1 #include "qemu/osdep.h" 2 #include "target/arm/idau.h" 3 #include "trace.h" 4 #include "cpu.h" 5 #include "internals.h" 6 #include "exec/gdbstub.h" 7 #include "exec/helper-proto.h" 8 #include "qemu/host-utils.h" 9 #include "sysemu/arch_init.h" 10 #include "sysemu/sysemu.h" 11 #include "qemu/bitops.h" 12 #include "qemu/crc32c.h" 13 #include "exec/exec-all.h" 14 #include "exec/cpu_ldst.h" 15 #include "arm_ldst.h" 16 #include <zlib.h> /* For crc32 */ 17 #include "exec/semihost.h" 18 #include "sysemu/kvm.h" 19 #include "fpu/softfloat.h" 20 #include "qemu/range.h" 21 22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 23 24 #ifndef CONFIG_USER_ONLY 25 /* Cacheability and shareability attributes for a memory access */ 26 typedef struct ARMCacheAttrs { 27 unsigned int attrs:8; /* as in the MAIR register encoding */ 28 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 29 } ARMCacheAttrs; 30 31 static bool get_phys_addr(CPUARMState *env, target_ulong address, 32 MMUAccessType access_type, ARMMMUIdx mmu_idx, 33 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 34 target_ulong *page_size, 35 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 36 37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 38 MMUAccessType access_type, ARMMMUIdx mmu_idx, 39 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 40 target_ulong *page_size_ptr, 41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 42 43 /* Security attributes for an address, as returned by v8m_security_lookup. */ 44 typedef struct V8M_SAttributes { 45 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 46 bool ns; 47 bool nsc; 48 uint8_t sregion; 49 bool srvalid; 50 uint8_t iregion; 51 bool irvalid; 52 } V8M_SAttributes; 53 54 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 55 MMUAccessType access_type, ARMMMUIdx mmu_idx, 56 V8M_SAttributes *sattrs); 57 #endif 58 59 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 60 { 61 int nregs; 62 63 /* VFP data registers are always little-endian. */ 64 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 65 if (reg < nregs) { 66 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 67 return 8; 68 } 69 if (arm_feature(env, ARM_FEATURE_NEON)) { 70 /* Aliases for Q regs. */ 71 nregs += 16; 72 if (reg < nregs) { 73 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 74 stq_le_p(buf, q[0]); 75 stq_le_p(buf + 8, q[1]); 76 return 16; 77 } 78 } 79 switch (reg - nregs) { 80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 83 } 84 return 0; 85 } 86 87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 88 { 89 int nregs; 90 91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 92 if (reg < nregs) { 93 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 94 return 8; 95 } 96 if (arm_feature(env, ARM_FEATURE_NEON)) { 97 nregs += 16; 98 if (reg < nregs) { 99 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 100 q[0] = ldq_le_p(buf); 101 q[1] = ldq_le_p(buf + 8); 102 return 16; 103 } 104 } 105 switch (reg - nregs) { 106 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 107 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 108 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 109 } 110 return 0; 111 } 112 113 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 114 { 115 switch (reg) { 116 case 0 ... 31: 117 /* 128 bit FP register */ 118 { 119 uint64_t *q = aa64_vfp_qreg(env, reg); 120 stq_le_p(buf, q[0]); 121 stq_le_p(buf + 8, q[1]); 122 return 16; 123 } 124 case 32: 125 /* FPSR */ 126 stl_p(buf, vfp_get_fpsr(env)); 127 return 4; 128 case 33: 129 /* FPCR */ 130 stl_p(buf, vfp_get_fpcr(env)); 131 return 4; 132 default: 133 return 0; 134 } 135 } 136 137 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 138 { 139 switch (reg) { 140 case 0 ... 31: 141 /* 128 bit FP register */ 142 { 143 uint64_t *q = aa64_vfp_qreg(env, reg); 144 q[0] = ldq_le_p(buf); 145 q[1] = ldq_le_p(buf + 8); 146 return 16; 147 } 148 case 32: 149 /* FPSR */ 150 vfp_set_fpsr(env, ldl_p(buf)); 151 return 4; 152 case 33: 153 /* FPCR */ 154 vfp_set_fpcr(env, ldl_p(buf)); 155 return 4; 156 default: 157 return 0; 158 } 159 } 160 161 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 162 { 163 assert(ri->fieldoffset); 164 if (cpreg_field_is_64bit(ri)) { 165 return CPREG_FIELD64(env, ri); 166 } else { 167 return CPREG_FIELD32(env, ri); 168 } 169 } 170 171 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 172 uint64_t value) 173 { 174 assert(ri->fieldoffset); 175 if (cpreg_field_is_64bit(ri)) { 176 CPREG_FIELD64(env, ri) = value; 177 } else { 178 CPREG_FIELD32(env, ri) = value; 179 } 180 } 181 182 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 183 { 184 return (char *)env + ri->fieldoffset; 185 } 186 187 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 188 { 189 /* Raw read of a coprocessor register (as needed for migration, etc). */ 190 if (ri->type & ARM_CP_CONST) { 191 return ri->resetvalue; 192 } else if (ri->raw_readfn) { 193 return ri->raw_readfn(env, ri); 194 } else if (ri->readfn) { 195 return ri->readfn(env, ri); 196 } else { 197 return raw_read(env, ri); 198 } 199 } 200 201 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 202 uint64_t v) 203 { 204 /* Raw write of a coprocessor register (as needed for migration, etc). 205 * Note that constant registers are treated as write-ignored; the 206 * caller should check for success by whether a readback gives the 207 * value written. 208 */ 209 if (ri->type & ARM_CP_CONST) { 210 return; 211 } else if (ri->raw_writefn) { 212 ri->raw_writefn(env, ri, v); 213 } else if (ri->writefn) { 214 ri->writefn(env, ri, v); 215 } else { 216 raw_write(env, ri, v); 217 } 218 } 219 220 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 221 { 222 ARMCPU *cpu = arm_env_get_cpu(env); 223 const ARMCPRegInfo *ri; 224 uint32_t key; 225 226 key = cpu->dyn_xml.cpregs_keys[reg]; 227 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 228 if (ri) { 229 if (cpreg_field_is_64bit(ri)) { 230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 231 } else { 232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 233 } 234 } 235 return 0; 236 } 237 238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 239 { 240 return 0; 241 } 242 243 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 244 { 245 /* Return true if the regdef would cause an assertion if you called 246 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 247 * program bug for it not to have the NO_RAW flag). 248 * NB that returning false here doesn't necessarily mean that calling 249 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 250 * read/write access functions which are safe for raw use" from "has 251 * read/write access functions which have side effects but has forgotten 252 * to provide raw access functions". 253 * The tests here line up with the conditions in read/write_raw_cp_reg() 254 * and assertions in raw_read()/raw_write(). 255 */ 256 if ((ri->type & ARM_CP_CONST) || 257 ri->fieldoffset || 258 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 259 return false; 260 } 261 return true; 262 } 263 264 bool write_cpustate_to_list(ARMCPU *cpu) 265 { 266 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 267 int i; 268 bool ok = true; 269 270 for (i = 0; i < cpu->cpreg_array_len; i++) { 271 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 272 const ARMCPRegInfo *ri; 273 274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 275 if (!ri) { 276 ok = false; 277 continue; 278 } 279 if (ri->type & ARM_CP_NO_RAW) { 280 continue; 281 } 282 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 283 } 284 return ok; 285 } 286 287 bool write_list_to_cpustate(ARMCPU *cpu) 288 { 289 int i; 290 bool ok = true; 291 292 for (i = 0; i < cpu->cpreg_array_len; i++) { 293 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 294 uint64_t v = cpu->cpreg_values[i]; 295 const ARMCPRegInfo *ri; 296 297 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 298 if (!ri) { 299 ok = false; 300 continue; 301 } 302 if (ri->type & ARM_CP_NO_RAW) { 303 continue; 304 } 305 /* Write value and confirm it reads back as written 306 * (to catch read-only registers and partially read-only 307 * registers where the incoming migration value doesn't match) 308 */ 309 write_raw_cp_reg(&cpu->env, ri, v); 310 if (read_raw_cp_reg(&cpu->env, ri) != v) { 311 ok = false; 312 } 313 } 314 return ok; 315 } 316 317 static void add_cpreg_to_list(gpointer key, gpointer opaque) 318 { 319 ARMCPU *cpu = opaque; 320 uint64_t regidx; 321 const ARMCPRegInfo *ri; 322 323 regidx = *(uint32_t *)key; 324 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 325 326 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 327 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 328 /* The value array need not be initialized at this point */ 329 cpu->cpreg_array_len++; 330 } 331 } 332 333 static void count_cpreg(gpointer key, gpointer opaque) 334 { 335 ARMCPU *cpu = opaque; 336 uint64_t regidx; 337 const ARMCPRegInfo *ri; 338 339 regidx = *(uint32_t *)key; 340 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 341 342 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 343 cpu->cpreg_array_len++; 344 } 345 } 346 347 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 348 { 349 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 350 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 351 352 if (aidx > bidx) { 353 return 1; 354 } 355 if (aidx < bidx) { 356 return -1; 357 } 358 return 0; 359 } 360 361 void init_cpreg_list(ARMCPU *cpu) 362 { 363 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 364 * Note that we require cpreg_tuples[] to be sorted by key ID. 365 */ 366 GList *keys; 367 int arraylen; 368 369 keys = g_hash_table_get_keys(cpu->cp_regs); 370 keys = g_list_sort(keys, cpreg_key_compare); 371 372 cpu->cpreg_array_len = 0; 373 374 g_list_foreach(keys, count_cpreg, cpu); 375 376 arraylen = cpu->cpreg_array_len; 377 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 378 cpu->cpreg_values = g_new(uint64_t, arraylen); 379 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 380 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 381 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 382 cpu->cpreg_array_len = 0; 383 384 g_list_foreach(keys, add_cpreg_to_list, cpu); 385 386 assert(cpu->cpreg_array_len == arraylen); 387 388 g_list_free(keys); 389 } 390 391 /* 392 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 393 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 394 * 395 * access_el3_aa32ns: Used to check AArch32 register views. 396 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 397 */ 398 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 399 const ARMCPRegInfo *ri, 400 bool isread) 401 { 402 bool secure = arm_is_secure_below_el3(env); 403 404 assert(!arm_el_is_aa64(env, 3)); 405 if (secure) { 406 return CP_ACCESS_TRAP_UNCATEGORIZED; 407 } 408 return CP_ACCESS_OK; 409 } 410 411 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 412 const ARMCPRegInfo *ri, 413 bool isread) 414 { 415 if (!arm_el_is_aa64(env, 3)) { 416 return access_el3_aa32ns(env, ri, isread); 417 } 418 return CP_ACCESS_OK; 419 } 420 421 /* Some secure-only AArch32 registers trap to EL3 if used from 422 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 423 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 424 * We assume that the .access field is set to PL1_RW. 425 */ 426 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 427 const ARMCPRegInfo *ri, 428 bool isread) 429 { 430 if (arm_current_el(env) == 3) { 431 return CP_ACCESS_OK; 432 } 433 if (arm_is_secure_below_el3(env)) { 434 return CP_ACCESS_TRAP_EL3; 435 } 436 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 437 return CP_ACCESS_TRAP_UNCATEGORIZED; 438 } 439 440 /* Check for traps to "powerdown debug" registers, which are controlled 441 * by MDCR.TDOSA 442 */ 443 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 444 bool isread) 445 { 446 int el = arm_current_el(env); 447 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 448 (env->cp15.mdcr_el2 & MDCR_TDE) || 449 (env->cp15.hcr_el2 & HCR_TGE); 450 451 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 452 return CP_ACCESS_TRAP_EL2; 453 } 454 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 455 return CP_ACCESS_TRAP_EL3; 456 } 457 return CP_ACCESS_OK; 458 } 459 460 /* Check for traps to "debug ROM" registers, which are controlled 461 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 462 */ 463 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 464 bool isread) 465 { 466 int el = arm_current_el(env); 467 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 468 (env->cp15.mdcr_el2 & MDCR_TDE) || 469 (env->cp15.hcr_el2 & HCR_TGE); 470 471 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 472 return CP_ACCESS_TRAP_EL2; 473 } 474 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 475 return CP_ACCESS_TRAP_EL3; 476 } 477 return CP_ACCESS_OK; 478 } 479 480 /* Check for traps to general debug registers, which are controlled 481 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 482 */ 483 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 484 bool isread) 485 { 486 int el = arm_current_el(env); 487 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 488 (env->cp15.mdcr_el2 & MDCR_TDE) || 489 (env->cp15.hcr_el2 & HCR_TGE); 490 491 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 492 return CP_ACCESS_TRAP_EL2; 493 } 494 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 495 return CP_ACCESS_TRAP_EL3; 496 } 497 return CP_ACCESS_OK; 498 } 499 500 /* Check for traps to performance monitor registers, which are controlled 501 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 502 */ 503 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 504 bool isread) 505 { 506 int el = arm_current_el(env); 507 508 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 509 && !arm_is_secure_below_el3(env)) { 510 return CP_ACCESS_TRAP_EL2; 511 } 512 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 513 return CP_ACCESS_TRAP_EL3; 514 } 515 return CP_ACCESS_OK; 516 } 517 518 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 519 { 520 ARMCPU *cpu = arm_env_get_cpu(env); 521 522 raw_write(env, ri, value); 523 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 524 } 525 526 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 527 { 528 ARMCPU *cpu = arm_env_get_cpu(env); 529 530 if (raw_read(env, ri) != value) { 531 /* Unlike real hardware the qemu TLB uses virtual addresses, 532 * not modified virtual addresses, so this causes a TLB flush. 533 */ 534 tlb_flush(CPU(cpu)); 535 raw_write(env, ri, value); 536 } 537 } 538 539 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 ARMCPU *cpu = arm_env_get_cpu(env); 543 544 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 545 && !extended_addresses_enabled(env)) { 546 /* For VMSA (when not using the LPAE long descriptor page table 547 * format) this register includes the ASID, so do a TLB flush. 548 * For PMSA it is purely a process ID and no action is needed. 549 */ 550 tlb_flush(CPU(cpu)); 551 } 552 raw_write(env, ri, value); 553 } 554 555 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 556 uint64_t value) 557 { 558 /* Invalidate all (TLBIALL) */ 559 ARMCPU *cpu = arm_env_get_cpu(env); 560 561 tlb_flush(CPU(cpu)); 562 } 563 564 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 568 ARMCPU *cpu = arm_env_get_cpu(env); 569 570 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 571 } 572 573 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 574 uint64_t value) 575 { 576 /* Invalidate by ASID (TLBIASID) */ 577 ARMCPU *cpu = arm_env_get_cpu(env); 578 579 tlb_flush(CPU(cpu)); 580 } 581 582 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 586 ARMCPU *cpu = arm_env_get_cpu(env); 587 588 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 589 } 590 591 /* IS variants of TLB operations must affect all cores */ 592 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 593 uint64_t value) 594 { 595 CPUState *cs = ENV_GET_CPU(env); 596 597 tlb_flush_all_cpus_synced(cs); 598 } 599 600 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = ENV_GET_CPU(env); 604 605 tlb_flush_all_cpus_synced(cs); 606 } 607 608 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 609 uint64_t value) 610 { 611 CPUState *cs = ENV_GET_CPU(env); 612 613 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 614 } 615 616 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 617 uint64_t value) 618 { 619 CPUState *cs = ENV_GET_CPU(env); 620 621 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 622 } 623 624 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 625 uint64_t value) 626 { 627 CPUState *cs = ENV_GET_CPU(env); 628 629 tlb_flush_by_mmuidx(cs, 630 ARMMMUIdxBit_S12NSE1 | 631 ARMMMUIdxBit_S12NSE0 | 632 ARMMMUIdxBit_S2NS); 633 } 634 635 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 636 uint64_t value) 637 { 638 CPUState *cs = ENV_GET_CPU(env); 639 640 tlb_flush_by_mmuidx_all_cpus_synced(cs, 641 ARMMMUIdxBit_S12NSE1 | 642 ARMMMUIdxBit_S12NSE0 | 643 ARMMMUIdxBit_S2NS); 644 } 645 646 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 647 uint64_t value) 648 { 649 /* Invalidate by IPA. This has to invalidate any structures that 650 * contain only stage 2 translation information, but does not need 651 * to apply to structures that contain combined stage 1 and stage 2 652 * translation information. 653 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 654 */ 655 CPUState *cs = ENV_GET_CPU(env); 656 uint64_t pageaddr; 657 658 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 659 return; 660 } 661 662 pageaddr = sextract64(value << 12, 0, 40); 663 664 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 665 } 666 667 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 668 uint64_t value) 669 { 670 CPUState *cs = ENV_GET_CPU(env); 671 uint64_t pageaddr; 672 673 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 674 return; 675 } 676 677 pageaddr = sextract64(value << 12, 0, 40); 678 679 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 680 ARMMMUIdxBit_S2NS); 681 } 682 683 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 684 uint64_t value) 685 { 686 CPUState *cs = ENV_GET_CPU(env); 687 688 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 689 } 690 691 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 692 uint64_t value) 693 { 694 CPUState *cs = ENV_GET_CPU(env); 695 696 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 697 } 698 699 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 700 uint64_t value) 701 { 702 CPUState *cs = ENV_GET_CPU(env); 703 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 704 705 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 706 } 707 708 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 709 uint64_t value) 710 { 711 CPUState *cs = ENV_GET_CPU(env); 712 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 713 714 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 715 ARMMMUIdxBit_S1E2); 716 } 717 718 static const ARMCPRegInfo cp_reginfo[] = { 719 /* Define the secure and non-secure FCSE identifier CP registers 720 * separately because there is no secure bank in V8 (no _EL3). This allows 721 * the secure register to be properly reset and migrated. There is also no 722 * v8 EL1 version of the register so the non-secure instance stands alone. 723 */ 724 { .name = "FCSEIDR", 725 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 726 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 727 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 728 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 729 { .name = "FCSEIDR_S", 730 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 731 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 732 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 733 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 734 /* Define the secure and non-secure context identifier CP registers 735 * separately because there is no secure bank in V8 (no _EL3). This allows 736 * the secure register to be properly reset and migrated. In the 737 * non-secure case, the 32-bit register will have reset and migration 738 * disabled during registration as it is handled by the 64-bit instance. 739 */ 740 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 741 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 742 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 743 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 744 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 745 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 746 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 747 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 748 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 749 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 750 REGINFO_SENTINEL 751 }; 752 753 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 754 /* NB: Some of these registers exist in v8 but with more precise 755 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 756 */ 757 /* MMU Domain access control / MPU write buffer control */ 758 { .name = "DACR", 759 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 760 .access = PL1_RW, .resetvalue = 0, 761 .writefn = dacr_write, .raw_writefn = raw_write, 762 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 763 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 764 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 765 * For v6 and v5, these mappings are overly broad. 766 */ 767 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 768 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 769 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 770 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 771 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 772 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 773 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 774 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 775 /* Cache maintenance ops; some of this space may be overridden later. */ 776 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 777 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 778 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 779 REGINFO_SENTINEL 780 }; 781 782 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 783 /* Not all pre-v6 cores implemented this WFI, so this is slightly 784 * over-broad. 785 */ 786 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 787 .access = PL1_W, .type = ARM_CP_WFI }, 788 REGINFO_SENTINEL 789 }; 790 791 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 792 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 793 * is UNPREDICTABLE; we choose to NOP as most implementations do). 794 */ 795 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 796 .access = PL1_W, .type = ARM_CP_WFI }, 797 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 798 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 799 * OMAPCP will override this space. 800 */ 801 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 802 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 803 .resetvalue = 0 }, 804 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 806 .resetvalue = 0 }, 807 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 808 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 809 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 810 .resetvalue = 0 }, 811 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 812 * implementing it as RAZ means the "debug architecture version" bits 813 * will read as a reserved value, which should cause Linux to not try 814 * to use the debug hardware. 815 */ 816 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 817 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 818 /* MMU TLB control. Note that the wildcarding means we cover not just 819 * the unified TLB ops but also the dside/iside/inner-shareable variants. 820 */ 821 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 822 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 823 .type = ARM_CP_NO_RAW }, 824 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 825 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 826 .type = ARM_CP_NO_RAW }, 827 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 828 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 829 .type = ARM_CP_NO_RAW }, 830 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 831 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 832 .type = ARM_CP_NO_RAW }, 833 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 834 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 835 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 836 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 837 REGINFO_SENTINEL 838 }; 839 840 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 841 uint64_t value) 842 { 843 uint32_t mask = 0; 844 845 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 846 if (!arm_feature(env, ARM_FEATURE_V8)) { 847 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 848 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 849 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 850 */ 851 if (arm_feature(env, ARM_FEATURE_VFP)) { 852 /* VFP coprocessor: cp10 & cp11 [23:20] */ 853 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 854 855 if (!arm_feature(env, ARM_FEATURE_NEON)) { 856 /* ASEDIS [31] bit is RAO/WI */ 857 value |= (1 << 31); 858 } 859 860 /* VFPv3 and upwards with NEON implement 32 double precision 861 * registers (D0-D31). 862 */ 863 if (!arm_feature(env, ARM_FEATURE_NEON) || 864 !arm_feature(env, ARM_FEATURE_VFP3)) { 865 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 866 value |= (1 << 30); 867 } 868 } 869 value &= mask; 870 } 871 env->cp15.cpacr_el1 = value; 872 } 873 874 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 875 { 876 /* Call cpacr_write() so that we reset with the correct RAO bits set 877 * for our CPU features. 878 */ 879 cpacr_write(env, ri, 0); 880 } 881 882 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 883 bool isread) 884 { 885 if (arm_feature(env, ARM_FEATURE_V8)) { 886 /* Check if CPACR accesses are to be trapped to EL2 */ 887 if (arm_current_el(env) == 1 && 888 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 889 return CP_ACCESS_TRAP_EL2; 890 /* Check if CPACR accesses are to be trapped to EL3 */ 891 } else if (arm_current_el(env) < 3 && 892 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 893 return CP_ACCESS_TRAP_EL3; 894 } 895 } 896 897 return CP_ACCESS_OK; 898 } 899 900 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 901 bool isread) 902 { 903 /* Check if CPTR accesses are set to trap to EL3 */ 904 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 905 return CP_ACCESS_TRAP_EL3; 906 } 907 908 return CP_ACCESS_OK; 909 } 910 911 static const ARMCPRegInfo v6_cp_reginfo[] = { 912 /* prefetch by MVA in v6, NOP in v7 */ 913 { .name = "MVA_prefetch", 914 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 915 .access = PL1_W, .type = ARM_CP_NOP }, 916 /* We need to break the TB after ISB to execute self-modifying code 917 * correctly and also to take any pending interrupts immediately. 918 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 919 */ 920 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 921 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 922 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 923 .access = PL0_W, .type = ARM_CP_NOP }, 924 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 925 .access = PL0_W, .type = ARM_CP_NOP }, 926 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 927 .access = PL1_RW, 928 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 929 offsetof(CPUARMState, cp15.ifar_ns) }, 930 .resetvalue = 0, }, 931 /* Watchpoint Fault Address Register : should actually only be present 932 * for 1136, 1176, 11MPCore. 933 */ 934 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 935 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 936 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 937 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 938 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 939 .resetfn = cpacr_reset, .writefn = cpacr_write }, 940 REGINFO_SENTINEL 941 }; 942 943 /* Definitions for the PMU registers */ 944 #define PMCRN_MASK 0xf800 945 #define PMCRN_SHIFT 11 946 #define PMCRD 0x8 947 #define PMCRC 0x4 948 #define PMCRE 0x1 949 950 static inline uint32_t pmu_num_counters(CPUARMState *env) 951 { 952 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 953 } 954 955 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 956 static inline uint64_t pmu_counter_mask(CPUARMState *env) 957 { 958 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 959 } 960 961 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 962 bool isread) 963 { 964 /* Performance monitor registers user accessibility is controlled 965 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 966 * trapping to EL2 or EL3 for other accesses. 967 */ 968 int el = arm_current_el(env); 969 970 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 971 return CP_ACCESS_TRAP; 972 } 973 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 974 && !arm_is_secure_below_el3(env)) { 975 return CP_ACCESS_TRAP_EL2; 976 } 977 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 978 return CP_ACCESS_TRAP_EL3; 979 } 980 981 return CP_ACCESS_OK; 982 } 983 984 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 985 const ARMCPRegInfo *ri, 986 bool isread) 987 { 988 /* ER: event counter read trap control */ 989 if (arm_feature(env, ARM_FEATURE_V8) 990 && arm_current_el(env) == 0 991 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 992 && isread) { 993 return CP_ACCESS_OK; 994 } 995 996 return pmreg_access(env, ri, isread); 997 } 998 999 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1000 const ARMCPRegInfo *ri, 1001 bool isread) 1002 { 1003 /* SW: software increment write trap control */ 1004 if (arm_feature(env, ARM_FEATURE_V8) 1005 && arm_current_el(env) == 0 1006 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1007 && !isread) { 1008 return CP_ACCESS_OK; 1009 } 1010 1011 return pmreg_access(env, ri, isread); 1012 } 1013 1014 #ifndef CONFIG_USER_ONLY 1015 1016 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1017 const ARMCPRegInfo *ri, 1018 bool isread) 1019 { 1020 /* ER: event counter read trap control */ 1021 if (arm_feature(env, ARM_FEATURE_V8) 1022 && arm_current_el(env) == 0 1023 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1024 return CP_ACCESS_OK; 1025 } 1026 1027 return pmreg_access(env, ri, isread); 1028 } 1029 1030 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1031 const ARMCPRegInfo *ri, 1032 bool isread) 1033 { 1034 /* CR: cycle counter read trap control */ 1035 if (arm_feature(env, ARM_FEATURE_V8) 1036 && arm_current_el(env) == 0 1037 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1038 && isread) { 1039 return CP_ACCESS_OK; 1040 } 1041 1042 return pmreg_access(env, ri, isread); 1043 } 1044 1045 static inline bool arm_ccnt_enabled(CPUARMState *env) 1046 { 1047 /* This does not support checking PMCCFILTR_EL0 register */ 1048 1049 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) { 1050 return false; 1051 } 1052 1053 return true; 1054 } 1055 1056 void pmccntr_sync(CPUARMState *env) 1057 { 1058 uint64_t temp_ticks; 1059 1060 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1061 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1062 1063 if (env->cp15.c9_pmcr & PMCRD) { 1064 /* Increment once every 64 processor clock cycles */ 1065 temp_ticks /= 64; 1066 } 1067 1068 if (arm_ccnt_enabled(env)) { 1069 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1070 } 1071 } 1072 1073 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1074 uint64_t value) 1075 { 1076 pmccntr_sync(env); 1077 1078 if (value & PMCRC) { 1079 /* The counter has been reset */ 1080 env->cp15.c15_ccnt = 0; 1081 } 1082 1083 /* only the DP, X, D and E bits are writable */ 1084 env->cp15.c9_pmcr &= ~0x39; 1085 env->cp15.c9_pmcr |= (value & 0x39); 1086 1087 pmccntr_sync(env); 1088 } 1089 1090 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1091 { 1092 uint64_t total_ticks; 1093 1094 if (!arm_ccnt_enabled(env)) { 1095 /* Counter is disabled, do not change value */ 1096 return env->cp15.c15_ccnt; 1097 } 1098 1099 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1100 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1101 1102 if (env->cp15.c9_pmcr & PMCRD) { 1103 /* Increment once every 64 processor clock cycles */ 1104 total_ticks /= 64; 1105 } 1106 return total_ticks - env->cp15.c15_ccnt; 1107 } 1108 1109 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1110 uint64_t value) 1111 { 1112 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1113 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1114 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1115 * accessed. 1116 */ 1117 env->cp15.c9_pmselr = value & 0x1f; 1118 } 1119 1120 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1121 uint64_t value) 1122 { 1123 uint64_t total_ticks; 1124 1125 if (!arm_ccnt_enabled(env)) { 1126 /* Counter is disabled, set the absolute value */ 1127 env->cp15.c15_ccnt = value; 1128 return; 1129 } 1130 1131 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1132 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1133 1134 if (env->cp15.c9_pmcr & PMCRD) { 1135 /* Increment once every 64 processor clock cycles */ 1136 total_ticks /= 64; 1137 } 1138 env->cp15.c15_ccnt = total_ticks - value; 1139 } 1140 1141 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1142 uint64_t value) 1143 { 1144 uint64_t cur_val = pmccntr_read(env, NULL); 1145 1146 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1147 } 1148 1149 #else /* CONFIG_USER_ONLY */ 1150 1151 void pmccntr_sync(CPUARMState *env) 1152 { 1153 } 1154 1155 #endif 1156 1157 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1158 uint64_t value) 1159 { 1160 pmccntr_sync(env); 1161 env->cp15.pmccfiltr_el0 = value & 0xfc000000; 1162 pmccntr_sync(env); 1163 } 1164 1165 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1166 uint64_t value) 1167 { 1168 value &= pmu_counter_mask(env); 1169 env->cp15.c9_pmcnten |= value; 1170 } 1171 1172 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1173 uint64_t value) 1174 { 1175 value &= pmu_counter_mask(env); 1176 env->cp15.c9_pmcnten &= ~value; 1177 } 1178 1179 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1180 uint64_t value) 1181 { 1182 env->cp15.c9_pmovsr &= ~value; 1183 } 1184 1185 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1186 uint64_t value) 1187 { 1188 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1189 * PMSELR value is equal to or greater than the number of implemented 1190 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1191 */ 1192 if (env->cp15.c9_pmselr == 0x1f) { 1193 pmccfiltr_write(env, ri, value); 1194 } 1195 } 1196 1197 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1198 { 1199 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1200 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1201 */ 1202 if (env->cp15.c9_pmselr == 0x1f) { 1203 return env->cp15.pmccfiltr_el0; 1204 } else { 1205 return 0; 1206 } 1207 } 1208 1209 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1210 uint64_t value) 1211 { 1212 if (arm_feature(env, ARM_FEATURE_V8)) { 1213 env->cp15.c9_pmuserenr = value & 0xf; 1214 } else { 1215 env->cp15.c9_pmuserenr = value & 1; 1216 } 1217 } 1218 1219 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1220 uint64_t value) 1221 { 1222 /* We have no event counters so only the C bit can be changed */ 1223 value &= pmu_counter_mask(env); 1224 env->cp15.c9_pminten |= value; 1225 } 1226 1227 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1228 uint64_t value) 1229 { 1230 value &= pmu_counter_mask(env); 1231 env->cp15.c9_pminten &= ~value; 1232 } 1233 1234 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1235 uint64_t value) 1236 { 1237 /* Note that even though the AArch64 view of this register has bits 1238 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1239 * architectural requirements for bits which are RES0 only in some 1240 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1241 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1242 */ 1243 raw_write(env, ri, value & ~0x1FULL); 1244 } 1245 1246 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1247 { 1248 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1249 * For bits that vary between AArch32/64, code needs to check the 1250 * current execution mode before directly using the feature bit. 1251 */ 1252 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1253 1254 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1255 valid_mask &= ~SCR_HCE; 1256 1257 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1258 * supported if EL2 exists. The bit is UNK/SBZP when 1259 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1260 * when EL2 is unavailable. 1261 * On ARMv8, this bit is always available. 1262 */ 1263 if (arm_feature(env, ARM_FEATURE_V7) && 1264 !arm_feature(env, ARM_FEATURE_V8)) { 1265 valid_mask &= ~SCR_SMD; 1266 } 1267 } 1268 1269 /* Clear all-context RES0 bits. */ 1270 value &= valid_mask; 1271 raw_write(env, ri, value); 1272 } 1273 1274 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1275 { 1276 ARMCPU *cpu = arm_env_get_cpu(env); 1277 1278 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1279 * bank 1280 */ 1281 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1282 ri->secure & ARM_CP_SECSTATE_S); 1283 1284 return cpu->ccsidr[index]; 1285 } 1286 1287 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1288 uint64_t value) 1289 { 1290 raw_write(env, ri, value & 0xf); 1291 } 1292 1293 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1294 { 1295 CPUState *cs = ENV_GET_CPU(env); 1296 uint64_t ret = 0; 1297 1298 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1299 ret |= CPSR_I; 1300 } 1301 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1302 ret |= CPSR_F; 1303 } 1304 /* External aborts are not possible in QEMU so A bit is always clear */ 1305 return ret; 1306 } 1307 1308 static const ARMCPRegInfo v7_cp_reginfo[] = { 1309 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1310 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1311 .access = PL1_W, .type = ARM_CP_NOP }, 1312 /* Performance monitors are implementation defined in v7, 1313 * but with an ARM recommended set of registers, which we 1314 * follow (although we don't actually implement any counters) 1315 * 1316 * Performance registers fall into three categories: 1317 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1318 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1319 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1320 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1321 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1322 */ 1323 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1324 .access = PL0_RW, .type = ARM_CP_ALIAS, 1325 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1326 .writefn = pmcntenset_write, 1327 .accessfn = pmreg_access, 1328 .raw_writefn = raw_write }, 1329 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1331 .access = PL0_RW, .accessfn = pmreg_access, 1332 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1333 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1334 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1335 .access = PL0_RW, 1336 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1337 .accessfn = pmreg_access, 1338 .writefn = pmcntenclr_write, 1339 .type = ARM_CP_ALIAS }, 1340 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1341 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1342 .access = PL0_RW, .accessfn = pmreg_access, 1343 .type = ARM_CP_ALIAS, 1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1345 .writefn = pmcntenclr_write }, 1346 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1347 .access = PL0_RW, 1348 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1349 .accessfn = pmreg_access, 1350 .writefn = pmovsr_write, 1351 .raw_writefn = raw_write }, 1352 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1353 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1354 .access = PL0_RW, .accessfn = pmreg_access, 1355 .type = ARM_CP_ALIAS, 1356 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1357 .writefn = pmovsr_write, 1358 .raw_writefn = raw_write }, 1359 /* Unimplemented so WI. */ 1360 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1361 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1362 #ifndef CONFIG_USER_ONLY 1363 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1364 .access = PL0_RW, .type = ARM_CP_ALIAS, 1365 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1366 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1367 .raw_writefn = raw_write}, 1368 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1369 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1370 .access = PL0_RW, .accessfn = pmreg_access_selr, 1371 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1372 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1373 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1374 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1375 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1376 .accessfn = pmreg_access_ccntr }, 1377 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1378 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1379 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1380 .type = ARM_CP_IO, 1381 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1382 #endif 1383 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1385 .writefn = pmccfiltr_write, 1386 .access = PL0_RW, .accessfn = pmreg_access, 1387 .type = ARM_CP_IO, 1388 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1389 .resetvalue = 0, }, 1390 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1391 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1392 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1393 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1394 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1395 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1396 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1397 /* Unimplemented, RAZ/WI. */ 1398 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1399 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1400 .accessfn = pmreg_access_xevcntr }, 1401 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1402 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1403 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 1404 .resetvalue = 0, 1405 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1406 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1407 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1408 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1409 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1410 .resetvalue = 0, 1411 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1412 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1413 .access = PL1_RW, .accessfn = access_tpm, 1414 .type = ARM_CP_ALIAS | ARM_CP_IO, 1415 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1416 .resetvalue = 0, 1417 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1418 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1419 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1420 .access = PL1_RW, .accessfn = access_tpm, 1421 .type = ARM_CP_IO, 1422 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1423 .writefn = pmintenset_write, .raw_writefn = raw_write, 1424 .resetvalue = 0x0 }, 1425 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1426 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1427 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1428 .writefn = pmintenclr_write, }, 1429 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1430 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1431 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1432 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1433 .writefn = pmintenclr_write }, 1434 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1435 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1436 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1437 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1438 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1439 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1440 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1441 offsetof(CPUARMState, cp15.csselr_ns) } }, 1442 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1443 * just RAZ for all cores: 1444 */ 1445 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1446 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1447 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1448 /* Auxiliary fault status registers: these also are IMPDEF, and we 1449 * choose to RAZ/WI for all cores. 1450 */ 1451 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1452 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1453 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1454 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1455 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1456 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1457 /* MAIR can just read-as-written because we don't implement caches 1458 * and so don't need to care about memory attributes. 1459 */ 1460 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1461 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1462 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1463 .resetvalue = 0 }, 1464 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1465 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1466 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1467 .resetvalue = 0 }, 1468 /* For non-long-descriptor page tables these are PRRR and NMRR; 1469 * regardless they still act as reads-as-written for QEMU. 1470 */ 1471 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1472 * allows them to assign the correct fieldoffset based on the endianness 1473 * handled in the field definitions. 1474 */ 1475 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1476 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1477 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1478 offsetof(CPUARMState, cp15.mair0_ns) }, 1479 .resetfn = arm_cp_reset_ignore }, 1480 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1481 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1482 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1483 offsetof(CPUARMState, cp15.mair1_ns) }, 1484 .resetfn = arm_cp_reset_ignore }, 1485 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1486 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1487 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1488 /* 32 bit ITLB invalidates */ 1489 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1490 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1491 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1492 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1493 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1494 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1495 /* 32 bit DTLB invalidates */ 1496 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1497 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1498 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1499 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1500 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1501 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1502 /* 32 bit TLB invalidates */ 1503 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1504 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1505 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1506 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1507 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1508 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1509 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1510 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1511 REGINFO_SENTINEL 1512 }; 1513 1514 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1515 /* 32 bit TLB invalidates, Inner Shareable */ 1516 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1517 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1518 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1519 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1520 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1521 .type = ARM_CP_NO_RAW, .access = PL1_W, 1522 .writefn = tlbiasid_is_write }, 1523 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1524 .type = ARM_CP_NO_RAW, .access = PL1_W, 1525 .writefn = tlbimvaa_is_write }, 1526 REGINFO_SENTINEL 1527 }; 1528 1529 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1530 uint64_t value) 1531 { 1532 value &= 1; 1533 env->teecr = value; 1534 } 1535 1536 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1537 bool isread) 1538 { 1539 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1540 return CP_ACCESS_TRAP; 1541 } 1542 return CP_ACCESS_OK; 1543 } 1544 1545 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1546 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1547 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1548 .resetvalue = 0, 1549 .writefn = teecr_write }, 1550 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1551 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1552 .accessfn = teehbr_access, .resetvalue = 0 }, 1553 REGINFO_SENTINEL 1554 }; 1555 1556 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1557 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1558 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1559 .access = PL0_RW, 1560 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1561 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1562 .access = PL0_RW, 1563 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1564 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1565 .resetfn = arm_cp_reset_ignore }, 1566 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1567 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1568 .access = PL0_R|PL1_W, 1569 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1570 .resetvalue = 0}, 1571 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1572 .access = PL0_R|PL1_W, 1573 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1574 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1575 .resetfn = arm_cp_reset_ignore }, 1576 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1577 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1578 .access = PL1_RW, 1579 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1580 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1581 .access = PL1_RW, 1582 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1583 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1584 .resetvalue = 0 }, 1585 REGINFO_SENTINEL 1586 }; 1587 1588 #ifndef CONFIG_USER_ONLY 1589 1590 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1591 bool isread) 1592 { 1593 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1594 * Writable only at the highest implemented exception level. 1595 */ 1596 int el = arm_current_el(env); 1597 1598 switch (el) { 1599 case 0: 1600 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1601 return CP_ACCESS_TRAP; 1602 } 1603 break; 1604 case 1: 1605 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1606 arm_is_secure_below_el3(env)) { 1607 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1608 return CP_ACCESS_TRAP_UNCATEGORIZED; 1609 } 1610 break; 1611 case 2: 1612 case 3: 1613 break; 1614 } 1615 1616 if (!isread && el < arm_highest_el(env)) { 1617 return CP_ACCESS_TRAP_UNCATEGORIZED; 1618 } 1619 1620 return CP_ACCESS_OK; 1621 } 1622 1623 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1624 bool isread) 1625 { 1626 unsigned int cur_el = arm_current_el(env); 1627 bool secure = arm_is_secure(env); 1628 1629 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1630 if (cur_el == 0 && 1631 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1632 return CP_ACCESS_TRAP; 1633 } 1634 1635 if (arm_feature(env, ARM_FEATURE_EL2) && 1636 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1637 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1638 return CP_ACCESS_TRAP_EL2; 1639 } 1640 return CP_ACCESS_OK; 1641 } 1642 1643 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1644 bool isread) 1645 { 1646 unsigned int cur_el = arm_current_el(env); 1647 bool secure = arm_is_secure(env); 1648 1649 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1650 * EL0[PV]TEN is zero. 1651 */ 1652 if (cur_el == 0 && 1653 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1654 return CP_ACCESS_TRAP; 1655 } 1656 1657 if (arm_feature(env, ARM_FEATURE_EL2) && 1658 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1659 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1660 return CP_ACCESS_TRAP_EL2; 1661 } 1662 return CP_ACCESS_OK; 1663 } 1664 1665 static CPAccessResult gt_pct_access(CPUARMState *env, 1666 const ARMCPRegInfo *ri, 1667 bool isread) 1668 { 1669 return gt_counter_access(env, GTIMER_PHYS, isread); 1670 } 1671 1672 static CPAccessResult gt_vct_access(CPUARMState *env, 1673 const ARMCPRegInfo *ri, 1674 bool isread) 1675 { 1676 return gt_counter_access(env, GTIMER_VIRT, isread); 1677 } 1678 1679 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1680 bool isread) 1681 { 1682 return gt_timer_access(env, GTIMER_PHYS, isread); 1683 } 1684 1685 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1686 bool isread) 1687 { 1688 return gt_timer_access(env, GTIMER_VIRT, isread); 1689 } 1690 1691 static CPAccessResult gt_stimer_access(CPUARMState *env, 1692 const ARMCPRegInfo *ri, 1693 bool isread) 1694 { 1695 /* The AArch64 register view of the secure physical timer is 1696 * always accessible from EL3, and configurably accessible from 1697 * Secure EL1. 1698 */ 1699 switch (arm_current_el(env)) { 1700 case 1: 1701 if (!arm_is_secure(env)) { 1702 return CP_ACCESS_TRAP; 1703 } 1704 if (!(env->cp15.scr_el3 & SCR_ST)) { 1705 return CP_ACCESS_TRAP_EL3; 1706 } 1707 return CP_ACCESS_OK; 1708 case 0: 1709 case 2: 1710 return CP_ACCESS_TRAP; 1711 case 3: 1712 return CP_ACCESS_OK; 1713 default: 1714 g_assert_not_reached(); 1715 } 1716 } 1717 1718 static uint64_t gt_get_countervalue(CPUARMState *env) 1719 { 1720 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1721 } 1722 1723 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1724 { 1725 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1726 1727 if (gt->ctl & 1) { 1728 /* Timer enabled: calculate and set current ISTATUS, irq, and 1729 * reset timer to when ISTATUS next has to change 1730 */ 1731 uint64_t offset = timeridx == GTIMER_VIRT ? 1732 cpu->env.cp15.cntvoff_el2 : 0; 1733 uint64_t count = gt_get_countervalue(&cpu->env); 1734 /* Note that this must be unsigned 64 bit arithmetic: */ 1735 int istatus = count - offset >= gt->cval; 1736 uint64_t nexttick; 1737 int irqstate; 1738 1739 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1740 1741 irqstate = (istatus && !(gt->ctl & 2)); 1742 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1743 1744 if (istatus) { 1745 /* Next transition is when count rolls back over to zero */ 1746 nexttick = UINT64_MAX; 1747 } else { 1748 /* Next transition is when we hit cval */ 1749 nexttick = gt->cval + offset; 1750 } 1751 /* Note that the desired next expiry time might be beyond the 1752 * signed-64-bit range of a QEMUTimer -- in this case we just 1753 * set the timer for as far in the future as possible. When the 1754 * timer expires we will reset the timer for any remaining period. 1755 */ 1756 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1757 nexttick = INT64_MAX / GTIMER_SCALE; 1758 } 1759 timer_mod(cpu->gt_timer[timeridx], nexttick); 1760 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1761 } else { 1762 /* Timer disabled: ISTATUS and timer output always clear */ 1763 gt->ctl &= ~4; 1764 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1765 timer_del(cpu->gt_timer[timeridx]); 1766 trace_arm_gt_recalc_disabled(timeridx); 1767 } 1768 } 1769 1770 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1771 int timeridx) 1772 { 1773 ARMCPU *cpu = arm_env_get_cpu(env); 1774 1775 timer_del(cpu->gt_timer[timeridx]); 1776 } 1777 1778 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 return gt_get_countervalue(env); 1781 } 1782 1783 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1784 { 1785 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1786 } 1787 1788 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1789 int timeridx, 1790 uint64_t value) 1791 { 1792 trace_arm_gt_cval_write(timeridx, value); 1793 env->cp15.c14_timer[timeridx].cval = value; 1794 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1795 } 1796 1797 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1798 int timeridx) 1799 { 1800 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1801 1802 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1803 (gt_get_countervalue(env) - offset)); 1804 } 1805 1806 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 int timeridx, 1808 uint64_t value) 1809 { 1810 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1811 1812 trace_arm_gt_tval_write(timeridx, value); 1813 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1814 sextract64(value, 0, 32); 1815 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1816 } 1817 1818 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1819 int timeridx, 1820 uint64_t value) 1821 { 1822 ARMCPU *cpu = arm_env_get_cpu(env); 1823 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1824 1825 trace_arm_gt_ctl_write(timeridx, value); 1826 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1827 if ((oldval ^ value) & 1) { 1828 /* Enable toggled */ 1829 gt_recalc_timer(cpu, timeridx); 1830 } else if ((oldval ^ value) & 2) { 1831 /* IMASK toggled: don't need to recalculate, 1832 * just set the interrupt line based on ISTATUS 1833 */ 1834 int irqstate = (oldval & 4) && !(value & 2); 1835 1836 trace_arm_gt_imask_toggle(timeridx, irqstate); 1837 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1838 } 1839 } 1840 1841 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1842 { 1843 gt_timer_reset(env, ri, GTIMER_PHYS); 1844 } 1845 1846 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1847 uint64_t value) 1848 { 1849 gt_cval_write(env, ri, GTIMER_PHYS, value); 1850 } 1851 1852 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1853 { 1854 return gt_tval_read(env, ri, GTIMER_PHYS); 1855 } 1856 1857 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 gt_tval_write(env, ri, GTIMER_PHYS, value); 1861 } 1862 1863 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1864 uint64_t value) 1865 { 1866 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1867 } 1868 1869 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1870 { 1871 gt_timer_reset(env, ri, GTIMER_VIRT); 1872 } 1873 1874 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1875 uint64_t value) 1876 { 1877 gt_cval_write(env, ri, GTIMER_VIRT, value); 1878 } 1879 1880 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1881 { 1882 return gt_tval_read(env, ri, GTIMER_VIRT); 1883 } 1884 1885 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1886 uint64_t value) 1887 { 1888 gt_tval_write(env, ri, GTIMER_VIRT, value); 1889 } 1890 1891 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1892 uint64_t value) 1893 { 1894 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1895 } 1896 1897 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1898 uint64_t value) 1899 { 1900 ARMCPU *cpu = arm_env_get_cpu(env); 1901 1902 trace_arm_gt_cntvoff_write(value); 1903 raw_write(env, ri, value); 1904 gt_recalc_timer(cpu, GTIMER_VIRT); 1905 } 1906 1907 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1908 { 1909 gt_timer_reset(env, ri, GTIMER_HYP); 1910 } 1911 1912 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1913 uint64_t value) 1914 { 1915 gt_cval_write(env, ri, GTIMER_HYP, value); 1916 } 1917 1918 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1919 { 1920 return gt_tval_read(env, ri, GTIMER_HYP); 1921 } 1922 1923 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1924 uint64_t value) 1925 { 1926 gt_tval_write(env, ri, GTIMER_HYP, value); 1927 } 1928 1929 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1930 uint64_t value) 1931 { 1932 gt_ctl_write(env, ri, GTIMER_HYP, value); 1933 } 1934 1935 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1936 { 1937 gt_timer_reset(env, ri, GTIMER_SEC); 1938 } 1939 1940 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1941 uint64_t value) 1942 { 1943 gt_cval_write(env, ri, GTIMER_SEC, value); 1944 } 1945 1946 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1947 { 1948 return gt_tval_read(env, ri, GTIMER_SEC); 1949 } 1950 1951 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1952 uint64_t value) 1953 { 1954 gt_tval_write(env, ri, GTIMER_SEC, value); 1955 } 1956 1957 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1958 uint64_t value) 1959 { 1960 gt_ctl_write(env, ri, GTIMER_SEC, value); 1961 } 1962 1963 void arm_gt_ptimer_cb(void *opaque) 1964 { 1965 ARMCPU *cpu = opaque; 1966 1967 gt_recalc_timer(cpu, GTIMER_PHYS); 1968 } 1969 1970 void arm_gt_vtimer_cb(void *opaque) 1971 { 1972 ARMCPU *cpu = opaque; 1973 1974 gt_recalc_timer(cpu, GTIMER_VIRT); 1975 } 1976 1977 void arm_gt_htimer_cb(void *opaque) 1978 { 1979 ARMCPU *cpu = opaque; 1980 1981 gt_recalc_timer(cpu, GTIMER_HYP); 1982 } 1983 1984 void arm_gt_stimer_cb(void *opaque) 1985 { 1986 ARMCPU *cpu = opaque; 1987 1988 gt_recalc_timer(cpu, GTIMER_SEC); 1989 } 1990 1991 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1992 /* Note that CNTFRQ is purely reads-as-written for the benefit 1993 * of software; writing it doesn't actually change the timer frequency. 1994 * Our reset value matches the fixed frequency we implement the timer at. 1995 */ 1996 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1997 .type = ARM_CP_ALIAS, 1998 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1999 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2000 }, 2001 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2002 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2003 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2004 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2005 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2006 }, 2007 /* overall control: mostly access permissions */ 2008 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2009 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2010 .access = PL1_RW, 2011 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2012 .resetvalue = 0, 2013 }, 2014 /* per-timer control */ 2015 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2016 .secure = ARM_CP_SECSTATE_NS, 2017 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2018 .accessfn = gt_ptimer_access, 2019 .fieldoffset = offsetoflow32(CPUARMState, 2020 cp15.c14_timer[GTIMER_PHYS].ctl), 2021 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2022 }, 2023 { .name = "CNTP_CTL_S", 2024 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2025 .secure = ARM_CP_SECSTATE_S, 2026 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2027 .accessfn = gt_ptimer_access, 2028 .fieldoffset = offsetoflow32(CPUARMState, 2029 cp15.c14_timer[GTIMER_SEC].ctl), 2030 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2031 }, 2032 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2033 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2034 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2035 .accessfn = gt_ptimer_access, 2036 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2037 .resetvalue = 0, 2038 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2039 }, 2040 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2041 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2042 .accessfn = gt_vtimer_access, 2043 .fieldoffset = offsetoflow32(CPUARMState, 2044 cp15.c14_timer[GTIMER_VIRT].ctl), 2045 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2046 }, 2047 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2048 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2049 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2050 .accessfn = gt_vtimer_access, 2051 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2052 .resetvalue = 0, 2053 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2054 }, 2055 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2056 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2057 .secure = ARM_CP_SECSTATE_NS, 2058 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2059 .accessfn = gt_ptimer_access, 2060 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2061 }, 2062 { .name = "CNTP_TVAL_S", 2063 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2064 .secure = ARM_CP_SECSTATE_S, 2065 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2066 .accessfn = gt_ptimer_access, 2067 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2068 }, 2069 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2070 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2071 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2072 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2073 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2074 }, 2075 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2076 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2077 .accessfn = gt_vtimer_access, 2078 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2079 }, 2080 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2081 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2082 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2083 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2084 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2085 }, 2086 /* The counter itself */ 2087 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2088 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2089 .accessfn = gt_pct_access, 2090 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2091 }, 2092 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2093 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2094 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2095 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2096 }, 2097 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2098 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2099 .accessfn = gt_vct_access, 2100 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2101 }, 2102 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2103 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2104 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2105 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2106 }, 2107 /* Comparison value, indicating when the timer goes off */ 2108 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2109 .secure = ARM_CP_SECSTATE_NS, 2110 .access = PL1_RW | PL0_R, 2111 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2112 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2113 .accessfn = gt_ptimer_access, 2114 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2115 }, 2116 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2117 .secure = ARM_CP_SECSTATE_S, 2118 .access = PL1_RW | PL0_R, 2119 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2120 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2121 .accessfn = gt_ptimer_access, 2122 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2123 }, 2124 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2126 .access = PL1_RW | PL0_R, 2127 .type = ARM_CP_IO, 2128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2129 .resetvalue = 0, .accessfn = gt_ptimer_access, 2130 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2131 }, 2132 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2133 .access = PL1_RW | PL0_R, 2134 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2135 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2136 .accessfn = gt_vtimer_access, 2137 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2138 }, 2139 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2141 .access = PL1_RW | PL0_R, 2142 .type = ARM_CP_IO, 2143 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2144 .resetvalue = 0, .accessfn = gt_vtimer_access, 2145 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2146 }, 2147 /* Secure timer -- this is actually restricted to only EL3 2148 * and configurably Secure-EL1 via the accessfn. 2149 */ 2150 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2151 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2152 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2153 .accessfn = gt_stimer_access, 2154 .readfn = gt_sec_tval_read, 2155 .writefn = gt_sec_tval_write, 2156 .resetfn = gt_sec_timer_reset, 2157 }, 2158 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2159 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2160 .type = ARM_CP_IO, .access = PL1_RW, 2161 .accessfn = gt_stimer_access, 2162 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2163 .resetvalue = 0, 2164 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2165 }, 2166 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2167 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2168 .type = ARM_CP_IO, .access = PL1_RW, 2169 .accessfn = gt_stimer_access, 2170 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2171 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2172 }, 2173 REGINFO_SENTINEL 2174 }; 2175 2176 #else 2177 2178 /* In user-mode most of the generic timer registers are inaccessible 2179 * however modern kernels (4.12+) allow access to cntvct_el0 2180 */ 2181 2182 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2183 { 2184 /* Currently we have no support for QEMUTimer in linux-user so we 2185 * can't call gt_get_countervalue(env), instead we directly 2186 * call the lower level functions. 2187 */ 2188 return cpu_get_clock() / GTIMER_SCALE; 2189 } 2190 2191 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2192 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2193 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2194 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2195 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2196 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2197 }, 2198 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2200 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2201 .readfn = gt_virt_cnt_read, 2202 }, 2203 REGINFO_SENTINEL 2204 }; 2205 2206 #endif 2207 2208 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2209 { 2210 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2211 raw_write(env, ri, value); 2212 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2213 raw_write(env, ri, value & 0xfffff6ff); 2214 } else { 2215 raw_write(env, ri, value & 0xfffff1ff); 2216 } 2217 } 2218 2219 #ifndef CONFIG_USER_ONLY 2220 /* get_phys_addr() isn't present for user-mode-only targets */ 2221 2222 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2223 bool isread) 2224 { 2225 if (ri->opc2 & 4) { 2226 /* The ATS12NSO* operations must trap to EL3 if executed in 2227 * Secure EL1 (which can only happen if EL3 is AArch64). 2228 * They are simply UNDEF if executed from NS EL1. 2229 * They function normally from EL2 or EL3. 2230 */ 2231 if (arm_current_el(env) == 1) { 2232 if (arm_is_secure_below_el3(env)) { 2233 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2234 } 2235 return CP_ACCESS_TRAP_UNCATEGORIZED; 2236 } 2237 } 2238 return CP_ACCESS_OK; 2239 } 2240 2241 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2242 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2243 { 2244 hwaddr phys_addr; 2245 target_ulong page_size; 2246 int prot; 2247 bool ret; 2248 uint64_t par64; 2249 bool format64 = false; 2250 MemTxAttrs attrs = {}; 2251 ARMMMUFaultInfo fi = {}; 2252 ARMCacheAttrs cacheattrs = {}; 2253 2254 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2255 &prot, &page_size, &fi, &cacheattrs); 2256 2257 if (is_a64(env)) { 2258 format64 = true; 2259 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2260 /* 2261 * ATS1Cxx: 2262 * * TTBCR.EAE determines whether the result is returned using the 2263 * 32-bit or the 64-bit PAR format 2264 * * Instructions executed in Hyp mode always use the 64bit format 2265 * 2266 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2267 * * The Non-secure TTBCR.EAE bit is set to 1 2268 * * The implementation includes EL2, and the value of HCR.VM is 1 2269 * 2270 * ATS1Hx always uses the 64bit format (not supported yet). 2271 */ 2272 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2273 2274 if (arm_feature(env, ARM_FEATURE_EL2)) { 2275 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2276 format64 |= env->cp15.hcr_el2 & HCR_VM; 2277 } else { 2278 format64 |= arm_current_el(env) == 2; 2279 } 2280 } 2281 } 2282 2283 if (format64) { 2284 /* Create a 64-bit PAR */ 2285 par64 = (1 << 11); /* LPAE bit always set */ 2286 if (!ret) { 2287 par64 |= phys_addr & ~0xfffULL; 2288 if (!attrs.secure) { 2289 par64 |= (1 << 9); /* NS */ 2290 } 2291 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2292 par64 |= cacheattrs.shareability << 7; /* SH */ 2293 } else { 2294 uint32_t fsr = arm_fi_to_lfsc(&fi); 2295 2296 par64 |= 1; /* F */ 2297 par64 |= (fsr & 0x3f) << 1; /* FS */ 2298 /* Note that S2WLK and FSTAGE are always zero, because we don't 2299 * implement virtualization and therefore there can't be a stage 2 2300 * fault. 2301 */ 2302 } 2303 } else { 2304 /* fsr is a DFSR/IFSR value for the short descriptor 2305 * translation table format (with WnR always clear). 2306 * Convert it to a 32-bit PAR. 2307 */ 2308 if (!ret) { 2309 /* We do not set any attribute bits in the PAR */ 2310 if (page_size == (1 << 24) 2311 && arm_feature(env, ARM_FEATURE_V7)) { 2312 par64 = (phys_addr & 0xff000000) | (1 << 1); 2313 } else { 2314 par64 = phys_addr & 0xfffff000; 2315 } 2316 if (!attrs.secure) { 2317 par64 |= (1 << 9); /* NS */ 2318 } 2319 } else { 2320 uint32_t fsr = arm_fi_to_sfsc(&fi); 2321 2322 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2323 ((fsr & 0xf) << 1) | 1; 2324 } 2325 } 2326 return par64; 2327 } 2328 2329 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2330 { 2331 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2332 uint64_t par64; 2333 ARMMMUIdx mmu_idx; 2334 int el = arm_current_el(env); 2335 bool secure = arm_is_secure_below_el3(env); 2336 2337 switch (ri->opc2 & 6) { 2338 case 0: 2339 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2340 switch (el) { 2341 case 3: 2342 mmu_idx = ARMMMUIdx_S1E3; 2343 break; 2344 case 2: 2345 mmu_idx = ARMMMUIdx_S1NSE1; 2346 break; 2347 case 1: 2348 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2349 break; 2350 default: 2351 g_assert_not_reached(); 2352 } 2353 break; 2354 case 2: 2355 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2356 switch (el) { 2357 case 3: 2358 mmu_idx = ARMMMUIdx_S1SE0; 2359 break; 2360 case 2: 2361 mmu_idx = ARMMMUIdx_S1NSE0; 2362 break; 2363 case 1: 2364 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2365 break; 2366 default: 2367 g_assert_not_reached(); 2368 } 2369 break; 2370 case 4: 2371 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2372 mmu_idx = ARMMMUIdx_S12NSE1; 2373 break; 2374 case 6: 2375 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2376 mmu_idx = ARMMMUIdx_S12NSE0; 2377 break; 2378 default: 2379 g_assert_not_reached(); 2380 } 2381 2382 par64 = do_ats_write(env, value, access_type, mmu_idx); 2383 2384 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2385 } 2386 2387 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2388 uint64_t value) 2389 { 2390 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2391 uint64_t par64; 2392 2393 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2394 2395 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2396 } 2397 2398 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2399 bool isread) 2400 { 2401 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2402 return CP_ACCESS_TRAP; 2403 } 2404 return CP_ACCESS_OK; 2405 } 2406 2407 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2408 uint64_t value) 2409 { 2410 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2411 ARMMMUIdx mmu_idx; 2412 int secure = arm_is_secure_below_el3(env); 2413 2414 switch (ri->opc2 & 6) { 2415 case 0: 2416 switch (ri->opc1) { 2417 case 0: /* AT S1E1R, AT S1E1W */ 2418 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2419 break; 2420 case 4: /* AT S1E2R, AT S1E2W */ 2421 mmu_idx = ARMMMUIdx_S1E2; 2422 break; 2423 case 6: /* AT S1E3R, AT S1E3W */ 2424 mmu_idx = ARMMMUIdx_S1E3; 2425 break; 2426 default: 2427 g_assert_not_reached(); 2428 } 2429 break; 2430 case 2: /* AT S1E0R, AT S1E0W */ 2431 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2432 break; 2433 case 4: /* AT S12E1R, AT S12E1W */ 2434 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2435 break; 2436 case 6: /* AT S12E0R, AT S12E0W */ 2437 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2438 break; 2439 default: 2440 g_assert_not_reached(); 2441 } 2442 2443 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2444 } 2445 #endif 2446 2447 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2448 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2449 .access = PL1_RW, .resetvalue = 0, 2450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2451 offsetoflow32(CPUARMState, cp15.par_ns) }, 2452 .writefn = par_write }, 2453 #ifndef CONFIG_USER_ONLY 2454 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2455 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2456 .access = PL1_W, .accessfn = ats_access, 2457 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2458 #endif 2459 REGINFO_SENTINEL 2460 }; 2461 2462 /* Return basic MPU access permission bits. */ 2463 static uint32_t simple_mpu_ap_bits(uint32_t val) 2464 { 2465 uint32_t ret; 2466 uint32_t mask; 2467 int i; 2468 ret = 0; 2469 mask = 3; 2470 for (i = 0; i < 16; i += 2) { 2471 ret |= (val >> i) & mask; 2472 mask <<= 2; 2473 } 2474 return ret; 2475 } 2476 2477 /* Pad basic MPU access permission bits to extended format. */ 2478 static uint32_t extended_mpu_ap_bits(uint32_t val) 2479 { 2480 uint32_t ret; 2481 uint32_t mask; 2482 int i; 2483 ret = 0; 2484 mask = 3; 2485 for (i = 0; i < 16; i += 2) { 2486 ret |= (val & mask) << i; 2487 mask <<= 2; 2488 } 2489 return ret; 2490 } 2491 2492 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2493 uint64_t value) 2494 { 2495 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2496 } 2497 2498 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2499 { 2500 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2501 } 2502 2503 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2504 uint64_t value) 2505 { 2506 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2507 } 2508 2509 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2510 { 2511 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2512 } 2513 2514 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2515 { 2516 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2517 2518 if (!u32p) { 2519 return 0; 2520 } 2521 2522 u32p += env->pmsav7.rnr[M_REG_NS]; 2523 return *u32p; 2524 } 2525 2526 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2527 uint64_t value) 2528 { 2529 ARMCPU *cpu = arm_env_get_cpu(env); 2530 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2531 2532 if (!u32p) { 2533 return; 2534 } 2535 2536 u32p += env->pmsav7.rnr[M_REG_NS]; 2537 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2538 *u32p = value; 2539 } 2540 2541 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2542 uint64_t value) 2543 { 2544 ARMCPU *cpu = arm_env_get_cpu(env); 2545 uint32_t nrgs = cpu->pmsav7_dregion; 2546 2547 if (value >= nrgs) { 2548 qemu_log_mask(LOG_GUEST_ERROR, 2549 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2550 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2551 return; 2552 } 2553 2554 raw_write(env, ri, value); 2555 } 2556 2557 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2558 /* Reset for all these registers is handled in arm_cpu_reset(), 2559 * because the PMSAv7 is also used by M-profile CPUs, which do 2560 * not register cpregs but still need the state to be reset. 2561 */ 2562 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2563 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2564 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2565 .readfn = pmsav7_read, .writefn = pmsav7_write, 2566 .resetfn = arm_cp_reset_ignore }, 2567 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2568 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2569 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2570 .readfn = pmsav7_read, .writefn = pmsav7_write, 2571 .resetfn = arm_cp_reset_ignore }, 2572 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2573 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2574 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2575 .readfn = pmsav7_read, .writefn = pmsav7_write, 2576 .resetfn = arm_cp_reset_ignore }, 2577 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2578 .access = PL1_RW, 2579 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2580 .writefn = pmsav7_rgnr_write, 2581 .resetfn = arm_cp_reset_ignore }, 2582 REGINFO_SENTINEL 2583 }; 2584 2585 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2586 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2587 .access = PL1_RW, .type = ARM_CP_ALIAS, 2588 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2589 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2590 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2591 .access = PL1_RW, .type = ARM_CP_ALIAS, 2592 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2593 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2594 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2595 .access = PL1_RW, 2596 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2597 .resetvalue = 0, }, 2598 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2599 .access = PL1_RW, 2600 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2601 .resetvalue = 0, }, 2602 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2603 .access = PL1_RW, 2604 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2605 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2606 .access = PL1_RW, 2607 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2608 /* Protection region base and size registers */ 2609 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2610 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2611 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2612 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2613 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2614 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2615 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2616 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2617 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2618 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2619 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2620 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2621 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2622 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2623 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2624 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2625 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2626 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2627 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2628 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2629 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2630 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2631 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2632 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2633 REGINFO_SENTINEL 2634 }; 2635 2636 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2637 uint64_t value) 2638 { 2639 TCR *tcr = raw_ptr(env, ri); 2640 int maskshift = extract32(value, 0, 3); 2641 2642 if (!arm_feature(env, ARM_FEATURE_V8)) { 2643 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2644 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2645 * using Long-desciptor translation table format */ 2646 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2647 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2648 /* In an implementation that includes the Security Extensions 2649 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2650 * Short-descriptor translation table format. 2651 */ 2652 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2653 } else { 2654 value &= TTBCR_N; 2655 } 2656 } 2657 2658 /* Update the masks corresponding to the TCR bank being written 2659 * Note that we always calculate mask and base_mask, but 2660 * they are only used for short-descriptor tables (ie if EAE is 0); 2661 * for long-descriptor tables the TCR fields are used differently 2662 * and the mask and base_mask values are meaningless. 2663 */ 2664 tcr->raw_tcr = value; 2665 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2666 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2667 } 2668 2669 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2670 uint64_t value) 2671 { 2672 ARMCPU *cpu = arm_env_get_cpu(env); 2673 2674 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2675 /* With LPAE the TTBCR could result in a change of ASID 2676 * via the TTBCR.A1 bit, so do a TLB flush. 2677 */ 2678 tlb_flush(CPU(cpu)); 2679 } 2680 vmsa_ttbcr_raw_write(env, ri, value); 2681 } 2682 2683 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2684 { 2685 TCR *tcr = raw_ptr(env, ri); 2686 2687 /* Reset both the TCR as well as the masks corresponding to the bank of 2688 * the TCR being reset. 2689 */ 2690 tcr->raw_tcr = 0; 2691 tcr->mask = 0; 2692 tcr->base_mask = 0xffffc000u; 2693 } 2694 2695 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2696 uint64_t value) 2697 { 2698 ARMCPU *cpu = arm_env_get_cpu(env); 2699 TCR *tcr = raw_ptr(env, ri); 2700 2701 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2702 tlb_flush(CPU(cpu)); 2703 tcr->raw_tcr = value; 2704 } 2705 2706 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2707 uint64_t value) 2708 { 2709 /* 64 bit accesses to the TTBRs can change the ASID and so we 2710 * must flush the TLB. 2711 */ 2712 if (cpreg_field_is_64bit(ri)) { 2713 ARMCPU *cpu = arm_env_get_cpu(env); 2714 2715 tlb_flush(CPU(cpu)); 2716 } 2717 raw_write(env, ri, value); 2718 } 2719 2720 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2721 uint64_t value) 2722 { 2723 ARMCPU *cpu = arm_env_get_cpu(env); 2724 CPUState *cs = CPU(cpu); 2725 2726 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2727 if (raw_read(env, ri) != value) { 2728 tlb_flush_by_mmuidx(cs, 2729 ARMMMUIdxBit_S12NSE1 | 2730 ARMMMUIdxBit_S12NSE0 | 2731 ARMMMUIdxBit_S2NS); 2732 raw_write(env, ri, value); 2733 } 2734 } 2735 2736 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2737 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2738 .access = PL1_RW, .type = ARM_CP_ALIAS, 2739 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2740 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2741 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2742 .access = PL1_RW, .resetvalue = 0, 2743 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2744 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2745 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2746 .access = PL1_RW, .resetvalue = 0, 2747 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2748 offsetof(CPUARMState, cp15.dfar_ns) } }, 2749 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2750 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2751 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2752 .resetvalue = 0, }, 2753 REGINFO_SENTINEL 2754 }; 2755 2756 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2757 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2758 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2759 .access = PL1_RW, 2760 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2761 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2762 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2763 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2764 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2765 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2766 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2767 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2768 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2769 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2770 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2771 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2772 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2773 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2774 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2775 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2776 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2777 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2778 .raw_writefn = vmsa_ttbcr_raw_write, 2779 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2780 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2781 REGINFO_SENTINEL 2782 }; 2783 2784 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2785 uint64_t value) 2786 { 2787 env->cp15.c15_ticonfig = value & 0xe7; 2788 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2789 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2790 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2791 } 2792 2793 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2794 uint64_t value) 2795 { 2796 env->cp15.c15_threadid = value & 0xffff; 2797 } 2798 2799 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2800 uint64_t value) 2801 { 2802 /* Wait-for-interrupt (deprecated) */ 2803 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2804 } 2805 2806 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2807 uint64_t value) 2808 { 2809 /* On OMAP there are registers indicating the max/min index of dcache lines 2810 * containing a dirty line; cache flush operations have to reset these. 2811 */ 2812 env->cp15.c15_i_max = 0x000; 2813 env->cp15.c15_i_min = 0xff0; 2814 } 2815 2816 static const ARMCPRegInfo omap_cp_reginfo[] = { 2817 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2818 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2819 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2820 .resetvalue = 0, }, 2821 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2822 .access = PL1_RW, .type = ARM_CP_NOP }, 2823 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2824 .access = PL1_RW, 2825 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2826 .writefn = omap_ticonfig_write }, 2827 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2828 .access = PL1_RW, 2829 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2830 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2831 .access = PL1_RW, .resetvalue = 0xff0, 2832 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2833 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2834 .access = PL1_RW, 2835 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2836 .writefn = omap_threadid_write }, 2837 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2838 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2839 .type = ARM_CP_NO_RAW, 2840 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2841 /* TODO: Peripheral port remap register: 2842 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2843 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2844 * when MMU is off. 2845 */ 2846 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2847 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2848 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2849 .writefn = omap_cachemaint_write }, 2850 { .name = "C9", .cp = 15, .crn = 9, 2851 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2852 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2853 REGINFO_SENTINEL 2854 }; 2855 2856 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2857 uint64_t value) 2858 { 2859 env->cp15.c15_cpar = value & 0x3fff; 2860 } 2861 2862 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2863 { .name = "XSCALE_CPAR", 2864 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2865 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2866 .writefn = xscale_cpar_write, }, 2867 { .name = "XSCALE_AUXCR", 2868 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2869 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2870 .resetvalue = 0, }, 2871 /* XScale specific cache-lockdown: since we have no cache we NOP these 2872 * and hope the guest does not really rely on cache behaviour. 2873 */ 2874 { .name = "XSCALE_LOCK_ICACHE_LINE", 2875 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2876 .access = PL1_W, .type = ARM_CP_NOP }, 2877 { .name = "XSCALE_UNLOCK_ICACHE", 2878 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2879 .access = PL1_W, .type = ARM_CP_NOP }, 2880 { .name = "XSCALE_DCACHE_LOCK", 2881 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2882 .access = PL1_RW, .type = ARM_CP_NOP }, 2883 { .name = "XSCALE_UNLOCK_DCACHE", 2884 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2885 .access = PL1_W, .type = ARM_CP_NOP }, 2886 REGINFO_SENTINEL 2887 }; 2888 2889 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2890 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2891 * implementation of this implementation-defined space. 2892 * Ideally this should eventually disappear in favour of actually 2893 * implementing the correct behaviour for all cores. 2894 */ 2895 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2896 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2897 .access = PL1_RW, 2898 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2899 .resetvalue = 0 }, 2900 REGINFO_SENTINEL 2901 }; 2902 2903 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2904 /* Cache status: RAZ because we have no cache so it's always clean */ 2905 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2906 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2907 .resetvalue = 0 }, 2908 REGINFO_SENTINEL 2909 }; 2910 2911 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2912 /* We never have a a block transfer operation in progress */ 2913 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2914 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2915 .resetvalue = 0 }, 2916 /* The cache ops themselves: these all NOP for QEMU */ 2917 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2918 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2919 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2920 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2921 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2922 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2923 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2924 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2925 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2926 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2927 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2928 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2929 REGINFO_SENTINEL 2930 }; 2931 2932 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2933 /* The cache test-and-clean instructions always return (1 << 30) 2934 * to indicate that there are no dirty cache lines. 2935 */ 2936 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2937 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2938 .resetvalue = (1 << 30) }, 2939 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2940 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2941 .resetvalue = (1 << 30) }, 2942 REGINFO_SENTINEL 2943 }; 2944 2945 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2946 /* Ignore ReadBuffer accesses */ 2947 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2948 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2949 .access = PL1_RW, .resetvalue = 0, 2950 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2951 REGINFO_SENTINEL 2952 }; 2953 2954 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2955 { 2956 ARMCPU *cpu = arm_env_get_cpu(env); 2957 unsigned int cur_el = arm_current_el(env); 2958 bool secure = arm_is_secure(env); 2959 2960 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2961 return env->cp15.vpidr_el2; 2962 } 2963 return raw_read(env, ri); 2964 } 2965 2966 static uint64_t mpidr_read_val(CPUARMState *env) 2967 { 2968 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2969 uint64_t mpidr = cpu->mp_affinity; 2970 2971 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2972 mpidr |= (1U << 31); 2973 /* Cores which are uniprocessor (non-coherent) 2974 * but still implement the MP extensions set 2975 * bit 30. (For instance, Cortex-R5). 2976 */ 2977 if (cpu->mp_is_up) { 2978 mpidr |= (1u << 30); 2979 } 2980 } 2981 return mpidr; 2982 } 2983 2984 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2985 { 2986 unsigned int cur_el = arm_current_el(env); 2987 bool secure = arm_is_secure(env); 2988 2989 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2990 return env->cp15.vmpidr_el2; 2991 } 2992 return mpidr_read_val(env); 2993 } 2994 2995 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2996 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2997 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2998 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2999 REGINFO_SENTINEL 3000 }; 3001 3002 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3003 /* NOP AMAIR0/1 */ 3004 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3005 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3006 .access = PL1_RW, .type = ARM_CP_CONST, 3007 .resetvalue = 0 }, 3008 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3009 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3010 .access = PL1_RW, .type = ARM_CP_CONST, 3011 .resetvalue = 0 }, 3012 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3013 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3014 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3015 offsetof(CPUARMState, cp15.par_ns)} }, 3016 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3017 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3018 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3019 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3020 .writefn = vmsa_ttbr_write, }, 3021 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3022 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3023 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3024 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3025 .writefn = vmsa_ttbr_write, }, 3026 REGINFO_SENTINEL 3027 }; 3028 3029 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3030 { 3031 return vfp_get_fpcr(env); 3032 } 3033 3034 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3035 uint64_t value) 3036 { 3037 vfp_set_fpcr(env, value); 3038 } 3039 3040 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3041 { 3042 return vfp_get_fpsr(env); 3043 } 3044 3045 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3046 uint64_t value) 3047 { 3048 vfp_set_fpsr(env, value); 3049 } 3050 3051 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3052 bool isread) 3053 { 3054 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3055 return CP_ACCESS_TRAP; 3056 } 3057 return CP_ACCESS_OK; 3058 } 3059 3060 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3061 uint64_t value) 3062 { 3063 env->daif = value & PSTATE_DAIF; 3064 } 3065 3066 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3067 const ARMCPRegInfo *ri, 3068 bool isread) 3069 { 3070 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3071 * SCTLR_EL1.UCI is set. 3072 */ 3073 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3074 return CP_ACCESS_TRAP; 3075 } 3076 return CP_ACCESS_OK; 3077 } 3078 3079 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3080 * Page D4-1736 (DDI0487A.b) 3081 */ 3082 3083 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3084 uint64_t value) 3085 { 3086 CPUState *cs = ENV_GET_CPU(env); 3087 3088 if (arm_is_secure_below_el3(env)) { 3089 tlb_flush_by_mmuidx(cs, 3090 ARMMMUIdxBit_S1SE1 | 3091 ARMMMUIdxBit_S1SE0); 3092 } else { 3093 tlb_flush_by_mmuidx(cs, 3094 ARMMMUIdxBit_S12NSE1 | 3095 ARMMMUIdxBit_S12NSE0); 3096 } 3097 } 3098 3099 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3100 uint64_t value) 3101 { 3102 CPUState *cs = ENV_GET_CPU(env); 3103 bool sec = arm_is_secure_below_el3(env); 3104 3105 if (sec) { 3106 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3107 ARMMMUIdxBit_S1SE1 | 3108 ARMMMUIdxBit_S1SE0); 3109 } else { 3110 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3111 ARMMMUIdxBit_S12NSE1 | 3112 ARMMMUIdxBit_S12NSE0); 3113 } 3114 } 3115 3116 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3117 uint64_t value) 3118 { 3119 /* Note that the 'ALL' scope must invalidate both stage 1 and 3120 * stage 2 translations, whereas most other scopes only invalidate 3121 * stage 1 translations. 3122 */ 3123 ARMCPU *cpu = arm_env_get_cpu(env); 3124 CPUState *cs = CPU(cpu); 3125 3126 if (arm_is_secure_below_el3(env)) { 3127 tlb_flush_by_mmuidx(cs, 3128 ARMMMUIdxBit_S1SE1 | 3129 ARMMMUIdxBit_S1SE0); 3130 } else { 3131 if (arm_feature(env, ARM_FEATURE_EL2)) { 3132 tlb_flush_by_mmuidx(cs, 3133 ARMMMUIdxBit_S12NSE1 | 3134 ARMMMUIdxBit_S12NSE0 | 3135 ARMMMUIdxBit_S2NS); 3136 } else { 3137 tlb_flush_by_mmuidx(cs, 3138 ARMMMUIdxBit_S12NSE1 | 3139 ARMMMUIdxBit_S12NSE0); 3140 } 3141 } 3142 } 3143 3144 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3145 uint64_t value) 3146 { 3147 ARMCPU *cpu = arm_env_get_cpu(env); 3148 CPUState *cs = CPU(cpu); 3149 3150 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3151 } 3152 3153 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3154 uint64_t value) 3155 { 3156 ARMCPU *cpu = arm_env_get_cpu(env); 3157 CPUState *cs = CPU(cpu); 3158 3159 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3160 } 3161 3162 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3163 uint64_t value) 3164 { 3165 /* Note that the 'ALL' scope must invalidate both stage 1 and 3166 * stage 2 translations, whereas most other scopes only invalidate 3167 * stage 1 translations. 3168 */ 3169 CPUState *cs = ENV_GET_CPU(env); 3170 bool sec = arm_is_secure_below_el3(env); 3171 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3172 3173 if (sec) { 3174 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3175 ARMMMUIdxBit_S1SE1 | 3176 ARMMMUIdxBit_S1SE0); 3177 } else if (has_el2) { 3178 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3179 ARMMMUIdxBit_S12NSE1 | 3180 ARMMMUIdxBit_S12NSE0 | 3181 ARMMMUIdxBit_S2NS); 3182 } else { 3183 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3184 ARMMMUIdxBit_S12NSE1 | 3185 ARMMMUIdxBit_S12NSE0); 3186 } 3187 } 3188 3189 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3190 uint64_t value) 3191 { 3192 CPUState *cs = ENV_GET_CPU(env); 3193 3194 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3195 } 3196 3197 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3198 uint64_t value) 3199 { 3200 CPUState *cs = ENV_GET_CPU(env); 3201 3202 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3203 } 3204 3205 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3206 uint64_t value) 3207 { 3208 /* Invalidate by VA, EL1&0 (AArch64 version). 3209 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3210 * since we don't support flush-for-specific-ASID-only or 3211 * flush-last-level-only. 3212 */ 3213 ARMCPU *cpu = arm_env_get_cpu(env); 3214 CPUState *cs = CPU(cpu); 3215 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3216 3217 if (arm_is_secure_below_el3(env)) { 3218 tlb_flush_page_by_mmuidx(cs, pageaddr, 3219 ARMMMUIdxBit_S1SE1 | 3220 ARMMMUIdxBit_S1SE0); 3221 } else { 3222 tlb_flush_page_by_mmuidx(cs, pageaddr, 3223 ARMMMUIdxBit_S12NSE1 | 3224 ARMMMUIdxBit_S12NSE0); 3225 } 3226 } 3227 3228 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3229 uint64_t value) 3230 { 3231 /* Invalidate by VA, EL2 3232 * Currently handles both VAE2 and VALE2, since we don't support 3233 * flush-last-level-only. 3234 */ 3235 ARMCPU *cpu = arm_env_get_cpu(env); 3236 CPUState *cs = CPU(cpu); 3237 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3238 3239 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3240 } 3241 3242 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3243 uint64_t value) 3244 { 3245 /* Invalidate by VA, EL3 3246 * Currently handles both VAE3 and VALE3, since we don't support 3247 * flush-last-level-only. 3248 */ 3249 ARMCPU *cpu = arm_env_get_cpu(env); 3250 CPUState *cs = CPU(cpu); 3251 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3252 3253 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3254 } 3255 3256 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3257 uint64_t value) 3258 { 3259 ARMCPU *cpu = arm_env_get_cpu(env); 3260 CPUState *cs = CPU(cpu); 3261 bool sec = arm_is_secure_below_el3(env); 3262 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3263 3264 if (sec) { 3265 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3266 ARMMMUIdxBit_S1SE1 | 3267 ARMMMUIdxBit_S1SE0); 3268 } else { 3269 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3270 ARMMMUIdxBit_S12NSE1 | 3271 ARMMMUIdxBit_S12NSE0); 3272 } 3273 } 3274 3275 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3276 uint64_t value) 3277 { 3278 CPUState *cs = ENV_GET_CPU(env); 3279 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3280 3281 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3282 ARMMMUIdxBit_S1E2); 3283 } 3284 3285 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3286 uint64_t value) 3287 { 3288 CPUState *cs = ENV_GET_CPU(env); 3289 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3290 3291 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3292 ARMMMUIdxBit_S1E3); 3293 } 3294 3295 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3296 uint64_t value) 3297 { 3298 /* Invalidate by IPA. This has to invalidate any structures that 3299 * contain only stage 2 translation information, but does not need 3300 * to apply to structures that contain combined stage 1 and stage 2 3301 * translation information. 3302 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3303 */ 3304 ARMCPU *cpu = arm_env_get_cpu(env); 3305 CPUState *cs = CPU(cpu); 3306 uint64_t pageaddr; 3307 3308 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3309 return; 3310 } 3311 3312 pageaddr = sextract64(value << 12, 0, 48); 3313 3314 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3315 } 3316 3317 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3318 uint64_t value) 3319 { 3320 CPUState *cs = ENV_GET_CPU(env); 3321 uint64_t pageaddr; 3322 3323 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3324 return; 3325 } 3326 3327 pageaddr = sextract64(value << 12, 0, 48); 3328 3329 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3330 ARMMMUIdxBit_S2NS); 3331 } 3332 3333 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3334 bool isread) 3335 { 3336 /* We don't implement EL2, so the only control on DC ZVA is the 3337 * bit in the SCTLR which can prohibit access for EL0. 3338 */ 3339 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3340 return CP_ACCESS_TRAP; 3341 } 3342 return CP_ACCESS_OK; 3343 } 3344 3345 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3346 { 3347 ARMCPU *cpu = arm_env_get_cpu(env); 3348 int dzp_bit = 1 << 4; 3349 3350 /* DZP indicates whether DC ZVA access is allowed */ 3351 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3352 dzp_bit = 0; 3353 } 3354 return cpu->dcz_blocksize | dzp_bit; 3355 } 3356 3357 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3358 bool isread) 3359 { 3360 if (!(env->pstate & PSTATE_SP)) { 3361 /* Access to SP_EL0 is undefined if it's being used as 3362 * the stack pointer. 3363 */ 3364 return CP_ACCESS_TRAP_UNCATEGORIZED; 3365 } 3366 return CP_ACCESS_OK; 3367 } 3368 3369 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3370 { 3371 return env->pstate & PSTATE_SP; 3372 } 3373 3374 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3375 { 3376 update_spsel(env, val); 3377 } 3378 3379 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3380 uint64_t value) 3381 { 3382 ARMCPU *cpu = arm_env_get_cpu(env); 3383 3384 if (raw_read(env, ri) == value) { 3385 /* Skip the TLB flush if nothing actually changed; Linux likes 3386 * to do a lot of pointless SCTLR writes. 3387 */ 3388 return; 3389 } 3390 3391 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3392 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3393 value &= ~SCTLR_M; 3394 } 3395 3396 raw_write(env, ri, value); 3397 /* ??? Lots of these bits are not implemented. */ 3398 /* This may enable/disable the MMU, so do a TLB flush. */ 3399 tlb_flush(CPU(cpu)); 3400 } 3401 3402 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3403 bool isread) 3404 { 3405 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3406 return CP_ACCESS_TRAP_FP_EL2; 3407 } 3408 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3409 return CP_ACCESS_TRAP_FP_EL3; 3410 } 3411 return CP_ACCESS_OK; 3412 } 3413 3414 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3415 uint64_t value) 3416 { 3417 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3418 } 3419 3420 static const ARMCPRegInfo v8_cp_reginfo[] = { 3421 /* Minimal set of EL0-visible registers. This will need to be expanded 3422 * significantly for system emulation of AArch64 CPUs. 3423 */ 3424 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3425 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3426 .access = PL0_RW, .type = ARM_CP_NZCV }, 3427 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3428 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3429 .type = ARM_CP_NO_RAW, 3430 .access = PL0_RW, .accessfn = aa64_daif_access, 3431 .fieldoffset = offsetof(CPUARMState, daif), 3432 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3433 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3434 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3435 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3436 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3437 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3438 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3439 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3440 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3441 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3442 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3443 .access = PL0_R, .type = ARM_CP_NO_RAW, 3444 .readfn = aa64_dczid_read }, 3445 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3446 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3447 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3448 #ifndef CONFIG_USER_ONLY 3449 /* Avoid overhead of an access check that always passes in user-mode */ 3450 .accessfn = aa64_zva_access, 3451 #endif 3452 }, 3453 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3454 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3455 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3456 /* Cache ops: all NOPs since we don't emulate caches */ 3457 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3458 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3459 .access = PL1_W, .type = ARM_CP_NOP }, 3460 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3461 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3462 .access = PL1_W, .type = ARM_CP_NOP }, 3463 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3464 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3465 .access = PL0_W, .type = ARM_CP_NOP, 3466 .accessfn = aa64_cacheop_access }, 3467 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3468 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3469 .access = PL1_W, .type = ARM_CP_NOP }, 3470 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3471 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3472 .access = PL1_W, .type = ARM_CP_NOP }, 3473 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3474 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3475 .access = PL0_W, .type = ARM_CP_NOP, 3476 .accessfn = aa64_cacheop_access }, 3477 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3478 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3479 .access = PL1_W, .type = ARM_CP_NOP }, 3480 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3481 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3482 .access = PL0_W, .type = ARM_CP_NOP, 3483 .accessfn = aa64_cacheop_access }, 3484 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3485 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3486 .access = PL0_W, .type = ARM_CP_NOP, 3487 .accessfn = aa64_cacheop_access }, 3488 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3489 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3490 .access = PL1_W, .type = ARM_CP_NOP }, 3491 /* TLBI operations */ 3492 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3493 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3494 .access = PL1_W, .type = ARM_CP_NO_RAW, 3495 .writefn = tlbi_aa64_vmalle1is_write }, 3496 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3497 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3498 .access = PL1_W, .type = ARM_CP_NO_RAW, 3499 .writefn = tlbi_aa64_vae1is_write }, 3500 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3501 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3502 .access = PL1_W, .type = ARM_CP_NO_RAW, 3503 .writefn = tlbi_aa64_vmalle1is_write }, 3504 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3505 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3506 .access = PL1_W, .type = ARM_CP_NO_RAW, 3507 .writefn = tlbi_aa64_vae1is_write }, 3508 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3509 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3510 .access = PL1_W, .type = ARM_CP_NO_RAW, 3511 .writefn = tlbi_aa64_vae1is_write }, 3512 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3513 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3514 .access = PL1_W, .type = ARM_CP_NO_RAW, 3515 .writefn = tlbi_aa64_vae1is_write }, 3516 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3517 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3518 .access = PL1_W, .type = ARM_CP_NO_RAW, 3519 .writefn = tlbi_aa64_vmalle1_write }, 3520 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3521 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3522 .access = PL1_W, .type = ARM_CP_NO_RAW, 3523 .writefn = tlbi_aa64_vae1_write }, 3524 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3525 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3526 .access = PL1_W, .type = ARM_CP_NO_RAW, 3527 .writefn = tlbi_aa64_vmalle1_write }, 3528 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3529 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3530 .access = PL1_W, .type = ARM_CP_NO_RAW, 3531 .writefn = tlbi_aa64_vae1_write }, 3532 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3534 .access = PL1_W, .type = ARM_CP_NO_RAW, 3535 .writefn = tlbi_aa64_vae1_write }, 3536 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3537 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3538 .access = PL1_W, .type = ARM_CP_NO_RAW, 3539 .writefn = tlbi_aa64_vae1_write }, 3540 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3541 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3542 .access = PL2_W, .type = ARM_CP_NO_RAW, 3543 .writefn = tlbi_aa64_ipas2e1is_write }, 3544 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3545 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3546 .access = PL2_W, .type = ARM_CP_NO_RAW, 3547 .writefn = tlbi_aa64_ipas2e1is_write }, 3548 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3549 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3550 .access = PL2_W, .type = ARM_CP_NO_RAW, 3551 .writefn = tlbi_aa64_alle1is_write }, 3552 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3553 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3554 .access = PL2_W, .type = ARM_CP_NO_RAW, 3555 .writefn = tlbi_aa64_alle1is_write }, 3556 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3557 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3558 .access = PL2_W, .type = ARM_CP_NO_RAW, 3559 .writefn = tlbi_aa64_ipas2e1_write }, 3560 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3561 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3562 .access = PL2_W, .type = ARM_CP_NO_RAW, 3563 .writefn = tlbi_aa64_ipas2e1_write }, 3564 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3565 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3566 .access = PL2_W, .type = ARM_CP_NO_RAW, 3567 .writefn = tlbi_aa64_alle1_write }, 3568 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3569 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3570 .access = PL2_W, .type = ARM_CP_NO_RAW, 3571 .writefn = tlbi_aa64_alle1is_write }, 3572 #ifndef CONFIG_USER_ONLY 3573 /* 64 bit address translation operations */ 3574 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3575 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3576 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3577 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3578 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3579 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3580 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3581 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3582 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3583 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3584 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3585 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3586 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3587 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3588 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3589 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3590 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3591 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3592 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3593 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3594 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3595 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3596 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3597 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3598 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3599 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3600 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3601 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3602 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3603 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3604 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3605 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3606 .type = ARM_CP_ALIAS, 3607 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3608 .access = PL1_RW, .resetvalue = 0, 3609 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3610 .writefn = par_write }, 3611 #endif 3612 /* TLB invalidate last level of translation table walk */ 3613 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3614 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3615 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3616 .type = ARM_CP_NO_RAW, .access = PL1_W, 3617 .writefn = tlbimvaa_is_write }, 3618 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3619 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3620 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3621 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3622 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3623 .type = ARM_CP_NO_RAW, .access = PL2_W, 3624 .writefn = tlbimva_hyp_write }, 3625 { .name = "TLBIMVALHIS", 3626 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3627 .type = ARM_CP_NO_RAW, .access = PL2_W, 3628 .writefn = tlbimva_hyp_is_write }, 3629 { .name = "TLBIIPAS2", 3630 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3631 .type = ARM_CP_NO_RAW, .access = PL2_W, 3632 .writefn = tlbiipas2_write }, 3633 { .name = "TLBIIPAS2IS", 3634 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3635 .type = ARM_CP_NO_RAW, .access = PL2_W, 3636 .writefn = tlbiipas2_is_write }, 3637 { .name = "TLBIIPAS2L", 3638 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3639 .type = ARM_CP_NO_RAW, .access = PL2_W, 3640 .writefn = tlbiipas2_write }, 3641 { .name = "TLBIIPAS2LIS", 3642 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3643 .type = ARM_CP_NO_RAW, .access = PL2_W, 3644 .writefn = tlbiipas2_is_write }, 3645 /* 32 bit cache operations */ 3646 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3647 .type = ARM_CP_NOP, .access = PL1_W }, 3648 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3649 .type = ARM_CP_NOP, .access = PL1_W }, 3650 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3651 .type = ARM_CP_NOP, .access = PL1_W }, 3652 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3653 .type = ARM_CP_NOP, .access = PL1_W }, 3654 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3655 .type = ARM_CP_NOP, .access = PL1_W }, 3656 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3657 .type = ARM_CP_NOP, .access = PL1_W }, 3658 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3659 .type = ARM_CP_NOP, .access = PL1_W }, 3660 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3661 .type = ARM_CP_NOP, .access = PL1_W }, 3662 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3663 .type = ARM_CP_NOP, .access = PL1_W }, 3664 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3665 .type = ARM_CP_NOP, .access = PL1_W }, 3666 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3667 .type = ARM_CP_NOP, .access = PL1_W }, 3668 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3669 .type = ARM_CP_NOP, .access = PL1_W }, 3670 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3671 .type = ARM_CP_NOP, .access = PL1_W }, 3672 /* MMU Domain access control / MPU write buffer control */ 3673 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3674 .access = PL1_RW, .resetvalue = 0, 3675 .writefn = dacr_write, .raw_writefn = raw_write, 3676 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3677 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3678 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3679 .type = ARM_CP_ALIAS, 3680 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3681 .access = PL1_RW, 3682 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3683 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3684 .type = ARM_CP_ALIAS, 3685 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3686 .access = PL1_RW, 3687 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3688 /* We rely on the access checks not allowing the guest to write to the 3689 * state field when SPSel indicates that it's being used as the stack 3690 * pointer. 3691 */ 3692 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3693 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3694 .access = PL1_RW, .accessfn = sp_el0_access, 3695 .type = ARM_CP_ALIAS, 3696 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3697 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3698 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3699 .access = PL2_RW, .type = ARM_CP_ALIAS, 3700 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3701 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3702 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3703 .type = ARM_CP_NO_RAW, 3704 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3705 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3706 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3707 .type = ARM_CP_ALIAS, 3708 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3709 .access = PL2_RW, .accessfn = fpexc32_access }, 3710 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3711 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3712 .access = PL2_RW, .resetvalue = 0, 3713 .writefn = dacr_write, .raw_writefn = raw_write, 3714 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3715 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3716 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3717 .access = PL2_RW, .resetvalue = 0, 3718 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3719 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3720 .type = ARM_CP_ALIAS, 3721 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3722 .access = PL2_RW, 3723 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3724 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3725 .type = ARM_CP_ALIAS, 3726 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3727 .access = PL2_RW, 3728 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3729 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3730 .type = ARM_CP_ALIAS, 3731 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3732 .access = PL2_RW, 3733 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3734 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3735 .type = ARM_CP_ALIAS, 3736 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3737 .access = PL2_RW, 3738 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3739 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3740 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3741 .resetvalue = 0, 3742 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3743 { .name = "SDCR", .type = ARM_CP_ALIAS, 3744 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3745 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3746 .writefn = sdcr_write, 3747 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3748 REGINFO_SENTINEL 3749 }; 3750 3751 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3752 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3753 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 3754 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3755 .access = PL2_RW, 3756 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3757 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 3758 .type = ARM_CP_NO_RAW, 3759 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3760 .access = PL2_RW, 3761 .type = ARM_CP_CONST, .resetvalue = 0 }, 3762 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 3763 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3764 .access = PL2_RW, 3765 .type = ARM_CP_CONST, .resetvalue = 0 }, 3766 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3767 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3768 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3769 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3770 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3771 .access = PL2_RW, .type = ARM_CP_CONST, 3772 .resetvalue = 0 }, 3773 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3774 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3775 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3776 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3777 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3778 .access = PL2_RW, .type = ARM_CP_CONST, 3779 .resetvalue = 0 }, 3780 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 3781 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3782 .access = PL2_RW, .type = ARM_CP_CONST, 3783 .resetvalue = 0 }, 3784 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3785 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3786 .access = PL2_RW, .type = ARM_CP_CONST, 3787 .resetvalue = 0 }, 3788 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3789 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3790 .access = PL2_RW, .type = ARM_CP_CONST, 3791 .resetvalue = 0 }, 3792 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3793 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3794 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3795 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3796 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3797 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3798 .type = ARM_CP_CONST, .resetvalue = 0 }, 3799 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3800 .cp = 15, .opc1 = 6, .crm = 2, 3801 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3802 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3803 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3804 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3805 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3806 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3807 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3808 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3809 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3810 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3811 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3812 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3813 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3814 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3815 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3816 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3817 .resetvalue = 0 }, 3818 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3819 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3820 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3821 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3822 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3823 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3824 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3825 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3826 .resetvalue = 0 }, 3827 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3828 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3829 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3830 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3831 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3832 .resetvalue = 0 }, 3833 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3834 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3835 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3836 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3837 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3838 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3839 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3840 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3841 .access = PL2_RW, .accessfn = access_tda, 3842 .type = ARM_CP_CONST, .resetvalue = 0 }, 3843 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3844 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3845 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3846 .type = ARM_CP_CONST, .resetvalue = 0 }, 3847 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3848 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3849 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3850 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 3851 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3852 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3853 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 3854 .type = ARM_CP_CONST, 3855 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 3856 .access = PL2_RW, .resetvalue = 0 }, 3857 REGINFO_SENTINEL 3858 }; 3859 3860 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 3861 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 3862 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 3863 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 3864 .access = PL2_RW, 3865 .type = ARM_CP_CONST, .resetvalue = 0 }, 3866 REGINFO_SENTINEL 3867 }; 3868 3869 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3870 { 3871 ARMCPU *cpu = arm_env_get_cpu(env); 3872 uint64_t valid_mask = HCR_MASK; 3873 3874 if (arm_feature(env, ARM_FEATURE_EL3)) { 3875 valid_mask &= ~HCR_HCD; 3876 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3877 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3878 * However, if we're using the SMC PSCI conduit then QEMU is 3879 * effectively acting like EL3 firmware and so the guest at 3880 * EL2 should retain the ability to prevent EL1 from being 3881 * able to make SMC calls into the ersatz firmware, so in 3882 * that case HCR.TSC should be read/write. 3883 */ 3884 valid_mask &= ~HCR_TSC; 3885 } 3886 3887 /* Clear RES0 bits. */ 3888 value &= valid_mask; 3889 3890 /* These bits change the MMU setup: 3891 * HCR_VM enables stage 2 translation 3892 * HCR_PTW forbids certain page-table setups 3893 * HCR_DC Disables stage1 and enables stage2 translation 3894 */ 3895 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3896 tlb_flush(CPU(cpu)); 3897 } 3898 env->cp15.hcr_el2 = value; 3899 } 3900 3901 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 3902 uint64_t value) 3903 { 3904 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 3905 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 3906 hcr_write(env, NULL, value); 3907 } 3908 3909 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 3910 uint64_t value) 3911 { 3912 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 3913 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 3914 hcr_write(env, NULL, value); 3915 } 3916 3917 static const ARMCPRegInfo el2_cp_reginfo[] = { 3918 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3919 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3920 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3921 .writefn = hcr_write }, 3922 { .name = "HCR", .state = ARM_CP_STATE_AA32, 3923 .type = ARM_CP_ALIAS, 3924 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3925 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3926 .writefn = hcr_writelow }, 3927 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3928 .type = ARM_CP_ALIAS, 3929 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3930 .access = PL2_RW, 3931 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3932 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 3933 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3934 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3935 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 3936 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3937 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3938 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 3939 .type = ARM_CP_ALIAS, 3940 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 3941 .access = PL2_RW, 3942 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 3943 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3944 .type = ARM_CP_ALIAS, 3945 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3946 .access = PL2_RW, 3947 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3948 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 3949 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3950 .access = PL2_RW, .writefn = vbar_write, 3951 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3952 .resetvalue = 0 }, 3953 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3954 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3955 .access = PL3_RW, .type = ARM_CP_ALIAS, 3956 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3957 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3958 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3959 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3960 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3961 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3962 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3963 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3964 .resetvalue = 0 }, 3965 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3966 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3967 .access = PL2_RW, .type = ARM_CP_ALIAS, 3968 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3969 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3970 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3971 .access = PL2_RW, .type = ARM_CP_CONST, 3972 .resetvalue = 0 }, 3973 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3974 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 3975 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3976 .access = PL2_RW, .type = ARM_CP_CONST, 3977 .resetvalue = 0 }, 3978 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3979 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3980 .access = PL2_RW, .type = ARM_CP_CONST, 3981 .resetvalue = 0 }, 3982 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3983 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3984 .access = PL2_RW, .type = ARM_CP_CONST, 3985 .resetvalue = 0 }, 3986 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3987 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3988 .access = PL2_RW, 3989 /* no .writefn needed as this can't cause an ASID change; 3990 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3991 */ 3992 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3993 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3994 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3995 .type = ARM_CP_ALIAS, 3996 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3997 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3998 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3999 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4000 .access = PL2_RW, 4001 /* no .writefn needed as this can't cause an ASID change; 4002 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4003 */ 4004 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4005 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4006 .cp = 15, .opc1 = 6, .crm = 2, 4007 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4008 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4009 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4010 .writefn = vttbr_write }, 4011 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4012 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4013 .access = PL2_RW, .writefn = vttbr_write, 4014 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4015 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4016 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4017 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4018 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4019 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4020 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4021 .access = PL2_RW, .resetvalue = 0, 4022 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4023 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4024 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4025 .access = PL2_RW, .resetvalue = 0, 4026 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4027 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4028 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4029 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4030 { .name = "TLBIALLNSNH", 4031 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4032 .type = ARM_CP_NO_RAW, .access = PL2_W, 4033 .writefn = tlbiall_nsnh_write }, 4034 { .name = "TLBIALLNSNHIS", 4035 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4036 .type = ARM_CP_NO_RAW, .access = PL2_W, 4037 .writefn = tlbiall_nsnh_is_write }, 4038 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4039 .type = ARM_CP_NO_RAW, .access = PL2_W, 4040 .writefn = tlbiall_hyp_write }, 4041 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4042 .type = ARM_CP_NO_RAW, .access = PL2_W, 4043 .writefn = tlbiall_hyp_is_write }, 4044 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4045 .type = ARM_CP_NO_RAW, .access = PL2_W, 4046 .writefn = tlbimva_hyp_write }, 4047 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4048 .type = ARM_CP_NO_RAW, .access = PL2_W, 4049 .writefn = tlbimva_hyp_is_write }, 4050 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4051 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4052 .type = ARM_CP_NO_RAW, .access = PL2_W, 4053 .writefn = tlbi_aa64_alle2_write }, 4054 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4055 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4056 .type = ARM_CP_NO_RAW, .access = PL2_W, 4057 .writefn = tlbi_aa64_vae2_write }, 4058 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4059 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4060 .access = PL2_W, .type = ARM_CP_NO_RAW, 4061 .writefn = tlbi_aa64_vae2_write }, 4062 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4063 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4064 .access = PL2_W, .type = ARM_CP_NO_RAW, 4065 .writefn = tlbi_aa64_alle2is_write }, 4066 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4067 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4068 .type = ARM_CP_NO_RAW, .access = PL2_W, 4069 .writefn = tlbi_aa64_vae2is_write }, 4070 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4071 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4072 .access = PL2_W, .type = ARM_CP_NO_RAW, 4073 .writefn = tlbi_aa64_vae2is_write }, 4074 #ifndef CONFIG_USER_ONLY 4075 /* Unlike the other EL2-related AT operations, these must 4076 * UNDEF from EL3 if EL2 is not implemented, which is why we 4077 * define them here rather than with the rest of the AT ops. 4078 */ 4079 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4080 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4081 .access = PL2_W, .accessfn = at_s1e2_access, 4082 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4083 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4084 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4085 .access = PL2_W, .accessfn = at_s1e2_access, 4086 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4087 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4088 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4089 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4090 * to behave as if SCR.NS was 1. 4091 */ 4092 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4093 .access = PL2_W, 4094 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4095 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4096 .access = PL2_W, 4097 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4098 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4099 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4100 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4101 * reset values as IMPDEF. We choose to reset to 3 to comply with 4102 * both ARMv7 and ARMv8. 4103 */ 4104 .access = PL2_RW, .resetvalue = 3, 4105 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4106 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4107 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4108 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4109 .writefn = gt_cntvoff_write, 4110 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4111 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4112 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4113 .writefn = gt_cntvoff_write, 4114 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4115 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4116 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4117 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4118 .type = ARM_CP_IO, .access = PL2_RW, 4119 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4120 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4121 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4122 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4123 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4124 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4125 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4126 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4127 .resetfn = gt_hyp_timer_reset, 4128 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4129 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4130 .type = ARM_CP_IO, 4131 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4132 .access = PL2_RW, 4133 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4134 .resetvalue = 0, 4135 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4136 #endif 4137 /* The only field of MDCR_EL2 that has a defined architectural reset value 4138 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4139 * don't impelment any PMU event counters, so using zero as a reset 4140 * value for MDCR_EL2 is okay 4141 */ 4142 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4143 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4144 .access = PL2_RW, .resetvalue = 0, 4145 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4146 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4147 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4148 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4149 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4150 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4151 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4152 .access = PL2_RW, 4153 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4154 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4155 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4156 .access = PL2_RW, 4157 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4158 REGINFO_SENTINEL 4159 }; 4160 4161 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 4162 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4163 .type = ARM_CP_ALIAS, 4164 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4165 .access = PL2_RW, 4166 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 4167 .writefn = hcr_writehigh }, 4168 REGINFO_SENTINEL 4169 }; 4170 4171 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4172 bool isread) 4173 { 4174 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4175 * At Secure EL1 it traps to EL3. 4176 */ 4177 if (arm_current_el(env) == 3) { 4178 return CP_ACCESS_OK; 4179 } 4180 if (arm_is_secure_below_el3(env)) { 4181 return CP_ACCESS_TRAP_EL3; 4182 } 4183 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4184 if (isread) { 4185 return CP_ACCESS_OK; 4186 } 4187 return CP_ACCESS_TRAP_UNCATEGORIZED; 4188 } 4189 4190 static const ARMCPRegInfo el3_cp_reginfo[] = { 4191 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4192 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4193 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4194 .resetvalue = 0, .writefn = scr_write }, 4195 { .name = "SCR", .type = ARM_CP_ALIAS, 4196 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4197 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4198 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4199 .writefn = scr_write }, 4200 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4201 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4202 .access = PL3_RW, .resetvalue = 0, 4203 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4204 { .name = "SDER", 4205 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4206 .access = PL3_RW, .resetvalue = 0, 4207 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4208 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4209 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4210 .writefn = vbar_write, .resetvalue = 0, 4211 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4212 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4213 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4214 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4215 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4216 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4217 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4218 .access = PL3_RW, 4219 /* no .writefn needed as this can't cause an ASID change; 4220 * we must provide a .raw_writefn and .resetfn because we handle 4221 * reset and migration for the AArch32 TTBCR(S), which might be 4222 * using mask and base_mask. 4223 */ 4224 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4225 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4226 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4227 .type = ARM_CP_ALIAS, 4228 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4229 .access = PL3_RW, 4230 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4231 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4232 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4233 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4234 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4235 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4236 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4237 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4238 .type = ARM_CP_ALIAS, 4239 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4240 .access = PL3_RW, 4241 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4242 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4243 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4244 .access = PL3_RW, .writefn = vbar_write, 4245 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4246 .resetvalue = 0 }, 4247 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4248 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4249 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4250 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4251 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4252 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4253 .access = PL3_RW, .resetvalue = 0, 4254 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4255 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4256 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4257 .access = PL3_RW, .type = ARM_CP_CONST, 4258 .resetvalue = 0 }, 4259 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4260 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4261 .access = PL3_RW, .type = ARM_CP_CONST, 4262 .resetvalue = 0 }, 4263 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4264 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4265 .access = PL3_RW, .type = ARM_CP_CONST, 4266 .resetvalue = 0 }, 4267 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4268 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4269 .access = PL3_W, .type = ARM_CP_NO_RAW, 4270 .writefn = tlbi_aa64_alle3is_write }, 4271 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4272 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4273 .access = PL3_W, .type = ARM_CP_NO_RAW, 4274 .writefn = tlbi_aa64_vae3is_write }, 4275 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4276 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4277 .access = PL3_W, .type = ARM_CP_NO_RAW, 4278 .writefn = tlbi_aa64_vae3is_write }, 4279 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4280 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4281 .access = PL3_W, .type = ARM_CP_NO_RAW, 4282 .writefn = tlbi_aa64_alle3_write }, 4283 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4284 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4285 .access = PL3_W, .type = ARM_CP_NO_RAW, 4286 .writefn = tlbi_aa64_vae3_write }, 4287 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4288 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4289 .access = PL3_W, .type = ARM_CP_NO_RAW, 4290 .writefn = tlbi_aa64_vae3_write }, 4291 REGINFO_SENTINEL 4292 }; 4293 4294 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4295 bool isread) 4296 { 4297 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4298 * but the AArch32 CTR has its own reginfo struct) 4299 */ 4300 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4301 return CP_ACCESS_TRAP; 4302 } 4303 return CP_ACCESS_OK; 4304 } 4305 4306 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4307 uint64_t value) 4308 { 4309 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4310 * read via a bit in OSLSR_EL1. 4311 */ 4312 int oslock; 4313 4314 if (ri->state == ARM_CP_STATE_AA32) { 4315 oslock = (value == 0xC5ACCE55); 4316 } else { 4317 oslock = value & 1; 4318 } 4319 4320 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4321 } 4322 4323 static const ARMCPRegInfo debug_cp_reginfo[] = { 4324 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4325 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4326 * unlike DBGDRAR it is never accessible from EL0. 4327 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4328 * accessor. 4329 */ 4330 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4331 .access = PL0_R, .accessfn = access_tdra, 4332 .type = ARM_CP_CONST, .resetvalue = 0 }, 4333 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4334 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4335 .access = PL1_R, .accessfn = access_tdra, 4336 .type = ARM_CP_CONST, .resetvalue = 0 }, 4337 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4338 .access = PL0_R, .accessfn = access_tdra, 4339 .type = ARM_CP_CONST, .resetvalue = 0 }, 4340 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4341 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4342 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4343 .access = PL1_RW, .accessfn = access_tda, 4344 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4345 .resetvalue = 0 }, 4346 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4347 * We don't implement the configurable EL0 access. 4348 */ 4349 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4350 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4351 .type = ARM_CP_ALIAS, 4352 .access = PL1_R, .accessfn = access_tda, 4353 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4354 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4355 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4356 .access = PL1_W, .type = ARM_CP_NO_RAW, 4357 .accessfn = access_tdosa, 4358 .writefn = oslar_write }, 4359 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4360 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4361 .access = PL1_R, .resetvalue = 10, 4362 .accessfn = access_tdosa, 4363 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4364 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4365 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4366 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4367 .access = PL1_RW, .accessfn = access_tdosa, 4368 .type = ARM_CP_NOP }, 4369 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4370 * implement vector catch debug events yet. 4371 */ 4372 { .name = "DBGVCR", 4373 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4374 .access = PL1_RW, .accessfn = access_tda, 4375 .type = ARM_CP_NOP }, 4376 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4377 * to save and restore a 32-bit guest's DBGVCR) 4378 */ 4379 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4380 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4381 .access = PL2_RW, .accessfn = access_tda, 4382 .type = ARM_CP_NOP }, 4383 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4384 * Channel but Linux may try to access this register. The 32-bit 4385 * alias is DBGDCCINT. 4386 */ 4387 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4388 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4389 .access = PL1_RW, .accessfn = access_tda, 4390 .type = ARM_CP_NOP }, 4391 REGINFO_SENTINEL 4392 }; 4393 4394 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4395 /* 64 bit access versions of the (dummy) debug registers */ 4396 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4397 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4398 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4399 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4400 REGINFO_SENTINEL 4401 }; 4402 4403 /* Return the exception level to which exceptions should be taken 4404 * via SVEAccessTrap. If an exception should be routed through 4405 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 4406 * take care of raising that exception. 4407 * C.f. the ARM pseudocode function CheckSVEEnabled. 4408 */ 4409 int sve_exception_el(CPUARMState *env, int el) 4410 { 4411 #ifndef CONFIG_USER_ONLY 4412 if (el <= 1) { 4413 bool disabled = false; 4414 4415 /* The CPACR.ZEN controls traps to EL1: 4416 * 0, 2 : trap EL0 and EL1 accesses 4417 * 1 : trap only EL0 accesses 4418 * 3 : trap no accesses 4419 */ 4420 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 4421 disabled = true; 4422 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 4423 disabled = el == 0; 4424 } 4425 if (disabled) { 4426 /* route_to_el2 */ 4427 return (arm_feature(env, ARM_FEATURE_EL2) 4428 && !arm_is_secure(env) 4429 && (env->cp15.hcr_el2 & HCR_TGE) ? 2 : 1); 4430 } 4431 4432 /* Check CPACR.FPEN. */ 4433 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 4434 disabled = true; 4435 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 4436 disabled = el == 0; 4437 } 4438 if (disabled) { 4439 return 0; 4440 } 4441 } 4442 4443 /* CPTR_EL2. Since TZ and TFP are positive, 4444 * they will be zero when EL2 is not present. 4445 */ 4446 if (el <= 2 && !arm_is_secure_below_el3(env)) { 4447 if (env->cp15.cptr_el[2] & CPTR_TZ) { 4448 return 2; 4449 } 4450 if (env->cp15.cptr_el[2] & CPTR_TFP) { 4451 return 0; 4452 } 4453 } 4454 4455 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 4456 if (arm_feature(env, ARM_FEATURE_EL3) 4457 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 4458 return 3; 4459 } 4460 #endif 4461 return 0; 4462 } 4463 4464 /* 4465 * Given that SVE is enabled, return the vector length for EL. 4466 */ 4467 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 4468 { 4469 ARMCPU *cpu = arm_env_get_cpu(env); 4470 uint32_t zcr_len = cpu->sve_max_vq - 1; 4471 4472 if (el <= 1) { 4473 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 4474 } 4475 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 4476 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 4477 } 4478 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 4479 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 4480 } 4481 return zcr_len; 4482 } 4483 4484 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4485 uint64_t value) 4486 { 4487 int cur_el = arm_current_el(env); 4488 int old_len = sve_zcr_len_for_el(env, cur_el); 4489 int new_len; 4490 4491 /* Bits other than [3:0] are RAZ/WI. */ 4492 raw_write(env, ri, value & 0xf); 4493 4494 /* 4495 * Because we arrived here, we know both FP and SVE are enabled; 4496 * otherwise we would have trapped access to the ZCR_ELn register. 4497 */ 4498 new_len = sve_zcr_len_for_el(env, cur_el); 4499 if (new_len < old_len) { 4500 aarch64_sve_narrow_vq(env, new_len + 1); 4501 } 4502 } 4503 4504 static const ARMCPRegInfo zcr_el1_reginfo = { 4505 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 4506 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 4507 .access = PL1_RW, .type = ARM_CP_SVE, 4508 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 4509 .writefn = zcr_write, .raw_writefn = raw_write 4510 }; 4511 4512 static const ARMCPRegInfo zcr_el2_reginfo = { 4513 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4514 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4515 .access = PL2_RW, .type = ARM_CP_SVE, 4516 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 4517 .writefn = zcr_write, .raw_writefn = raw_write 4518 }; 4519 4520 static const ARMCPRegInfo zcr_no_el2_reginfo = { 4521 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4522 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4523 .access = PL2_RW, .type = ARM_CP_SVE, 4524 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 4525 }; 4526 4527 static const ARMCPRegInfo zcr_el3_reginfo = { 4528 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 4529 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 4530 .access = PL3_RW, .type = ARM_CP_SVE, 4531 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 4532 .writefn = zcr_write, .raw_writefn = raw_write 4533 }; 4534 4535 void hw_watchpoint_update(ARMCPU *cpu, int n) 4536 { 4537 CPUARMState *env = &cpu->env; 4538 vaddr len = 0; 4539 vaddr wvr = env->cp15.dbgwvr[n]; 4540 uint64_t wcr = env->cp15.dbgwcr[n]; 4541 int mask; 4542 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4543 4544 if (env->cpu_watchpoint[n]) { 4545 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4546 env->cpu_watchpoint[n] = NULL; 4547 } 4548 4549 if (!extract64(wcr, 0, 1)) { 4550 /* E bit clear : watchpoint disabled */ 4551 return; 4552 } 4553 4554 switch (extract64(wcr, 3, 2)) { 4555 case 0: 4556 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4557 return; 4558 case 1: 4559 flags |= BP_MEM_READ; 4560 break; 4561 case 2: 4562 flags |= BP_MEM_WRITE; 4563 break; 4564 case 3: 4565 flags |= BP_MEM_ACCESS; 4566 break; 4567 } 4568 4569 /* Attempts to use both MASK and BAS fields simultaneously are 4570 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4571 * thus generating a watchpoint for every byte in the masked region. 4572 */ 4573 mask = extract64(wcr, 24, 4); 4574 if (mask == 1 || mask == 2) { 4575 /* Reserved values of MASK; we must act as if the mask value was 4576 * some non-reserved value, or as if the watchpoint were disabled. 4577 * We choose the latter. 4578 */ 4579 return; 4580 } else if (mask) { 4581 /* Watchpoint covers an aligned area up to 2GB in size */ 4582 len = 1ULL << mask; 4583 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4584 * whether the watchpoint fires when the unmasked bits match; we opt 4585 * to generate the exceptions. 4586 */ 4587 wvr &= ~(len - 1); 4588 } else { 4589 /* Watchpoint covers bytes defined by the byte address select bits */ 4590 int bas = extract64(wcr, 5, 8); 4591 int basstart; 4592 4593 if (bas == 0) { 4594 /* This must act as if the watchpoint is disabled */ 4595 return; 4596 } 4597 4598 if (extract64(wvr, 2, 1)) { 4599 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4600 * ignored, and BAS[3:0] define which bytes to watch. 4601 */ 4602 bas &= 0xf; 4603 } 4604 /* The BAS bits are supposed to be programmed to indicate a contiguous 4605 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4606 * we fire for each byte in the word/doubleword addressed by the WVR. 4607 * We choose to ignore any non-zero bits after the first range of 1s. 4608 */ 4609 basstart = ctz32(bas); 4610 len = cto32(bas >> basstart); 4611 wvr += basstart; 4612 } 4613 4614 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4615 &env->cpu_watchpoint[n]); 4616 } 4617 4618 void hw_watchpoint_update_all(ARMCPU *cpu) 4619 { 4620 int i; 4621 CPUARMState *env = &cpu->env; 4622 4623 /* Completely clear out existing QEMU watchpoints and our array, to 4624 * avoid possible stale entries following migration load. 4625 */ 4626 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4627 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4628 4629 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4630 hw_watchpoint_update(cpu, i); 4631 } 4632 } 4633 4634 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4635 uint64_t value) 4636 { 4637 ARMCPU *cpu = arm_env_get_cpu(env); 4638 int i = ri->crm; 4639 4640 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4641 * register reads and behaves as if values written are sign extended. 4642 * Bits [1:0] are RES0. 4643 */ 4644 value = sextract64(value, 0, 49) & ~3ULL; 4645 4646 raw_write(env, ri, value); 4647 hw_watchpoint_update(cpu, i); 4648 } 4649 4650 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4651 uint64_t value) 4652 { 4653 ARMCPU *cpu = arm_env_get_cpu(env); 4654 int i = ri->crm; 4655 4656 raw_write(env, ri, value); 4657 hw_watchpoint_update(cpu, i); 4658 } 4659 4660 void hw_breakpoint_update(ARMCPU *cpu, int n) 4661 { 4662 CPUARMState *env = &cpu->env; 4663 uint64_t bvr = env->cp15.dbgbvr[n]; 4664 uint64_t bcr = env->cp15.dbgbcr[n]; 4665 vaddr addr; 4666 int bt; 4667 int flags = BP_CPU; 4668 4669 if (env->cpu_breakpoint[n]) { 4670 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4671 env->cpu_breakpoint[n] = NULL; 4672 } 4673 4674 if (!extract64(bcr, 0, 1)) { 4675 /* E bit clear : watchpoint disabled */ 4676 return; 4677 } 4678 4679 bt = extract64(bcr, 20, 4); 4680 4681 switch (bt) { 4682 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4683 case 5: /* linked address mismatch (reserved if AArch64) */ 4684 qemu_log_mask(LOG_UNIMP, 4685 "arm: address mismatch breakpoint types not implemented\n"); 4686 return; 4687 case 0: /* unlinked address match */ 4688 case 1: /* linked address match */ 4689 { 4690 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4691 * we behave as if the register was sign extended. Bits [1:0] are 4692 * RES0. The BAS field is used to allow setting breakpoints on 16 4693 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4694 * a bp will fire if the addresses covered by the bp and the addresses 4695 * covered by the insn overlap but the insn doesn't start at the 4696 * start of the bp address range. We choose to require the insn and 4697 * the bp to have the same address. The constraints on writing to 4698 * BAS enforced in dbgbcr_write mean we have only four cases: 4699 * 0b0000 => no breakpoint 4700 * 0b0011 => breakpoint on addr 4701 * 0b1100 => breakpoint on addr + 2 4702 * 0b1111 => breakpoint on addr 4703 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4704 */ 4705 int bas = extract64(bcr, 5, 4); 4706 addr = sextract64(bvr, 0, 49) & ~3ULL; 4707 if (bas == 0) { 4708 return; 4709 } 4710 if (bas == 0xc) { 4711 addr += 2; 4712 } 4713 break; 4714 } 4715 case 2: /* unlinked context ID match */ 4716 case 8: /* unlinked VMID match (reserved if no EL2) */ 4717 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4718 qemu_log_mask(LOG_UNIMP, 4719 "arm: unlinked context breakpoint types not implemented\n"); 4720 return; 4721 case 9: /* linked VMID match (reserved if no EL2) */ 4722 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4723 case 3: /* linked context ID match */ 4724 default: 4725 /* We must generate no events for Linked context matches (unless 4726 * they are linked to by some other bp/wp, which is handled in 4727 * updates for the linking bp/wp). We choose to also generate no events 4728 * for reserved values. 4729 */ 4730 return; 4731 } 4732 4733 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4734 } 4735 4736 void hw_breakpoint_update_all(ARMCPU *cpu) 4737 { 4738 int i; 4739 CPUARMState *env = &cpu->env; 4740 4741 /* Completely clear out existing QEMU breakpoints and our array, to 4742 * avoid possible stale entries following migration load. 4743 */ 4744 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4745 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4746 4747 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4748 hw_breakpoint_update(cpu, i); 4749 } 4750 } 4751 4752 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4753 uint64_t value) 4754 { 4755 ARMCPU *cpu = arm_env_get_cpu(env); 4756 int i = ri->crm; 4757 4758 raw_write(env, ri, value); 4759 hw_breakpoint_update(cpu, i); 4760 } 4761 4762 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4763 uint64_t value) 4764 { 4765 ARMCPU *cpu = arm_env_get_cpu(env); 4766 int i = ri->crm; 4767 4768 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4769 * copy of BAS[0]. 4770 */ 4771 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4772 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4773 4774 raw_write(env, ri, value); 4775 hw_breakpoint_update(cpu, i); 4776 } 4777 4778 static void define_debug_regs(ARMCPU *cpu) 4779 { 4780 /* Define v7 and v8 architectural debug registers. 4781 * These are just dummy implementations for now. 4782 */ 4783 int i; 4784 int wrps, brps, ctx_cmps; 4785 ARMCPRegInfo dbgdidr = { 4786 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4787 .access = PL0_R, .accessfn = access_tda, 4788 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4789 }; 4790 4791 /* Note that all these register fields hold "number of Xs minus 1". */ 4792 brps = extract32(cpu->dbgdidr, 24, 4); 4793 wrps = extract32(cpu->dbgdidr, 28, 4); 4794 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4795 4796 assert(ctx_cmps <= brps); 4797 4798 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4799 * of the debug registers such as number of breakpoints; 4800 * check that if they both exist then they agree. 4801 */ 4802 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4803 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4804 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4805 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4806 } 4807 4808 define_one_arm_cp_reg(cpu, &dbgdidr); 4809 define_arm_cp_regs(cpu, debug_cp_reginfo); 4810 4811 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4812 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4813 } 4814 4815 for (i = 0; i < brps + 1; i++) { 4816 ARMCPRegInfo dbgregs[] = { 4817 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4818 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4819 .access = PL1_RW, .accessfn = access_tda, 4820 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4821 .writefn = dbgbvr_write, .raw_writefn = raw_write 4822 }, 4823 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4824 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4825 .access = PL1_RW, .accessfn = access_tda, 4826 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4827 .writefn = dbgbcr_write, .raw_writefn = raw_write 4828 }, 4829 REGINFO_SENTINEL 4830 }; 4831 define_arm_cp_regs(cpu, dbgregs); 4832 } 4833 4834 for (i = 0; i < wrps + 1; i++) { 4835 ARMCPRegInfo dbgregs[] = { 4836 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4837 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4838 .access = PL1_RW, .accessfn = access_tda, 4839 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4840 .writefn = dbgwvr_write, .raw_writefn = raw_write 4841 }, 4842 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4843 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4844 .access = PL1_RW, .accessfn = access_tda, 4845 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4846 .writefn = dbgwcr_write, .raw_writefn = raw_write 4847 }, 4848 REGINFO_SENTINEL 4849 }; 4850 define_arm_cp_regs(cpu, dbgregs); 4851 } 4852 } 4853 4854 /* We don't know until after realize whether there's a GICv3 4855 * attached, and that is what registers the gicv3 sysregs. 4856 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4857 * at runtime. 4858 */ 4859 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4860 { 4861 ARMCPU *cpu = arm_env_get_cpu(env); 4862 uint64_t pfr1 = cpu->id_pfr1; 4863 4864 if (env->gicv3state) { 4865 pfr1 |= 1 << 28; 4866 } 4867 return pfr1; 4868 } 4869 4870 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4871 { 4872 ARMCPU *cpu = arm_env_get_cpu(env); 4873 uint64_t pfr0 = cpu->id_aa64pfr0; 4874 4875 if (env->gicv3state) { 4876 pfr0 |= 1 << 24; 4877 } 4878 return pfr0; 4879 } 4880 4881 void register_cp_regs_for_features(ARMCPU *cpu) 4882 { 4883 /* Register all the coprocessor registers based on feature bits */ 4884 CPUARMState *env = &cpu->env; 4885 if (arm_feature(env, ARM_FEATURE_M)) { 4886 /* M profile has no coprocessor registers */ 4887 return; 4888 } 4889 4890 define_arm_cp_regs(cpu, cp_reginfo); 4891 if (!arm_feature(env, ARM_FEATURE_V8)) { 4892 /* Must go early as it is full of wildcards that may be 4893 * overridden by later definitions. 4894 */ 4895 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4896 } 4897 4898 if (arm_feature(env, ARM_FEATURE_V6)) { 4899 /* The ID registers all have impdef reset values */ 4900 ARMCPRegInfo v6_idregs[] = { 4901 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4903 .access = PL1_R, .type = ARM_CP_CONST, 4904 .resetvalue = cpu->id_pfr0 }, 4905 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 4906 * the value of the GIC field until after we define these regs. 4907 */ 4908 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4910 .access = PL1_R, .type = ARM_CP_NO_RAW, 4911 .readfn = id_pfr1_read, 4912 .writefn = arm_cp_write_ignore }, 4913 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4914 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4915 .access = PL1_R, .type = ARM_CP_CONST, 4916 .resetvalue = cpu->id_dfr0 }, 4917 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4918 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4919 .access = PL1_R, .type = ARM_CP_CONST, 4920 .resetvalue = cpu->id_afr0 }, 4921 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4923 .access = PL1_R, .type = ARM_CP_CONST, 4924 .resetvalue = cpu->id_mmfr0 }, 4925 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4927 .access = PL1_R, .type = ARM_CP_CONST, 4928 .resetvalue = cpu->id_mmfr1 }, 4929 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4930 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4931 .access = PL1_R, .type = ARM_CP_CONST, 4932 .resetvalue = cpu->id_mmfr2 }, 4933 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4935 .access = PL1_R, .type = ARM_CP_CONST, 4936 .resetvalue = cpu->id_mmfr3 }, 4937 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4938 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4939 .access = PL1_R, .type = ARM_CP_CONST, 4940 .resetvalue = cpu->id_isar0 }, 4941 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4943 .access = PL1_R, .type = ARM_CP_CONST, 4944 .resetvalue = cpu->id_isar1 }, 4945 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4947 .access = PL1_R, .type = ARM_CP_CONST, 4948 .resetvalue = cpu->id_isar2 }, 4949 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4951 .access = PL1_R, .type = ARM_CP_CONST, 4952 .resetvalue = cpu->id_isar3 }, 4953 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4955 .access = PL1_R, .type = ARM_CP_CONST, 4956 .resetvalue = cpu->id_isar4 }, 4957 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4959 .access = PL1_R, .type = ARM_CP_CONST, 4960 .resetvalue = cpu->id_isar5 }, 4961 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4963 .access = PL1_R, .type = ARM_CP_CONST, 4964 .resetvalue = cpu->id_mmfr4 }, 4965 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 4966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4967 .access = PL1_R, .type = ARM_CP_CONST, 4968 .resetvalue = cpu->id_isar6 }, 4969 REGINFO_SENTINEL 4970 }; 4971 define_arm_cp_regs(cpu, v6_idregs); 4972 define_arm_cp_regs(cpu, v6_cp_reginfo); 4973 } else { 4974 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4975 } 4976 if (arm_feature(env, ARM_FEATURE_V6K)) { 4977 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4978 } 4979 if (arm_feature(env, ARM_FEATURE_V7MP) && 4980 !arm_feature(env, ARM_FEATURE_PMSA)) { 4981 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4982 } 4983 if (arm_feature(env, ARM_FEATURE_V7)) { 4984 /* v7 performance monitor control register: same implementor 4985 * field as main ID register, and we implement only the cycle 4986 * count register. 4987 */ 4988 #ifndef CONFIG_USER_ONLY 4989 ARMCPRegInfo pmcr = { 4990 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4991 .access = PL0_RW, 4992 .type = ARM_CP_IO | ARM_CP_ALIAS, 4993 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4994 .accessfn = pmreg_access, .writefn = pmcr_write, 4995 .raw_writefn = raw_write, 4996 }; 4997 ARMCPRegInfo pmcr64 = { 4998 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4999 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 5000 .access = PL0_RW, .accessfn = pmreg_access, 5001 .type = ARM_CP_IO, 5002 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 5003 .resetvalue = cpu->midr & 0xff000000, 5004 .writefn = pmcr_write, .raw_writefn = raw_write, 5005 }; 5006 define_one_arm_cp_reg(cpu, &pmcr); 5007 define_one_arm_cp_reg(cpu, &pmcr64); 5008 #endif 5009 ARMCPRegInfo clidr = { 5010 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 5011 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 5012 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 5013 }; 5014 define_one_arm_cp_reg(cpu, &clidr); 5015 define_arm_cp_regs(cpu, v7_cp_reginfo); 5016 define_debug_regs(cpu); 5017 } else { 5018 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 5019 } 5020 if (arm_feature(env, ARM_FEATURE_V8)) { 5021 /* AArch64 ID registers, which all have impdef reset values. 5022 * Note that within the ID register ranges the unused slots 5023 * must all RAZ, not UNDEF; future architecture versions may 5024 * define new registers here. 5025 */ 5026 ARMCPRegInfo v8_idregs[] = { 5027 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 5028 * know the right value for the GIC field until after we 5029 * define these regs. 5030 */ 5031 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 5032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 5033 .access = PL1_R, .type = ARM_CP_NO_RAW, 5034 .readfn = id_aa64pfr0_read, 5035 .writefn = arm_cp_write_ignore }, 5036 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 5037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 5038 .access = PL1_R, .type = ARM_CP_CONST, 5039 .resetvalue = cpu->id_aa64pfr1}, 5040 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 5042 .access = PL1_R, .type = ARM_CP_CONST, 5043 .resetvalue = 0 }, 5044 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 5046 .access = PL1_R, .type = ARM_CP_CONST, 5047 .resetvalue = 0 }, 5048 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 5049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 5050 .access = PL1_R, .type = ARM_CP_CONST, 5051 /* At present, only SVEver == 0 is defined anyway. */ 5052 .resetvalue = 0 }, 5053 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 5055 .access = PL1_R, .type = ARM_CP_CONST, 5056 .resetvalue = 0 }, 5057 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 5059 .access = PL1_R, .type = ARM_CP_CONST, 5060 .resetvalue = 0 }, 5061 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 5063 .access = PL1_R, .type = ARM_CP_CONST, 5064 .resetvalue = 0 }, 5065 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 5066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 5067 .access = PL1_R, .type = ARM_CP_CONST, 5068 .resetvalue = cpu->id_aa64dfr0 }, 5069 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 5070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 5071 .access = PL1_R, .type = ARM_CP_CONST, 5072 .resetvalue = cpu->id_aa64dfr1 }, 5073 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 5075 .access = PL1_R, .type = ARM_CP_CONST, 5076 .resetvalue = 0 }, 5077 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 5079 .access = PL1_R, .type = ARM_CP_CONST, 5080 .resetvalue = 0 }, 5081 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 5082 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 5083 .access = PL1_R, .type = ARM_CP_CONST, 5084 .resetvalue = cpu->id_aa64afr0 }, 5085 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 5086 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 5087 .access = PL1_R, .type = ARM_CP_CONST, 5088 .resetvalue = cpu->id_aa64afr1 }, 5089 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 5091 .access = PL1_R, .type = ARM_CP_CONST, 5092 .resetvalue = 0 }, 5093 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 5095 .access = PL1_R, .type = ARM_CP_CONST, 5096 .resetvalue = 0 }, 5097 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 5098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 5099 .access = PL1_R, .type = ARM_CP_CONST, 5100 .resetvalue = cpu->id_aa64isar0 }, 5101 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 5102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 5103 .access = PL1_R, .type = ARM_CP_CONST, 5104 .resetvalue = cpu->id_aa64isar1 }, 5105 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5106 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 5107 .access = PL1_R, .type = ARM_CP_CONST, 5108 .resetvalue = 0 }, 5109 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 5111 .access = PL1_R, .type = ARM_CP_CONST, 5112 .resetvalue = 0 }, 5113 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5114 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 5115 .access = PL1_R, .type = ARM_CP_CONST, 5116 .resetvalue = 0 }, 5117 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5118 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 5119 .access = PL1_R, .type = ARM_CP_CONST, 5120 .resetvalue = 0 }, 5121 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5122 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 5123 .access = PL1_R, .type = ARM_CP_CONST, 5124 .resetvalue = 0 }, 5125 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 5127 .access = PL1_R, .type = ARM_CP_CONST, 5128 .resetvalue = 0 }, 5129 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 5130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5131 .access = PL1_R, .type = ARM_CP_CONST, 5132 .resetvalue = cpu->id_aa64mmfr0 }, 5133 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 5134 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 5135 .access = PL1_R, .type = ARM_CP_CONST, 5136 .resetvalue = cpu->id_aa64mmfr1 }, 5137 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 5139 .access = PL1_R, .type = ARM_CP_CONST, 5140 .resetvalue = 0 }, 5141 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 5143 .access = PL1_R, .type = ARM_CP_CONST, 5144 .resetvalue = 0 }, 5145 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 5147 .access = PL1_R, .type = ARM_CP_CONST, 5148 .resetvalue = 0 }, 5149 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 5151 .access = PL1_R, .type = ARM_CP_CONST, 5152 .resetvalue = 0 }, 5153 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5154 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 5155 .access = PL1_R, .type = ARM_CP_CONST, 5156 .resetvalue = 0 }, 5157 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5158 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 5159 .access = PL1_R, .type = ARM_CP_CONST, 5160 .resetvalue = 0 }, 5161 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 5162 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 5163 .access = PL1_R, .type = ARM_CP_CONST, 5164 .resetvalue = cpu->mvfr0 }, 5165 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 5166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 5167 .access = PL1_R, .type = ARM_CP_CONST, 5168 .resetvalue = cpu->mvfr1 }, 5169 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 5170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 5171 .access = PL1_R, .type = ARM_CP_CONST, 5172 .resetvalue = cpu->mvfr2 }, 5173 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5174 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 5175 .access = PL1_R, .type = ARM_CP_CONST, 5176 .resetvalue = 0 }, 5177 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 5179 .access = PL1_R, .type = ARM_CP_CONST, 5180 .resetvalue = 0 }, 5181 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5182 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 5183 .access = PL1_R, .type = ARM_CP_CONST, 5184 .resetvalue = 0 }, 5185 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5186 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 5187 .access = PL1_R, .type = ARM_CP_CONST, 5188 .resetvalue = 0 }, 5189 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 5191 .access = PL1_R, .type = ARM_CP_CONST, 5192 .resetvalue = 0 }, 5193 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 5194 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 5195 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5196 .resetvalue = cpu->pmceid0 }, 5197 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 5198 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 5199 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5200 .resetvalue = cpu->pmceid0 }, 5201 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 5202 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 5203 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5204 .resetvalue = cpu->pmceid1 }, 5205 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 5206 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 5207 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5208 .resetvalue = cpu->pmceid1 }, 5209 REGINFO_SENTINEL 5210 }; 5211 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 5212 if (!arm_feature(env, ARM_FEATURE_EL3) && 5213 !arm_feature(env, ARM_FEATURE_EL2)) { 5214 ARMCPRegInfo rvbar = { 5215 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 5216 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5217 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 5218 }; 5219 define_one_arm_cp_reg(cpu, &rvbar); 5220 } 5221 define_arm_cp_regs(cpu, v8_idregs); 5222 define_arm_cp_regs(cpu, v8_cp_reginfo); 5223 } 5224 if (arm_feature(env, ARM_FEATURE_EL2)) { 5225 uint64_t vmpidr_def = mpidr_read_val(env); 5226 ARMCPRegInfo vpidr_regs[] = { 5227 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 5228 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5229 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5230 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 5231 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 5232 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 5233 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5234 .access = PL2_RW, .resetvalue = cpu->midr, 5235 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5236 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 5237 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5238 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5239 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 5240 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 5241 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 5242 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5243 .access = PL2_RW, 5244 .resetvalue = vmpidr_def, 5245 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 5246 REGINFO_SENTINEL 5247 }; 5248 define_arm_cp_regs(cpu, vpidr_regs); 5249 define_arm_cp_regs(cpu, el2_cp_reginfo); 5250 if (arm_feature(env, ARM_FEATURE_V8)) { 5251 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 5252 } 5253 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 5254 if (!arm_feature(env, ARM_FEATURE_EL3)) { 5255 ARMCPRegInfo rvbar = { 5256 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 5257 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 5258 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 5259 }; 5260 define_one_arm_cp_reg(cpu, &rvbar); 5261 } 5262 } else { 5263 /* If EL2 is missing but higher ELs are enabled, we need to 5264 * register the no_el2 reginfos. 5265 */ 5266 if (arm_feature(env, ARM_FEATURE_EL3)) { 5267 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 5268 * of MIDR_EL1 and MPIDR_EL1. 5269 */ 5270 ARMCPRegInfo vpidr_regs[] = { 5271 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5272 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5273 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5274 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 5275 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5276 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5277 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5278 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5279 .type = ARM_CP_NO_RAW, 5280 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5281 REGINFO_SENTINEL 5282 }; 5283 define_arm_cp_regs(cpu, vpidr_regs); 5284 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5285 if (arm_feature(env, ARM_FEATURE_V8)) { 5286 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 5287 } 5288 } 5289 } 5290 if (arm_feature(env, ARM_FEATURE_EL3)) { 5291 define_arm_cp_regs(cpu, el3_cp_reginfo); 5292 ARMCPRegInfo el3_regs[] = { 5293 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5294 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5295 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5296 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5297 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5298 .access = PL3_RW, 5299 .raw_writefn = raw_write, .writefn = sctlr_write, 5300 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5301 .resetvalue = cpu->reset_sctlr }, 5302 REGINFO_SENTINEL 5303 }; 5304 5305 define_arm_cp_regs(cpu, el3_regs); 5306 } 5307 /* The behaviour of NSACR is sufficiently various that we don't 5308 * try to describe it in a single reginfo: 5309 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5310 * reads as constant 0xc00 from NS EL1 and NS EL2 5311 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5312 * if v7 without EL3, register doesn't exist 5313 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5314 */ 5315 if (arm_feature(env, ARM_FEATURE_EL3)) { 5316 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5317 ARMCPRegInfo nsacr = { 5318 .name = "NSACR", .type = ARM_CP_CONST, 5319 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5320 .access = PL1_RW, .accessfn = nsacr_access, 5321 .resetvalue = 0xc00 5322 }; 5323 define_one_arm_cp_reg(cpu, &nsacr); 5324 } else { 5325 ARMCPRegInfo nsacr = { 5326 .name = "NSACR", 5327 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5328 .access = PL3_RW | PL1_R, 5329 .resetvalue = 0, 5330 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5331 }; 5332 define_one_arm_cp_reg(cpu, &nsacr); 5333 } 5334 } else { 5335 if (arm_feature(env, ARM_FEATURE_V8)) { 5336 ARMCPRegInfo nsacr = { 5337 .name = "NSACR", .type = ARM_CP_CONST, 5338 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5339 .access = PL1_R, 5340 .resetvalue = 0xc00 5341 }; 5342 define_one_arm_cp_reg(cpu, &nsacr); 5343 } 5344 } 5345 5346 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5347 if (arm_feature(env, ARM_FEATURE_V6)) { 5348 /* PMSAv6 not implemented */ 5349 assert(arm_feature(env, ARM_FEATURE_V7)); 5350 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5351 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5352 } else { 5353 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5354 } 5355 } else { 5356 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5357 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5358 } 5359 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5360 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5361 } 5362 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5363 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5364 } 5365 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5366 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5367 } 5368 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5369 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5370 } 5371 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5372 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5373 } 5374 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5375 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5376 } 5377 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5378 define_arm_cp_regs(cpu, omap_cp_reginfo); 5379 } 5380 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5381 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5382 } 5383 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5384 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5385 } 5386 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5387 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5388 } 5389 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5390 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5391 } 5392 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5393 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5394 * be read-only (ie write causes UNDEF exception). 5395 */ 5396 { 5397 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5398 /* Pre-v8 MIDR space. 5399 * Note that the MIDR isn't a simple constant register because 5400 * of the TI925 behaviour where writes to another register can 5401 * cause the MIDR value to change. 5402 * 5403 * Unimplemented registers in the c15 0 0 0 space default to 5404 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5405 * and friends override accordingly. 5406 */ 5407 { .name = "MIDR", 5408 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5409 .access = PL1_R, .resetvalue = cpu->midr, 5410 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5411 .readfn = midr_read, 5412 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5413 .type = ARM_CP_OVERRIDE }, 5414 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5415 { .name = "DUMMY", 5416 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5417 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5418 { .name = "DUMMY", 5419 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5420 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5421 { .name = "DUMMY", 5422 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5423 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5424 { .name = "DUMMY", 5425 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5426 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5427 { .name = "DUMMY", 5428 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5429 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5430 REGINFO_SENTINEL 5431 }; 5432 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5433 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5434 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5435 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5436 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5437 .readfn = midr_read }, 5438 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5439 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5440 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5441 .access = PL1_R, .resetvalue = cpu->midr }, 5442 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5443 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5444 .access = PL1_R, .resetvalue = cpu->midr }, 5445 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5446 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5447 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5448 REGINFO_SENTINEL 5449 }; 5450 ARMCPRegInfo id_cp_reginfo[] = { 5451 /* These are common to v8 and pre-v8 */ 5452 { .name = "CTR", 5453 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5454 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5455 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5456 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5457 .access = PL0_R, .accessfn = ctr_el0_access, 5458 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5459 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5460 { .name = "TCMTR", 5461 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5462 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5463 REGINFO_SENTINEL 5464 }; 5465 /* TLBTR is specific to VMSA */ 5466 ARMCPRegInfo id_tlbtr_reginfo = { 5467 .name = "TLBTR", 5468 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5469 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5470 }; 5471 /* MPUIR is specific to PMSA V6+ */ 5472 ARMCPRegInfo id_mpuir_reginfo = { 5473 .name = "MPUIR", 5474 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5475 .access = PL1_R, .type = ARM_CP_CONST, 5476 .resetvalue = cpu->pmsav7_dregion << 8 5477 }; 5478 ARMCPRegInfo crn0_wi_reginfo = { 5479 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5480 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5481 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5482 }; 5483 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5484 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5485 ARMCPRegInfo *r; 5486 /* Register the blanket "writes ignored" value first to cover the 5487 * whole space. Then update the specific ID registers to allow write 5488 * access, so that they ignore writes rather than causing them to 5489 * UNDEF. 5490 */ 5491 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5492 for (r = id_pre_v8_midr_cp_reginfo; 5493 r->type != ARM_CP_SENTINEL; r++) { 5494 r->access = PL1_RW; 5495 } 5496 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5497 r->access = PL1_RW; 5498 } 5499 id_mpuir_reginfo.access = PL1_RW; 5500 id_tlbtr_reginfo.access = PL1_RW; 5501 } 5502 if (arm_feature(env, ARM_FEATURE_V8)) { 5503 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5504 } else { 5505 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5506 } 5507 define_arm_cp_regs(cpu, id_cp_reginfo); 5508 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5509 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5510 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5511 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5512 } 5513 } 5514 5515 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5516 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5517 } 5518 5519 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5520 ARMCPRegInfo auxcr_reginfo[] = { 5521 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5522 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5523 .access = PL1_RW, .type = ARM_CP_CONST, 5524 .resetvalue = cpu->reset_auxcr }, 5525 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5526 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5527 .access = PL2_RW, .type = ARM_CP_CONST, 5528 .resetvalue = 0 }, 5529 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5530 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5531 .access = PL3_RW, .type = ARM_CP_CONST, 5532 .resetvalue = 0 }, 5533 REGINFO_SENTINEL 5534 }; 5535 define_arm_cp_regs(cpu, auxcr_reginfo); 5536 if (arm_feature(env, ARM_FEATURE_V8)) { 5537 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 5538 ARMCPRegInfo hactlr2_reginfo = { 5539 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 5540 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 5541 .access = PL2_RW, .type = ARM_CP_CONST, 5542 .resetvalue = 0 5543 }; 5544 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 5545 } 5546 } 5547 5548 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5549 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5550 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5551 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5552 | extract64(cpu->reset_cbar, 32, 12); 5553 ARMCPRegInfo cbar_reginfo[] = { 5554 { .name = "CBAR", 5555 .type = ARM_CP_CONST, 5556 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5557 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5558 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5559 .type = ARM_CP_CONST, 5560 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5561 .access = PL1_R, .resetvalue = cbar32 }, 5562 REGINFO_SENTINEL 5563 }; 5564 /* We don't implement a r/w 64 bit CBAR currently */ 5565 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5566 define_arm_cp_regs(cpu, cbar_reginfo); 5567 } else { 5568 ARMCPRegInfo cbar = { 5569 .name = "CBAR", 5570 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5571 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5572 .fieldoffset = offsetof(CPUARMState, 5573 cp15.c15_config_base_address) 5574 }; 5575 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5576 cbar.access = PL1_R; 5577 cbar.fieldoffset = 0; 5578 cbar.type = ARM_CP_CONST; 5579 } 5580 define_one_arm_cp_reg(cpu, &cbar); 5581 } 5582 } 5583 5584 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5585 ARMCPRegInfo vbar_cp_reginfo[] = { 5586 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5587 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5588 .access = PL1_RW, .writefn = vbar_write, 5589 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5590 offsetof(CPUARMState, cp15.vbar_ns) }, 5591 .resetvalue = 0 }, 5592 REGINFO_SENTINEL 5593 }; 5594 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5595 } 5596 5597 /* Generic registers whose values depend on the implementation */ 5598 { 5599 ARMCPRegInfo sctlr = { 5600 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5601 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5602 .access = PL1_RW, 5603 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5604 offsetof(CPUARMState, cp15.sctlr_ns) }, 5605 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5606 .raw_writefn = raw_write, 5607 }; 5608 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5609 /* Normally we would always end the TB on an SCTLR write, but Linux 5610 * arch/arm/mach-pxa/sleep.S expects two instructions following 5611 * an MMU enable to execute from cache. Imitate this behaviour. 5612 */ 5613 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5614 } 5615 define_one_arm_cp_reg(cpu, &sctlr); 5616 } 5617 5618 if (arm_feature(env, ARM_FEATURE_SVE)) { 5619 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 5620 if (arm_feature(env, ARM_FEATURE_EL2)) { 5621 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 5622 } else { 5623 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 5624 } 5625 if (arm_feature(env, ARM_FEATURE_EL3)) { 5626 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 5627 } 5628 } 5629 } 5630 5631 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5632 { 5633 CPUState *cs = CPU(cpu); 5634 CPUARMState *env = &cpu->env; 5635 5636 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5637 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5638 aarch64_fpu_gdb_set_reg, 5639 34, "aarch64-fpu.xml", 0); 5640 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5641 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5642 51, "arm-neon.xml", 0); 5643 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5644 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5645 35, "arm-vfp3.xml", 0); 5646 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5647 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5648 19, "arm-vfp.xml", 0); 5649 } 5650 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 5651 arm_gen_dynamic_xml(cs), 5652 "system-registers.xml", 0); 5653 } 5654 5655 /* Sort alphabetically by type name, except for "any". */ 5656 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5657 { 5658 ObjectClass *class_a = (ObjectClass *)a; 5659 ObjectClass *class_b = (ObjectClass *)b; 5660 const char *name_a, *name_b; 5661 5662 name_a = object_class_get_name(class_a); 5663 name_b = object_class_get_name(class_b); 5664 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5665 return 1; 5666 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5667 return -1; 5668 } else { 5669 return strcmp(name_a, name_b); 5670 } 5671 } 5672 5673 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5674 { 5675 ObjectClass *oc = data; 5676 CPUListState *s = user_data; 5677 const char *typename; 5678 char *name; 5679 5680 typename = object_class_get_name(oc); 5681 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5682 (*s->cpu_fprintf)(s->file, " %s\n", 5683 name); 5684 g_free(name); 5685 } 5686 5687 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5688 { 5689 CPUListState s = { 5690 .file = f, 5691 .cpu_fprintf = cpu_fprintf, 5692 }; 5693 GSList *list; 5694 5695 list = object_class_get_list(TYPE_ARM_CPU, false); 5696 list = g_slist_sort(list, arm_cpu_list_compare); 5697 (*cpu_fprintf)(f, "Available CPUs:\n"); 5698 g_slist_foreach(list, arm_cpu_list_entry, &s); 5699 g_slist_free(list); 5700 } 5701 5702 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5703 { 5704 ObjectClass *oc = data; 5705 CpuDefinitionInfoList **cpu_list = user_data; 5706 CpuDefinitionInfoList *entry; 5707 CpuDefinitionInfo *info; 5708 const char *typename; 5709 5710 typename = object_class_get_name(oc); 5711 info = g_malloc0(sizeof(*info)); 5712 info->name = g_strndup(typename, 5713 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5714 info->q_typename = g_strdup(typename); 5715 5716 entry = g_malloc0(sizeof(*entry)); 5717 entry->value = info; 5718 entry->next = *cpu_list; 5719 *cpu_list = entry; 5720 } 5721 5722 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5723 { 5724 CpuDefinitionInfoList *cpu_list = NULL; 5725 GSList *list; 5726 5727 list = object_class_get_list(TYPE_ARM_CPU, false); 5728 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5729 g_slist_free(list); 5730 5731 return cpu_list; 5732 } 5733 5734 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5735 void *opaque, int state, int secstate, 5736 int crm, int opc1, int opc2, 5737 const char *name) 5738 { 5739 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5740 * add a single reginfo struct to the hash table. 5741 */ 5742 uint32_t *key = g_new(uint32_t, 1); 5743 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5744 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5745 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5746 5747 r2->name = g_strdup(name); 5748 /* Reset the secure state to the specific incoming state. This is 5749 * necessary as the register may have been defined with both states. 5750 */ 5751 r2->secure = secstate; 5752 5753 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5754 /* Register is banked (using both entries in array). 5755 * Overwriting fieldoffset as the array is only used to define 5756 * banked registers but later only fieldoffset is used. 5757 */ 5758 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5759 } 5760 5761 if (state == ARM_CP_STATE_AA32) { 5762 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5763 /* If the register is banked then we don't need to migrate or 5764 * reset the 32-bit instance in certain cases: 5765 * 5766 * 1) If the register has both 32-bit and 64-bit instances then we 5767 * can count on the 64-bit instance taking care of the 5768 * non-secure bank. 5769 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5770 * taking care of the secure bank. This requires that separate 5771 * 32 and 64-bit definitions are provided. 5772 */ 5773 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5774 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5775 r2->type |= ARM_CP_ALIAS; 5776 } 5777 } else if ((secstate != r->secure) && !ns) { 5778 /* The register is not banked so we only want to allow migration of 5779 * the non-secure instance. 5780 */ 5781 r2->type |= ARM_CP_ALIAS; 5782 } 5783 5784 if (r->state == ARM_CP_STATE_BOTH) { 5785 /* We assume it is a cp15 register if the .cp field is left unset. 5786 */ 5787 if (r2->cp == 0) { 5788 r2->cp = 15; 5789 } 5790 5791 #ifdef HOST_WORDS_BIGENDIAN 5792 if (r2->fieldoffset) { 5793 r2->fieldoffset += sizeof(uint32_t); 5794 } 5795 #endif 5796 } 5797 } 5798 if (state == ARM_CP_STATE_AA64) { 5799 /* To allow abbreviation of ARMCPRegInfo 5800 * definitions, we treat cp == 0 as equivalent to 5801 * the value for "standard guest-visible sysreg". 5802 * STATE_BOTH definitions are also always "standard 5803 * sysreg" in their AArch64 view (the .cp value may 5804 * be non-zero for the benefit of the AArch32 view). 5805 */ 5806 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5807 r2->cp = CP_REG_ARM64_SYSREG_CP; 5808 } 5809 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5810 r2->opc0, opc1, opc2); 5811 } else { 5812 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5813 } 5814 if (opaque) { 5815 r2->opaque = opaque; 5816 } 5817 /* reginfo passed to helpers is correct for the actual access, 5818 * and is never ARM_CP_STATE_BOTH: 5819 */ 5820 r2->state = state; 5821 /* Make sure reginfo passed to helpers for wildcarded regs 5822 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5823 */ 5824 r2->crm = crm; 5825 r2->opc1 = opc1; 5826 r2->opc2 = opc2; 5827 /* By convention, for wildcarded registers only the first 5828 * entry is used for migration; the others are marked as 5829 * ALIAS so we don't try to transfer the register 5830 * multiple times. Special registers (ie NOP/WFI) are 5831 * never migratable and not even raw-accessible. 5832 */ 5833 if ((r->type & ARM_CP_SPECIAL)) { 5834 r2->type |= ARM_CP_NO_RAW; 5835 } 5836 if (((r->crm == CP_ANY) && crm != 0) || 5837 ((r->opc1 == CP_ANY) && opc1 != 0) || 5838 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5839 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 5840 } 5841 5842 /* Check that raw accesses are either forbidden or handled. Note that 5843 * we can't assert this earlier because the setup of fieldoffset for 5844 * banked registers has to be done first. 5845 */ 5846 if (!(r2->type & ARM_CP_NO_RAW)) { 5847 assert(!raw_accessors_invalid(r2)); 5848 } 5849 5850 /* Overriding of an existing definition must be explicitly 5851 * requested. 5852 */ 5853 if (!(r->type & ARM_CP_OVERRIDE)) { 5854 ARMCPRegInfo *oldreg; 5855 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5856 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5857 fprintf(stderr, "Register redefined: cp=%d %d bit " 5858 "crn=%d crm=%d opc1=%d opc2=%d, " 5859 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5860 r2->crn, r2->crm, r2->opc1, r2->opc2, 5861 oldreg->name, r2->name); 5862 g_assert_not_reached(); 5863 } 5864 } 5865 g_hash_table_insert(cpu->cp_regs, key, r2); 5866 } 5867 5868 5869 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5870 const ARMCPRegInfo *r, void *opaque) 5871 { 5872 /* Define implementations of coprocessor registers. 5873 * We store these in a hashtable because typically 5874 * there are less than 150 registers in a space which 5875 * is 16*16*16*8*8 = 262144 in size. 5876 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5877 * If a register is defined twice then the second definition is 5878 * used, so this can be used to define some generic registers and 5879 * then override them with implementation specific variations. 5880 * At least one of the original and the second definition should 5881 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5882 * against accidental use. 5883 * 5884 * The state field defines whether the register is to be 5885 * visible in the AArch32 or AArch64 execution state. If the 5886 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5887 * reginfo structure for the AArch32 view, which sees the lower 5888 * 32 bits of the 64 bit register. 5889 * 5890 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5891 * be wildcarded. AArch64 registers are always considered to be 64 5892 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5893 * the register, if any. 5894 */ 5895 int crm, opc1, opc2, state; 5896 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5897 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5898 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5899 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5900 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5901 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5902 /* 64 bit registers have only CRm and Opc1 fields */ 5903 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5904 /* op0 only exists in the AArch64 encodings */ 5905 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5906 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5907 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5908 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5909 * encodes a minimum access level for the register. We roll this 5910 * runtime check into our general permission check code, so check 5911 * here that the reginfo's specified permissions are strict enough 5912 * to encompass the generic architectural permission check. 5913 */ 5914 if (r->state != ARM_CP_STATE_AA32) { 5915 int mask = 0; 5916 switch (r->opc1) { 5917 case 0: case 1: case 2: 5918 /* min_EL EL1 */ 5919 mask = PL1_RW; 5920 break; 5921 case 3: 5922 /* min_EL EL0 */ 5923 mask = PL0_RW; 5924 break; 5925 case 4: 5926 /* min_EL EL2 */ 5927 mask = PL2_RW; 5928 break; 5929 case 5: 5930 /* unallocated encoding, so not possible */ 5931 assert(false); 5932 break; 5933 case 6: 5934 /* min_EL EL3 */ 5935 mask = PL3_RW; 5936 break; 5937 case 7: 5938 /* min_EL EL1, secure mode only (we don't check the latter) */ 5939 mask = PL1_RW; 5940 break; 5941 default: 5942 /* broken reginfo with out-of-range opc1 */ 5943 assert(false); 5944 break; 5945 } 5946 /* assert our permissions are not too lax (stricter is fine) */ 5947 assert((r->access & ~mask) == 0); 5948 } 5949 5950 /* Check that the register definition has enough info to handle 5951 * reads and writes if they are permitted. 5952 */ 5953 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5954 if (r->access & PL3_R) { 5955 assert((r->fieldoffset || 5956 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5957 r->readfn); 5958 } 5959 if (r->access & PL3_W) { 5960 assert((r->fieldoffset || 5961 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5962 r->writefn); 5963 } 5964 } 5965 /* Bad type field probably means missing sentinel at end of reg list */ 5966 assert(cptype_valid(r->type)); 5967 for (crm = crmmin; crm <= crmmax; crm++) { 5968 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5969 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5970 for (state = ARM_CP_STATE_AA32; 5971 state <= ARM_CP_STATE_AA64; state++) { 5972 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5973 continue; 5974 } 5975 if (state == ARM_CP_STATE_AA32) { 5976 /* Under AArch32 CP registers can be common 5977 * (same for secure and non-secure world) or banked. 5978 */ 5979 char *name; 5980 5981 switch (r->secure) { 5982 case ARM_CP_SECSTATE_S: 5983 case ARM_CP_SECSTATE_NS: 5984 add_cpreg_to_hashtable(cpu, r, opaque, state, 5985 r->secure, crm, opc1, opc2, 5986 r->name); 5987 break; 5988 default: 5989 name = g_strdup_printf("%s_S", r->name); 5990 add_cpreg_to_hashtable(cpu, r, opaque, state, 5991 ARM_CP_SECSTATE_S, 5992 crm, opc1, opc2, name); 5993 g_free(name); 5994 add_cpreg_to_hashtable(cpu, r, opaque, state, 5995 ARM_CP_SECSTATE_NS, 5996 crm, opc1, opc2, r->name); 5997 break; 5998 } 5999 } else { 6000 /* AArch64 registers get mapped to non-secure instance 6001 * of AArch32 */ 6002 add_cpreg_to_hashtable(cpu, r, opaque, state, 6003 ARM_CP_SECSTATE_NS, 6004 crm, opc1, opc2, r->name); 6005 } 6006 } 6007 } 6008 } 6009 } 6010 } 6011 6012 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 6013 const ARMCPRegInfo *regs, void *opaque) 6014 { 6015 /* Define a whole list of registers */ 6016 const ARMCPRegInfo *r; 6017 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 6018 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 6019 } 6020 } 6021 6022 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 6023 { 6024 return g_hash_table_lookup(cpregs, &encoded_cp); 6025 } 6026 6027 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 6028 uint64_t value) 6029 { 6030 /* Helper coprocessor write function for write-ignore registers */ 6031 } 6032 6033 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 6034 { 6035 /* Helper coprocessor write function for read-as-zero registers */ 6036 return 0; 6037 } 6038 6039 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 6040 { 6041 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 6042 } 6043 6044 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 6045 { 6046 /* Return true if it is not valid for us to switch to 6047 * this CPU mode (ie all the UNPREDICTABLE cases in 6048 * the ARM ARM CPSRWriteByInstr pseudocode). 6049 */ 6050 6051 /* Changes to or from Hyp via MSR and CPS are illegal. */ 6052 if (write_type == CPSRWriteByInstr && 6053 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 6054 mode == ARM_CPU_MODE_HYP)) { 6055 return 1; 6056 } 6057 6058 switch (mode) { 6059 case ARM_CPU_MODE_USR: 6060 return 0; 6061 case ARM_CPU_MODE_SYS: 6062 case ARM_CPU_MODE_SVC: 6063 case ARM_CPU_MODE_ABT: 6064 case ARM_CPU_MODE_UND: 6065 case ARM_CPU_MODE_IRQ: 6066 case ARM_CPU_MODE_FIQ: 6067 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 6068 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 6069 */ 6070 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 6071 * and CPS are treated as illegal mode changes. 6072 */ 6073 if (write_type == CPSRWriteByInstr && 6074 (env->cp15.hcr_el2 & HCR_TGE) && 6075 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 6076 !arm_is_secure_below_el3(env)) { 6077 return 1; 6078 } 6079 return 0; 6080 case ARM_CPU_MODE_HYP: 6081 return !arm_feature(env, ARM_FEATURE_EL2) 6082 || arm_current_el(env) < 2 || arm_is_secure(env); 6083 case ARM_CPU_MODE_MON: 6084 return arm_current_el(env) < 3; 6085 default: 6086 return 1; 6087 } 6088 } 6089 6090 uint32_t cpsr_read(CPUARMState *env) 6091 { 6092 int ZF; 6093 ZF = (env->ZF == 0); 6094 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 6095 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 6096 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 6097 | ((env->condexec_bits & 0xfc) << 8) 6098 | (env->GE << 16) | (env->daif & CPSR_AIF); 6099 } 6100 6101 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 6102 CPSRWriteType write_type) 6103 { 6104 uint32_t changed_daif; 6105 6106 if (mask & CPSR_NZCV) { 6107 env->ZF = (~val) & CPSR_Z; 6108 env->NF = val; 6109 env->CF = (val >> 29) & 1; 6110 env->VF = (val << 3) & 0x80000000; 6111 } 6112 if (mask & CPSR_Q) 6113 env->QF = ((val & CPSR_Q) != 0); 6114 if (mask & CPSR_T) 6115 env->thumb = ((val & CPSR_T) != 0); 6116 if (mask & CPSR_IT_0_1) { 6117 env->condexec_bits &= ~3; 6118 env->condexec_bits |= (val >> 25) & 3; 6119 } 6120 if (mask & CPSR_IT_2_7) { 6121 env->condexec_bits &= 3; 6122 env->condexec_bits |= (val >> 8) & 0xfc; 6123 } 6124 if (mask & CPSR_GE) { 6125 env->GE = (val >> 16) & 0xf; 6126 } 6127 6128 /* In a V7 implementation that includes the security extensions but does 6129 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 6130 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 6131 * bits respectively. 6132 * 6133 * In a V8 implementation, it is permitted for privileged software to 6134 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 6135 */ 6136 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 6137 arm_feature(env, ARM_FEATURE_EL3) && 6138 !arm_feature(env, ARM_FEATURE_EL2) && 6139 !arm_is_secure(env)) { 6140 6141 changed_daif = (env->daif ^ val) & mask; 6142 6143 if (changed_daif & CPSR_A) { 6144 /* Check to see if we are allowed to change the masking of async 6145 * abort exceptions from a non-secure state. 6146 */ 6147 if (!(env->cp15.scr_el3 & SCR_AW)) { 6148 qemu_log_mask(LOG_GUEST_ERROR, 6149 "Ignoring attempt to switch CPSR_A flag from " 6150 "non-secure world with SCR.AW bit clear\n"); 6151 mask &= ~CPSR_A; 6152 } 6153 } 6154 6155 if (changed_daif & CPSR_F) { 6156 /* Check to see if we are allowed to change the masking of FIQ 6157 * exceptions from a non-secure state. 6158 */ 6159 if (!(env->cp15.scr_el3 & SCR_FW)) { 6160 qemu_log_mask(LOG_GUEST_ERROR, 6161 "Ignoring attempt to switch CPSR_F flag from " 6162 "non-secure world with SCR.FW bit clear\n"); 6163 mask &= ~CPSR_F; 6164 } 6165 6166 /* Check whether non-maskable FIQ (NMFI) support is enabled. 6167 * If this bit is set software is not allowed to mask 6168 * FIQs, but is allowed to set CPSR_F to 0. 6169 */ 6170 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 6171 (val & CPSR_F)) { 6172 qemu_log_mask(LOG_GUEST_ERROR, 6173 "Ignoring attempt to enable CPSR_F flag " 6174 "(non-maskable FIQ [NMFI] support enabled)\n"); 6175 mask &= ~CPSR_F; 6176 } 6177 } 6178 } 6179 6180 env->daif &= ~(CPSR_AIF & mask); 6181 env->daif |= val & CPSR_AIF & mask; 6182 6183 if (write_type != CPSRWriteRaw && 6184 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 6185 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 6186 /* Note that we can only get here in USR mode if this is a 6187 * gdb stub write; for this case we follow the architectural 6188 * behaviour for guest writes in USR mode of ignoring an attempt 6189 * to switch mode. (Those are caught by translate.c for writes 6190 * triggered by guest instructions.) 6191 */ 6192 mask &= ~CPSR_M; 6193 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 6194 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 6195 * v7, and has defined behaviour in v8: 6196 * + leave CPSR.M untouched 6197 * + allow changes to the other CPSR fields 6198 * + set PSTATE.IL 6199 * For user changes via the GDB stub, we don't set PSTATE.IL, 6200 * as this would be unnecessarily harsh for a user error. 6201 */ 6202 mask &= ~CPSR_M; 6203 if (write_type != CPSRWriteByGDBStub && 6204 arm_feature(env, ARM_FEATURE_V8)) { 6205 mask |= CPSR_IL; 6206 val |= CPSR_IL; 6207 } 6208 } else { 6209 switch_mode(env, val & CPSR_M); 6210 } 6211 } 6212 mask &= ~CACHED_CPSR_BITS; 6213 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 6214 } 6215 6216 /* Sign/zero extend */ 6217 uint32_t HELPER(sxtb16)(uint32_t x) 6218 { 6219 uint32_t res; 6220 res = (uint16_t)(int8_t)x; 6221 res |= (uint32_t)(int8_t)(x >> 16) << 16; 6222 return res; 6223 } 6224 6225 uint32_t HELPER(uxtb16)(uint32_t x) 6226 { 6227 uint32_t res; 6228 res = (uint16_t)(uint8_t)x; 6229 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 6230 return res; 6231 } 6232 6233 int32_t HELPER(sdiv)(int32_t num, int32_t den) 6234 { 6235 if (den == 0) 6236 return 0; 6237 if (num == INT_MIN && den == -1) 6238 return INT_MIN; 6239 return num / den; 6240 } 6241 6242 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 6243 { 6244 if (den == 0) 6245 return 0; 6246 return num / den; 6247 } 6248 6249 uint32_t HELPER(rbit)(uint32_t x) 6250 { 6251 return revbit32(x); 6252 } 6253 6254 #if defined(CONFIG_USER_ONLY) 6255 6256 /* These should probably raise undefined insn exceptions. */ 6257 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 6258 { 6259 ARMCPU *cpu = arm_env_get_cpu(env); 6260 6261 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 6262 } 6263 6264 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 6265 { 6266 ARMCPU *cpu = arm_env_get_cpu(env); 6267 6268 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 6269 return 0; 6270 } 6271 6272 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6273 { 6274 /* translate.c should never generate calls here in user-only mode */ 6275 g_assert_not_reached(); 6276 } 6277 6278 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6279 { 6280 /* translate.c should never generate calls here in user-only mode */ 6281 g_assert_not_reached(); 6282 } 6283 6284 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 6285 { 6286 /* The TT instructions can be used by unprivileged code, but in 6287 * user-only emulation we don't have the MPU. 6288 * Luckily since we know we are NonSecure unprivileged (and that in 6289 * turn means that the A flag wasn't specified), all the bits in the 6290 * register must be zero: 6291 * IREGION: 0 because IRVALID is 0 6292 * IRVALID: 0 because NS 6293 * S: 0 because NS 6294 * NSRW: 0 because NS 6295 * NSR: 0 because NS 6296 * RW: 0 because unpriv and A flag not set 6297 * R: 0 because unpriv and A flag not set 6298 * SRVALID: 0 because NS 6299 * MRVALID: 0 because unpriv and A flag not set 6300 * SREGION: 0 becaus SRVALID is 0 6301 * MREGION: 0 because MRVALID is 0 6302 */ 6303 return 0; 6304 } 6305 6306 void switch_mode(CPUARMState *env, int mode) 6307 { 6308 ARMCPU *cpu = arm_env_get_cpu(env); 6309 6310 if (mode != ARM_CPU_MODE_USR) { 6311 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6312 } 6313 } 6314 6315 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6316 uint32_t cur_el, bool secure) 6317 { 6318 return 1; 6319 } 6320 6321 void aarch64_sync_64_to_32(CPUARMState *env) 6322 { 6323 g_assert_not_reached(); 6324 } 6325 6326 #else 6327 6328 void switch_mode(CPUARMState *env, int mode) 6329 { 6330 int old_mode; 6331 int i; 6332 6333 old_mode = env->uncached_cpsr & CPSR_M; 6334 if (mode == old_mode) 6335 return; 6336 6337 if (old_mode == ARM_CPU_MODE_FIQ) { 6338 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6339 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6340 } else if (mode == ARM_CPU_MODE_FIQ) { 6341 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6342 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6343 } 6344 6345 i = bank_number(old_mode); 6346 env->banked_r13[i] = env->regs[13]; 6347 env->banked_r14[i] = env->regs[14]; 6348 env->banked_spsr[i] = env->spsr; 6349 6350 i = bank_number(mode); 6351 env->regs[13] = env->banked_r13[i]; 6352 env->regs[14] = env->banked_r14[i]; 6353 env->spsr = env->banked_spsr[i]; 6354 } 6355 6356 /* Physical Interrupt Target EL Lookup Table 6357 * 6358 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6359 * 6360 * The below multi-dimensional table is used for looking up the target 6361 * exception level given numerous condition criteria. Specifically, the 6362 * target EL is based on SCR and HCR routing controls as well as the 6363 * currently executing EL and secure state. 6364 * 6365 * Dimensions: 6366 * target_el_table[2][2][2][2][2][4] 6367 * | | | | | +--- Current EL 6368 * | | | | +------ Non-secure(0)/Secure(1) 6369 * | | | +--------- HCR mask override 6370 * | | +------------ SCR exec state control 6371 * | +--------------- SCR mask override 6372 * +------------------ 32-bit(0)/64-bit(1) EL3 6373 * 6374 * The table values are as such: 6375 * 0-3 = EL0-EL3 6376 * -1 = Cannot occur 6377 * 6378 * The ARM ARM target EL table includes entries indicating that an "exception 6379 * is not taken". The two cases where this is applicable are: 6380 * 1) An exception is taken from EL3 but the SCR does not have the exception 6381 * routed to EL3. 6382 * 2) An exception is taken from EL2 but the HCR does not have the exception 6383 * routed to EL2. 6384 * In these two cases, the below table contain a target of EL1. This value is 6385 * returned as it is expected that the consumer of the table data will check 6386 * for "target EL >= current EL" to ensure the exception is not taken. 6387 * 6388 * SCR HCR 6389 * 64 EA AMO From 6390 * BIT IRQ IMO Non-secure Secure 6391 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6392 */ 6393 static const int8_t target_el_table[2][2][2][2][2][4] = { 6394 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6395 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6396 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6397 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6398 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6399 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6400 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6401 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6402 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6403 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6404 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6405 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6406 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6407 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6408 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6409 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6410 }; 6411 6412 /* 6413 * Determine the target EL for physical exceptions 6414 */ 6415 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6416 uint32_t cur_el, bool secure) 6417 { 6418 CPUARMState *env = cs->env_ptr; 6419 int rw; 6420 int scr; 6421 int hcr; 6422 int target_el; 6423 /* Is the highest EL AArch64? */ 6424 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6425 6426 if (arm_feature(env, ARM_FEATURE_EL3)) { 6427 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6428 } else { 6429 /* Either EL2 is the highest EL (and so the EL2 register width 6430 * is given by is64); or there is no EL2 or EL3, in which case 6431 * the value of 'rw' does not affect the table lookup anyway. 6432 */ 6433 rw = is64; 6434 } 6435 6436 switch (excp_idx) { 6437 case EXCP_IRQ: 6438 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6439 hcr = arm_hcr_el2_imo(env); 6440 break; 6441 case EXCP_FIQ: 6442 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6443 hcr = arm_hcr_el2_fmo(env); 6444 break; 6445 default: 6446 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6447 hcr = arm_hcr_el2_amo(env); 6448 break; 6449 }; 6450 6451 /* If HCR.TGE is set then HCR is treated as being 1 */ 6452 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6453 6454 /* Perform a table-lookup for the target EL given the current state */ 6455 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6456 6457 assert(target_el > 0); 6458 6459 return target_el; 6460 } 6461 6462 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 6463 ARMMMUIdx mmu_idx, bool ignfault) 6464 { 6465 CPUState *cs = CPU(cpu); 6466 CPUARMState *env = &cpu->env; 6467 MemTxAttrs attrs = {}; 6468 MemTxResult txres; 6469 target_ulong page_size; 6470 hwaddr physaddr; 6471 int prot; 6472 ARMMMUFaultInfo fi; 6473 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6474 int exc; 6475 bool exc_secure; 6476 6477 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 6478 &attrs, &prot, &page_size, &fi, NULL)) { 6479 /* MPU/SAU lookup failed */ 6480 if (fi.type == ARMFault_QEMU_SFault) { 6481 qemu_log_mask(CPU_LOG_INT, 6482 "...SecureFault with SFSR.AUVIOL during stacking\n"); 6483 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6484 env->v7m.sfar = addr; 6485 exc = ARMV7M_EXCP_SECURE; 6486 exc_secure = false; 6487 } else { 6488 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 6489 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 6490 exc = ARMV7M_EXCP_MEM; 6491 exc_secure = secure; 6492 } 6493 goto pend_fault; 6494 } 6495 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 6496 attrs, &txres); 6497 if (txres != MEMTX_OK) { 6498 /* BusFault trying to write the data */ 6499 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 6500 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 6501 exc = ARMV7M_EXCP_BUS; 6502 exc_secure = false; 6503 goto pend_fault; 6504 } 6505 return true; 6506 6507 pend_fault: 6508 /* By pending the exception at this point we are making 6509 * the IMPDEF choice "overridden exceptions pended" (see the 6510 * MergeExcInfo() pseudocode). The other choice would be to not 6511 * pend them now and then make a choice about which to throw away 6512 * later if we have two derived exceptions. 6513 * The only case when we must not pend the exception but instead 6514 * throw it away is if we are doing the push of the callee registers 6515 * and we've already generated a derived exception. Even in this 6516 * case we will still update the fault status registers. 6517 */ 6518 if (!ignfault) { 6519 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 6520 } 6521 return false; 6522 } 6523 6524 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 6525 ARMMMUIdx mmu_idx) 6526 { 6527 CPUState *cs = CPU(cpu); 6528 CPUARMState *env = &cpu->env; 6529 MemTxAttrs attrs = {}; 6530 MemTxResult txres; 6531 target_ulong page_size; 6532 hwaddr physaddr; 6533 int prot; 6534 ARMMMUFaultInfo fi; 6535 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6536 int exc; 6537 bool exc_secure; 6538 uint32_t value; 6539 6540 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 6541 &attrs, &prot, &page_size, &fi, NULL)) { 6542 /* MPU/SAU lookup failed */ 6543 if (fi.type == ARMFault_QEMU_SFault) { 6544 qemu_log_mask(CPU_LOG_INT, 6545 "...SecureFault with SFSR.AUVIOL during unstack\n"); 6546 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6547 env->v7m.sfar = addr; 6548 exc = ARMV7M_EXCP_SECURE; 6549 exc_secure = false; 6550 } else { 6551 qemu_log_mask(CPU_LOG_INT, 6552 "...MemManageFault with CFSR.MUNSTKERR\n"); 6553 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 6554 exc = ARMV7M_EXCP_MEM; 6555 exc_secure = secure; 6556 } 6557 goto pend_fault; 6558 } 6559 6560 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 6561 attrs, &txres); 6562 if (txres != MEMTX_OK) { 6563 /* BusFault trying to read the data */ 6564 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 6565 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 6566 exc = ARMV7M_EXCP_BUS; 6567 exc_secure = false; 6568 goto pend_fault; 6569 } 6570 6571 *dest = value; 6572 return true; 6573 6574 pend_fault: 6575 /* By pending the exception at this point we are making 6576 * the IMPDEF choice "overridden exceptions pended" (see the 6577 * MergeExcInfo() pseudocode). The other choice would be to not 6578 * pend them now and then make a choice about which to throw away 6579 * later if we have two derived exceptions. 6580 */ 6581 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 6582 return false; 6583 } 6584 6585 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6586 * This may change the current stack pointer between Main and Process 6587 * stack pointers if it is done for the CONTROL register for the current 6588 * security state. 6589 */ 6590 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6591 bool new_spsel, 6592 bool secstate) 6593 { 6594 bool old_is_psp = v7m_using_psp(env); 6595 6596 env->v7m.control[secstate] = 6597 deposit32(env->v7m.control[secstate], 6598 R_V7M_CONTROL_SPSEL_SHIFT, 6599 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6600 6601 if (secstate == env->v7m.secure) { 6602 bool new_is_psp = v7m_using_psp(env); 6603 uint32_t tmp; 6604 6605 if (old_is_psp != new_is_psp) { 6606 tmp = env->v7m.other_sp; 6607 env->v7m.other_sp = env->regs[13]; 6608 env->regs[13] = tmp; 6609 } 6610 } 6611 } 6612 6613 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6614 * stack pointer between Main and Process stack pointers. 6615 */ 6616 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6617 { 6618 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6619 } 6620 6621 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6622 { 6623 /* Write a new value to v7m.exception, thus transitioning into or out 6624 * of Handler mode; this may result in a change of active stack pointer. 6625 */ 6626 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6627 uint32_t tmp; 6628 6629 env->v7m.exception = new_exc; 6630 6631 new_is_psp = v7m_using_psp(env); 6632 6633 if (old_is_psp != new_is_psp) { 6634 tmp = env->v7m.other_sp; 6635 env->v7m.other_sp = env->regs[13]; 6636 env->regs[13] = tmp; 6637 } 6638 } 6639 6640 /* Switch M profile security state between NS and S */ 6641 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6642 { 6643 uint32_t new_ss_msp, new_ss_psp; 6644 6645 if (env->v7m.secure == new_secstate) { 6646 return; 6647 } 6648 6649 /* All the banked state is accessed by looking at env->v7m.secure 6650 * except for the stack pointer; rearrange the SP appropriately. 6651 */ 6652 new_ss_msp = env->v7m.other_ss_msp; 6653 new_ss_psp = env->v7m.other_ss_psp; 6654 6655 if (v7m_using_psp(env)) { 6656 env->v7m.other_ss_psp = env->regs[13]; 6657 env->v7m.other_ss_msp = env->v7m.other_sp; 6658 } else { 6659 env->v7m.other_ss_msp = env->regs[13]; 6660 env->v7m.other_ss_psp = env->v7m.other_sp; 6661 } 6662 6663 env->v7m.secure = new_secstate; 6664 6665 if (v7m_using_psp(env)) { 6666 env->regs[13] = new_ss_psp; 6667 env->v7m.other_sp = new_ss_msp; 6668 } else { 6669 env->regs[13] = new_ss_msp; 6670 env->v7m.other_sp = new_ss_psp; 6671 } 6672 } 6673 6674 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6675 { 6676 /* Handle v7M BXNS: 6677 * - if the return value is a magic value, do exception return (like BX) 6678 * - otherwise bit 0 of the return value is the target security state 6679 */ 6680 uint32_t min_magic; 6681 6682 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6683 /* Covers FNC_RETURN and EXC_RETURN magic */ 6684 min_magic = FNC_RETURN_MIN_MAGIC; 6685 } else { 6686 /* EXC_RETURN magic only */ 6687 min_magic = EXC_RETURN_MIN_MAGIC; 6688 } 6689 6690 if (dest >= min_magic) { 6691 /* This is an exception return magic value; put it where 6692 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6693 * Note that if we ever add gen_ss_advance() singlestep support to 6694 * M profile this should count as an "instruction execution complete" 6695 * event (compare gen_bx_excret_final_code()). 6696 */ 6697 env->regs[15] = dest & ~1; 6698 env->thumb = dest & 1; 6699 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6700 /* notreached */ 6701 } 6702 6703 /* translate.c should have made BXNS UNDEF unless we're secure */ 6704 assert(env->v7m.secure); 6705 6706 switch_v7m_security_state(env, dest & 1); 6707 env->thumb = 1; 6708 env->regs[15] = dest & ~1; 6709 } 6710 6711 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6712 { 6713 /* Handle v7M BLXNS: 6714 * - bit 0 of the destination address is the target security state 6715 */ 6716 6717 /* At this point regs[15] is the address just after the BLXNS */ 6718 uint32_t nextinst = env->regs[15] | 1; 6719 uint32_t sp = env->regs[13] - 8; 6720 uint32_t saved_psr; 6721 6722 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6723 assert(env->v7m.secure); 6724 6725 if (dest & 1) { 6726 /* target is Secure, so this is just a normal BLX, 6727 * except that the low bit doesn't indicate Thumb/not. 6728 */ 6729 env->regs[14] = nextinst; 6730 env->thumb = 1; 6731 env->regs[15] = dest & ~1; 6732 return; 6733 } 6734 6735 /* Target is non-secure: first push a stack frame */ 6736 if (!QEMU_IS_ALIGNED(sp, 8)) { 6737 qemu_log_mask(LOG_GUEST_ERROR, 6738 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6739 } 6740 6741 if (sp < v7m_sp_limit(env)) { 6742 raise_exception(env, EXCP_STKOF, 0, 1); 6743 } 6744 6745 saved_psr = env->v7m.exception; 6746 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6747 saved_psr |= XPSR_SFPA; 6748 } 6749 6750 /* Note that these stores can throw exceptions on MPU faults */ 6751 cpu_stl_data(env, sp, nextinst); 6752 cpu_stl_data(env, sp + 4, saved_psr); 6753 6754 env->regs[13] = sp; 6755 env->regs[14] = 0xfeffffff; 6756 if (arm_v7m_is_handler_mode(env)) { 6757 /* Write a dummy value to IPSR, to avoid leaking the current secure 6758 * exception number to non-secure code. This is guaranteed not 6759 * to cause write_v7m_exception() to actually change stacks. 6760 */ 6761 write_v7m_exception(env, 1); 6762 } 6763 switch_v7m_security_state(env, 0); 6764 env->thumb = 1; 6765 env->regs[15] = dest; 6766 } 6767 6768 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6769 bool spsel) 6770 { 6771 /* Return a pointer to the location where we currently store the 6772 * stack pointer for the requested security state and thread mode. 6773 * This pointer will become invalid if the CPU state is updated 6774 * such that the stack pointers are switched around (eg changing 6775 * the SPSEL control bit). 6776 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6777 * Unlike that pseudocode, we require the caller to pass us in the 6778 * SPSEL control bit value; this is because we also use this 6779 * function in handling of pushing of the callee-saves registers 6780 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6781 * and in the tailchain codepath the SPSEL bit comes from the exception 6782 * return magic LR value from the previous exception. The pseudocode 6783 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6784 * to make this utility function generic enough to do the job. 6785 */ 6786 bool want_psp = threadmode && spsel; 6787 6788 if (secure == env->v7m.secure) { 6789 if (want_psp == v7m_using_psp(env)) { 6790 return &env->regs[13]; 6791 } else { 6792 return &env->v7m.other_sp; 6793 } 6794 } else { 6795 if (want_psp) { 6796 return &env->v7m.other_ss_psp; 6797 } else { 6798 return &env->v7m.other_ss_msp; 6799 } 6800 } 6801 } 6802 6803 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 6804 uint32_t *pvec) 6805 { 6806 CPUState *cs = CPU(cpu); 6807 CPUARMState *env = &cpu->env; 6808 MemTxResult result; 6809 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 6810 uint32_t vector_entry; 6811 MemTxAttrs attrs = {}; 6812 ARMMMUIdx mmu_idx; 6813 bool exc_secure; 6814 6815 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 6816 6817 /* We don't do a get_phys_addr() here because the rules for vector 6818 * loads are special: they always use the default memory map, and 6819 * the default memory map permits reads from all addresses. 6820 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 6821 * that we want this special case which would always say "yes", 6822 * we just do the SAU lookup here followed by a direct physical load. 6823 */ 6824 attrs.secure = targets_secure; 6825 attrs.user = false; 6826 6827 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6828 V8M_SAttributes sattrs = {}; 6829 6830 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 6831 if (sattrs.ns) { 6832 attrs.secure = false; 6833 } else if (!targets_secure) { 6834 /* NS access to S memory */ 6835 goto load_fail; 6836 } 6837 } 6838 6839 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 6840 attrs, &result); 6841 if (result != MEMTX_OK) { 6842 goto load_fail; 6843 } 6844 *pvec = vector_entry; 6845 return true; 6846 6847 load_fail: 6848 /* All vector table fetch fails are reported as HardFault, with 6849 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 6850 * technically the underlying exception is a MemManage or BusFault 6851 * that is escalated to HardFault.) This is a terminal exception, 6852 * so we will either take the HardFault immediately or else enter 6853 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 6854 */ 6855 exc_secure = targets_secure || 6856 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 6857 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 6858 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 6859 return false; 6860 } 6861 6862 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6863 bool ignore_faults) 6864 { 6865 /* For v8M, push the callee-saves register part of the stack frame. 6866 * Compare the v8M pseudocode PushCalleeStack(). 6867 * In the tailchaining case this may not be the current stack. 6868 */ 6869 CPUARMState *env = &cpu->env; 6870 uint32_t *frame_sp_p; 6871 uint32_t frameptr; 6872 ARMMMUIdx mmu_idx; 6873 bool stacked_ok; 6874 uint32_t limit; 6875 bool want_psp; 6876 6877 if (dotailchain) { 6878 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 6879 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 6880 !mode; 6881 6882 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 6883 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 6884 lr & R_V7M_EXCRET_SPSEL_MASK); 6885 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK); 6886 if (want_psp) { 6887 limit = env->v7m.psplim[M_REG_S]; 6888 } else { 6889 limit = env->v7m.msplim[M_REG_S]; 6890 } 6891 } else { 6892 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6893 frame_sp_p = &env->regs[13]; 6894 limit = v7m_sp_limit(env); 6895 } 6896 6897 frameptr = *frame_sp_p - 0x28; 6898 if (frameptr < limit) { 6899 /* 6900 * Stack limit failure: set SP to the limit value, and generate 6901 * STKOF UsageFault. Stack pushes below the limit must not be 6902 * performed. It is IMPDEF whether pushes above the limit are 6903 * performed; we choose not to. 6904 */ 6905 qemu_log_mask(CPU_LOG_INT, 6906 "...STKOF during callee-saves register stacking\n"); 6907 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 6908 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 6909 env->v7m.secure); 6910 *frame_sp_p = limit; 6911 return true; 6912 } 6913 6914 /* Write as much of the stack frame as we can. A write failure may 6915 * cause us to pend a derived exception. 6916 */ 6917 stacked_ok = 6918 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 6919 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 6920 ignore_faults) && 6921 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 6922 ignore_faults) && 6923 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 6924 ignore_faults) && 6925 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 6926 ignore_faults) && 6927 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 6928 ignore_faults) && 6929 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 6930 ignore_faults) && 6931 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 6932 ignore_faults) && 6933 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 6934 ignore_faults); 6935 6936 /* Update SP regardless of whether any of the stack accesses failed. */ 6937 *frame_sp_p = frameptr; 6938 6939 return !stacked_ok; 6940 } 6941 6942 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6943 bool ignore_stackfaults) 6944 { 6945 /* Do the "take the exception" parts of exception entry, 6946 * but not the pushing of state to the stack. This is 6947 * similar to the pseudocode ExceptionTaken() function. 6948 */ 6949 CPUARMState *env = &cpu->env; 6950 uint32_t addr; 6951 bool targets_secure; 6952 int exc; 6953 bool push_failed = false; 6954 6955 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 6956 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n", 6957 targets_secure ? "secure" : "nonsecure", exc); 6958 6959 if (arm_feature(env, ARM_FEATURE_V8)) { 6960 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6961 (lr & R_V7M_EXCRET_S_MASK)) { 6962 /* The background code (the owner of the registers in the 6963 * exception frame) is Secure. This means it may either already 6964 * have or now needs to push callee-saves registers. 6965 */ 6966 if (targets_secure) { 6967 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6968 /* We took an exception from Secure to NonSecure 6969 * (which means the callee-saved registers got stacked) 6970 * and are now tailchaining to a Secure exception. 6971 * Clear DCRS so eventual return from this Secure 6972 * exception unstacks the callee-saved registers. 6973 */ 6974 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6975 } 6976 } else { 6977 /* We're going to a non-secure exception; push the 6978 * callee-saves registers to the stack now, if they're 6979 * not already saved. 6980 */ 6981 if (lr & R_V7M_EXCRET_DCRS_MASK && 6982 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) { 6983 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 6984 ignore_stackfaults); 6985 } 6986 lr |= R_V7M_EXCRET_DCRS_MASK; 6987 } 6988 } 6989 6990 lr &= ~R_V7M_EXCRET_ES_MASK; 6991 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6992 lr |= R_V7M_EXCRET_ES_MASK; 6993 } 6994 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6995 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6996 lr |= R_V7M_EXCRET_SPSEL_MASK; 6997 } 6998 6999 /* Clear registers if necessary to prevent non-secure exception 7000 * code being able to see register values from secure code. 7001 * Where register values become architecturally UNKNOWN we leave 7002 * them with their previous values. 7003 */ 7004 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7005 if (!targets_secure) { 7006 /* Always clear the caller-saved registers (they have been 7007 * pushed to the stack earlier in v7m_push_stack()). 7008 * Clear callee-saved registers if the background code is 7009 * Secure (in which case these regs were saved in 7010 * v7m_push_callee_stack()). 7011 */ 7012 int i; 7013 7014 for (i = 0; i < 13; i++) { 7015 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 7016 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 7017 env->regs[i] = 0; 7018 } 7019 } 7020 /* Clear EAPSR */ 7021 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 7022 } 7023 } 7024 } 7025 7026 if (push_failed && !ignore_stackfaults) { 7027 /* Derived exception on callee-saves register stacking: 7028 * we might now want to take a different exception which 7029 * targets a different security state, so try again from the top. 7030 */ 7031 qemu_log_mask(CPU_LOG_INT, 7032 "...derived exception on callee-saves register stacking"); 7033 v7m_exception_taken(cpu, lr, true, true); 7034 return; 7035 } 7036 7037 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 7038 /* Vector load failed: derived exception */ 7039 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load"); 7040 v7m_exception_taken(cpu, lr, true, true); 7041 return; 7042 } 7043 7044 /* Now we've done everything that might cause a derived exception 7045 * we can go ahead and activate whichever exception we're going to 7046 * take (which might now be the derived exception). 7047 */ 7048 armv7m_nvic_acknowledge_irq(env->nvic); 7049 7050 /* Switch to target security state -- must do this before writing SPSEL */ 7051 switch_v7m_security_state(env, targets_secure); 7052 write_v7m_control_spsel(env, 0); 7053 arm_clear_exclusive(env); 7054 /* Clear IT bits */ 7055 env->condexec_bits = 0; 7056 env->regs[14] = lr; 7057 env->regs[15] = addr & 0xfffffffe; 7058 env->thumb = addr & 1; 7059 } 7060 7061 static bool v7m_push_stack(ARMCPU *cpu) 7062 { 7063 /* Do the "set up stack frame" part of exception entry, 7064 * similar to pseudocode PushStack(). 7065 * Return true if we generate a derived exception (and so 7066 * should ignore further stack faults trying to process 7067 * that derived exception.) 7068 */ 7069 bool stacked_ok; 7070 CPUARMState *env = &cpu->env; 7071 uint32_t xpsr = xpsr_read(env); 7072 uint32_t frameptr = env->regs[13]; 7073 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 7074 7075 /* Align stack pointer if the guest wants that */ 7076 if ((frameptr & 4) && 7077 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 7078 frameptr -= 4; 7079 xpsr |= XPSR_SPREALIGN; 7080 } 7081 7082 frameptr -= 0x20; 7083 7084 if (arm_feature(env, ARM_FEATURE_V8)) { 7085 uint32_t limit = v7m_sp_limit(env); 7086 7087 if (frameptr < limit) { 7088 /* 7089 * Stack limit failure: set SP to the limit value, and generate 7090 * STKOF UsageFault. Stack pushes below the limit must not be 7091 * performed. It is IMPDEF whether pushes above the limit are 7092 * performed; we choose not to. 7093 */ 7094 qemu_log_mask(CPU_LOG_INT, 7095 "...STKOF during stacking\n"); 7096 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 7097 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7098 env->v7m.secure); 7099 env->regs[13] = limit; 7100 return true; 7101 } 7102 } 7103 7104 /* Write as much of the stack frame as we can. If we fail a stack 7105 * write this will result in a derived exception being pended 7106 * (which may be taken in preference to the one we started with 7107 * if it has higher priority). 7108 */ 7109 stacked_ok = 7110 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 7111 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 7112 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 7113 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 7114 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 7115 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 7116 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 7117 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 7118 7119 /* Update SP regardless of whether any of the stack accesses failed. */ 7120 env->regs[13] = frameptr; 7121 7122 return !stacked_ok; 7123 } 7124 7125 static void do_v7m_exception_exit(ARMCPU *cpu) 7126 { 7127 CPUARMState *env = &cpu->env; 7128 uint32_t excret; 7129 uint32_t xpsr; 7130 bool ufault = false; 7131 bool sfault = false; 7132 bool return_to_sp_process; 7133 bool return_to_handler; 7134 bool rettobase = false; 7135 bool exc_secure = false; 7136 bool return_to_secure; 7137 7138 /* If we're not in Handler mode then jumps to magic exception-exit 7139 * addresses don't have magic behaviour. However for the v8M 7140 * security extensions the magic secure-function-return has to 7141 * work in thread mode too, so to avoid doing an extra check in 7142 * the generated code we allow exception-exit magic to also cause the 7143 * internal exception and bring us here in thread mode. Correct code 7144 * will never try to do this (the following insn fetch will always 7145 * fault) so we the overhead of having taken an unnecessary exception 7146 * doesn't matter. 7147 */ 7148 if (!arm_v7m_is_handler_mode(env)) { 7149 return; 7150 } 7151 7152 /* In the spec pseudocode ExceptionReturn() is called directly 7153 * from BXWritePC() and gets the full target PC value including 7154 * bit zero. In QEMU's implementation we treat it as a normal 7155 * jump-to-register (which is then caught later on), and so split 7156 * the target value up between env->regs[15] and env->thumb in 7157 * gen_bx(). Reconstitute it. 7158 */ 7159 excret = env->regs[15]; 7160 if (env->thumb) { 7161 excret |= 1; 7162 } 7163 7164 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 7165 " previous exception %d\n", 7166 excret, env->v7m.exception); 7167 7168 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 7169 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 7170 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 7171 excret); 7172 } 7173 7174 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7175 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 7176 * we pick which FAULTMASK to clear. 7177 */ 7178 if (!env->v7m.secure && 7179 ((excret & R_V7M_EXCRET_ES_MASK) || 7180 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 7181 sfault = 1; 7182 /* For all other purposes, treat ES as 0 (R_HXSR) */ 7183 excret &= ~R_V7M_EXCRET_ES_MASK; 7184 } 7185 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 7186 } 7187 7188 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 7189 /* Auto-clear FAULTMASK on return from other than NMI. 7190 * If the security extension is implemented then this only 7191 * happens if the raw execution priority is >= 0; the 7192 * value of the ES bit in the exception return value indicates 7193 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 7194 */ 7195 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7196 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 7197 env->v7m.faultmask[exc_secure] = 0; 7198 } 7199 } else { 7200 env->v7m.faultmask[M_REG_NS] = 0; 7201 } 7202 } 7203 7204 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 7205 exc_secure)) { 7206 case -1: 7207 /* attempt to exit an exception that isn't active */ 7208 ufault = true; 7209 break; 7210 case 0: 7211 /* still an irq active now */ 7212 break; 7213 case 1: 7214 /* we returned to base exception level, no nesting. 7215 * (In the pseudocode this is written using "NestedActivation != 1" 7216 * where we have 'rettobase == false'.) 7217 */ 7218 rettobase = true; 7219 break; 7220 default: 7221 g_assert_not_reached(); 7222 } 7223 7224 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 7225 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 7226 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 7227 (excret & R_V7M_EXCRET_S_MASK); 7228 7229 if (arm_feature(env, ARM_FEATURE_V8)) { 7230 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7231 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 7232 * we choose to take the UsageFault. 7233 */ 7234 if ((excret & R_V7M_EXCRET_S_MASK) || 7235 (excret & R_V7M_EXCRET_ES_MASK) || 7236 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 7237 ufault = true; 7238 } 7239 } 7240 if (excret & R_V7M_EXCRET_RES0_MASK) { 7241 ufault = true; 7242 } 7243 } else { 7244 /* For v7M we only recognize certain combinations of the low bits */ 7245 switch (excret & 0xf) { 7246 case 1: /* Return to Handler */ 7247 break; 7248 case 13: /* Return to Thread using Process stack */ 7249 case 9: /* Return to Thread using Main stack */ 7250 /* We only need to check NONBASETHRDENA for v7M, because in 7251 * v8M this bit does not exist (it is RES1). 7252 */ 7253 if (!rettobase && 7254 !(env->v7m.ccr[env->v7m.secure] & 7255 R_V7M_CCR_NONBASETHRDENA_MASK)) { 7256 ufault = true; 7257 } 7258 break; 7259 default: 7260 ufault = true; 7261 } 7262 } 7263 7264 /* 7265 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 7266 * Handler mode (and will be until we write the new XPSR.Interrupt 7267 * field) this does not switch around the current stack pointer. 7268 * We must do this before we do any kind of tailchaining, including 7269 * for the derived exceptions on integrity check failures, or we will 7270 * give the guest an incorrect EXCRET.SPSEL value on exception entry. 7271 */ 7272 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 7273 7274 if (sfault) { 7275 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 7276 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7277 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7278 "stackframe: failed EXC_RETURN.ES validity check\n"); 7279 v7m_exception_taken(cpu, excret, true, false); 7280 return; 7281 } 7282 7283 if (ufault) { 7284 /* Bad exception return: instead of popping the exception 7285 * stack, directly take a usage fault on the current stack. 7286 */ 7287 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7288 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7289 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7290 "stackframe: failed exception return integrity check\n"); 7291 v7m_exception_taken(cpu, excret, true, false); 7292 return; 7293 } 7294 7295 /* 7296 * Tailchaining: if there is currently a pending exception that 7297 * is high enough priority to preempt execution at the level we're 7298 * about to return to, then just directly take that exception now, 7299 * avoiding an unstack-and-then-stack. Note that now we have 7300 * deactivated the previous exception by calling armv7m_nvic_complete_irq() 7301 * our current execution priority is already the execution priority we are 7302 * returning to -- none of the state we would unstack or set based on 7303 * the EXCRET value affects it. 7304 */ 7305 if (armv7m_nvic_can_take_pending_exception(env->nvic)) { 7306 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n"); 7307 v7m_exception_taken(cpu, excret, true, false); 7308 return; 7309 } 7310 7311 switch_v7m_security_state(env, return_to_secure); 7312 7313 { 7314 /* The stack pointer we should be reading the exception frame from 7315 * depends on bits in the magic exception return type value (and 7316 * for v8M isn't necessarily the stack pointer we will eventually 7317 * end up resuming execution with). Get a pointer to the location 7318 * in the CPU state struct where the SP we need is currently being 7319 * stored; we will use and modify it in place. 7320 * We use this limited C variable scope so we don't accidentally 7321 * use 'frame_sp_p' after we do something that makes it invalid. 7322 */ 7323 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 7324 return_to_secure, 7325 !return_to_handler, 7326 return_to_sp_process); 7327 uint32_t frameptr = *frame_sp_p; 7328 bool pop_ok = true; 7329 ARMMMUIdx mmu_idx; 7330 bool return_to_priv = return_to_handler || 7331 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK); 7332 7333 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 7334 return_to_priv); 7335 7336 if (!QEMU_IS_ALIGNED(frameptr, 8) && 7337 arm_feature(env, ARM_FEATURE_V8)) { 7338 qemu_log_mask(LOG_GUEST_ERROR, 7339 "M profile exception return with non-8-aligned SP " 7340 "for destination state is UNPREDICTABLE\n"); 7341 } 7342 7343 /* Do we need to pop callee-saved registers? */ 7344 if (return_to_secure && 7345 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 7346 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 7347 uint32_t expected_sig = 0xfefa125b; 7348 uint32_t actual_sig; 7349 7350 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 7351 7352 if (pop_ok && expected_sig != actual_sig) { 7353 /* Take a SecureFault on the current stack */ 7354 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 7355 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7356 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7357 "stackframe: failed exception return integrity " 7358 "signature check\n"); 7359 v7m_exception_taken(cpu, excret, true, false); 7360 return; 7361 } 7362 7363 pop_ok = pop_ok && 7364 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7365 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 7366 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 7367 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 7368 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 7369 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 7370 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 7371 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 7372 7373 frameptr += 0x28; 7374 } 7375 7376 /* Pop registers */ 7377 pop_ok = pop_ok && 7378 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 7379 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 7380 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 7381 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 7382 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 7383 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 7384 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 7385 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 7386 7387 if (!pop_ok) { 7388 /* v7m_stack_read() pended a fault, so take it (as a tail 7389 * chained exception on the same stack frame) 7390 */ 7391 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n"); 7392 v7m_exception_taken(cpu, excret, true, false); 7393 return; 7394 } 7395 7396 /* Returning from an exception with a PC with bit 0 set is defined 7397 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 7398 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 7399 * the lsbit, and there are several RTOSes out there which incorrectly 7400 * assume the r15 in the stack frame should be a Thumb-style "lsbit 7401 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 7402 * complain about the badly behaved guest. 7403 */ 7404 if (env->regs[15] & 1) { 7405 env->regs[15] &= ~1U; 7406 if (!arm_feature(env, ARM_FEATURE_V8)) { 7407 qemu_log_mask(LOG_GUEST_ERROR, 7408 "M profile return from interrupt with misaligned " 7409 "PC is UNPREDICTABLE on v7M\n"); 7410 } 7411 } 7412 7413 if (arm_feature(env, ARM_FEATURE_V8)) { 7414 /* For v8M we have to check whether the xPSR exception field 7415 * matches the EXCRET value for return to handler/thread 7416 * before we commit to changing the SP and xPSR. 7417 */ 7418 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 7419 if (return_to_handler != will_be_handler) { 7420 /* Take an INVPC UsageFault on the current stack. 7421 * By this point we will have switched to the security state 7422 * for the background state, so this UsageFault will target 7423 * that state. 7424 */ 7425 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7426 env->v7m.secure); 7427 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7428 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7429 "stackframe: failed exception return integrity " 7430 "check\n"); 7431 v7m_exception_taken(cpu, excret, true, false); 7432 return; 7433 } 7434 } 7435 7436 /* Commit to consuming the stack frame */ 7437 frameptr += 0x20; 7438 /* Undo stack alignment (the SPREALIGN bit indicates that the original 7439 * pre-exception SP was not 8-aligned and we added a padding word to 7440 * align it, so we undo this by ORing in the bit that increases it 7441 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 7442 * would work too but a logical OR is how the pseudocode specifies it.) 7443 */ 7444 if (xpsr & XPSR_SPREALIGN) { 7445 frameptr |= 4; 7446 } 7447 *frame_sp_p = frameptr; 7448 } 7449 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 7450 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 7451 7452 /* The restored xPSR exception field will be zero if we're 7453 * resuming in Thread mode. If that doesn't match what the 7454 * exception return excret specified then this is a UsageFault. 7455 * v7M requires we make this check here; v8M did it earlier. 7456 */ 7457 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 7458 /* Take an INVPC UsageFault by pushing the stack again; 7459 * we know we're v7M so this is never a Secure UsageFault. 7460 */ 7461 bool ignore_stackfaults; 7462 7463 assert(!arm_feature(env, ARM_FEATURE_V8)); 7464 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 7465 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7466 ignore_stackfaults = v7m_push_stack(cpu); 7467 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 7468 "failed exception return integrity check\n"); 7469 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 7470 return; 7471 } 7472 7473 /* Otherwise, we have a successful exception exit. */ 7474 arm_clear_exclusive(env); 7475 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 7476 } 7477 7478 static bool do_v7m_function_return(ARMCPU *cpu) 7479 { 7480 /* v8M security extensions magic function return. 7481 * We may either: 7482 * (1) throw an exception (longjump) 7483 * (2) return true if we successfully handled the function return 7484 * (3) return false if we failed a consistency check and have 7485 * pended a UsageFault that needs to be taken now 7486 * 7487 * At this point the magic return value is split between env->regs[15] 7488 * and env->thumb. We don't bother to reconstitute it because we don't 7489 * need it (all values are handled the same way). 7490 */ 7491 CPUARMState *env = &cpu->env; 7492 uint32_t newpc, newpsr, newpsr_exc; 7493 7494 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 7495 7496 { 7497 bool threadmode, spsel; 7498 TCGMemOpIdx oi; 7499 ARMMMUIdx mmu_idx; 7500 uint32_t *frame_sp_p; 7501 uint32_t frameptr; 7502 7503 /* Pull the return address and IPSR from the Secure stack */ 7504 threadmode = !arm_v7m_is_handler_mode(env); 7505 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 7506 7507 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 7508 frameptr = *frame_sp_p; 7509 7510 /* These loads may throw an exception (for MPU faults). We want to 7511 * do them as secure, so work out what MMU index that is. 7512 */ 7513 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7514 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 7515 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 7516 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 7517 7518 /* Consistency checks on new IPSR */ 7519 newpsr_exc = newpsr & XPSR_EXCP; 7520 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 7521 (env->v7m.exception == 1 && newpsr_exc != 0))) { 7522 /* Pend the fault and tell our caller to take it */ 7523 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7524 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7525 env->v7m.secure); 7526 qemu_log_mask(CPU_LOG_INT, 7527 "...taking INVPC UsageFault: " 7528 "IPSR consistency check failed\n"); 7529 return false; 7530 } 7531 7532 *frame_sp_p = frameptr + 8; 7533 } 7534 7535 /* This invalidates frame_sp_p */ 7536 switch_v7m_security_state(env, true); 7537 env->v7m.exception = newpsr_exc; 7538 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 7539 if (newpsr & XPSR_SFPA) { 7540 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 7541 } 7542 xpsr_write(env, 0, XPSR_IT); 7543 env->thumb = newpc & 1; 7544 env->regs[15] = newpc & ~1; 7545 7546 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 7547 return true; 7548 } 7549 7550 static void arm_log_exception(int idx) 7551 { 7552 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7553 const char *exc = NULL; 7554 static const char * const excnames[] = { 7555 [EXCP_UDEF] = "Undefined Instruction", 7556 [EXCP_SWI] = "SVC", 7557 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7558 [EXCP_DATA_ABORT] = "Data Abort", 7559 [EXCP_IRQ] = "IRQ", 7560 [EXCP_FIQ] = "FIQ", 7561 [EXCP_BKPT] = "Breakpoint", 7562 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7563 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7564 [EXCP_HVC] = "Hypervisor Call", 7565 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7566 [EXCP_SMC] = "Secure Monitor Call", 7567 [EXCP_VIRQ] = "Virtual IRQ", 7568 [EXCP_VFIQ] = "Virtual FIQ", 7569 [EXCP_SEMIHOST] = "Semihosting call", 7570 [EXCP_NOCP] = "v7M NOCP UsageFault", 7571 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7572 [EXCP_STKOF] = "v8M STKOF UsageFault", 7573 }; 7574 7575 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7576 exc = excnames[idx]; 7577 } 7578 if (!exc) { 7579 exc = "unknown"; 7580 } 7581 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7582 } 7583 } 7584 7585 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 7586 uint32_t addr, uint16_t *insn) 7587 { 7588 /* Load a 16-bit portion of a v7M instruction, returning true on success, 7589 * or false on failure (in which case we will have pended the appropriate 7590 * exception). 7591 * We need to do the instruction fetch's MPU and SAU checks 7592 * like this because there is no MMU index that would allow 7593 * doing the load with a single function call. Instead we must 7594 * first check that the security attributes permit the load 7595 * and that they don't mismatch on the two halves of the instruction, 7596 * and then we do the load as a secure load (ie using the security 7597 * attributes of the address, not the CPU, as architecturally required). 7598 */ 7599 CPUState *cs = CPU(cpu); 7600 CPUARMState *env = &cpu->env; 7601 V8M_SAttributes sattrs = {}; 7602 MemTxAttrs attrs = {}; 7603 ARMMMUFaultInfo fi = {}; 7604 MemTxResult txres; 7605 target_ulong page_size; 7606 hwaddr physaddr; 7607 int prot; 7608 7609 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7610 if (!sattrs.nsc || sattrs.ns) { 7611 /* This must be the second half of the insn, and it straddles a 7612 * region boundary with the second half not being S&NSC. 7613 */ 7614 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7615 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7616 qemu_log_mask(CPU_LOG_INT, 7617 "...really SecureFault with SFSR.INVEP\n"); 7618 return false; 7619 } 7620 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7621 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7622 /* the MPU lookup failed */ 7623 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7624 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7625 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7626 return false; 7627 } 7628 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7629 attrs, &txres); 7630 if (txres != MEMTX_OK) { 7631 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7632 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7633 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7634 return false; 7635 } 7636 return true; 7637 } 7638 7639 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7640 { 7641 /* Check whether this attempt to execute code in a Secure & NS-Callable 7642 * memory region is for an SG instruction; if so, then emulate the 7643 * effect of the SG instruction and return true. Otherwise pend 7644 * the correct kind of exception and return false. 7645 */ 7646 CPUARMState *env = &cpu->env; 7647 ARMMMUIdx mmu_idx; 7648 uint16_t insn; 7649 7650 /* We should never get here unless get_phys_addr_pmsav8() caused 7651 * an exception for NS executing in S&NSC memory. 7652 */ 7653 assert(!env->v7m.secure); 7654 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7655 7656 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7657 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7658 7659 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7660 return false; 7661 } 7662 7663 if (!env->thumb) { 7664 goto gen_invep; 7665 } 7666 7667 if (insn != 0xe97f) { 7668 /* Not an SG instruction first half (we choose the IMPDEF 7669 * early-SG-check option). 7670 */ 7671 goto gen_invep; 7672 } 7673 7674 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7675 return false; 7676 } 7677 7678 if (insn != 0xe97f) { 7679 /* Not an SG instruction second half (yes, both halves of the SG 7680 * insn have the same hex value) 7681 */ 7682 goto gen_invep; 7683 } 7684 7685 /* OK, we have confirmed that we really have an SG instruction. 7686 * We know we're NS in S memory so don't need to repeat those checks. 7687 */ 7688 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7689 ", executing it\n", env->regs[15]); 7690 env->regs[14] &= ~1; 7691 switch_v7m_security_state(env, true); 7692 xpsr_write(env, 0, XPSR_IT); 7693 env->regs[15] += 4; 7694 return true; 7695 7696 gen_invep: 7697 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7698 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7699 qemu_log_mask(CPU_LOG_INT, 7700 "...really SecureFault with SFSR.INVEP\n"); 7701 return false; 7702 } 7703 7704 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7705 { 7706 ARMCPU *cpu = ARM_CPU(cs); 7707 CPUARMState *env = &cpu->env; 7708 uint32_t lr; 7709 bool ignore_stackfaults; 7710 7711 arm_log_exception(cs->exception_index); 7712 7713 /* For exceptions we just mark as pending on the NVIC, and let that 7714 handle it. */ 7715 switch (cs->exception_index) { 7716 case EXCP_UDEF: 7717 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7718 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7719 break; 7720 case EXCP_NOCP: 7721 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7722 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7723 break; 7724 case EXCP_INVSTATE: 7725 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7726 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7727 break; 7728 case EXCP_STKOF: 7729 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7730 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 7731 break; 7732 case EXCP_SWI: 7733 /* The PC already points to the next instruction. */ 7734 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7735 break; 7736 case EXCP_PREFETCH_ABORT: 7737 case EXCP_DATA_ABORT: 7738 /* Note that for M profile we don't have a guest facing FSR, but 7739 * the env->exception.fsr will be populated by the code that 7740 * raises the fault, in the A profile short-descriptor format. 7741 */ 7742 switch (env->exception.fsr & 0xf) { 7743 case M_FAKE_FSR_NSC_EXEC: 7744 /* Exception generated when we try to execute code at an address 7745 * which is marked as Secure & Non-Secure Callable and the CPU 7746 * is in the Non-Secure state. The only instruction which can 7747 * be executed like this is SG (and that only if both halves of 7748 * the SG instruction have the same security attributes.) 7749 * Everything else must generate an INVEP SecureFault, so we 7750 * emulate the SG instruction here. 7751 */ 7752 if (v7m_handle_execute_nsc(cpu)) { 7753 return; 7754 } 7755 break; 7756 case M_FAKE_FSR_SFAULT: 7757 /* Various flavours of SecureFault for attempts to execute or 7758 * access data in the wrong security state. 7759 */ 7760 switch (cs->exception_index) { 7761 case EXCP_PREFETCH_ABORT: 7762 if (env->v7m.secure) { 7763 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7764 qemu_log_mask(CPU_LOG_INT, 7765 "...really SecureFault with SFSR.INVTRAN\n"); 7766 } else { 7767 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7768 qemu_log_mask(CPU_LOG_INT, 7769 "...really SecureFault with SFSR.INVEP\n"); 7770 } 7771 break; 7772 case EXCP_DATA_ABORT: 7773 /* This must be an NS access to S memory */ 7774 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7775 qemu_log_mask(CPU_LOG_INT, 7776 "...really SecureFault with SFSR.AUVIOL\n"); 7777 break; 7778 } 7779 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7780 break; 7781 case 0x8: /* External Abort */ 7782 switch (cs->exception_index) { 7783 case EXCP_PREFETCH_ABORT: 7784 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7785 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7786 break; 7787 case EXCP_DATA_ABORT: 7788 env->v7m.cfsr[M_REG_NS] |= 7789 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7790 env->v7m.bfar = env->exception.vaddress; 7791 qemu_log_mask(CPU_LOG_INT, 7792 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7793 env->v7m.bfar); 7794 break; 7795 } 7796 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7797 break; 7798 default: 7799 /* All other FSR values are either MPU faults or "can't happen 7800 * for M profile" cases. 7801 */ 7802 switch (cs->exception_index) { 7803 case EXCP_PREFETCH_ABORT: 7804 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7805 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7806 break; 7807 case EXCP_DATA_ABORT: 7808 env->v7m.cfsr[env->v7m.secure] |= 7809 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7810 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7811 qemu_log_mask(CPU_LOG_INT, 7812 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7813 env->v7m.mmfar[env->v7m.secure]); 7814 break; 7815 } 7816 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7817 env->v7m.secure); 7818 break; 7819 } 7820 break; 7821 case EXCP_BKPT: 7822 if (semihosting_enabled()) { 7823 int nr; 7824 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7825 if (nr == 0xab) { 7826 env->regs[15] += 2; 7827 qemu_log_mask(CPU_LOG_INT, 7828 "...handling as semihosting call 0x%x\n", 7829 env->regs[0]); 7830 env->regs[0] = do_arm_semihosting(env); 7831 return; 7832 } 7833 } 7834 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7835 break; 7836 case EXCP_IRQ: 7837 break; 7838 case EXCP_EXCEPTION_EXIT: 7839 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7840 /* Must be v8M security extension function return */ 7841 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7842 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7843 if (do_v7m_function_return(cpu)) { 7844 return; 7845 } 7846 } else { 7847 do_v7m_exception_exit(cpu); 7848 return; 7849 } 7850 break; 7851 default: 7852 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7853 return; /* Never happens. Keep compiler happy. */ 7854 } 7855 7856 if (arm_feature(env, ARM_FEATURE_V8)) { 7857 lr = R_V7M_EXCRET_RES1_MASK | 7858 R_V7M_EXCRET_DCRS_MASK | 7859 R_V7M_EXCRET_FTYPE_MASK; 7860 /* The S bit indicates whether we should return to Secure 7861 * or NonSecure (ie our current state). 7862 * The ES bit indicates whether we're taking this exception 7863 * to Secure or NonSecure (ie our target state). We set it 7864 * later, in v7m_exception_taken(). 7865 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7866 * This corresponds to the ARM ARM pseudocode for v8M setting 7867 * some LR bits in PushStack() and some in ExceptionTaken(); 7868 * the distinction matters for the tailchain cases where we 7869 * can take an exception without pushing the stack. 7870 */ 7871 if (env->v7m.secure) { 7872 lr |= R_V7M_EXCRET_S_MASK; 7873 } 7874 } else { 7875 lr = R_V7M_EXCRET_RES1_MASK | 7876 R_V7M_EXCRET_S_MASK | 7877 R_V7M_EXCRET_DCRS_MASK | 7878 R_V7M_EXCRET_FTYPE_MASK | 7879 R_V7M_EXCRET_ES_MASK; 7880 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7881 lr |= R_V7M_EXCRET_SPSEL_MASK; 7882 } 7883 } 7884 if (!arm_v7m_is_handler_mode(env)) { 7885 lr |= R_V7M_EXCRET_MODE_MASK; 7886 } 7887 7888 ignore_stackfaults = v7m_push_stack(cpu); 7889 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 7890 } 7891 7892 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7893 * register set. This is necessary when switching between AArch32 and AArch64 7894 * execution state. 7895 */ 7896 void aarch64_sync_32_to_64(CPUARMState *env) 7897 { 7898 int i; 7899 uint32_t mode = env->uncached_cpsr & CPSR_M; 7900 7901 /* We can blanket copy R[0:7] to X[0:7] */ 7902 for (i = 0; i < 8; i++) { 7903 env->xregs[i] = env->regs[i]; 7904 } 7905 7906 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7907 * Otherwise, they come from the banked user regs. 7908 */ 7909 if (mode == ARM_CPU_MODE_FIQ) { 7910 for (i = 8; i < 13; i++) { 7911 env->xregs[i] = env->usr_regs[i - 8]; 7912 } 7913 } else { 7914 for (i = 8; i < 13; i++) { 7915 env->xregs[i] = env->regs[i]; 7916 } 7917 } 7918 7919 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7920 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7921 * from the mode banked register. 7922 */ 7923 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7924 env->xregs[13] = env->regs[13]; 7925 env->xregs[14] = env->regs[14]; 7926 } else { 7927 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7928 /* HYP is an exception in that it is copied from r14 */ 7929 if (mode == ARM_CPU_MODE_HYP) { 7930 env->xregs[14] = env->regs[14]; 7931 } else { 7932 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7933 } 7934 } 7935 7936 if (mode == ARM_CPU_MODE_HYP) { 7937 env->xregs[15] = env->regs[13]; 7938 } else { 7939 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7940 } 7941 7942 if (mode == ARM_CPU_MODE_IRQ) { 7943 env->xregs[16] = env->regs[14]; 7944 env->xregs[17] = env->regs[13]; 7945 } else { 7946 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7947 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7948 } 7949 7950 if (mode == ARM_CPU_MODE_SVC) { 7951 env->xregs[18] = env->regs[14]; 7952 env->xregs[19] = env->regs[13]; 7953 } else { 7954 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7955 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7956 } 7957 7958 if (mode == ARM_CPU_MODE_ABT) { 7959 env->xregs[20] = env->regs[14]; 7960 env->xregs[21] = env->regs[13]; 7961 } else { 7962 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7963 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7964 } 7965 7966 if (mode == ARM_CPU_MODE_UND) { 7967 env->xregs[22] = env->regs[14]; 7968 env->xregs[23] = env->regs[13]; 7969 } else { 7970 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7971 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7972 } 7973 7974 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7975 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7976 * FIQ bank for r8-r14. 7977 */ 7978 if (mode == ARM_CPU_MODE_FIQ) { 7979 for (i = 24; i < 31; i++) { 7980 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7981 } 7982 } else { 7983 for (i = 24; i < 29; i++) { 7984 env->xregs[i] = env->fiq_regs[i - 24]; 7985 } 7986 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7987 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7988 } 7989 7990 env->pc = env->regs[15]; 7991 } 7992 7993 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7994 * register set. This is necessary when switching between AArch32 and AArch64 7995 * execution state. 7996 */ 7997 void aarch64_sync_64_to_32(CPUARMState *env) 7998 { 7999 int i; 8000 uint32_t mode = env->uncached_cpsr & CPSR_M; 8001 8002 /* We can blanket copy X[0:7] to R[0:7] */ 8003 for (i = 0; i < 8; i++) { 8004 env->regs[i] = env->xregs[i]; 8005 } 8006 8007 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 8008 * Otherwise, we copy x8-x12 into the banked user regs. 8009 */ 8010 if (mode == ARM_CPU_MODE_FIQ) { 8011 for (i = 8; i < 13; i++) { 8012 env->usr_regs[i - 8] = env->xregs[i]; 8013 } 8014 } else { 8015 for (i = 8; i < 13; i++) { 8016 env->regs[i] = env->xregs[i]; 8017 } 8018 } 8019 8020 /* Registers r13 & r14 depend on the current mode. 8021 * If we are in a given mode, we copy the corresponding x registers to r13 8022 * and r14. Otherwise, we copy the x register to the banked r13 and r14 8023 * for the mode. 8024 */ 8025 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8026 env->regs[13] = env->xregs[13]; 8027 env->regs[14] = env->xregs[14]; 8028 } else { 8029 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 8030 8031 /* HYP is an exception in that it does not have its own banked r14 but 8032 * shares the USR r14 8033 */ 8034 if (mode == ARM_CPU_MODE_HYP) { 8035 env->regs[14] = env->xregs[14]; 8036 } else { 8037 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 8038 } 8039 } 8040 8041 if (mode == ARM_CPU_MODE_HYP) { 8042 env->regs[13] = env->xregs[15]; 8043 } else { 8044 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 8045 } 8046 8047 if (mode == ARM_CPU_MODE_IRQ) { 8048 env->regs[14] = env->xregs[16]; 8049 env->regs[13] = env->xregs[17]; 8050 } else { 8051 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 8052 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 8053 } 8054 8055 if (mode == ARM_CPU_MODE_SVC) { 8056 env->regs[14] = env->xregs[18]; 8057 env->regs[13] = env->xregs[19]; 8058 } else { 8059 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 8060 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 8061 } 8062 8063 if (mode == ARM_CPU_MODE_ABT) { 8064 env->regs[14] = env->xregs[20]; 8065 env->regs[13] = env->xregs[21]; 8066 } else { 8067 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 8068 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 8069 } 8070 8071 if (mode == ARM_CPU_MODE_UND) { 8072 env->regs[14] = env->xregs[22]; 8073 env->regs[13] = env->xregs[23]; 8074 } else { 8075 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 8076 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 8077 } 8078 8079 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8080 * mode, then we can copy to r8-r14. Otherwise, we copy to the 8081 * FIQ bank for r8-r14. 8082 */ 8083 if (mode == ARM_CPU_MODE_FIQ) { 8084 for (i = 24; i < 31; i++) { 8085 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 8086 } 8087 } else { 8088 for (i = 24; i < 29; i++) { 8089 env->fiq_regs[i - 24] = env->xregs[i]; 8090 } 8091 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 8092 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 8093 } 8094 8095 env->regs[15] = env->pc; 8096 } 8097 8098 static void take_aarch32_exception(CPUARMState *env, int new_mode, 8099 uint32_t mask, uint32_t offset, 8100 uint32_t newpc) 8101 { 8102 /* Change the CPU state so as to actually take the exception. */ 8103 switch_mode(env, new_mode); 8104 /* 8105 * For exceptions taken to AArch32 we must clear the SS bit in both 8106 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8107 */ 8108 env->uncached_cpsr &= ~PSTATE_SS; 8109 env->spsr = cpsr_read(env); 8110 /* Clear IT bits. */ 8111 env->condexec_bits = 0; 8112 /* Switch to the new mode, and to the correct instruction set. */ 8113 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8114 /* Set new mode endianness */ 8115 env->uncached_cpsr &= ~CPSR_E; 8116 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8117 env->uncached_cpsr |= CPSR_E; 8118 } 8119 /* J and IL must always be cleared for exception entry */ 8120 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 8121 env->daif |= mask; 8122 8123 if (new_mode == ARM_CPU_MODE_HYP) { 8124 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 8125 env->elr_el[2] = env->regs[15]; 8126 } else { 8127 /* 8128 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 8129 * and we should just guard the thumb mode on V4 8130 */ 8131 if (arm_feature(env, ARM_FEATURE_V4T)) { 8132 env->thumb = 8133 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8134 } 8135 env->regs[14] = env->regs[15] + offset; 8136 } 8137 env->regs[15] = newpc; 8138 } 8139 8140 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 8141 { 8142 /* 8143 * Handle exception entry to Hyp mode; this is sufficiently 8144 * different to entry to other AArch32 modes that we handle it 8145 * separately here. 8146 * 8147 * The vector table entry used is always the 0x14 Hyp mode entry point, 8148 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 8149 * The offset applied to the preferred return address is always zero 8150 * (see DDI0487C.a section G1.12.3). 8151 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 8152 */ 8153 uint32_t addr, mask; 8154 ARMCPU *cpu = ARM_CPU(cs); 8155 CPUARMState *env = &cpu->env; 8156 8157 switch (cs->exception_index) { 8158 case EXCP_UDEF: 8159 addr = 0x04; 8160 break; 8161 case EXCP_SWI: 8162 addr = 0x14; 8163 break; 8164 case EXCP_BKPT: 8165 /* Fall through to prefetch abort. */ 8166 case EXCP_PREFETCH_ABORT: 8167 env->cp15.ifar_s = env->exception.vaddress; 8168 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 8169 (uint32_t)env->exception.vaddress); 8170 addr = 0x0c; 8171 break; 8172 case EXCP_DATA_ABORT: 8173 env->cp15.dfar_s = env->exception.vaddress; 8174 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 8175 (uint32_t)env->exception.vaddress); 8176 addr = 0x10; 8177 break; 8178 case EXCP_IRQ: 8179 addr = 0x18; 8180 break; 8181 case EXCP_FIQ: 8182 addr = 0x1c; 8183 break; 8184 case EXCP_HVC: 8185 addr = 0x08; 8186 break; 8187 case EXCP_HYP_TRAP: 8188 addr = 0x14; 8189 default: 8190 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8191 } 8192 8193 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 8194 env->cp15.esr_el[2] = env->exception.syndrome; 8195 } 8196 8197 if (arm_current_el(env) != 2 && addr < 0x14) { 8198 addr = 0x14; 8199 } 8200 8201 mask = 0; 8202 if (!(env->cp15.scr_el3 & SCR_EA)) { 8203 mask |= CPSR_A; 8204 } 8205 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 8206 mask |= CPSR_I; 8207 } 8208 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 8209 mask |= CPSR_F; 8210 } 8211 8212 addr += env->cp15.hvbar; 8213 8214 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 8215 } 8216 8217 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 8218 { 8219 ARMCPU *cpu = ARM_CPU(cs); 8220 CPUARMState *env = &cpu->env; 8221 uint32_t addr; 8222 uint32_t mask; 8223 int new_mode; 8224 uint32_t offset; 8225 uint32_t moe; 8226 8227 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 8228 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 8229 case EC_BREAKPOINT: 8230 case EC_BREAKPOINT_SAME_EL: 8231 moe = 1; 8232 break; 8233 case EC_WATCHPOINT: 8234 case EC_WATCHPOINT_SAME_EL: 8235 moe = 10; 8236 break; 8237 case EC_AA32_BKPT: 8238 moe = 3; 8239 break; 8240 case EC_VECTORCATCH: 8241 moe = 5; 8242 break; 8243 default: 8244 moe = 0; 8245 break; 8246 } 8247 8248 if (moe) { 8249 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 8250 } 8251 8252 if (env->exception.target_el == 2) { 8253 arm_cpu_do_interrupt_aarch32_hyp(cs); 8254 return; 8255 } 8256 8257 /* TODO: Vectored interrupt controller. */ 8258 switch (cs->exception_index) { 8259 case EXCP_UDEF: 8260 new_mode = ARM_CPU_MODE_UND; 8261 addr = 0x04; 8262 mask = CPSR_I; 8263 if (env->thumb) 8264 offset = 2; 8265 else 8266 offset = 4; 8267 break; 8268 case EXCP_SWI: 8269 new_mode = ARM_CPU_MODE_SVC; 8270 addr = 0x08; 8271 mask = CPSR_I; 8272 /* The PC already points to the next instruction. */ 8273 offset = 0; 8274 break; 8275 case EXCP_BKPT: 8276 /* Fall through to prefetch abort. */ 8277 case EXCP_PREFETCH_ABORT: 8278 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 8279 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 8280 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 8281 env->exception.fsr, (uint32_t)env->exception.vaddress); 8282 new_mode = ARM_CPU_MODE_ABT; 8283 addr = 0x0c; 8284 mask = CPSR_A | CPSR_I; 8285 offset = 4; 8286 break; 8287 case EXCP_DATA_ABORT: 8288 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8289 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8290 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8291 env->exception.fsr, 8292 (uint32_t)env->exception.vaddress); 8293 new_mode = ARM_CPU_MODE_ABT; 8294 addr = 0x10; 8295 mask = CPSR_A | CPSR_I; 8296 offset = 8; 8297 break; 8298 case EXCP_IRQ: 8299 new_mode = ARM_CPU_MODE_IRQ; 8300 addr = 0x18; 8301 /* Disable IRQ and imprecise data aborts. */ 8302 mask = CPSR_A | CPSR_I; 8303 offset = 4; 8304 if (env->cp15.scr_el3 & SCR_IRQ) { 8305 /* IRQ routed to monitor mode */ 8306 new_mode = ARM_CPU_MODE_MON; 8307 mask |= CPSR_F; 8308 } 8309 break; 8310 case EXCP_FIQ: 8311 new_mode = ARM_CPU_MODE_FIQ; 8312 addr = 0x1c; 8313 /* Disable FIQ, IRQ and imprecise data aborts. */ 8314 mask = CPSR_A | CPSR_I | CPSR_F; 8315 if (env->cp15.scr_el3 & SCR_FIQ) { 8316 /* FIQ routed to monitor mode */ 8317 new_mode = ARM_CPU_MODE_MON; 8318 } 8319 offset = 4; 8320 break; 8321 case EXCP_VIRQ: 8322 new_mode = ARM_CPU_MODE_IRQ; 8323 addr = 0x18; 8324 /* Disable IRQ and imprecise data aborts. */ 8325 mask = CPSR_A | CPSR_I; 8326 offset = 4; 8327 break; 8328 case EXCP_VFIQ: 8329 new_mode = ARM_CPU_MODE_FIQ; 8330 addr = 0x1c; 8331 /* Disable FIQ, IRQ and imprecise data aborts. */ 8332 mask = CPSR_A | CPSR_I | CPSR_F; 8333 offset = 4; 8334 break; 8335 case EXCP_SMC: 8336 new_mode = ARM_CPU_MODE_MON; 8337 addr = 0x08; 8338 mask = CPSR_A | CPSR_I | CPSR_F; 8339 offset = 0; 8340 break; 8341 default: 8342 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8343 return; /* Never happens. Keep compiler happy. */ 8344 } 8345 8346 if (new_mode == ARM_CPU_MODE_MON) { 8347 addr += env->cp15.mvbar; 8348 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8349 /* High vectors. When enabled, base address cannot be remapped. */ 8350 addr += 0xffff0000; 8351 } else { 8352 /* ARM v7 architectures provide a vector base address register to remap 8353 * the interrupt vector table. 8354 * This register is only followed in non-monitor mode, and is banked. 8355 * Note: only bits 31:5 are valid. 8356 */ 8357 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8358 } 8359 8360 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8361 env->cp15.scr_el3 &= ~SCR_NS; 8362 } 8363 8364 take_aarch32_exception(env, new_mode, mask, offset, addr); 8365 } 8366 8367 /* Handle exception entry to a target EL which is using AArch64 */ 8368 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8369 { 8370 ARMCPU *cpu = ARM_CPU(cs); 8371 CPUARMState *env = &cpu->env; 8372 unsigned int new_el = env->exception.target_el; 8373 target_ulong addr = env->cp15.vbar_el[new_el]; 8374 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8375 unsigned int cur_el = arm_current_el(env); 8376 8377 aarch64_sve_change_el(env, cur_el, new_el); 8378 8379 if (cur_el < new_el) { 8380 /* Entry vector offset depends on whether the implemented EL 8381 * immediately lower than the target level is using AArch32 or AArch64 8382 */ 8383 bool is_aa64; 8384 8385 switch (new_el) { 8386 case 3: 8387 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8388 break; 8389 case 2: 8390 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8391 break; 8392 case 1: 8393 is_aa64 = is_a64(env); 8394 break; 8395 default: 8396 g_assert_not_reached(); 8397 } 8398 8399 if (is_aa64) { 8400 addr += 0x400; 8401 } else { 8402 addr += 0x600; 8403 } 8404 } else if (pstate_read(env) & PSTATE_SP) { 8405 addr += 0x200; 8406 } 8407 8408 switch (cs->exception_index) { 8409 case EXCP_PREFETCH_ABORT: 8410 case EXCP_DATA_ABORT: 8411 env->cp15.far_el[new_el] = env->exception.vaddress; 8412 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8413 env->cp15.far_el[new_el]); 8414 /* fall through */ 8415 case EXCP_BKPT: 8416 case EXCP_UDEF: 8417 case EXCP_SWI: 8418 case EXCP_HVC: 8419 case EXCP_HYP_TRAP: 8420 case EXCP_SMC: 8421 env->cp15.esr_el[new_el] = env->exception.syndrome; 8422 break; 8423 case EXCP_IRQ: 8424 case EXCP_VIRQ: 8425 addr += 0x80; 8426 break; 8427 case EXCP_FIQ: 8428 case EXCP_VFIQ: 8429 addr += 0x100; 8430 break; 8431 case EXCP_SEMIHOST: 8432 qemu_log_mask(CPU_LOG_INT, 8433 "...handling as semihosting call 0x%" PRIx64 "\n", 8434 env->xregs[0]); 8435 env->xregs[0] = do_arm_semihosting(env); 8436 return; 8437 default: 8438 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8439 } 8440 8441 if (is_a64(env)) { 8442 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8443 aarch64_save_sp(env, arm_current_el(env)); 8444 env->elr_el[new_el] = env->pc; 8445 } else { 8446 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8447 env->elr_el[new_el] = env->regs[15]; 8448 8449 aarch64_sync_32_to_64(env); 8450 8451 env->condexec_bits = 0; 8452 } 8453 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8454 env->elr_el[new_el]); 8455 8456 pstate_write(env, PSTATE_DAIF | new_mode); 8457 env->aarch64 = 1; 8458 aarch64_restore_sp(env, new_el); 8459 8460 env->pc = addr; 8461 8462 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8463 new_el, env->pc, pstate_read(env)); 8464 } 8465 8466 static inline bool check_for_semihosting(CPUState *cs) 8467 { 8468 /* Check whether this exception is a semihosting call; if so 8469 * then handle it and return true; otherwise return false. 8470 */ 8471 ARMCPU *cpu = ARM_CPU(cs); 8472 CPUARMState *env = &cpu->env; 8473 8474 if (is_a64(env)) { 8475 if (cs->exception_index == EXCP_SEMIHOST) { 8476 /* This is always the 64-bit semihosting exception. 8477 * The "is this usermode" and "is semihosting enabled" 8478 * checks have been done at translate time. 8479 */ 8480 qemu_log_mask(CPU_LOG_INT, 8481 "...handling as semihosting call 0x%" PRIx64 "\n", 8482 env->xregs[0]); 8483 env->xregs[0] = do_arm_semihosting(env); 8484 return true; 8485 } 8486 return false; 8487 } else { 8488 uint32_t imm; 8489 8490 /* Only intercept calls from privileged modes, to provide some 8491 * semblance of security. 8492 */ 8493 if (cs->exception_index != EXCP_SEMIHOST && 8494 (!semihosting_enabled() || 8495 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8496 return false; 8497 } 8498 8499 switch (cs->exception_index) { 8500 case EXCP_SEMIHOST: 8501 /* This is always a semihosting call; the "is this usermode" 8502 * and "is semihosting enabled" checks have been done at 8503 * translate time. 8504 */ 8505 break; 8506 case EXCP_SWI: 8507 /* Check for semihosting interrupt. */ 8508 if (env->thumb) { 8509 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8510 & 0xff; 8511 if (imm == 0xab) { 8512 break; 8513 } 8514 } else { 8515 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8516 & 0xffffff; 8517 if (imm == 0x123456) { 8518 break; 8519 } 8520 } 8521 return false; 8522 case EXCP_BKPT: 8523 /* See if this is a semihosting syscall. */ 8524 if (env->thumb) { 8525 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8526 & 0xff; 8527 if (imm == 0xab) { 8528 env->regs[15] += 2; 8529 break; 8530 } 8531 } 8532 return false; 8533 default: 8534 return false; 8535 } 8536 8537 qemu_log_mask(CPU_LOG_INT, 8538 "...handling as semihosting call 0x%x\n", 8539 env->regs[0]); 8540 env->regs[0] = do_arm_semihosting(env); 8541 return true; 8542 } 8543 } 8544 8545 /* Handle a CPU exception for A and R profile CPUs. 8546 * Do any appropriate logging, handle PSCI calls, and then hand off 8547 * to the AArch64-entry or AArch32-entry function depending on the 8548 * target exception level's register width. 8549 */ 8550 void arm_cpu_do_interrupt(CPUState *cs) 8551 { 8552 ARMCPU *cpu = ARM_CPU(cs); 8553 CPUARMState *env = &cpu->env; 8554 unsigned int new_el = env->exception.target_el; 8555 8556 assert(!arm_feature(env, ARM_FEATURE_M)); 8557 8558 arm_log_exception(cs->exception_index); 8559 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8560 new_el); 8561 if (qemu_loglevel_mask(CPU_LOG_INT) 8562 && !excp_is_internal(cs->exception_index)) { 8563 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8564 env->exception.syndrome >> ARM_EL_EC_SHIFT, 8565 env->exception.syndrome); 8566 } 8567 8568 if (arm_is_psci_call(cpu, cs->exception_index)) { 8569 arm_handle_psci_call(cpu); 8570 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8571 return; 8572 } 8573 8574 /* Semihosting semantics depend on the register width of the 8575 * code that caused the exception, not the target exception level, 8576 * so must be handled here. 8577 */ 8578 if (check_for_semihosting(cs)) { 8579 return; 8580 } 8581 8582 /* Hooks may change global state so BQL should be held, also the 8583 * BQL needs to be held for any modification of 8584 * cs->interrupt_request. 8585 */ 8586 g_assert(qemu_mutex_iothread_locked()); 8587 8588 arm_call_pre_el_change_hook(cpu); 8589 8590 assert(!excp_is_internal(cs->exception_index)); 8591 if (arm_el_is_aa64(env, new_el)) { 8592 arm_cpu_do_interrupt_aarch64(cs); 8593 } else { 8594 arm_cpu_do_interrupt_aarch32(cs); 8595 } 8596 8597 arm_call_el_change_hook(cpu); 8598 8599 if (!kvm_enabled()) { 8600 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8601 } 8602 } 8603 8604 /* Return the exception level which controls this address translation regime */ 8605 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8606 { 8607 switch (mmu_idx) { 8608 case ARMMMUIdx_S2NS: 8609 case ARMMMUIdx_S1E2: 8610 return 2; 8611 case ARMMMUIdx_S1E3: 8612 return 3; 8613 case ARMMMUIdx_S1SE0: 8614 return arm_el_is_aa64(env, 3) ? 1 : 3; 8615 case ARMMMUIdx_S1SE1: 8616 case ARMMMUIdx_S1NSE0: 8617 case ARMMMUIdx_S1NSE1: 8618 case ARMMMUIdx_MPrivNegPri: 8619 case ARMMMUIdx_MUserNegPri: 8620 case ARMMMUIdx_MPriv: 8621 case ARMMMUIdx_MUser: 8622 case ARMMMUIdx_MSPrivNegPri: 8623 case ARMMMUIdx_MSUserNegPri: 8624 case ARMMMUIdx_MSPriv: 8625 case ARMMMUIdx_MSUser: 8626 return 1; 8627 default: 8628 g_assert_not_reached(); 8629 } 8630 } 8631 8632 /* Return the SCTLR value which controls this address translation regime */ 8633 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8634 { 8635 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8636 } 8637 8638 /* Return true if the specified stage of address translation is disabled */ 8639 static inline bool regime_translation_disabled(CPUARMState *env, 8640 ARMMMUIdx mmu_idx) 8641 { 8642 if (arm_feature(env, ARM_FEATURE_M)) { 8643 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8644 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8645 case R_V7M_MPU_CTRL_ENABLE_MASK: 8646 /* Enabled, but not for HardFault and NMI */ 8647 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8648 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8649 /* Enabled for all cases */ 8650 return false; 8651 case 0: 8652 default: 8653 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8654 * we warned about that in armv7m_nvic.c when the guest set it. 8655 */ 8656 return true; 8657 } 8658 } 8659 8660 if (mmu_idx == ARMMMUIdx_S2NS) { 8661 return (env->cp15.hcr_el2 & HCR_VM) == 0; 8662 } 8663 8664 if (env->cp15.hcr_el2 & HCR_TGE) { 8665 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 8666 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 8667 return true; 8668 } 8669 } 8670 8671 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8672 } 8673 8674 static inline bool regime_translation_big_endian(CPUARMState *env, 8675 ARMMMUIdx mmu_idx) 8676 { 8677 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8678 } 8679 8680 /* Return the TCR controlling this translation regime */ 8681 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8682 { 8683 if (mmu_idx == ARMMMUIdx_S2NS) { 8684 return &env->cp15.vtcr_el2; 8685 } 8686 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8687 } 8688 8689 /* Convert a possible stage1+2 MMU index into the appropriate 8690 * stage 1 MMU index 8691 */ 8692 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8693 { 8694 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8695 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8696 } 8697 return mmu_idx; 8698 } 8699 8700 /* Returns TBI0 value for current regime el */ 8701 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 8702 { 8703 TCR *tcr; 8704 uint32_t el; 8705 8706 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8707 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8708 */ 8709 mmu_idx = stage_1_mmu_idx(mmu_idx); 8710 8711 tcr = regime_tcr(env, mmu_idx); 8712 el = regime_el(env, mmu_idx); 8713 8714 if (el > 1) { 8715 return extract64(tcr->raw_tcr, 20, 1); 8716 } else { 8717 return extract64(tcr->raw_tcr, 37, 1); 8718 } 8719 } 8720 8721 /* Returns TBI1 value for current regime el */ 8722 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8723 { 8724 TCR *tcr; 8725 uint32_t el; 8726 8727 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8728 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8729 */ 8730 mmu_idx = stage_1_mmu_idx(mmu_idx); 8731 8732 tcr = regime_tcr(env, mmu_idx); 8733 el = regime_el(env, mmu_idx); 8734 8735 if (el > 1) { 8736 return 0; 8737 } else { 8738 return extract64(tcr->raw_tcr, 38, 1); 8739 } 8740 } 8741 8742 /* Return the TTBR associated with this translation regime */ 8743 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8744 int ttbrn) 8745 { 8746 if (mmu_idx == ARMMMUIdx_S2NS) { 8747 return env->cp15.vttbr_el2; 8748 } 8749 if (ttbrn == 0) { 8750 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8751 } else { 8752 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8753 } 8754 } 8755 8756 /* Return true if the translation regime is using LPAE format page tables */ 8757 static inline bool regime_using_lpae_format(CPUARMState *env, 8758 ARMMMUIdx mmu_idx) 8759 { 8760 int el = regime_el(env, mmu_idx); 8761 if (el == 2 || arm_el_is_aa64(env, el)) { 8762 return true; 8763 } 8764 if (arm_feature(env, ARM_FEATURE_LPAE) 8765 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8766 return true; 8767 } 8768 return false; 8769 } 8770 8771 /* Returns true if the stage 1 translation regime is using LPAE format page 8772 * tables. Used when raising alignment exceptions, whose FSR changes depending 8773 * on whether the long or short descriptor format is in use. */ 8774 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8775 { 8776 mmu_idx = stage_1_mmu_idx(mmu_idx); 8777 8778 return regime_using_lpae_format(env, mmu_idx); 8779 } 8780 8781 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8782 { 8783 switch (mmu_idx) { 8784 case ARMMMUIdx_S1SE0: 8785 case ARMMMUIdx_S1NSE0: 8786 case ARMMMUIdx_MUser: 8787 case ARMMMUIdx_MSUser: 8788 case ARMMMUIdx_MUserNegPri: 8789 case ARMMMUIdx_MSUserNegPri: 8790 return true; 8791 default: 8792 return false; 8793 case ARMMMUIdx_S12NSE0: 8794 case ARMMMUIdx_S12NSE1: 8795 g_assert_not_reached(); 8796 } 8797 } 8798 8799 /* Translate section/page access permissions to page 8800 * R/W protection flags 8801 * 8802 * @env: CPUARMState 8803 * @mmu_idx: MMU index indicating required translation regime 8804 * @ap: The 3-bit access permissions (AP[2:0]) 8805 * @domain_prot: The 2-bit domain access permissions 8806 */ 8807 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8808 int ap, int domain_prot) 8809 { 8810 bool is_user = regime_is_user(env, mmu_idx); 8811 8812 if (domain_prot == 3) { 8813 return PAGE_READ | PAGE_WRITE; 8814 } 8815 8816 switch (ap) { 8817 case 0: 8818 if (arm_feature(env, ARM_FEATURE_V7)) { 8819 return 0; 8820 } 8821 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8822 case SCTLR_S: 8823 return is_user ? 0 : PAGE_READ; 8824 case SCTLR_R: 8825 return PAGE_READ; 8826 default: 8827 return 0; 8828 } 8829 case 1: 8830 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8831 case 2: 8832 if (is_user) { 8833 return PAGE_READ; 8834 } else { 8835 return PAGE_READ | PAGE_WRITE; 8836 } 8837 case 3: 8838 return PAGE_READ | PAGE_WRITE; 8839 case 4: /* Reserved. */ 8840 return 0; 8841 case 5: 8842 return is_user ? 0 : PAGE_READ; 8843 case 6: 8844 return PAGE_READ; 8845 case 7: 8846 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8847 return 0; 8848 } 8849 return PAGE_READ; 8850 default: 8851 g_assert_not_reached(); 8852 } 8853 } 8854 8855 /* Translate section/page access permissions to page 8856 * R/W protection flags. 8857 * 8858 * @ap: The 2-bit simple AP (AP[2:1]) 8859 * @is_user: TRUE if accessing from PL0 8860 */ 8861 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8862 { 8863 switch (ap) { 8864 case 0: 8865 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8866 case 1: 8867 return PAGE_READ | PAGE_WRITE; 8868 case 2: 8869 return is_user ? 0 : PAGE_READ; 8870 case 3: 8871 return PAGE_READ; 8872 default: 8873 g_assert_not_reached(); 8874 } 8875 } 8876 8877 static inline int 8878 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8879 { 8880 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8881 } 8882 8883 /* Translate S2 section/page access permissions to protection flags 8884 * 8885 * @env: CPUARMState 8886 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8887 * @xn: XN (execute-never) bit 8888 */ 8889 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8890 { 8891 int prot = 0; 8892 8893 if (s2ap & 1) { 8894 prot |= PAGE_READ; 8895 } 8896 if (s2ap & 2) { 8897 prot |= PAGE_WRITE; 8898 } 8899 if (!xn) { 8900 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8901 prot |= PAGE_EXEC; 8902 } 8903 } 8904 return prot; 8905 } 8906 8907 /* Translate section/page access permissions to protection flags 8908 * 8909 * @env: CPUARMState 8910 * @mmu_idx: MMU index indicating required translation regime 8911 * @is_aa64: TRUE if AArch64 8912 * @ap: The 2-bit simple AP (AP[2:1]) 8913 * @ns: NS (non-secure) bit 8914 * @xn: XN (execute-never) bit 8915 * @pxn: PXN (privileged execute-never) bit 8916 */ 8917 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8918 int ap, int ns, int xn, int pxn) 8919 { 8920 bool is_user = regime_is_user(env, mmu_idx); 8921 int prot_rw, user_rw; 8922 bool have_wxn; 8923 int wxn = 0; 8924 8925 assert(mmu_idx != ARMMMUIdx_S2NS); 8926 8927 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8928 if (is_user) { 8929 prot_rw = user_rw; 8930 } else { 8931 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8932 } 8933 8934 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8935 return prot_rw; 8936 } 8937 8938 /* TODO have_wxn should be replaced with 8939 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8940 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8941 * compatible processors have EL2, which is required for [U]WXN. 8942 */ 8943 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8944 8945 if (have_wxn) { 8946 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8947 } 8948 8949 if (is_aa64) { 8950 switch (regime_el(env, mmu_idx)) { 8951 case 1: 8952 if (!is_user) { 8953 xn = pxn || (user_rw & PAGE_WRITE); 8954 } 8955 break; 8956 case 2: 8957 case 3: 8958 break; 8959 } 8960 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8961 switch (regime_el(env, mmu_idx)) { 8962 case 1: 8963 case 3: 8964 if (is_user) { 8965 xn = xn || !(user_rw & PAGE_READ); 8966 } else { 8967 int uwxn = 0; 8968 if (have_wxn) { 8969 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8970 } 8971 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8972 (uwxn && (user_rw & PAGE_WRITE)); 8973 } 8974 break; 8975 case 2: 8976 break; 8977 } 8978 } else { 8979 xn = wxn = 0; 8980 } 8981 8982 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8983 return prot_rw; 8984 } 8985 return prot_rw | PAGE_EXEC; 8986 } 8987 8988 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8989 uint32_t *table, uint32_t address) 8990 { 8991 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8992 TCR *tcr = regime_tcr(env, mmu_idx); 8993 8994 if (address & tcr->mask) { 8995 if (tcr->raw_tcr & TTBCR_PD1) { 8996 /* Translation table walk disabled for TTBR1 */ 8997 return false; 8998 } 8999 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 9000 } else { 9001 if (tcr->raw_tcr & TTBCR_PD0) { 9002 /* Translation table walk disabled for TTBR0 */ 9003 return false; 9004 } 9005 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 9006 } 9007 *table |= (address >> 18) & 0x3ffc; 9008 return true; 9009 } 9010 9011 /* Translate a S1 pagetable walk through S2 if needed. */ 9012 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 9013 hwaddr addr, MemTxAttrs txattrs, 9014 ARMMMUFaultInfo *fi) 9015 { 9016 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 9017 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 9018 target_ulong s2size; 9019 hwaddr s2pa; 9020 int s2prot; 9021 int ret; 9022 9023 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 9024 &txattrs, &s2prot, &s2size, fi, NULL); 9025 if (ret) { 9026 assert(fi->type != ARMFault_None); 9027 fi->s2addr = addr; 9028 fi->stage2 = true; 9029 fi->s1ptw = true; 9030 return ~0; 9031 } 9032 addr = s2pa; 9033 } 9034 return addr; 9035 } 9036 9037 /* All loads done in the course of a page table walk go through here. */ 9038 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9039 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9040 { 9041 ARMCPU *cpu = ARM_CPU(cs); 9042 CPUARMState *env = &cpu->env; 9043 MemTxAttrs attrs = {}; 9044 MemTxResult result = MEMTX_OK; 9045 AddressSpace *as; 9046 uint32_t data; 9047 9048 attrs.secure = is_secure; 9049 as = arm_addressspace(cs, attrs); 9050 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9051 if (fi->s1ptw) { 9052 return 0; 9053 } 9054 if (regime_translation_big_endian(env, mmu_idx)) { 9055 data = address_space_ldl_be(as, addr, attrs, &result); 9056 } else { 9057 data = address_space_ldl_le(as, addr, attrs, &result); 9058 } 9059 if (result == MEMTX_OK) { 9060 return data; 9061 } 9062 fi->type = ARMFault_SyncExternalOnWalk; 9063 fi->ea = arm_extabort_type(result); 9064 return 0; 9065 } 9066 9067 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9068 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9069 { 9070 ARMCPU *cpu = ARM_CPU(cs); 9071 CPUARMState *env = &cpu->env; 9072 MemTxAttrs attrs = {}; 9073 MemTxResult result = MEMTX_OK; 9074 AddressSpace *as; 9075 uint64_t data; 9076 9077 attrs.secure = is_secure; 9078 as = arm_addressspace(cs, attrs); 9079 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9080 if (fi->s1ptw) { 9081 return 0; 9082 } 9083 if (regime_translation_big_endian(env, mmu_idx)) { 9084 data = address_space_ldq_be(as, addr, attrs, &result); 9085 } else { 9086 data = address_space_ldq_le(as, addr, attrs, &result); 9087 } 9088 if (result == MEMTX_OK) { 9089 return data; 9090 } 9091 fi->type = ARMFault_SyncExternalOnWalk; 9092 fi->ea = arm_extabort_type(result); 9093 return 0; 9094 } 9095 9096 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 9097 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9098 hwaddr *phys_ptr, int *prot, 9099 target_ulong *page_size, 9100 ARMMMUFaultInfo *fi) 9101 { 9102 CPUState *cs = CPU(arm_env_get_cpu(env)); 9103 int level = 1; 9104 uint32_t table; 9105 uint32_t desc; 9106 int type; 9107 int ap; 9108 int domain = 0; 9109 int domain_prot; 9110 hwaddr phys_addr; 9111 uint32_t dacr; 9112 9113 /* Pagetable walk. */ 9114 /* Lookup l1 descriptor. */ 9115 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9116 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9117 fi->type = ARMFault_Translation; 9118 goto do_fault; 9119 } 9120 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9121 mmu_idx, fi); 9122 if (fi->type != ARMFault_None) { 9123 goto do_fault; 9124 } 9125 type = (desc & 3); 9126 domain = (desc >> 5) & 0x0f; 9127 if (regime_el(env, mmu_idx) == 1) { 9128 dacr = env->cp15.dacr_ns; 9129 } else { 9130 dacr = env->cp15.dacr_s; 9131 } 9132 domain_prot = (dacr >> (domain * 2)) & 3; 9133 if (type == 0) { 9134 /* Section translation fault. */ 9135 fi->type = ARMFault_Translation; 9136 goto do_fault; 9137 } 9138 if (type != 2) { 9139 level = 2; 9140 } 9141 if (domain_prot == 0 || domain_prot == 2) { 9142 fi->type = ARMFault_Domain; 9143 goto do_fault; 9144 } 9145 if (type == 2) { 9146 /* 1Mb section. */ 9147 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9148 ap = (desc >> 10) & 3; 9149 *page_size = 1024 * 1024; 9150 } else { 9151 /* Lookup l2 entry. */ 9152 if (type == 1) { 9153 /* Coarse pagetable. */ 9154 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9155 } else { 9156 /* Fine pagetable. */ 9157 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 9158 } 9159 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9160 mmu_idx, fi); 9161 if (fi->type != ARMFault_None) { 9162 goto do_fault; 9163 } 9164 switch (desc & 3) { 9165 case 0: /* Page translation fault. */ 9166 fi->type = ARMFault_Translation; 9167 goto do_fault; 9168 case 1: /* 64k page. */ 9169 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9170 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 9171 *page_size = 0x10000; 9172 break; 9173 case 2: /* 4k page. */ 9174 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9175 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 9176 *page_size = 0x1000; 9177 break; 9178 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 9179 if (type == 1) { 9180 /* ARMv6/XScale extended small page format */ 9181 if (arm_feature(env, ARM_FEATURE_XSCALE) 9182 || arm_feature(env, ARM_FEATURE_V6)) { 9183 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9184 *page_size = 0x1000; 9185 } else { 9186 /* UNPREDICTABLE in ARMv5; we choose to take a 9187 * page translation fault. 9188 */ 9189 fi->type = ARMFault_Translation; 9190 goto do_fault; 9191 } 9192 } else { 9193 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 9194 *page_size = 0x400; 9195 } 9196 ap = (desc >> 4) & 3; 9197 break; 9198 default: 9199 /* Never happens, but compiler isn't smart enough to tell. */ 9200 abort(); 9201 } 9202 } 9203 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9204 *prot |= *prot ? PAGE_EXEC : 0; 9205 if (!(*prot & (1 << access_type))) { 9206 /* Access permission fault. */ 9207 fi->type = ARMFault_Permission; 9208 goto do_fault; 9209 } 9210 *phys_ptr = phys_addr; 9211 return false; 9212 do_fault: 9213 fi->domain = domain; 9214 fi->level = level; 9215 return true; 9216 } 9217 9218 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 9219 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9220 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9221 target_ulong *page_size, ARMMMUFaultInfo *fi) 9222 { 9223 CPUState *cs = CPU(arm_env_get_cpu(env)); 9224 int level = 1; 9225 uint32_t table; 9226 uint32_t desc; 9227 uint32_t xn; 9228 uint32_t pxn = 0; 9229 int type; 9230 int ap; 9231 int domain = 0; 9232 int domain_prot; 9233 hwaddr phys_addr; 9234 uint32_t dacr; 9235 bool ns; 9236 9237 /* Pagetable walk. */ 9238 /* Lookup l1 descriptor. */ 9239 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9240 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9241 fi->type = ARMFault_Translation; 9242 goto do_fault; 9243 } 9244 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9245 mmu_idx, fi); 9246 if (fi->type != ARMFault_None) { 9247 goto do_fault; 9248 } 9249 type = (desc & 3); 9250 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 9251 /* Section translation fault, or attempt to use the encoding 9252 * which is Reserved on implementations without PXN. 9253 */ 9254 fi->type = ARMFault_Translation; 9255 goto do_fault; 9256 } 9257 if ((type == 1) || !(desc & (1 << 18))) { 9258 /* Page or Section. */ 9259 domain = (desc >> 5) & 0x0f; 9260 } 9261 if (regime_el(env, mmu_idx) == 1) { 9262 dacr = env->cp15.dacr_ns; 9263 } else { 9264 dacr = env->cp15.dacr_s; 9265 } 9266 if (type == 1) { 9267 level = 2; 9268 } 9269 domain_prot = (dacr >> (domain * 2)) & 3; 9270 if (domain_prot == 0 || domain_prot == 2) { 9271 /* Section or Page domain fault */ 9272 fi->type = ARMFault_Domain; 9273 goto do_fault; 9274 } 9275 if (type != 1) { 9276 if (desc & (1 << 18)) { 9277 /* Supersection. */ 9278 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9279 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9280 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9281 *page_size = 0x1000000; 9282 } else { 9283 /* Section. */ 9284 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9285 *page_size = 0x100000; 9286 } 9287 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9288 xn = desc & (1 << 4); 9289 pxn = desc & 1; 9290 ns = extract32(desc, 19, 1); 9291 } else { 9292 if (arm_feature(env, ARM_FEATURE_PXN)) { 9293 pxn = (desc >> 2) & 1; 9294 } 9295 ns = extract32(desc, 3, 1); 9296 /* Lookup l2 entry. */ 9297 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9298 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9299 mmu_idx, fi); 9300 if (fi->type != ARMFault_None) { 9301 goto do_fault; 9302 } 9303 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9304 switch (desc & 3) { 9305 case 0: /* Page translation fault. */ 9306 fi->type = ARMFault_Translation; 9307 goto do_fault; 9308 case 1: /* 64k page. */ 9309 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9310 xn = desc & (1 << 15); 9311 *page_size = 0x10000; 9312 break; 9313 case 2: case 3: /* 4k page. */ 9314 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9315 xn = desc & 1; 9316 *page_size = 0x1000; 9317 break; 9318 default: 9319 /* Never happens, but compiler isn't smart enough to tell. */ 9320 abort(); 9321 } 9322 } 9323 if (domain_prot == 3) { 9324 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9325 } else { 9326 if (pxn && !regime_is_user(env, mmu_idx)) { 9327 xn = 1; 9328 } 9329 if (xn && access_type == MMU_INST_FETCH) { 9330 fi->type = ARMFault_Permission; 9331 goto do_fault; 9332 } 9333 9334 if (arm_feature(env, ARM_FEATURE_V6K) && 9335 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9336 /* The simplified model uses AP[0] as an access control bit. */ 9337 if ((ap & 1) == 0) { 9338 /* Access flag fault. */ 9339 fi->type = ARMFault_AccessFlag; 9340 goto do_fault; 9341 } 9342 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9343 } else { 9344 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9345 } 9346 if (*prot && !xn) { 9347 *prot |= PAGE_EXEC; 9348 } 9349 if (!(*prot & (1 << access_type))) { 9350 /* Access permission fault. */ 9351 fi->type = ARMFault_Permission; 9352 goto do_fault; 9353 } 9354 } 9355 if (ns) { 9356 /* The NS bit will (as required by the architecture) have no effect if 9357 * the CPU doesn't support TZ or this is a non-secure translation 9358 * regime, because the attribute will already be non-secure. 9359 */ 9360 attrs->secure = false; 9361 } 9362 *phys_ptr = phys_addr; 9363 return false; 9364 do_fault: 9365 fi->domain = domain; 9366 fi->level = level; 9367 return true; 9368 } 9369 9370 /* 9371 * check_s2_mmu_setup 9372 * @cpu: ARMCPU 9373 * @is_aa64: True if the translation regime is in AArch64 state 9374 * @startlevel: Suggested starting level 9375 * @inputsize: Bitsize of IPAs 9376 * @stride: Page-table stride (See the ARM ARM) 9377 * 9378 * Returns true if the suggested S2 translation parameters are OK and 9379 * false otherwise. 9380 */ 9381 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9382 int inputsize, int stride) 9383 { 9384 const int grainsize = stride + 3; 9385 int startsizecheck; 9386 9387 /* Negative levels are never allowed. */ 9388 if (level < 0) { 9389 return false; 9390 } 9391 9392 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9393 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9394 return false; 9395 } 9396 9397 if (is_aa64) { 9398 CPUARMState *env = &cpu->env; 9399 unsigned int pamax = arm_pamax(cpu); 9400 9401 switch (stride) { 9402 case 13: /* 64KB Pages. */ 9403 if (level == 0 || (level == 1 && pamax <= 42)) { 9404 return false; 9405 } 9406 break; 9407 case 11: /* 16KB Pages. */ 9408 if (level == 0 || (level == 1 && pamax <= 40)) { 9409 return false; 9410 } 9411 break; 9412 case 9: /* 4KB Pages. */ 9413 if (level == 0 && pamax <= 42) { 9414 return false; 9415 } 9416 break; 9417 default: 9418 g_assert_not_reached(); 9419 } 9420 9421 /* Inputsize checks. */ 9422 if (inputsize > pamax && 9423 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9424 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9425 return false; 9426 } 9427 } else { 9428 /* AArch32 only supports 4KB pages. Assert on that. */ 9429 assert(stride == 9); 9430 9431 if (level == 0) { 9432 return false; 9433 } 9434 } 9435 return true; 9436 } 9437 9438 /* Translate from the 4-bit stage 2 representation of 9439 * memory attributes (without cache-allocation hints) to 9440 * the 8-bit representation of the stage 1 MAIR registers 9441 * (which includes allocation hints). 9442 * 9443 * ref: shared/translation/attrs/S2AttrDecode() 9444 * .../S2ConvertAttrsHints() 9445 */ 9446 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9447 { 9448 uint8_t hiattr = extract32(s2attrs, 2, 2); 9449 uint8_t loattr = extract32(s2attrs, 0, 2); 9450 uint8_t hihint = 0, lohint = 0; 9451 9452 if (hiattr != 0) { /* normal memory */ 9453 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9454 hiattr = loattr = 1; /* non-cacheable */ 9455 } else { 9456 if (hiattr != 1) { /* Write-through or write-back */ 9457 hihint = 3; /* RW allocate */ 9458 } 9459 if (loattr != 1) { /* Write-through or write-back */ 9460 lohint = 3; /* RW allocate */ 9461 } 9462 } 9463 } 9464 9465 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9466 } 9467 9468 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9469 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9470 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9471 target_ulong *page_size_ptr, 9472 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9473 { 9474 ARMCPU *cpu = arm_env_get_cpu(env); 9475 CPUState *cs = CPU(cpu); 9476 /* Read an LPAE long-descriptor translation table. */ 9477 ARMFaultType fault_type = ARMFault_Translation; 9478 uint32_t level; 9479 uint32_t epd = 0; 9480 int32_t t0sz, t1sz; 9481 uint32_t tg; 9482 uint64_t ttbr; 9483 int ttbr_select; 9484 hwaddr descaddr, indexmask, indexmask_grainsize; 9485 uint32_t tableattrs; 9486 target_ulong page_size; 9487 uint32_t attrs; 9488 int32_t stride = 9; 9489 int32_t addrsize; 9490 int inputsize; 9491 int32_t tbi = 0; 9492 TCR *tcr = regime_tcr(env, mmu_idx); 9493 int ap, ns, xn, pxn; 9494 uint32_t el = regime_el(env, mmu_idx); 9495 bool ttbr1_valid = true; 9496 uint64_t descaddrmask; 9497 bool aarch64 = arm_el_is_aa64(env, el); 9498 9499 /* TODO: 9500 * This code does not handle the different format TCR for VTCR_EL2. 9501 * This code also does not support shareability levels. 9502 * Attribute and permission bit handling should also be checked when adding 9503 * support for those page table walks. 9504 */ 9505 if (aarch64) { 9506 level = 0; 9507 addrsize = 64; 9508 if (el > 1) { 9509 if (mmu_idx != ARMMMUIdx_S2NS) { 9510 tbi = extract64(tcr->raw_tcr, 20, 1); 9511 } 9512 } else { 9513 if (extract64(address, 55, 1)) { 9514 tbi = extract64(tcr->raw_tcr, 38, 1); 9515 } else { 9516 tbi = extract64(tcr->raw_tcr, 37, 1); 9517 } 9518 } 9519 tbi *= 8; 9520 9521 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9522 * invalid. 9523 */ 9524 if (el > 1) { 9525 ttbr1_valid = false; 9526 } 9527 } else { 9528 level = 1; 9529 addrsize = 32; 9530 /* There is no TTBR1 for EL2 */ 9531 if (el == 2) { 9532 ttbr1_valid = false; 9533 } 9534 } 9535 9536 /* Determine whether this address is in the region controlled by 9537 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 9538 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 9539 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 9540 */ 9541 if (aarch64) { 9542 /* AArch64 translation. */ 9543 t0sz = extract32(tcr->raw_tcr, 0, 6); 9544 t0sz = MIN(t0sz, 39); 9545 t0sz = MAX(t0sz, 16); 9546 } else if (mmu_idx != ARMMMUIdx_S2NS) { 9547 /* AArch32 stage 1 translation. */ 9548 t0sz = extract32(tcr->raw_tcr, 0, 3); 9549 } else { 9550 /* AArch32 stage 2 translation. */ 9551 bool sext = extract32(tcr->raw_tcr, 4, 1); 9552 bool sign = extract32(tcr->raw_tcr, 3, 1); 9553 /* Address size is 40-bit for a stage 2 translation, 9554 * and t0sz can be negative (from -8 to 7), 9555 * so we need to adjust it to use the TTBR selecting logic below. 9556 */ 9557 addrsize = 40; 9558 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 9559 9560 /* If the sign-extend bit is not the same as t0sz[3], the result 9561 * is unpredictable. Flag this as a guest error. */ 9562 if (sign != sext) { 9563 qemu_log_mask(LOG_GUEST_ERROR, 9564 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9565 } 9566 } 9567 t1sz = extract32(tcr->raw_tcr, 16, 6); 9568 if (aarch64) { 9569 t1sz = MIN(t1sz, 39); 9570 t1sz = MAX(t1sz, 16); 9571 } 9572 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 9573 /* there is a ttbr0 region and we are in it (high bits all zero) */ 9574 ttbr_select = 0; 9575 } else if (ttbr1_valid && t1sz && 9576 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 9577 /* there is a ttbr1 region and we are in it (high bits all one) */ 9578 ttbr_select = 1; 9579 } else if (!t0sz) { 9580 /* ttbr0 region is "everything not in the ttbr1 region" */ 9581 ttbr_select = 0; 9582 } else if (!t1sz && ttbr1_valid) { 9583 /* ttbr1 region is "everything not in the ttbr0 region" */ 9584 ttbr_select = 1; 9585 } else { 9586 /* in the gap between the two regions, this is a Translation fault */ 9587 fault_type = ARMFault_Translation; 9588 goto do_fault; 9589 } 9590 9591 /* Note that QEMU ignores shareability and cacheability attributes, 9592 * so we don't need to do anything with the SH, ORGN, IRGN fields 9593 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9594 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9595 * implement any ASID-like capability so we can ignore it (instead 9596 * we will always flush the TLB any time the ASID is changed). 9597 */ 9598 if (ttbr_select == 0) { 9599 ttbr = regime_ttbr(env, mmu_idx, 0); 9600 if (el < 2) { 9601 epd = extract32(tcr->raw_tcr, 7, 1); 9602 } 9603 inputsize = addrsize - t0sz; 9604 9605 tg = extract32(tcr->raw_tcr, 14, 2); 9606 if (tg == 1) { /* 64KB pages */ 9607 stride = 13; 9608 } 9609 if (tg == 2) { /* 16KB pages */ 9610 stride = 11; 9611 } 9612 } else { 9613 /* We should only be here if TTBR1 is valid */ 9614 assert(ttbr1_valid); 9615 9616 ttbr = regime_ttbr(env, mmu_idx, 1); 9617 epd = extract32(tcr->raw_tcr, 23, 1); 9618 inputsize = addrsize - t1sz; 9619 9620 tg = extract32(tcr->raw_tcr, 30, 2); 9621 if (tg == 3) { /* 64KB pages */ 9622 stride = 13; 9623 } 9624 if (tg == 1) { /* 16KB pages */ 9625 stride = 11; 9626 } 9627 } 9628 9629 /* Here we should have set up all the parameters for the translation: 9630 * inputsize, ttbr, epd, stride, tbi 9631 */ 9632 9633 if (epd) { 9634 /* Translation table walk disabled => Translation fault on TLB miss 9635 * Note: This is always 0 on 64-bit EL2 and EL3. 9636 */ 9637 goto do_fault; 9638 } 9639 9640 if (mmu_idx != ARMMMUIdx_S2NS) { 9641 /* The starting level depends on the virtual address size (which can 9642 * be up to 48 bits) and the translation granule size. It indicates 9643 * the number of strides (stride bits at a time) needed to 9644 * consume the bits of the input address. In the pseudocode this is: 9645 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9646 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9647 * our 'stride + 3' and 'stride' is our 'stride'. 9648 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9649 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9650 * = 4 - (inputsize - 4) / stride; 9651 */ 9652 level = 4 - (inputsize - 4) / stride; 9653 } else { 9654 /* For stage 2 translations the starting level is specified by the 9655 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9656 */ 9657 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9658 uint32_t startlevel; 9659 bool ok; 9660 9661 if (!aarch64 || stride == 9) { 9662 /* AArch32 or 4KB pages */ 9663 startlevel = 2 - sl0; 9664 } else { 9665 /* 16KB or 64KB pages */ 9666 startlevel = 3 - sl0; 9667 } 9668 9669 /* Check that the starting level is valid. */ 9670 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9671 inputsize, stride); 9672 if (!ok) { 9673 fault_type = ARMFault_Translation; 9674 goto do_fault; 9675 } 9676 level = startlevel; 9677 } 9678 9679 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9680 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9681 9682 /* Now we can extract the actual base address from the TTBR */ 9683 descaddr = extract64(ttbr, 0, 48); 9684 descaddr &= ~indexmask; 9685 9686 /* The address field in the descriptor goes up to bit 39 for ARMv7 9687 * but up to bit 47 for ARMv8, but we use the descaddrmask 9688 * up to bit 39 for AArch32, because we don't need other bits in that case 9689 * to construct next descriptor address (anyway they should be all zeroes). 9690 */ 9691 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9692 ~indexmask_grainsize; 9693 9694 /* Secure accesses start with the page table in secure memory and 9695 * can be downgraded to non-secure at any step. Non-secure accesses 9696 * remain non-secure. We implement this by just ORing in the NSTable/NS 9697 * bits at each step. 9698 */ 9699 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9700 for (;;) { 9701 uint64_t descriptor; 9702 bool nstable; 9703 9704 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9705 descaddr &= ~7ULL; 9706 nstable = extract32(tableattrs, 4, 1); 9707 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9708 if (fi->type != ARMFault_None) { 9709 goto do_fault; 9710 } 9711 9712 if (!(descriptor & 1) || 9713 (!(descriptor & 2) && (level == 3))) { 9714 /* Invalid, or the Reserved level 3 encoding */ 9715 goto do_fault; 9716 } 9717 descaddr = descriptor & descaddrmask; 9718 9719 if ((descriptor & 2) && (level < 3)) { 9720 /* Table entry. The top five bits are attributes which may 9721 * propagate down through lower levels of the table (and 9722 * which are all arranged so that 0 means "no effect", so 9723 * we can gather them up by ORing in the bits at each level). 9724 */ 9725 tableattrs |= extract64(descriptor, 59, 5); 9726 level++; 9727 indexmask = indexmask_grainsize; 9728 continue; 9729 } 9730 /* Block entry at level 1 or 2, or page entry at level 3. 9731 * These are basically the same thing, although the number 9732 * of bits we pull in from the vaddr varies. 9733 */ 9734 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9735 descaddr |= (address & (page_size - 1)); 9736 /* Extract attributes from the descriptor */ 9737 attrs = extract64(descriptor, 2, 10) 9738 | (extract64(descriptor, 52, 12) << 10); 9739 9740 if (mmu_idx == ARMMMUIdx_S2NS) { 9741 /* Stage 2 table descriptors do not include any attribute fields */ 9742 break; 9743 } 9744 /* Merge in attributes from table descriptors */ 9745 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9746 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 9747 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9748 * means "force PL1 access only", which means forcing AP[1] to 0. 9749 */ 9750 if (extract32(tableattrs, 2, 1)) { 9751 attrs &= ~(1 << 4); 9752 } 9753 attrs |= nstable << 3; /* NS */ 9754 break; 9755 } 9756 /* Here descaddr is the final physical address, and attributes 9757 * are all in attrs. 9758 */ 9759 fault_type = ARMFault_AccessFlag; 9760 if ((attrs & (1 << 8)) == 0) { 9761 /* Access flag */ 9762 goto do_fault; 9763 } 9764 9765 ap = extract32(attrs, 4, 2); 9766 xn = extract32(attrs, 12, 1); 9767 9768 if (mmu_idx == ARMMMUIdx_S2NS) { 9769 ns = true; 9770 *prot = get_S2prot(env, ap, xn); 9771 } else { 9772 ns = extract32(attrs, 3, 1); 9773 pxn = extract32(attrs, 11, 1); 9774 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9775 } 9776 9777 fault_type = ARMFault_Permission; 9778 if (!(*prot & (1 << access_type))) { 9779 goto do_fault; 9780 } 9781 9782 if (ns) { 9783 /* The NS bit will (as required by the architecture) have no effect if 9784 * the CPU doesn't support TZ or this is a non-secure translation 9785 * regime, because the attribute will already be non-secure. 9786 */ 9787 txattrs->secure = false; 9788 } 9789 9790 if (cacheattrs != NULL) { 9791 if (mmu_idx == ARMMMUIdx_S2NS) { 9792 cacheattrs->attrs = convert_stage2_attrs(env, 9793 extract32(attrs, 0, 4)); 9794 } else { 9795 /* Index into MAIR registers for cache attributes */ 9796 uint8_t attrindx = extract32(attrs, 0, 3); 9797 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9798 assert(attrindx <= 7); 9799 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9800 } 9801 cacheattrs->shareability = extract32(attrs, 6, 2); 9802 } 9803 9804 *phys_ptr = descaddr; 9805 *page_size_ptr = page_size; 9806 return false; 9807 9808 do_fault: 9809 fi->type = fault_type; 9810 fi->level = level; 9811 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9812 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9813 return true; 9814 } 9815 9816 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9817 ARMMMUIdx mmu_idx, 9818 int32_t address, int *prot) 9819 { 9820 if (!arm_feature(env, ARM_FEATURE_M)) { 9821 *prot = PAGE_READ | PAGE_WRITE; 9822 switch (address) { 9823 case 0xF0000000 ... 0xFFFFFFFF: 9824 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9825 /* hivecs execing is ok */ 9826 *prot |= PAGE_EXEC; 9827 } 9828 break; 9829 case 0x00000000 ... 0x7FFFFFFF: 9830 *prot |= PAGE_EXEC; 9831 break; 9832 } 9833 } else { 9834 /* Default system address map for M profile cores. 9835 * The architecture specifies which regions are execute-never; 9836 * at the MPU level no other checks are defined. 9837 */ 9838 switch (address) { 9839 case 0x00000000 ... 0x1fffffff: /* ROM */ 9840 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9841 case 0x60000000 ... 0x7fffffff: /* RAM */ 9842 case 0x80000000 ... 0x9fffffff: /* RAM */ 9843 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9844 break; 9845 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9846 case 0xa0000000 ... 0xbfffffff: /* Device */ 9847 case 0xc0000000 ... 0xdfffffff: /* Device */ 9848 case 0xe0000000 ... 0xffffffff: /* System */ 9849 *prot = PAGE_READ | PAGE_WRITE; 9850 break; 9851 default: 9852 g_assert_not_reached(); 9853 } 9854 } 9855 } 9856 9857 static bool pmsav7_use_background_region(ARMCPU *cpu, 9858 ARMMMUIdx mmu_idx, bool is_user) 9859 { 9860 /* Return true if we should use the default memory map as a 9861 * "background" region if there are no hits against any MPU regions. 9862 */ 9863 CPUARMState *env = &cpu->env; 9864 9865 if (is_user) { 9866 return false; 9867 } 9868 9869 if (arm_feature(env, ARM_FEATURE_M)) { 9870 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9871 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9872 } else { 9873 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9874 } 9875 } 9876 9877 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9878 { 9879 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9880 return arm_feature(env, ARM_FEATURE_M) && 9881 extract32(address, 20, 12) == 0xe00; 9882 } 9883 9884 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9885 { 9886 /* True if address is in the M profile system region 9887 * 0xe0000000 - 0xffffffff 9888 */ 9889 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9890 } 9891 9892 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9893 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9894 hwaddr *phys_ptr, int *prot, 9895 target_ulong *page_size, 9896 ARMMMUFaultInfo *fi) 9897 { 9898 ARMCPU *cpu = arm_env_get_cpu(env); 9899 int n; 9900 bool is_user = regime_is_user(env, mmu_idx); 9901 9902 *phys_ptr = address; 9903 *page_size = TARGET_PAGE_SIZE; 9904 *prot = 0; 9905 9906 if (regime_translation_disabled(env, mmu_idx) || 9907 m_is_ppb_region(env, address)) { 9908 /* MPU disabled or M profile PPB access: use default memory map. 9909 * The other case which uses the default memory map in the 9910 * v7M ARM ARM pseudocode is exception vector reads from the vector 9911 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9912 * which always does a direct read using address_space_ldl(), rather 9913 * than going via this function, so we don't need to check that here. 9914 */ 9915 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9916 } else { /* MPU enabled */ 9917 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9918 /* region search */ 9919 uint32_t base = env->pmsav7.drbar[n]; 9920 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9921 uint32_t rmask; 9922 bool srdis = false; 9923 9924 if (!(env->pmsav7.drsr[n] & 0x1)) { 9925 continue; 9926 } 9927 9928 if (!rsize) { 9929 qemu_log_mask(LOG_GUEST_ERROR, 9930 "DRSR[%d]: Rsize field cannot be 0\n", n); 9931 continue; 9932 } 9933 rsize++; 9934 rmask = (1ull << rsize) - 1; 9935 9936 if (base & rmask) { 9937 qemu_log_mask(LOG_GUEST_ERROR, 9938 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9939 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9940 n, base, rmask); 9941 continue; 9942 } 9943 9944 if (address < base || address > base + rmask) { 9945 /* 9946 * Address not in this region. We must check whether the 9947 * region covers addresses in the same page as our address. 9948 * In that case we must not report a size that covers the 9949 * whole page for a subsequent hit against a different MPU 9950 * region or the background region, because it would result in 9951 * incorrect TLB hits for subsequent accesses to addresses that 9952 * are in this MPU region. 9953 */ 9954 if (ranges_overlap(base, rmask, 9955 address & TARGET_PAGE_MASK, 9956 TARGET_PAGE_SIZE)) { 9957 *page_size = 1; 9958 } 9959 continue; 9960 } 9961 9962 /* Region matched */ 9963 9964 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9965 int i, snd; 9966 uint32_t srdis_mask; 9967 9968 rsize -= 3; /* sub region size (power of 2) */ 9969 snd = ((address - base) >> rsize) & 0x7; 9970 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9971 9972 srdis_mask = srdis ? 0x3 : 0x0; 9973 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9974 /* This will check in groups of 2, 4 and then 8, whether 9975 * the subregion bits are consistent. rsize is incremented 9976 * back up to give the region size, considering consistent 9977 * adjacent subregions as one region. Stop testing if rsize 9978 * is already big enough for an entire QEMU page. 9979 */ 9980 int snd_rounded = snd & ~(i - 1); 9981 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9982 snd_rounded + 8, i); 9983 if (srdis_mask ^ srdis_multi) { 9984 break; 9985 } 9986 srdis_mask = (srdis_mask << i) | srdis_mask; 9987 rsize++; 9988 } 9989 } 9990 if (srdis) { 9991 continue; 9992 } 9993 if (rsize < TARGET_PAGE_BITS) { 9994 *page_size = 1 << rsize; 9995 } 9996 break; 9997 } 9998 9999 if (n == -1) { /* no hits */ 10000 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10001 /* background fault */ 10002 fi->type = ARMFault_Background; 10003 return true; 10004 } 10005 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10006 } else { /* a MPU hit! */ 10007 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 10008 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 10009 10010 if (m_is_system_region(env, address)) { 10011 /* System space is always execute never */ 10012 xn = 1; 10013 } 10014 10015 if (is_user) { /* User mode AP bit decoding */ 10016 switch (ap) { 10017 case 0: 10018 case 1: 10019 case 5: 10020 break; /* no access */ 10021 case 3: 10022 *prot |= PAGE_WRITE; 10023 /* fall through */ 10024 case 2: 10025 case 6: 10026 *prot |= PAGE_READ | PAGE_EXEC; 10027 break; 10028 case 7: 10029 /* for v7M, same as 6; for R profile a reserved value */ 10030 if (arm_feature(env, ARM_FEATURE_M)) { 10031 *prot |= PAGE_READ | PAGE_EXEC; 10032 break; 10033 } 10034 /* fall through */ 10035 default: 10036 qemu_log_mask(LOG_GUEST_ERROR, 10037 "DRACR[%d]: Bad value for AP bits: 0x%" 10038 PRIx32 "\n", n, ap); 10039 } 10040 } else { /* Priv. mode AP bits decoding */ 10041 switch (ap) { 10042 case 0: 10043 break; /* no access */ 10044 case 1: 10045 case 2: 10046 case 3: 10047 *prot |= PAGE_WRITE; 10048 /* fall through */ 10049 case 5: 10050 case 6: 10051 *prot |= PAGE_READ | PAGE_EXEC; 10052 break; 10053 case 7: 10054 /* for v7M, same as 6; for R profile a reserved value */ 10055 if (arm_feature(env, ARM_FEATURE_M)) { 10056 *prot |= PAGE_READ | PAGE_EXEC; 10057 break; 10058 } 10059 /* fall through */ 10060 default: 10061 qemu_log_mask(LOG_GUEST_ERROR, 10062 "DRACR[%d]: Bad value for AP bits: 0x%" 10063 PRIx32 "\n", n, ap); 10064 } 10065 } 10066 10067 /* execute never */ 10068 if (xn) { 10069 *prot &= ~PAGE_EXEC; 10070 } 10071 } 10072 } 10073 10074 fi->type = ARMFault_Permission; 10075 fi->level = 1; 10076 return !(*prot & (1 << access_type)); 10077 } 10078 10079 static bool v8m_is_sau_exempt(CPUARMState *env, 10080 uint32_t address, MMUAccessType access_type) 10081 { 10082 /* The architecture specifies that certain address ranges are 10083 * exempt from v8M SAU/IDAU checks. 10084 */ 10085 return 10086 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 10087 (address >= 0xe0000000 && address <= 0xe0002fff) || 10088 (address >= 0xe000e000 && address <= 0xe000efff) || 10089 (address >= 0xe002e000 && address <= 0xe002efff) || 10090 (address >= 0xe0040000 && address <= 0xe0041fff) || 10091 (address >= 0xe00ff000 && address <= 0xe00fffff); 10092 } 10093 10094 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 10095 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10096 V8M_SAttributes *sattrs) 10097 { 10098 /* Look up the security attributes for this address. Compare the 10099 * pseudocode SecurityCheck() function. 10100 * We assume the caller has zero-initialized *sattrs. 10101 */ 10102 ARMCPU *cpu = arm_env_get_cpu(env); 10103 int r; 10104 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 10105 int idau_region = IREGION_NOTVALID; 10106 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10107 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10108 10109 if (cpu->idau) { 10110 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 10111 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 10112 10113 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 10114 &idau_nsc); 10115 } 10116 10117 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 10118 /* 0xf0000000..0xffffffff is always S for insn fetches */ 10119 return; 10120 } 10121 10122 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 10123 sattrs->ns = !regime_is_secure(env, mmu_idx); 10124 return; 10125 } 10126 10127 if (idau_region != IREGION_NOTVALID) { 10128 sattrs->irvalid = true; 10129 sattrs->iregion = idau_region; 10130 } 10131 10132 switch (env->sau.ctrl & 3) { 10133 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 10134 break; 10135 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 10136 sattrs->ns = true; 10137 break; 10138 default: /* SAU.ENABLE == 1 */ 10139 for (r = 0; r < cpu->sau_sregion; r++) { 10140 if (env->sau.rlar[r] & 1) { 10141 uint32_t base = env->sau.rbar[r] & ~0x1f; 10142 uint32_t limit = env->sau.rlar[r] | 0x1f; 10143 10144 if (base <= address && limit >= address) { 10145 if (base > addr_page_base || limit < addr_page_limit) { 10146 sattrs->subpage = true; 10147 } 10148 if (sattrs->srvalid) { 10149 /* If we hit in more than one region then we must report 10150 * as Secure, not NS-Callable, with no valid region 10151 * number info. 10152 */ 10153 sattrs->ns = false; 10154 sattrs->nsc = false; 10155 sattrs->sregion = 0; 10156 sattrs->srvalid = false; 10157 break; 10158 } else { 10159 if (env->sau.rlar[r] & 2) { 10160 sattrs->nsc = true; 10161 } else { 10162 sattrs->ns = true; 10163 } 10164 sattrs->srvalid = true; 10165 sattrs->sregion = r; 10166 } 10167 } else { 10168 /* 10169 * Address not in this region. We must check whether the 10170 * region covers addresses in the same page as our address. 10171 * In that case we must not report a size that covers the 10172 * whole page for a subsequent hit against a different MPU 10173 * region or the background region, because it would result 10174 * in incorrect TLB hits for subsequent accesses to 10175 * addresses that are in this MPU region. 10176 */ 10177 if (limit >= base && 10178 ranges_overlap(base, limit - base + 1, 10179 addr_page_base, 10180 TARGET_PAGE_SIZE)) { 10181 sattrs->subpage = true; 10182 } 10183 } 10184 } 10185 } 10186 10187 /* The IDAU will override the SAU lookup results if it specifies 10188 * higher security than the SAU does. 10189 */ 10190 if (!idau_ns) { 10191 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 10192 sattrs->ns = false; 10193 sattrs->nsc = idau_nsc; 10194 } 10195 } 10196 break; 10197 } 10198 } 10199 10200 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 10201 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10202 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10203 int *prot, bool *is_subpage, 10204 ARMMMUFaultInfo *fi, uint32_t *mregion) 10205 { 10206 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 10207 * that a full phys-to-virt translation does). 10208 * mregion is (if not NULL) set to the region number which matched, 10209 * or -1 if no region number is returned (MPU off, address did not 10210 * hit a region, address hit in multiple regions). 10211 * We set is_subpage to true if the region hit doesn't cover the 10212 * entire TARGET_PAGE the address is within. 10213 */ 10214 ARMCPU *cpu = arm_env_get_cpu(env); 10215 bool is_user = regime_is_user(env, mmu_idx); 10216 uint32_t secure = regime_is_secure(env, mmu_idx); 10217 int n; 10218 int matchregion = -1; 10219 bool hit = false; 10220 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10221 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10222 10223 *is_subpage = false; 10224 *phys_ptr = address; 10225 *prot = 0; 10226 if (mregion) { 10227 *mregion = -1; 10228 } 10229 10230 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 10231 * was an exception vector read from the vector table (which is always 10232 * done using the default system address map), because those accesses 10233 * are done in arm_v7m_load_vector(), which always does a direct 10234 * read using address_space_ldl(), rather than going via this function. 10235 */ 10236 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 10237 hit = true; 10238 } else if (m_is_ppb_region(env, address)) { 10239 hit = true; 10240 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10241 hit = true; 10242 } else { 10243 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10244 /* region search */ 10245 /* Note that the base address is bits [31:5] from the register 10246 * with bits [4:0] all zeroes, but the limit address is bits 10247 * [31:5] from the register with bits [4:0] all ones. 10248 */ 10249 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 10250 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 10251 10252 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 10253 /* Region disabled */ 10254 continue; 10255 } 10256 10257 if (address < base || address > limit) { 10258 /* 10259 * Address not in this region. We must check whether the 10260 * region covers addresses in the same page as our address. 10261 * In that case we must not report a size that covers the 10262 * whole page for a subsequent hit against a different MPU 10263 * region or the background region, because it would result in 10264 * incorrect TLB hits for subsequent accesses to addresses that 10265 * are in this MPU region. 10266 */ 10267 if (limit >= base && 10268 ranges_overlap(base, limit - base + 1, 10269 addr_page_base, 10270 TARGET_PAGE_SIZE)) { 10271 *is_subpage = true; 10272 } 10273 continue; 10274 } 10275 10276 if (base > addr_page_base || limit < addr_page_limit) { 10277 *is_subpage = true; 10278 } 10279 10280 if (hit) { 10281 /* Multiple regions match -- always a failure (unlike 10282 * PMSAv7 where highest-numbered-region wins) 10283 */ 10284 fi->type = ARMFault_Permission; 10285 fi->level = 1; 10286 return true; 10287 } 10288 10289 matchregion = n; 10290 hit = true; 10291 } 10292 } 10293 10294 if (!hit) { 10295 /* background fault */ 10296 fi->type = ARMFault_Background; 10297 return true; 10298 } 10299 10300 if (matchregion == -1) { 10301 /* hit using the background region */ 10302 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10303 } else { 10304 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 10305 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 10306 10307 if (m_is_system_region(env, address)) { 10308 /* System space is always execute never */ 10309 xn = 1; 10310 } 10311 10312 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10313 if (*prot && !xn) { 10314 *prot |= PAGE_EXEC; 10315 } 10316 /* We don't need to look the attribute up in the MAIR0/MAIR1 10317 * registers because that only tells us about cacheability. 10318 */ 10319 if (mregion) { 10320 *mregion = matchregion; 10321 } 10322 } 10323 10324 fi->type = ARMFault_Permission; 10325 fi->level = 1; 10326 return !(*prot & (1 << access_type)); 10327 } 10328 10329 10330 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10331 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10332 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10333 int *prot, target_ulong *page_size, 10334 ARMMMUFaultInfo *fi) 10335 { 10336 uint32_t secure = regime_is_secure(env, mmu_idx); 10337 V8M_SAttributes sattrs = {}; 10338 bool ret; 10339 bool mpu_is_subpage; 10340 10341 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10342 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10343 if (access_type == MMU_INST_FETCH) { 10344 /* Instruction fetches always use the MMU bank and the 10345 * transaction attribute determined by the fetch address, 10346 * regardless of CPU state. This is painful for QEMU 10347 * to handle, because it would mean we need to encode 10348 * into the mmu_idx not just the (user, negpri) information 10349 * for the current security state but also that for the 10350 * other security state, which would balloon the number 10351 * of mmu_idx values needed alarmingly. 10352 * Fortunately we can avoid this because it's not actually 10353 * possible to arbitrarily execute code from memory with 10354 * the wrong security attribute: it will always generate 10355 * an exception of some kind or another, apart from the 10356 * special case of an NS CPU executing an SG instruction 10357 * in S&NSC memory. So we always just fail the translation 10358 * here and sort things out in the exception handler 10359 * (including possibly emulating an SG instruction). 10360 */ 10361 if (sattrs.ns != !secure) { 10362 if (sattrs.nsc) { 10363 fi->type = ARMFault_QEMU_NSCExec; 10364 } else { 10365 fi->type = ARMFault_QEMU_SFault; 10366 } 10367 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10368 *phys_ptr = address; 10369 *prot = 0; 10370 return true; 10371 } 10372 } else { 10373 /* For data accesses we always use the MMU bank indicated 10374 * by the current CPU state, but the security attributes 10375 * might downgrade a secure access to nonsecure. 10376 */ 10377 if (sattrs.ns) { 10378 txattrs->secure = false; 10379 } else if (!secure) { 10380 /* NS access to S memory must fault. 10381 * Architecturally we should first check whether the 10382 * MPU information for this address indicates that we 10383 * are doing an unaligned access to Device memory, which 10384 * should generate a UsageFault instead. QEMU does not 10385 * currently check for that kind of unaligned access though. 10386 * If we added it we would need to do so as a special case 10387 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10388 */ 10389 fi->type = ARMFault_QEMU_SFault; 10390 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10391 *phys_ptr = address; 10392 *prot = 0; 10393 return true; 10394 } 10395 } 10396 } 10397 10398 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10399 txattrs, prot, &mpu_is_subpage, fi, NULL); 10400 /* 10401 * TODO: this is a temporary hack to ignore the fact that the SAU region 10402 * is smaller than a page if this is an executable region. We never 10403 * supported small MPU regions, but we did (accidentally) allow small 10404 * SAU regions, and if we now made small SAU regions not be executable 10405 * then this would break previously working guest code. We can't 10406 * remove this until/unless we implement support for execution from 10407 * small regions. 10408 */ 10409 if (*prot & PAGE_EXEC) { 10410 sattrs.subpage = false; 10411 } 10412 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10413 return ret; 10414 } 10415 10416 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10417 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10418 hwaddr *phys_ptr, int *prot, 10419 ARMMMUFaultInfo *fi) 10420 { 10421 int n; 10422 uint32_t mask; 10423 uint32_t base; 10424 bool is_user = regime_is_user(env, mmu_idx); 10425 10426 if (regime_translation_disabled(env, mmu_idx)) { 10427 /* MPU disabled. */ 10428 *phys_ptr = address; 10429 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10430 return false; 10431 } 10432 10433 *phys_ptr = address; 10434 for (n = 7; n >= 0; n--) { 10435 base = env->cp15.c6_region[n]; 10436 if ((base & 1) == 0) { 10437 continue; 10438 } 10439 mask = 1 << ((base >> 1) & 0x1f); 10440 /* Keep this shift separate from the above to avoid an 10441 (undefined) << 32. */ 10442 mask = (mask << 1) - 1; 10443 if (((base ^ address) & ~mask) == 0) { 10444 break; 10445 } 10446 } 10447 if (n < 0) { 10448 fi->type = ARMFault_Background; 10449 return true; 10450 } 10451 10452 if (access_type == MMU_INST_FETCH) { 10453 mask = env->cp15.pmsav5_insn_ap; 10454 } else { 10455 mask = env->cp15.pmsav5_data_ap; 10456 } 10457 mask = (mask >> (n * 4)) & 0xf; 10458 switch (mask) { 10459 case 0: 10460 fi->type = ARMFault_Permission; 10461 fi->level = 1; 10462 return true; 10463 case 1: 10464 if (is_user) { 10465 fi->type = ARMFault_Permission; 10466 fi->level = 1; 10467 return true; 10468 } 10469 *prot = PAGE_READ | PAGE_WRITE; 10470 break; 10471 case 2: 10472 *prot = PAGE_READ; 10473 if (!is_user) { 10474 *prot |= PAGE_WRITE; 10475 } 10476 break; 10477 case 3: 10478 *prot = PAGE_READ | PAGE_WRITE; 10479 break; 10480 case 5: 10481 if (is_user) { 10482 fi->type = ARMFault_Permission; 10483 fi->level = 1; 10484 return true; 10485 } 10486 *prot = PAGE_READ; 10487 break; 10488 case 6: 10489 *prot = PAGE_READ; 10490 break; 10491 default: 10492 /* Bad permission. */ 10493 fi->type = ARMFault_Permission; 10494 fi->level = 1; 10495 return true; 10496 } 10497 *prot |= PAGE_EXEC; 10498 return false; 10499 } 10500 10501 /* Combine either inner or outer cacheability attributes for normal 10502 * memory, according to table D4-42 and pseudocode procedure 10503 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10504 * 10505 * NB: only stage 1 includes allocation hints (RW bits), leading to 10506 * some asymmetry. 10507 */ 10508 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10509 { 10510 if (s1 == 4 || s2 == 4) { 10511 /* non-cacheable has precedence */ 10512 return 4; 10513 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10514 /* stage 1 write-through takes precedence */ 10515 return s1; 10516 } else if (extract32(s2, 2, 2) == 2) { 10517 /* stage 2 write-through takes precedence, but the allocation hint 10518 * is still taken from stage 1 10519 */ 10520 return (2 << 2) | extract32(s1, 0, 2); 10521 } else { /* write-back */ 10522 return s1; 10523 } 10524 } 10525 10526 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10527 * and CombineS1S2Desc() 10528 * 10529 * @s1: Attributes from stage 1 walk 10530 * @s2: Attributes from stage 2 walk 10531 */ 10532 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10533 { 10534 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10535 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10536 ARMCacheAttrs ret; 10537 10538 /* Combine shareability attributes (table D4-43) */ 10539 if (s1.shareability == 2 || s2.shareability == 2) { 10540 /* if either are outer-shareable, the result is outer-shareable */ 10541 ret.shareability = 2; 10542 } else if (s1.shareability == 3 || s2.shareability == 3) { 10543 /* if either are inner-shareable, the result is inner-shareable */ 10544 ret.shareability = 3; 10545 } else { 10546 /* both non-shareable */ 10547 ret.shareability = 0; 10548 } 10549 10550 /* Combine memory type and cacheability attributes */ 10551 if (s1hi == 0 || s2hi == 0) { 10552 /* Device has precedence over normal */ 10553 if (s1lo == 0 || s2lo == 0) { 10554 /* nGnRnE has precedence over anything */ 10555 ret.attrs = 0; 10556 } else if (s1lo == 4 || s2lo == 4) { 10557 /* non-Reordering has precedence over Reordering */ 10558 ret.attrs = 4; /* nGnRE */ 10559 } else if (s1lo == 8 || s2lo == 8) { 10560 /* non-Gathering has precedence over Gathering */ 10561 ret.attrs = 8; /* nGRE */ 10562 } else { 10563 ret.attrs = 0xc; /* GRE */ 10564 } 10565 10566 /* Any location for which the resultant memory type is any 10567 * type of Device memory is always treated as Outer Shareable. 10568 */ 10569 ret.shareability = 2; 10570 } else { /* Normal memory */ 10571 /* Outer/inner cacheability combine independently */ 10572 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10573 | combine_cacheattr_nibble(s1lo, s2lo); 10574 10575 if (ret.attrs == 0x44) { 10576 /* Any location for which the resultant memory type is Normal 10577 * Inner Non-cacheable, Outer Non-cacheable is always treated 10578 * as Outer Shareable. 10579 */ 10580 ret.shareability = 2; 10581 } 10582 } 10583 10584 return ret; 10585 } 10586 10587 10588 /* get_phys_addr - get the physical address for this virtual address 10589 * 10590 * Find the physical address corresponding to the given virtual address, 10591 * by doing a translation table walk on MMU based systems or using the 10592 * MPU state on MPU based systems. 10593 * 10594 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10595 * prot and page_size may not be filled in, and the populated fsr value provides 10596 * information on why the translation aborted, in the format of a 10597 * DFSR/IFSR fault register, with the following caveats: 10598 * * we honour the short vs long DFSR format differences. 10599 * * the WnR bit is never set (the caller must do this). 10600 * * for PSMAv5 based systems we don't bother to return a full FSR format 10601 * value. 10602 * 10603 * @env: CPUARMState 10604 * @address: virtual address to get physical address for 10605 * @access_type: 0 for read, 1 for write, 2 for execute 10606 * @mmu_idx: MMU index indicating required translation regime 10607 * @phys_ptr: set to the physical address corresponding to the virtual address 10608 * @attrs: set to the memory transaction attributes to use 10609 * @prot: set to the permissions for the page containing phys_ptr 10610 * @page_size: set to the size of the page containing phys_ptr 10611 * @fi: set to fault info if the translation fails 10612 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10613 */ 10614 static bool get_phys_addr(CPUARMState *env, target_ulong address, 10615 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10616 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10617 target_ulong *page_size, 10618 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10619 { 10620 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10621 /* Call ourselves recursively to do the stage 1 and then stage 2 10622 * translations. 10623 */ 10624 if (arm_feature(env, ARM_FEATURE_EL2)) { 10625 hwaddr ipa; 10626 int s2_prot; 10627 int ret; 10628 ARMCacheAttrs cacheattrs2 = {}; 10629 10630 ret = get_phys_addr(env, address, access_type, 10631 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10632 prot, page_size, fi, cacheattrs); 10633 10634 /* If S1 fails or S2 is disabled, return early. */ 10635 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10636 *phys_ptr = ipa; 10637 return ret; 10638 } 10639 10640 /* S1 is done. Now do S2 translation. */ 10641 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10642 phys_ptr, attrs, &s2_prot, 10643 page_size, fi, 10644 cacheattrs != NULL ? &cacheattrs2 : NULL); 10645 fi->s2addr = ipa; 10646 /* Combine the S1 and S2 perms. */ 10647 *prot &= s2_prot; 10648 10649 /* Combine the S1 and S2 cache attributes, if needed */ 10650 if (!ret && cacheattrs != NULL) { 10651 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10652 } 10653 10654 return ret; 10655 } else { 10656 /* 10657 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10658 */ 10659 mmu_idx = stage_1_mmu_idx(mmu_idx); 10660 } 10661 } 10662 10663 /* The page table entries may downgrade secure to non-secure, but 10664 * cannot upgrade an non-secure translation regime's attributes 10665 * to secure. 10666 */ 10667 attrs->secure = regime_is_secure(env, mmu_idx); 10668 attrs->user = regime_is_user(env, mmu_idx); 10669 10670 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10671 * In v7 and earlier it affects all stage 1 translations. 10672 */ 10673 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10674 && !arm_feature(env, ARM_FEATURE_V8)) { 10675 if (regime_el(env, mmu_idx) == 3) { 10676 address += env->cp15.fcseidr_s; 10677 } else { 10678 address += env->cp15.fcseidr_ns; 10679 } 10680 } 10681 10682 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10683 bool ret; 10684 *page_size = TARGET_PAGE_SIZE; 10685 10686 if (arm_feature(env, ARM_FEATURE_V8)) { 10687 /* PMSAv8 */ 10688 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10689 phys_ptr, attrs, prot, page_size, fi); 10690 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10691 /* PMSAv7 */ 10692 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10693 phys_ptr, prot, page_size, fi); 10694 } else { 10695 /* Pre-v7 MPU */ 10696 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10697 phys_ptr, prot, fi); 10698 } 10699 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10700 " mmu_idx %u -> %s (prot %c%c%c)\n", 10701 access_type == MMU_DATA_LOAD ? "reading" : 10702 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10703 (uint32_t)address, mmu_idx, 10704 ret ? "Miss" : "Hit", 10705 *prot & PAGE_READ ? 'r' : '-', 10706 *prot & PAGE_WRITE ? 'w' : '-', 10707 *prot & PAGE_EXEC ? 'x' : '-'); 10708 10709 return ret; 10710 } 10711 10712 /* Definitely a real MMU, not an MPU */ 10713 10714 if (regime_translation_disabled(env, mmu_idx)) { 10715 /* MMU disabled. */ 10716 *phys_ptr = address; 10717 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10718 *page_size = TARGET_PAGE_SIZE; 10719 return 0; 10720 } 10721 10722 if (regime_using_lpae_format(env, mmu_idx)) { 10723 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10724 phys_ptr, attrs, prot, page_size, 10725 fi, cacheattrs); 10726 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10727 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10728 phys_ptr, attrs, prot, page_size, fi); 10729 } else { 10730 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10731 phys_ptr, prot, page_size, fi); 10732 } 10733 } 10734 10735 /* Walk the page table and (if the mapping exists) add the page 10736 * to the TLB. Return false on success, or true on failure. Populate 10737 * fsr with ARM DFSR/IFSR fault register format value on failure. 10738 */ 10739 bool arm_tlb_fill(CPUState *cs, vaddr address, 10740 MMUAccessType access_type, int mmu_idx, 10741 ARMMMUFaultInfo *fi) 10742 { 10743 ARMCPU *cpu = ARM_CPU(cs); 10744 CPUARMState *env = &cpu->env; 10745 hwaddr phys_addr; 10746 target_ulong page_size; 10747 int prot; 10748 int ret; 10749 MemTxAttrs attrs = {}; 10750 10751 ret = get_phys_addr(env, address, access_type, 10752 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 10753 &attrs, &prot, &page_size, fi, NULL); 10754 if (!ret) { 10755 /* 10756 * Map a single [sub]page. Regions smaller than our declared 10757 * target page size are handled specially, so for those we 10758 * pass in the exact addresses. 10759 */ 10760 if (page_size >= TARGET_PAGE_SIZE) { 10761 phys_addr &= TARGET_PAGE_MASK; 10762 address &= TARGET_PAGE_MASK; 10763 } 10764 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 10765 prot, mmu_idx, page_size); 10766 return 0; 10767 } 10768 10769 return ret; 10770 } 10771 10772 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10773 MemTxAttrs *attrs) 10774 { 10775 ARMCPU *cpu = ARM_CPU(cs); 10776 CPUARMState *env = &cpu->env; 10777 hwaddr phys_addr; 10778 target_ulong page_size; 10779 int prot; 10780 bool ret; 10781 ARMMMUFaultInfo fi = {}; 10782 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 10783 10784 *attrs = (MemTxAttrs) {}; 10785 10786 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10787 attrs, &prot, &page_size, &fi, NULL); 10788 10789 if (ret) { 10790 return -1; 10791 } 10792 return phys_addr; 10793 } 10794 10795 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 10796 { 10797 uint32_t mask; 10798 unsigned el = arm_current_el(env); 10799 10800 /* First handle registers which unprivileged can read */ 10801 10802 switch (reg) { 10803 case 0 ... 7: /* xPSR sub-fields */ 10804 mask = 0; 10805 if ((reg & 1) && el) { 10806 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 10807 } 10808 if (!(reg & 4)) { 10809 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 10810 } 10811 /* EPSR reads as zero */ 10812 return xpsr_read(env) & mask; 10813 break; 10814 case 20: /* CONTROL */ 10815 return env->v7m.control[env->v7m.secure]; 10816 case 0x94: /* CONTROL_NS */ 10817 /* We have to handle this here because unprivileged Secure code 10818 * can read the NS CONTROL register. 10819 */ 10820 if (!env->v7m.secure) { 10821 return 0; 10822 } 10823 return env->v7m.control[M_REG_NS]; 10824 } 10825 10826 if (el == 0) { 10827 return 0; /* unprivileged reads others as zero */ 10828 } 10829 10830 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10831 switch (reg) { 10832 case 0x88: /* MSP_NS */ 10833 if (!env->v7m.secure) { 10834 return 0; 10835 } 10836 return env->v7m.other_ss_msp; 10837 case 0x89: /* PSP_NS */ 10838 if (!env->v7m.secure) { 10839 return 0; 10840 } 10841 return env->v7m.other_ss_psp; 10842 case 0x8a: /* MSPLIM_NS */ 10843 if (!env->v7m.secure) { 10844 return 0; 10845 } 10846 return env->v7m.msplim[M_REG_NS]; 10847 case 0x8b: /* PSPLIM_NS */ 10848 if (!env->v7m.secure) { 10849 return 0; 10850 } 10851 return env->v7m.psplim[M_REG_NS]; 10852 case 0x90: /* PRIMASK_NS */ 10853 if (!env->v7m.secure) { 10854 return 0; 10855 } 10856 return env->v7m.primask[M_REG_NS]; 10857 case 0x91: /* BASEPRI_NS */ 10858 if (!env->v7m.secure) { 10859 return 0; 10860 } 10861 return env->v7m.basepri[M_REG_NS]; 10862 case 0x93: /* FAULTMASK_NS */ 10863 if (!env->v7m.secure) { 10864 return 0; 10865 } 10866 return env->v7m.faultmask[M_REG_NS]; 10867 case 0x98: /* SP_NS */ 10868 { 10869 /* This gives the non-secure SP selected based on whether we're 10870 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10871 */ 10872 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10873 10874 if (!env->v7m.secure) { 10875 return 0; 10876 } 10877 if (!arm_v7m_is_handler_mode(env) && spsel) { 10878 return env->v7m.other_ss_psp; 10879 } else { 10880 return env->v7m.other_ss_msp; 10881 } 10882 } 10883 default: 10884 break; 10885 } 10886 } 10887 10888 switch (reg) { 10889 case 8: /* MSP */ 10890 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 10891 case 9: /* PSP */ 10892 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 10893 case 10: /* MSPLIM */ 10894 if (!arm_feature(env, ARM_FEATURE_V8)) { 10895 goto bad_reg; 10896 } 10897 return env->v7m.msplim[env->v7m.secure]; 10898 case 11: /* PSPLIM */ 10899 if (!arm_feature(env, ARM_FEATURE_V8)) { 10900 goto bad_reg; 10901 } 10902 return env->v7m.psplim[env->v7m.secure]; 10903 case 16: /* PRIMASK */ 10904 return env->v7m.primask[env->v7m.secure]; 10905 case 17: /* BASEPRI */ 10906 case 18: /* BASEPRI_MAX */ 10907 return env->v7m.basepri[env->v7m.secure]; 10908 case 19: /* FAULTMASK */ 10909 return env->v7m.faultmask[env->v7m.secure]; 10910 default: 10911 bad_reg: 10912 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 10913 " register %d\n", reg); 10914 return 0; 10915 } 10916 } 10917 10918 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 10919 { 10920 /* We're passed bits [11..0] of the instruction; extract 10921 * SYSm and the mask bits. 10922 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 10923 * we choose to treat them as if the mask bits were valid. 10924 * NB that the pseudocode 'mask' variable is bits [11..10], 10925 * whereas ours is [11..8]. 10926 */ 10927 uint32_t mask = extract32(maskreg, 8, 4); 10928 uint32_t reg = extract32(maskreg, 0, 8); 10929 10930 if (arm_current_el(env) == 0 && reg > 7) { 10931 /* only xPSR sub-fields may be written by unprivileged */ 10932 return; 10933 } 10934 10935 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10936 switch (reg) { 10937 case 0x88: /* MSP_NS */ 10938 if (!env->v7m.secure) { 10939 return; 10940 } 10941 env->v7m.other_ss_msp = val; 10942 return; 10943 case 0x89: /* PSP_NS */ 10944 if (!env->v7m.secure) { 10945 return; 10946 } 10947 env->v7m.other_ss_psp = val; 10948 return; 10949 case 0x8a: /* MSPLIM_NS */ 10950 if (!env->v7m.secure) { 10951 return; 10952 } 10953 env->v7m.msplim[M_REG_NS] = val & ~7; 10954 return; 10955 case 0x8b: /* PSPLIM_NS */ 10956 if (!env->v7m.secure) { 10957 return; 10958 } 10959 env->v7m.psplim[M_REG_NS] = val & ~7; 10960 return; 10961 case 0x90: /* PRIMASK_NS */ 10962 if (!env->v7m.secure) { 10963 return; 10964 } 10965 env->v7m.primask[M_REG_NS] = val & 1; 10966 return; 10967 case 0x91: /* BASEPRI_NS */ 10968 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 10969 return; 10970 } 10971 env->v7m.basepri[M_REG_NS] = val & 0xff; 10972 return; 10973 case 0x93: /* FAULTMASK_NS */ 10974 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 10975 return; 10976 } 10977 env->v7m.faultmask[M_REG_NS] = val & 1; 10978 return; 10979 case 0x94: /* CONTROL_NS */ 10980 if (!env->v7m.secure) { 10981 return; 10982 } 10983 write_v7m_control_spsel_for_secstate(env, 10984 val & R_V7M_CONTROL_SPSEL_MASK, 10985 M_REG_NS); 10986 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 10987 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 10988 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 10989 } 10990 return; 10991 case 0x98: /* SP_NS */ 10992 { 10993 /* This gives the non-secure SP selected based on whether we're 10994 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10995 */ 10996 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10997 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel; 10998 uint32_t limit; 10999 11000 if (!env->v7m.secure) { 11001 return; 11002 } 11003 11004 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false]; 11005 11006 if (val < limit) { 11007 CPUState *cs = CPU(arm_env_get_cpu(env)); 11008 11009 cpu_restore_state(cs, GETPC(), true); 11010 raise_exception(env, EXCP_STKOF, 0, 1); 11011 } 11012 11013 if (is_psp) { 11014 env->v7m.other_ss_psp = val; 11015 } else { 11016 env->v7m.other_ss_msp = val; 11017 } 11018 return; 11019 } 11020 default: 11021 break; 11022 } 11023 } 11024 11025 switch (reg) { 11026 case 0 ... 7: /* xPSR sub-fields */ 11027 /* only APSR is actually writable */ 11028 if (!(reg & 4)) { 11029 uint32_t apsrmask = 0; 11030 11031 if (mask & 8) { 11032 apsrmask |= XPSR_NZCV | XPSR_Q; 11033 } 11034 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 11035 apsrmask |= XPSR_GE; 11036 } 11037 xpsr_write(env, val, apsrmask); 11038 } 11039 break; 11040 case 8: /* MSP */ 11041 if (v7m_using_psp(env)) { 11042 env->v7m.other_sp = val; 11043 } else { 11044 env->regs[13] = val; 11045 } 11046 break; 11047 case 9: /* PSP */ 11048 if (v7m_using_psp(env)) { 11049 env->regs[13] = val; 11050 } else { 11051 env->v7m.other_sp = val; 11052 } 11053 break; 11054 case 10: /* MSPLIM */ 11055 if (!arm_feature(env, ARM_FEATURE_V8)) { 11056 goto bad_reg; 11057 } 11058 env->v7m.msplim[env->v7m.secure] = val & ~7; 11059 break; 11060 case 11: /* PSPLIM */ 11061 if (!arm_feature(env, ARM_FEATURE_V8)) { 11062 goto bad_reg; 11063 } 11064 env->v7m.psplim[env->v7m.secure] = val & ~7; 11065 break; 11066 case 16: /* PRIMASK */ 11067 env->v7m.primask[env->v7m.secure] = val & 1; 11068 break; 11069 case 17: /* BASEPRI */ 11070 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11071 goto bad_reg; 11072 } 11073 env->v7m.basepri[env->v7m.secure] = val & 0xff; 11074 break; 11075 case 18: /* BASEPRI_MAX */ 11076 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11077 goto bad_reg; 11078 } 11079 val &= 0xff; 11080 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 11081 || env->v7m.basepri[env->v7m.secure] == 0)) { 11082 env->v7m.basepri[env->v7m.secure] = val; 11083 } 11084 break; 11085 case 19: /* FAULTMASK */ 11086 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11087 goto bad_reg; 11088 } 11089 env->v7m.faultmask[env->v7m.secure] = val & 1; 11090 break; 11091 case 20: /* CONTROL */ 11092 /* Writing to the SPSEL bit only has an effect if we are in 11093 * thread mode; other bits can be updated by any privileged code. 11094 * write_v7m_control_spsel() deals with updating the SPSEL bit in 11095 * env->v7m.control, so we only need update the others. 11096 * For v7M, we must just ignore explicit writes to SPSEL in handler 11097 * mode; for v8M the write is permitted but will have no effect. 11098 */ 11099 if (arm_feature(env, ARM_FEATURE_V8) || 11100 !arm_v7m_is_handler_mode(env)) { 11101 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 11102 } 11103 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 11104 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 11105 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 11106 } 11107 break; 11108 default: 11109 bad_reg: 11110 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 11111 " register %d\n", reg); 11112 return; 11113 } 11114 } 11115 11116 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 11117 { 11118 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 11119 bool forceunpriv = op & 1; 11120 bool alt = op & 2; 11121 V8M_SAttributes sattrs = {}; 11122 uint32_t tt_resp; 11123 bool r, rw, nsr, nsrw, mrvalid; 11124 int prot; 11125 ARMMMUFaultInfo fi = {}; 11126 MemTxAttrs attrs = {}; 11127 hwaddr phys_addr; 11128 ARMMMUIdx mmu_idx; 11129 uint32_t mregion; 11130 bool targetpriv; 11131 bool targetsec = env->v7m.secure; 11132 bool is_subpage; 11133 11134 /* Work out what the security state and privilege level we're 11135 * interested in is... 11136 */ 11137 if (alt) { 11138 targetsec = !targetsec; 11139 } 11140 11141 if (forceunpriv) { 11142 targetpriv = false; 11143 } else { 11144 targetpriv = arm_v7m_is_handler_mode(env) || 11145 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 11146 } 11147 11148 /* ...and then figure out which MMU index this is */ 11149 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 11150 11151 /* We know that the MPU and SAU don't care about the access type 11152 * for our purposes beyond that we don't want to claim to be 11153 * an insn fetch, so we arbitrarily call this a read. 11154 */ 11155 11156 /* MPU region info only available for privileged or if 11157 * inspecting the other MPU state. 11158 */ 11159 if (arm_current_el(env) != 0 || alt) { 11160 /* We can ignore the return value as prot is always set */ 11161 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 11162 &phys_addr, &attrs, &prot, &is_subpage, 11163 &fi, &mregion); 11164 if (mregion == -1) { 11165 mrvalid = false; 11166 mregion = 0; 11167 } else { 11168 mrvalid = true; 11169 } 11170 r = prot & PAGE_READ; 11171 rw = prot & PAGE_WRITE; 11172 } else { 11173 r = false; 11174 rw = false; 11175 mrvalid = false; 11176 mregion = 0; 11177 } 11178 11179 if (env->v7m.secure) { 11180 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 11181 nsr = sattrs.ns && r; 11182 nsrw = sattrs.ns && rw; 11183 } else { 11184 sattrs.ns = true; 11185 nsr = false; 11186 nsrw = false; 11187 } 11188 11189 tt_resp = (sattrs.iregion << 24) | 11190 (sattrs.irvalid << 23) | 11191 ((!sattrs.ns) << 22) | 11192 (nsrw << 21) | 11193 (nsr << 20) | 11194 (rw << 19) | 11195 (r << 18) | 11196 (sattrs.srvalid << 17) | 11197 (mrvalid << 16) | 11198 (sattrs.sregion << 8) | 11199 mregion; 11200 11201 return tt_resp; 11202 } 11203 11204 #endif 11205 11206 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 11207 { 11208 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 11209 * Note that we do not implement the (architecturally mandated) 11210 * alignment fault for attempts to use this on Device memory 11211 * (which matches the usual QEMU behaviour of not implementing either 11212 * alignment faults or any memory attribute handling). 11213 */ 11214 11215 ARMCPU *cpu = arm_env_get_cpu(env); 11216 uint64_t blocklen = 4 << cpu->dcz_blocksize; 11217 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 11218 11219 #ifndef CONFIG_USER_ONLY 11220 { 11221 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 11222 * the block size so we might have to do more than one TLB lookup. 11223 * We know that in fact for any v8 CPU the page size is at least 4K 11224 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 11225 * 1K as an artefact of legacy v5 subpage support being present in the 11226 * same QEMU executable. 11227 */ 11228 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 11229 void *hostaddr[maxidx]; 11230 int try, i; 11231 unsigned mmu_idx = cpu_mmu_index(env, false); 11232 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 11233 11234 for (try = 0; try < 2; try++) { 11235 11236 for (i = 0; i < maxidx; i++) { 11237 hostaddr[i] = tlb_vaddr_to_host(env, 11238 vaddr + TARGET_PAGE_SIZE * i, 11239 1, mmu_idx); 11240 if (!hostaddr[i]) { 11241 break; 11242 } 11243 } 11244 if (i == maxidx) { 11245 /* If it's all in the TLB it's fair game for just writing to; 11246 * we know we don't need to update dirty status, etc. 11247 */ 11248 for (i = 0; i < maxidx - 1; i++) { 11249 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 11250 } 11251 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 11252 return; 11253 } 11254 /* OK, try a store and see if we can populate the tlb. This 11255 * might cause an exception if the memory isn't writable, 11256 * in which case we will longjmp out of here. We must for 11257 * this purpose use the actual register value passed to us 11258 * so that we get the fault address right. 11259 */ 11260 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 11261 /* Now we can populate the other TLB entries, if any */ 11262 for (i = 0; i < maxidx; i++) { 11263 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 11264 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 11265 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 11266 } 11267 } 11268 } 11269 11270 /* Slow path (probably attempt to do this to an I/O device or 11271 * similar, or clearing of a block of code we have translations 11272 * cached for). Just do a series of byte writes as the architecture 11273 * demands. It's not worth trying to use a cpu_physical_memory_map(), 11274 * memset(), unmap() sequence here because: 11275 * + we'd need to account for the blocksize being larger than a page 11276 * + the direct-RAM access case is almost always going to be dealt 11277 * with in the fastpath code above, so there's no speed benefit 11278 * + we would have to deal with the map returning NULL because the 11279 * bounce buffer was in use 11280 */ 11281 for (i = 0; i < blocklen; i++) { 11282 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 11283 } 11284 } 11285 #else 11286 memset(g2h(vaddr), 0, blocklen); 11287 #endif 11288 } 11289 11290 /* Note that signed overflow is undefined in C. The following routines are 11291 careful to use unsigned types where modulo arithmetic is required. 11292 Failure to do so _will_ break on newer gcc. */ 11293 11294 /* Signed saturating arithmetic. */ 11295 11296 /* Perform 16-bit signed saturating addition. */ 11297 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11298 { 11299 uint16_t res; 11300 11301 res = a + b; 11302 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11303 if (a & 0x8000) 11304 res = 0x8000; 11305 else 11306 res = 0x7fff; 11307 } 11308 return res; 11309 } 11310 11311 /* Perform 8-bit signed saturating addition. */ 11312 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11313 { 11314 uint8_t res; 11315 11316 res = a + b; 11317 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11318 if (a & 0x80) 11319 res = 0x80; 11320 else 11321 res = 0x7f; 11322 } 11323 return res; 11324 } 11325 11326 /* Perform 16-bit signed saturating subtraction. */ 11327 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11328 { 11329 uint16_t res; 11330 11331 res = a - b; 11332 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11333 if (a & 0x8000) 11334 res = 0x8000; 11335 else 11336 res = 0x7fff; 11337 } 11338 return res; 11339 } 11340 11341 /* Perform 8-bit signed saturating subtraction. */ 11342 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11343 { 11344 uint8_t res; 11345 11346 res = a - b; 11347 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11348 if (a & 0x80) 11349 res = 0x80; 11350 else 11351 res = 0x7f; 11352 } 11353 return res; 11354 } 11355 11356 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11357 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11358 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11359 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11360 #define PFX q 11361 11362 #include "op_addsub.h" 11363 11364 /* Unsigned saturating arithmetic. */ 11365 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11366 { 11367 uint16_t res; 11368 res = a + b; 11369 if (res < a) 11370 res = 0xffff; 11371 return res; 11372 } 11373 11374 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11375 { 11376 if (a > b) 11377 return a - b; 11378 else 11379 return 0; 11380 } 11381 11382 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11383 { 11384 uint8_t res; 11385 res = a + b; 11386 if (res < a) 11387 res = 0xff; 11388 return res; 11389 } 11390 11391 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11392 { 11393 if (a > b) 11394 return a - b; 11395 else 11396 return 0; 11397 } 11398 11399 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11400 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11401 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11402 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11403 #define PFX uq 11404 11405 #include "op_addsub.h" 11406 11407 /* Signed modulo arithmetic. */ 11408 #define SARITH16(a, b, n, op) do { \ 11409 int32_t sum; \ 11410 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11411 RESULT(sum, n, 16); \ 11412 if (sum >= 0) \ 11413 ge |= 3 << (n * 2); \ 11414 } while(0) 11415 11416 #define SARITH8(a, b, n, op) do { \ 11417 int32_t sum; \ 11418 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11419 RESULT(sum, n, 8); \ 11420 if (sum >= 0) \ 11421 ge |= 1 << n; \ 11422 } while(0) 11423 11424 11425 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11426 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11427 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11428 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11429 #define PFX s 11430 #define ARITH_GE 11431 11432 #include "op_addsub.h" 11433 11434 /* Unsigned modulo arithmetic. */ 11435 #define ADD16(a, b, n) do { \ 11436 uint32_t sum; \ 11437 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11438 RESULT(sum, n, 16); \ 11439 if ((sum >> 16) == 1) \ 11440 ge |= 3 << (n * 2); \ 11441 } while(0) 11442 11443 #define ADD8(a, b, n) do { \ 11444 uint32_t sum; \ 11445 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11446 RESULT(sum, n, 8); \ 11447 if ((sum >> 8) == 1) \ 11448 ge |= 1 << n; \ 11449 } while(0) 11450 11451 #define SUB16(a, b, n) do { \ 11452 uint32_t sum; \ 11453 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11454 RESULT(sum, n, 16); \ 11455 if ((sum >> 16) == 0) \ 11456 ge |= 3 << (n * 2); \ 11457 } while(0) 11458 11459 #define SUB8(a, b, n) do { \ 11460 uint32_t sum; \ 11461 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11462 RESULT(sum, n, 8); \ 11463 if ((sum >> 8) == 0) \ 11464 ge |= 1 << n; \ 11465 } while(0) 11466 11467 #define PFX u 11468 #define ARITH_GE 11469 11470 #include "op_addsub.h" 11471 11472 /* Halved signed arithmetic. */ 11473 #define ADD16(a, b, n) \ 11474 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11475 #define SUB16(a, b, n) \ 11476 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11477 #define ADD8(a, b, n) \ 11478 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11479 #define SUB8(a, b, n) \ 11480 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11481 #define PFX sh 11482 11483 #include "op_addsub.h" 11484 11485 /* Halved unsigned arithmetic. */ 11486 #define ADD16(a, b, n) \ 11487 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11488 #define SUB16(a, b, n) \ 11489 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11490 #define ADD8(a, b, n) \ 11491 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11492 #define SUB8(a, b, n) \ 11493 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11494 #define PFX uh 11495 11496 #include "op_addsub.h" 11497 11498 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11499 { 11500 if (a > b) 11501 return a - b; 11502 else 11503 return b - a; 11504 } 11505 11506 /* Unsigned sum of absolute byte differences. */ 11507 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11508 { 11509 uint32_t sum; 11510 sum = do_usad(a, b); 11511 sum += do_usad(a >> 8, b >> 8); 11512 sum += do_usad(a >> 16, b >>16); 11513 sum += do_usad(a >> 24, b >> 24); 11514 return sum; 11515 } 11516 11517 /* For ARMv6 SEL instruction. */ 11518 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11519 { 11520 uint32_t mask; 11521 11522 mask = 0; 11523 if (flags & 1) 11524 mask |= 0xff; 11525 if (flags & 2) 11526 mask |= 0xff00; 11527 if (flags & 4) 11528 mask |= 0xff0000; 11529 if (flags & 8) 11530 mask |= 0xff000000; 11531 return (a & mask) | (b & ~mask); 11532 } 11533 11534 /* VFP support. We follow the convention used for VFP instructions: 11535 Single precision routines have a "s" suffix, double precision a 11536 "d" suffix. */ 11537 11538 /* Convert host exception flags to vfp form. */ 11539 static inline int vfp_exceptbits_from_host(int host_bits) 11540 { 11541 int target_bits = 0; 11542 11543 if (host_bits & float_flag_invalid) 11544 target_bits |= 1; 11545 if (host_bits & float_flag_divbyzero) 11546 target_bits |= 2; 11547 if (host_bits & float_flag_overflow) 11548 target_bits |= 4; 11549 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 11550 target_bits |= 8; 11551 if (host_bits & float_flag_inexact) 11552 target_bits |= 0x10; 11553 if (host_bits & float_flag_input_denormal) 11554 target_bits |= 0x80; 11555 return target_bits; 11556 } 11557 11558 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 11559 { 11560 int i; 11561 uint32_t fpscr; 11562 11563 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 11564 | (env->vfp.vec_len << 16) 11565 | (env->vfp.vec_stride << 20); 11566 11567 i = get_float_exception_flags(&env->vfp.fp_status); 11568 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 11569 /* FZ16 does not generate an input denormal exception. */ 11570 i |= (get_float_exception_flags(&env->vfp.fp_status_f16) 11571 & ~float_flag_input_denormal); 11572 11573 fpscr |= vfp_exceptbits_from_host(i); 11574 return fpscr; 11575 } 11576 11577 uint32_t vfp_get_fpscr(CPUARMState *env) 11578 { 11579 return HELPER(vfp_get_fpscr)(env); 11580 } 11581 11582 /* Convert vfp exception flags to target form. */ 11583 static inline int vfp_exceptbits_to_host(int target_bits) 11584 { 11585 int host_bits = 0; 11586 11587 if (target_bits & 1) 11588 host_bits |= float_flag_invalid; 11589 if (target_bits & 2) 11590 host_bits |= float_flag_divbyzero; 11591 if (target_bits & 4) 11592 host_bits |= float_flag_overflow; 11593 if (target_bits & 8) 11594 host_bits |= float_flag_underflow; 11595 if (target_bits & 0x10) 11596 host_bits |= float_flag_inexact; 11597 if (target_bits & 0x80) 11598 host_bits |= float_flag_input_denormal; 11599 return host_bits; 11600 } 11601 11602 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 11603 { 11604 int i; 11605 uint32_t changed; 11606 11607 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */ 11608 if (!arm_feature(env, ARM_FEATURE_V8_FP16)) { 11609 val &= ~FPCR_FZ16; 11610 } 11611 11612 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 11613 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 11614 env->vfp.vec_len = (val >> 16) & 7; 11615 env->vfp.vec_stride = (val >> 20) & 3; 11616 11617 changed ^= val; 11618 if (changed & (3 << 22)) { 11619 i = (val >> 22) & 3; 11620 switch (i) { 11621 case FPROUNDING_TIEEVEN: 11622 i = float_round_nearest_even; 11623 break; 11624 case FPROUNDING_POSINF: 11625 i = float_round_up; 11626 break; 11627 case FPROUNDING_NEGINF: 11628 i = float_round_down; 11629 break; 11630 case FPROUNDING_ZERO: 11631 i = float_round_to_zero; 11632 break; 11633 } 11634 set_float_rounding_mode(i, &env->vfp.fp_status); 11635 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 11636 } 11637 if (changed & FPCR_FZ16) { 11638 bool ftz_enabled = val & FPCR_FZ16; 11639 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11640 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11641 } 11642 if (changed & FPCR_FZ) { 11643 bool ftz_enabled = val & FPCR_FZ; 11644 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 11645 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 11646 } 11647 if (changed & FPCR_DN) { 11648 bool dnan_enabled = val & FPCR_DN; 11649 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 11650 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 11651 } 11652 11653 /* The exception flags are ORed together when we read fpscr so we 11654 * only need to preserve the current state in one of our 11655 * float_status values. 11656 */ 11657 i = vfp_exceptbits_to_host(val); 11658 set_float_exception_flags(i, &env->vfp.fp_status); 11659 set_float_exception_flags(0, &env->vfp.fp_status_f16); 11660 set_float_exception_flags(0, &env->vfp.standard_fp_status); 11661 } 11662 11663 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 11664 { 11665 HELPER(vfp_set_fpscr)(env, val); 11666 } 11667 11668 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 11669 11670 #define VFP_BINOP(name) \ 11671 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 11672 { \ 11673 float_status *fpst = fpstp; \ 11674 return float32_ ## name(a, b, fpst); \ 11675 } \ 11676 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 11677 { \ 11678 float_status *fpst = fpstp; \ 11679 return float64_ ## name(a, b, fpst); \ 11680 } 11681 VFP_BINOP(add) 11682 VFP_BINOP(sub) 11683 VFP_BINOP(mul) 11684 VFP_BINOP(div) 11685 VFP_BINOP(min) 11686 VFP_BINOP(max) 11687 VFP_BINOP(minnum) 11688 VFP_BINOP(maxnum) 11689 #undef VFP_BINOP 11690 11691 float32 VFP_HELPER(neg, s)(float32 a) 11692 { 11693 return float32_chs(a); 11694 } 11695 11696 float64 VFP_HELPER(neg, d)(float64 a) 11697 { 11698 return float64_chs(a); 11699 } 11700 11701 float32 VFP_HELPER(abs, s)(float32 a) 11702 { 11703 return float32_abs(a); 11704 } 11705 11706 float64 VFP_HELPER(abs, d)(float64 a) 11707 { 11708 return float64_abs(a); 11709 } 11710 11711 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 11712 { 11713 return float32_sqrt(a, &env->vfp.fp_status); 11714 } 11715 11716 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 11717 { 11718 return float64_sqrt(a, &env->vfp.fp_status); 11719 } 11720 11721 /* XXX: check quiet/signaling case */ 11722 #define DO_VFP_cmp(p, type) \ 11723 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 11724 { \ 11725 uint32_t flags; \ 11726 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 11727 case 0: flags = 0x6; break; \ 11728 case -1: flags = 0x8; break; \ 11729 case 1: flags = 0x2; break; \ 11730 default: case 2: flags = 0x3; break; \ 11731 } \ 11732 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11733 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11734 } \ 11735 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 11736 { \ 11737 uint32_t flags; \ 11738 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 11739 case 0: flags = 0x6; break; \ 11740 case -1: flags = 0x8; break; \ 11741 case 1: flags = 0x2; break; \ 11742 default: case 2: flags = 0x3; break; \ 11743 } \ 11744 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11745 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11746 } 11747 DO_VFP_cmp(s, float32) 11748 DO_VFP_cmp(d, float64) 11749 #undef DO_VFP_cmp 11750 11751 /* Integer to float and float to integer conversions */ 11752 11753 #define CONV_ITOF(name, ftype, fsz, sign) \ 11754 ftype HELPER(name)(uint32_t x, void *fpstp) \ 11755 { \ 11756 float_status *fpst = fpstp; \ 11757 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 11758 } 11759 11760 #define CONV_FTOI(name, ftype, fsz, sign, round) \ 11761 sign##int32_t HELPER(name)(ftype x, void *fpstp) \ 11762 { \ 11763 float_status *fpst = fpstp; \ 11764 if (float##fsz##_is_any_nan(x)) { \ 11765 float_raise(float_flag_invalid, fpst); \ 11766 return 0; \ 11767 } \ 11768 return float##fsz##_to_##sign##int32##round(x, fpst); \ 11769 } 11770 11771 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \ 11772 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ 11773 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ 11774 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) 11775 11776 FLOAT_CONVS(si, h, uint32_t, 16, ) 11777 FLOAT_CONVS(si, s, float32, 32, ) 11778 FLOAT_CONVS(si, d, float64, 64, ) 11779 FLOAT_CONVS(ui, h, uint32_t, 16, u) 11780 FLOAT_CONVS(ui, s, float32, 32, u) 11781 FLOAT_CONVS(ui, d, float64, 64, u) 11782 11783 #undef CONV_ITOF 11784 #undef CONV_FTOI 11785 #undef FLOAT_CONVS 11786 11787 /* floating point conversion */ 11788 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 11789 { 11790 return float32_to_float64(x, &env->vfp.fp_status); 11791 } 11792 11793 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 11794 { 11795 return float64_to_float32(x, &env->vfp.fp_status); 11796 } 11797 11798 /* VFP3 fixed point conversion. */ 11799 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11800 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 11801 void *fpstp) \ 11802 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); } 11803 11804 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \ 11805 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \ 11806 void *fpst) \ 11807 { \ 11808 if (unlikely(float##fsz##_is_any_nan(x))) { \ 11809 float_raise(float_flag_invalid, fpst); \ 11810 return 0; \ 11811 } \ 11812 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \ 11813 } 11814 11815 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 11816 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11817 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 11818 float_round_to_zero, _round_to_zero) \ 11819 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 11820 get_float_rounding_mode(fpst), ) 11821 11822 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 11823 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11824 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 11825 get_float_rounding_mode(fpst), ) 11826 11827 VFP_CONV_FIX(sh, d, 64, 64, int16) 11828 VFP_CONV_FIX(sl, d, 64, 64, int32) 11829 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 11830 VFP_CONV_FIX(uh, d, 64, 64, uint16) 11831 VFP_CONV_FIX(ul, d, 64, 64, uint32) 11832 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 11833 VFP_CONV_FIX(sh, s, 32, 32, int16) 11834 VFP_CONV_FIX(sl, s, 32, 32, int32) 11835 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 11836 VFP_CONV_FIX(uh, s, 32, 32, uint16) 11837 VFP_CONV_FIX(ul, s, 32, 32, uint32) 11838 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 11839 11840 #undef VFP_CONV_FIX 11841 #undef VFP_CONV_FIX_FLOAT 11842 #undef VFP_CONV_FLOAT_FIX_ROUND 11843 #undef VFP_CONV_FIX_A64 11844 11845 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst) 11846 { 11847 return int32_to_float16_scalbn(x, -shift, fpst); 11848 } 11849 11850 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst) 11851 { 11852 return uint32_to_float16_scalbn(x, -shift, fpst); 11853 } 11854 11855 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst) 11856 { 11857 return int64_to_float16_scalbn(x, -shift, fpst); 11858 } 11859 11860 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst) 11861 { 11862 return uint64_to_float16_scalbn(x, -shift, fpst); 11863 } 11864 11865 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst) 11866 { 11867 if (unlikely(float16_is_any_nan(x))) { 11868 float_raise(float_flag_invalid, fpst); 11869 return 0; 11870 } 11871 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst), 11872 shift, fpst); 11873 } 11874 11875 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst) 11876 { 11877 if (unlikely(float16_is_any_nan(x))) { 11878 float_raise(float_flag_invalid, fpst); 11879 return 0; 11880 } 11881 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst), 11882 shift, fpst); 11883 } 11884 11885 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst) 11886 { 11887 if (unlikely(float16_is_any_nan(x))) { 11888 float_raise(float_flag_invalid, fpst); 11889 return 0; 11890 } 11891 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst), 11892 shift, fpst); 11893 } 11894 11895 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst) 11896 { 11897 if (unlikely(float16_is_any_nan(x))) { 11898 float_raise(float_flag_invalid, fpst); 11899 return 0; 11900 } 11901 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst), 11902 shift, fpst); 11903 } 11904 11905 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst) 11906 { 11907 if (unlikely(float16_is_any_nan(x))) { 11908 float_raise(float_flag_invalid, fpst); 11909 return 0; 11910 } 11911 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst), 11912 shift, fpst); 11913 } 11914 11915 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst) 11916 { 11917 if (unlikely(float16_is_any_nan(x))) { 11918 float_raise(float_flag_invalid, fpst); 11919 return 0; 11920 } 11921 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst), 11922 shift, fpst); 11923 } 11924 11925 /* Set the current fp rounding mode and return the old one. 11926 * The argument is a softfloat float_round_ value. 11927 */ 11928 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 11929 { 11930 float_status *fp_status = fpstp; 11931 11932 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11933 set_float_rounding_mode(rmode, fp_status); 11934 11935 return prev_rmode; 11936 } 11937 11938 /* Set the current fp rounding mode in the standard fp status and return 11939 * the old one. This is for NEON instructions that need to change the 11940 * rounding mode but wish to use the standard FPSCR values for everything 11941 * else. Always set the rounding mode back to the correct value after 11942 * modifying it. 11943 * The argument is a softfloat float_round_ value. 11944 */ 11945 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 11946 { 11947 float_status *fp_status = &env->vfp.standard_fp_status; 11948 11949 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11950 set_float_rounding_mode(rmode, fp_status); 11951 11952 return prev_rmode; 11953 } 11954 11955 /* Half precision conversions. */ 11956 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode) 11957 { 11958 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11959 * it would affect flushing input denormals. 11960 */ 11961 float_status *fpst = fpstp; 11962 flag save = get_flush_inputs_to_zero(fpst); 11963 set_flush_inputs_to_zero(false, fpst); 11964 float32 r = float16_to_float32(a, !ahp_mode, fpst); 11965 set_flush_inputs_to_zero(save, fpst); 11966 return r; 11967 } 11968 11969 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode) 11970 { 11971 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11972 * it would affect flushing output denormals. 11973 */ 11974 float_status *fpst = fpstp; 11975 flag save = get_flush_to_zero(fpst); 11976 set_flush_to_zero(false, fpst); 11977 float16 r = float32_to_float16(a, !ahp_mode, fpst); 11978 set_flush_to_zero(save, fpst); 11979 return r; 11980 } 11981 11982 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode) 11983 { 11984 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11985 * it would affect flushing input denormals. 11986 */ 11987 float_status *fpst = fpstp; 11988 flag save = get_flush_inputs_to_zero(fpst); 11989 set_flush_inputs_to_zero(false, fpst); 11990 float64 r = float16_to_float64(a, !ahp_mode, fpst); 11991 set_flush_inputs_to_zero(save, fpst); 11992 return r; 11993 } 11994 11995 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode) 11996 { 11997 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11998 * it would affect flushing output denormals. 11999 */ 12000 float_status *fpst = fpstp; 12001 flag save = get_flush_to_zero(fpst); 12002 set_flush_to_zero(false, fpst); 12003 float16 r = float64_to_float16(a, !ahp_mode, fpst); 12004 set_flush_to_zero(save, fpst); 12005 return r; 12006 } 12007 12008 #define float32_two make_float32(0x40000000) 12009 #define float32_three make_float32(0x40400000) 12010 #define float32_one_point_five make_float32(0x3fc00000) 12011 12012 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 12013 { 12014 float_status *s = &env->vfp.standard_fp_status; 12015 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 12016 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 12017 if (!(float32_is_zero(a) || float32_is_zero(b))) { 12018 float_raise(float_flag_input_denormal, s); 12019 } 12020 return float32_two; 12021 } 12022 return float32_sub(float32_two, float32_mul(a, b, s), s); 12023 } 12024 12025 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 12026 { 12027 float_status *s = &env->vfp.standard_fp_status; 12028 float32 product; 12029 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 12030 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 12031 if (!(float32_is_zero(a) || float32_is_zero(b))) { 12032 float_raise(float_flag_input_denormal, s); 12033 } 12034 return float32_one_point_five; 12035 } 12036 product = float32_mul(a, b, s); 12037 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 12038 } 12039 12040 /* NEON helpers. */ 12041 12042 /* Constants 256 and 512 are used in some helpers; we avoid relying on 12043 * int->float conversions at run-time. */ 12044 #define float64_256 make_float64(0x4070000000000000LL) 12045 #define float64_512 make_float64(0x4080000000000000LL) 12046 #define float16_maxnorm make_float16(0x7bff) 12047 #define float32_maxnorm make_float32(0x7f7fffff) 12048 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 12049 12050 /* Reciprocal functions 12051 * 12052 * The algorithm that must be used to calculate the estimate 12053 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 12054 */ 12055 12056 /* See RecipEstimate() 12057 * 12058 * input is a 9 bit fixed point number 12059 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 12060 * result range 256 .. 511 for a number from 1.0 to 511/256. 12061 */ 12062 12063 static int recip_estimate(int input) 12064 { 12065 int a, b, r; 12066 assert(256 <= input && input < 512); 12067 a = (input * 2) + 1; 12068 b = (1 << 19) / a; 12069 r = (b + 1) >> 1; 12070 assert(256 <= r && r < 512); 12071 return r; 12072 } 12073 12074 /* 12075 * Common wrapper to call recip_estimate 12076 * 12077 * The parameters are exponent and 64 bit fraction (without implicit 12078 * bit) where the binary point is nominally at bit 52. Returns a 12079 * float64 which can then be rounded to the appropriate size by the 12080 * callee. 12081 */ 12082 12083 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 12084 { 12085 uint32_t scaled, estimate; 12086 uint64_t result_frac; 12087 int result_exp; 12088 12089 /* Handle sub-normals */ 12090 if (*exp == 0) { 12091 if (extract64(frac, 51, 1) == 0) { 12092 *exp = -1; 12093 frac <<= 2; 12094 } else { 12095 frac <<= 1; 12096 } 12097 } 12098 12099 /* scaled = UInt('1':fraction<51:44>) */ 12100 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 12101 estimate = recip_estimate(scaled); 12102 12103 result_exp = exp_off - *exp; 12104 result_frac = deposit64(0, 44, 8, estimate); 12105 if (result_exp == 0) { 12106 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 12107 } else if (result_exp == -1) { 12108 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 12109 result_exp = 0; 12110 } 12111 12112 *exp = result_exp; 12113 12114 return result_frac; 12115 } 12116 12117 static bool round_to_inf(float_status *fpst, bool sign_bit) 12118 { 12119 switch (fpst->float_rounding_mode) { 12120 case float_round_nearest_even: /* Round to Nearest */ 12121 return true; 12122 case float_round_up: /* Round to +Inf */ 12123 return !sign_bit; 12124 case float_round_down: /* Round to -Inf */ 12125 return sign_bit; 12126 case float_round_to_zero: /* Round to Zero */ 12127 return false; 12128 } 12129 12130 g_assert_not_reached(); 12131 } 12132 12133 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp) 12134 { 12135 float_status *fpst = fpstp; 12136 float16 f16 = float16_squash_input_denormal(input, fpst); 12137 uint32_t f16_val = float16_val(f16); 12138 uint32_t f16_sign = float16_is_neg(f16); 12139 int f16_exp = extract32(f16_val, 10, 5); 12140 uint32_t f16_frac = extract32(f16_val, 0, 10); 12141 uint64_t f64_frac; 12142 12143 if (float16_is_any_nan(f16)) { 12144 float16 nan = f16; 12145 if (float16_is_signaling_nan(f16, fpst)) { 12146 float_raise(float_flag_invalid, fpst); 12147 nan = float16_silence_nan(f16, fpst); 12148 } 12149 if (fpst->default_nan_mode) { 12150 nan = float16_default_nan(fpst); 12151 } 12152 return nan; 12153 } else if (float16_is_infinity(f16)) { 12154 return float16_set_sign(float16_zero, float16_is_neg(f16)); 12155 } else if (float16_is_zero(f16)) { 12156 float_raise(float_flag_divbyzero, fpst); 12157 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 12158 } else if (float16_abs(f16) < (1 << 8)) { 12159 /* Abs(value) < 2.0^-16 */ 12160 float_raise(float_flag_overflow | float_flag_inexact, fpst); 12161 if (round_to_inf(fpst, f16_sign)) { 12162 return float16_set_sign(float16_infinity, f16_sign); 12163 } else { 12164 return float16_set_sign(float16_maxnorm, f16_sign); 12165 } 12166 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 12167 float_raise(float_flag_underflow, fpst); 12168 return float16_set_sign(float16_zero, float16_is_neg(f16)); 12169 } 12170 12171 f64_frac = call_recip_estimate(&f16_exp, 29, 12172 ((uint64_t) f16_frac) << (52 - 10)); 12173 12174 /* result = sign : result_exp<4:0> : fraction<51:42> */ 12175 f16_val = deposit32(0, 15, 1, f16_sign); 12176 f16_val = deposit32(f16_val, 10, 5, f16_exp); 12177 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 12178 return make_float16(f16_val); 12179 } 12180 12181 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 12182 { 12183 float_status *fpst = fpstp; 12184 float32 f32 = float32_squash_input_denormal(input, fpst); 12185 uint32_t f32_val = float32_val(f32); 12186 bool f32_sign = float32_is_neg(f32); 12187 int f32_exp = extract32(f32_val, 23, 8); 12188 uint32_t f32_frac = extract32(f32_val, 0, 23); 12189 uint64_t f64_frac; 12190 12191 if (float32_is_any_nan(f32)) { 12192 float32 nan = f32; 12193 if (float32_is_signaling_nan(f32, fpst)) { 12194 float_raise(float_flag_invalid, fpst); 12195 nan = float32_silence_nan(f32, fpst); 12196 } 12197 if (fpst->default_nan_mode) { 12198 nan = float32_default_nan(fpst); 12199 } 12200 return nan; 12201 } else if (float32_is_infinity(f32)) { 12202 return float32_set_sign(float32_zero, float32_is_neg(f32)); 12203 } else if (float32_is_zero(f32)) { 12204 float_raise(float_flag_divbyzero, fpst); 12205 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 12206 } else if (float32_abs(f32) < (1ULL << 21)) { 12207 /* Abs(value) < 2.0^-128 */ 12208 float_raise(float_flag_overflow | float_flag_inexact, fpst); 12209 if (round_to_inf(fpst, f32_sign)) { 12210 return float32_set_sign(float32_infinity, f32_sign); 12211 } else { 12212 return float32_set_sign(float32_maxnorm, f32_sign); 12213 } 12214 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 12215 float_raise(float_flag_underflow, fpst); 12216 return float32_set_sign(float32_zero, float32_is_neg(f32)); 12217 } 12218 12219 f64_frac = call_recip_estimate(&f32_exp, 253, 12220 ((uint64_t) f32_frac) << (52 - 23)); 12221 12222 /* result = sign : result_exp<7:0> : fraction<51:29> */ 12223 f32_val = deposit32(0, 31, 1, f32_sign); 12224 f32_val = deposit32(f32_val, 23, 8, f32_exp); 12225 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 12226 return make_float32(f32_val); 12227 } 12228 12229 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 12230 { 12231 float_status *fpst = fpstp; 12232 float64 f64 = float64_squash_input_denormal(input, fpst); 12233 uint64_t f64_val = float64_val(f64); 12234 bool f64_sign = float64_is_neg(f64); 12235 int f64_exp = extract64(f64_val, 52, 11); 12236 uint64_t f64_frac = extract64(f64_val, 0, 52); 12237 12238 /* Deal with any special cases */ 12239 if (float64_is_any_nan(f64)) { 12240 float64 nan = f64; 12241 if (float64_is_signaling_nan(f64, fpst)) { 12242 float_raise(float_flag_invalid, fpst); 12243 nan = float64_silence_nan(f64, fpst); 12244 } 12245 if (fpst->default_nan_mode) { 12246 nan = float64_default_nan(fpst); 12247 } 12248 return nan; 12249 } else if (float64_is_infinity(f64)) { 12250 return float64_set_sign(float64_zero, float64_is_neg(f64)); 12251 } else if (float64_is_zero(f64)) { 12252 float_raise(float_flag_divbyzero, fpst); 12253 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 12254 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 12255 /* Abs(value) < 2.0^-1024 */ 12256 float_raise(float_flag_overflow | float_flag_inexact, fpst); 12257 if (round_to_inf(fpst, f64_sign)) { 12258 return float64_set_sign(float64_infinity, f64_sign); 12259 } else { 12260 return float64_set_sign(float64_maxnorm, f64_sign); 12261 } 12262 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 12263 float_raise(float_flag_underflow, fpst); 12264 return float64_set_sign(float64_zero, float64_is_neg(f64)); 12265 } 12266 12267 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 12268 12269 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 12270 f64_val = deposit64(0, 63, 1, f64_sign); 12271 f64_val = deposit64(f64_val, 52, 11, f64_exp); 12272 f64_val = deposit64(f64_val, 0, 52, f64_frac); 12273 return make_float64(f64_val); 12274 } 12275 12276 /* The algorithm that must be used to calculate the estimate 12277 * is specified by the ARM ARM. 12278 */ 12279 12280 static int do_recip_sqrt_estimate(int a) 12281 { 12282 int b, estimate; 12283 12284 assert(128 <= a && a < 512); 12285 if (a < 256) { 12286 a = a * 2 + 1; 12287 } else { 12288 a = (a >> 1) << 1; 12289 a = (a + 1) * 2; 12290 } 12291 b = 512; 12292 while (a * (b + 1) * (b + 1) < (1 << 28)) { 12293 b += 1; 12294 } 12295 estimate = (b + 1) / 2; 12296 assert(256 <= estimate && estimate < 512); 12297 12298 return estimate; 12299 } 12300 12301 12302 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 12303 { 12304 int estimate; 12305 uint32_t scaled; 12306 12307 if (*exp == 0) { 12308 while (extract64(frac, 51, 1) == 0) { 12309 frac = frac << 1; 12310 *exp -= 1; 12311 } 12312 frac = extract64(frac, 0, 51) << 1; 12313 } 12314 12315 if (*exp & 1) { 12316 /* scaled = UInt('01':fraction<51:45>) */ 12317 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 12318 } else { 12319 /* scaled = UInt('1':fraction<51:44>) */ 12320 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 12321 } 12322 estimate = do_recip_sqrt_estimate(scaled); 12323 12324 *exp = (exp_off - *exp) / 2; 12325 return extract64(estimate, 0, 8) << 44; 12326 } 12327 12328 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp) 12329 { 12330 float_status *s = fpstp; 12331 float16 f16 = float16_squash_input_denormal(input, s); 12332 uint16_t val = float16_val(f16); 12333 bool f16_sign = float16_is_neg(f16); 12334 int f16_exp = extract32(val, 10, 5); 12335 uint16_t f16_frac = extract32(val, 0, 10); 12336 uint64_t f64_frac; 12337 12338 if (float16_is_any_nan(f16)) { 12339 float16 nan = f16; 12340 if (float16_is_signaling_nan(f16, s)) { 12341 float_raise(float_flag_invalid, s); 12342 nan = float16_silence_nan(f16, s); 12343 } 12344 if (s->default_nan_mode) { 12345 nan = float16_default_nan(s); 12346 } 12347 return nan; 12348 } else if (float16_is_zero(f16)) { 12349 float_raise(float_flag_divbyzero, s); 12350 return float16_set_sign(float16_infinity, f16_sign); 12351 } else if (f16_sign) { 12352 float_raise(float_flag_invalid, s); 12353 return float16_default_nan(s); 12354 } else if (float16_is_infinity(f16)) { 12355 return float16_zero; 12356 } 12357 12358 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 12359 * preserving the parity of the exponent. */ 12360 12361 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 12362 12363 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 12364 12365 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 12366 val = deposit32(0, 15, 1, f16_sign); 12367 val = deposit32(val, 10, 5, f16_exp); 12368 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 12369 return make_float16(val); 12370 } 12371 12372 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 12373 { 12374 float_status *s = fpstp; 12375 float32 f32 = float32_squash_input_denormal(input, s); 12376 uint32_t val = float32_val(f32); 12377 uint32_t f32_sign = float32_is_neg(f32); 12378 int f32_exp = extract32(val, 23, 8); 12379 uint32_t f32_frac = extract32(val, 0, 23); 12380 uint64_t f64_frac; 12381 12382 if (float32_is_any_nan(f32)) { 12383 float32 nan = f32; 12384 if (float32_is_signaling_nan(f32, s)) { 12385 float_raise(float_flag_invalid, s); 12386 nan = float32_silence_nan(f32, s); 12387 } 12388 if (s->default_nan_mode) { 12389 nan = float32_default_nan(s); 12390 } 12391 return nan; 12392 } else if (float32_is_zero(f32)) { 12393 float_raise(float_flag_divbyzero, s); 12394 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 12395 } else if (float32_is_neg(f32)) { 12396 float_raise(float_flag_invalid, s); 12397 return float32_default_nan(s); 12398 } else if (float32_is_infinity(f32)) { 12399 return float32_zero; 12400 } 12401 12402 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 12403 * preserving the parity of the exponent. */ 12404 12405 f64_frac = ((uint64_t) f32_frac) << 29; 12406 12407 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 12408 12409 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 12410 val = deposit32(0, 31, 1, f32_sign); 12411 val = deposit32(val, 23, 8, f32_exp); 12412 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 12413 return make_float32(val); 12414 } 12415 12416 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 12417 { 12418 float_status *s = fpstp; 12419 float64 f64 = float64_squash_input_denormal(input, s); 12420 uint64_t val = float64_val(f64); 12421 bool f64_sign = float64_is_neg(f64); 12422 int f64_exp = extract64(val, 52, 11); 12423 uint64_t f64_frac = extract64(val, 0, 52); 12424 12425 if (float64_is_any_nan(f64)) { 12426 float64 nan = f64; 12427 if (float64_is_signaling_nan(f64, s)) { 12428 float_raise(float_flag_invalid, s); 12429 nan = float64_silence_nan(f64, s); 12430 } 12431 if (s->default_nan_mode) { 12432 nan = float64_default_nan(s); 12433 } 12434 return nan; 12435 } else if (float64_is_zero(f64)) { 12436 float_raise(float_flag_divbyzero, s); 12437 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 12438 } else if (float64_is_neg(f64)) { 12439 float_raise(float_flag_invalid, s); 12440 return float64_default_nan(s); 12441 } else if (float64_is_infinity(f64)) { 12442 return float64_zero; 12443 } 12444 12445 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 12446 12447 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 12448 val = deposit64(0, 61, 1, f64_sign); 12449 val = deposit64(val, 52, 11, f64_exp); 12450 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 12451 return make_float64(val); 12452 } 12453 12454 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 12455 { 12456 /* float_status *s = fpstp; */ 12457 int input, estimate; 12458 12459 if ((a & 0x80000000) == 0) { 12460 return 0xffffffff; 12461 } 12462 12463 input = extract32(a, 23, 9); 12464 estimate = recip_estimate(input); 12465 12466 return deposit32(0, (32 - 9), 9, estimate); 12467 } 12468 12469 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 12470 { 12471 int estimate; 12472 12473 if ((a & 0xc0000000) == 0) { 12474 return 0xffffffff; 12475 } 12476 12477 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 12478 12479 return deposit32(0, 23, 9, estimate); 12480 } 12481 12482 /* VFPv4 fused multiply-accumulate */ 12483 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 12484 { 12485 float_status *fpst = fpstp; 12486 return float32_muladd(a, b, c, 0, fpst); 12487 } 12488 12489 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 12490 { 12491 float_status *fpst = fpstp; 12492 return float64_muladd(a, b, c, 0, fpst); 12493 } 12494 12495 /* ARMv8 round to integral */ 12496 float32 HELPER(rints_exact)(float32 x, void *fp_status) 12497 { 12498 return float32_round_to_int(x, fp_status); 12499 } 12500 12501 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 12502 { 12503 return float64_round_to_int(x, fp_status); 12504 } 12505 12506 float32 HELPER(rints)(float32 x, void *fp_status) 12507 { 12508 int old_flags = get_float_exception_flags(fp_status), new_flags; 12509 float32 ret; 12510 12511 ret = float32_round_to_int(x, fp_status); 12512 12513 /* Suppress any inexact exceptions the conversion produced */ 12514 if (!(old_flags & float_flag_inexact)) { 12515 new_flags = get_float_exception_flags(fp_status); 12516 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12517 } 12518 12519 return ret; 12520 } 12521 12522 float64 HELPER(rintd)(float64 x, void *fp_status) 12523 { 12524 int old_flags = get_float_exception_flags(fp_status), new_flags; 12525 float64 ret; 12526 12527 ret = float64_round_to_int(x, fp_status); 12528 12529 new_flags = get_float_exception_flags(fp_status); 12530 12531 /* Suppress any inexact exceptions the conversion produced */ 12532 if (!(old_flags & float_flag_inexact)) { 12533 new_flags = get_float_exception_flags(fp_status); 12534 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12535 } 12536 12537 return ret; 12538 } 12539 12540 /* Convert ARM rounding mode to softfloat */ 12541 int arm_rmode_to_sf(int rmode) 12542 { 12543 switch (rmode) { 12544 case FPROUNDING_TIEAWAY: 12545 rmode = float_round_ties_away; 12546 break; 12547 case FPROUNDING_ODD: 12548 /* FIXME: add support for TIEAWAY and ODD */ 12549 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 12550 rmode); 12551 /* fall through for now */ 12552 case FPROUNDING_TIEEVEN: 12553 default: 12554 rmode = float_round_nearest_even; 12555 break; 12556 case FPROUNDING_POSINF: 12557 rmode = float_round_up; 12558 break; 12559 case FPROUNDING_NEGINF: 12560 rmode = float_round_down; 12561 break; 12562 case FPROUNDING_ZERO: 12563 rmode = float_round_to_zero; 12564 break; 12565 } 12566 return rmode; 12567 } 12568 12569 /* CRC helpers. 12570 * The upper bytes of val (above the number specified by 'bytes') must have 12571 * been zeroed out by the caller. 12572 */ 12573 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12574 { 12575 uint8_t buf[4]; 12576 12577 stl_le_p(buf, val); 12578 12579 /* zlib crc32 converts the accumulator and output to one's complement. */ 12580 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12581 } 12582 12583 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12584 { 12585 uint8_t buf[4]; 12586 12587 stl_le_p(buf, val); 12588 12589 /* Linux crc32c converts the output to one's complement. */ 12590 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12591 } 12592 12593 /* Return the exception level to which FP-disabled exceptions should 12594 * be taken, or 0 if FP is enabled. 12595 */ 12596 int fp_exception_el(CPUARMState *env, int cur_el) 12597 { 12598 #ifndef CONFIG_USER_ONLY 12599 int fpen; 12600 12601 /* CPACR and the CPTR registers don't exist before v6, so FP is 12602 * always accessible 12603 */ 12604 if (!arm_feature(env, ARM_FEATURE_V6)) { 12605 return 0; 12606 } 12607 12608 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12609 * 0, 2 : trap EL0 and EL1/PL1 accesses 12610 * 1 : trap only EL0 accesses 12611 * 3 : trap no accesses 12612 */ 12613 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12614 switch (fpen) { 12615 case 0: 12616 case 2: 12617 if (cur_el == 0 || cur_el == 1) { 12618 /* Trap to PL1, which might be EL1 or EL3 */ 12619 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12620 return 3; 12621 } 12622 return 1; 12623 } 12624 if (cur_el == 3 && !is_a64(env)) { 12625 /* Secure PL1 running at EL3 */ 12626 return 3; 12627 } 12628 break; 12629 case 1: 12630 if (cur_el == 0) { 12631 return 1; 12632 } 12633 break; 12634 case 3: 12635 break; 12636 } 12637 12638 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12639 * check because zero bits in the registers mean "don't trap". 12640 */ 12641 12642 /* CPTR_EL2 : present in v7VE or v8 */ 12643 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12644 && !arm_is_secure_below_el3(env)) { 12645 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12646 return 2; 12647 } 12648 12649 /* CPTR_EL3 : present in v8 */ 12650 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12651 /* Trap all FP ops to EL3 */ 12652 return 3; 12653 } 12654 #endif 12655 return 0; 12656 } 12657 12658 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12659 target_ulong *cs_base, uint32_t *pflags) 12660 { 12661 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 12662 int current_el = arm_current_el(env); 12663 int fp_el = fp_exception_el(env, current_el); 12664 uint32_t flags; 12665 12666 if (is_a64(env)) { 12667 *pc = env->pc; 12668 flags = ARM_TBFLAG_AARCH64_STATE_MASK; 12669 /* Get control bits for tagged addresses */ 12670 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 12671 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 12672 12673 if (arm_feature(env, ARM_FEATURE_SVE)) { 12674 int sve_el = sve_exception_el(env, current_el); 12675 uint32_t zcr_len; 12676 12677 /* If SVE is disabled, but FP is enabled, 12678 * then the effective len is 0. 12679 */ 12680 if (sve_el != 0 && fp_el == 0) { 12681 zcr_len = 0; 12682 } else { 12683 zcr_len = sve_zcr_len_for_el(env, current_el); 12684 } 12685 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT; 12686 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT; 12687 } 12688 } else { 12689 *pc = env->regs[15]; 12690 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 12691 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 12692 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 12693 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 12694 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 12695 if (!(access_secure_reg(env))) { 12696 flags |= ARM_TBFLAG_NS_MASK; 12697 } 12698 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 12699 || arm_el_is_aa64(env, 1)) { 12700 flags |= ARM_TBFLAG_VFPEN_MASK; 12701 } 12702 flags |= (extract32(env->cp15.c15_cpar, 0, 2) 12703 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 12704 } 12705 12706 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 12707 12708 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12709 * states defined in the ARM ARM for software singlestep: 12710 * SS_ACTIVE PSTATE.SS State 12711 * 0 x Inactive (the TB flag for SS is always 0) 12712 * 1 0 Active-pending 12713 * 1 1 Active-not-pending 12714 */ 12715 if (arm_singlestep_active(env)) { 12716 flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 12717 if (is_a64(env)) { 12718 if (env->pstate & PSTATE_SS) { 12719 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12720 } 12721 } else { 12722 if (env->uncached_cpsr & PSTATE_SS) { 12723 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12724 } 12725 } 12726 } 12727 if (arm_cpu_data_is_big_endian(env)) { 12728 flags |= ARM_TBFLAG_BE_DATA_MASK; 12729 } 12730 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT; 12731 12732 if (arm_v7m_is_handler_mode(env)) { 12733 flags |= ARM_TBFLAG_HANDLER_MASK; 12734 } 12735 12736 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is 12737 * suppressing them because the requested execution priority is less than 0. 12738 */ 12739 if (arm_feature(env, ARM_FEATURE_V8) && 12740 arm_feature(env, ARM_FEATURE_M) && 12741 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12742 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12743 flags |= ARM_TBFLAG_STACKCHECK_MASK; 12744 } 12745 12746 *pflags = flags; 12747 *cs_base = 0; 12748 } 12749 12750 #ifdef TARGET_AARCH64 12751 /* 12752 * The manual says that when SVE is enabled and VQ is widened the 12753 * implementation is allowed to zero the previously inaccessible 12754 * portion of the registers. The corollary to that is that when 12755 * SVE is enabled and VQ is narrowed we are also allowed to zero 12756 * the now inaccessible portion of the registers. 12757 * 12758 * The intent of this is that no predicate bit beyond VQ is ever set. 12759 * Which means that some operations on predicate registers themselves 12760 * may operate on full uint64_t or even unrolled across the maximum 12761 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12762 * may well be cheaper than conditionals to restrict the operation 12763 * to the relevant portion of a uint16_t[16]. 12764 */ 12765 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12766 { 12767 int i, j; 12768 uint64_t pmask; 12769 12770 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12771 assert(vq <= arm_env_get_cpu(env)->sve_max_vq); 12772 12773 /* Zap the high bits of the zregs. */ 12774 for (i = 0; i < 32; i++) { 12775 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12776 } 12777 12778 /* Zap the high bits of the pregs and ffr. */ 12779 pmask = 0; 12780 if (vq & 3) { 12781 pmask = ~(-1ULL << (16 * (vq & 3))); 12782 } 12783 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12784 for (i = 0; i < 17; ++i) { 12785 env->vfp.pregs[i].p[j] &= pmask; 12786 } 12787 pmask = 0; 12788 } 12789 } 12790 12791 /* 12792 * Notice a change in SVE vector size when changing EL. 12793 */ 12794 void aarch64_sve_change_el(CPUARMState *env, int old_el, int new_el) 12795 { 12796 int old_len, new_len; 12797 12798 /* Nothing to do if no SVE. */ 12799 if (!arm_feature(env, ARM_FEATURE_SVE)) { 12800 return; 12801 } 12802 12803 /* Nothing to do if FP is disabled in either EL. */ 12804 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12805 return; 12806 } 12807 12808 /* 12809 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12810 * at ELx, or not available because the EL is in AArch32 state, then 12811 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12812 * has an effective value of 0". 12813 * 12814 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12815 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12816 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12817 * we already have the correct register contents when encountering the 12818 * vq0->vq0 transition between EL0->EL1. 12819 */ 12820 old_len = (arm_el_is_aa64(env, old_el) && !sve_exception_el(env, old_el) 12821 ? sve_zcr_len_for_el(env, old_el) : 0); 12822 new_len = (arm_el_is_aa64(env, new_el) && !sve_exception_el(env, new_el) 12823 ? sve_zcr_len_for_el(env, new_el) : 0); 12824 12825 /* When changing vector length, clear inaccessible state. */ 12826 if (new_len < old_len) { 12827 aarch64_sve_narrow_vq(env, new_len + 1); 12828 } 12829 } 12830 #endif 12831