATURE_VBAR)) {
6484         ARMCPRegInfo vbar_cp_reginfo[] = {
6485             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6486               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6487               .access = PL1_RW, .writefn = vbar_write,
6488               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6489                                      offsetof(CPUARMState, cp15.vbar_ns) },
6490               .resetvalue = 0 },
6491             REGINFO_SENTINEL
6492         };
6493         define_arm_cp_regs(cpu, vbar_cp_reginfo);
6494     }
6495 
6496     /* Generic registers whose values depend on the implementation */
6497     {
6498         ARMCPRegInfo sctlr = {
6499             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6500             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6501             .access = PL1_RW,
6502             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6503                                    offsetof(CPUARMState, cp15.sctlr_ns) },
6504             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6505             .raw_writefn = raw_write,
6506         };
6507         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6508             /* Normally we would always end the TB on an SCTLR write, but Linux
6509              * arch/arm/mach-pxa/sleep.S expects two instructions following
6510              * an MMU enable to execute from cache.  Imitate this behaviour.
6511              */
6512             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6513         }
6514         define_one_arm_cp_reg(cpu, &sctlr);
6515     }
6516 
6517     if (cpu_isar_feature(aa64_lor, cpu)) {
6518         /*
6519          * A trivial implementation of ARMv8.1-LOR leaves all of these
6520          * registers fixed at 0, which indicates that there are zero
6521          * supported Limited Ordering regions.
6522          */
6523         static const ARMCPRegInfo lor_reginfo[] = {
6524             { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6525               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6526               .access = PL1_RW, .accessfn = access_lor_other,
6527               .type = ARM_CP_CONST, .resetvalue = 0 },
6528             { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6529               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6530               .access = PL1_RW, .accessfn = access_lor_other,
6531               .type = ARM_CP_CONST, .resetvalue = 0 },
6532             { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6533               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6534               .access = PL1_RW, .accessfn = access_lor_other,
6535               .type = ARM_CP_CONST, .resetvalue = 0 },
6536             { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6537               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6538               .access = PL1_RW, .accessfn = access_lor_other,
6539               .type = ARM_CP_CONST, .resetvalue = 0 },
6540             { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6541               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6542               .access = PL1_R, .accessfn = access_lorid,
6543               .type = ARM_CP_CONST, .resetvalue = 0 },
6544             REGINFO_SENTINEL
6545         };
6546         define_arm_cp_regs(cpu, lor_reginfo);
6547     }
6548 
6549     if (cpu_isar_feature(aa64_sve, cpu)) {
6550         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6551         if (arm_feature(env, ARM_FEATURE_EL2)) {
6552             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6553         } else {
6554             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6555         }
6556         if (arm_feature(env, ARM_FEATURE_EL3)) {
6557             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6558         }
6559     }
6560 
6561 #ifdef TARGET_AARCH64
6562     if (cpu_isar_feature(aa64_pauth, cpu)) {
6563         define_arm_cp_regs(cpu, pauth_reginfo);
6564     }
6565 #endif
6566 }
6567 
6568 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6569 {
6570     CPUState *cs = CPU(cpu);
6571     CPUARMState *env = &cpu->env;
6572 
6573     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6574         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6575                                  aarch64_fpu_gdb_set_reg,
6576                                  34, "aarch64-fpu.xml", 0);
6577     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6578         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6579                                  51, "arm-neon.xml", 0);
6580     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6581         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6582                                  35, "arm-vfp3.xml", 0);
6583     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6584         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6585                                  19, "arm-vfp.xml", 0);
6586     }
6587     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6588                              arm_gen_dynamic_xml(cs),
6589                              "system-registers.xml", 0);
6590 }
6591 
6592 /* Sort alphabetically by type name, except for "any". */
6593 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6594 {
6595     ObjectClass *class_a = (ObjectClass *)a;
6596     ObjectClass *class_b = (ObjectClass *)b;
6597     const char *name_a, *name_b;
6598 
6599     name_a = object_class_get_name(class_a);
6600     name_b = object_class_get_name(class_b);
6601     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6602         return 1;
6603     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6604         return -1;
6605     } else {
6606         return strcmp(name_a, name_b);
6607     }
6608 }
6609 
6610 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6611 {
6612     ObjectClass *oc = data;
6613     CPUListState *s = user_data;
6614     const char *typename;
6615     char *name;
6616 
6617     typename = object_class_get_name(oc);
6618     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6619     (*s->cpu_fprintf)(s->file, "  %s\n",
6620                       name);
6621     g_free(name);
6622 }
6623 
6624 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
6625 {
6626     CPUListState s = {
6627         .file = f,
6628         .cpu_fprintf = cpu_fprintf,
6629     };
6630     GSList *list;
6631 
6632     list = object_class_get_list(TYPE_ARM_CPU, false);
6633     list = g_slist_sort(list, arm_cpu_list_compare);
6634     (*cpu_fprintf)(f, "Available CPUs:\n");
6635     g_slist_foreach(list, arm_cpu_list_entry, &s);
6636     g_slist_free(list);
6637 }
6638 
6639 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6640 {
6641     ObjectClass *oc = data;
6642     CpuDefinitionInfoList **cpu_list = user_data;
6643     CpuDefinitionInfoList *entry;
6644     CpuDefinitionInfo *info;
6645     const char *typename;
6646 
6647     typename = object_class_get_name(oc);
6648     info = g_malloc0(sizeof(*info));
6649     info->name = g_strndup(typename,
6650                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
6651     info->q_typename = g_strdup(typename);
6652 
6653     entry = g_malloc0(sizeof(*entry));
6654     entry->value = info;
6655     entry->next = *cpu_list;
6656     *cpu_list = entry;
6657 }
6658 
6659 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
6660 {
6661     CpuDefinitionInfoList *cpu_list = NULL;
6662     GSList *list;
6663 
6664     list = object_class_get_list(TYPE_ARM_CPU, false);
6665     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6666     g_slist_free(list);
6667 
6668     return cpu_list;
6669 }
6670 
6671 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6672                                    void *opaque, int state, int secstate,
6673                                    int crm, int opc1, int opc2,
6674                                    const char *name)
6675 {
6676     /* Private utility function for define_one_arm_cp_reg_with_opaque():
6677      * add a single reginfo struct to the hash table.
6678      */
6679     uint32_t *key = g_new(uint32_t, 1);
6680     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6681     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6682     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6683 
6684     r2->name = g_strdup(name);
6685     /* Reset the secure state to the specific incoming state.  This is
6686      * necessary as the register may have been defined with both states.
6687      */
6688     r2->secure = secstate;
6689 
6690     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6691         /* Register is banked (using both entries in array).
6692          * Overwriting fieldoffset as the array is only used to define
6693          * banked registers but later only fieldoffset is used.
6694          */
6695         r2->fieldoffset = r->bank_fieldoffsets[ns];
6696     }
6697 
6698     if (state == ARM_CP_STATE_AA32) {
6699         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6700             /* If the register is banked then we don't need to migrate or
6701              * reset the 32-bit instance in certain cases:
6702              *
6703              * 1) If the register has both 32-bit and 64-bit instances then we
6704              *    can count on the 64-bit instance taking care of the
6705              *    non-secure bank.
6706              * 2) If ARMv8 is enabled then we can count on a 64-bit version
6707              *    taking care of the secure bank.  This requires that separate
6708              *    32 and 64-bit definitions are provided.
6709              */
6710             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6711                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6712                 r2->type |= ARM_CP_ALIAS;
6713             }
6714         } else if ((secstate != r->secure) && !ns) {
6715             /* The register is not banked so we only want to allow migration of
6716              * the non-secure instance.
6717              */
6718             r2->type |= ARM_CP_ALIAS;
6719         }
6720 
6721         if (r->state == ARM_CP_STATE_BOTH) {
6722             /* We assume it is a cp15 register if the .cp field is left unset.
6723              */
6724             if (r2->cp == 0) {
6725                 r2->cp = 15;
6726             }
6727 
6728 #ifdef HOST_WORDS_BIGENDIAN
6729             if (r2->fieldoffset) {
6730                 r2->fieldoffset += sizeof(uint32_t);
6731             }
6732 #endif
6733         }
6734     }
6735     if (state == ARM_CP_STATE_AA64) {
6736         /* To allow abbreviation of ARMCPRegInfo
6737          * definitions, we treat cp == 0 as equivalent to
6738          * the value for "standard guest-visible sysreg".
6739          * STATE_BOTH definitions are also always "standard
6740          * sysreg" in their AArch64 view (the .cp value may
6741          * be non-zero for the benefit of the AArch32 view).
6742          */
6743         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6744             r2->cp = CP_REG_ARM64_SYSREG_CP;
6745         }
6746         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6747                                   r2->opc0, opc1, opc2);
6748     } else {
6749         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6750     }
6751     if (opaque) {
6752         r2->opaque = opaque;
6753     }
6754     /* reginfo passed to helpers is correct for the actual access,
6755      * and is never ARM_CP_STATE_BOTH:
6756      */
6757     r2->state = state;
6758     /* Make sure reginfo passed to helpers for wildcarded regs
6759      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6760      */
6761     r2->crm = crm;
6762     r2->opc1 = opc1;
6763     r2->opc2 = opc2;
6764     /* By convention, for wildcarded registers only the first
6765      * entry is used for migration; the others are marked as
6766      * ALIAS so we don't try to transfer the register
6767      * multiple times. Special registers (ie NOP/WFI) are
6768      * never migratable and not even raw-accessible.
6769      */
6770     if ((r->type & ARM_CP_SPECIAL)) {
6771         r2->type |= ARM_CP_NO_RAW;
6772     }
6773     if (((r->crm == CP_ANY) && crm != 0) ||
6774         ((r->opc1 == CP_ANY) && opc1 != 0) ||
6775         ((r->opc2 == CP_ANY) && opc2 != 0)) {
6776         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6777     }
6778 
6779     /* Check that raw accesses are either forbidden or handled. Note that
6780      * we can't assert this earlier because the setup of fieldoffset for
6781      * banked registers has to be done first.
6782      */
6783     if (!(r2->type & ARM_CP_NO_RAW)) {
6784         assert(!raw_accessors_invalid(r2));
6785     }
6786 
6787     /* Overriding of an existing definition must be explicitly
6788      * requested.
6789      */
6790     if (!(r->type & ARM_CP_OVERRIDE)) {
6791         ARMCPRegInfo *oldreg;
6792         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6793         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6794             fprintf(stderr, "Register redefined: cp=%d %d bit "
6795                     "crn=%d crm=%d opc1=%d opc2=%d, "
6796                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6797                     r2->crn, r2->crm, r2->opc1, r2->opc2,
6798                     oldreg->name, r2->name);
6799             g_assert_not_reached();
6800         }
6801     }
6802     g_hash_table_insert(cpu->cp_regs, key, r2);
6803 }
6804 
6805 
6806 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6807                                        const ARMCPRegInfo *r, void *opaque)
6808 {
6809     /* Define implementations of coprocessor registers.
6810      * We store these in a hashtable because typically
6811      * there are less than 150 registers in a space which
6812      * is 16*16*16*8*8 = 262144 in size.
6813      * Wildcarding is supported for the crm, opc1 and opc2 fields.
6814      * If a register is defined twice then the second definition is
6815      * used, so this can be used to define some generic registers and
6816      * then override them with implementation specific variations.
6817      * At least one of the original and the second definition should
6818      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6819      * against accidental use.
6820      *
6821      * The state field defines whether the register is to be
6822      * visible in the AArch32 or AArch64 execution state. If the
6823      * state is set to ARM_CP_STATE_BOTH then we synthesise a
6824      * reginfo structure for the AArch32 view, which sees the lower
6825      * 32 bits of the 64 bit register.
6826      *
6827      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6828      * be wildcarded. AArch64 registers are always considered to be 64
6829      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6830      * the register, if any.
6831      */
6832     int crm, opc1, opc2, state;
6833     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
6834     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
6835     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
6836     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
6837     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6838     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6839     /* 64 bit registers have only CRm and Opc1 fields */
6840     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
6841     /* op0 only exists in the AArch64 encodings */
6842     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6843     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6844     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6845     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6846      * encodes a minimum access level for the register. We roll this
6847      * runtime check into our general permission check code, so check
6848      * here that the reginfo's specified permissions are strict enough
6849      * to encompass the generic architectural permission check.
6850      */
6851     if (r->state != ARM_CP_STATE_AA32) {
6852         int mask = 0;
6853         switch (r->opc1) {
6854         case 0: case 1: case 2:
6855             /* min_EL EL1 */
6856             mask = PL1_RW;
6857             break;
6858         case 3:
6859             /* min_EL EL0 */
6860             mask = PL0_RW;
6861             break;
6862         case 4:
6863             /* min_EL EL2 */
6864             mask = PL2_RW;
6865             break;
6866         case 5:
6867             /* unallocated encoding, so not possible */
6868             assert(false);
6869             break;
6870         case 6:
6871             /* min_EL EL3 */
6872             mask = PL3_RW;
6873             break;
6874         case 7:
6875             /* min_EL EL1, secure mode only (we don't check the latter) */
6876             mask = PL1_RW;
6877             break;
6878         default:
6879             /* broken reginfo with out-of-range opc1 */
6880             assert(false);
6881             break;
6882         }
6883         /* assert our permissions are not too lax (stricter is fine) */
6884         assert((r->access & ~mask) == 0);
6885     }
6886 
6887     /* Check that the register definition has enough info to handle
6888      * reads and writes if they are permitted.
6889      */
6890     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
6891         if (r->access & PL3_R) {
6892             assert((r->fieldoffset ||
6893                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6894                    r->readfn);
6895         }
6896         if (r->access & PL3_W) {
6897             assert((r->fieldoffset ||
6898                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6899                    r->writefn);
6900         }
6901     }
6902     /* Bad type field probably means missing sentinel at end of reg list */
6903     assert(cptype_valid(r->type));
6904     for (crm = crmmin; crm <= crmmax; crm++) {
6905         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
6906             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
6907                 for (state = ARM_CP_STATE_AA32;
6908                      state <= ARM_CP_STATE_AA64; state++) {
6909                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
6910                         continue;
6911                     }
6912                     if (state == ARM_CP_STATE_AA32) {
6913                         /* Under AArch32 CP registers can be common
6914                          * (same for secure and non-secure world) or banked.
6915                          */
6916                         char *name;
6917 
6918                         switch (r->secure) {
6919                         case ARM_CP_SECSTATE_S:
6920                         case ARM_CP_SECSTATE_NS:
6921                             add_cpreg_to_hashtable(cpu, r, opaque, state,
6922                                                    r->secure, crm, opc1, opc2,
6923                                                    r->name);
6924                             break;
6925                         default:
6926                             name = g_strdup_printf("%s_S", r->name);
6927                             add_cpreg_to_hashtable(cpu, r, opaque, state,
6928                                                    ARM_CP_SECSTATE_S,
6929                                                    crm, opc1, opc2, name);
6930                             g_free(name);
6931                             add_cpreg_to_hashtable(cpu, r, opaque, state,
6932                                                    ARM_CP_SECSTATE_NS,
6933                                                    crm, opc1, opc2, r->name);
6934                             break;
6935                         }
6936                     } else {
6937                         /* AArch64 registers get mapped to non-secure instance
6938                          * of AArch32 */
6939                         add_cpreg_to_hashtable(cpu, r, opaque, state,
6940                                                ARM_CP_SECSTATE_NS,
6941                                                crm, opc1, opc2, r->name);
6942                     }
6943                 }
6944             }
6945         }
6946     }
6947 }
6948 
6949 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
6950                                     const ARMCPRegInfo *regs, void *opaque)
6951 {
6952     /* Define a whole list of registers */
6953     const ARMCPRegInfo *r;
6954     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
6955         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
6956     }
6957 }
6958 
6959 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
6960 {
6961     return g_hash_table_lookup(cpregs, &encoded_cp);
6962 }
6963 
6964 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
6965                          uint64_t value)
6966 {
6967     /* Helper coprocessor write function for write-ignore registers */
6968 }
6969 
6970 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
6971 {
6972     /* Helper coprocessor write function for read-as-zero registers */
6973     return 0;
6974 }
6975 
6976 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
6977 {
6978     /* Helper coprocessor reset function for do-nothing-on-reset registers */
6979 }
6980 
6981 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
6982 {
6983     /* Return true if it is not valid for us to switch to
6984      * this CPU mode (ie all the UNPREDICTABLE cases in
6985      * the ARM ARM CPSRWriteByInstr pseudocode).
6986      */
6987 
6988     /* Changes to or from Hyp via MSR and CPS are illegal. */
6989     if (write_type == CPSRWriteByInstr &&
6990         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
6991          mode == ARM_CPU_MODE_HYP)) {
6992         return 1;
6993     }
6994 
6995     switch (mode) {
6996     case ARM_CPU_MODE_USR:
6997         return 0;
6998     case ARM_CPU_MODE_SYS:
6999     case ARM_CPU_MODE_SVC:
7000     case ARM_CPU_MODE_ABT:
7001     case ARM_CPU_MODE_UND:
7002     case ARM_CPU_MODE_IRQ:
7003     case ARM_CPU_MODE_FIQ:
7004         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7005          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7006          */
7007         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7008          * and CPS are treated as illegal mode changes.
7009          */
7010         if (write_type == CPSRWriteByInstr &&
7011             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7012             (arm_hcr_el2_eff(env) & HCR_TGE)) {
7013             return 1;
7014         }
7015         return 0;
7016     case ARM_CPU_MODE_HYP:
7017         return !arm_feature(env, ARM_FEATURE_EL2)
7018             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7019     case ARM_CPU_MODE_MON:
7020         return arm_current_el(env) < 3;
7021     default:
7022         return 1;
7023     }
7024 }
7025 
7026 uint32_t cpsr_read(CPUARMState *env)
7027 {
7028     int ZF;
7029     ZF = (env->ZF == 0);
7030     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7031         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7032         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7033         | ((env->condexec_bits & 0xfc) << 8)
7034         | (env->GE << 16) | (env->daif & CPSR_AIF);
7035 }
7036 
7037 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7038                 CPSRWriteType write_type)
7039 {
7040     uint32_t changed_daif;
7041 
7042     if (mask & CPSR_NZCV) {
7043         env->ZF = (~val) & CPSR_Z;
7044         env->NF = val;
7045         env->CF = (val >> 29) & 1;
7046         env->VF = (val << 3) & 0x80000000;
7047     }
7048     if (mask & CPSR_Q)
7049         env->QF = ((val & CPSR_Q) != 0);
7050     if (mask & CPSR_T)
7051         env->thumb = ((val & CPSR_T) != 0);
7052     if (mask & CPSR_IT_0_1) {
7053         env->condexec_bits &= ~3;
7054         env->condexec_bits |= (val >> 25) & 3;
7055     }
7056     if (mask & CPSR_IT_2_7) {
7057         env->condexec_bits &= 3;
7058         env->condexec_bits |= (val >> 8) & 0xfc;
7059     }
7060     if (mask & CPSR_GE) {
7061         env->GE = (val >> 16) & 0xf;
7062     }
7063 
7064     /* In a V7 implementation that includes the security extensions but does
7065      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7066      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7067      * bits respectively.
7068      *
7069      * In a V8 implementation, it is permitted for privileged software to
7070      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7071      */
7072     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7073         arm_feature(env, ARM_FEATURE_EL3) &&
7074         !arm_feature(env, ARM_FEATURE_EL2) &&
7075         !arm_is_secure(env)) {
7076 
7077         changed_daif = (env->daif ^ val) & mask;
7078 
7079         if (changed_daif & CPSR_A) {
7080             /* Check to see if we are allowed to change the masking of async
7081              * abort exceptions from a non-secure state.
7082              */
7083             if (!(env->cp15.scr_el3 & SCR_AW)) {
7084                 qemu_log_mask(LOG_GUEST_ERROR,
7085                               "Ignoring attempt to switch CPSR_A flag from "
7086                               "non-secure world with SCR.AW bit clear\n");
7087                 mask &= ~CPSR_A;
7088             }
7089         }
7090 
7091         if (changed_daif & CPSR_F) {
7092             /* Check to see if we are allowed to change the masking of FIQ
7093              * exceptions from a non-secure state.
7094              */
7095             if (!(env->cp15.scr_el3 & SCR_FW)) {
7096                 qemu_log_mask(LOG_GUEST_ERROR,
7097                               "Ignoring attempt to switch CPSR_F flag from "
7098                               "non-secure world with SCR.FW bit clear\n");
7099                 mask &= ~CPSR_F;
7100             }
7101 
7102             /* Check whether non-maskable FIQ (NMFI) support is enabled.
7103              * If this bit is set software is not allowed to mask
7104              * FIQs, but is allowed to set CPSR_F to 0.
7105              */
7106             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7107                 (val & CPSR_F)) {
7108                 qemu_log_mask(LOG_GUEST_ERROR,
7109                               "Ignoring attempt to enable CPSR_F flag "
7110                               "(non-maskable FIQ [NMFI] support enabled)\n");
7111                 mask &= ~CPSR_F;
7112             }
7113         }
7114     }
7115 
7116     env->daif &= ~(CPSR_AIF & mask);
7117     env->daif |= val & CPSR_AIF & mask;
7118 
7119     if (write_type != CPSRWriteRaw &&
7120         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7121         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7122             /* Note that we can only get here in USR mode if this is a
7123              * gdb stub write; for this case we follow the architectural
7124              * behaviour for guest writes in USR mode of ignoring an attempt
7125              * to switch mode. (Those are caught by translate.c for writes
7126              * triggered by guest instructions.)
7127              */
7128             mask &= ~CPSR_M;
7129         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7130             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7131              * v7, and has defined behaviour in v8:
7132              *  + leave CPSR.M untouched
7133              *  + allow changes to the other CPSR fields
7134              *  + set PSTATE.IL
7135              * For user changes via the GDB stub, we don't set PSTATE.IL,
7136              * as this would be unnecessarily harsh for a user error.
7137              */
7138             mask &= ~CPSR_M;
7139             if (write_type != CPSRWriteByGDBStub &&
7140                 arm_feature(env, ARM_FEATURE_V8)) {
7141                 mask |= CPSR_IL;
7142                 val |= CPSR_IL;
7143             }
7144             qemu_log_mask(LOG_GUEST_ERROR,
7145                           "Illegal AArch32 mode switch attempt from %s to %s\n",
7146                           aarch32_mode_name(env->uncached_cpsr),
7147                           aarch32_mode_name(val));
7148         } else {
7149             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7150                           write_type == CPSRWriteExceptionReturn ?
7151                           "Exception return from AArch32" :
7152                           "AArch32 mode switch from",
7153                           aarch32_mode_name(env->uncached_cpsr),
7154                           aarch32_mode_name(val), env->regs[15]);
7155             switch_mode(env, val & CPSR_M);
7156         }
7157     }
7158     mask &= ~CACHED_CPSR_BITS;
7159     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7160 }
7161 
7162 /* Sign/zero extend */
7163 uint32_t HELPER(sxtb16)(uint32_t x)
7164 {
7165     uint32_t res;
7166     res = (uint16_t)(int8_t)x;
7167     res |= (uint32_t)(int8_t)(x >> 16) << 16;
7168     return res;
7169 }
7170 
7171 uint32_t HELPER(uxtb16)(uint32_t x)
7172 {
7173     uint32_t res;
7174     res = (uint16_t)(uint8_t)x;
7175     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7176     return res;
7177 }
7178 
7179 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7180 {
7181     if (den == 0)
7182       return 0;
7183     if (num == INT_MIN && den == -1)
7184       return INT_MIN;
7185     return num / den;
7186 }
7187 
7188 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7189 {
7190     if (den == 0)
7191       return 0;
7192     return num / den;
7193 }
7194 
7195 uint32_t HELPER(rbit)(uint32_t x)
7196 {
7197     return revbit32(x);
7198 }
7199 
7200 #ifdef CONFIG_USER_ONLY
7201 
7202 /* These should probably raise undefined insn exceptions.  */
7203 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7204 {
7205     ARMCPU *cpu = arm_env_get_cpu(env);
7206 
7207     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7208 }
7209 
7210 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7211 {
7212     ARMCPU *cpu = arm_env_get_cpu(env);
7213 
7214     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7215     return 0;
7216 }
7217 
7218 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7219 {
7220     /* translate.c should never generate calls here in user-only mode */
7221     g_assert_not_reached();
7222 }
7223 
7224 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7225 {
7226     /* translate.c should never generate calls here in user-only mode */
7227     g_assert_not_reached();
7228 }
7229 
7230 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7231 {
7232     /* The TT instructions can be used by unprivileged code, but in
7233      * user-only emulation we don't have the MPU.
7234      * Luckily since we know we are NonSecure unprivileged (and that in
7235      * turn means that the A flag wasn't specified), all the bits in the
7236      * register must be zero:
7237      *  IREGION: 0 because IRVALID is 0
7238      *  IRVALID: 0 because NS
7239      *  S: 0 because NS
7240      *  NSRW: 0 because NS
7241      *  NSR: 0 because NS
7242      *  RW: 0 because unpriv and A flag not set
7243      *  R: 0 because unpriv and A flag not set
7244      *  SRVALID: 0 because NS
7245      *  MRVALID: 0 because unpriv and A flag not set
7246      *  SREGION: 0 becaus SRVALID is 0
7247      *  MREGION: 0 because MRVALID is 0
7248      */
7249     return 0;
7250 }
7251 
7252 static void switch_mode(CPUARMState *env, int mode)
7253 {
7254     ARMCPU *cpu = arm_env_get_cpu(env);
7255 
7256     if (mode != ARM_CPU_MODE_USR) {
7257         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7258     }
7259 }
7260 
7261 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7262                                  uint32_t cur_el, bool secure)
7263 {
7264     return 1;
7265 }
7266 
7267 void aarch64_sync_64_to_32(CPUARMState *env)
7268 {
7269     g_assert_not_reached();
7270 }
7271 
7272 #else
7273 
7274 static void switch_mode(CPUARMState *env, int mode)
7275 {
7276     int old_mode;
7277     int i;
7278 
7279     old_mode = env->uncached_cpsr & CPSR_M;
7280     if (mode == old_mode)
7281         return;
7282 
7283     if (old_mode == ARM_CPU_MODE_FIQ) {
7284         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7285         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7286     } else if (mode == ARM_CPU_MODE_FIQ) {
7287         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7288         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7289     }
7290 
7291     i = bank_number(old_mode);
7292     env->banked_r13[i] = env->regs[13];
7293     env->banked_spsr[i] = env->spsr;
7294 
7295     i = bank_number(mode);
7296     env->regs[13] = env->banked_r13[i];
7297     env->spsr = env->banked_spsr[i];
7298 
7299     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7300     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7301 }
7302 
7303 /* Physical Interrupt Target EL Lookup Table
7304  *
7305  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7306  *
7307  * The below multi-dimensional table is used for looking up the target
7308  * exception level given numerous condition criteria.  Specifically, the
7309  * target EL is based on SCR and HCR routing controls as well as the
7310  * currently executing EL and secure state.
7311  *
7312  *    Dimensions:
7313  *    target_el_table[2][2][2][2][2][4]
7314  *                    |  |  |  |  |  +--- Current EL
7315  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
7316  *                    |  |  |  +--------- HCR mask override
7317  *                    |  |  +------------ SCR exec state control
7318  *                    |  +--------------- SCR mask override
7319  *                    +------------------ 32-bit(0)/64-bit(1) EL3
7320  *
7321  *    The table values are as such:
7322  *    0-3 = EL0-EL3
7323  *     -1 = Cannot occur
7324  *
7325  * The ARM ARM target EL table includes entries indicating that an "exception
7326  * is not taken".  The two cases where this is applicable are:
7327  *    1) An exception is taken from EL3 but the SCR does not have the exception
7328  *    routed to EL3.
7329  *    2) An exception is taken from EL2 but the HCR does not have the exception
7330  *    routed to EL2.
7331  * In these two cases, the below table contain a target of EL1.  This value is
7332  * returned as it is expected that the consumer of the table data will check
7333  * for "target EL >= current EL" to ensure the exception is not taken.
7334  *
7335  *            SCR     HCR
7336  *         64  EA     AMO                 From
7337  *        BIT IRQ     IMO      Non-secure         Secure
7338  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
7339  */
7340 static const int8_t target_el_table[2][2][2][2][2][4] = {
7341     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7342        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
7343       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7344        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
7345      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7346        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
7347       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7348        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
7349     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
7350        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
7351       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
7352        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
7353      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7354        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
7355       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7356        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
7357 };
7358 
7359 /*
7360  * Determine the target EL for physical exceptions
7361  */
7362 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7363                                  uint32_t cur_el, bool secure)
7364 {
7365     CPUARMState *env = cs->env_ptr;
7366     bool rw;
7367     bool scr;
7368     bool hcr;
7369     int target_el;
7370     /* Is the highest EL AArch64? */
7371     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7372     uint64_t hcr_el2;
7373 
7374     if (arm_feature(env, ARM_FEATURE_EL3)) {
7375         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7376     } else {
7377         /* Either EL2 is the highest EL (and so the EL2 register width
7378          * is given by is64); or there is no EL2 or EL3, in which case
7379          * the value of 'rw' does not affect the table lookup anyway.
7380          */
7381         rw = is64;
7382     }
7383 
7384     hcr_el2 = arm_hcr_el2_eff(env);
7385     switch (excp_idx) {
7386     case EXCP_IRQ:
7387         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7388         hcr = hcr_el2 & HCR_IMO;
7389         break;
7390     case EXCP_FIQ:
7391         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7392         hcr = hcr_el2 & HCR_FMO;
7393         break;
7394     default:
7395         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7396         hcr = hcr_el2 & HCR_AMO;
7397         break;
7398     };
7399 
7400     /* Perform a table-lookup for the target EL given the current state */
7401     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7402 
7403     assert(target_el > 0);
7404 
7405     return target_el;
7406 }
7407 
7408 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7409                             ARMMMUIdx mmu_idx, bool ignfault)
7410 {
7411     CPUState *cs = CPU(cpu);
7412     CPUARMState *env = &cpu->env;
7413     MemTxAttrs attrs = {};
7414     MemTxResult txres;
7415     target_ulong page_size;
7416     hwaddr physaddr;
7417     int prot;
7418     ARMMMUFaultInfo fi = {};
7419     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7420     int exc;
7421     bool exc_secure;
7422 
7423     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7424                       &attrs, &prot, &page_size, &fi, NULL)) {
7425         /* MPU/SAU lookup failed */
7426         if (fi.type == ARMFault_QEMU_SFault) {
7427             qemu_log_mask(CPU_LOG_INT,
7428                           "...SecureFault with SFSR.AUVIOL during stacking\n");
7429             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7430             env->v7m.sfar = addr;
7431             exc = ARMV7M_EXCP_SECURE;
7432             exc_secure = false;
7433         } else {
7434             qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
7435             env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7436             exc = ARMV7M_EXCP_MEM;
7437             exc_secure = secure;
7438         }
7439         goto pend_fault;
7440     }
7441     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7442                          attrs, &txres);
7443     if (txres != MEMTX_OK) {
7444         /* BusFault trying to write the data */
7445         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7446         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7447         exc = ARMV7M_EXCP_BUS;
7448         exc_secure = false;
7449         goto pend_fault;
7450     }
7451     return true;
7452 
7453 pend_fault:
7454     /* By pending the exception at this point we are making
7455      * the IMPDEF choice "overridden exceptions pended" (see the
7456      * MergeExcInfo() pseudocode). The other choice would be to not
7457      * pend them now and then make a choice about which to throw away
7458      * later if we have two derived exceptions.
7459      * The only case when we must not pend the exception but instead
7460      * throw it away is if we are doing the push of the callee registers
7461      * and we've already generated a derived exception. Even in this
7462      * case we will still update the fault status registers.
7463      */
7464     if (!ignfault) {
7465         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7466     }
7467     return false;
7468 }
7469 
7470 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7471                            ARMMMUIdx mmu_idx)
7472 {
7473     CPUState *cs = CPU(cpu);
7474     CPUARMState *env = &cpu->env;
7475     MemTxAttrs attrs = {};
7476     MemTxResult txres;
7477     target_ulong page_size;
7478     hwaddr physaddr;
7479     int prot;
7480     ARMMMUFaultInfo fi = {};
7481     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7482     int exc;
7483     bool exc_secure;
7484     uint32_t value;
7485 
7486     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7487                       &attrs, &prot, &page_size, &fi, NULL)) {
7488         /* MPU/SAU lookup failed */
7489         if (fi.type == ARMFault_QEMU_SFault) {
7490             qemu_log_mask(CPU_LOG_INT,
7491                           "...SecureFault with SFSR.AUVIOL during unstack\n");
7492             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7493             env->v7m.sfar = addr;
7494             exc = ARMV7M_EXCP_SECURE;
7495             exc_secure = false;
7496         } else {
7497             qemu_log_mask(CPU_LOG_INT,
7498                           "...MemManageFault with CFSR.MUNSTKERR\n");
7499             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7500             exc = ARMV7M_EXCP_MEM;
7501             exc_secure = secure;
7502         }
7503         goto pend_fault;
7504     }
7505 
7506     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7507                               attrs, &txres);
7508     if (txres != MEMTX_OK) {
7509         /* BusFault trying to read the data */
7510         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7511         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7512         exc = ARMV7M_EXCP_BUS;
7513         exc_secure = false;
7514         goto pend_fault;
7515     }
7516 
7517     *dest = value;
7518     return true;
7519 
7520 pend_fault:
7521     /* By pending the exception at this point we are making
7522      * the IMPDEF choice "overridden exceptions pended" (see the
7523      * MergeExcInfo() pseudocode). The other choice would be to not
7524      * pend them now and then make a choice about which to throw away
7525      * later if we have two derived exceptions.
7526      */
7527     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7528     return false;
7529 }
7530 
7531 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7532  * This may change the current stack pointer between Main and Process
7533  * stack pointers if it is done for the CONTROL register for the current
7534  * security state.
7535  */
7536 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7537                                                  bool new_spsel,
7538                                                  bool secstate)
7539 {
7540     bool old_is_psp = v7m_using_psp(env);
7541 
7542     env->v7m.control[secstate] =
7543         deposit32(env->v7m.control[secstate],
7544                   R_V7M_CONTROL_SPSEL_SHIFT,
7545                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7546 
7547     if (secstate == env->v7m.secure) {
7548         bool new_is_psp = v7m_using_psp(env);
7549         uint32_t tmp;
7550 
7551         if (old_is_psp != new_is_psp) {
7552             tmp = env->v7m.other_sp;
7553             env->v7m.other_sp = env->regs[13];
7554             env->regs[13] = tmp;
7555         }
7556     }
7557 }
7558 
7559 /* Write to v7M CONTROL.SPSEL bit. This may change the current
7560  * stack pointer between Main and Process stack pointers.
7561  */
7562 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7563 {
7564     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7565 }
7566 
7567 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7568 {
7569     /* Write a new value to v7m.exception, thus transitioning into or out
7570      * of Handler mode; this may result in a change of active stack pointer.
7571      */
7572     bool new_is_psp, old_is_psp = v7m_using_psp(env);
7573     uint32_t tmp;
7574 
7575     env->v7m.exception = new_exc;
7576 
7577     new_is_psp = v7m_using_psp(env);
7578 
7579     if (old_is_psp != new_is_psp) {
7580         tmp = env->v7m.other_sp;
7581         env->v7m.other_sp = env->regs[13];
7582         env->regs[13] = tmp;
7583     }
7584 }
7585 
7586 /* Switch M profile security state between NS and S */
7587 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7588 {
7589     uint32_t new_ss_msp, new_ss_psp;
7590 
7591     if (env->v7m.secure == new_secstate) {
7592         return;
7593     }
7594 
7595     /* All the banked state is accessed by looking at env->v7m.secure
7596      * except for the stack pointer; rearrange the SP appropriately.
7597      */
7598     new_ss_msp = env->v7m.other_ss_msp;
7599     new_ss_psp = env->v7m.other_ss_psp;
7600 
7601     if (v7m_using_psp(env)) {
7602         env->v7m.other_ss_psp = env->regs[13];
7603         env->v7m.other_ss_msp = env->v7m.other_sp;
7604     } else {
7605         env->v7m.other_ss_msp = env->regs[13];
7606         env->v7m.other_ss_psp = env->v7m.other_sp;
7607     }
7608 
7609     env->v7m.secure = new_secstate;
7610 
7611     if (v7m_using_psp(env)) {
7612         env->regs[13] = new_ss_psp;
7613         env->v7m.other_sp = new_ss_msp;
7614     } else {
7615         env->regs[13] = new_ss_msp;
7616         env->v7m.other_sp = new_ss_psp;
7617     }
7618 }
7619 
7620 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7621 {
7622     /* Handle v7M BXNS:
7623      *  - if the return value is a magic value, do exception return (like BX)
7624      *  - otherwise bit 0 of the return value is the target security state
7625      */
7626     uint32_t min_magic;
7627 
7628     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7629         /* Covers FNC_RETURN and EXC_RETURN magic */
7630         min_magic = FNC_RETURN_MIN_MAGIC;
7631     } else {
7632         /* EXC_RETURN magic only */
7633         min_magic = EXC_RETURN_MIN_MAGIC;
7634     }
7635 
7636     if (dest >= min_magic) {
7637         /* This is an exception return magic value; put it where
7638          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
7639          * Note that if we ever add gen_ss_advance() singlestep support to
7640          * M profile this should count as an "instruction execution complete"
7641          * event (compare gen_bx_excret_final_code()).
7642          */
7643         env->regs[15] = dest & ~1;
7644         env->thumb = dest & 1;
7645         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
7646         /* notreached */
7647     }
7648 
7649     /* translate.c should have made BXNS UNDEF unless we're secure */
7650     assert(env->v7m.secure);
7651 
7652     switch_v7m_security_state(env, dest & 1);
7653     env->thumb = 1;
7654     env->regs[15] = dest & ~1;
7655 }
7656 
7657 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7658 {
7659     /* Handle v7M BLXNS:
7660      *  - bit 0 of the destination address is the target security state
7661      */
7662 
7663     /* At this point regs[15] is the address just after the BLXNS */
7664     uint32_t nextinst = env->regs[15] | 1;
7665     uint32_t sp = env->regs[13] - 8;
7666     uint32_t saved_psr;
7667 
7668     /* translate.c will have made BLXNS UNDEF unless we're secure */
7669     assert(env->v7m.secure);
7670 
7671     if (dest & 1) {
7672         /* target is Secure, so this is just a normal BLX,
7673          * except that the low bit doesn't indicate Thumb/not.
7674          */
7675         env->regs[14] = nextinst;
7676         env->thumb = 1;
7677         env->regs[15] = dest & ~1;
7678         return;
7679     }
7680 
7681     /* Target is non-secure: first push a stack frame */
7682     if (!QEMU_IS_ALIGNED(sp, 8)) {
7683         qemu_log_mask(LOG_GUEST_ERROR,
7684                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
7685     }
7686 
7687     if (sp < v7m_sp_limit(env)) {
7688         raise_exception(env, EXCP_STKOF, 0, 1);
7689     }
7690 
7691     saved_psr = env->v7m.exception;
7692     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
7693         saved_psr |= XPSR_SFPA;
7694     }
7695 
7696     /* Note that these stores can throw exceptions on MPU faults */
7697     cpu_stl_data(env, sp, nextinst);
7698     cpu_stl_data(env, sp + 4, saved_psr);
7699 
7700     env->regs[13] = sp;
7701     env->regs[14] = 0xfeffffff;
7702     if (arm_v7m_is_handler_mode(env)) {
7703         /* Write a dummy value to IPSR, to avoid leaking the current secure
7704          * exception number to non-secure code. This is guaranteed not
7705          * to cause write_v7m_exception() to actually change stacks.
7706          */
7707         write_v7m_exception(env, 1);
7708     }
7709     switch_v7m_security_state(env, 0);
7710     env->thumb = 1;
7711     env->regs[15] = dest;
7712 }
7713 
7714 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
7715                                 bool spsel)
7716 {
7717     /* Return a pointer to the location where we currently store the
7718      * stack pointer for the requested security state and thread mode.
7719      * This pointer will become invalid if the CPU state is updated
7720      * such that the stack pointers are switched around (eg changing
7721      * the SPSEL control bit).
7722      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7723      * Unlike that pseudocode, we require the caller to pass us in the
7724      * SPSEL control bit value; this is because we also use this
7725      * function in handling of pushing of the callee-saves registers
7726      * part of the v8M stack frame (pseudocode PushCalleeStack()),
7727      * and in the tailchain codepath the SPSEL bit comes from the exception
7728      * return magic LR value from the previous exception. The pseudocode
7729      * opencodes the stack-selection in PushCalleeStack(), but we prefer
7730      * to make this utility function generic enough to do the job.
7731      */
7732     bool want_psp = threadmode && spsel;
7733 
7734     if (secure == env->v7m.secure) {
7735         if (want_psp == v7m_using_psp(env)) {
7736             return &env->regs[13];
7737         } else {
7738             return &env->v7m.other_sp;
7739         }
7740     } else {
7741         if (want_psp) {
7742             return &env->v7m.other_ss_psp;
7743         } else {
7744             return &env->v7m.other_ss_msp;
7745         }
7746     }
7747 }
7748 
7749 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
7750                                 uint32_t *pvec)
7751 {
7752     CPUState *cs = CPU(cpu);
7753     CPUARMState *env = &cpu->env;
7754     MemTxResult result;
7755     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
7756     uint32_t vector_entry;
7757     MemTxAttrs attrs = {};
7758     ARMMMUIdx mmu_idx;
7759     bool exc_secure;
7760 
7761     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
7762 
7763     /* We don't do a get_phys_addr() here because the rules for vector
7764      * loads are special: they always use the default memory map, and
7765      * the default memory map permits reads from all addresses.
7766      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7767      * that we want this special case which would always say "yes",
7768      * we just do the SAU lookup here followed by a direct physical load.
7769      */
7770     attrs.secure = targets_secure;
7771     attrs.user = false;
7772 
7773     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7774         V8M_SAttributes sattrs = {};
7775 
7776         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
7777         if (sattrs.ns) {
7778             attrs.secure = false;
7779         } else if (!targets_secure) {
7780             /* NS access to S memory */
7781             goto load_fail;
7782         }
7783     }
7784 
7785     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
7786                                      attrs, &result);
7787     if (result != MEMTX_OK) {
7788         goto load_fail;
7789     }
7790     *pvec = vector_entry;
7791     return true;
7792 
7793 load_fail:
7794     /* All vector table fetch fails are reported as HardFault, with
7795      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7796      * technically the underlying exception is a MemManage or BusFault
7797      * that is escalated to HardFault.) This is a terminal exception,
7798      * so we will either take the HardFault immediately or else enter
7799      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7800      */
7801     exc_secure = targets_secure ||
7802         !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
7803     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
7804     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
7805     return false;
7806 }
7807 
7808 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7809                                   bool ignore_faults)
7810 {
7811     /* For v8M, push the callee-saves register part of the stack frame.
7812      * Compare the v8M pseudocode PushCalleeStack().
7813      * In the tailchaining case this may not be the current stack.
7814      */
7815     CPUARMState *env = &cpu->env;
7816     uint32_t *frame_sp_p;
7817     uint32_t frameptr;
7818     ARMMMUIdx mmu_idx;
7819     bool stacked_ok;
7820     uint32_t limit;
7821     bool want_psp;
7822 
7823     if (dotailchain) {
7824         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
7825         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
7826             !mode;
7827 
7828         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
7829         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
7830                                     lr & R_V7M_EXCRET_SPSEL_MASK);
7831         want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
7832         if (want_psp) {
7833             limit = env->v7m.psplim[M_REG_S];
7834         } else {
7835             limit = env->v7m.msplim[M_REG_S];
7836         }
7837     } else {
7838         mmu_idx = arm_mmu_idx(env);
7839         frame_sp_p = &env->regs[13];
7840         limit = v7m_sp_limit(env);
7841     }
7842 
7843     frameptr = *frame_sp_p - 0x28;
7844     if (frameptr < limit) {
7845         /*
7846          * Stack limit failure: set SP to the limit value, and generate
7847          * STKOF UsageFault. Stack pushes below the limit must not be
7848          * performed. It is IMPDEF whether pushes above the limit are
7849          * performed; we choose not to.
7850          */
7851         qemu_log_mask(CPU_LOG_INT,
7852                       "...STKOF during callee-saves register stacking\n");
7853         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7854         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7855                                 env->v7m.secure);
7856         *frame_sp_p = limit;
7857         return true;
7858     }
7859 
7860     /* Write as much of the stack frame as we can. A write failure may
7861      * cause us to pend a derived exception.
7862      */
7863     stacked_ok =
7864         v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
7865         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
7866                         ignore_faults) &&
7867         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
7868                         ignore_faults) &&
7869         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
7870                         ignore_faults) &&
7871         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
7872                         ignore_faults) &&
7873         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
7874                         ignore_faults) &&
7875         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
7876                         ignore_faults) &&
7877         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
7878                         ignore_faults) &&
7879         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
7880                         ignore_faults);
7881 
7882     /* Update SP regardless of whether any of the stack accesses failed. */
7883     *frame_sp_p = frameptr;
7884 
7885     return !stacked_ok;
7886 }
7887 
7888 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7889                                 bool ignore_stackfaults)
7890 {
7891     /* Do the "take the exception" parts of exception entry,
7892      * but not the pushing of state to the stack. This is
7893      * similar to the pseudocode ExceptionTaken() function.
7894      */
7895     CPUARMState *env = &cpu->env;
7896     uint32_t addr;
7897     bool targets_secure;
7898     int exc;
7899     bool push_failed = false;
7900 
7901     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
7902     qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
7903                   targets_secure ? "secure" : "nonsecure", exc);
7904 
7905     if (arm_feature(env, ARM_FEATURE_V8)) {
7906         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7907             (lr & R_V7M_EXCRET_S_MASK)) {
7908             /* The background code (the owner of the registers in the
7909              * exception frame) is Secure. This means it may either already
7910              * have or now needs to push callee-saves registers.
7911              */
7912             if (targets_secure) {
7913                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
7914                     /* We took an exception from Secure to NonSecure
7915                      * (which means the callee-saved registers got stacked)
7916                      * and are now tailchaining to a Secure exception.
7917                      * Clear DCRS so eventual return from this Secure
7918                      * exception unstacks the callee-saved registers.
7919                      */
7920                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
7921                 }
7922             } else {
7923                 /* We're going to a non-secure exception; push the
7924                  * callee-saves registers to the stack now, if they're
7925                  * not already saved.
7926                  */
7927                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
7928                     !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
7929                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
7930                                                         ignore_stackfaults);
7931                 }
7932                 lr |= R_V7M_EXCRET_DCRS_MASK;
7933             }
7934         }
7935 
7936         lr &= ~R_V7M_EXCRET_ES_MASK;
7937         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7938             lr |= R_V7M_EXCRET_ES_MASK;
7939         }
7940         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
7941         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
7942             lr |= R_V7M_EXCRET_SPSEL_MASK;
7943         }
7944 
7945         /* Clear registers if necessary to prevent non-secure exception
7946          * code being able to see register values from secure code.
7947          * Where register values become architecturally UNKNOWN we leave
7948          * them with their previous values.
7949          */
7950         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7951             if (!targets_secure) {
7952                 /* Always clear the caller-saved registers (they have been
7953                  * pushed to the stack earlier in v7m_push_stack()).
7954                  * Clear callee-saved registers if the background code is
7955                  * Secure (in which case these regs were saved in
7956                  * v7m_push_callee_stack()).
7957                  */
7958                 int i;
7959 
7960                 for (i = 0; i < 13; i++) {
7961                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
7962                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
7963                         env->regs[i] = 0;
7964                     }
7965                 }
7966                 /* Clear EAPSR */
7967                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
7968             }
7969         }
7970     }
7971 
7972     if (push_failed && !ignore_stackfaults) {
7973         /* Derived exception on callee-saves register stacking:
7974          * we might now want to take a different exception which
7975          * targets a different security state, so try again from the top.
7976          */
7977         qemu_log_mask(CPU_LOG_INT,
7978                       "...derived exception on callee-saves register stacking");
7979         v7m_exception_taken(cpu, lr, true, true);
7980         return;
7981     }
7982 
7983     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
7984         /* Vector load failed: derived exception */
7985         qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
7986         v7m_exception_taken(cpu, lr, true, true);
7987         return;
7988     }
7989 
7990     /* Now we've done everything that might cause a derived exception
7991      * we can go ahead and activate whichever exception we're going to
7992      * take (which might now be the derived exception).
7993      */
7994     armv7m_nvic_acknowledge_irq(env->nvic);
7995 
7996     /* Switch to target security state -- must do this before writing SPSEL */
7997     switch_v7m_security_state(env, targets_secure);
7998     write_v7m_control_spsel(env, 0);
7999     arm_clear_exclusive(env);
8000     /* Clear IT bits */
8001     env->condexec_bits = 0;
8002     env->regs[14] = lr;
8003     env->regs[15] = addr & 0xfffffffe;
8004     env->thumb = addr & 1;
8005 }
8006 
8007 static bool v7m_push_stack(ARMCPU *cpu)
8008 {
8009     /* Do the "set up stack frame" part of exception entry,
8010      * similar to pseudocode PushStack().
8011      * Return true if we generate a derived exception (and so
8012      * should ignore further stack faults trying to process
8013      * that derived exception.)
8014      */
8015     bool stacked_ok;
8016     CPUARMState *env = &cpu->env;
8017     uint32_t xpsr = xpsr_read(env);
8018     uint32_t frameptr = env->regs[13];
8019     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8020 
8021     /* Align stack pointer if the guest wants that */
8022     if ((frameptr & 4) &&
8023         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8024         frameptr -= 4;
8025         xpsr |= XPSR_SPREALIGN;
8026     }
8027 
8028     frameptr -= 0x20;
8029 
8030     if (arm_feature(env, ARM_FEATURE_V8)) {
8031         uint32_t limit = v7m_sp_limit(env);
8032 
8033         if (frameptr < limit) {
8034             /*
8035              * Stack limit failure: set SP to the limit value, and generate
8036              * STKOF UsageFault. Stack pushes below the limit must not be
8037              * performed. It is IMPDEF whether pushes above the limit are
8038              * performed; we choose not to.
8039              */
8040             qemu_log_mask(CPU_LOG_INT,
8041                           "...STKOF during stacking\n");
8042             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8043             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8044                                     env->v7m.secure);
8045             env->regs[13] = limit;
8046             return true;
8047         }
8048     }
8049 
8050     /* Write as much of the stack frame as we can. If we fail a stack
8051      * write this will result in a derived exception being pended
8052      * (which may be taken in preference to the one we started with
8053      * if it has higher priority).
8054      */
8055     stacked_ok =
8056         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
8057         v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
8058         v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
8059         v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
8060         v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
8061         v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
8062         v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
8063         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
8064 
8065     /* Update SP regardless of whether any of the stack accesses failed. */
8066     env->regs[13] = frameptr;
8067 
8068     return !stacked_ok;
8069 }
8070 
8071 static void do_v7m_exception_exit(ARMCPU *cpu)
8072 {
8073     CPUARMState *env = &cpu->env;
8074     uint32_t excret;
8075     uint32_t xpsr;
8076     bool ufault = false;
8077     bool sfault = false;
8078     bool return_to_sp_process;
8079     bool return_to_handler;
8080     bool rettobase = false;
8081     bool exc_secure = false;
8082     bool return_to_secure;
8083 
8084     /* If we're not in Handler mode then jumps to magic exception-exit
8085      * addresses don't have magic behaviour. However for the v8M
8086      * security extensions the magic secure-function-return has to
8087      * work in thread mode too, so to avoid doing an extra check in
8088      * the generated code we allow exception-exit magic to also cause the
8089      * internal exception and bring us here in thread mode. Correct code
8090      * will never try to do this (the following insn fetch will always
8091      * fault) so we the overhead of having taken an unnecessary exception
8092      * doesn't matter.
8093      */
8094     if (!arm_v7m_is_handler_mode(env)) {
8095         return;
8096     }
8097 
8098     /* In the spec pseudocode ExceptionReturn() is called directly
8099      * from BXWritePC() and gets the full target PC value including
8100      * bit zero. In QEMU's implementation we treat it as a normal
8101      * jump-to-register (which is then caught later on), and so split
8102      * the target value up between env->regs[15] and env->thumb in
8103      * gen_bx(). Reconstitute it.
8104      */
8105     excret = env->regs[15];
8106     if (env->thumb) {
8107         excret |= 1;
8108     }
8109 
8110     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8111                   " previous exception %d\n",
8112                   excret, env->v7m.exception);
8113 
8114     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8115         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8116                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8117                       excret);
8118     }
8119 
8120     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8121         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8122          * we pick which FAULTMASK to clear.
8123          */
8124         if (!env->v7m.secure &&
8125             ((excret & R_V7M_EXCRET_ES_MASK) ||
8126              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8127             sfault = 1;
8128             /* For all other purposes, treat ES as 0 (R_HXSR) */
8129             excret &= ~R_V7M_EXCRET_ES_MASK;
8130         }
8131         exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8132     }
8133 
8134     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8135         /* Auto-clear FAULTMASK on return from other than NMI.
8136          * If the security extension is implemented then this only
8137          * happens if the raw execution priority is >= 0; the
8138          * value of the ES bit in the exception return value indicates
8139          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8140          */
8141         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8142             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8143                 env->v7m.faultmask[exc_secure] = 0;
8144             }
8145         } else {
8146             env->v7m.faultmask[M_REG_NS] = 0;
8147         }
8148     }
8149 
8150     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8151                                      exc_secure)) {
8152     case -1:
8153         /* attempt to exit an exception that isn't active */
8154         ufault = true;
8155         break;
8156     case 0:
8157         /* still an irq active now */
8158         break;
8159     case 1:
8160         /* we returned to base exception level, no nesting.
8161          * (In the pseudocode this is written using "NestedActivation != 1"
8162          * where we have 'rettobase == false'.)
8163          */
8164         rettobase = true;
8165         break;
8166     default:
8167         g_assert_not_reached();
8168     }
8169 
8170     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8171     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8172     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8173         (excret & R_V7M_EXCRET_S_MASK);
8174 
8175     if (arm_feature(env, ARM_FEATURE_V8)) {
8176         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8177             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8178              * we choose to take the UsageFault.
8179              */
8180             if ((excret & R_V7M_EXCRET_S_MASK) ||
8181                 (excret & R_V7M_EXCRET_ES_MASK) ||
8182                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8183                 ufault = true;
8184             }
8185         }
8186         if (excret & R_V7M_EXCRET_RES0_MASK) {
8187             ufault = true;
8188         }
8189     } else {
8190         /* For v7M we only recognize certain combinations of the low bits */
8191         switch (excret & 0xf) {
8192         case 1: /* Return to Handler */
8193             break;
8194         case 13: /* Return to Thread using Process stack */
8195         case 9: /* Return to Thread using Main stack */
8196             /* We only need to check NONBASETHRDENA for v7M, because in
8197              * v8M this bit does not exist (it is RES1).
8198              */
8199             if (!rettobase &&
8200                 !(env->v7m.ccr[env->v7m.secure] &
8201                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
8202                 ufault = true;
8203             }
8204             break;
8205         default:
8206             ufault = true;
8207         }
8208     }
8209 
8210     /*
8211      * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8212      * Handler mode (and will be until we write the new XPSR.Interrupt
8213      * field) this does not switch around the current stack pointer.
8214      * We must do this before we do any kind of tailchaining, including
8215      * for the derived exceptions on integrity check failures, or we will
8216      * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8217      */
8218     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8219 
8220     if (sfault) {
8221         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8222         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8223         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8224                       "stackframe: failed EXC_RETURN.ES validity check\n");
8225         v7m_exception_taken(cpu, excret, true, false);
8226         return;
8227     }
8228 
8229     if (ufault) {
8230         /* Bad exception return: instead of popping the exception
8231          * stack, directly take a usage fault on the current stack.
8232          */
8233         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8234         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8235         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8236                       "stackframe: failed exception return integrity check\n");
8237         v7m_exception_taken(cpu, excret, true, false);
8238         return;
8239     }
8240 
8241     /*
8242      * Tailchaining: if there is currently a pending exception that
8243      * is high enough priority to preempt execution at the level we're
8244      * about to return to, then just directly take that exception now,
8245      * avoiding an unstack-and-then-stack. Note that now we have
8246      * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8247      * our current execution priority is already the execution priority we are
8248      * returning to -- none of the state we would unstack or set based on
8249      * the EXCRET value affects it.
8250      */
8251     if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8252         qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8253         v7m_exception_taken(cpu, excret, true, false);
8254         return;
8255     }
8256 
8257     switch_v7m_security_state(env, return_to_secure);
8258 
8259     {
8260         /* The stack pointer we should be reading the exception frame from
8261          * depends on bits in the magic exception return type value (and
8262          * for v8M isn't necessarily the stack pointer we will eventually
8263          * end up resuming execution with). Get a pointer to the location
8264          * in the CPU state struct where the SP we need is currently being
8265          * stored; we will use and modify it in place.
8266          * We use this limited C variable scope so we don't accidentally
8267          * use 'frame_sp_p' after we do something that makes it invalid.
8268          */
8269         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
8270                                               return_to_secure,
8271                                               !return_to_handler,
8272                                               return_to_sp_process);
8273         uint32_t frameptr = *frame_sp_p;
8274         bool pop_ok = true;
8275         ARMMMUIdx mmu_idx;
8276         bool return_to_priv = return_to_handler ||
8277             !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
8278 
8279         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
8280                                                         return_to_priv);
8281 
8282         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
8283             arm_feature(env, ARM_FEATURE_V8)) {
8284             qemu_log_mask(LOG_GUEST_ERROR,
8285                           "M profile exception return with non-8-aligned SP "
8286                           "for destination state is UNPREDICTABLE\n");
8287         }
8288 
8289         /* Do we need to pop callee-saved registers? */
8290         if (return_to_secure &&
8291             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
8292              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
8293             uint32_t expected_sig = 0xfefa125b;
8294             uint32_t actual_sig;
8295 
8296             pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
8297 
8298             if (pop_ok && expected_sig != actual_sig) {
8299                 /* Take a SecureFault on the current stack */
8300                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
8301                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8302                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8303                               "stackframe: failed exception return integrity "
8304                               "signature check\n");
8305                 v7m_exception_taken(cpu, excret, true, false);
8306                 return;
8307             }
8308 
8309             pop_ok = pop_ok &&
8310                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
8311                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
8312                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
8313                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
8314                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
8315                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
8316                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
8317                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
8318 
8319             frameptr += 0x28;
8320         }
8321 
8322         /* Pop registers */
8323         pop_ok = pop_ok &&
8324             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
8325             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
8326             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
8327             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
8328             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
8329             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
8330             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
8331             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
8332 
8333         if (!pop_ok) {
8334             /* v7m_stack_read() pended a fault, so take it (as a tail
8335              * chained exception on the same stack frame)
8336              */
8337             qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
8338             v7m_exception_taken(cpu, excret, true, false);
8339             return;
8340         }
8341 
8342         /* Returning from an exception with a PC with bit 0 set is defined
8343          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
8344          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
8345          * the lsbit, and there are several RTOSes out there which incorrectly
8346          * assume the r15 in the stack frame should be a Thumb-style "lsbit
8347          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
8348          * complain about the badly behaved guest.
8349          */
8350         if (env->regs[15] & 1) {
8351             env->regs[15] &= ~1U;
8352             if (!arm_feature(env, ARM_FEATURE_V8)) {
8353                 qemu_log_mask(LOG_GUEST_ERROR,
8354                               "M profile return from interrupt with misaligned "
8355                               "PC is UNPREDICTABLE on v7M\n");
8356             }
8357         }
8358 
8359         if (arm_feature(env, ARM_FEATURE_V8)) {
8360             /* For v8M we have to check whether the xPSR exception field
8361              * matches the EXCRET value for return to handler/thread
8362              * before we commit to changing the SP and xPSR.
8363              */
8364             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
8365             if (return_to_handler != will_be_handler) {
8366                 /* Take an INVPC UsageFault on the current stack.
8367                  * By this point we will have switched to the security state
8368                  * for the background state, so this UsageFault will target
8369                  * that state.
8370                  */
8371                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8372                                         env->v7m.secure);
8373                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8374                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8375                               "stackframe: failed exception return integrity "
8376                               "check\n");
8377                 v7m_exception_taken(cpu, excret, true, false);
8378                 return;
8379             }
8380         }
8381 
8382         /* Commit to consuming the stack frame */
8383         frameptr += 0x20;
8384         /* Undo stack alignment (the SPREALIGN bit indicates that the original
8385          * pre-exception SP was not 8-aligned and we added a padding word to
8386          * align it, so we undo this by ORing in the bit that increases it
8387          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
8388          * would work too but a logical OR is how the pseudocode specifies it.)
8389          */
8390         if (xpsr & XPSR_SPREALIGN) {
8391             frameptr |= 4;
8392         }
8393         *frame_sp_p = frameptr;
8394     }
8395     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
8396     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
8397 
8398     /* The restored xPSR exception field will be zero if we're
8399      * resuming in Thread mode. If that doesn't match what the
8400      * exception return excret specified then this is a UsageFault.
8401      * v7M requires we make this check here; v8M did it earlier.
8402      */
8403     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
8404         /* Take an INVPC UsageFault by pushing the stack again;
8405          * we know we're v7M so this is never a Secure UsageFault.
8406          */
8407         bool ignore_stackfaults;
8408 
8409         assert(!arm_feature(env, ARM_FEATURE_V8));
8410         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
8411         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8412         ignore_stackfaults = v7m_push_stack(cpu);
8413         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
8414                       "failed exception return integrity check\n");
8415         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
8416         return;
8417     }
8418 
8419     /* Otherwise, we have a successful exception exit. */
8420     arm_clear_exclusive(env);
8421     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
8422 }
8423 
8424 static bool do_v7m_function_return(ARMCPU *cpu)
8425 {
8426     /* v8M security extensions magic function return.
8427      * We may either:
8428      *  (1) throw an exception (longjump)
8429      *  (2) return true if we successfully handled the function return
8430      *  (3) return false if we failed a consistency check and have
8431      *      pended a UsageFault that needs to be taken now
8432      *
8433      * At this point the magic return value is split between env->regs[15]
8434      * and env->thumb. We don't bother to reconstitute it because we don't
8435      * need it (all values are handled the same way).
8436      */
8437     CPUARMState *env = &cpu->env;
8438     uint32_t newpc, newpsr, newpsr_exc;
8439 
8440     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
8441 
8442     {
8443         bool threadmode, spsel;
8444         TCGMemOpIdx oi;
8445         ARMMMUIdx mmu_idx;
8446         uint32_t *frame_sp_p;
8447         uint32_t frameptr;
8448 
8449         /* Pull the return address and IPSR from the Secure stack */
8450         threadmode = !arm_v7m_is_handler_mode(env);
8451         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
8452 
8453         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
8454         frameptr = *frame_sp_p;
8455 
8456         /* These loads may throw an exception (for MPU faults). We want to
8457          * do them as secure, so work out what MMU index that is.
8458          */
8459         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8460         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
8461         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
8462         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
8463 
8464         /* Consistency checks on new IPSR */
8465         newpsr_exc = newpsr & XPSR_EXCP;
8466         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
8467               (env->v7m.exception == 1 && newpsr_exc != 0))) {
8468             /* Pend the fault and tell our caller to take it */
8469             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8470             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8471                                     env->v7m.secure);
8472             qemu_log_mask(CPU_LOG_INT,
8473                           "...taking INVPC UsageFault: "
8474                           "IPSR consistency check failed\n");
8475             return false;
8476         }
8477 
8478         *frame_sp_p = frameptr + 8;
8479     }
8480 
8481     /* This invalidates frame_sp_p */
8482     switch_v7m_security_state(env, true);
8483     env->v7m.exception = newpsr_exc;
8484     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8485     if (newpsr & XPSR_SFPA) {
8486         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
8487     }
8488     xpsr_write(env, 0, XPSR_IT);
8489     env->thumb = newpc & 1;
8490     env->regs[15] = newpc & ~1;
8491 
8492     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
8493     return true;
8494 }
8495 
8496 static void arm_log_exception(int idx)
8497 {
8498     if (qemu_loglevel_mask(CPU_LOG_INT)) {
8499         const char *exc = NULL;
8500         static const char * const excnames[] = {
8501             [EXCP_UDEF] = "Undefined Instruction",
8502             [EXCP_SWI] = "SVC",
8503             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8504             [EXCP_DATA_ABORT] = "Data Abort",
8505             [EXCP_IRQ] = "IRQ",
8506             [EXCP_FIQ] = "FIQ",
8507             [EXCP_BKPT] = "Breakpoint",
8508             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8509             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8510             [EXCP_HVC] = "Hypervisor Call",
8511             [EXCP_HYP_TRAP] = "Hypervisor Trap",
8512             [EXCP_SMC] = "Secure Monitor Call",
8513             [EXCP_VIRQ] = "Virtual IRQ",
8514             [EXCP_VFIQ] = "Virtual FIQ",
8515             [EXCP_SEMIHOST] = "Semihosting call",
8516             [EXCP_NOCP] = "v7M NOCP UsageFault",
8517             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8518             [EXCP_STKOF] = "v8M STKOF UsageFault",
8519         };
8520 
8521         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8522             exc = excnames[idx];
8523         }
8524         if (!exc) {
8525             exc = "unknown";
8526         }
8527         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8528     }
8529 }
8530 
8531 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
8532                                uint32_t addr, uint16_t *insn)
8533 {
8534     /* Load a 16-bit portion of a v7M instruction, returning true on success,
8535      * or false on failure (in which case we will have pended the appropriate
8536      * exception).
8537      * We need to do the instruction fetch's MPU and SAU checks
8538      * like this because there is no MMU index that would allow
8539      * doing the load with a single function call. Instead we must
8540      * first check that the security attributes permit the load
8541      * and that they don't mismatch on the two halves of the instruction,
8542      * and then we do the load as a secure load (ie using the security
8543      * attributes of the address, not the CPU, as architecturally required).
8544      */
8545     CPUState *cs = CPU(cpu);
8546     CPUARMState *env = &cpu->env;
8547     V8M_SAttributes sattrs = {};
8548     MemTxAttrs attrs = {};
8549     ARMMMUFaultInfo fi = {};
8550     MemTxResult txres;
8551     target_ulong page_size;
8552     hwaddr physaddr;
8553     int prot;
8554 
8555     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
8556     if (!sattrs.nsc || sattrs.ns) {
8557         /* This must be the second half of the insn, and it straddles a
8558          * region boundary with the second half not being S&NSC.
8559          */
8560         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8561         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8562         qemu_log_mask(CPU_LOG_INT,
8563                       "...really SecureFault with SFSR.INVEP\n");
8564         return false;
8565     }
8566     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
8567                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
8568         /* the MPU lookup failed */
8569         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8570         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
8571         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
8572         return false;
8573     }
8574     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
8575                                  attrs, &txres);
8576     if (txres != MEMTX_OK) {
8577         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8578         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8579         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
8580         return false;
8581     }
8582     return true;
8583 }
8584 
8585 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
8586 {
8587     /* Check whether this attempt to execute code in a Secure & NS-Callable
8588      * memory region is for an SG instruction; if so, then emulate the
8589      * effect of the SG instruction and return true. Otherwise pend
8590      * the correct kind of exception and return false.
8591      */
8592     CPUARMState *env = &cpu->env;
8593     ARMMMUIdx mmu_idx;
8594     uint16_t insn;
8595 
8596     /* We should never get here unless get_phys_addr_pmsav8() caused
8597      * an exception for NS executing in S&NSC memory.
8598      */
8599     assert(!env->v7m.secure);
8600     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8601 
8602     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
8603     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8604 
8605     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
8606         return false;
8607     }
8608 
8609     if (!env->thumb) {
8610         goto gen_invep;
8611     }
8612 
8613     if (insn != 0xe97f) {
8614         /* Not an SG instruction first half (we choose the IMPDEF
8615          * early-SG-check option).
8616          */
8617         goto gen_invep;
8618     }
8619 
8620     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
8621         return false;
8622     }
8623 
8624     if (insn != 0xe97f) {
8625         /* Not an SG instruction second half (yes, both halves of the SG
8626          * insn have the same hex value)
8627          */
8628         goto gen_invep;
8629     }
8630 
8631     /* OK, we have confirmed that we really have an SG instruction.
8632      * We know we're NS in S memory so don't need to repeat those checks.
8633      */
8634     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
8635                   ", executing it\n", env->regs[15]);
8636     env->regs[14] &= ~1;
8637     switch_v7m_security_state(env, true);
8638     xpsr_write(env, 0, XPSR_IT);
8639     env->regs[15] += 4;
8640     return true;
8641 
8642 gen_invep:
8643     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8644     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8645     qemu_log_mask(CPU_LOG_INT,
8646                   "...really SecureFault with SFSR.INVEP\n");
8647     return false;
8648 }
8649 
8650 void arm_v7m_cpu_do_interrupt(CPUState *cs)
8651 {
8652     ARMCPU *cpu = ARM_CPU(cs);
8653     CPUARMState *env = &cpu->env;
8654     uint32_t lr;
8655     bool ignore_stackfaults;
8656 
8657     arm_log_exception(cs->exception_index);
8658 
8659     /* For exceptions we just mark as pending on the NVIC, and let that
8660        handle it.  */
8661     switch (cs->exception_index) {
8662     case EXCP_UDEF:
8663         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8664         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
8665         break;
8666     case EXCP_NOCP:
8667         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8668         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8669         break;
8670     case EXCP_INVSTATE:
8671         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8672         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
8673         break;
8674     case EXCP_STKOF:
8675         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8676         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8677         break;
8678     case EXCP_SWI:
8679         /* The PC already points to the next instruction.  */
8680         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
8681         break;
8682     case EXCP_PREFETCH_ABORT:
8683     case EXCP_DATA_ABORT:
8684         /* Note that for M profile we don't have a guest facing FSR, but
8685          * the env->exception.fsr will be populated by the code that
8686          * raises the fault, in the A profile short-descriptor format.
8687          */
8688         switch (env->exception.fsr & 0xf) {
8689         case M_FAKE_FSR_NSC_EXEC:
8690             /* Exception generated when we try to execute code at an address
8691              * which is marked as Secure & Non-Secure Callable and the CPU
8692              * is in the Non-Secure state. The only instruction which can
8693              * be executed like this is SG (and that only if both halves of
8694              * the SG instruction have the same security attributes.)
8695              * Everything else must generate an INVEP SecureFault, so we
8696              * emulate the SG instruction here.
8697              */
8698             if (v7m_handle_execute_nsc(cpu)) {
8699                 return;
8700             }
8701             break;
8702         case M_FAKE_FSR_SFAULT:
8703             /* Various flavours of SecureFault for attempts to execute or
8704              * access data in the wrong security state.
8705              */
8706             switch (cs->exception_index) {
8707             case EXCP_PREFETCH_ABORT:
8708                 if (env->v7m.secure) {
8709                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
8710                     qemu_log_mask(CPU_LOG_INT,
8711                                   "...really SecureFault with SFSR.INVTRAN\n");
8712                 } else {
8713                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8714                     qemu_log_mask(CPU_LOG_INT,
8715                                   "...really SecureFault with SFSR.INVEP\n");
8716                 }
8717                 break;
8718             case EXCP_DATA_ABORT:
8719                 /* This must be an NS access to S memory */
8720                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
8721                 qemu_log_mask(CPU_LOG_INT,
8722                               "...really SecureFault with SFSR.AUVIOL\n");
8723                 break;
8724             }
8725             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8726             break;
8727         case 0x8: /* External Abort */
8728             switch (cs->exception_index) {
8729             case EXCP_PREFETCH_ABORT:
8730                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8731                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
8732                 break;
8733             case EXCP_DATA_ABORT:
8734                 env->v7m.cfsr[M_REG_NS] |=
8735                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
8736                 env->v7m.bfar = env->exception.vaddress;
8737                 qemu_log_mask(CPU_LOG_INT,
8738                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
8739                               env->v7m.bfar);
8740                 break;
8741             }
8742             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8743             break;
8744         default:
8745             /* All other FSR values are either MPU faults or "can't happen
8746              * for M profile" cases.
8747              */
8748             switch (cs->exception_index) {
8749             case EXCP_PREFETCH_ABORT:
8750                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8751                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
8752                 break;
8753             case EXCP_DATA_ABORT:
8754                 env->v7m.cfsr[env->v7m.secure] |=
8755                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
8756                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
8757                 qemu_log_mask(CPU_LOG_INT,
8758                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
8759                               env->v7m.mmfar[env->v7m.secure]);
8760                 break;
8761             }
8762             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
8763                                     env->v7m.secure);
8764             break;
8765         }
8766         break;
8767     case EXCP_BKPT:
8768         if (semihosting_enabled()) {
8769             int nr;
8770             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
8771             if (nr == 0xab) {
8772                 env->regs[15] += 2;
8773                 qemu_log_mask(CPU_LOG_INT,
8774                               "...handling as semihosting call 0x%x\n",
8775                               env->regs[0]);
8776                 env->regs[0] = do_arm_semihosting(env);
8777                 return;
8778             }
8779         }
8780         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
8781         break;
8782     case EXCP_IRQ:
8783         break;
8784     case EXCP_EXCEPTION_EXIT:
8785         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
8786             /* Must be v8M security extension function return */
8787             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
8788             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8789             if (do_v7m_function_return(cpu)) {
8790                 return;
8791             }
8792         } else {
8793             do_v7m_exception_exit(cpu);
8794             return;
8795         }
8796         break;
8797     default:
8798         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8799         return; /* Never happens.  Keep compiler happy.  */
8800     }
8801 
8802     if (arm_feature(env, ARM_FEATURE_V8)) {
8803         lr = R_V7M_EXCRET_RES1_MASK |
8804             R_V7M_EXCRET_DCRS_MASK |
8805             R_V7M_EXCRET_FTYPE_MASK;
8806         /* The S bit indicates whether we should return to Secure
8807          * or NonSecure (ie our current state).
8808          * The ES bit indicates whether we're taking this exception
8809          * to Secure or NonSecure (ie our target state). We set it
8810          * later, in v7m_exception_taken().
8811          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
8812          * This corresponds to the ARM ARM pseudocode for v8M setting
8813          * some LR bits in PushStack() and some in ExceptionTaken();
8814          * the distinction matters for the tailchain cases where we
8815          * can take an exception without pushing the stack.
8816          */
8817         if (env->v7m.secure) {
8818             lr |= R_V7M_EXCRET_S_MASK;
8819         }
8820     } else {
8821         lr = R_V7M_EXCRET_RES1_MASK |
8822             R_V7M_EXCRET_S_MASK |
8823             R_V7M_EXCRET_DCRS_MASK |
8824             R_V7M_EXCRET_FTYPE_MASK |
8825             R_V7M_EXCRET_ES_MASK;
8826         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
8827             lr |= R_V7M_EXCRET_SPSEL_MASK;
8828         }
8829     }
8830     if (!arm_v7m_is_handler_mode(env)) {
8831         lr |= R_V7M_EXCRET_MODE_MASK;
8832     }
8833 
8834     ignore_stackfaults = v7m_push_stack(cpu);
8835     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
8836 }
8837 
8838 /* Function used to synchronize QEMU's AArch64 register set with AArch32
8839  * register set.  This is necessary when switching between AArch32 and AArch64
8840  * execution state.
8841  */
8842 void aarch64_sync_32_to_64(CPUARMState *env)
8843 {
8844     int i;
8845     uint32_t mode = env->uncached_cpsr & CPSR_M;
8846 
8847     /* We can blanket copy R[0:7] to X[0:7] */
8848     for (i = 0; i < 8; i++) {
8849         env->xregs[i] = env->regs[i];
8850     }
8851 
8852     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8853      * Otherwise, they come from the banked user regs.
8854      */
8855     if (mode == ARM_CPU_MODE_FIQ) {
8856         for (i = 8; i < 13; i++) {
8857             env->xregs[i] = env->usr_regs[i - 8];
8858         }
8859     } else {
8860         for (i = 8; i < 13; i++) {
8861             env->xregs[i] = env->regs[i];
8862         }
8863     }
8864 
8865     /* Registers x13-x23 are the various mode SP and FP registers. Registers
8866      * r13 and r14 are only copied if we are in that mode, otherwise we copy
8867      * from the mode banked register.
8868      */
8869     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8870         env->xregs[13] = env->regs[13];
8871         env->xregs[14] = env->regs[14];
8872     } else {
8873         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8874         /* HYP is an exception in that it is copied from r14 */
8875         if (mode == ARM_CPU_MODE_HYP) {
8876             env->xregs[14] = env->regs[14];
8877         } else {
8878             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8879         }
8880     }
8881 
8882     if (mode == ARM_CPU_MODE_HYP) {
8883         env->xregs[15] = env->regs[13];
8884     } else {
8885         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8886     }
8887 
8888     if (mode == ARM_CPU_MODE_IRQ) {
8889         env->xregs[16] = env->regs[14];
8890         env->xregs[17] = env->regs[13];
8891     } else {
8892         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8893         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8894     }
8895 
8896     if (mode == ARM_CPU_MODE_SVC) {
8897         env->xregs[18] = env->regs[14];
8898         env->xregs[19] = env->regs[13];
8899     } else {
8900         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8901         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8902     }
8903 
8904     if (mode == ARM_CPU_MODE_ABT) {
8905         env->xregs[20] = env->regs[14];
8906         env->xregs[21] = env->regs[13];
8907     } else {
8908         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8909         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8910     }
8911 
8912     if (mode == ARM_CPU_MODE_UND) {
8913         env->xregs[22] = env->regs[14];
8914         env->xregs[23] = env->regs[13];
8915     } else {
8916         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8917         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8918     }
8919 
8920     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8921      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
8922      * FIQ bank for r8-r14.
8923      */
8924     if (mode == ARM_CPU_MODE_FIQ) {
8925         for (i = 24; i < 31; i++) {
8926             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
8927         }
8928     } else {
8929         for (i = 24; i < 29; i++) {
8930             env->xregs[i] = env->fiq_regs[i - 24];
8931         }
8932         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8933         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
8934     }
8935 
8936     env->pc = env->regs[15];
8937 }
8938 
8939 /* Function used to synchronize QEMU's AArch32 register set with AArch64
8940  * register set.  This is necessary when switching between AArch32 and AArch64
8941  * execution state.
8942  */
8943 void aarch64_sync_64_to_32(CPUARMState *env)
8944 {
8945     int i;
8946     uint32_t mode = env->uncached_cpsr & CPSR_M;
8947 
8948     /* We can blanket copy X[0:7] to R[0:7] */
8949     for (i = 0; i < 8; i++) {
8950         env->regs[i] = env->xregs[i];
8951     }
8952 
8953     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8954      * Otherwise, we copy x8-x12 into the banked user regs.
8955      */
8956     if (mode == ARM_CPU_MODE_FIQ) {
8957         for (i = 8; i < 13; i++) {
8958             env->usr_regs[i - 8] = env->xregs[i];
8959         }
8960     } else {
8961         for (i = 8; i < 13; i++) {
8962             env->regs[i] = env->xregs[i];
8963         }
8964     }
8965 
8966     /* Registers r13 & r14 depend on the current mode.
8967      * If we are in a given mode, we copy the corresponding x registers to r13
8968      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
8969      * for the mode.
8970      */
8971     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8972         env->regs[13] = env->xregs[13];
8973         env->regs[14] = env->xregs[14];
8974     } else {
8975         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
8976 
8977         /* HYP is an exception in that it does not have its own banked r14 but
8978          * shares the USR r14
8979          */
8980         if (mode == ARM_CPU_MODE_HYP) {
8981             env->regs[14] = env->xregs[14];
8982         } else {
8983             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8984         }
8985     }
8986 
8987     if (mode == ARM_CPU_MODE_HYP) {
8988         env->regs[13] = env->xregs[15];
8989     } else {
8990         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8991     }
8992 
8993     if (mode == ARM_CPU_MODE_IRQ) {
8994         env->regs[14] = env->xregs[16];
8995         env->regs[13] = env->xregs[17];
8996     } else {
8997         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8998         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8999     }
9000 
9001     if (mode == ARM_CPU_MODE_SVC) {
9002         env->regs[14] = env->xregs[18];
9003         env->regs[13] = env->xregs[19];
9004     } else {
9005         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9006         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9007     }
9008 
9009     if (mode == ARM_CPU_MODE_ABT) {
9010         env->regs[14] = env->xregs[20];
9011         env->regs[13] = env->xregs[21];
9012     } else {
9013         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9014         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9015     }
9016 
9017     if (mode == ARM_CPU_MODE_UND) {
9018         env->regs[14] = env->xregs[22];
9019         env->regs[13] = env->xregs[23];
9020     } else {
9021         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9022         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9023     }
9024 
9025     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9026      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9027      * FIQ bank for r8-r14.
9028      */
9029     if (mode == ARM_CPU_MODE_FIQ) {
9030         for (i = 24; i < 31; i++) {
9031             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9032         }
9033     } else {
9034         for (i = 24; i < 29; i++) {
9035             env->fiq_regs[i - 24] = env->xregs[i];
9036         }
9037         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9038         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9039     }
9040 
9041     env->regs[15] = env->pc;
9042 }
9043 
9044 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9045                                    uint32_t mask, uint32_t offset,
9046                                    uint32_t newpc)
9047 {
9048     /* Change the CPU state so as to actually take the exception. */
9049     switch_mode(env, new_mode);
9050     /*
9051      * For exceptions taken to AArch32 we must clear the SS bit in both
9052      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9053      */
9054     env->uncached_cpsr &= ~PSTATE_SS;
9055     env->spsr = cpsr_read(env);
9056     /* Clear IT bits.  */
9057     env->condexec_bits = 0;
9058     /* Switch to the new mode, and to the correct instruction set.  */
9059     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9060     /* Set new mode endianness */
9061     env->uncached_cpsr &= ~CPSR_E;
9062     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
9063         env->uncached_cpsr |= CPSR_E;
9064     }
9065     /* J and IL must always be cleared for exception entry */
9066     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9067     env->daif |= mask;
9068 
9069     if (new_mode == ARM_CPU_MODE_HYP) {
9070         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9071         env->elr_el[2] = env->regs[15];
9072     } else {
9073         /*
9074          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9075          * and we should just guard the thumb mode on V4
9076          */
9077         if (arm_feature(env, ARM_FEATURE_V4T)) {
9078             env->thumb =
9079                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9080         }
9081         env->regs[14] = env->regs[15] + offset;
9082     }
9083     env->regs[15] = newpc;
9084 }
9085 
9086 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9087 {
9088     /*
9089      * Handle exception entry to Hyp mode; this is sufficiently
9090      * different to entry to other AArch32 modes that we handle it
9091      * separately here.
9092      *
9093      * The vector table entry used is always the 0x14 Hyp mode entry point,
9094      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9095      * The offset applied to the preferred return address is always zero
9096      * (see DDI0487C.a section G1.12.3).
9097      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9098      */
9099     uint32_t addr, mask;
9100     ARMCPU *cpu = ARM_CPU(cs);
9101     CPUARMState *env = &cpu->env;
9102 
9103     switch (cs->exception_index) {
9104     case EXCP_UDEF:
9105         addr = 0x04;
9106         break;
9107     case EXCP_SWI:
9108         addr = 0x14;
9109         break;
9110     case EXCP_BKPT:
9111         /* Fall through to prefetch abort.  */
9112     case EXCP_PREFETCH_ABORT:
9113         env->cp15.ifar_s = env->exception.vaddress;
9114         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9115                       (uint32_t)env->exception.vaddress);
9116         addr = 0x0c;
9117         break;
9118     case EXCP_DATA_ABORT:
9119         env->cp15.dfar_s = env->exception.vaddress;
9120         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9121                       (uint32_t)env->exception.vaddress);
9122         addr = 0x10;
9123         break;
9124     case EXCP_IRQ:
9125         addr = 0x18;
9126         break;
9127     case EXCP_FIQ:
9128         addr = 0x1c;
9129         break;
9130     case EXCP_HVC:
9131         addr = 0x08;
9132         break;
9133     case EXCP_HYP_TRAP:
9134         addr = 0x14;
9135     default:
9136         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9137     }
9138 
9139     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9140         if (!arm_feature(env, ARM_FEATURE_V8)) {
9141             /*
9142              * QEMU syndrome values are v8-style. v7 has the IL bit
9143              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9144              * If this is a v7 CPU, squash the IL bit in those cases.
9145              */
9146             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9147                 (cs->exception_index == EXCP_DATA_ABORT &&
9148                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9149                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9150                 env->exception.syndrome &= ~ARM_EL_IL;
9151             }
9152         }
9153         env->cp15.esr_el[2] = env->exception.syndrome;
9154     }
9155 
9156     if (arm_current_el(env) != 2 && addr < 0x14) {
9157         addr = 0x14;
9158     }
9159 
9160     mask = 0;
9161     if (!(env->cp15.scr_el3 & SCR_EA)) {
9162         mask |= CPSR_A;
9163     }
9164     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9165         mask |= CPSR_I;
9166     }
9167     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9168         mask |= CPSR_F;
9169     }
9170 
9171     addr += env->cp15.hvbar;
9172 
9173     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9174 }
9175 
9176 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9177 {
9178     ARMCPU *cpu = ARM_CPU(cs);
9179     CPUARMState *env = &cpu->env;
9180     uint32_t addr;
9181     uint32_t mask;
9182     int new_mode;
9183     uint32_t offset;
9184     uint32_t moe;
9185 
9186     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9187     switch (syn_get_ec(env->exception.syndrome)) {
9188     case EC_BREAKPOINT:
9189     case EC_BREAKPOINT_SAME_EL:
9190         moe = 1;
9191         break;
9192     case EC_WATCHPOINT:
9193     case EC_WATCHPOINT_SAME_EL:
9194         moe = 10;
9195         break;
9196     case EC_AA32_BKPT:
9197         moe = 3;
9198         break;
9199     case EC_VECTORCATCH:
9200         moe = 5;
9201         break;
9202     default:
9203         moe = 0;
9204         break;
9205     }
9206 
9207     if (moe) {
9208         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9209     }
9210 
9211     if (env->exception.target_el == 2) {
9212         arm_cpu_do_interrupt_aarch32_hyp(cs);
9213         return;
9214     }
9215 
9216     switch (cs->exception_index) {
9217     case EXCP_UDEF:
9218         new_mode = ARM_CPU_MODE_UND;
9219         addr = 0x04;
9220         mask = CPSR_I;
9221         if (env->thumb)
9222             offset = 2;
9223         else
9224             offset = 4;
9225         break;
9226     case EXCP_SWI:
9227         new_mode = ARM_CPU_MODE_SVC;
9228         addr = 0x08;
9229         mask = CPSR_I;
9230         /* The PC already points to the next instruction.  */
9231         offset = 0;
9232         break;
9233     case EXCP_BKPT:
9234         /* Fall through to prefetch abort.  */
9235     case EXCP_PREFETCH_ABORT:
9236         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9237         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9238         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9239                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9240         new_mode = ARM_CPU_MODE_ABT;
9241         addr = 0x0c;
9242         mask = CPSR_A | CPSR_I;
9243         offset = 4;
9244         break;
9245     case EXCP_DATA_ABORT:
9246         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9247         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9248         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9249                       env->exception.fsr,
9250                       (uint32_t)env->exception.vaddress);
9251         new_mode = ARM_CPU_MODE_ABT;
9252         addr = 0x10;
9253         mask = CPSR_A | CPSR_I;
9254         offset = 8;
9255         break;
9256     case EXCP_IRQ:
9257         new_mode = ARM_CPU_MODE_IRQ;
9258         addr = 0x18;
9259         /* Disable IRQ and imprecise data aborts.  */
9260         mask = CPSR_A | CPSR_I;
9261         offset = 4;
9262         if (env->cp15.scr_el3 & SCR_IRQ) {
9263             /* IRQ routed to monitor mode */
9264             new_mode = ARM_CPU_MODE_MON;
9265             mask |= CPSR_F;
9266         }
9267         break;
9268     case EXCP_FIQ:
9269         new_mode = ARM_CPU_MODE_FIQ;
9270         addr = 0x1c;
9271         /* Disable FIQ, IRQ and imprecise data aborts.  */
9272         mask = CPSR_A | CPSR_I | CPSR_F;
9273         if (env->cp15.scr_el3 & SCR_FIQ) {
9274             /* FIQ routed to monitor mode */
9275             new_mode = ARM_CPU_MODE_MON;
9276         }
9277         offset = 4;
9278         break;
9279     case EXCP_VIRQ:
9280         new_mode = ARM_CPU_MODE_IRQ;
9281         addr = 0x18;
9282         /* Disable IRQ and imprecise data aborts.  */
9283         mask = CPSR_A | CPSR_I;
9284         offset = 4;
9285         break;
9286     case EXCP_VFIQ:
9287         new_mode = ARM_CPU_MODE_FIQ;
9288         addr = 0x1c;
9289         /* Disable FIQ, IRQ and imprecise data aborts.  */
9290         mask = CPSR_A | CPSR_I | CPSR_F;
9291         offset = 4;
9292         break;
9293     case EXCP_SMC:
9294         new_mode = ARM_CPU_MODE_MON;
9295         addr = 0x08;
9296         mask = CPSR_A | CPSR_I | CPSR_F;
9297         offset = 0;
9298         break;
9299     default:
9300         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9301         return; /* Never happens.  Keep compiler happy.  */
9302     }
9303 
9304     if (new_mode == ARM_CPU_MODE_MON) {
9305         addr += env->cp15.mvbar;
9306     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9307         /* High vectors. When enabled, base address cannot be remapped. */
9308         addr += 0xffff0000;
9309     } else {
9310         /* ARM v7 architectures provide a vector base address register to remap
9311          * the interrupt vector table.
9312          * This register is only followed in non-monitor mode, and is banked.
9313          * Note: only bits 31:5 are valid.
9314          */
9315         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9316     }
9317 
9318     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9319         env->cp15.scr_el3 &= ~SCR_NS;
9320     }
9321 
9322     take_aarch32_exception(env, new_mode, mask, offset, addr);
9323 }
9324 
9325 /* Handle exception entry to a target EL which is using AArch64 */
9326 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9327 {
9328     ARMCPU *cpu = ARM_CPU(cs);
9329     CPUARMState *env = &cpu->env;
9330     unsigned int new_el = env->exception.target_el;
9331     target_ulong addr = env->cp15.vbar_el[new_el];
9332     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9333     unsigned int cur_el = arm_current_el(env);
9334 
9335     /*
9336      * Note that new_el can never be 0.  If cur_el is 0, then
9337      * el0_a64 is is_a64(), else el0_a64 is ignored.
9338      */
9339     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9340 
9341     if (cur_el < new_el) {
9342         /* Entry vector offset depends on whether the implemented EL
9343          * immediately lower than the target level is using AArch32 or AArch64
9344          */
9345         bool is_aa64;
9346 
9347         switch (new_el) {
9348         case 3:
9349             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9350             break;
9351         case 2:
9352             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
9353             break;
9354         case 1:
9355             is_aa64 = is_a64(env);
9356             break;
9357         default:
9358             g_assert_not_reached();
9359         }
9360 
9361         if (is_aa64) {
9362             addr += 0x400;
9363         } else {
9364             addr += 0x600;
9365         }
9366     } else if (pstate_read(env) & PSTATE_SP) {
9367         addr += 0x200;
9368     }
9369 
9370     switch (cs->exception_index) {
9371     case EXCP_PREFETCH_ABORT:
9372     case EXCP_DATA_ABORT:
9373         env->cp15.far_el[new_el] = env->exception.vaddress;
9374         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9375                       env->cp15.far_el[new_el]);
9376         /* fall through */
9377     case EXCP_BKPT:
9378     case EXCP_UDEF:
9379     case EXCP_SWI:
9380     case EXCP_HVC:
9381     case EXCP_HYP_TRAP:
9382     case EXCP_SMC:
9383         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9384             /*
9385              * QEMU internal FP/SIMD syndromes from AArch32 include the
9386              * TA and coproc fields which are only exposed if the exception
9387              * is taken to AArch32 Hyp mode. Mask them out to get a valid
9388              * AArch64 format syndrome.
9389              */
9390             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9391         }
9392         env->cp15.esr_el[new_el] = env->exception.syndrome;
9393         break;
9394     case EXCP_IRQ:
9395     case EXCP_VIRQ:
9396         addr += 0x80;
9397         break;
9398     case EXCP_FIQ:
9399     case EXCP_VFIQ:
9400         addr += 0x100;
9401         break;
9402     case EXCP_SEMIHOST:
9403         qemu_log_mask(CPU_LOG_INT,
9404                       "...handling as semihosting call 0x%" PRIx64 "\n",
9405                       env->xregs[0]);
9406         env->xregs[0] = do_arm_semihosting(env);
9407         return;
9408     default:
9409         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9410     }
9411 
9412     if (is_a64(env)) {
9413         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
9414         aarch64_save_sp(env, arm_current_el(env));
9415         env->elr_el[new_el] = env->pc;
9416     } else {
9417         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
9418         env->elr_el[new_el] = env->regs[15];
9419 
9420         aarch64_sync_32_to_64(env);
9421 
9422         env->condexec_bits = 0;
9423     }
9424     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9425                   env->elr_el[new_el]);
9426 
9427     pstate_write(env, PSTATE_DAIF | new_mode);
9428     env->aarch64 = 1;
9429     aarch64_restore_sp(env, new_el);
9430 
9431     env->pc = addr;
9432 
9433     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9434                   new_el, env->pc, pstate_read(env));
9435 }
9436 
9437 static inline bool check_for_semihosting(CPUState *cs)
9438 {
9439     /* Check whether this exception is a semihosting call; if so
9440      * then handle it and return true; otherwise return false.
9441      */
9442     ARMCPU *cpu = ARM_CPU(cs);
9443     CPUARMState *env = &cpu->env;
9444 
9445     if (is_a64(env)) {
9446         if (cs->exception_index == EXCP_SEMIHOST) {
9447             /* This is always the 64-bit semihosting exception.
9448              * The "is this usermode" and "is semihosting enabled"
9449              * checks have been done at translate time.
9450              */
9451             qemu_log_mask(CPU_LOG_INT,
9452                           "...handling as semihosting call 0x%" PRIx64 "\n",
9453                           env->xregs[0]);
9454             env->xregs[0] = do_arm_semihosting(env);
9455             return true;
9456         }
9457         return false;
9458     } else {
9459         uint32_t imm;
9460 
9461         /* Only intercept calls from privileged modes, to provide some
9462          * semblance of security.
9463          */
9464         if (cs->exception_index != EXCP_SEMIHOST &&
9465             (!semihosting_enabled() ||
9466              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
9467             return false;
9468         }
9469 
9470         switch (cs->exception_index) {
9471         case EXCP_SEMIHOST:
9472             /* This is always a semihosting call; the "is this usermode"
9473              * and "is semihosting enabled" checks have been done at
9474              * translate time.
9475              */
9476             break;
9477         case EXCP_SWI:
9478             /* Check for semihosting interrupt.  */
9479             if (env->thumb) {
9480                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
9481                     & 0xff;
9482                 if (imm == 0xab) {
9483                     break;
9484                 }
9485             } else {
9486                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
9487                     & 0xffffff;
9488                 if (imm == 0x123456) {
9489                     break;
9490                 }
9491             }
9492             return false;
9493         case EXCP_BKPT:
9494             /* See if this is a semihosting syscall.  */
9495             if (env->thumb) {
9496                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
9497                     & 0xff;
9498                 if (imm == 0xab) {
9499                     env->regs[15] += 2;
9500                     break;
9501                 }
9502             }
9503             return false;
9504         default:
9505             return false;
9506         }
9507 
9508         qemu_log_mask(CPU_LOG_INT,
9509                       "...handling as semihosting call 0x%x\n",
9510                       env->regs[0]);
9511         env->regs[0] = do_arm_semihosting(env);
9512         return true;
9513     }
9514 }
9515 
9516 /* Handle a CPU exception for A and R profile CPUs.
9517  * Do any appropriate logging, handle PSCI calls, and then hand off
9518  * to the AArch64-entry or AArch32-entry function depending on the
9519  * target exception level's register width.
9520  */
9521 void arm_cpu_do_interrupt(CPUState *cs)
9522 {
9523     ARMCPU *cpu = ARM_CPU(cs);
9524     CPUARMState *env = &cpu->env;
9525     unsigned int new_el = env->exception.target_el;
9526 
9527     assert(!arm_feature(env, ARM_FEATURE_M));
9528 
9529     arm_log_exception(cs->exception_index);
9530     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9531                   new_el);
9532     if (qemu_loglevel_mask(CPU_LOG_INT)
9533         && !excp_is_internal(cs->exception_index)) {
9534         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9535                       syn_get_ec(env->exception.syndrome),
9536                       env->exception.syndrome);
9537     }
9538 
9539     if (arm_is_psci_call(cpu, cs->exception_index)) {
9540         arm_handle_psci_call(cpu);
9541         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9542         return;
9543     }
9544 
9545     /* Semihosting semantics depend on the register width of the
9546      * code that caused the exception, not the target exception level,
9547      * so must be handled here.
9548      */
9549     if (check_for_semihosting(cs)) {
9550         return;
9551     }
9552 
9553     /* Hooks may change global state so BQL should be held, also the
9554      * BQL needs to be held for any modification of
9555      * cs->interrupt_request.
9556      */
9557     g_assert(qemu_mutex_iothread_locked());
9558 
9559     arm_call_pre_el_change_hook(cpu);
9560 
9561     assert(!excp_is_internal(cs->exception_index));
9562     if (arm_el_is_aa64(env, new_el)) {
9563         arm_cpu_do_interrupt_aarch64(cs);
9564     } else {
9565         arm_cpu_do_interrupt_aarch32(cs);
9566     }
9567 
9568     arm_call_el_change_hook(cpu);
9569 
9570     if (!kvm_enabled()) {
9571         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9572     }
9573 }
9574 #endif /* !CONFIG_USER_ONLY */
9575 
9576 /* Return the exception level which controls this address translation regime */
9577 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9578 {
9579     switch (mmu_idx) {
9580     case ARMMMUIdx_S2NS:
9581     case ARMMMUIdx_S1E2:
9582         return 2;
9583     case ARMMMUIdx_S1E3:
9584         return 3;
9585     case ARMMMUIdx_S1SE0:
9586         return arm_el_is_aa64(env, 3) ? 1 : 3;
9587     case ARMMMUIdx_S1SE1:
9588     case ARMMMUIdx_S1NSE0:
9589     case ARMMMUIdx_S1NSE1:
9590     case ARMMMUIdx_MPrivNegPri:
9591     case ARMMMUIdx_MUserNegPri:
9592     case ARMMMUIdx_MPriv:
9593     case ARMMMUIdx_MUser:
9594     case ARMMMUIdx_MSPrivNegPri:
9595     case ARMMMUIdx_MSUserNegPri:
9596     case ARMMMUIdx_MSPriv:
9597     case ARMMMUIdx_MSUser:
9598         return 1;
9599     default:
9600         g_assert_not_reached();
9601     }
9602 }
9603 
9604 #ifndef CONFIG_USER_ONLY
9605 
9606 /* Return the SCTLR value which controls this address translation regime */
9607 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9608 {
9609     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9610 }
9611 
9612 /* Return true if the specified stage of address translation is disabled */
9613 static inline bool regime_translation_disabled(CPUARMState *env,
9614                                                ARMMMUIdx mmu_idx)
9615 {
9616     if (arm_feature(env, ARM_FEATURE_M)) {
9617         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9618                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9619         case R_V7M_MPU_CTRL_ENABLE_MASK:
9620             /* Enabled, but not for HardFault and NMI */
9621             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9622         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9623             /* Enabled for all cases */
9624             return false;
9625         case 0:
9626         default:
9627             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9628              * we warned about that in armv7m_nvic.c when the guest set it.
9629              */
9630             return true;
9631         }
9632     }
9633 
9634     if (mmu_idx == ARMMMUIdx_S2NS) {
9635         /* HCR.DC means HCR.VM behaves as 1 */
9636         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9637     }
9638 
9639     if (env->cp15.hcr_el2 & HCR_TGE) {
9640         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9641         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9642             return true;
9643         }
9644     }
9645 
9646     if ((env->cp15.hcr_el2 & HCR_DC) &&
9647         (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
9648         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9649         return true;
9650     }
9651 
9652     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9653 }
9654 
9655 static inline bool regime_translation_big_endian(CPUARMState *env,
9656                                                  ARMMMUIdx mmu_idx)
9657 {
9658     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9659 }
9660 
9661 /* Return the TTBR associated with this translation regime */
9662 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9663                                    int ttbrn)
9664 {
9665     if (mmu_idx == ARMMMUIdx_S2NS) {
9666         return env->cp15.vttbr_el2;
9667     }
9668     if (ttbrn == 0) {
9669         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9670     } else {
9671         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9672     }
9673 }
9674 
9675 #endif /* !CONFIG_USER_ONLY */
9676 
9677 /* Return the TCR controlling this translation regime */
9678 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9679 {
9680     if (mmu_idx == ARMMMUIdx_S2NS) {
9681         return &env->cp15.vtcr_el2;
9682     }
9683     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9684 }
9685 
9686 /* Convert a possible stage1+2 MMU index into the appropriate
9687  * stage 1 MMU index
9688  */
9689 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9690 {
9691     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9692         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
9693     }
9694     return mmu_idx;
9695 }
9696 
9697 /* Return true if the translation regime is using LPAE format page tables */
9698 static inline bool regime_using_lpae_format(CPUARMState *env,
9699                                             ARMMMUIdx mmu_idx)
9700 {
9701     int el = regime_el(env, mmu_idx);
9702     if (el == 2 || arm_el_is_aa64(env, el)) {
9703         return true;
9704     }
9705     if (arm_feature(env, ARM_FEATURE_LPAE)
9706         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9707         return true;
9708     }
9709     return false;
9710 }
9711 
9712 /* Returns true if the stage 1 translation regime is using LPAE format page
9713  * tables. Used when raising alignment exceptions, whose FSR changes depending
9714  * on whether the long or short descriptor format is in use. */
9715 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9716 {
9717     mmu_idx = stage_1_mmu_idx(mmu_idx);
9718 
9719     return regime_using_lpae_format(env, mmu_idx);
9720 }
9721 
9722 #ifndef CONFIG_USER_ONLY
9723 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9724 {
9725     switch (mmu_idx) {
9726     case ARMMMUIdx_S1SE0:
9727     case ARMMMUIdx_S1NSE0:
9728     case ARMMMUIdx_MUser:
9729     case ARMMMUIdx_MSUser:
9730     case ARMMMUIdx_MUserNegPri:
9731     case ARMMMUIdx_MSUserNegPri:
9732         return true;
9733     default:
9734         return false;
9735     case ARMMMUIdx_S12NSE0:
9736     case ARMMMUIdx_S12NSE1:
9737         g_assert_not_reached();
9738     }
9739 }
9740 
9741 /* Translate section/page access permissions to page
9742  * R/W protection flags
9743  *
9744  * @env:         CPUARMState
9745  * @mmu_idx:     MMU index indicating required translation regime
9746  * @ap:          The 3-bit access permissions (AP[2:0])
9747  * @domain_prot: The 2-bit domain access permissions
9748  */
9749 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9750                                 int ap, int domain_prot)
9751 {
9752     bool is_user = regime_is_user(env, mmu_idx);
9753 
9754     if (domain_prot == 3) {
9755         return PAGE_READ | PAGE_WRITE;
9756     }
9757 
9758     switch (ap) {
9759     case 0:
9760         if (arm_feature(env, ARM_FEATURE_V7)) {
9761             return 0;
9762         }
9763         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9764         case SCTLR_S:
9765             return is_user ? 0 : PAGE_READ;
9766         case SCTLR_R:
9767             return PAGE_READ;
9768         default:
9769             return 0;
9770         }
9771     case 1:
9772         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9773     case 2:
9774         if (is_user) {
9775             return PAGE_READ;
9776         } else {
9777             return PAGE_READ | PAGE_WRITE;
9778         }
9779     case 3:
9780         return PAGE_READ | PAGE_WRITE;
9781     case 4: /* Reserved.  */
9782         return 0;
9783     case 5:
9784         return is_user ? 0 : PAGE_READ;
9785     case 6:
9786         return PAGE_READ;
9787     case 7:
9788         if (!arm_feature(env, ARM_FEATURE_V6K)) {
9789             return 0;
9790         }
9791         return PAGE_READ;
9792     default:
9793         g_assert_not_reached();
9794     }
9795 }
9796 
9797 /* Translate section/page access permissions to page
9798  * R/W protection flags.
9799  *
9800  * @ap:      The 2-bit simple AP (AP[2:1])
9801  * @is_user: TRUE if accessing from PL0
9802  */
9803 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9804 {
9805     switch (ap) {
9806     case 0:
9807         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9808     case 1:
9809         return PAGE_READ | PAGE_WRITE;
9810     case 2:
9811         return is_user ? 0 : PAGE_READ;
9812     case 3:
9813         return PAGE_READ;
9814     default:
9815         g_assert_not_reached();
9816     }
9817 }
9818 
9819 static inline int
9820 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9821 {
9822     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9823 }
9824 
9825 /* Translate S2 section/page access permissions to protection flags
9826  *
9827  * @env:     CPUARMState
9828  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
9829  * @xn:      XN (execute-never) bit
9830  */
9831 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9832 {
9833     int prot = 0;
9834 
9835     if (s2ap & 1) {
9836         prot |= PAGE_READ;
9837     }
9838     if (s2ap & 2) {
9839         prot |= PAGE_WRITE;
9840     }
9841     if (!xn) {
9842         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9843             prot |= PAGE_EXEC;
9844         }
9845     }
9846     return prot;
9847 }
9848 
9849 /* Translate section/page access permissions to protection flags
9850  *
9851  * @env:     CPUARMState
9852  * @mmu_idx: MMU index indicating required translation regime
9853  * @is_aa64: TRUE if AArch64
9854  * @ap:      The 2-bit simple AP (AP[2:1])
9855  * @ns:      NS (non-secure) bit
9856  * @xn:      XN (execute-never) bit
9857  * @pxn:     PXN (privileged execute-never) bit
9858  */
9859 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9860                       int ap, int ns, int xn, int pxn)
9861 {
9862     bool is_user = regime_is_user(env, mmu_idx);
9863     int prot_rw, user_rw;
9864     bool have_wxn;
9865     int wxn = 0;
9866 
9867     assert(mmu_idx != ARMMMUIdx_S2NS);
9868 
9869     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9870     if (is_user) {
9871         prot_rw = user_rw;
9872     } else {
9873         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9874     }
9875 
9876     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9877         return prot_rw;
9878     }
9879 
9880     /* TODO have_wxn should be replaced with
9881      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9882      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9883      * compatible processors have EL2, which is required for [U]WXN.
9884      */
9885     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9886 
9887     if (have_wxn) {
9888         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9889     }
9890 
9891     if (is_aa64) {
9892         switch (regime_el(env, mmu_idx)) {
9893         case 1:
9894             if (!is_user) {
9895                 xn = pxn || (user_rw & PAGE_WRITE);
9896             }
9897             break;
9898         case 2:
9899         case 3:
9900             break;
9901         }
9902     } else if (arm_feature(env, ARM_FEATURE_V7)) {
9903         switch (regime_el(env, mmu_idx)) {
9904         case 1:
9905         case 3:
9906             if (is_user) {
9907                 xn = xn || !(user_rw & PAGE_READ);
9908             } else {
9909                 int uwxn = 0;
9910                 if (have_wxn) {
9911                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
9912                 }
9913                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
9914                      (uwxn && (user_rw & PAGE_WRITE));
9915             }
9916             break;
9917         case 2:
9918             break;
9919         }
9920     } else {
9921         xn = wxn = 0;
9922     }
9923 
9924     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
9925         return prot_rw;
9926     }
9927     return prot_rw | PAGE_EXEC;
9928 }
9929 
9930 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
9931                                      uint32_t *table, uint32_t address)
9932 {
9933     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
9934     TCR *tcr = regime_tcr(env, mmu_idx);
9935 
9936     if (address & tcr->mask) {
9937         if (tcr->raw_tcr & TTBCR_PD1) {
9938             /* Translation table walk disabled for TTBR1 */
9939             return false;
9940         }
9941         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
9942     } else {
9943         if (tcr->raw_tcr & TTBCR_PD0) {
9944             /* Translation table walk disabled for TTBR0 */
9945             return false;
9946         }
9947         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
9948     }
9949     *table |= (address >> 18) & 0x3ffc;
9950     return true;
9951 }
9952 
9953 /* Translate a S1 pagetable walk through S2 if needed.  */
9954 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
9955                                hwaddr addr, MemTxAttrs txattrs,
9956                                ARMMMUFaultInfo *fi)
9957 {
9958     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
9959         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9960         target_ulong s2size;
9961         hwaddr s2pa;
9962         int s2prot;
9963         int ret;
9964         ARMCacheAttrs cacheattrs = {};
9965         ARMCacheAttrs *pcacheattrs = NULL;
9966 
9967         if (env->cp15.hcr_el2 & HCR_PTW) {
9968             /*
9969              * PTW means we must fault if this S1 walk touches S2 Device
9970              * memory; otherwise we don't care about the attributes and can
9971              * save the S2 translation the effort of computing them.
9972              */
9973             pcacheattrs = &cacheattrs;
9974         }
9975 
9976         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
9977                                  &txattrs, &s2prot, &s2size, fi, pcacheattrs);
9978         if (ret) {
9979             assert(fi->type != ARMFault_None);
9980             fi->s2addr = addr;
9981             fi->stage2 = true;
9982             fi->s1ptw = true;
9983             return ~0;
9984         }
9985         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
9986             /* Access was to Device memory: generate Permission fault */
9987             fi->type = ARMFault_Permission;
9988             fi->s2addr = addr;
9989             fi->stage2 = true;
9990             fi->s1ptw = true;
9991             return ~0;
9992         }
9993         addr = s2pa;
9994     }
9995     return addr;
9996 }
9997 
9998 /* All loads done in the course of a page table walk go through here. */
9999 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10000                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10001 {
10002     ARMCPU *cpu = ARM_CPU(cs);
10003     CPUARMState *env = &cpu->env;
10004     MemTxAttrs attrs = {};
10005     MemTxResult result = MEMTX_OK;
10006     AddressSpace *as;
10007     uint32_t data;
10008 
10009     attrs.secure = is_secure;
10010     as = arm_addressspace(cs, attrs);
10011     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10012     if (fi->s1ptw) {
10013         return 0;
10014     }
10015     if (regime_translation_big_endian(env, mmu_idx)) {
10016         data = address_space_ldl_be(as, addr, attrs, &result);
10017     } else {
10018         data = address_space_ldl_le(as, addr, attrs, &result);
10019     }
10020     if (result == MEMTX_OK) {
10021         return data;
10022     }
10023     fi->type = ARMFault_SyncExternalOnWalk;
10024     fi->ea = arm_extabort_type(result);
10025     return 0;
10026 }
10027 
10028 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10029                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10030 {
10031     ARMCPU *cpu = ARM_CPU(cs);
10032     CPUARMState *env = &cpu->env;
10033     MemTxAttrs attrs = {};
10034     MemTxResult result = MEMTX_OK;
10035     AddressSpace *as;
10036     uint64_t data;
10037 
10038     attrs.secure = is_secure;
10039     as = arm_addressspace(cs, attrs);
10040     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10041     if (fi->s1ptw) {
10042         return 0;
10043     }
10044     if (regime_translation_big_endian(env, mmu_idx)) {
10045         data = address_space_ldq_be(as, addr, attrs, &result);
10046     } else {
10047         data = address_space_ldq_le(as, addr, attrs, &result);
10048     }
10049     if (result == MEMTX_OK) {
10050         return data;
10051     }
10052     fi->type = ARMFault_SyncExternalOnWalk;
10053     fi->ea = arm_extabort_type(result);
10054     return 0;
10055 }
10056 
10057 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10058                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10059                              hwaddr *phys_ptr, int *prot,
10060                              target_ulong *page_size,
10061                              ARMMMUFaultInfo *fi)
10062 {
10063     CPUState *cs = CPU(arm_env_get_cpu(env));
10064     int level = 1;
10065     uint32_t table;
10066     uint32_t desc;
10067     int type;
10068     int ap;
10069     int domain = 0;
10070     int domain_prot;
10071     hwaddr phys_addr;
10072     uint32_t dacr;
10073 
10074     /* Pagetable walk.  */
10075     /* Lookup l1 descriptor.  */
10076     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10077         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10078         fi->type = ARMFault_Translation;
10079         goto do_fault;
10080     }
10081     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10082                        mmu_idx, fi);
10083     if (fi->type != ARMFault_None) {
10084         goto do_fault;
10085     }
10086     type = (desc & 3);
10087     domain = (desc >> 5) & 0x0f;
10088     if (regime_el(env, mmu_idx) == 1) {
10089         dacr = env->cp15.dacr_ns;
10090     } else {
10091         dacr = env->cp15.dacr_s;
10092     }
10093     domain_prot = (dacr >> (domain * 2)) & 3;
10094     if (type == 0) {
10095         /* Section translation fault.  */
10096         fi->type = ARMFault_Translation;
10097         goto do_fault;
10098     }
10099     if (type != 2) {
10100         level = 2;
10101     }
10102     if (domain_prot == 0 || domain_prot == 2) {
10103         fi->type = ARMFault_Domain;
10104         goto do_fault;
10105     }
10106     if (type == 2) {
10107         /* 1Mb section.  */
10108         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10109         ap = (desc >> 10) & 3;
10110         *page_size = 1024 * 1024;
10111     } else {
10112         /* Lookup l2 entry.  */
10113         if (type == 1) {
10114             /* Coarse pagetable.  */
10115             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10116         } else {
10117             /* Fine pagetable.  */
10118             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10119         }
10120         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10121                            mmu_idx, fi);
10122         if (fi->type != ARMFault_None) {
10123             goto do_fault;
10124         }
10125         switch (desc & 3) {
10126         case 0: /* Page translation fault.  */
10127             fi->type = ARMFault_Translation;
10128             goto do_fault;
10129         case 1: /* 64k page.  */
10130             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10131             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10132             *page_size = 0x10000;
10133             break;
10134         case 2: /* 4k page.  */
10135             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10136             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10137             *page_size = 0x1000;
10138             break;
10139         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10140             if (type == 1) {
10141                 /* ARMv6/XScale extended small page format */
10142                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10143                     || arm_feature(env, ARM_FEATURE_V6)) {
10144                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10145                     *page_size = 0x1000;
10146                 } else {
10147                     /* UNPREDICTABLE in ARMv5; we choose to take a
10148                      * page translation fault.
10149                      */
10150                     fi->type = ARMFault_Translation;
10151                     goto do_fault;
10152                 }
10153             } else {
10154                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10155                 *page_size = 0x400;
10156             }
10157             ap = (desc >> 4) & 3;
10158             break;
10159         default:
10160             /* Never happens, but compiler isn't smart enough to tell.  */
10161             abort();
10162         }
10163     }
10164     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10165     *prot |= *prot ? PAGE_EXEC : 0;
10166     if (!(*prot & (1 << access_type))) {
10167         /* Access permission fault.  */
10168         fi->type = ARMFault_Permission;
10169         goto do_fault;
10170     }
10171     *phys_ptr = phys_addr;
10172     return false;
10173 do_fault:
10174     fi->domain = domain;
10175     fi->level = level;
10176     return true;
10177 }
10178 
10179 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10180                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10181                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10182                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10183 {
10184     CPUState *cs = CPU(arm_env_get_cpu(env));
10185     int level = 1;
10186     uint32_t table;
10187     uint32_t desc;
10188     uint32_t xn;
10189     uint32_t pxn = 0;
10190     int type;
10191     int ap;
10192     int domain = 0;
10193     int domain_prot;
10194     hwaddr phys_addr;
10195     uint32_t dacr;
10196     bool ns;
10197 
10198     /* Pagetable walk.  */
10199     /* Lookup l1 descriptor.  */
10200     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10201         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10202         fi->type = ARMFault_Translation;
10203         goto do_fault;
10204     }
10205     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10206                        mmu_idx, fi);
10207     if (fi->type != ARMFault_None) {
10208         goto do_fault;
10209     }
10210     type = (desc & 3);
10211     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10212         /* Section translation fault, or attempt to use the encoding
10213          * which is Reserved on implementations without PXN.
10214          */
10215         fi->type = ARMFault_Translation;
10216         goto do_fault;
10217     }
10218     if ((type == 1) || !(desc & (1 << 18))) {
10219         /* Page or Section.  */
10220         domain = (desc >> 5) & 0x0f;
10221     }
10222     if (regime_el(env, mmu_idx) == 1) {
10223         dacr = env->cp15.dacr_ns;
10224     } else {
10225         dacr = env->cp15.dacr_s;
10226     }
10227     if (type == 1) {
10228         level = 2;
10229     }
10230     domain_prot = (dacr >> (domain * 2)) & 3;
10231     if (domain_prot == 0 || domain_prot == 2) {
10232         /* Section or Page domain fault */
10233         fi->type = ARMFault_Domain;
10234         goto do_fault;
10235     }
10236     if (type != 1) {
10237         if (desc & (1 << 18)) {
10238             /* Supersection.  */
10239             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10240             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10241             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10242             *page_size = 0x1000000;
10243         } else {
10244             /* Section.  */
10245             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10246             *page_size = 0x100000;
10247         }
10248         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10249         xn = desc & (1 << 4);
10250         pxn = desc & 1;
10251         ns = extract32(desc, 19, 1);
10252     } else {
10253         if (arm_feature(env, ARM_FEATURE_PXN)) {
10254             pxn = (desc >> 2) & 1;
10255         }
10256         ns = extract32(desc, 3, 1);
10257         /* Lookup l2 entry.  */
10258         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10259         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10260                            mmu_idx, fi);
10261         if (fi->type != ARMFault_None) {
10262             goto do_fault;
10263         }
10264         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10265         switch (desc & 3) {
10266         case 0: /* Page translation fault.  */
10267             fi->type = ARMFault_Translation;
10268             goto do_fault;
10269         case 1: /* 64k page.  */
10270             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10271             xn = desc & (1 << 15);
10272             *page_size = 0x10000;
10273             break;
10274         case 2: case 3: /* 4k page.  */
10275             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10276             xn = desc & 1;
10277             *page_size = 0x1000;
10278             break;
10279         default:
10280             /* Never happens, but compiler isn't smart enough to tell.  */
10281             abort();
10282         }
10283     }
10284     if (domain_prot == 3) {
10285         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10286     } else {
10287         if (pxn && !regime_is_user(env, mmu_idx)) {
10288             xn = 1;
10289         }
10290         if (xn && access_type == MMU_INST_FETCH) {
10291             fi->type = ARMFault_Permission;
10292             goto do_fault;
10293         }
10294 
10295         if (arm_feature(env, ARM_FEATURE_V6K) &&
10296                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10297             /* The simplified model uses AP[0] as an access control bit.  */
10298             if ((ap & 1) == 0) {
10299                 /* Access flag fault.  */
10300                 fi->type = ARMFault_AccessFlag;
10301                 goto do_fault;
10302             }
10303             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10304         } else {
10305             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10306         }
10307         if (*prot && !xn) {
10308             *prot |= PAGE_EXEC;
10309         }
10310         if (!(*prot & (1 << access_type))) {
10311             /* Access permission fault.  */
10312             fi->type = ARMFault_Permission;
10313             goto do_fault;
10314         }
10315     }
10316     if (ns) {
10317         /* The NS bit will (as required by the architecture) have no effect if
10318          * the CPU doesn't support TZ or this is a non-secure translation
10319          * regime, because the attribute will already be non-secure.
10320          */
10321         attrs->secure = false;
10322     }
10323     *phys_ptr = phys_addr;
10324     return false;
10325 do_fault:
10326     fi->domain = domain;
10327     fi->level = level;
10328     return true;
10329 }
10330 
10331 /*
10332  * check_s2_mmu_setup
10333  * @cpu:        ARMCPU
10334  * @is_aa64:    True if the translation regime is in AArch64 state
10335  * @startlevel: Suggested starting level
10336  * @inputsize:  Bitsize of IPAs
10337  * @stride:     Page-table stride (See the ARM ARM)
10338  *
10339  * Returns true if the suggested S2 translation parameters are OK and
10340  * false otherwise.
10341  */
10342 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10343                                int inputsize, int stride)
10344 {
10345     const int grainsize = stride + 3;
10346     int startsizecheck;
10347 
10348     /* Negative levels are never allowed.  */
10349     if (level < 0) {
10350         return false;
10351     }
10352 
10353     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10354     if (startsizecheck < 1 || startsizecheck > stride + 4) {
10355         return false;
10356     }
10357 
10358     if (is_aa64) {
10359         CPUARMState *env = &cpu->env;
10360         unsigned int pamax = arm_pamax(cpu);
10361 
10362         switch (stride) {
10363         case 13: /* 64KB Pages.  */
10364             if (level == 0 || (level == 1 && pamax <= 42)) {
10365                 return false;
10366             }
10367             break;
10368         case 11: /* 16KB Pages.  */
10369             if (level == 0 || (level == 1 && pamax <= 40)) {
10370                 return false;
10371             }
10372             break;
10373         case 9: /* 4KB Pages.  */
10374             if (level == 0 && pamax <= 42) {
10375                 return false;
10376             }
10377             break;
10378         default:
10379             g_assert_not_reached();
10380         }
10381 
10382         /* Inputsize checks.  */
10383         if (inputsize > pamax &&
10384             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10385             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
10386             return false;
10387         }
10388     } else {
10389         /* AArch32 only supports 4KB pages. Assert on that.  */
10390         assert(stride == 9);
10391 
10392         if (level == 0) {
10393             return false;
10394         }
10395     }
10396     return true;
10397 }
10398 
10399 /* Translate from the 4-bit stage 2 representation of
10400  * memory attributes (without cache-allocation hints) to
10401  * the 8-bit representation of the stage 1 MAIR registers
10402  * (which includes allocation hints).
10403  *
10404  * ref: shared/translation/attrs/S2AttrDecode()
10405  *      .../S2ConvertAttrsHints()
10406  */
10407 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10408 {
10409     uint8_t hiattr = extract32(s2attrs, 2, 2);
10410     uint8_t loattr = extract32(s2attrs, 0, 2);
10411     uint8_t hihint = 0, lohint = 0;
10412 
10413     if (hiattr != 0) { /* normal memory */
10414         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10415             hiattr = loattr = 1; /* non-cacheable */
10416         } else {
10417             if (hiattr != 1) { /* Write-through or write-back */
10418                 hihint = 3; /* RW allocate */
10419             }
10420             if (loattr != 1) { /* Write-through or write-back */
10421                 lohint = 3; /* RW allocate */
10422             }
10423         }
10424     }
10425 
10426     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10427 }
10428 #endif /* !CONFIG_USER_ONLY */
10429 
10430 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
10431                                         ARMMMUIdx mmu_idx)
10432 {
10433     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10434     uint32_t el = regime_el(env, mmu_idx);
10435     bool tbi, tbid, epd, hpd, using16k, using64k;
10436     int select, tsz;
10437 
10438     /*
10439      * Bit 55 is always between the two regions, and is canonical for
10440      * determining if address tagging is enabled.
10441      */
10442     select = extract64(va, 55, 1);
10443 
10444     if (el > 1) {
10445         tsz = extract32(tcr, 0, 6);
10446         using64k = extract32(tcr, 14, 1);
10447         using16k = extract32(tcr, 15, 1);
10448         if (mmu_idx == ARMMMUIdx_S2NS) {
10449             /* VTCR_EL2 */
10450             tbi = tbid = hpd = false;
10451         } else {
10452             tbi = extract32(tcr, 20, 1);
10453             hpd = extract32(tcr, 24, 1);
10454             tbid = extract32(tcr, 29, 1);
10455         }
10456         epd = false;
10457     } else if (!select) {
10458         tsz = extract32(tcr, 0, 6);
10459         epd = extract32(tcr, 7, 1);
10460         using64k = extract32(tcr, 14, 1);
10461         using16k = extract32(tcr, 15, 1);
10462         tbi = extract64(tcr, 37, 1);
10463         hpd = extract64(tcr, 41, 1);
10464         tbid = extract64(tcr, 51, 1);
10465     } else {
10466         int tg = extract32(tcr, 30, 2);
10467         using16k = tg == 1;
10468         using64k = tg == 3;
10469         tsz = extract32(tcr, 16, 6);
10470         epd = extract32(tcr, 23, 1);
10471         tbi = extract64(tcr, 38, 1);
10472         hpd = extract64(tcr, 42, 1);
10473         tbid = extract64(tcr, 52, 1);
10474     }
10475     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
10476     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
10477 
10478     return (ARMVAParameters) {
10479         .tsz = tsz,
10480         .select = select,
10481         .tbi = tbi,
10482         .tbid = tbid,
10483         .epd = epd,
10484         .hpd = hpd,
10485         .using16k = using16k,
10486         .using64k = using64k,
10487     };
10488 }
10489 
10490 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10491                                    ARMMMUIdx mmu_idx, bool data)
10492 {
10493     ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
10494 
10495     /* Present TBI as a composite with TBID.  */
10496     ret.tbi &= (data || !ret.tbid);
10497     return ret;
10498 }
10499 
10500 #ifndef CONFIG_USER_ONLY
10501 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10502                                           ARMMMUIdx mmu_idx)
10503 {
10504     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10505     uint32_t el = regime_el(env, mmu_idx);
10506     int select, tsz;
10507     bool epd, hpd;
10508 
10509     if (mmu_idx == ARMMMUIdx_S2NS) {
10510         /* VTCR */
10511         bool sext = extract32(tcr, 4, 1);
10512         bool sign = extract32(tcr, 3, 1);
10513 
10514         /*
10515          * If the sign-extend bit is not the same as t0sz[3], the result
10516          * is unpredictable. Flag this as a guest error.
10517          */
10518         if (sign != sext) {
10519             qemu_log_mask(LOG_GUEST_ERROR,
10520                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10521         }
10522         tsz = sextract32(tcr, 0, 4) + 8;
10523         select = 0;
10524         hpd = false;
10525         epd = false;
10526     } else if (el == 2) {
10527         /* HTCR */
10528         tsz = extract32(tcr, 0, 3);
10529         select = 0;
10530         hpd = extract64(tcr, 24, 1);
10531         epd = false;
10532     } else {
10533         int t0sz = extract32(tcr, 0, 3);
10534         int t1sz = extract32(tcr, 16, 3);
10535 
10536         if (t1sz == 0) {
10537             select = va > (0xffffffffu >> t0sz);
10538         } else {
10539             /* Note that we will detect errors later.  */
10540             select = va >= ~(0xffffffffu >> t1sz);
10541         }
10542         if (!select) {
10543             tsz = t0sz;
10544             epd = extract32(tcr, 7, 1);
10545             hpd = extract64(tcr, 41, 1);
10546         } else {
10547             tsz = t1sz;
10548             epd = extract32(tcr, 23, 1);
10549             hpd = extract64(tcr, 42, 1);
10550         }
10551         /* For aarch32, hpd0 is not enabled without t2e as well.  */
10552         hpd &= extract32(tcr, 6, 1);
10553     }
10554 
10555     return (ARMVAParameters) {
10556         .tsz = tsz,
10557         .select = select,
10558         .epd = epd,
10559         .hpd = hpd,
10560     };
10561 }
10562 
10563 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10564                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
10565                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10566                                target_ulong *page_size_ptr,
10567                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10568 {
10569     ARMCPU *cpu = arm_env_get_cpu(env);
10570     CPUState *cs = CPU(cpu);
10571     /* Read an LPAE long-descriptor translation table. */
10572     ARMFaultType fault_type = ARMFault_Translation;
10573     uint32_t level;
10574     ARMVAParameters param;
10575     uint64_t ttbr;
10576     hwaddr descaddr, indexmask, indexmask_grainsize;
10577     uint32_t tableattrs;
10578     target_ulong page_size;
10579     uint32_t attrs;
10580     int32_t stride;
10581     int addrsize, inputsize;
10582     TCR *tcr = regime_tcr(env, mmu_idx);
10583     int ap, ns, xn, pxn;
10584     uint32_t el = regime_el(env, mmu_idx);
10585     bool ttbr1_valid;
10586     uint64_t descaddrmask;
10587     bool aarch64 = arm_el_is_aa64(env, el);
10588     bool guarded = false;
10589 
10590     /* TODO:
10591      * This code does not handle the different format TCR for VTCR_EL2.
10592      * This code also does not support shareability levels.
10593      * Attribute and permission bit handling should also be checked when adding
10594      * support for those page table walks.
10595      */
10596     if (aarch64) {
10597         param = aa64_va_parameters(env, address, mmu_idx,
10598                                    access_type != MMU_INST_FETCH);
10599         level = 0;
10600         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
10601          * invalid.
10602          */
10603         ttbr1_valid = (el < 2);
10604         addrsize = 64 - 8 * param.tbi;
10605         inputsize = 64 - param.tsz;
10606     } else {
10607         param = aa32_va_parameters(env, address, mmu_idx);
10608         level = 1;
10609         /* There is no TTBR1 for EL2 */
10610         ttbr1_valid = (el != 2);
10611         addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
10612         inputsize = addrsize - param.tsz;
10613     }
10614 
10615     /*
10616      * We determined the region when collecting the parameters, but we
10617      * have not yet validated that the address is valid for the region.
10618      * Extract the top bits and verify that they all match select.
10619      *
10620      * For aa32, if inputsize == addrsize, then we have selected the
10621      * region by exclusion in aa32_va_parameters and there is no more
10622      * validation to do here.
10623      */
10624     if (inputsize < addrsize) {
10625         target_ulong top_bits = sextract64(address, inputsize,
10626                                            addrsize - inputsize);
10627         if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
10628             /* The gap between the two regions is a Translation fault */
10629             fault_type = ARMFault_Translation;
10630             goto do_fault;
10631         }
10632     }
10633 
10634     if (param.using64k) {
10635         stride = 13;
10636     } else if (param.using16k) {
10637         stride = 11;
10638     } else {
10639         stride = 9;
10640     }
10641 
10642     /* Note that QEMU ignores shareability and cacheability attributes,
10643      * so we don't need to do anything with the SH, ORGN, IRGN fields
10644      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
10645      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10646      * implement any ASID-like capability so we can ignore it (instead
10647      * we will always flush the TLB any time the ASID is changed).
10648      */
10649     ttbr = regime_ttbr(env, mmu_idx, param.select);
10650 
10651     /* Here we should have set up all the parameters for the translation:
10652      * inputsize, ttbr, epd, stride, tbi
10653      */
10654 
10655     if (param.epd) {
10656         /* Translation table walk disabled => Translation fault on TLB miss
10657          * Note: This is always 0 on 64-bit EL2 and EL3.
10658          */
10659         goto do_fault;
10660     }
10661 
10662     if (mmu_idx != ARMMMUIdx_S2NS) {
10663         /* The starting level depends on the virtual address size (which can
10664          * be up to 48 bits) and the translation granule size. It indicates
10665          * the number of strides (stride bits at a time) needed to
10666          * consume the bits of the input address. In the pseudocode this is:
10667          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
10668          * where their 'inputsize' is our 'inputsize', 'grainsize' is
10669          * our 'stride + 3' and 'stride' is our 'stride'.
10670          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10671          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10672          * = 4 - (inputsize - 4) / stride;
10673          */
10674         level = 4 - (inputsize - 4) / stride;
10675     } else {
10676         /* For stage 2 translations the starting level is specified by the
10677          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10678          */
10679         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10680         uint32_t startlevel;
10681         bool ok;
10682 
10683         if (!aarch64 || stride == 9) {
10684             /* AArch32 or 4KB pages */
10685             startlevel = 2 - sl0;
10686         } else {
10687             /* 16KB or 64KB pages */
10688             startlevel = 3 - sl0;
10689         }
10690 
10691         /* Check that the starting level is valid. */
10692         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10693                                 inputsize, stride);
10694         if (!ok) {
10695             fault_type = ARMFault_Translation;
10696             goto do_fault;
10697         }
10698         level = startlevel;
10699     }
10700 
10701     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10702     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10703 
10704     /* Now we can extract the actual base address from the TTBR */
10705     descaddr = extract64(ttbr, 0, 48);
10706     descaddr &= ~indexmask;
10707 
10708     /* The address field in the descriptor goes up to bit 39 for ARMv7
10709      * but up to bit 47 for ARMv8, but we use the descaddrmask
10710      * up to bit 39 for AArch32, because we don't need other bits in that case
10711      * to construct next descriptor address (anyway they should be all zeroes).
10712      */
10713     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10714                    ~indexmask_grainsize;
10715 
10716     /* Secure accesses start with the page table in secure memory and
10717      * can be downgraded to non-secure at any step. Non-secure accesses
10718      * remain non-secure. We implement this by just ORing in the NSTable/NS
10719      * bits at each step.
10720      */
10721     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10722     for (;;) {
10723         uint64_t descriptor;
10724         bool nstable;
10725 
10726         descaddr |= (address >> (stride * (4 - level))) & indexmask;
10727         descaddr &= ~7ULL;
10728         nstable = extract32(tableattrs, 4, 1);
10729         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10730         if (fi->type != ARMFault_None) {
10731             goto do_fault;
10732         }
10733 
10734         if (!(descriptor & 1) ||
10735             (!(descriptor & 2) && (level == 3))) {
10736             /* Invalid, or the Reserved level 3 encoding */
10737             goto do_fault;
10738         }
10739         descaddr = descriptor & descaddrmask;
10740 
10741         if ((descriptor & 2) && (level < 3)) {
10742             /* Table entry. The top five bits are attributes which may
10743              * propagate down through lower levels of the table (and
10744              * which are all arranged so that 0 means "no effect", so
10745              * we can gather them up by ORing in the bits at each level).
10746              */
10747             tableattrs |= extract64(descriptor, 59, 5);
10748             level++;
10749             indexmask = indexmask_grainsize;
10750             continue;
10751         }
10752         /* Block entry at level 1 or 2, or page entry at level 3.
10753          * These are basically the same thing, although the number
10754          * of bits we pull in from the vaddr varies.
10755          */
10756         page_size = (1ULL << ((stride * (4 - level)) + 3));
10757         descaddr |= (address & (page_size - 1));
10758         /* Extract attributes from the descriptor */
10759         attrs = extract64(descriptor, 2, 10)
10760             | (extract64(descriptor, 52, 12) << 10);
10761 
10762         if (mmu_idx == ARMMMUIdx_S2NS) {
10763             /* Stage 2 table descriptors do not include any attribute fields */
10764             break;
10765         }
10766         /* Merge in attributes from table descriptors */
10767         attrs |= nstable << 3; /* NS */
10768         guarded = extract64(descriptor, 50, 1);  /* GP */
10769         if (param.hpd) {
10770             /* HPD disables all the table attributes except NSTable.  */
10771             break;
10772         }
10773         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
10774         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10775          * means "force PL1 access only", which means forcing AP[1] to 0.
10776          */
10777         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
10778         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
10779         break;
10780     }
10781     /* Here descaddr is the final physical address, and attributes
10782      * are all in attrs.
10783      */
10784     fault_type = ARMFault_AccessFlag;
10785     if ((attrs & (1 << 8)) == 0) {
10786         /* Access flag */
10787         goto do_fault;
10788     }
10789 
10790     ap = extract32(attrs, 4, 2);
10791     xn = extract32(attrs, 12, 1);
10792 
10793     if (mmu_idx == ARMMMUIdx_S2NS) {
10794         ns = true;
10795         *prot = get_S2prot(env, ap, xn);
10796     } else {
10797         ns = extract32(attrs, 3, 1);
10798         pxn = extract32(attrs, 11, 1);
10799         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10800     }
10801 
10802     fault_type = ARMFault_Permission;
10803     if (!(*prot & (1 << access_type))) {
10804         goto do_fault;
10805     }
10806 
10807     if (ns) {
10808         /* The NS bit will (as required by the architecture) have no effect if
10809          * the CPU doesn't support TZ or this is a non-secure translation
10810          * regime, because the attribute will already be non-secure.
10811          */
10812         txattrs->secure = false;
10813     }
10814     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
10815     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10816         txattrs->target_tlb_bit0 = true;
10817     }
10818 
10819     if (cacheattrs != NULL) {
10820         if (mmu_idx == ARMMMUIdx_S2NS) {
10821             cacheattrs->attrs = convert_stage2_attrs(env,
10822                                                      extract32(attrs, 0, 4));
10823         } else {
10824             /* Index into MAIR registers for cache attributes */
10825             uint8_t attrindx = extract32(attrs, 0, 3);
10826             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10827             assert(attrindx <= 7);
10828             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10829         }
10830         cacheattrs->shareability = extract32(attrs, 6, 2);
10831     }
10832 
10833     *phys_ptr = descaddr;
10834     *page_size_ptr = page_size;
10835     return false;
10836 
10837 do_fault:
10838     fi->type = fault_type;
10839     fi->level = level;
10840     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
10841     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
10842     return true;
10843 }
10844 
10845 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10846                                                 ARMMMUIdx mmu_idx,
10847                                                 int32_t address, int *prot)
10848 {
10849     if (!arm_feature(env, ARM_FEATURE_M)) {
10850         *prot = PAGE_READ | PAGE_WRITE;
10851         switch (address) {
10852         case 0xF0000000 ... 0xFFFFFFFF:
10853             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10854                 /* hivecs execing is ok */
10855                 *prot |= PAGE_EXEC;
10856             }
10857             break;
10858         case 0x00000000 ... 0x7FFFFFFF:
10859             *prot |= PAGE_EXEC;
10860             break;
10861         }
10862     } else {
10863         /* Default system address map for M profile cores.
10864          * The architecture specifies which regions are execute-never;
10865          * at the MPU level no other checks are defined.
10866          */
10867         switch (address) {
10868         case 0x00000000 ... 0x1fffffff: /* ROM */
10869         case 0x20000000 ... 0x3fffffff: /* SRAM */
10870         case 0x60000000 ... 0x7fffffff: /* RAM */
10871         case 0x80000000 ... 0x9fffffff: /* RAM */
10872             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10873             break;
10874         case 0x40000000 ... 0x5fffffff: /* Peripheral */
10875         case 0xa0000000 ... 0xbfffffff: /* Device */
10876         case 0xc0000000 ... 0xdfffffff: /* Device */
10877         case 0xe0000000 ... 0xffffffff: /* System */
10878             *prot = PAGE_READ | PAGE_WRITE;
10879             break;
10880         default:
10881             g_assert_not_reached();
10882         }
10883     }
10884 }
10885 
10886 static bool pmsav7_use_background_region(ARMCPU *cpu,
10887                                          ARMMMUIdx mmu_idx, bool is_user)
10888 {
10889     /* Return true if we should use the default memory map as a
10890      * "background" region if there are no hits against any MPU regions.
10891      */
10892     CPUARMState *env = &cpu->env;
10893 
10894     if (is_user) {
10895         return false;
10896     }
10897 
10898     if (arm_feature(env, ARM_FEATURE_M)) {
10899         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
10900             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
10901     } else {
10902         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
10903     }
10904 }
10905 
10906 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
10907 {
10908     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10909     return arm_feature(env, ARM_FEATURE_M) &&
10910         extract32(address, 20, 12) == 0xe00;
10911 }
10912 
10913 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
10914 {
10915     /* True if address is in the M profile system region
10916      * 0xe0000000 - 0xffffffff
10917      */
10918     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
10919 }
10920 
10921 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
10922                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10923                                  hwaddr *phys_ptr, int *prot,
10924                                  target_ulong *page_size,
10925                                  ARMMMUFaultInfo *fi)
10926 {
10927     ARMCPU *cpu = arm_env_get_cpu(env);
10928     int n;
10929     bool is_user = regime_is_user(env, mmu_idx);
10930 
10931     *phys_ptr = address;
10932     *page_size = TARGET_PAGE_SIZE;
10933     *prot = 0;
10934 
10935     if (regime_translation_disabled(env, mmu_idx) ||
10936         m_is_ppb_region(env, address)) {
10937         /* MPU disabled or M profile PPB access: use default memory map.
10938          * The other case which uses the default memory map in the
10939          * v7M ARM ARM pseudocode is exception vector reads from the vector
10940          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10941          * which always does a direct read using address_space_ldl(), rather
10942          * than going via this function, so we don't need to check that here.
10943          */
10944         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10945     } else { /* MPU enabled */
10946         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10947             /* region search */
10948             uint32_t base = env->pmsav7.drbar[n];
10949             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
10950             uint32_t rmask;
10951             bool srdis = false;
10952 
10953             if (!(env->pmsav7.drsr[n] & 0x1)) {
10954                 continue;
10955             }
10956 
10957             if (!rsize) {
10958                 qemu_log_mask(LOG_GUEST_ERROR,
10959                               "DRSR[%d]: Rsize field cannot be 0\n", n);
10960                 continue;
10961             }
10962             rsize++;
10963             rmask = (1ull << rsize) - 1;
10964 
10965             if (base & rmask) {
10966                 qemu_log_mask(LOG_GUEST_ERROR,
10967                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
10968                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
10969                               n, base, rmask);
10970                 continue;
10971             }
10972 
10973             if (address < base || address > base + rmask) {
10974                 /*
10975                  * Address not in this region. We must check whether the
10976                  * region covers addresses in the same page as our address.
10977                  * In that case we must not report a size that covers the
10978                  * whole page for a subsequent hit against a different MPU
10979                  * region or the background region, because it would result in
10980                  * incorrect TLB hits for subsequent accesses to addresses that
10981                  * are in this MPU region.
10982                  */
10983                 if (ranges_overlap(base, rmask,
10984                                    address & TARGET_PAGE_MASK,
10985                                    TARGET_PAGE_SIZE)) {
10986                     *page_size = 1;
10987                 }
10988                 continue;
10989             }
10990 
10991             /* Region matched */
10992 
10993             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
10994                 int i, snd;
10995                 uint32_t srdis_mask;
10996 
10997                 rsize -= 3; /* sub region size (power of 2) */
10998                 snd = ((address - base) >> rsize) & 0x7;
10999                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11000 
11001                 srdis_mask = srdis ? 0x3 : 0x0;
11002                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11003                     /* This will check in groups of 2, 4 and then 8, whether
11004                      * the subregion bits are consistent. rsize is incremented
11005                      * back up to give the region size, considering consistent
11006                      * adjacent subregions as one region. Stop testing if rsize
11007                      * is already big enough for an entire QEMU page.
11008                      */
11009                     int snd_rounded = snd & ~(i - 1);
11010                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11011                                                      snd_rounded + 8, i);
11012                     if (srdis_mask ^ srdis_multi) {
11013                         break;
11014                     }
11015                     srdis_mask = (srdis_mask << i) | srdis_mask;
11016                     rsize++;
11017                 }
11018             }
11019             if (srdis) {
11020                 continue;
11021             }
11022             if (rsize < TARGET_PAGE_BITS) {
11023                 *page_size = 1 << rsize;
11024             }
11025             break;
11026         }
11027 
11028         if (n == -1) { /* no hits */
11029             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11030                 /* background fault */
11031                 fi->type = ARMFault_Background;
11032                 return true;
11033             }
11034             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11035         } else { /* a MPU hit! */
11036             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11037             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11038 
11039             if (m_is_system_region(env, address)) {
11040                 /* System space is always execute never */
11041                 xn = 1;
11042             }
11043 
11044             if (is_user) { /* User mode AP bit decoding */
11045                 switch (ap) {
11046                 case 0:
11047                 case 1:
11048                 case 5:
11049                     break; /* no access */
11050                 case 3:
11051                     *prot |= PAGE_WRITE;
11052                     /* fall through */
11053                 case 2:
11054                 case 6:
11055                     *prot |= PAGE_READ | PAGE_EXEC;
11056                     break;
11057                 case 7:
11058                     /* for v7M, same as 6; for R profile a reserved value */
11059                     if (arm_feature(env, ARM_FEATURE_M)) {
11060                         *prot |= PAGE_READ | PAGE_EXEC;
11061                         break;
11062                     }
11063                     /* fall through */
11064                 default:
11065                     qemu_log_mask(LOG_GUEST_ERROR,
11066                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11067                                   PRIx32 "\n", n, ap);
11068                 }
11069             } else { /* Priv. mode AP bits decoding */
11070                 switch (ap) {
11071                 case 0:
11072                     break; /* no access */
11073                 case 1:
11074                 case 2:
11075                 case 3:
11076                     *prot |= PAGE_WRITE;
11077                     /* fall through */
11078                 case 5:
11079                 case 6:
11080                     *prot |= PAGE_READ | PAGE_EXEC;
11081                     break;
11082                 case 7:
11083                     /* for v7M, same as 6; for R profile a reserved value */
11084                     if (arm_feature(env, ARM_FEATURE_M)) {
11085                         *prot |= PAGE_READ | PAGE_EXEC;
11086                         break;
11087                     }
11088                     /* fall through */
11089                 default:
11090                     qemu_log_mask(LOG_GUEST_ERROR,
11091                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11092                                   PRIx32 "\n", n, ap);
11093                 }
11094             }
11095 
11096             /* execute never */
11097             if (xn) {
11098                 *prot &= ~PAGE_EXEC;
11099             }
11100         }
11101     }
11102 
11103     fi->type = ARMFault_Permission;
11104     fi->level = 1;
11105     return !(*prot & (1 << access_type));
11106 }
11107 
11108 static bool v8m_is_sau_exempt(CPUARMState *env,
11109                               uint32_t address, MMUAccessType access_type)
11110 {
11111     /* The architecture specifies that certain address ranges are
11112      * exempt from v8M SAU/IDAU checks.
11113      */
11114     return
11115         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11116         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11117         (address >= 0xe000e000 && address <= 0xe000efff) ||
11118         (address >= 0xe002e000 && address <= 0xe002efff) ||
11119         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11120         (address >= 0xe00ff000 && address <= 0xe00fffff);
11121 }
11122 
11123 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
11124                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11125                                 V8M_SAttributes *sattrs)
11126 {
11127     /* Look up the security attributes for this address. Compare the
11128      * pseudocode SecurityCheck() function.
11129      * We assume the caller has zero-initialized *sattrs.
11130      */
11131     ARMCPU *cpu = arm_env_get_cpu(env);
11132     int r;
11133     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11134     int idau_region = IREGION_NOTVALID;
11135     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11136     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11137 
11138     if (cpu->idau) {
11139         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11140         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11141 
11142         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11143                    &idau_nsc);
11144     }
11145 
11146     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11147         /* 0xf0000000..0xffffffff is always S for insn fetches */
11148         return;
11149     }
11150 
11151     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11152         sattrs->ns = !regime_is_secure(env, mmu_idx);
11153         return;
11154     }
11155 
11156     if (idau_region != IREGION_NOTVALID) {
11157         sattrs->irvalid = true;
11158         sattrs->iregion = idau_region;
11159     }
11160 
11161     switch (env->sau.ctrl & 3) {
11162     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11163         break;
11164     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11165         sattrs->ns = true;
11166         break;
11167     default: /* SAU.ENABLE == 1 */
11168         for (r = 0; r < cpu->sau_sregion; r++) {
11169             if (env->sau.rlar[r] & 1) {
11170                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11171                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11172 
11173                 if (base <= address && limit >= address) {
11174                     if (base > addr_page_base || limit < addr_page_limit) {
11175                         sattrs->subpage = true;
11176                     }
11177                     if (sattrs->srvalid) {
11178                         /* If we hit in more than one region then we must report
11179                          * as Secure, not NS-Callable, with no valid region
11180                          * number info.
11181                          */
11182                         sattrs->ns = false;
11183                         sattrs->nsc = false;
11184                         sattrs->sregion = 0;
11185                         sattrs->srvalid = false;
11186                         break;
11187                     } else {
11188                         if (env->sau.rlar[r] & 2) {
11189                             sattrs->nsc = true;
11190                         } else {
11191                             sattrs->ns = true;
11192                         }
11193                         sattrs->srvalid = true;
11194                         sattrs->sregion = r;
11195                     }
11196                 } else {
11197                     /*
11198                      * Address not in this region. We must check whether the
11199                      * region covers addresses in the same page as our address.
11200                      * In that case we must not report a size that covers the
11201                      * whole page for a subsequent hit against a different MPU
11202                      * region or the background region, because it would result
11203                      * in incorrect TLB hits for subsequent accesses to
11204                      * addresses that are in this MPU region.
11205                      */
11206                     if (limit >= base &&
11207                         ranges_overlap(base, limit - base + 1,
11208                                        addr_page_base,
11209                                        TARGET_PAGE_SIZE)) {
11210                         sattrs->subpage = true;
11211                     }
11212                 }
11213             }
11214         }
11215         break;
11216     }
11217 
11218     /*
11219      * The IDAU will override the SAU lookup results if it specifies
11220      * higher security than the SAU does.
11221      */
11222     if (!idau_ns) {
11223         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11224             sattrs->ns = false;
11225             sattrs->nsc = idau_nsc;
11226         }
11227     }
11228 }
11229 
11230 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11231                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11232                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
11233                               int *prot, bool *is_subpage,
11234                               ARMMMUFaultInfo *fi, uint32_t *mregion)
11235 {
11236     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11237      * that a full phys-to-virt translation does).
11238      * mregion is (if not NULL) set to the region number which matched,
11239      * or -1 if no region number is returned (MPU off, address did not
11240      * hit a region, address hit in multiple regions).
11241      * We set is_subpage to true if the region hit doesn't cover the
11242      * entire TARGET_PAGE the address is within.
11243      */
11244     ARMCPU *cpu = arm_env_get_cpu(env);
11245     bool is_user = regime_is_user(env, mmu_idx);
11246     uint32_t secure = regime_is_secure(env, mmu_idx);
11247     int n;
11248     int matchregion = -1;
11249     bool hit = false;
11250     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11251     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11252 
11253     *is_subpage = false;
11254     *phys_ptr = address;
11255     *prot = 0;
11256     if (mregion) {
11257         *mregion = -1;
11258     }
11259 
11260     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11261      * was an exception vector read from the vector table (which is always
11262      * done using the default system address map), because those accesses
11263      * are done in arm_v7m_load_vector(), which always does a direct
11264      * read using address_space_ldl(), rather than going via this function.
11265      */
11266     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11267         hit = true;
11268     } else if (m_is_ppb_region(env, address)) {
11269         hit = true;
11270     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11271         hit = true;
11272     } else {
11273         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11274             /* region search */
11275             /* Note that the base address is bits [31:5] from the register
11276              * with bits [4:0] all zeroes, but the limit address is bits
11277              * [31:5] from the register with bits [4:0] all ones.
11278              */
11279             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11280             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11281 
11282             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11283                 /* Region disabled */
11284                 continue;
11285             }
11286 
11287             if (address < base || address > limit) {
11288                 /*
11289                  * Address not in this region. We must check whether the
11290                  * region covers addresses in the same page as our address.
11291                  * In that case we must not report a size that covers the
11292                  * whole page for a subsequent hit against a different MPU
11293                  * region or the background region, because it would result in
11294                  * incorrect TLB hits for subsequent accesses to addresses that
11295                  * are in this MPU region.
11296                  */
11297                 if (limit >= base &&
11298                     ranges_overlap(base, limit - base + 1,
11299                                    addr_page_base,
11300                                    TARGET_PAGE_SIZE)) {
11301                     *is_subpage = true;
11302                 }
11303                 continue;
11304             }
11305 
11306             if (base > addr_page_base || limit < addr_page_limit) {
11307                 *is_subpage = true;
11308             }
11309 
11310             if (hit) {
11311                 /* Multiple regions match -- always a failure (unlike
11312                  * PMSAv7 where highest-numbered-region wins)
11313                  */
11314                 fi->type = ARMFault_Permission;
11315                 fi->level = 1;
11316                 return true;
11317             }
11318 
11319             matchregion = n;
11320             hit = true;
11321         }
11322     }
11323 
11324     if (!hit) {
11325         /* background fault */
11326         fi->type = ARMFault_Background;
11327         return true;
11328     }
11329 
11330     if (matchregion == -1) {
11331         /* hit using the background region */
11332         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11333     } else {
11334         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11335         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11336 
11337         if (m_is_system_region(env, address)) {
11338             /* System space is always execute never */
11339             xn = 1;
11340         }
11341 
11342         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11343         if (*prot && !xn) {
11344             *prot |= PAGE_EXEC;
11345         }
11346         /* We don't need to look the attribute up in the MAIR0/MAIR1
11347          * registers because that only tells us about cacheability.
11348          */
11349         if (mregion) {
11350             *mregion = matchregion;
11351         }
11352     }
11353 
11354     fi->type = ARMFault_Permission;
11355     fi->level = 1;
11356     return !(*prot & (1 << access_type));
11357 }
11358 
11359 
11360 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11361                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11362                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
11363                                  int *prot, target_ulong *page_size,
11364                                  ARMMMUFaultInfo *fi)
11365 {
11366     uint32_t secure = regime_is_secure(env, mmu_idx);
11367     V8M_SAttributes sattrs = {};
11368     bool ret;
11369     bool mpu_is_subpage;
11370 
11371     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11372         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11373         if (access_type == MMU_INST_FETCH) {
11374             /* Instruction fetches always use the MMU bank and the
11375              * transaction attribute determined by the fetch address,
11376              * regardless of CPU state. This is painful for QEMU
11377              * to handle, because it would mean we need to encode
11378              * into the mmu_idx not just the (user, negpri) information
11379              * for the current security state but also that for the
11380              * other security state, which would balloon the number
11381              * of mmu_idx values needed alarmingly.
11382              * Fortunately we can avoid this because it's not actually
11383              * possible to arbitrarily execute code from memory with
11384              * the wrong security attribute: it will always generate
11385              * an exception of some kind or another, apart from the
11386              * special case of an NS CPU executing an SG instruction
11387              * in S&NSC memory. So we always just fail the translation
11388              * here and sort things out in the exception handler
11389              * (including possibly emulating an SG instruction).
11390              */
11391             if (sattrs.ns != !secure) {
11392                 if (sattrs.nsc) {
11393                     fi->type = ARMFault_QEMU_NSCExec;
11394                 } else {
11395                     fi->type = ARMFault_QEMU_SFault;
11396                 }
11397                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11398                 *phys_ptr = address;
11399                 *prot = 0;
11400                 return true;
11401             }
11402         } else {
11403             /* For data accesses we always use the MMU bank indicated
11404              * by the current CPU state, but the security attributes
11405              * might downgrade a secure access to nonsecure.
11406              */
11407             if (sattrs.ns) {
11408                 txattrs->secure = false;
11409             } else if (!secure) {
11410                 /* NS access to S memory must fault.
11411                  * Architecturally we should first check whether the
11412                  * MPU information for this address indicates that we
11413                  * are doing an unaligned access to Device memory, which
11414                  * should generate a UsageFault instead. QEMU does not
11415                  * currently check for that kind of unaligned access though.
11416                  * If we added it we would need to do so as a special case
11417                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11418                  */
11419                 fi->type = ARMFault_QEMU_SFault;
11420                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11421                 *phys_ptr = address;
11422                 *prot = 0;
11423                 return true;
11424             }
11425         }
11426     }
11427 
11428     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11429                             txattrs, prot, &mpu_is_subpage, fi, NULL);
11430     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11431     return ret;
11432 }
11433 
11434 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11435                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11436                                  hwaddr *phys_ptr, int *prot,
11437                                  ARMMMUFaultInfo *fi)
11438 {
11439     int n;
11440     uint32_t mask;
11441     uint32_t base;
11442     bool is_user = regime_is_user(env, mmu_idx);
11443 
11444     if (regime_translation_disabled(env, mmu_idx)) {
11445         /* MPU disabled.  */
11446         *phys_ptr = address;
11447         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11448         return false;
11449     }
11450 
11451     *phys_ptr = address;
11452     for (n = 7; n >= 0; n--) {
11453         base = env->cp15.c6_region[n];
11454         if ((base & 1) == 0) {
11455             continue;
11456         }
11457         mask = 1 << ((base >> 1) & 0x1f);
11458         /* Keep this shift separate from the above to avoid an
11459            (undefined) << 32.  */
11460         mask = (mask << 1) - 1;
11461         if (((base ^ address) & ~mask) == 0) {
11462             break;
11463         }
11464     }
11465     if (n < 0) {
11466         fi->type = ARMFault_Background;
11467         return true;
11468     }
11469 
11470     if (access_type == MMU_INST_FETCH) {
11471         mask = env->cp15.pmsav5_insn_ap;
11472     } else {
11473         mask = env->cp15.pmsav5_data_ap;
11474     }
11475     mask = (mask >> (n * 4)) & 0xf;
11476     switch (mask) {
11477     case 0:
11478         fi->type = ARMFault_Permission;
11479         fi->level = 1;
11480         return true;
11481     case 1:
11482         if (is_user) {
11483             fi->type = ARMFault_Permission;
11484             fi->level = 1;
11485             return true;
11486         }
11487         *prot = PAGE_READ | PAGE_WRITE;
11488         break;
11489     case 2:
11490         *prot = PAGE_READ;
11491         if (!is_user) {
11492             *prot |= PAGE_WRITE;
11493         }
11494         break;
11495     case 3:
11496         *prot = PAGE_READ | PAGE_WRITE;
11497         break;
11498     case 5:
11499         if (is_user) {
11500             fi->type = ARMFault_Permission;
11501             fi->level = 1;
11502             return true;
11503         }
11504         *prot = PAGE_READ;
11505         break;
11506     case 6:
11507         *prot = PAGE_READ;
11508         break;
11509     default:
11510         /* Bad permission.  */
11511         fi->type = ARMFault_Permission;
11512         fi->level = 1;
11513         return true;
11514     }
11515     *prot |= PAGE_EXEC;
11516     return false;
11517 }
11518 
11519 /* Combine either inner or outer cacheability attributes for normal
11520  * memory, according to table D4-42 and pseudocode procedure
11521  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11522  *
11523  * NB: only stage 1 includes allocation hints (RW bits), leading to
11524  * some asymmetry.
11525  */
11526 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11527 {
11528     if (s1 == 4 || s2 == 4) {
11529         /* non-cacheable has precedence */
11530         return 4;
11531     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11532         /* stage 1 write-through takes precedence */
11533         return s1;
11534     } else if (extract32(s2, 2, 2) == 2) {
11535         /* stage 2 write-through takes precedence, but the allocation hint
11536          * is still taken from stage 1
11537          */
11538         return (2 << 2) | extract32(s1, 0, 2);
11539     } else { /* write-back */
11540         return s1;
11541     }
11542 }
11543 
11544 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11545  * and CombineS1S2Desc()
11546  *
11547  * @s1:      Attributes from stage 1 walk
11548  * @s2:      Attributes from stage 2 walk
11549  */
11550 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11551 {
11552     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11553     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11554     ARMCacheAttrs ret;
11555 
11556     /* Combine shareability attributes (table D4-43) */
11557     if (s1.shareability == 2 || s2.shareability == 2) {
11558         /* if either are outer-shareable, the result is outer-shareable */
11559         ret.shareability = 2;
11560     } else if (s1.shareability == 3 || s2.shareability == 3) {
11561         /* if either are inner-shareable, the result is inner-shareable */
11562         ret.shareability = 3;
11563     } else {
11564         /* both non-shareable */
11565         ret.shareability = 0;
11566     }
11567 
11568     /* Combine memory type and cacheability attributes */
11569     if (s1hi == 0 || s2hi == 0) {
11570         /* Device has precedence over normal */
11571         if (s1lo == 0 || s2lo == 0) {
11572             /* nGnRnE has precedence over anything */
11573             ret.attrs = 0;
11574         } else if (s1lo == 4 || s2lo == 4) {
11575             /* non-Reordering has precedence over Reordering */
11576             ret.attrs = 4;  /* nGnRE */
11577         } else if (s1lo == 8 || s2lo == 8) {
11578             /* non-Gathering has precedence over Gathering */
11579             ret.attrs = 8;  /* nGRE */
11580         } else {
11581             ret.attrs = 0xc; /* GRE */
11582         }
11583 
11584         /* Any location for which the resultant memory type is any
11585          * type of Device memory is always treated as Outer Shareable.
11586          */
11587         ret.shareability = 2;
11588     } else { /* Normal memory */
11589         /* Outer/inner cacheability combine independently */
11590         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11591                   | combine_cacheattr_nibble(s1lo, s2lo);
11592 
11593         if (ret.attrs == 0x44) {
11594             /* Any location for which the resultant memory type is Normal
11595              * Inner Non-cacheable, Outer Non-cacheable is always treated
11596              * as Outer Shareable.
11597              */
11598             ret.shareability = 2;
11599         }
11600     }
11601 
11602     return ret;
11603 }
11604 
11605 
11606 /* get_phys_addr - get the physical address for this virtual address
11607  *
11608  * Find the physical address corresponding to the given virtual address,
11609  * by doing a translation table walk on MMU based systems or using the
11610  * MPU state on MPU based systems.
11611  *
11612  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11613  * prot and page_size may not be filled in, and the populated fsr value provides
11614  * information on why the translation aborted, in the format of a
11615  * DFSR/IFSR fault register, with the following caveats:
11616  *  * we honour the short vs long DFSR format differences.
11617  *  * the WnR bit is never set (the caller must do this).
11618  *  * for PSMAv5 based systems we don't bother to return a full FSR format
11619  *    value.
11620  *
11621  * @env: CPUARMState
11622  * @address: virtual address to get physical address for
11623  * @access_type: 0 for read, 1 for write, 2 for execute
11624  * @mmu_idx: MMU index indicating required translation regime
11625  * @phys_ptr: set to the physical address corresponding to the virtual address
11626  * @attrs: set to the memory transaction attributes to use
11627  * @prot: set to the permissions for the page containing phys_ptr
11628  * @page_size: set to the size of the page containing phys_ptr
11629  * @fi: set to fault info if the translation fails
11630  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11631  */
11632 static bool get_phys_addr(CPUARMState *env, target_ulong address,
11633                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
11634                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11635                           target_ulong *page_size,
11636                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11637 {
11638     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
11639         /* Call ourselves recursively to do the stage 1 and then stage 2
11640          * translations.
11641          */
11642         if (arm_feature(env, ARM_FEATURE_EL2)) {
11643             hwaddr ipa;
11644             int s2_prot;
11645             int ret;
11646             ARMCacheAttrs cacheattrs2 = {};
11647 
11648             ret = get_phys_addr(env, address, access_type,
11649                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11650                                 prot, page_size, fi, cacheattrs);
11651 
11652             /* If S1 fails or S2 is disabled, return early.  */
11653             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
11654                 *phys_ptr = ipa;
11655                 return ret;
11656             }
11657 
11658             /* S1 is done. Now do S2 translation.  */
11659             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
11660                                      phys_ptr, attrs, &s2_prot,
11661                                      page_size, fi,
11662                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
11663             fi->s2addr = ipa;
11664             /* Combine the S1 and S2 perms.  */
11665             *prot &= s2_prot;
11666 
11667             /* Combine the S1 and S2 cache attributes, if needed */
11668             if (!ret && cacheattrs != NULL) {
11669                 if (env->cp15.hcr_el2 & HCR_DC) {
11670                     /*
11671                      * HCR.DC forces the first stage attributes to
11672                      *  Normal Non-Shareable,
11673                      *  Inner Write-Back Read-Allocate Write-Allocate,
11674                      *  Outer Write-Back Read-Allocate Write-Allocate.
11675                      */
11676                     cacheattrs->attrs = 0xff;
11677                     cacheattrs->shareability = 0;
11678                 }
11679                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11680             }
11681 
11682             return ret;
11683         } else {
11684             /*
11685              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11686              */
11687             mmu_idx = stage_1_mmu_idx(mmu_idx);
11688         }
11689     }
11690 
11691     /* The page table entries may downgrade secure to non-secure, but
11692      * cannot upgrade an non-secure translation regime's attributes
11693      * to secure.
11694      */
11695     attrs->secure = regime_is_secure(env, mmu_idx);
11696     attrs->user = regime_is_user(env, mmu_idx);
11697 
11698     /* Fast Context Switch Extension. This doesn't exist at all in v8.
11699      * In v7 and earlier it affects all stage 1 translations.
11700      */
11701     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
11702         && !arm_feature(env, ARM_FEATURE_V8)) {
11703         if (regime_el(env, mmu_idx) == 3) {
11704             address += env->cp15.fcseidr_s;
11705         } else {
11706             address += env->cp15.fcseidr_ns;
11707         }
11708     }
11709 
11710     if (arm_feature(env, ARM_FEATURE_PMSA)) {
11711         bool ret;
11712         *page_size = TARGET_PAGE_SIZE;
11713 
11714         if (arm_feature(env, ARM_FEATURE_V8)) {
11715             /* PMSAv8 */
11716             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11717                                        phys_ptr, attrs, prot, page_size, fi);
11718         } else if (arm_feature(env, ARM_FEATURE_V7)) {
11719             /* PMSAv7 */
11720             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11721                                        phys_ptr, prot, page_size, fi);
11722         } else {
11723             /* Pre-v7 MPU */
11724             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11725                                        phys_ptr, prot, fi);
11726         }
11727         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11728                       " mmu_idx %u -> %s (prot %c%c%c)\n",
11729                       access_type == MMU_DATA_LOAD ? "reading" :
11730                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11731                       (uint32_t)address, mmu_idx,
11732                       ret ? "Miss" : "Hit",
11733                       *prot & PAGE_READ ? 'r' : '-',
11734                       *prot & PAGE_WRITE ? 'w' : '-',
11735                       *prot & PAGE_EXEC ? 'x' : '-');
11736 
11737         return ret;
11738     }
11739 
11740     /* Definitely a real MMU, not an MPU */
11741 
11742     if (regime_translation_disabled(env, mmu_idx)) {
11743         /* MMU disabled. */
11744         *phys_ptr = address;
11745         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11746         *page_size = TARGET_PAGE_SIZE;
11747         return 0;
11748     }
11749 
11750     if (regime_using_lpae_format(env, mmu_idx)) {
11751         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11752                                   phys_ptr, attrs, prot, page_size,
11753                                   fi, cacheattrs);
11754     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11755         return get_phys_addr_v6(env, address, access_type, mmu_idx,
11756                                 phys_ptr, attrs, prot, page_size, fi);
11757     } else {
11758         return get_phys_addr_v5(env, address, access_type, mmu_idx,
11759                                     phys_ptr, prot, page_size, fi);
11760     }
11761 }
11762 
11763 /* Walk the page table and (if the mapping exists) add the page
11764  * to the TLB. Return false on success, or true on failure. Populate
11765  * fsr with ARM DFSR/IFSR fault register format value on failure.
11766  */
11767 bool arm_tlb_fill(CPUState *cs, vaddr address,
11768                   MMUAccessType access_type, int mmu_idx,
11769                   ARMMMUFaultInfo *fi)
11770 {
11771     ARMCPU *cpu = ARM_CPU(cs);
11772     CPUARMState *env = &cpu->env;
11773     hwaddr phys_addr;
11774     target_ulong page_size;
11775     int prot;
11776     int ret;
11777     MemTxAttrs attrs = {};
11778 
11779     ret = get_phys_addr(env, address, access_type,
11780                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
11781                         &attrs, &prot, &page_size, fi, NULL);
11782     if (!ret) {
11783         /*
11784          * Map a single [sub]page. Regions smaller than our declared
11785          * target page size are handled specially, so for those we
11786          * pass in the exact addresses.
11787          */
11788         if (page_size >= TARGET_PAGE_SIZE) {
11789             phys_addr &= TARGET_PAGE_MASK;
11790             address &= TARGET_PAGE_MASK;
11791         }
11792         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
11793                                 prot, mmu_idx, page_size);
11794         return 0;
11795     }
11796 
11797     return ret;
11798 }
11799 
11800 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11801                                          MemTxAttrs *attrs)
11802 {
11803     ARMCPU *cpu = ARM_CPU(cs);
11804     CPUARMState *env = &cpu->env;
11805     hwaddr phys_addr;
11806     target_ulong page_size;
11807     int prot;
11808     bool ret;
11809     ARMMMUFaultInfo fi = {};
11810     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11811 
11812     *attrs = (MemTxAttrs) {};
11813 
11814     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11815                         attrs, &prot, &page_size, &fi, NULL);
11816 
11817     if (ret) {
11818         return -1;
11819     }
11820     return phys_addr;
11821 }
11822 
11823 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
11824 {
11825     uint32_t mask;
11826     unsigned el = arm_current_el(env);
11827 
11828     /* First handle registers which unprivileged can read */
11829 
11830     switch (reg) {
11831     case 0 ... 7: /* xPSR sub-fields */
11832         mask = 0;
11833         if ((reg & 1) && el) {
11834             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
11835         }
11836         if (!(reg & 4)) {
11837             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
11838         }
11839         /* EPSR reads as zero */
11840         return xpsr_read(env) & mask;
11841         break;
11842     case 20: /* CONTROL */
11843         return env->v7m.control[env->v7m.secure];
11844     case 0x94: /* CONTROL_NS */
11845         /* We have to handle this here because unprivileged Secure code
11846          * can read the NS CONTROL register.
11847          */
11848         if (!env->v7m.secure) {
11849             return 0;
11850         }
11851         return env->v7m.control[M_REG_NS];
11852     }
11853 
11854     if (el == 0) {
11855         return 0; /* unprivileged reads others as zero */
11856     }
11857 
11858     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11859         switch (reg) {
11860         case 0x88: /* MSP_NS */
11861             if (!env->v7m.secure) {
11862                 return 0;
11863             }
11864             return env->v7m.other_ss_msp;
11865         case 0x89: /* PSP_NS */
11866             if (!env->v7m.secure) {
11867                 return 0;
11868             }
11869             return env->v7m.other_ss_psp;
11870         case 0x8a: /* MSPLIM_NS */
11871             if (!env->v7m.secure) {
11872                 return 0;
11873             }
11874             return env->v7m.msplim[M_REG_NS];
11875         case 0x8b: /* PSPLIM_NS */
11876             if (!env->v7m.secure) {
11877                 return 0;
11878             }
11879             return env->v7m.psplim[M_REG_NS];
11880         case 0x90: /* PRIMASK_NS */
11881             if (!env->v7m.secure) {
11882                 return 0;
11883             }
11884             return env->v7m.primask[M_REG_NS];
11885         case 0x91: /* BASEPRI_NS */
11886             if (!env->v7m.secure) {
11887                 return 0;
11888             }
11889             return env->v7m.basepri[M_REG_NS];
11890         case 0x93: /* FAULTMASK_NS */
11891             if (!env->v7m.secure) {
11892                 return 0;
11893             }
11894             return env->v7m.faultmask[M_REG_NS];
11895         case 0x98: /* SP_NS */
11896         {
11897             /* This gives the non-secure SP selected based on whether we're
11898              * currently in handler mode or not, using the NS CONTROL.SPSEL.
11899              */
11900             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
11901 
11902             if (!env->v7m.secure) {
11903                 return 0;
11904             }
11905             if (!arm_v7m_is_handler_mode(env) && spsel) {
11906                 return env->v7m.other_ss_psp;
11907             } else {
11908                 return env->v7m.other_ss_msp;
11909             }
11910         }
11911         default:
11912             break;
11913         }
11914     }
11915 
11916     switch (reg) {
11917     case 8: /* MSP */
11918         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
11919     case 9: /* PSP */
11920         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
11921     case 10: /* MSPLIM */
11922         if (!arm_feature(env, ARM_FEATURE_V8)) {
11923             goto bad_reg;
11924         }
11925         return env->v7m.msplim[env->v7m.secure];
11926     case 11: /* PSPLIM */
11927         if (!arm_feature(env, ARM_FEATURE_V8)) {
11928             goto bad_reg;
11929         }
11930         return env->v7m.psplim[env->v7m.secure];
11931     case 16: /* PRIMASK */
11932         return env->v7m.primask[env->v7m.secure];
11933     case 17: /* BASEPRI */
11934     case 18: /* BASEPRI_MAX */
11935         return env->v7m.basepri[env->v7m.secure];
11936     case 19: /* FAULTMASK */
11937         return env->v7m.faultmask[env->v7m.secure];
11938     default:
11939     bad_reg:
11940         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
11941                                        " register %d\n", reg);
11942         return 0;
11943     }
11944 }
11945 
11946 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
11947 {
11948     /* We're passed bits [11..0] of the instruction; extract
11949      * SYSm and the mask bits.
11950      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
11951      * we choose to treat them as if the mask bits were valid.
11952      * NB that the pseudocode 'mask' variable is bits [11..10],
11953      * whereas ours is [11..8].
11954      */
11955     uint32_t mask = extract32(maskreg, 8, 4);
11956     uint32_t reg = extract32(maskreg, 0, 8);
11957 
11958     if (arm_current_el(env) == 0 && reg > 7) {
11959         /* only xPSR sub-fields may be written by unprivileged */
11960         return;
11961     }
11962 
11963     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11964         switch (reg) {
11965         case 0x88: /* MSP_NS */
11966             if (!env->v7m.secure) {
11967                 return;
11968             }
11969             env->v7m.other_ss_msp = val;
11970             return;
11971         case 0x89: /* PSP_NS */
11972             if (!env->v7m.secure) {
11973                 return;
11974             }
11975             env->v7m.other_ss_psp = val;
11976             return;
11977         case 0x8a: /* MSPLIM_NS */
11978             if (!env->v7m.secure) {
11979                 return;
11980             }
11981             env->v7m.msplim[M_REG_NS] = val & ~7;
11982             return;
11983         case 0x8b: /* PSPLIM_NS */
11984             if (!env->v7m.secure) {
11985                 return;
11986             }
11987             env->v7m.psplim[M_REG_NS] = val & ~7;
11988             return;
11989         case 0x90: /* PRIMASK_NS */
11990             if (!env->v7m.secure) {
11991                 return;
11992             }
11993             env->v7m.primask[M_REG_NS] = val & 1;
11994             return;
11995         case 0x91: /* BASEPRI_NS */
11996             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
11997                 return;
11998             }
11999             env->v7m.basepri[M_REG_NS] = val & 0xff;
12000             return;
12001         case 0x93: /* FAULTMASK_NS */
12002             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12003                 return;
12004             }
12005             env->v7m.faultmask[M_REG_NS] = val & 1;
12006             return;
12007         case 0x94: /* CONTROL_NS */
12008             if (!env->v7m.secure) {
12009                 return;
12010             }
12011             write_v7m_control_spsel_for_secstate(env,
12012                                                  val & R_V7M_CONTROL_SPSEL_MASK,
12013                                                  M_REG_NS);
12014             if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12015                 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12016                 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12017             }
12018             return;
12019         case 0x98: /* SP_NS */
12020         {
12021             /* This gives the non-secure SP selected based on whether we're
12022              * currently in handler mode or not, using the NS CONTROL.SPSEL.
12023              */
12024             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12025             bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12026             uint32_t limit;
12027 
12028             if (!env->v7m.secure) {
12029                 return;
12030             }
12031 
12032             limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12033 
12034             if (val < limit) {
12035                 CPUState *cs = CPU(arm_env_get_cpu(env));
12036 
12037                 cpu_restore_state(cs, GETPC(), true);
12038                 raise_exception(env, EXCP_STKOF, 0, 1);
12039             }
12040 
12041             if (is_psp) {
12042                 env->v7m.other_ss_psp = val;
12043             } else {
12044                 env->v7m.other_ss_msp = val;
12045             }
12046             return;
12047         }
12048         default:
12049             break;
12050         }
12051     }
12052 
12053     switch (reg) {
12054     case 0 ... 7: /* xPSR sub-fields */
12055         /* only APSR is actually writable */
12056         if (!(reg & 4)) {
12057             uint32_t apsrmask = 0;
12058 
12059             if (mask & 8) {
12060                 apsrmask |= XPSR_NZCV | XPSR_Q;
12061             }
12062             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12063                 apsrmask |= XPSR_GE;
12064             }
12065             xpsr_write(env, val, apsrmask);
12066         }
12067         break;
12068     case 8: /* MSP */
12069         if (v7m_using_psp(env)) {
12070             env->v7m.other_sp = val;
12071         } else {
12072             env->regs[13] = val;
12073         }
12074         break;
12075     case 9: /* PSP */
12076         if (v7m_using_psp(env)) {
12077             env->regs[13] = val;
12078         } else {
12079             env->v7m.other_sp = val;
12080         }
12081         break;
12082     case 10: /* MSPLIM */
12083         if (!arm_feature(env, ARM_FEATURE_V8)) {
12084             goto bad_reg;
12085         }
12086         env->v7m.msplim[env->v7m.secure] = val & ~7;
12087         break;
12088     case 11: /* PSPLIM */
12089         if (!arm_feature(env, ARM_FEATURE_V8)) {
12090             goto bad_reg;
12091         }
12092         env->v7m.psplim[env->v7m.secure] = val & ~7;
12093         break;
12094     case 16: /* PRIMASK */
12095         env->v7m.primask[env->v7m.secure] = val & 1;
12096         break;
12097     case 17: /* BASEPRI */
12098         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12099             goto bad_reg;
12100         }
12101         env->v7m.basepri[env->v7m.secure] = val & 0xff;
12102         break;
12103     case 18: /* BASEPRI_MAX */
12104         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12105             goto bad_reg;
12106         }
12107         val &= 0xff;
12108         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
12109                          || env->v7m.basepri[env->v7m.secure] == 0)) {
12110             env->v7m.basepri[env->v7m.secure] = val;
12111         }
12112         break;
12113     case 19: /* FAULTMASK */
12114         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12115             goto bad_reg;
12116         }
12117         env->v7m.faultmask[env->v7m.secure] = val & 1;
12118         break;
12119     case 20: /* CONTROL */
12120         /* Writing to the SPSEL bit only has an effect if we are in
12121          * thread mode; other bits can be updated by any privileged code.
12122          * write_v7m_control_spsel() deals with updating the SPSEL bit in
12123          * env->v7m.control, so we only need update the others.
12124          * For v7M, we must just ignore explicit writes to SPSEL in handler
12125          * mode; for v8M the write is permitted but will have no effect.
12126          */
12127         if (arm_feature(env, ARM_FEATURE_V8) ||
12128             !arm_v7m_is_handler_mode(env)) {
12129             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
12130         }
12131         if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12132             env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
12133             env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
12134         }
12135         break;
12136     default:
12137     bad_reg:
12138         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
12139                                        " register %d\n", reg);
12140         return;
12141     }
12142 }
12143 
12144 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
12145 {
12146     /* Implement the TT instruction. op is bits [7:6] of the insn. */
12147     bool forceunpriv = op & 1;
12148     bool alt = op & 2;
12149     V8M_SAttributes sattrs = {};
12150     uint32_t tt_resp;
12151     bool r, rw, nsr, nsrw, mrvalid;
12152     int prot;
12153     ARMMMUFaultInfo fi = {};
12154     MemTxAttrs attrs = {};
12155     hwaddr phys_addr;
12156     ARMMMUIdx mmu_idx;
12157     uint32_t mregion;
12158     bool targetpriv;
12159     bool targetsec = env->v7m.secure;
12160     bool is_subpage;
12161 
12162     /* Work out what the security state and privilege level we're
12163      * interested in is...
12164      */
12165     if (alt) {
12166         targetsec = !targetsec;
12167     }
12168 
12169     if (forceunpriv) {
12170         targetpriv = false;
12171     } else {
12172         targetpriv = arm_v7m_is_handler_mode(env) ||
12173             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
12174     }
12175 
12176     /* ...and then figure out which MMU index this is */
12177     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
12178 
12179     /* We know that the MPU and SAU don't care about the access type
12180      * for our purposes beyond that we don't want to claim to be
12181      * an insn fetch, so we arbitrarily call this a read.
12182      */
12183 
12184     /* MPU region info only available for privileged or if
12185      * inspecting the other MPU state.
12186      */
12187     if (arm_current_el(env) != 0 || alt) {
12188         /* We can ignore the return value as prot is always set */
12189         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
12190                           &phys_addr, &attrs, &prot, &is_subpage,
12191                           &fi, &mregion);
12192         if (mregion == -1) {
12193             mrvalid = false;
12194             mregion = 0;
12195         } else {
12196             mrvalid = true;
12197         }
12198         r = prot & PAGE_READ;
12199         rw = prot & PAGE_WRITE;
12200     } else {
12201         r = false;
12202         rw = false;
12203         mrvalid = false;
12204         mregion = 0;
12205     }
12206 
12207     if (env->v7m.secure) {
12208         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
12209         nsr = sattrs.ns && r;
12210         nsrw = sattrs.ns && rw;
12211     } else {
12212         sattrs.ns = true;
12213         nsr = false;
12214         nsrw = false;
12215     }
12216 
12217     tt_resp = (sattrs.iregion << 24) |
12218         (sattrs.irvalid << 23) |
12219         ((!sattrs.ns) << 22) |
12220         (nsrw << 21) |
12221         (nsr << 20) |
12222         (rw << 19) |
12223         (r << 18) |
12224         (sattrs.srvalid << 17) |
12225         (mrvalid << 16) |
12226         (sattrs.sregion << 8) |
12227         mregion;
12228 
12229     return tt_resp;
12230 }
12231 
12232 #endif
12233 
12234 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
12235 {
12236     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
12237      * Note that we do not implement the (architecturally mandated)
12238      * alignment fault for attempts to use this on Device memory
12239      * (which matches the usual QEMU behaviour of not implementing either
12240      * alignment faults or any memory attribute handling).
12241      */
12242 
12243     ARMCPU *cpu = arm_env_get_cpu(env);
12244     uint64_t blocklen = 4 << cpu->dcz_blocksize;
12245     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
12246 
12247 #ifndef CONFIG_USER_ONLY
12248     {
12249         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
12250          * the block size so we might have to do more than one TLB lookup.
12251          * We know that in fact for any v8 CPU the page size is at least 4K
12252          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
12253          * 1K as an artefact of legacy v5 subpage support being present in the
12254          * same QEMU executable.
12255          */
12256         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
12257         void *hostaddr[maxidx];
12258         int try, i;
12259         unsigned mmu_idx = cpu_mmu_index(env, false);
12260         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
12261 
12262         for (try = 0; try < 2; try++) {
12263 
12264             for (i = 0; i < maxidx; i++) {
12265                 hostaddr[i] = tlb_vaddr_to_host(env,
12266                                                 vaddr + TARGET_PAGE_SIZE * i,
12267                                                 1, mmu_idx);
12268                 if (!hostaddr[i]) {
12269                     break;
12270                 }
12271             }
12272             if (i == maxidx) {
12273                 /* If it's all in the TLB it's fair game for just writing to;
12274                  * we know we don't need to update dirty status, etc.
12275                  */
12276                 for (i = 0; i < maxidx - 1; i++) {
12277                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
12278                 }
12279                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
12280                 return;
12281             }
12282             /* OK, try a store and see if we can populate the tlb. This
12283              * might cause an exception if the memory isn't writable,
12284              * in which case we will longjmp out of here. We must for
12285              * this purpose use the actual register value passed to us
12286              * so that we get the fault address right.
12287              */
12288             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
12289             /* Now we can populate the other TLB entries, if any */
12290             for (i = 0; i < maxidx; i++) {
12291                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
12292                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
12293                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
12294                 }
12295             }
12296         }
12297 
12298         /* Slow path (probably attempt to do this to an I/O device or
12299          * similar, or clearing of a block of code we have translations
12300          * cached for). Just do a series of byte writes as the architecture
12301          * demands. It's not worth trying to use a cpu_physical_memory_map(),
12302          * memset(), unmap() sequence here because:
12303          *  + we'd need to account for the blocksize being larger than a page
12304          *  + the direct-RAM access case is almost always going to be dealt
12305          *    with in the fastpath code above, so there's no speed benefit
12306          *  + we would have to deal with the map returning NULL because the
12307          *    bounce buffer was in use
12308          */
12309         for (i = 0; i < blocklen; i++) {
12310             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
12311         }
12312     }
12313 #else
12314     memset(g2h(vaddr), 0, blocklen);
12315 #endif
12316 }
12317 
12318 /* Note that signed overflow is undefined in C.  The following routines are
12319    careful to use unsigned types where modulo arithmetic is required.
12320    Failure to do so _will_ break on newer gcc.  */
12321 
12322 /* Signed saturating arithmetic.  */
12323 
12324 /* Perform 16-bit signed saturating addition.  */
12325 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12326 {
12327     uint16_t res;
12328 
12329     res = a + b;
12330     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12331         if (a & 0x8000)
12332             res = 0x8000;
12333         else
12334             res = 0x7fff;
12335     }
12336     return res;
12337 }
12338 
12339 /* Perform 8-bit signed saturating addition.  */
12340 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12341 {
12342     uint8_t res;
12343 
12344     res = a + b;
12345     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12346         if (a & 0x80)
12347             res = 0x80;
12348         else
12349             res = 0x7f;
12350     }
12351     return res;
12352 }
12353 
12354 /* Perform 16-bit signed saturating subtraction.  */
12355 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12356 {
12357     uint16_t res;
12358 
12359     res = a - b;
12360     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12361         if (a & 0x8000)
12362             res = 0x8000;
12363         else
12364             res = 0x7fff;
12365     }
12366     return res;
12367 }
12368 
12369 /* Perform 8-bit signed saturating subtraction.  */
12370 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12371 {
12372     uint8_t res;
12373 
12374     res = a - b;
12375     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12376         if (a & 0x80)
12377             res = 0x80;
12378         else
12379             res = 0x7f;
12380     }
12381     return res;
12382 }
12383 
12384 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12385 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12386 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12387 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12388 #define PFX q
12389 
12390 #include "op_addsub.h"
12391 
12392 /* Unsigned saturating arithmetic.  */
12393 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12394 {
12395     uint16_t res;
12396     res = a + b;
12397     if (res < a)
12398         res = 0xffff;
12399     return res;
12400 }
12401 
12402 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12403 {
12404     if (a > b)
12405         return a - b;
12406     else
12407         return 0;
12408 }
12409 
12410 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12411 {
12412     uint8_t res;
12413     res = a + b;
12414     if (res < a)
12415         res = 0xff;
12416     return res;
12417 }
12418 
12419 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12420 {
12421     if (a > b)
12422         return a - b;
12423     else
12424         return 0;
12425 }
12426 
12427 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12428 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12429 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12430 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12431 #define PFX uq
12432 
12433 #include "op_addsub.h"
12434 
12435 /* Signed modulo arithmetic.  */
12436 #define SARITH16(a, b, n, op) do { \
12437     int32_t sum; \
12438     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12439     RESULT(sum, n, 16); \
12440     if (sum >= 0) \
12441         ge |= 3 << (n * 2); \
12442     } while(0)
12443 
12444 #define SARITH8(a, b, n, op) do { \
12445     int32_t sum; \
12446     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12447     RESULT(sum, n, 8); \
12448     if (sum >= 0) \
12449         ge |= 1 << n; \
12450     } while(0)
12451 
12452 
12453 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12454 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12455 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12456 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12457 #define PFX s
12458 #define ARITH_GE
12459 
12460 #include "op_addsub.h"
12461 
12462 /* Unsigned modulo arithmetic.  */
12463 #define ADD16(a, b, n) do { \
12464     uint32_t sum; \
12465     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12466     RESULT(sum, n, 16); \
12467     if ((sum >> 16) == 1) \
12468         ge |= 3 << (n * 2); \
12469     } while(0)
12470 
12471 #define ADD8(a, b, n) do { \
12472     uint32_t sum; \
12473     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12474     RESULT(sum, n, 8); \
12475     if ((sum >> 8) == 1) \
12476         ge |= 1 << n; \
12477     } while(0)
12478 
12479 #define SUB16(a, b, n) do { \
12480     uint32_t sum; \
12481     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12482     RESULT(sum, n, 16); \
12483     if ((sum >> 16) == 0) \
12484         ge |= 3 << (n * 2); \
12485     } while(0)
12486 
12487 #define SUB8(a, b, n) do { \
12488     uint32_t sum; \
12489     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12490     RESULT(sum, n, 8); \
12491     if ((sum >> 8) == 0) \
12492         ge |= 1 << n; \
12493     } while(0)
12494 
12495 #define PFX u
12496 #define ARITH_GE
12497 
12498 #include "op_addsub.h"
12499 
12500 /* Halved signed arithmetic.  */
12501 #define ADD16(a, b, n) \
12502   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12503 #define SUB16(a, b, n) \
12504   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12505 #define ADD8(a, b, n) \
12506   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12507 #define SUB8(a, b, n) \
12508   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12509 #define PFX sh
12510 
12511 #include "op_addsub.h"
12512 
12513 /* Halved unsigned arithmetic.  */
12514 #define ADD16(a, b, n) \
12515   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12516 #define SUB16(a, b, n) \
12517   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12518 #define ADD8(a, b, n) \
12519   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12520 #define SUB8(a, b, n) \
12521   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12522 #define PFX uh
12523 
12524 #include "op_addsub.h"
12525 
12526 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12527 {
12528     if (a > b)
12529         return a - b;
12530     else
12531         return b - a;
12532 }
12533 
12534 /* Unsigned sum of absolute byte differences.  */
12535 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12536 {
12537     uint32_t sum;
12538     sum = do_usad(a, b);
12539     sum += do_usad(a >> 8, b >> 8);
12540     sum += do_usad(a >> 16, b >>16);
12541     sum += do_usad(a >> 24, b >> 24);
12542     return sum;
12543 }
12544 
12545 /* For ARMv6 SEL instruction.  */
12546 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12547 {
12548     uint32_t mask;
12549 
12550     mask = 0;
12551     if (flags & 1)
12552         mask |= 0xff;
12553     if (flags & 2)
12554         mask |= 0xff00;
12555     if (flags & 4)
12556         mask |= 0xff0000;
12557     if (flags & 8)
12558         mask |= 0xff000000;
12559     return (a & mask) | (b & ~mask);
12560 }
12561 
12562 /* VFP support.  We follow the convention used for VFP instructions:
12563    Single precision routines have a "s" suffix, double precision a
12564    "d" suffix.  */
12565 
12566 /* Convert host exception flags to vfp form.  */
12567 static inline int vfp_exceptbits_from_host(int host_bits)
12568 {
12569     int target_bits = 0;
12570 
12571     if (host_bits & float_flag_invalid)
12572         target_bits |= 1;
12573     if (host_bits & float_flag_divbyzero)
12574         target_bits |= 2;
12575     if (host_bits & float_flag_overflow)
12576         target_bits |= 4;
12577     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
12578         target_bits |= 8;
12579     if (host_bits & float_flag_inexact)
12580         target_bits |= 0x10;
12581     if (host_bits & float_flag_input_denormal)
12582         target_bits |= 0x80;
12583     return target_bits;
12584 }
12585 
12586 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
12587 {
12588     int i;
12589     uint32_t fpscr;
12590 
12591     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
12592             | (env->vfp.vec_len << 16)
12593             | (env->vfp.vec_stride << 20);
12594 
12595     i = get_float_exception_flags(&env->vfp.fp_status);
12596     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
12597     /* FZ16 does not generate an input denormal exception.  */
12598     i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
12599           & ~float_flag_input_denormal);
12600 
12601     fpscr |= vfp_exceptbits_from_host(i);
12602     return fpscr;
12603 }
12604 
12605 uint32_t vfp_get_fpscr(CPUARMState *env)
12606 {
12607     return HELPER(vfp_get_fpscr)(env);
12608 }
12609 
12610 /* Convert vfp exception flags to target form.  */
12611 static inline int vfp_exceptbits_to_host(int target_bits)
12612 {
12613     int host_bits = 0;
12614 
12615     if (target_bits & 1)
12616         host_bits |= float_flag_invalid;
12617     if (target_bits & 2)
12618         host_bits |= float_flag_divbyzero;
12619     if (target_bits & 4)
12620         host_bits |= float_flag_overflow;
12621     if (target_bits & 8)
12622         host_bits |= float_flag_underflow;
12623     if (target_bits & 0x10)
12624         host_bits |= float_flag_inexact;
12625     if (target_bits & 0x80)
12626         host_bits |= float_flag_input_denormal;
12627     return host_bits;
12628 }
12629 
12630 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
12631 {
12632     int i;
12633     uint32_t changed;
12634 
12635     /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
12636     if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
12637         val &= ~FPCR_FZ16;
12638     }
12639 
12640     /*
12641      * We don't implement trapped exception handling, so the
12642      * trap enable bits are all RAZ/WI (not RES0!)
12643      */
12644     val &= ~(FPCR_IDE | FPCR_IXE | FPCR_UFE | FPCR_OFE | FPCR_DZE | FPCR_IOE);
12645 
12646     changed = env->vfp.xregs[ARM_VFP_FPSCR];
12647     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
12648     env->vfp.vec_len = (val >> 16) & 7;
12649     env->vfp.vec_stride = (val >> 20) & 3;
12650 
12651     changed ^= val;
12652     if (changed & (3 << 22)) {
12653         i = (val >> 22) & 3;
12654         switch (i) {
12655         case FPROUNDING_TIEEVEN:
12656             i = float_round_nearest_even;
12657             break;
12658         case FPROUNDING_POSINF:
12659             i = float_round_up;
12660             break;
12661         case FPROUNDING_NEGINF:
12662             i = float_round_down;
12663             break;
12664         case FPROUNDING_ZERO:
12665             i = float_round_to_zero;
12666             break;
12667         }
12668         set_float_rounding_mode(i, &env->vfp.fp_status);
12669         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
12670     }
12671     if (changed & FPCR_FZ16) {
12672         bool ftz_enabled = val & FPCR_FZ16;
12673         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
12674         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
12675     }
12676     if (changed & FPCR_FZ) {
12677         bool ftz_enabled = val & FPCR_FZ;
12678         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
12679         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
12680     }
12681     if (changed & FPCR_DN) {
12682         bool dnan_enabled = val & FPCR_DN;
12683         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
12684         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
12685     }
12686 
12687     /* The exception flags are ORed together when we read fpscr so we
12688      * only need to preserve the current state in one of our
12689      * float_status values.
12690      */
12691     i = vfp_exceptbits_to_host(val);
12692     set_float_exception_flags(i, &env->vfp.fp_status);
12693     set_float_exception_flags(0, &env->vfp.fp_status_f16);
12694     set_float_exception_flags(0, &env->vfp.standard_fp_status);
12695 }
12696 
12697 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
12698 {
12699     HELPER(vfp_set_fpscr)(env, val);
12700 }
12701 
12702 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
12703 
12704 #define VFP_BINOP(name) \
12705 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
12706 { \
12707     float_status *fpst = fpstp; \
12708     return float32_ ## name(a, b, fpst); \
12709 } \
12710 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
12711 { \
12712     float_status *fpst = fpstp; \
12713     return float64_ ## name(a, b, fpst); \
12714 }
12715 VFP_BINOP(add)
12716 VFP_BINOP(sub)
12717 VFP_BINOP(mul)
12718 VFP_BINOP(div)
12719 VFP_BINOP(min)
12720 VFP_BINOP(max)
12721 VFP_BINOP(minnum)
12722 VFP_BINOP(maxnum)
12723 #undef VFP_BINOP
12724 
12725 float32 VFP_HELPER(neg, s)(float32 a)
12726 {
12727     return float32_chs(a);
12728 }
12729 
12730 float64 VFP_HELPER(neg, d)(float64 a)
12731 {
12732     return float64_chs(a);
12733 }
12734 
12735 float32 VFP_HELPER(abs, s)(float32 a)
12736 {
12737     return float32_abs(a);
12738 }
12739 
12740 float64 VFP_HELPER(abs, d)(float64 a)
12741 {
12742     return float64_abs(a);
12743 }
12744 
12745 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
12746 {
12747     return float32_sqrt(a, &env->vfp.fp_status);
12748 }
12749 
12750 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
12751 {
12752     return float64_sqrt(a, &env->vfp.fp_status);
12753 }
12754 
12755 /* XXX: check quiet/signaling case */
12756 #define DO_VFP_cmp(p, type) \
12757 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
12758 { \
12759     uint32_t flags; \
12760     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
12761     case 0: flags = 0x6; break; \
12762     case -1: flags = 0x8; break; \
12763     case 1: flags = 0x2; break; \
12764     default: case 2: flags = 0x3; break; \
12765     } \
12766     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12767         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12768 } \
12769 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
12770 { \
12771     uint32_t flags; \
12772     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
12773     case 0: flags = 0x6; break; \
12774     case -1: flags = 0x8; break; \
12775     case 1: flags = 0x2; break; \
12776     default: case 2: flags = 0x3; break; \
12777     } \
12778     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12779         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12780 }
12781 DO_VFP_cmp(s, float32)
12782 DO_VFP_cmp(d, float64)
12783 #undef DO_VFP_cmp
12784 
12785 /* Integer to float and float to integer conversions */
12786 
12787 #define CONV_ITOF(name, ftype, fsz, sign)                           \
12788 ftype HELPER(name)(uint32_t x, void *fpstp)                         \
12789 {                                                                   \
12790     float_status *fpst = fpstp;                                     \
12791     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
12792 }
12793 
12794 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
12795 sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
12796 {                                                               \
12797     float_status *fpst = fpstp;                                 \
12798     if (float##fsz##_is_any_nan(x)) {                           \
12799         float_raise(float_flag_invalid, fpst);                  \
12800         return 0;                                               \
12801     }                                                           \
12802     return float##fsz##_to_##sign##int32##round(x, fpst);       \
12803 }
12804 
12805 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
12806     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
12807     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
12808     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
12809 
12810 FLOAT_CONVS(si, h, uint32_t, 16, )
12811 FLOAT_CONVS(si, s, float32, 32, )
12812 FLOAT_CONVS(si, d, float64, 64, )
12813 FLOAT_CONVS(ui, h, uint32_t, 16, u)
12814 FLOAT_CONVS(ui, s, float32, 32, u)
12815 FLOAT_CONVS(ui, d, float64, 64, u)
12816 
12817 #undef CONV_ITOF
12818 #undef CONV_FTOI
12819 #undef FLOAT_CONVS
12820 
12821 /* floating point conversion */
12822 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
12823 {
12824     return float32_to_float64(x, &env->vfp.fp_status);
12825 }
12826 
12827 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
12828 {
12829     return float64_to_float32(x, &env->vfp.fp_status);
12830 }
12831 
12832 /* VFP3 fixed point conversion.  */
12833 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12834 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
12835                                      void *fpstp) \
12836 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
12837 
12838 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff)   \
12839 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
12840                                             void *fpst)                   \
12841 {                                                                         \
12842     if (unlikely(float##fsz##_is_any_nan(x))) {                           \
12843         float_raise(float_flag_invalid, fpst);                            \
12844         return 0;                                                         \
12845     }                                                                     \
12846     return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
12847 }
12848 
12849 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
12850 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
12851 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
12852                          float_round_to_zero, _round_to_zero)    \
12853 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
12854                          get_float_rounding_mode(fpst), )
12855 
12856 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
12857 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
12858 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
12859                          get_float_rounding_mode(fpst), )
12860 
12861 VFP_CONV_FIX(sh, d, 64, 64, int16)
12862 VFP_CONV_FIX(sl, d, 64, 64, int32)
12863 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
12864 VFP_CONV_FIX(uh, d, 64, 64, uint16)
12865 VFP_CONV_FIX(ul, d, 64, 64, uint32)
12866 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
12867 VFP_CONV_FIX(sh, s, 32, 32, int16)
12868 VFP_CONV_FIX(sl, s, 32, 32, int32)
12869 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
12870 VFP_CONV_FIX(uh, s, 32, 32, uint16)
12871 VFP_CONV_FIX(ul, s, 32, 32, uint32)
12872 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
12873 
12874 #undef VFP_CONV_FIX
12875 #undef VFP_CONV_FIX_FLOAT
12876 #undef VFP_CONV_FLOAT_FIX_ROUND
12877 #undef VFP_CONV_FIX_A64
12878 
12879 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
12880 {
12881     return int32_to_float16_scalbn(x, -shift, fpst);
12882 }
12883 
12884 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
12885 {
12886     return uint32_to_float16_scalbn(x, -shift, fpst);
12887 }
12888 
12889 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
12890 {
12891     return int64_to_float16_scalbn(x, -shift, fpst);
12892 }
12893 
12894 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
12895 {
12896     return uint64_to_float16_scalbn(x, -shift, fpst);
12897 }
12898 
12899 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
12900 {
12901     if (unlikely(float16_is_any_nan(x))) {
12902         float_raise(float_flag_invalid, fpst);
12903         return 0;
12904     }
12905     return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
12906                                    shift, fpst);
12907 }
12908 
12909 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
12910 {
12911     if (unlikely(float16_is_any_nan(x))) {
12912         float_raise(float_flag_invalid, fpst);
12913         return 0;
12914     }
12915     return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
12916                                     shift, fpst);
12917 }
12918 
12919 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
12920 {
12921     if (unlikely(float16_is_any_nan(x))) {
12922         float_raise(float_flag_invalid, fpst);
12923         return 0;
12924     }
12925     return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
12926                                    shift, fpst);
12927 }
12928 
12929 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
12930 {
12931     if (unlikely(float16_is_any_nan(x))) {
12932         float_raise(float_flag_invalid, fpst);
12933         return 0;
12934     }
12935     return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
12936                                     shift, fpst);
12937 }
12938 
12939 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
12940 {
12941     if (unlikely(float16_is_any_nan(x))) {
12942         float_raise(float_flag_invalid, fpst);
12943         return 0;
12944     }
12945     return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
12946                                    shift, fpst);
12947 }
12948 
12949 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
12950 {
12951     if (unlikely(float16_is_any_nan(x))) {
12952         float_raise(float_flag_invalid, fpst);
12953         return 0;
12954     }
12955     return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
12956                                     shift, fpst);
12957 }
12958 
12959 /* Set the current fp rounding mode and return the old one.
12960  * The argument is a softfloat float_round_ value.
12961  */
12962 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
12963 {
12964     float_status *fp_status = fpstp;
12965 
12966     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
12967     set_float_rounding_mode(rmode, fp_status);
12968 
12969     return prev_rmode;
12970 }
12971 
12972 /* Set the current fp rounding mode in the standard fp status and return
12973  * the old one. This is for NEON instructions that need to change the
12974  * rounding mode but wish to use the standard FPSCR values for everything
12975  * else. Always set the rounding mode back to the correct value after
12976  * modifying it.
12977  * The argument is a softfloat float_round_ value.
12978  */
12979 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
12980 {
12981     float_status *fp_status = &env->vfp.standard_fp_status;
12982 
12983     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
12984     set_float_rounding_mode(rmode, fp_status);
12985 
12986     return prev_rmode;
12987 }
12988 
12989 /* Half precision conversions.  */
12990 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
12991 {
12992     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
12993      * it would affect flushing input denormals.
12994      */
12995     float_status *fpst = fpstp;
12996     flag save = get_flush_inputs_to_zero(fpst);
12997     set_flush_inputs_to_zero(false, fpst);
12998     float32 r = float16_to_float32(a, !ahp_mode, fpst);
12999     set_flush_inputs_to_zero(save, fpst);
13000     return r;
13001 }
13002 
13003 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
13004 {
13005     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
13006      * it would affect flushing output denormals.
13007      */
13008     float_status *fpst = fpstp;
13009     flag save = get_flush_to_zero(fpst);
13010     set_flush_to_zero(false, fpst);
13011     float16 r = float32_to_float16(a, !ahp_mode, fpst);
13012     set_flush_to_zero(save, fpst);
13013     return r;
13014 }
13015 
13016 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
13017 {
13018     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
13019      * it would affect flushing input denormals.
13020      */
13021     float_status *fpst = fpstp;
13022     flag save = get_flush_inputs_to_zero(fpst);
13023     set_flush_inputs_to_zero(false, fpst);
13024     float64 r = float16_to_float64(a, !ahp_mode, fpst);
13025     set_flush_inputs_to_zero(save, fpst);
13026     return r;
13027 }
13028 
13029 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
13030 {
13031     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
13032      * it would affect flushing output denormals.
13033      */
13034     float_status *fpst = fpstp;
13035     flag save = get_flush_to_zero(fpst);
13036     set_flush_to_zero(false, fpst);
13037     float16 r = float64_to_float16(a, !ahp_mode, fpst);
13038     set_flush_to_zero(save, fpst);
13039     return r;
13040 }
13041 
13042 #define float32_two make_float32(0x40000000)
13043 #define float32_three make_float32(0x40400000)
13044 #define float32_one_point_five make_float32(0x3fc00000)
13045 
13046 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
13047 {
13048     float_status *s = &env->vfp.standard_fp_status;
13049     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
13050         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
13051         if (!(float32_is_zero(a) || float32_is_zero(b))) {
13052             float_raise(float_flag_input_denormal, s);
13053         }
13054         return float32_two;
13055     }
13056     return float32_sub(float32_two, float32_mul(a, b, s), s);
13057 }
13058 
13059 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
13060 {
13061     float_status *s = &env->vfp.standard_fp_status;
13062     float32 product;
13063     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
13064         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
13065         if (!(float32_is_zero(a) || float32_is_zero(b))) {
13066             float_raise(float_flag_input_denormal, s);
13067         }
13068         return float32_one_point_five;
13069     }
13070     product = float32_mul(a, b, s);
13071     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
13072 }
13073 
13074 /* NEON helpers.  */
13075 
13076 /* Constants 256 and 512 are used in some helpers; we avoid relying on
13077  * int->float conversions at run-time.  */
13078 #define float64_256 make_float64(0x4070000000000000LL)
13079 #define float64_512 make_float64(0x4080000000000000LL)
13080 #define float16_maxnorm make_float16(0x7bff)
13081 #define float32_maxnorm make_float32(0x7f7fffff)
13082 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
13083 
13084 /* Reciprocal functions
13085  *
13086  * The algorithm that must be used to calculate the estimate
13087  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
13088  */
13089 
13090 /* See RecipEstimate()
13091  *
13092  * input is a 9 bit fixed point number
13093  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
13094  * result range 256 .. 511 for a number from 1.0 to 511/256.
13095  */
13096 
13097 static int recip_estimate(int input)
13098 {
13099     int a, b, r;
13100     assert(256 <= input && input < 512);
13101     a = (input * 2) + 1;
13102     b = (1 << 19) / a;
13103     r = (b + 1) >> 1;
13104     assert(256 <= r && r < 512);
13105     return r;
13106 }
13107 
13108 /*
13109  * Common wrapper to call recip_estimate
13110  *
13111  * The parameters are exponent and 64 bit fraction (without implicit
13112  * bit) where the binary point is nominally at bit 52. Returns a
13113  * float64 which can then be rounded to the appropriate size by the
13114  * callee.
13115  */
13116 
13117 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
13118 {
13119     uint32_t scaled, estimate;
13120     uint64_t result_frac;
13121     int result_exp;
13122 
13123     /* Handle sub-normals */
13124     if (*exp == 0) {
13125         if (extract64(frac, 51, 1) == 0) {
13126             *exp = -1;
13127             frac <<= 2;
13128         } else {
13129             frac <<= 1;
13130         }
13131     }
13132 
13133     /* scaled = UInt('1':fraction<51:44>) */
13134     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
13135     estimate = recip_estimate(scaled);
13136 
13137     result_exp = exp_off - *exp;
13138     result_frac = deposit64(0, 44, 8, estimate);
13139     if (result_exp == 0) {
13140         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
13141     } else if (result_exp == -1) {
13142         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
13143         result_exp = 0;
13144     }
13145 
13146     *exp = result_exp;
13147 
13148     return result_frac;
13149 }
13150 
13151 static bool round_to_inf(float_status *fpst, bool sign_bit)
13152 {
13153     switch (fpst->float_rounding_mode) {
13154     case float_round_nearest_even: /* Round to Nearest */
13155         return true;
13156     case float_round_up: /* Round to +Inf */
13157         return !sign_bit;
13158     case float_round_down: /* Round to -Inf */
13159         return sign_bit;
13160     case float_round_to_zero: /* Round to Zero */
13161         return false;
13162     }
13163 
13164     g_assert_not_reached();
13165 }
13166 
13167 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
13168 {
13169     float_status *fpst = fpstp;
13170     float16 f16 = float16_squash_input_denormal(input, fpst);
13171     uint32_t f16_val = float16_val(f16);
13172     uint32_t f16_sign = float16_is_neg(f16);
13173     int f16_exp = extract32(f16_val, 10, 5);
13174     uint32_t f16_frac = extract32(f16_val, 0, 10);
13175     uint64_t f64_frac;
13176 
13177     if (float16_is_any_nan(f16)) {
13178         float16 nan = f16;
13179         if (float16_is_signaling_nan(f16, fpst)) {
13180             float_raise(float_flag_invalid, fpst);
13181             nan = float16_silence_nan(f16, fpst);
13182         }
13183         if (fpst->default_nan_mode) {
13184             nan =  float16_default_nan(fpst);
13185         }
13186         return nan;
13187     } else if (float16_is_infinity(f16)) {
13188         return float16_set_sign(float16_zero, float16_is_neg(f16));
13189     } else if (float16_is_zero(f16)) {
13190         float_raise(float_flag_divbyzero, fpst);
13191         return float16_set_sign(float16_infinity, float16_is_neg(f16));
13192     } else if (float16_abs(f16) < (1 << 8)) {
13193         /* Abs(value) < 2.0^-16 */
13194         float_raise(float_flag_overflow | float_flag_inexact, fpst);
13195         if (round_to_inf(fpst, f16_sign)) {
13196             return float16_set_sign(float16_infinity, f16_sign);
13197         } else {
13198             return float16_set_sign(float16_maxnorm, f16_sign);
13199         }
13200     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
13201         float_raise(float_flag_underflow, fpst);
13202         return float16_set_sign(float16_zero, float16_is_neg(f16));
13203     }
13204 
13205     f64_frac = call_recip_estimate(&f16_exp, 29,
13206                                    ((uint64_t) f16_frac) << (52 - 10));
13207 
13208     /* result = sign : result_exp<4:0> : fraction<51:42> */
13209     f16_val = deposit32(0, 15, 1, f16_sign);
13210     f16_val = deposit32(f16_val, 10, 5, f16_exp);
13211     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
13212     return make_float16(f16_val);
13213 }
13214 
13215 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
13216 {
13217     float_status *fpst = fpstp;
13218     float32 f32 = float32_squash_input_denormal(input, fpst);
13219     uint32_t f32_val = float32_val(f32);
13220     bool f32_sign = float32_is_neg(f32);
13221     int f32_exp = extract32(f32_val, 23, 8);
13222     uint32_t f32_frac = extract32(f32_val, 0, 23);
13223     uint64_t f64_frac;
13224 
13225     if (float32_is_any_nan(f32)) {
13226         float32 nan = f32;
13227         if (float32_is_signaling_nan(f32, fpst)) {
13228             float_raise(float_flag_invalid, fpst);
13229             nan = float32_silence_nan(f32, fpst);
13230         }
13231         if (fpst->default_nan_mode) {
13232             nan =  float32_default_nan(fpst);
13233         }
13234         return nan;
13235     } else if (float32_is_infinity(f32)) {
13236         return float32_set_sign(float32_zero, float32_is_neg(f32));
13237     } else if (float32_is_zero(f32)) {
13238         float_raise(float_flag_divbyzero, fpst);
13239         return float32_set_sign(float32_infinity, float32_is_neg(f32));
13240     } else if (float32_abs(f32) < (1ULL << 21)) {
13241         /* Abs(value) < 2.0^-128 */
13242         float_raise(float_flag_overflow | float_flag_inexact, fpst);
13243         if (round_to_inf(fpst, f32_sign)) {
13244             return float32_set_sign(float32_infinity, f32_sign);
13245         } else {
13246             return float32_set_sign(float32_maxnorm, f32_sign);
13247         }
13248     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
13249         float_raise(float_flag_underflow, fpst);
13250         return float32_set_sign(float32_zero, float32_is_neg(f32));
13251     }
13252 
13253     f64_frac = call_recip_estimate(&f32_exp, 253,
13254                                    ((uint64_t) f32_frac) << (52 - 23));
13255 
13256     /* result = sign : result_exp<7:0> : fraction<51:29> */
13257     f32_val = deposit32(0, 31, 1, f32_sign);
13258     f32_val = deposit32(f32_val, 23, 8, f32_exp);
13259     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
13260     return make_float32(f32_val);
13261 }
13262 
13263 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
13264 {
13265     float_status *fpst = fpstp;
13266     float64 f64 = float64_squash_input_denormal(input, fpst);
13267     uint64_t f64_val = float64_val(f64);
13268     bool f64_sign = float64_is_neg(f64);
13269     int f64_exp = extract64(f64_val, 52, 11);
13270     uint64_t f64_frac = extract64(f64_val, 0, 52);
13271 
13272     /* Deal with any special cases */
13273     if (float64_is_any_nan(f64)) {
13274         float64 nan = f64;
13275         if (float64_is_signaling_nan(f64, fpst)) {
13276             float_raise(float_flag_invalid, fpst);
13277             nan = float64_silence_nan(f64, fpst);
13278         }
13279         if (fpst->default_nan_mode) {
13280             nan =  float64_default_nan(fpst);
13281         }
13282         return nan;
13283     } else if (float64_is_infinity(f64)) {
13284         return float64_set_sign(float64_zero, float64_is_neg(f64));
13285     } else if (float64_is_zero(f64)) {
13286         float_raise(float_flag_divbyzero, fpst);
13287         return float64_set_sign(float64_infinity, float64_is_neg(f64));
13288     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
13289         /* Abs(value) < 2.0^-1024 */
13290         float_raise(float_flag_overflow | float_flag_inexact, fpst);
13291         if (round_to_inf(fpst, f64_sign)) {
13292             return float64_set_sign(float64_infinity, f64_sign);
13293         } else {
13294             return float64_set_sign(float64_maxnorm, f64_sign);
13295         }
13296     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
13297         float_raise(float_flag_underflow, fpst);
13298         return float64_set_sign(float64_zero, float64_is_neg(f64));
13299     }
13300 
13301     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
13302 
13303     /* result = sign : result_exp<10:0> : fraction<51:0>; */
13304     f64_val = deposit64(0, 63, 1, f64_sign);
13305     f64_val = deposit64(f64_val, 52, 11, f64_exp);
13306     f64_val = deposit64(f64_val, 0, 52, f64_frac);
13307     return make_float64(f64_val);
13308 }
13309 
13310 /* The algorithm that must be used to calculate the estimate
13311  * is specified by the ARM ARM.
13312  */
13313 
13314 static int do_recip_sqrt_estimate(int a)
13315 {
13316     int b, estimate;
13317 
13318     assert(128 <= a && a < 512);
13319     if (a < 256) {
13320         a = a * 2 + 1;
13321     } else {
13322         a = (a >> 1) << 1;
13323         a = (a + 1) * 2;
13324     }
13325     b = 512;
13326     while (a * (b + 1) * (b + 1) < (1 << 28)) {
13327         b += 1;
13328     }
13329     estimate = (b + 1) / 2;
13330     assert(256 <= estimate && estimate < 512);
13331 
13332     return estimate;
13333 }
13334 
13335 
13336 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
13337 {
13338     int estimate;
13339     uint32_t scaled;
13340 
13341     if (*exp == 0) {
13342         while (extract64(frac, 51, 1) == 0) {
13343             frac = frac << 1;
13344             *exp -= 1;
13345         }
13346         frac = extract64(frac, 0, 51) << 1;
13347     }
13348 
13349     if (*exp & 1) {
13350         /* scaled = UInt('01':fraction<51:45>) */
13351         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
13352     } else {
13353         /* scaled = UInt('1':fraction<51:44>) */
13354         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
13355     }
13356     estimate = do_recip_sqrt_estimate(scaled);
13357 
13358     *exp = (exp_off - *exp) / 2;
13359     return extract64(estimate, 0, 8) << 44;
13360 }
13361 
13362 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
13363 {
13364     float_status *s = fpstp;
13365     float16 f16 = float16_squash_input_denormal(input, s);
13366     uint16_t val = float16_val(f16);
13367     bool f16_sign = float16_is_neg(f16);
13368     int f16_exp = extract32(val, 10, 5);
13369     uint16_t f16_frac = extract32(val, 0, 10);
13370     uint64_t f64_frac;
13371 
13372     if (float16_is_any_nan(f16)) {
13373         float16 nan = f16;
13374         if (float16_is_signaling_nan(f16, s)) {
13375             float_raise(float_flag_invalid, s);
13376             nan = float16_silence_nan(f16, s);
13377         }
13378         if (s->default_nan_mode) {
13379             nan =  float16_default_nan(s);
13380         }
13381         return nan;
13382     } else if (float16_is_zero(f16)) {
13383         float_raise(float_flag_divbyzero, s);
13384         return float16_set_sign(float16_infinity, f16_sign);
13385     } else if (f16_sign) {
13386         float_raise(float_flag_invalid, s);
13387         return float16_default_nan(s);
13388     } else if (float16_is_infinity(f16)) {
13389         return float16_zero;
13390     }
13391 
13392     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
13393      * preserving the parity of the exponent.  */
13394 
13395     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
13396 
13397     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
13398 
13399     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
13400     val = deposit32(0, 15, 1, f16_sign);
13401     val = deposit32(val, 10, 5, f16_exp);
13402     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
13403     return make_float16(val);
13404 }
13405 
13406 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
13407 {
13408     float_status *s = fpstp;
13409     float32 f32 = float32_squash_input_denormal(input, s);
13410     uint32_t val = float32_val(f32);
13411     uint32_t f32_sign = float32_is_neg(f32);
13412     int f32_exp = extract32(val, 23, 8);
13413     uint32_t f32_frac = extract32(val, 0, 23);
13414     uint64_t f64_frac;
13415 
13416     if (float32_is_any_nan(f32)) {
13417         float32 nan = f32;
13418         if (float32_is_signaling_nan(f32, s)) {
13419             float_raise(float_flag_invalid, s);
13420             nan = float32_silence_nan(f32, s);
13421         }
13422         if (s->default_nan_mode) {
13423             nan =  float32_default_nan(s);
13424         }
13425         return nan;
13426     } else if (float32_is_zero(f32)) {
13427         float_raise(float_flag_divbyzero, s);
13428         return float32_set_sign(float32_infinity, float32_is_neg(f32));
13429     } else if (float32_is_neg(f32)) {
13430         float_raise(float_flag_invalid, s);
13431         return float32_default_nan(s);
13432     } else if (float32_is_infinity(f32)) {
13433         return float32_zero;
13434     }
13435 
13436     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
13437      * preserving the parity of the exponent.  */
13438 
13439     f64_frac = ((uint64_t) f32_frac) << 29;
13440 
13441     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
13442 
13443     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
13444     val = deposit32(0, 31, 1, f32_sign);
13445     val = deposit32(val, 23, 8, f32_exp);
13446     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
13447     return make_float32(val);
13448 }
13449 
13450 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
13451 {
13452     float_status *s = fpstp;
13453     float64 f64 = float64_squash_input_denormal(input, s);
13454     uint64_t val = float64_val(f64);
13455     bool f64_sign = float64_is_neg(f64);
13456     int f64_exp = extract64(val, 52, 11);
13457     uint64_t f64_frac = extract64(val, 0, 52);
13458 
13459     if (float64_is_any_nan(f64)) {
13460         float64 nan = f64;
13461         if (float64_is_signaling_nan(f64, s)) {
13462             float_raise(float_flag_invalid, s);
13463             nan = float64_silence_nan(f64, s);
13464         }
13465         if (s->default_nan_mode) {
13466             nan =  float64_default_nan(s);
13467         }
13468         return nan;
13469     } else if (float64_is_zero(f64)) {
13470         float_raise(float_flag_divbyzero, s);
13471         return float64_set_sign(float64_infinity, float64_is_neg(f64));
13472     } else if (float64_is_neg(f64)) {
13473         float_raise(float_flag_invalid, s);
13474         return float64_default_nan(s);
13475     } else if (float64_is_infinity(f64)) {
13476         return float64_zero;
13477     }
13478 
13479     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
13480 
13481     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
13482     val = deposit64(0, 61, 1, f64_sign);
13483     val = deposit64(val, 52, 11, f64_exp);
13484     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
13485     return make_float64(val);
13486 }
13487 
13488 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
13489 {
13490     /* float_status *s = fpstp; */
13491     int input, estimate;
13492 
13493     if ((a & 0x80000000) == 0) {
13494         return 0xffffffff;
13495     }
13496 
13497     input = extract32(a, 23, 9);
13498     estimate = recip_estimate(input);
13499 
13500     return deposit32(0, (32 - 9), 9, estimate);
13501 }
13502 
13503 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
13504 {
13505     int estimate;
13506 
13507     if ((a & 0xc0000000) == 0) {
13508         return 0xffffffff;
13509     }
13510 
13511     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
13512 
13513     return deposit32(0, 23, 9, estimate);
13514 }
13515 
13516 /* VFPv4 fused multiply-accumulate */
13517 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
13518 {
13519     float_status *fpst = fpstp;
13520     return float32_muladd(a, b, c, 0, fpst);
13521 }
13522 
13523 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
13524 {
13525     float_status *fpst = fpstp;
13526     return float64_muladd(a, b, c, 0, fpst);
13527 }
13528 
13529 /* ARMv8 round to integral */
13530 float32 HELPER(rints_exact)(float32 x, void *fp_status)
13531 {
13532     return float32_round_to_int(x, fp_status);
13533 }
13534 
13535 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
13536 {
13537     return float64_round_to_int(x, fp_status);
13538 }
13539 
13540 float32 HELPER(rints)(float32 x, void *fp_status)
13541 {
13542     int old_flags = get_float_exception_flags(fp_status), new_flags;
13543     float32 ret;
13544 
13545     ret = float32_round_to_int(x, fp_status);
13546 
13547     /* Suppress any inexact exceptions the conversion produced */
13548     if (!(old_flags & float_flag_inexact)) {
13549         new_flags = get_float_exception_flags(fp_status);
13550         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
13551     }
13552 
13553     return ret;
13554 }
13555 
13556 float64 HELPER(rintd)(float64 x, void *fp_status)
13557 {
13558     int old_flags = get_float_exception_flags(fp_status), new_flags;
13559     float64 ret;
13560 
13561     ret = float64_round_to_int(x, fp_status);
13562 
13563     new_flags = get_float_exception_flags(fp_status);
13564 
13565     /* Suppress any inexact exceptions the conversion produced */
13566     if (!(old_flags & float_flag_inexact)) {
13567         new_flags = get_float_exception_flags(fp_status);
13568         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
13569     }
13570 
13571     return ret;
13572 }
13573 
13574 /* Convert ARM rounding mode to softfloat */
13575 int arm_rmode_to_sf(int rmode)
13576 {
13577     switch (rmode) {
13578     case FPROUNDING_TIEAWAY:
13579         rmode = float_round_ties_away;
13580         break;
13581     case FPROUNDING_ODD:
13582         /* FIXME: add support for TIEAWAY and ODD */
13583         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
13584                       rmode);
13585         /* fall through for now */
13586     case FPROUNDING_TIEEVEN:
13587     default:
13588         rmode = float_round_nearest_even;
13589         break;
13590     case FPROUNDING_POSINF:
13591         rmode = float_round_up;
13592         break;
13593     case FPROUNDING_NEGINF:
13594         rmode = float_round_down;
13595         break;
13596     case FPROUNDING_ZERO:
13597         rmode = float_round_to_zero;
13598         break;
13599     }
13600     return rmode;
13601 }
13602 
13603 /* CRC helpers.
13604  * The upper bytes of val (above the number specified by 'bytes') must have
13605  * been zeroed out by the caller.
13606  */
13607 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13608 {
13609     uint8_t buf[4];
13610 
13611     stl_le_p(buf, val);
13612 
13613     /* zlib crc32 converts the accumulator and output to one's complement.  */
13614     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13615 }
13616 
13617 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13618 {
13619     uint8_t buf[4];
13620 
13621     stl_le_p(buf, val);
13622 
13623     /* Linux crc32c converts the output to one's complement.  */
13624     return crc32c(acc, buf, bytes) ^ 0xffffffff;
13625 }
13626 
13627 /* Return the exception level to which FP-disabled exceptions should
13628  * be taken, or 0 if FP is enabled.
13629  */
13630 int fp_exception_el(CPUARMState *env, int cur_el)
13631 {
13632 #ifndef CONFIG_USER_ONLY
13633     int fpen;
13634 
13635     /* CPACR and the CPTR registers don't exist before v6, so FP is
13636      * always accessible
13637      */
13638     if (!arm_feature(env, ARM_FEATURE_V6)) {
13639         return 0;
13640     }
13641 
13642     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13643      * 0, 2 : trap EL0 and EL1/PL1 accesses
13644      * 1    : trap only EL0 accesses
13645      * 3    : trap no accesses
13646      */
13647     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13648     switch (fpen) {
13649     case 0:
13650     case 2:
13651         if (cur_el == 0 || cur_el == 1) {
13652             /* Trap to PL1, which might be EL1 or EL3 */
13653             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13654                 return 3;
13655             }
13656             return 1;
13657         }
13658         if (cur_el == 3 && !is_a64(env)) {
13659             /* Secure PL1 running at EL3 */
13660             return 3;
13661         }
13662         break;
13663     case 1:
13664         if (cur_el == 0) {
13665             return 1;
13666         }
13667         break;
13668     case 3:
13669         break;
13670     }
13671 
13672     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13673      * check because zero bits in the registers mean "don't trap".
13674      */
13675 
13676     /* CPTR_EL2 : present in v7VE or v8 */
13677     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13678         && !arm_is_secure_below_el3(env)) {
13679         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13680         return 2;
13681     }
13682 
13683     /* CPTR_EL3 : present in v8 */
13684     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13685         /* Trap all FP ops to EL3 */
13686         return 3;
13687     }
13688 #endif
13689     return 0;
13690 }
13691 
13692 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
13693                                                 bool secstate, bool priv)
13694 {
13695     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
13696 
13697     if (priv) {
13698         mmu_idx |= ARM_MMU_IDX_M_PRIV;
13699     }
13700 
13701     if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
13702         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
13703     }
13704 
13705     if (secstate) {
13706         mmu_idx |= ARM_MMU_IDX_M_S;
13707     }
13708 
13709     return mmu_idx;
13710 }
13711 
13712 /* Return the MMU index for a v7M CPU in the specified security state */
13713 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13714 {
13715     bool priv = arm_current_el(env) != 0;
13716 
13717     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
13718 }
13719 
13720 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13721 {
13722     int el;
13723 
13724     if (arm_feature(env, ARM_FEATURE_M)) {
13725         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13726     }
13727 
13728     el = arm_current_el(env);
13729     if (el < 2 && arm_is_secure_below_el3(env)) {
13730         return ARMMMUIdx_S1SE0 + el;
13731     } else {
13732         return ARMMMUIdx_S12NSE0 + el;
13733     }
13734 }
13735 
13736 int cpu_mmu_index(CPUARMState *env, bool ifetch)
13737 {
13738     return arm_to_core_mmu_idx(arm_mmu_idx(env));
13739 }
13740 
13741 #ifndef CONFIG_USER_ONLY
13742 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13743 {
13744     return stage_1_mmu_idx(arm_mmu_idx(env));
13745 }
13746 #endif
13747 
13748 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13749                           target_ulong *cs_base, uint32_t *pflags)
13750 {
13751     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
13752     int current_el = arm_current_el(env);
13753     int fp_el = fp_exception_el(env, current_el);
13754     uint32_t flags = 0;
13755 
13756     if (is_a64(env)) {
13757         ARMCPU *cpu = arm_env_get_cpu(env);
13758         uint64_t sctlr;
13759 
13760         *pc = env->pc;
13761         flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
13762 
13763         /* Get control bits for tagged addresses.  */
13764         {
13765             ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13766             ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
13767             int tbii, tbid;
13768 
13769             /* FIXME: ARMv8.1-VHE S2 translation regime.  */
13770             if (regime_el(env, stage1) < 2) {
13771                 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
13772                 tbid = (p1.tbi << 1) | p0.tbi;
13773                 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
13774             } else {
13775                 tbid = p0.tbi;
13776                 tbii = tbid & !p0.tbid;
13777             }
13778 
13779             flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13780             flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
13781         }
13782 
13783         if (cpu_isar_feature(aa64_sve, cpu)) {
13784             int sve_el = sve_exception_el(env, current_el);
13785             uint32_t zcr_len;
13786 
13787             /* If SVE is disabled, but FP is enabled,
13788              * then the effective len is 0.
13789              */
13790             if (sve_el != 0 && fp_el == 0) {
13791                 zcr_len = 0;
13792             } else {
13793                 zcr_len = sve_zcr_len_for_el(env, current_el);
13794             }
13795             flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13796             flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13797         }
13798 
13799         if (current_el == 0) {
13800             /* FIXME: ARMv8.1-VHE S2 translation regime.  */
13801             sctlr = env->cp15.sctlr_el[1];
13802         } else {
13803             sctlr = env->cp15.sctlr_el[current_el];
13804         }
13805         if (cpu_isar_feature(aa64_pauth, cpu)) {
13806             /*
13807              * In order to save space in flags, we record only whether
13808              * pauth is "inactive", meaning all insns are implemented as
13809              * a nop, or "active" when some action must be performed.
13810              * The decision of which action to take is left to a helper.
13811              */
13812             if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13813                 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13814             }
13815         }
13816 
13817         if (cpu_isar_feature(aa64_bti, cpu)) {
13818             /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13819             if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13820                 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13821             }
13822             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13823         }
13824     } else {
13825         *pc = env->regs[15];
13826         flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
13827         flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
13828         flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
13829         flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
13830         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
13831         flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
13832         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
13833             || arm_el_is_aa64(env, 1)) {
13834             flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13835         }
13836         flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar);
13837     }
13838 
13839     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13840 
13841     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13842      * states defined in the ARM ARM for software singlestep:
13843      *  SS_ACTIVE   PSTATE.SS   State
13844      *     0            x       Inactive (the TB flag for SS is always 0)
13845      *     1            0       Active-pending
13846      *     1            1       Active-not-pending
13847      */
13848     if (arm_singlestep_active(env)) {
13849         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
13850         if (is_a64(env)) {
13851             if (env->pstate & PSTATE_SS) {
13852                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13853             }
13854         } else {
13855             if (env->uncached_cpsr & PSTATE_SS) {
13856                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13857             }
13858         }
13859     }
13860     if (arm_cpu_data_is_big_endian(env)) {
13861         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13862     }
13863     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
13864 
13865     if (arm_v7m_is_handler_mode(env)) {
13866         flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
13867     }
13868 
13869     /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13870      * suppressing them because the requested execution priority is less than 0.
13871      */
13872     if (arm_feature(env, ARM_FEATURE_V8) &&
13873         arm_feature(env, ARM_FEATURE_M) &&
13874         !((mmu_idx  & ARM_MMU_IDX_M_NEGPRI) &&
13875           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13876         flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
13877     }
13878 
13879     *pflags = flags;
13880     *cs_base = 0;
13881 }
13882 
13883 #ifdef TARGET_AARCH64
13884 /*
13885  * The manual says that when SVE is enabled and VQ is widened the
13886  * implementation is allowed to zero the previously inaccessible
13887  * portion of the registers.  The corollary to that is that when
13888  * SVE is enabled and VQ is narrowed we are also allowed to zero
13889  * the now inaccessible portion of the registers.
13890  *
13891  * The intent of this is that no predicate bit beyond VQ is ever set.
13892  * Which means that some operations on predicate registers themselves
13893  * may operate on full uint64_t or even unrolled across the maximum
13894  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13895  * may well be cheaper than conditionals to restrict the operation
13896  * to the relevant portion of a uint16_t[16].
13897  */
13898 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13899 {
13900     int i, j;
13901     uint64_t pmask;
13902 
13903     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13904     assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
13905 
13906     /* Zap the high bits of the zregs.  */
13907     for (i = 0; i < 32; i++) {
13908         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13909     }
13910 
13911     /* Zap the high bits of the pregs and ffr.  */
13912     pmask = 0;
13913     if (vq & 3) {
13914         pmask = ~(-1ULL << (16 * (vq & 3)));
13915     }
13916     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13917         for (i = 0; i < 17; ++i) {
13918             env->vfp.pregs[i].p[j] &= pmask;
13919         }
13920         pmask = 0;
13921     }
13922 }
13923 
13924 /*
13925  * Notice a change in SVE vector size when changing EL.
13926  */
13927 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13928                            int new_el, bool el0_a64)
13929 {
13930     ARMCPU *cpu = arm_env_get_cpu(env);
13931     int old_len, new_len;
13932     bool old_a64, new_a64;
13933 
13934     /* Nothing to do if no SVE.  */
13935     if (!cpu_isar_feature(aa64_sve, cpu)) {
13936         return;
13937     }
13938 
13939     /* Nothing to do if FP is disabled in either EL.  */
13940     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13941         return;
13942     }
13943 
13944     /*
13945      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13946      * at ELx, or not available because the EL is in AArch32 state, then
13947      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13948      * has an effective value of 0".
13949      *
13950      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13951      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13952      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13953      * we already have the correct register contents when encountering the
13954      * vq0->vq0 transition between EL0->EL1.
13955      */
13956     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13957     old_len = (old_a64 && !sve_exception_el(env, old_el)
13958                ? sve_zcr_len_for_el(env, old_el) : 0);
13959     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13960     new_len = (new_a64 && !sve_exception_el(env, new_el)
13961                ? sve_zcr_len_for_el(env, new_el) : 0);
13962 
13963     /* When changing vector length, clear inaccessible state.  */
13964     if (new_len < old_len) {
13965         aarch64_sve_narrow_vq(env, new_len + 1);
13966     }
13967 }
13968 #endif
13969