1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/helper-proto.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/timer.h" 17 #include "qemu/bitops.h" 18 #include "qemu/crc32c.h" 19 #include "qemu/qemu-print.h" 20 #include "exec/exec-all.h" 21 #include <zlib.h> /* For crc32 */ 22 #include "hw/irq.h" 23 #include "sysemu/cpu-timers.h" 24 #include "sysemu/kvm.h" 25 #include "qapi/qapi-commands-machine-target.h" 26 #include "qapi/error.h" 27 #include "qemu/guest-random.h" 28 #ifdef CONFIG_TCG 29 #include "semihosting/common-semi.h" 30 #endif 31 #include "cpregs.h" 32 33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 34 35 static void switch_mode(CPUARMState *env, int mode); 36 37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 38 { 39 assert(ri->fieldoffset); 40 if (cpreg_field_is_64bit(ri)) { 41 return CPREG_FIELD64(env, ri); 42 } else { 43 return CPREG_FIELD32(env, ri); 44 } 45 } 46 47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 48 { 49 assert(ri->fieldoffset); 50 if (cpreg_field_is_64bit(ri)) { 51 CPREG_FIELD64(env, ri) = value; 52 } else { 53 CPREG_FIELD32(env, ri) = value; 54 } 55 } 56 57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 return (char *)env + ri->fieldoffset; 60 } 61 62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 63 { 64 /* Raw read of a coprocessor register (as needed for migration, etc). */ 65 if (ri->type & ARM_CP_CONST) { 66 return ri->resetvalue; 67 } else if (ri->raw_readfn) { 68 return ri->raw_readfn(env, ri); 69 } else if (ri->readfn) { 70 return ri->readfn(env, ri); 71 } else { 72 return raw_read(env, ri); 73 } 74 } 75 76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 77 uint64_t v) 78 { 79 /* 80 * Raw write of a coprocessor register (as needed for migration, etc). 81 * Note that constant registers are treated as write-ignored; the 82 * caller should check for success by whether a readback gives the 83 * value written. 84 */ 85 if (ri->type & ARM_CP_CONST) { 86 return; 87 } else if (ri->raw_writefn) { 88 ri->raw_writefn(env, ri, v); 89 } else if (ri->writefn) { 90 ri->writefn(env, ri, v); 91 } else { 92 raw_write(env, ri, v); 93 } 94 } 95 96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 97 { 98 /* 99 * Return true if the regdef would cause an assertion if you called 100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 101 * program bug for it not to have the NO_RAW flag). 102 * NB that returning false here doesn't necessarily mean that calling 103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 104 * read/write access functions which are safe for raw use" from "has 105 * read/write access functions which have side effects but has forgotten 106 * to provide raw access functions". 107 * The tests here line up with the conditions in read/write_raw_cp_reg() 108 * and assertions in raw_read()/raw_write(). 109 */ 110 if ((ri->type & ARM_CP_CONST) || 111 ri->fieldoffset || 112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 113 return false; 114 } 115 return true; 116 } 117 118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 119 { 120 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 121 int i; 122 bool ok = true; 123 124 for (i = 0; i < cpu->cpreg_array_len; i++) { 125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 126 const ARMCPRegInfo *ri; 127 uint64_t newval; 128 129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 130 if (!ri) { 131 ok = false; 132 continue; 133 } 134 if (ri->type & ARM_CP_NO_RAW) { 135 continue; 136 } 137 138 newval = read_raw_cp_reg(&cpu->env, ri); 139 if (kvm_sync) { 140 /* 141 * Only sync if the previous list->cpustate sync succeeded. 142 * Rather than tracking the success/failure state for every 143 * item in the list, we just recheck "does the raw write we must 144 * have made in write_list_to_cpustate() read back OK" here. 145 */ 146 uint64_t oldval = cpu->cpreg_values[i]; 147 148 if (oldval == newval) { 149 continue; 150 } 151 152 write_raw_cp_reg(&cpu->env, ri, oldval); 153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, newval); 158 } 159 cpu->cpreg_values[i] = newval; 160 } 161 return ok; 162 } 163 164 bool write_list_to_cpustate(ARMCPU *cpu) 165 { 166 int i; 167 bool ok = true; 168 169 for (i = 0; i < cpu->cpreg_array_len; i++) { 170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 171 uint64_t v = cpu->cpreg_values[i]; 172 const ARMCPRegInfo *ri; 173 174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 175 if (!ri) { 176 ok = false; 177 continue; 178 } 179 if (ri->type & ARM_CP_NO_RAW) { 180 continue; 181 } 182 /* 183 * Write value and confirm it reads back as written 184 * (to catch read-only registers and partially read-only 185 * registers where the incoming migration value doesn't match) 186 */ 187 write_raw_cp_reg(&cpu->env, ri, v); 188 if (read_raw_cp_reg(&cpu->env, ri) != v) { 189 ok = false; 190 } 191 } 192 return ok; 193 } 194 195 static void add_cpreg_to_list(gpointer key, gpointer opaque) 196 { 197 ARMCPU *cpu = opaque; 198 uint32_t regidx = (uintptr_t)key; 199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 200 201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 203 /* The value array need not be initialized at this point */ 204 cpu->cpreg_array_len++; 205 } 206 } 207 208 static void count_cpreg(gpointer key, gpointer opaque) 209 { 210 ARMCPU *cpu = opaque; 211 const ARMCPRegInfo *ri; 212 213 ri = g_hash_table_lookup(cpu->cp_regs, key); 214 215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 216 cpu->cpreg_array_len++; 217 } 218 } 219 220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 221 { 222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 224 225 if (aidx > bidx) { 226 return 1; 227 } 228 if (aidx < bidx) { 229 return -1; 230 } 231 return 0; 232 } 233 234 void init_cpreg_list(ARMCPU *cpu) 235 { 236 /* 237 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 238 * Note that we require cpreg_tuples[] to be sorted by key ID. 239 */ 240 GList *keys; 241 int arraylen; 242 243 keys = g_hash_table_get_keys(cpu->cp_regs); 244 keys = g_list_sort(keys, cpreg_key_compare); 245 246 cpu->cpreg_array_len = 0; 247 248 g_list_foreach(keys, count_cpreg, cpu); 249 250 arraylen = cpu->cpreg_array_len; 251 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 252 cpu->cpreg_values = g_new(uint64_t, arraylen); 253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 256 cpu->cpreg_array_len = 0; 257 258 g_list_foreach(keys, add_cpreg_to_list, cpu); 259 260 assert(cpu->cpreg_array_len == arraylen); 261 262 g_list_free(keys); 263 } 264 265 /* 266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 267 */ 268 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 269 const ARMCPRegInfo *ri, 270 bool isread) 271 { 272 if (!is_a64(env) && arm_current_el(env) == 3 && 273 arm_is_secure_below_el3(env)) { 274 return CP_ACCESS_TRAP_UNCATEGORIZED; 275 } 276 return CP_ACCESS_OK; 277 } 278 279 /* 280 * Some secure-only AArch32 registers trap to EL3 if used from 281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 283 * We assume that the .access field is set to PL1_RW. 284 */ 285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 286 const ARMCPRegInfo *ri, 287 bool isread) 288 { 289 if (arm_current_el(env) == 3) { 290 return CP_ACCESS_OK; 291 } 292 if (arm_is_secure_below_el3(env)) { 293 if (env->cp15.scr_el3 & SCR_EEL2) { 294 return CP_ACCESS_TRAP_EL2; 295 } 296 return CP_ACCESS_TRAP_EL3; 297 } 298 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 299 return CP_ACCESS_TRAP_UNCATEGORIZED; 300 } 301 302 /* 303 * Check for traps to performance monitor registers, which are controlled 304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 305 */ 306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 307 bool isread) 308 { 309 int el = arm_current_el(env); 310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 311 312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 313 return CP_ACCESS_TRAP_EL2; 314 } 315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 316 return CP_ACCESS_TRAP_EL3; 317 } 318 return CP_ACCESS_OK; 319 } 320 321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 323 bool isread) 324 { 325 if (arm_current_el(env) == 1) { 326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 327 if (arm_hcr_el2_eff(env) & trap) { 328 return CP_ACCESS_TRAP_EL2; 329 } 330 } 331 return CP_ACCESS_OK; 332 } 333 334 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 336 bool isread) 337 { 338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 339 return CP_ACCESS_TRAP_EL2; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 346 bool isread) 347 { 348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 349 return CP_ACCESS_TRAP_EL2; 350 } 351 return CP_ACCESS_OK; 352 } 353 354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 356 bool isread) 357 { 358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 359 return CP_ACCESS_TRAP_EL2; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 366 bool isread) 367 { 368 if (arm_current_el(env) == 1 && 369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 370 return CP_ACCESS_TRAP_EL2; 371 } 372 return CP_ACCESS_OK; 373 } 374 375 #ifdef TARGET_AARCH64 376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 1 && 381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 382 return CP_ACCESS_TRAP_EL2; 383 } 384 return CP_ACCESS_OK; 385 } 386 #endif 387 388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 389 { 390 ARMCPU *cpu = env_archcpu(env); 391 392 raw_write(env, ri, value); 393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 394 } 395 396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 397 { 398 ARMCPU *cpu = env_archcpu(env); 399 400 if (raw_read(env, ri) != value) { 401 /* 402 * Unlike real hardware the qemu TLB uses virtual addresses, 403 * not modified virtual addresses, so this causes a TLB flush. 404 */ 405 tlb_flush(CPU(cpu)); 406 raw_write(env, ri, value); 407 } 408 } 409 410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 411 uint64_t value) 412 { 413 ARMCPU *cpu = env_archcpu(env); 414 415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 416 && !extended_addresses_enabled(env)) { 417 /* 418 * For VMSA (when not using the LPAE long descriptor page table 419 * format) this register includes the ASID, so do a TLB flush. 420 * For PMSA it is purely a process ID and no action is needed. 421 */ 422 tlb_flush(CPU(cpu)); 423 } 424 raw_write(env, ri, value); 425 } 426 427 static int alle1_tlbmask(CPUARMState *env) 428 { 429 /* 430 * Note that the 'ALL' scope must invalidate both stage 1 and 431 * stage 2 translations, whereas most other scopes only invalidate 432 * stage 1 translations. 433 */ 434 return (ARMMMUIdxBit_E10_1 | 435 ARMMMUIdxBit_E10_1_PAN | 436 ARMMMUIdxBit_E10_0 | 437 ARMMMUIdxBit_Stage2 | 438 ARMMMUIdxBit_Stage2_S); 439 } 440 441 442 /* IS variants of TLB operations must affect all cores */ 443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 444 uint64_t value) 445 { 446 CPUState *cs = env_cpu(env); 447 448 tlb_flush_all_cpus_synced(cs); 449 } 450 451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 452 uint64_t value) 453 { 454 CPUState *cs = env_cpu(env); 455 456 tlb_flush_all_cpus_synced(cs); 457 } 458 459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 460 uint64_t value) 461 { 462 CPUState *cs = env_cpu(env); 463 464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 465 } 466 467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 468 uint64_t value) 469 { 470 CPUState *cs = env_cpu(env); 471 472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 473 } 474 475 /* 476 * Non-IS variants of TLB operations are upgraded to 477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 478 * force broadcast of these operations. 479 */ 480 static bool tlb_force_broadcast(CPUARMState *env) 481 { 482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 483 } 484 485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate all (TLBIALL) */ 489 CPUState *cs = env_cpu(env); 490 491 if (tlb_force_broadcast(env)) { 492 tlb_flush_all_cpus_synced(cs); 493 } else { 494 tlb_flush(cs); 495 } 496 } 497 498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 499 uint64_t value) 500 { 501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 502 CPUState *cs = env_cpu(env); 503 504 value &= TARGET_PAGE_MASK; 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_page_all_cpus_synced(cs, value); 507 } else { 508 tlb_flush_page(cs, value); 509 } 510 } 511 512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate by ASID (TLBIASID) */ 516 CPUState *cs = env_cpu(env); 517 518 if (tlb_force_broadcast(env)) { 519 tlb_flush_all_cpus_synced(cs); 520 } else { 521 tlb_flush(cs); 522 } 523 } 524 525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 529 CPUState *cs = env_cpu(env); 530 531 value &= TARGET_PAGE_MASK; 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_page_all_cpus_synced(cs, value); 534 } else { 535 tlb_flush_page(cs, value); 536 } 537 } 538 539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 CPUState *cs = env_cpu(env); 543 544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 545 } 546 547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 553 } 554 555 556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 562 } 563 564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = env_cpu(env); 568 569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 570 } 571 572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = env_cpu(env); 576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 577 578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 579 } 580 581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 CPUState *cs = env_cpu(env); 585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 586 587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 588 ARMMMUIdxBit_E2); 589 } 590 591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 592 uint64_t value) 593 { 594 CPUState *cs = env_cpu(env); 595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 596 597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 598 } 599 600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = env_cpu(env); 604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 605 606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 607 } 608 609 static const ARMCPRegInfo cp_reginfo[] = { 610 /* 611 * Define the secure and non-secure FCSE identifier CP registers 612 * separately because there is no secure bank in V8 (no _EL3). This allows 613 * the secure register to be properly reset and migrated. There is also no 614 * v8 EL1 version of the register so the non-secure instance stands alone. 615 */ 616 { .name = "FCSEIDR", 617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 621 { .name = "FCSEIDR_S", 622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 626 /* 627 * Define the secure and non-secure context identifier CP registers 628 * separately because there is no secure bank in V8 (no _EL3). This allows 629 * the secure register to be properly reset and migrated. In the 630 * non-secure case, the 32-bit register will have reset and migration 631 * disabled during registration as it is handled by the 64-bit instance. 632 */ 633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 635 .access = PL1_RW, .accessfn = access_tvm_trvm, 636 .secure = ARM_CP_SECSTATE_NS, 637 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 638 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 639 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 640 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 641 .access = PL1_RW, .accessfn = access_tvm_trvm, 642 .secure = ARM_CP_SECSTATE_S, 643 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 644 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 645 }; 646 647 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 648 /* 649 * NB: Some of these registers exist in v8 but with more precise 650 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 651 */ 652 /* MMU Domain access control / MPU write buffer control */ 653 { .name = "DACR", 654 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 655 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 656 .writefn = dacr_write, .raw_writefn = raw_write, 657 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 658 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 659 /* 660 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 661 * For v6 and v5, these mappings are overly broad. 662 */ 663 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 664 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 671 /* Cache maintenance ops; some of this space may be overridden later. */ 672 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 673 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 674 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 675 }; 676 677 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 678 /* 679 * Not all pre-v6 cores implemented this WFI, so this is slightly 680 * over-broad. 681 */ 682 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 683 .access = PL1_W, .type = ARM_CP_WFI }, 684 }; 685 686 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 687 /* 688 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 689 * is UNPREDICTABLE; we choose to NOP as most implementations do). 690 */ 691 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 692 .access = PL1_W, .type = ARM_CP_WFI }, 693 /* 694 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 695 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 696 * OMAPCP will override this space. 697 */ 698 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 699 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 700 .resetvalue = 0 }, 701 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 702 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 703 .resetvalue = 0 }, 704 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 705 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 706 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 707 .resetvalue = 0 }, 708 /* 709 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 710 * implementing it as RAZ means the "debug architecture version" bits 711 * will read as a reserved value, which should cause Linux to not try 712 * to use the debug hardware. 713 */ 714 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 715 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 716 /* 717 * MMU TLB control. Note that the wildcarding means we cover not just 718 * the unified TLB ops but also the dside/iside/inner-shareable variants. 719 */ 720 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 721 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 722 .type = ARM_CP_NO_RAW }, 723 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 724 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 725 .type = ARM_CP_NO_RAW }, 726 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 727 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 728 .type = ARM_CP_NO_RAW }, 729 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 730 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 731 .type = ARM_CP_NO_RAW }, 732 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 733 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 734 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 735 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 736 }; 737 738 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 739 uint64_t value) 740 { 741 uint32_t mask = 0; 742 743 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 744 if (!arm_feature(env, ARM_FEATURE_V8)) { 745 /* 746 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 747 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 748 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 749 */ 750 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 751 /* VFP coprocessor: cp10 & cp11 [23:20] */ 752 mask |= R_CPACR_ASEDIS_MASK | 753 R_CPACR_D32DIS_MASK | 754 R_CPACR_CP11_MASK | 755 R_CPACR_CP10_MASK; 756 757 if (!arm_feature(env, ARM_FEATURE_NEON)) { 758 /* ASEDIS [31] bit is RAO/WI */ 759 value |= R_CPACR_ASEDIS_MASK; 760 } 761 762 /* 763 * VFPv3 and upwards with NEON implement 32 double precision 764 * registers (D0-D31). 765 */ 766 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 767 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 768 value |= R_CPACR_D32DIS_MASK; 769 } 770 } 771 value &= mask; 772 } 773 774 /* 775 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 776 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 777 */ 778 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 779 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 780 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 781 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 782 } 783 784 env->cp15.cpacr_el1 = value; 785 } 786 787 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 788 { 789 /* 790 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 791 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 792 */ 793 uint64_t value = env->cp15.cpacr_el1; 794 795 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 796 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 797 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 798 } 799 return value; 800 } 801 802 803 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 804 { 805 /* 806 * Call cpacr_write() so that we reset with the correct RAO bits set 807 * for our CPU features. 808 */ 809 cpacr_write(env, ri, 0); 810 } 811 812 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 813 bool isread) 814 { 815 if (arm_feature(env, ARM_FEATURE_V8)) { 816 /* Check if CPACR accesses are to be trapped to EL2 */ 817 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 818 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 819 return CP_ACCESS_TRAP_EL2; 820 /* Check if CPACR accesses are to be trapped to EL3 */ 821 } else if (arm_current_el(env) < 3 && 822 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 823 return CP_ACCESS_TRAP_EL3; 824 } 825 } 826 827 return CP_ACCESS_OK; 828 } 829 830 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 831 bool isread) 832 { 833 /* Check if CPTR accesses are set to trap to EL3 */ 834 if (arm_current_el(env) == 2 && 835 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 836 return CP_ACCESS_TRAP_EL3; 837 } 838 839 return CP_ACCESS_OK; 840 } 841 842 static const ARMCPRegInfo v6_cp_reginfo[] = { 843 /* prefetch by MVA in v6, NOP in v7 */ 844 { .name = "MVA_prefetch", 845 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 846 .access = PL1_W, .type = ARM_CP_NOP }, 847 /* 848 * We need to break the TB after ISB to execute self-modifying code 849 * correctly and also to take any pending interrupts immediately. 850 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 851 */ 852 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 853 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 854 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 855 .access = PL0_W, .type = ARM_CP_NOP }, 856 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 857 .access = PL0_W, .type = ARM_CP_NOP }, 858 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 859 .access = PL1_RW, .accessfn = access_tvm_trvm, 860 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 861 offsetof(CPUARMState, cp15.ifar_ns) }, 862 .resetvalue = 0, }, 863 /* 864 * Watchpoint Fault Address Register : should actually only be present 865 * for 1136, 1176, 11MPCore. 866 */ 867 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 868 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 869 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 870 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 871 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 872 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 873 }; 874 875 typedef struct pm_event { 876 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 877 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 878 bool (*supported)(CPUARMState *); 879 /* 880 * Retrieve the current count of the underlying event. The programmed 881 * counters hold a difference from the return value from this function 882 */ 883 uint64_t (*get_count)(CPUARMState *); 884 /* 885 * Return how many nanoseconds it will take (at a minimum) for count events 886 * to occur. A negative value indicates the counter will never overflow, or 887 * that the counter has otherwise arranged for the overflow bit to be set 888 * and the PMU interrupt to be raised on overflow. 889 */ 890 int64_t (*ns_per_count)(uint64_t); 891 } pm_event; 892 893 static bool event_always_supported(CPUARMState *env) 894 { 895 return true; 896 } 897 898 static uint64_t swinc_get_count(CPUARMState *env) 899 { 900 /* 901 * SW_INCR events are written directly to the pmevcntr's by writes to 902 * PMSWINC, so there is no underlying count maintained by the PMU itself 903 */ 904 return 0; 905 } 906 907 static int64_t swinc_ns_per(uint64_t ignored) 908 { 909 return -1; 910 } 911 912 /* 913 * Return the underlying cycle count for the PMU cycle counters. If we're in 914 * usermode, simply return 0. 915 */ 916 static uint64_t cycles_get_count(CPUARMState *env) 917 { 918 #ifndef CONFIG_USER_ONLY 919 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 920 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 921 #else 922 return cpu_get_host_ticks(); 923 #endif 924 } 925 926 #ifndef CONFIG_USER_ONLY 927 static int64_t cycles_ns_per(uint64_t cycles) 928 { 929 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 930 } 931 932 static bool instructions_supported(CPUARMState *env) 933 { 934 return icount_enabled() == 1; /* Precise instruction counting */ 935 } 936 937 static uint64_t instructions_get_count(CPUARMState *env) 938 { 939 return (uint64_t)icount_get_raw(); 940 } 941 942 static int64_t instructions_ns_per(uint64_t icount) 943 { 944 return icount_to_ns((int64_t)icount); 945 } 946 #endif 947 948 static bool pmuv3p1_events_supported(CPUARMState *env) 949 { 950 /* For events which are supported in any v8.1 PMU */ 951 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 952 } 953 954 static bool pmuv3p4_events_supported(CPUARMState *env) 955 { 956 /* For events which are supported in any v8.1 PMU */ 957 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 958 } 959 960 static uint64_t zero_event_get_count(CPUARMState *env) 961 { 962 /* For events which on QEMU never fire, so their count is always zero */ 963 return 0; 964 } 965 966 static int64_t zero_event_ns_per(uint64_t cycles) 967 { 968 /* An event which never fires can never overflow */ 969 return -1; 970 } 971 972 static const pm_event pm_events[] = { 973 { .number = 0x000, /* SW_INCR */ 974 .supported = event_always_supported, 975 .get_count = swinc_get_count, 976 .ns_per_count = swinc_ns_per, 977 }, 978 #ifndef CONFIG_USER_ONLY 979 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 980 .supported = instructions_supported, 981 .get_count = instructions_get_count, 982 .ns_per_count = instructions_ns_per, 983 }, 984 { .number = 0x011, /* CPU_CYCLES, Cycle */ 985 .supported = event_always_supported, 986 .get_count = cycles_get_count, 987 .ns_per_count = cycles_ns_per, 988 }, 989 #endif 990 { .number = 0x023, /* STALL_FRONTEND */ 991 .supported = pmuv3p1_events_supported, 992 .get_count = zero_event_get_count, 993 .ns_per_count = zero_event_ns_per, 994 }, 995 { .number = 0x024, /* STALL_BACKEND */ 996 .supported = pmuv3p1_events_supported, 997 .get_count = zero_event_get_count, 998 .ns_per_count = zero_event_ns_per, 999 }, 1000 { .number = 0x03c, /* STALL */ 1001 .supported = pmuv3p4_events_supported, 1002 .get_count = zero_event_get_count, 1003 .ns_per_count = zero_event_ns_per, 1004 }, 1005 }; 1006 1007 /* 1008 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1009 * events (i.e. the statistical profiling extension), this implementation 1010 * should first be updated to something sparse instead of the current 1011 * supported_event_map[] array. 1012 */ 1013 #define MAX_EVENT_ID 0x3c 1014 #define UNSUPPORTED_EVENT UINT16_MAX 1015 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1016 1017 /* 1018 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1019 * of ARM event numbers to indices in our pm_events array. 1020 * 1021 * Note: Events in the 0x40XX range are not currently supported. 1022 */ 1023 void pmu_init(ARMCPU *cpu) 1024 { 1025 unsigned int i; 1026 1027 /* 1028 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1029 * events to them 1030 */ 1031 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1032 supported_event_map[i] = UNSUPPORTED_EVENT; 1033 } 1034 cpu->pmceid0 = 0; 1035 cpu->pmceid1 = 0; 1036 1037 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1038 const pm_event *cnt = &pm_events[i]; 1039 assert(cnt->number <= MAX_EVENT_ID); 1040 /* We do not currently support events in the 0x40xx range */ 1041 assert(cnt->number <= 0x3f); 1042 1043 if (cnt->supported(&cpu->env)) { 1044 supported_event_map[cnt->number] = i; 1045 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1046 if (cnt->number & 0x20) { 1047 cpu->pmceid1 |= event_mask; 1048 } else { 1049 cpu->pmceid0 |= event_mask; 1050 } 1051 } 1052 } 1053 } 1054 1055 /* 1056 * Check at runtime whether a PMU event is supported for the current machine 1057 */ 1058 static bool event_supported(uint16_t number) 1059 { 1060 if (number > MAX_EVENT_ID) { 1061 return false; 1062 } 1063 return supported_event_map[number] != UNSUPPORTED_EVENT; 1064 } 1065 1066 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1067 bool isread) 1068 { 1069 /* 1070 * Performance monitor registers user accessibility is controlled 1071 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1072 * trapping to EL2 or EL3 for other accesses. 1073 */ 1074 int el = arm_current_el(env); 1075 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1076 1077 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1078 return CP_ACCESS_TRAP; 1079 } 1080 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1081 return CP_ACCESS_TRAP_EL2; 1082 } 1083 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1084 return CP_ACCESS_TRAP_EL3; 1085 } 1086 1087 return CP_ACCESS_OK; 1088 } 1089 1090 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1091 const ARMCPRegInfo *ri, 1092 bool isread) 1093 { 1094 /* ER: event counter read trap control */ 1095 if (arm_feature(env, ARM_FEATURE_V8) 1096 && arm_current_el(env) == 0 1097 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1098 && isread) { 1099 return CP_ACCESS_OK; 1100 } 1101 1102 return pmreg_access(env, ri, isread); 1103 } 1104 1105 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1106 const ARMCPRegInfo *ri, 1107 bool isread) 1108 { 1109 /* SW: software increment write trap control */ 1110 if (arm_feature(env, ARM_FEATURE_V8) 1111 && arm_current_el(env) == 0 1112 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1113 && !isread) { 1114 return CP_ACCESS_OK; 1115 } 1116 1117 return pmreg_access(env, ri, isread); 1118 } 1119 1120 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1121 const ARMCPRegInfo *ri, 1122 bool isread) 1123 { 1124 /* ER: event counter read trap control */ 1125 if (arm_feature(env, ARM_FEATURE_V8) 1126 && arm_current_el(env) == 0 1127 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1128 return CP_ACCESS_OK; 1129 } 1130 1131 return pmreg_access(env, ri, isread); 1132 } 1133 1134 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1135 const ARMCPRegInfo *ri, 1136 bool isread) 1137 { 1138 /* CR: cycle counter read trap control */ 1139 if (arm_feature(env, ARM_FEATURE_V8) 1140 && arm_current_el(env) == 0 1141 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1142 && isread) { 1143 return CP_ACCESS_OK; 1144 } 1145 1146 return pmreg_access(env, ri, isread); 1147 } 1148 1149 /* 1150 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1151 * We use these to decide whether we need to wrap a write to MDCR_EL2 1152 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1153 */ 1154 #define MDCR_EL2_PMU_ENABLE_BITS \ 1155 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1156 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1157 1158 /* 1159 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1160 * the current EL, security state, and register configuration. 1161 */ 1162 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1163 { 1164 uint64_t filter; 1165 bool e, p, u, nsk, nsu, nsh, m; 1166 bool enabled, prohibited = false, filtered; 1167 bool secure = arm_is_secure(env); 1168 int el = arm_current_el(env); 1169 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1170 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1171 1172 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1173 return false; 1174 } 1175 1176 if (!arm_feature(env, ARM_FEATURE_EL2) || 1177 (counter < hpmn || counter == 31)) { 1178 e = env->cp15.c9_pmcr & PMCRE; 1179 } else { 1180 e = mdcr_el2 & MDCR_HPME; 1181 } 1182 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1183 1184 /* Is event counting prohibited? */ 1185 if (el == 2 && (counter < hpmn || counter == 31)) { 1186 prohibited = mdcr_el2 & MDCR_HPMD; 1187 } 1188 if (secure) { 1189 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1190 } 1191 1192 if (counter == 31) { 1193 /* 1194 * The cycle counter defaults to running. PMCR.DP says "disable 1195 * the cycle counter when event counting is prohibited". 1196 * Some MDCR bits disable the cycle counter specifically. 1197 */ 1198 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1199 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1200 if (secure) { 1201 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1202 } 1203 if (el == 2) { 1204 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1205 } 1206 } 1207 } 1208 1209 if (counter == 31) { 1210 filter = env->cp15.pmccfiltr_el0; 1211 } else { 1212 filter = env->cp15.c14_pmevtyper[counter]; 1213 } 1214 1215 p = filter & PMXEVTYPER_P; 1216 u = filter & PMXEVTYPER_U; 1217 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1218 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1219 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1220 m = arm_el_is_aa64(env, 1) && 1221 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1222 1223 if (el == 0) { 1224 filtered = secure ? u : u != nsu; 1225 } else if (el == 1) { 1226 filtered = secure ? p : p != nsk; 1227 } else if (el == 2) { 1228 filtered = !nsh; 1229 } else { /* EL3 */ 1230 filtered = m != p; 1231 } 1232 1233 if (counter != 31) { 1234 /* 1235 * If not checking PMCCNTR, ensure the counter is setup to an event we 1236 * support 1237 */ 1238 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1239 if (!event_supported(event)) { 1240 return false; 1241 } 1242 } 1243 1244 return enabled && !prohibited && !filtered; 1245 } 1246 1247 static void pmu_update_irq(CPUARMState *env) 1248 { 1249 ARMCPU *cpu = env_archcpu(env); 1250 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1251 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1252 } 1253 1254 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1255 { 1256 /* 1257 * Return true if the clock divider is enabled and the cycle counter 1258 * is supposed to tick only once every 64 clock cycles. This is 1259 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1260 * (64-bit) cycle counter PMCR.D has no effect. 1261 */ 1262 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1263 } 1264 1265 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1266 { 1267 /* Return true if the specified event counter is configured to be 64 bit */ 1268 1269 /* This isn't intended to be used with the cycle counter */ 1270 assert(counter < 31); 1271 1272 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1273 return false; 1274 } 1275 1276 if (arm_feature(env, ARM_FEATURE_EL2)) { 1277 /* 1278 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1279 * current security state, so we don't use arm_mdcr_el2_eff() here. 1280 */ 1281 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1282 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1283 1284 if (hpmn != 0 && counter >= hpmn) { 1285 return hlp; 1286 } 1287 } 1288 return env->cp15.c9_pmcr & PMCRLP; 1289 } 1290 1291 /* 1292 * Ensure c15_ccnt is the guest-visible count so that operations such as 1293 * enabling/disabling the counter or filtering, modifying the count itself, 1294 * etc. can be done logically. This is essentially a no-op if the counter is 1295 * not enabled at the time of the call. 1296 */ 1297 static void pmccntr_op_start(CPUARMState *env) 1298 { 1299 uint64_t cycles = cycles_get_count(env); 1300 1301 if (pmu_counter_enabled(env, 31)) { 1302 uint64_t eff_cycles = cycles; 1303 if (pmccntr_clockdiv_enabled(env)) { 1304 eff_cycles /= 64; 1305 } 1306 1307 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1308 1309 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1310 1ull << 63 : 1ull << 31; 1311 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1312 env->cp15.c9_pmovsr |= (1ULL << 31); 1313 pmu_update_irq(env); 1314 } 1315 1316 env->cp15.c15_ccnt = new_pmccntr; 1317 } 1318 env->cp15.c15_ccnt_delta = cycles; 1319 } 1320 1321 /* 1322 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1323 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1324 * pmccntr_op_start. 1325 */ 1326 static void pmccntr_op_finish(CPUARMState *env) 1327 { 1328 if (pmu_counter_enabled(env, 31)) { 1329 #ifndef CONFIG_USER_ONLY 1330 /* Calculate when the counter will next overflow */ 1331 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1332 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1333 remaining_cycles = (uint32_t)remaining_cycles; 1334 } 1335 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1336 1337 if (overflow_in > 0) { 1338 int64_t overflow_at; 1339 1340 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1341 overflow_in, &overflow_at)) { 1342 ARMCPU *cpu = env_archcpu(env); 1343 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1344 } 1345 } 1346 #endif 1347 1348 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1349 if (pmccntr_clockdiv_enabled(env)) { 1350 prev_cycles /= 64; 1351 } 1352 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1353 } 1354 } 1355 1356 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1357 { 1358 1359 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1360 uint64_t count = 0; 1361 if (event_supported(event)) { 1362 uint16_t event_idx = supported_event_map[event]; 1363 count = pm_events[event_idx].get_count(env); 1364 } 1365 1366 if (pmu_counter_enabled(env, counter)) { 1367 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1368 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1369 1ULL << 63 : 1ULL << 31; 1370 1371 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1372 env->cp15.c9_pmovsr |= (1 << counter); 1373 pmu_update_irq(env); 1374 } 1375 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1376 } 1377 env->cp15.c14_pmevcntr_delta[counter] = count; 1378 } 1379 1380 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1381 { 1382 if (pmu_counter_enabled(env, counter)) { 1383 #ifndef CONFIG_USER_ONLY 1384 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1385 uint16_t event_idx = supported_event_map[event]; 1386 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1387 int64_t overflow_in; 1388 1389 if (!pmevcntr_is_64_bit(env, counter)) { 1390 delta = (uint32_t)delta; 1391 } 1392 overflow_in = pm_events[event_idx].ns_per_count(delta); 1393 1394 if (overflow_in > 0) { 1395 int64_t overflow_at; 1396 1397 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1398 overflow_in, &overflow_at)) { 1399 ARMCPU *cpu = env_archcpu(env); 1400 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1401 } 1402 } 1403 #endif 1404 1405 env->cp15.c14_pmevcntr_delta[counter] -= 1406 env->cp15.c14_pmevcntr[counter]; 1407 } 1408 } 1409 1410 void pmu_op_start(CPUARMState *env) 1411 { 1412 unsigned int i; 1413 pmccntr_op_start(env); 1414 for (i = 0; i < pmu_num_counters(env); i++) { 1415 pmevcntr_op_start(env, i); 1416 } 1417 } 1418 1419 void pmu_op_finish(CPUARMState *env) 1420 { 1421 unsigned int i; 1422 pmccntr_op_finish(env); 1423 for (i = 0; i < pmu_num_counters(env); i++) { 1424 pmevcntr_op_finish(env, i); 1425 } 1426 } 1427 1428 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1429 { 1430 pmu_op_start(&cpu->env); 1431 } 1432 1433 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1434 { 1435 pmu_op_finish(&cpu->env); 1436 } 1437 1438 void arm_pmu_timer_cb(void *opaque) 1439 { 1440 ARMCPU *cpu = opaque; 1441 1442 /* 1443 * Update all the counter values based on the current underlying counts, 1444 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1445 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1446 * counter may expire. 1447 */ 1448 pmu_op_start(&cpu->env); 1449 pmu_op_finish(&cpu->env); 1450 } 1451 1452 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1453 uint64_t value) 1454 { 1455 pmu_op_start(env); 1456 1457 if (value & PMCRC) { 1458 /* The counter has been reset */ 1459 env->cp15.c15_ccnt = 0; 1460 } 1461 1462 if (value & PMCRP) { 1463 unsigned int i; 1464 for (i = 0; i < pmu_num_counters(env); i++) { 1465 env->cp15.c14_pmevcntr[i] = 0; 1466 } 1467 } 1468 1469 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1470 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1471 1472 pmu_op_finish(env); 1473 } 1474 1475 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1476 uint64_t value) 1477 { 1478 unsigned int i; 1479 uint64_t overflow_mask, new_pmswinc; 1480 1481 for (i = 0; i < pmu_num_counters(env); i++) { 1482 /* Increment a counter's count iff: */ 1483 if ((value & (1 << i)) && /* counter's bit is set */ 1484 /* counter is enabled and not filtered */ 1485 pmu_counter_enabled(env, i) && 1486 /* counter is SW_INCR */ 1487 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1488 pmevcntr_op_start(env, i); 1489 1490 /* 1491 * Detect if this write causes an overflow since we can't predict 1492 * PMSWINC overflows like we can for other events 1493 */ 1494 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1495 1496 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1497 1ULL << 63 : 1ULL << 31; 1498 1499 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1500 env->cp15.c9_pmovsr |= (1 << i); 1501 pmu_update_irq(env); 1502 } 1503 1504 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1505 1506 pmevcntr_op_finish(env, i); 1507 } 1508 } 1509 } 1510 1511 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1512 { 1513 uint64_t ret; 1514 pmccntr_op_start(env); 1515 ret = env->cp15.c15_ccnt; 1516 pmccntr_op_finish(env); 1517 return ret; 1518 } 1519 1520 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value) 1522 { 1523 /* 1524 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1525 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1526 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1527 * accessed. 1528 */ 1529 env->cp15.c9_pmselr = value & 0x1f; 1530 } 1531 1532 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1533 uint64_t value) 1534 { 1535 pmccntr_op_start(env); 1536 env->cp15.c15_ccnt = value; 1537 pmccntr_op_finish(env); 1538 } 1539 1540 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1541 uint64_t value) 1542 { 1543 uint64_t cur_val = pmccntr_read(env, NULL); 1544 1545 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1546 } 1547 1548 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1549 uint64_t value) 1550 { 1551 pmccntr_op_start(env); 1552 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1553 pmccntr_op_finish(env); 1554 } 1555 1556 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1557 uint64_t value) 1558 { 1559 pmccntr_op_start(env); 1560 /* M is not accessible from AArch32 */ 1561 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1562 (value & PMCCFILTR); 1563 pmccntr_op_finish(env); 1564 } 1565 1566 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1567 { 1568 /* M is not visible in AArch32 */ 1569 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1570 } 1571 1572 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1573 uint64_t value) 1574 { 1575 pmu_op_start(env); 1576 value &= pmu_counter_mask(env); 1577 env->cp15.c9_pmcnten |= value; 1578 pmu_op_finish(env); 1579 } 1580 1581 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1582 uint64_t value) 1583 { 1584 pmu_op_start(env); 1585 value &= pmu_counter_mask(env); 1586 env->cp15.c9_pmcnten &= ~value; 1587 pmu_op_finish(env); 1588 } 1589 1590 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1591 uint64_t value) 1592 { 1593 value &= pmu_counter_mask(env); 1594 env->cp15.c9_pmovsr &= ~value; 1595 pmu_update_irq(env); 1596 } 1597 1598 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1599 uint64_t value) 1600 { 1601 value &= pmu_counter_mask(env); 1602 env->cp15.c9_pmovsr |= value; 1603 pmu_update_irq(env); 1604 } 1605 1606 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1607 uint64_t value, const uint8_t counter) 1608 { 1609 if (counter == 31) { 1610 pmccfiltr_write(env, ri, value); 1611 } else if (counter < pmu_num_counters(env)) { 1612 pmevcntr_op_start(env, counter); 1613 1614 /* 1615 * If this counter's event type is changing, store the current 1616 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1617 * pmevcntr_op_finish has the correct baseline when it converts back to 1618 * a delta. 1619 */ 1620 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1621 PMXEVTYPER_EVTCOUNT; 1622 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1623 if (old_event != new_event) { 1624 uint64_t count = 0; 1625 if (event_supported(new_event)) { 1626 uint16_t event_idx = supported_event_map[new_event]; 1627 count = pm_events[event_idx].get_count(env); 1628 } 1629 env->cp15.c14_pmevcntr_delta[counter] = count; 1630 } 1631 1632 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1633 pmevcntr_op_finish(env, counter); 1634 } 1635 /* 1636 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1637 * PMSELR value is equal to or greater than the number of implemented 1638 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1639 */ 1640 } 1641 1642 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1643 const uint8_t counter) 1644 { 1645 if (counter == 31) { 1646 return env->cp15.pmccfiltr_el0; 1647 } else if (counter < pmu_num_counters(env)) { 1648 return env->cp15.c14_pmevtyper[counter]; 1649 } else { 1650 /* 1651 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1652 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1653 */ 1654 return 0; 1655 } 1656 } 1657 1658 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1659 uint64_t value) 1660 { 1661 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1662 pmevtyper_write(env, ri, value, counter); 1663 } 1664 1665 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1666 uint64_t value) 1667 { 1668 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1669 env->cp15.c14_pmevtyper[counter] = value; 1670 1671 /* 1672 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1673 * pmu_op_finish calls when loading saved state for a migration. Because 1674 * we're potentially updating the type of event here, the value written to 1675 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1676 * different counter type. Therefore, we need to set this value to the 1677 * current count for the counter type we're writing so that pmu_op_finish 1678 * has the correct count for its calculation. 1679 */ 1680 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1681 if (event_supported(event)) { 1682 uint16_t event_idx = supported_event_map[event]; 1683 env->cp15.c14_pmevcntr_delta[counter] = 1684 pm_events[event_idx].get_count(env); 1685 } 1686 } 1687 1688 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1689 { 1690 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1691 return pmevtyper_read(env, ri, counter); 1692 } 1693 1694 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1695 uint64_t value) 1696 { 1697 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1698 } 1699 1700 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1701 { 1702 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1703 } 1704 1705 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1706 uint64_t value, uint8_t counter) 1707 { 1708 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1709 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1710 value &= MAKE_64BIT_MASK(0, 32); 1711 } 1712 if (counter < pmu_num_counters(env)) { 1713 pmevcntr_op_start(env, counter); 1714 env->cp15.c14_pmevcntr[counter] = value; 1715 pmevcntr_op_finish(env, counter); 1716 } 1717 /* 1718 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1719 * are CONSTRAINED UNPREDICTABLE. 1720 */ 1721 } 1722 1723 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1724 uint8_t counter) 1725 { 1726 if (counter < pmu_num_counters(env)) { 1727 uint64_t ret; 1728 pmevcntr_op_start(env, counter); 1729 ret = env->cp15.c14_pmevcntr[counter]; 1730 pmevcntr_op_finish(env, counter); 1731 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1732 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1733 ret &= MAKE_64BIT_MASK(0, 32); 1734 } 1735 return ret; 1736 } else { 1737 /* 1738 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1739 * are CONSTRAINED UNPREDICTABLE. 1740 */ 1741 return 0; 1742 } 1743 } 1744 1745 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1746 uint64_t value) 1747 { 1748 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1749 pmevcntr_write(env, ri, value, counter); 1750 } 1751 1752 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1753 { 1754 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1755 return pmevcntr_read(env, ri, counter); 1756 } 1757 1758 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1759 uint64_t value) 1760 { 1761 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1762 assert(counter < pmu_num_counters(env)); 1763 env->cp15.c14_pmevcntr[counter] = value; 1764 pmevcntr_write(env, ri, value, counter); 1765 } 1766 1767 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1768 { 1769 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1770 assert(counter < pmu_num_counters(env)); 1771 return env->cp15.c14_pmevcntr[counter]; 1772 } 1773 1774 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1775 uint64_t value) 1776 { 1777 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1778 } 1779 1780 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1781 { 1782 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1783 } 1784 1785 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1786 uint64_t value) 1787 { 1788 if (arm_feature(env, ARM_FEATURE_V8)) { 1789 env->cp15.c9_pmuserenr = value & 0xf; 1790 } else { 1791 env->cp15.c9_pmuserenr = value & 1; 1792 } 1793 } 1794 1795 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1796 uint64_t value) 1797 { 1798 /* We have no event counters so only the C bit can be changed */ 1799 value &= pmu_counter_mask(env); 1800 env->cp15.c9_pminten |= value; 1801 pmu_update_irq(env); 1802 } 1803 1804 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1805 uint64_t value) 1806 { 1807 value &= pmu_counter_mask(env); 1808 env->cp15.c9_pminten &= ~value; 1809 pmu_update_irq(env); 1810 } 1811 1812 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1813 uint64_t value) 1814 { 1815 /* 1816 * Note that even though the AArch64 view of this register has bits 1817 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1818 * architectural requirements for bits which are RES0 only in some 1819 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1820 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1821 */ 1822 raw_write(env, ri, value & ~0x1FULL); 1823 } 1824 1825 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1826 { 1827 /* Begin with base v8.0 state. */ 1828 uint64_t valid_mask = 0x3fff; 1829 ARMCPU *cpu = env_archcpu(env); 1830 uint64_t changed; 1831 1832 /* 1833 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1834 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1835 * Instead, choose the format based on the mode of EL3. 1836 */ 1837 if (arm_el_is_aa64(env, 3)) { 1838 value |= SCR_FW | SCR_AW; /* RES1 */ 1839 valid_mask &= ~SCR_NET; /* RES0 */ 1840 1841 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1842 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1843 value |= SCR_RW; /* RAO/WI */ 1844 } 1845 if (cpu_isar_feature(aa64_ras, cpu)) { 1846 valid_mask |= SCR_TERR; 1847 } 1848 if (cpu_isar_feature(aa64_lor, cpu)) { 1849 valid_mask |= SCR_TLOR; 1850 } 1851 if (cpu_isar_feature(aa64_pauth, cpu)) { 1852 valid_mask |= SCR_API | SCR_APK; 1853 } 1854 if (cpu_isar_feature(aa64_sel2, cpu)) { 1855 valid_mask |= SCR_EEL2; 1856 } 1857 if (cpu_isar_feature(aa64_mte, cpu)) { 1858 valid_mask |= SCR_ATA; 1859 } 1860 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1861 valid_mask |= SCR_ENSCXT; 1862 } 1863 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1864 valid_mask |= SCR_EASE | SCR_NMEA; 1865 } 1866 if (cpu_isar_feature(aa64_sme, cpu)) { 1867 valid_mask |= SCR_ENTP2; 1868 } 1869 if (cpu_isar_feature(aa64_hcx, cpu)) { 1870 valid_mask |= SCR_HXEN; 1871 } 1872 } else { 1873 valid_mask &= ~(SCR_RW | SCR_ST); 1874 if (cpu_isar_feature(aa32_ras, cpu)) { 1875 valid_mask |= SCR_TERR; 1876 } 1877 } 1878 1879 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1880 valid_mask &= ~SCR_HCE; 1881 1882 /* 1883 * On ARMv7, SMD (or SCD as it is called in v7) is only 1884 * supported if EL2 exists. The bit is UNK/SBZP when 1885 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1886 * when EL2 is unavailable. 1887 * On ARMv8, this bit is always available. 1888 */ 1889 if (arm_feature(env, ARM_FEATURE_V7) && 1890 !arm_feature(env, ARM_FEATURE_V8)) { 1891 valid_mask &= ~SCR_SMD; 1892 } 1893 } 1894 1895 /* Clear all-context RES0 bits. */ 1896 value &= valid_mask; 1897 changed = env->cp15.scr_el3 ^ value; 1898 env->cp15.scr_el3 = value; 1899 1900 /* 1901 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then 1902 * we must invalidate all TLBs below EL3. 1903 */ 1904 if (changed & SCR_NS) { 1905 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1906 ARMMMUIdxBit_E20_0 | 1907 ARMMMUIdxBit_E10_1 | 1908 ARMMMUIdxBit_E20_2 | 1909 ARMMMUIdxBit_E10_1_PAN | 1910 ARMMMUIdxBit_E20_2_PAN | 1911 ARMMMUIdxBit_E2)); 1912 } 1913 } 1914 1915 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1916 { 1917 /* 1918 * scr_write will set the RES1 bits on an AArch64-only CPU. 1919 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1920 */ 1921 scr_write(env, ri, 0); 1922 } 1923 1924 static CPAccessResult access_tid4(CPUARMState *env, 1925 const ARMCPRegInfo *ri, 1926 bool isread) 1927 { 1928 if (arm_current_el(env) == 1 && 1929 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1930 return CP_ACCESS_TRAP_EL2; 1931 } 1932 1933 return CP_ACCESS_OK; 1934 } 1935 1936 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1937 { 1938 ARMCPU *cpu = env_archcpu(env); 1939 1940 /* 1941 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1942 * bank 1943 */ 1944 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1945 ri->secure & ARM_CP_SECSTATE_S); 1946 1947 return cpu->ccsidr[index]; 1948 } 1949 1950 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1951 uint64_t value) 1952 { 1953 raw_write(env, ri, value & 0xf); 1954 } 1955 1956 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1957 { 1958 CPUState *cs = env_cpu(env); 1959 bool el1 = arm_current_el(env) == 1; 1960 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1961 uint64_t ret = 0; 1962 1963 if (hcr_el2 & HCR_IMO) { 1964 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1965 ret |= CPSR_I; 1966 } 1967 } else { 1968 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1969 ret |= CPSR_I; 1970 } 1971 } 1972 1973 if (hcr_el2 & HCR_FMO) { 1974 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1975 ret |= CPSR_F; 1976 } 1977 } else { 1978 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1979 ret |= CPSR_F; 1980 } 1981 } 1982 1983 if (hcr_el2 & HCR_AMO) { 1984 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1985 ret |= CPSR_A; 1986 } 1987 } 1988 1989 return ret; 1990 } 1991 1992 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1993 bool isread) 1994 { 1995 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1996 return CP_ACCESS_TRAP_EL2; 1997 } 1998 1999 return CP_ACCESS_OK; 2000 } 2001 2002 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2003 bool isread) 2004 { 2005 if (arm_feature(env, ARM_FEATURE_V8)) { 2006 return access_aa64_tid1(env, ri, isread); 2007 } 2008 2009 return CP_ACCESS_OK; 2010 } 2011 2012 static const ARMCPRegInfo v7_cp_reginfo[] = { 2013 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2014 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2015 .access = PL1_W, .type = ARM_CP_NOP }, 2016 /* 2017 * Performance monitors are implementation defined in v7, 2018 * but with an ARM recommended set of registers, which we 2019 * follow. 2020 * 2021 * Performance registers fall into three categories: 2022 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2023 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2024 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2025 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2026 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2027 */ 2028 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2029 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2030 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2031 .writefn = pmcntenset_write, 2032 .accessfn = pmreg_access, 2033 .raw_writefn = raw_write }, 2034 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2035 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2036 .access = PL0_RW, .accessfn = pmreg_access, 2037 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2038 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2039 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2040 .access = PL0_RW, 2041 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2042 .accessfn = pmreg_access, 2043 .writefn = pmcntenclr_write, 2044 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2045 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2046 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2047 .access = PL0_RW, .accessfn = pmreg_access, 2048 .type = ARM_CP_ALIAS | ARM_CP_IO, 2049 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2050 .writefn = pmcntenclr_write }, 2051 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2052 .access = PL0_RW, .type = ARM_CP_IO, 2053 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2054 .accessfn = pmreg_access, 2055 .writefn = pmovsr_write, 2056 .raw_writefn = raw_write }, 2057 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2058 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2059 .access = PL0_RW, .accessfn = pmreg_access, 2060 .type = ARM_CP_ALIAS | ARM_CP_IO, 2061 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2062 .writefn = pmovsr_write, 2063 .raw_writefn = raw_write }, 2064 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2065 .access = PL0_W, .accessfn = pmreg_access_swinc, 2066 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2067 .writefn = pmswinc_write }, 2068 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2070 .access = PL0_W, .accessfn = pmreg_access_swinc, 2071 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2072 .writefn = pmswinc_write }, 2073 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2074 .access = PL0_RW, .type = ARM_CP_ALIAS, 2075 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2076 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2077 .raw_writefn = raw_write}, 2078 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2079 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2080 .access = PL0_RW, .accessfn = pmreg_access_selr, 2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2082 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2083 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2084 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2085 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2086 .accessfn = pmreg_access_ccntr }, 2087 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2088 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2089 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2090 .type = ARM_CP_IO, 2091 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2092 .readfn = pmccntr_read, .writefn = pmccntr_write, 2093 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2094 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2095 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2096 .access = PL0_RW, .accessfn = pmreg_access, 2097 .type = ARM_CP_ALIAS | ARM_CP_IO, 2098 .resetvalue = 0, }, 2099 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2100 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2101 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2102 .access = PL0_RW, .accessfn = pmreg_access, 2103 .type = ARM_CP_IO, 2104 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2105 .resetvalue = 0, }, 2106 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2107 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2108 .accessfn = pmreg_access, 2109 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2110 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2111 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2112 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2113 .accessfn = pmreg_access, 2114 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2115 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2116 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2117 .accessfn = pmreg_access_xevcntr, 2118 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2119 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2120 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2121 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2122 .accessfn = pmreg_access_xevcntr, 2123 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2124 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2125 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2126 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2127 .resetvalue = 0, 2128 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2129 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2130 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2131 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2132 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2133 .resetvalue = 0, 2134 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2135 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2136 .access = PL1_RW, .accessfn = access_tpm, 2137 .type = ARM_CP_ALIAS | ARM_CP_IO, 2138 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2139 .resetvalue = 0, 2140 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2141 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2142 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2143 .access = PL1_RW, .accessfn = access_tpm, 2144 .type = ARM_CP_IO, 2145 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2146 .writefn = pmintenset_write, .raw_writefn = raw_write, 2147 .resetvalue = 0x0 }, 2148 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2149 .access = PL1_RW, .accessfn = access_tpm, 2150 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2151 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2152 .writefn = pmintenclr_write, }, 2153 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2154 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2155 .access = PL1_RW, .accessfn = access_tpm, 2156 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2157 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2158 .writefn = pmintenclr_write }, 2159 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2160 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2161 .access = PL1_R, 2162 .accessfn = access_tid4, 2163 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2164 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2165 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2166 .access = PL1_RW, 2167 .accessfn = access_tid4, 2168 .writefn = csselr_write, .resetvalue = 0, 2169 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2170 offsetof(CPUARMState, cp15.csselr_ns) } }, 2171 /* 2172 * Auxiliary ID register: this actually has an IMPDEF value but for now 2173 * just RAZ for all cores: 2174 */ 2175 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2176 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2177 .access = PL1_R, .type = ARM_CP_CONST, 2178 .accessfn = access_aa64_tid1, 2179 .resetvalue = 0 }, 2180 /* 2181 * Auxiliary fault status registers: these also are IMPDEF, and we 2182 * choose to RAZ/WI for all cores. 2183 */ 2184 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2185 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2186 .access = PL1_RW, .accessfn = access_tvm_trvm, 2187 .type = ARM_CP_CONST, .resetvalue = 0 }, 2188 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2189 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2190 .access = PL1_RW, .accessfn = access_tvm_trvm, 2191 .type = ARM_CP_CONST, .resetvalue = 0 }, 2192 /* 2193 * MAIR can just read-as-written because we don't implement caches 2194 * and so don't need to care about memory attributes. 2195 */ 2196 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2197 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2198 .access = PL1_RW, .accessfn = access_tvm_trvm, 2199 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2200 .resetvalue = 0 }, 2201 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2202 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2203 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2204 .resetvalue = 0 }, 2205 /* 2206 * For non-long-descriptor page tables these are PRRR and NMRR; 2207 * regardless they still act as reads-as-written for QEMU. 2208 */ 2209 /* 2210 * MAIR0/1 are defined separately from their 64-bit counterpart which 2211 * allows them to assign the correct fieldoffset based on the endianness 2212 * handled in the field definitions. 2213 */ 2214 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2215 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2216 .access = PL1_RW, .accessfn = access_tvm_trvm, 2217 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2218 offsetof(CPUARMState, cp15.mair0_ns) }, 2219 .resetfn = arm_cp_reset_ignore }, 2220 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2221 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2222 .access = PL1_RW, .accessfn = access_tvm_trvm, 2223 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2224 offsetof(CPUARMState, cp15.mair1_ns) }, 2225 .resetfn = arm_cp_reset_ignore }, 2226 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2227 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2228 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2229 /* 32 bit ITLB invalidates */ 2230 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2231 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2232 .writefn = tlbiall_write }, 2233 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2234 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2235 .writefn = tlbimva_write }, 2236 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2237 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2238 .writefn = tlbiasid_write }, 2239 /* 32 bit DTLB invalidates */ 2240 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2241 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2242 .writefn = tlbiall_write }, 2243 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2244 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2245 .writefn = tlbimva_write }, 2246 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2247 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2248 .writefn = tlbiasid_write }, 2249 /* 32 bit TLB invalidates */ 2250 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2251 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2252 .writefn = tlbiall_write }, 2253 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2254 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2255 .writefn = tlbimva_write }, 2256 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2257 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2258 .writefn = tlbiasid_write }, 2259 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2260 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2261 .writefn = tlbimvaa_write }, 2262 }; 2263 2264 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2265 /* 32 bit TLB invalidates, Inner Shareable */ 2266 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2267 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2268 .writefn = tlbiall_is_write }, 2269 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2270 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2271 .writefn = tlbimva_is_write }, 2272 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2273 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2274 .writefn = tlbiasid_is_write }, 2275 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2276 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2277 .writefn = tlbimvaa_is_write }, 2278 }; 2279 2280 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2281 /* PMOVSSET is not implemented in v7 before v7ve */ 2282 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2283 .access = PL0_RW, .accessfn = pmreg_access, 2284 .type = ARM_CP_ALIAS | ARM_CP_IO, 2285 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2286 .writefn = pmovsset_write, 2287 .raw_writefn = raw_write }, 2288 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2289 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2290 .access = PL0_RW, .accessfn = pmreg_access, 2291 .type = ARM_CP_ALIAS | ARM_CP_IO, 2292 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2293 .writefn = pmovsset_write, 2294 .raw_writefn = raw_write }, 2295 }; 2296 2297 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2298 uint64_t value) 2299 { 2300 value &= 1; 2301 env->teecr = value; 2302 } 2303 2304 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2305 bool isread) 2306 { 2307 /* 2308 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2309 * at all, so we don't need to check whether we're v8A. 2310 */ 2311 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2312 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2313 return CP_ACCESS_TRAP_EL2; 2314 } 2315 return CP_ACCESS_OK; 2316 } 2317 2318 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2319 bool isread) 2320 { 2321 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2322 return CP_ACCESS_TRAP; 2323 } 2324 return teecr_access(env, ri, isread); 2325 } 2326 2327 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2328 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2329 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2330 .resetvalue = 0, 2331 .writefn = teecr_write, .accessfn = teecr_access }, 2332 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2333 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2334 .accessfn = teehbr_access, .resetvalue = 0 }, 2335 }; 2336 2337 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2338 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2339 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2340 .access = PL0_RW, 2341 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2342 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2343 .access = PL0_RW, 2344 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2345 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2346 .resetfn = arm_cp_reset_ignore }, 2347 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2348 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2349 .access = PL0_R | PL1_W, 2350 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2351 .resetvalue = 0}, 2352 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2353 .access = PL0_R | PL1_W, 2354 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2355 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2356 .resetfn = arm_cp_reset_ignore }, 2357 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2358 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2359 .access = PL1_RW, 2360 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2361 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2362 .access = PL1_RW, 2363 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2364 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2365 .resetvalue = 0 }, 2366 }; 2367 2368 #ifndef CONFIG_USER_ONLY 2369 2370 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2371 bool isread) 2372 { 2373 /* 2374 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2375 * Writable only at the highest implemented exception level. 2376 */ 2377 int el = arm_current_el(env); 2378 uint64_t hcr; 2379 uint32_t cntkctl; 2380 2381 switch (el) { 2382 case 0: 2383 hcr = arm_hcr_el2_eff(env); 2384 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2385 cntkctl = env->cp15.cnthctl_el2; 2386 } else { 2387 cntkctl = env->cp15.c14_cntkctl; 2388 } 2389 if (!extract32(cntkctl, 0, 2)) { 2390 return CP_ACCESS_TRAP; 2391 } 2392 break; 2393 case 1: 2394 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2395 arm_is_secure_below_el3(env)) { 2396 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2397 return CP_ACCESS_TRAP_UNCATEGORIZED; 2398 } 2399 break; 2400 case 2: 2401 case 3: 2402 break; 2403 } 2404 2405 if (!isread && el < arm_highest_el(env)) { 2406 return CP_ACCESS_TRAP_UNCATEGORIZED; 2407 } 2408 2409 return CP_ACCESS_OK; 2410 } 2411 2412 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2413 bool isread) 2414 { 2415 unsigned int cur_el = arm_current_el(env); 2416 bool has_el2 = arm_is_el2_enabled(env); 2417 uint64_t hcr = arm_hcr_el2_eff(env); 2418 2419 switch (cur_el) { 2420 case 0: 2421 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2422 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2423 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2424 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2425 } 2426 2427 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2428 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2429 return CP_ACCESS_TRAP; 2430 } 2431 2432 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2433 if (hcr & HCR_E2H) { 2434 if (timeridx == GTIMER_PHYS && 2435 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2436 return CP_ACCESS_TRAP_EL2; 2437 } 2438 } else { 2439 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2440 if (has_el2 && timeridx == GTIMER_PHYS && 2441 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2442 return CP_ACCESS_TRAP_EL2; 2443 } 2444 } 2445 break; 2446 2447 case 1: 2448 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2449 if (has_el2 && timeridx == GTIMER_PHYS && 2450 (hcr & HCR_E2H 2451 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2452 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2453 return CP_ACCESS_TRAP_EL2; 2454 } 2455 break; 2456 } 2457 return CP_ACCESS_OK; 2458 } 2459 2460 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2461 bool isread) 2462 { 2463 unsigned int cur_el = arm_current_el(env); 2464 bool has_el2 = arm_is_el2_enabled(env); 2465 uint64_t hcr = arm_hcr_el2_eff(env); 2466 2467 switch (cur_el) { 2468 case 0: 2469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2470 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2471 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2472 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2473 } 2474 2475 /* 2476 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2477 * EL0 if EL0[PV]TEN is zero. 2478 */ 2479 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2480 return CP_ACCESS_TRAP; 2481 } 2482 /* fall through */ 2483 2484 case 1: 2485 if (has_el2 && timeridx == GTIMER_PHYS) { 2486 if (hcr & HCR_E2H) { 2487 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2488 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2489 return CP_ACCESS_TRAP_EL2; 2490 } 2491 } else { 2492 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2493 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2494 return CP_ACCESS_TRAP_EL2; 2495 } 2496 } 2497 } 2498 break; 2499 } 2500 return CP_ACCESS_OK; 2501 } 2502 2503 static CPAccessResult gt_pct_access(CPUARMState *env, 2504 const ARMCPRegInfo *ri, 2505 bool isread) 2506 { 2507 return gt_counter_access(env, GTIMER_PHYS, isread); 2508 } 2509 2510 static CPAccessResult gt_vct_access(CPUARMState *env, 2511 const ARMCPRegInfo *ri, 2512 bool isread) 2513 { 2514 return gt_counter_access(env, GTIMER_VIRT, isread); 2515 } 2516 2517 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2518 bool isread) 2519 { 2520 return gt_timer_access(env, GTIMER_PHYS, isread); 2521 } 2522 2523 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2524 bool isread) 2525 { 2526 return gt_timer_access(env, GTIMER_VIRT, isread); 2527 } 2528 2529 static CPAccessResult gt_stimer_access(CPUARMState *env, 2530 const ARMCPRegInfo *ri, 2531 bool isread) 2532 { 2533 /* 2534 * The AArch64 register view of the secure physical timer is 2535 * always accessible from EL3, and configurably accessible from 2536 * Secure EL1. 2537 */ 2538 switch (arm_current_el(env)) { 2539 case 1: 2540 if (!arm_is_secure(env)) { 2541 return CP_ACCESS_TRAP; 2542 } 2543 if (!(env->cp15.scr_el3 & SCR_ST)) { 2544 return CP_ACCESS_TRAP_EL3; 2545 } 2546 return CP_ACCESS_OK; 2547 case 0: 2548 case 2: 2549 return CP_ACCESS_TRAP; 2550 case 3: 2551 return CP_ACCESS_OK; 2552 default: 2553 g_assert_not_reached(); 2554 } 2555 } 2556 2557 static uint64_t gt_get_countervalue(CPUARMState *env) 2558 { 2559 ARMCPU *cpu = env_archcpu(env); 2560 2561 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2562 } 2563 2564 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2565 { 2566 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2567 2568 if (gt->ctl & 1) { 2569 /* 2570 * Timer enabled: calculate and set current ISTATUS, irq, and 2571 * reset timer to when ISTATUS next has to change 2572 */ 2573 uint64_t offset = timeridx == GTIMER_VIRT ? 2574 cpu->env.cp15.cntvoff_el2 : 0; 2575 uint64_t count = gt_get_countervalue(&cpu->env); 2576 /* Note that this must be unsigned 64 bit arithmetic: */ 2577 int istatus = count - offset >= gt->cval; 2578 uint64_t nexttick; 2579 int irqstate; 2580 2581 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2582 2583 irqstate = (istatus && !(gt->ctl & 2)); 2584 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2585 2586 if (istatus) { 2587 /* Next transition is when count rolls back over to zero */ 2588 nexttick = UINT64_MAX; 2589 } else { 2590 /* Next transition is when we hit cval */ 2591 nexttick = gt->cval + offset; 2592 } 2593 /* 2594 * Note that the desired next expiry time might be beyond the 2595 * signed-64-bit range of a QEMUTimer -- in this case we just 2596 * set the timer for as far in the future as possible. When the 2597 * timer expires we will reset the timer for any remaining period. 2598 */ 2599 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2600 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2601 } else { 2602 timer_mod(cpu->gt_timer[timeridx], nexttick); 2603 } 2604 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2605 } else { 2606 /* Timer disabled: ISTATUS and timer output always clear */ 2607 gt->ctl &= ~4; 2608 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2609 timer_del(cpu->gt_timer[timeridx]); 2610 trace_arm_gt_recalc_disabled(timeridx); 2611 } 2612 } 2613 2614 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2615 int timeridx) 2616 { 2617 ARMCPU *cpu = env_archcpu(env); 2618 2619 timer_del(cpu->gt_timer[timeridx]); 2620 } 2621 2622 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2623 { 2624 return gt_get_countervalue(env); 2625 } 2626 2627 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2628 { 2629 uint64_t hcr; 2630 2631 switch (arm_current_el(env)) { 2632 case 2: 2633 hcr = arm_hcr_el2_eff(env); 2634 if (hcr & HCR_E2H) { 2635 return 0; 2636 } 2637 break; 2638 case 0: 2639 hcr = arm_hcr_el2_eff(env); 2640 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2641 return 0; 2642 } 2643 break; 2644 } 2645 2646 return env->cp15.cntvoff_el2; 2647 } 2648 2649 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2650 { 2651 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2652 } 2653 2654 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2655 int timeridx, 2656 uint64_t value) 2657 { 2658 trace_arm_gt_cval_write(timeridx, value); 2659 env->cp15.c14_timer[timeridx].cval = value; 2660 gt_recalc_timer(env_archcpu(env), timeridx); 2661 } 2662 2663 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2664 int timeridx) 2665 { 2666 uint64_t offset = 0; 2667 2668 switch (timeridx) { 2669 case GTIMER_VIRT: 2670 case GTIMER_HYPVIRT: 2671 offset = gt_virt_cnt_offset(env); 2672 break; 2673 } 2674 2675 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2676 (gt_get_countervalue(env) - offset)); 2677 } 2678 2679 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2680 int timeridx, 2681 uint64_t value) 2682 { 2683 uint64_t offset = 0; 2684 2685 switch (timeridx) { 2686 case GTIMER_VIRT: 2687 case GTIMER_HYPVIRT: 2688 offset = gt_virt_cnt_offset(env); 2689 break; 2690 } 2691 2692 trace_arm_gt_tval_write(timeridx, value); 2693 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2694 sextract64(value, 0, 32); 2695 gt_recalc_timer(env_archcpu(env), timeridx); 2696 } 2697 2698 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2699 int timeridx, 2700 uint64_t value) 2701 { 2702 ARMCPU *cpu = env_archcpu(env); 2703 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2704 2705 trace_arm_gt_ctl_write(timeridx, value); 2706 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2707 if ((oldval ^ value) & 1) { 2708 /* Enable toggled */ 2709 gt_recalc_timer(cpu, timeridx); 2710 } else if ((oldval ^ value) & 2) { 2711 /* 2712 * IMASK toggled: don't need to recalculate, 2713 * just set the interrupt line based on ISTATUS 2714 */ 2715 int irqstate = (oldval & 4) && !(value & 2); 2716 2717 trace_arm_gt_imask_toggle(timeridx, irqstate); 2718 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2719 } 2720 } 2721 2722 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2723 { 2724 gt_timer_reset(env, ri, GTIMER_PHYS); 2725 } 2726 2727 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2728 uint64_t value) 2729 { 2730 gt_cval_write(env, ri, GTIMER_PHYS, value); 2731 } 2732 2733 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2734 { 2735 return gt_tval_read(env, ri, GTIMER_PHYS); 2736 } 2737 2738 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2739 uint64_t value) 2740 { 2741 gt_tval_write(env, ri, GTIMER_PHYS, value); 2742 } 2743 2744 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2745 uint64_t value) 2746 { 2747 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2748 } 2749 2750 static int gt_phys_redir_timeridx(CPUARMState *env) 2751 { 2752 switch (arm_mmu_idx(env)) { 2753 case ARMMMUIdx_E20_0: 2754 case ARMMMUIdx_E20_2: 2755 case ARMMMUIdx_E20_2_PAN: 2756 return GTIMER_HYP; 2757 default: 2758 return GTIMER_PHYS; 2759 } 2760 } 2761 2762 static int gt_virt_redir_timeridx(CPUARMState *env) 2763 { 2764 switch (arm_mmu_idx(env)) { 2765 case ARMMMUIdx_E20_0: 2766 case ARMMMUIdx_E20_2: 2767 case ARMMMUIdx_E20_2_PAN: 2768 return GTIMER_HYPVIRT; 2769 default: 2770 return GTIMER_VIRT; 2771 } 2772 } 2773 2774 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2775 const ARMCPRegInfo *ri) 2776 { 2777 int timeridx = gt_phys_redir_timeridx(env); 2778 return env->cp15.c14_timer[timeridx].cval; 2779 } 2780 2781 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2782 uint64_t value) 2783 { 2784 int timeridx = gt_phys_redir_timeridx(env); 2785 gt_cval_write(env, ri, timeridx, value); 2786 } 2787 2788 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2789 const ARMCPRegInfo *ri) 2790 { 2791 int timeridx = gt_phys_redir_timeridx(env); 2792 return gt_tval_read(env, ri, timeridx); 2793 } 2794 2795 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2796 uint64_t value) 2797 { 2798 int timeridx = gt_phys_redir_timeridx(env); 2799 gt_tval_write(env, ri, timeridx, value); 2800 } 2801 2802 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2803 const ARMCPRegInfo *ri) 2804 { 2805 int timeridx = gt_phys_redir_timeridx(env); 2806 return env->cp15.c14_timer[timeridx].ctl; 2807 } 2808 2809 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2810 uint64_t value) 2811 { 2812 int timeridx = gt_phys_redir_timeridx(env); 2813 gt_ctl_write(env, ri, timeridx, value); 2814 } 2815 2816 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2817 { 2818 gt_timer_reset(env, ri, GTIMER_VIRT); 2819 } 2820 2821 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2822 uint64_t value) 2823 { 2824 gt_cval_write(env, ri, GTIMER_VIRT, value); 2825 } 2826 2827 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2828 { 2829 return gt_tval_read(env, ri, GTIMER_VIRT); 2830 } 2831 2832 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2833 uint64_t value) 2834 { 2835 gt_tval_write(env, ri, GTIMER_VIRT, value); 2836 } 2837 2838 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2842 } 2843 2844 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2845 uint64_t value) 2846 { 2847 ARMCPU *cpu = env_archcpu(env); 2848 2849 trace_arm_gt_cntvoff_write(value); 2850 raw_write(env, ri, value); 2851 gt_recalc_timer(cpu, GTIMER_VIRT); 2852 } 2853 2854 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2855 const ARMCPRegInfo *ri) 2856 { 2857 int timeridx = gt_virt_redir_timeridx(env); 2858 return env->cp15.c14_timer[timeridx].cval; 2859 } 2860 2861 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2862 uint64_t value) 2863 { 2864 int timeridx = gt_virt_redir_timeridx(env); 2865 gt_cval_write(env, ri, timeridx, value); 2866 } 2867 2868 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2869 const ARMCPRegInfo *ri) 2870 { 2871 int timeridx = gt_virt_redir_timeridx(env); 2872 return gt_tval_read(env, ri, timeridx); 2873 } 2874 2875 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2876 uint64_t value) 2877 { 2878 int timeridx = gt_virt_redir_timeridx(env); 2879 gt_tval_write(env, ri, timeridx, value); 2880 } 2881 2882 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2883 const ARMCPRegInfo *ri) 2884 { 2885 int timeridx = gt_virt_redir_timeridx(env); 2886 return env->cp15.c14_timer[timeridx].ctl; 2887 } 2888 2889 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2890 uint64_t value) 2891 { 2892 int timeridx = gt_virt_redir_timeridx(env); 2893 gt_ctl_write(env, ri, timeridx, value); 2894 } 2895 2896 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2897 { 2898 gt_timer_reset(env, ri, GTIMER_HYP); 2899 } 2900 2901 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2902 uint64_t value) 2903 { 2904 gt_cval_write(env, ri, GTIMER_HYP, value); 2905 } 2906 2907 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2908 { 2909 return gt_tval_read(env, ri, GTIMER_HYP); 2910 } 2911 2912 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2913 uint64_t value) 2914 { 2915 gt_tval_write(env, ri, GTIMER_HYP, value); 2916 } 2917 2918 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2919 uint64_t value) 2920 { 2921 gt_ctl_write(env, ri, GTIMER_HYP, value); 2922 } 2923 2924 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2925 { 2926 gt_timer_reset(env, ri, GTIMER_SEC); 2927 } 2928 2929 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2930 uint64_t value) 2931 { 2932 gt_cval_write(env, ri, GTIMER_SEC, value); 2933 } 2934 2935 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2936 { 2937 return gt_tval_read(env, ri, GTIMER_SEC); 2938 } 2939 2940 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2941 uint64_t value) 2942 { 2943 gt_tval_write(env, ri, GTIMER_SEC, value); 2944 } 2945 2946 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2947 uint64_t value) 2948 { 2949 gt_ctl_write(env, ri, GTIMER_SEC, value); 2950 } 2951 2952 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2953 { 2954 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2955 } 2956 2957 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2958 uint64_t value) 2959 { 2960 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2961 } 2962 2963 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2964 { 2965 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2966 } 2967 2968 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2969 uint64_t value) 2970 { 2971 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2972 } 2973 2974 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2975 uint64_t value) 2976 { 2977 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2978 } 2979 2980 void arm_gt_ptimer_cb(void *opaque) 2981 { 2982 ARMCPU *cpu = opaque; 2983 2984 gt_recalc_timer(cpu, GTIMER_PHYS); 2985 } 2986 2987 void arm_gt_vtimer_cb(void *opaque) 2988 { 2989 ARMCPU *cpu = opaque; 2990 2991 gt_recalc_timer(cpu, GTIMER_VIRT); 2992 } 2993 2994 void arm_gt_htimer_cb(void *opaque) 2995 { 2996 ARMCPU *cpu = opaque; 2997 2998 gt_recalc_timer(cpu, GTIMER_HYP); 2999 } 3000 3001 void arm_gt_stimer_cb(void *opaque) 3002 { 3003 ARMCPU *cpu = opaque; 3004 3005 gt_recalc_timer(cpu, GTIMER_SEC); 3006 } 3007 3008 void arm_gt_hvtimer_cb(void *opaque) 3009 { 3010 ARMCPU *cpu = opaque; 3011 3012 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3013 } 3014 3015 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3016 { 3017 ARMCPU *cpu = env_archcpu(env); 3018 3019 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3020 } 3021 3022 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3023 /* 3024 * Note that CNTFRQ is purely reads-as-written for the benefit 3025 * of software; writing it doesn't actually change the timer frequency. 3026 * Our reset value matches the fixed frequency we implement the timer at. 3027 */ 3028 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3029 .type = ARM_CP_ALIAS, 3030 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3031 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3032 }, 3033 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3034 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3035 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3036 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3037 .resetfn = arm_gt_cntfrq_reset, 3038 }, 3039 /* overall control: mostly access permissions */ 3040 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3041 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3042 .access = PL1_RW, 3043 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3044 .resetvalue = 0, 3045 }, 3046 /* per-timer control */ 3047 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3048 .secure = ARM_CP_SECSTATE_NS, 3049 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3050 .accessfn = gt_ptimer_access, 3051 .fieldoffset = offsetoflow32(CPUARMState, 3052 cp15.c14_timer[GTIMER_PHYS].ctl), 3053 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3054 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3055 }, 3056 { .name = "CNTP_CTL_S", 3057 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3058 .secure = ARM_CP_SECSTATE_S, 3059 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3060 .accessfn = gt_ptimer_access, 3061 .fieldoffset = offsetoflow32(CPUARMState, 3062 cp15.c14_timer[GTIMER_SEC].ctl), 3063 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3064 }, 3065 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3066 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3067 .type = ARM_CP_IO, .access = PL0_RW, 3068 .accessfn = gt_ptimer_access, 3069 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3070 .resetvalue = 0, 3071 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3072 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3073 }, 3074 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3075 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3076 .accessfn = gt_vtimer_access, 3077 .fieldoffset = offsetoflow32(CPUARMState, 3078 cp15.c14_timer[GTIMER_VIRT].ctl), 3079 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3080 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3081 }, 3082 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3083 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3084 .type = ARM_CP_IO, .access = PL0_RW, 3085 .accessfn = gt_vtimer_access, 3086 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3087 .resetvalue = 0, 3088 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3089 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3090 }, 3091 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3092 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3093 .secure = ARM_CP_SECSTATE_NS, 3094 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3095 .accessfn = gt_ptimer_access, 3096 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3097 }, 3098 { .name = "CNTP_TVAL_S", 3099 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3100 .secure = ARM_CP_SECSTATE_S, 3101 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3102 .accessfn = gt_ptimer_access, 3103 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3104 }, 3105 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3106 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3107 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3108 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3109 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3110 }, 3111 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3112 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3113 .accessfn = gt_vtimer_access, 3114 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3115 }, 3116 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3117 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3118 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3119 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3120 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3121 }, 3122 /* The counter itself */ 3123 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3124 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3125 .accessfn = gt_pct_access, 3126 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3127 }, 3128 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3129 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3130 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3131 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3132 }, 3133 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3134 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3135 .accessfn = gt_vct_access, 3136 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3137 }, 3138 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3139 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3140 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3141 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3142 }, 3143 /* Comparison value, indicating when the timer goes off */ 3144 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3145 .secure = ARM_CP_SECSTATE_NS, 3146 .access = PL0_RW, 3147 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3148 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3149 .accessfn = gt_ptimer_access, 3150 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3151 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3152 }, 3153 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3154 .secure = ARM_CP_SECSTATE_S, 3155 .access = PL0_RW, 3156 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3157 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3158 .accessfn = gt_ptimer_access, 3159 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3160 }, 3161 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3162 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3163 .access = PL0_RW, 3164 .type = ARM_CP_IO, 3165 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3166 .resetvalue = 0, .accessfn = gt_ptimer_access, 3167 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3168 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3169 }, 3170 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3171 .access = PL0_RW, 3172 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3173 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3174 .accessfn = gt_vtimer_access, 3175 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3176 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3177 }, 3178 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3179 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3180 .access = PL0_RW, 3181 .type = ARM_CP_IO, 3182 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3183 .resetvalue = 0, .accessfn = gt_vtimer_access, 3184 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3185 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3186 }, 3187 /* 3188 * Secure timer -- this is actually restricted to only EL3 3189 * and configurably Secure-EL1 via the accessfn. 3190 */ 3191 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3192 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3193 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3194 .accessfn = gt_stimer_access, 3195 .readfn = gt_sec_tval_read, 3196 .writefn = gt_sec_tval_write, 3197 .resetfn = gt_sec_timer_reset, 3198 }, 3199 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3200 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3201 .type = ARM_CP_IO, .access = PL1_RW, 3202 .accessfn = gt_stimer_access, 3203 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3204 .resetvalue = 0, 3205 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3206 }, 3207 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3208 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3209 .type = ARM_CP_IO, .access = PL1_RW, 3210 .accessfn = gt_stimer_access, 3211 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3212 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3213 }, 3214 }; 3215 3216 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3217 bool isread) 3218 { 3219 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3220 return CP_ACCESS_TRAP; 3221 } 3222 return CP_ACCESS_OK; 3223 } 3224 3225 #else 3226 3227 /* 3228 * In user-mode most of the generic timer registers are inaccessible 3229 * however modern kernels (4.12+) allow access to cntvct_el0 3230 */ 3231 3232 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3233 { 3234 ARMCPU *cpu = env_archcpu(env); 3235 3236 /* 3237 * Currently we have no support for QEMUTimer in linux-user so we 3238 * can't call gt_get_countervalue(env), instead we directly 3239 * call the lower level functions. 3240 */ 3241 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3242 } 3243 3244 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3245 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3246 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3247 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3248 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3249 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3250 }, 3251 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3252 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3253 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3254 .readfn = gt_virt_cnt_read, 3255 }, 3256 }; 3257 3258 #endif 3259 3260 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3261 { 3262 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3263 raw_write(env, ri, value); 3264 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3265 raw_write(env, ri, value & 0xfffff6ff); 3266 } else { 3267 raw_write(env, ri, value & 0xfffff1ff); 3268 } 3269 } 3270 3271 #ifndef CONFIG_USER_ONLY 3272 /* get_phys_addr() isn't present for user-mode-only targets */ 3273 3274 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3275 bool isread) 3276 { 3277 if (ri->opc2 & 4) { 3278 /* 3279 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3280 * Secure EL1 (which can only happen if EL3 is AArch64). 3281 * They are simply UNDEF if executed from NS EL1. 3282 * They function normally from EL2 or EL3. 3283 */ 3284 if (arm_current_el(env) == 1) { 3285 if (arm_is_secure_below_el3(env)) { 3286 if (env->cp15.scr_el3 & SCR_EEL2) { 3287 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3288 } 3289 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3290 } 3291 return CP_ACCESS_TRAP_UNCATEGORIZED; 3292 } 3293 } 3294 return CP_ACCESS_OK; 3295 } 3296 3297 #ifdef CONFIG_TCG 3298 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3299 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3300 bool is_secure) 3301 { 3302 bool ret; 3303 uint64_t par64; 3304 bool format64 = false; 3305 ARMMMUFaultInfo fi = {}; 3306 GetPhysAddrResult res = {}; 3307 3308 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3309 is_secure, &res, &fi); 3310 3311 /* 3312 * ATS operations only do S1 or S1+S2 translations, so we never 3313 * have to deal with the ARMCacheAttrs format for S2 only. 3314 */ 3315 assert(!res.cacheattrs.is_s2_format); 3316 3317 if (ret) { 3318 /* 3319 * Some kinds of translation fault must cause exceptions rather 3320 * than being reported in the PAR. 3321 */ 3322 int current_el = arm_current_el(env); 3323 int target_el; 3324 uint32_t syn, fsr, fsc; 3325 bool take_exc = false; 3326 3327 if (fi.s1ptw && current_el == 1 3328 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3329 /* 3330 * Synchronous stage 2 fault on an access made as part of the 3331 * translation table walk for AT S1E0* or AT S1E1* insn 3332 * executed from NS EL1. If this is a synchronous external abort 3333 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3334 * to EL3. Otherwise the fault is taken as an exception to EL2, 3335 * and HPFAR_EL2 holds the faulting IPA. 3336 */ 3337 if (fi.type == ARMFault_SyncExternalOnWalk && 3338 (env->cp15.scr_el3 & SCR_EA)) { 3339 target_el = 3; 3340 } else { 3341 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3342 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3343 env->cp15.hpfar_el2 |= HPFAR_NS; 3344 } 3345 target_el = 2; 3346 } 3347 take_exc = true; 3348 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3349 /* 3350 * Synchronous external aborts during a translation table walk 3351 * are taken as Data Abort exceptions. 3352 */ 3353 if (fi.stage2) { 3354 if (current_el == 3) { 3355 target_el = 3; 3356 } else { 3357 target_el = 2; 3358 } 3359 } else { 3360 target_el = exception_target_el(env); 3361 } 3362 take_exc = true; 3363 } 3364 3365 if (take_exc) { 3366 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3367 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3368 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3369 fsr = arm_fi_to_lfsc(&fi); 3370 fsc = extract32(fsr, 0, 6); 3371 } else { 3372 fsr = arm_fi_to_sfsc(&fi); 3373 fsc = 0x3f; 3374 } 3375 /* 3376 * Report exception with ESR indicating a fault due to a 3377 * translation table walk for a cache maintenance instruction. 3378 */ 3379 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3380 fi.ea, 1, fi.s1ptw, 1, fsc); 3381 env->exception.vaddress = value; 3382 env->exception.fsr = fsr; 3383 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3384 } 3385 } 3386 3387 if (is_a64(env)) { 3388 format64 = true; 3389 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3390 /* 3391 * ATS1Cxx: 3392 * * TTBCR.EAE determines whether the result is returned using the 3393 * 32-bit or the 64-bit PAR format 3394 * * Instructions executed in Hyp mode always use the 64bit format 3395 * 3396 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3397 * * The Non-secure TTBCR.EAE bit is set to 1 3398 * * The implementation includes EL2, and the value of HCR.VM is 1 3399 * 3400 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3401 * 3402 * ATS1Hx always uses the 64bit format. 3403 */ 3404 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3405 3406 if (arm_feature(env, ARM_FEATURE_EL2)) { 3407 if (mmu_idx == ARMMMUIdx_E10_0 || 3408 mmu_idx == ARMMMUIdx_E10_1 || 3409 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3410 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3411 } else { 3412 format64 |= arm_current_el(env) == 2; 3413 } 3414 } 3415 } 3416 3417 if (format64) { 3418 /* Create a 64-bit PAR */ 3419 par64 = (1 << 11); /* LPAE bit always set */ 3420 if (!ret) { 3421 par64 |= res.f.phys_addr & ~0xfffULL; 3422 if (!res.f.attrs.secure) { 3423 par64 |= (1 << 9); /* NS */ 3424 } 3425 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3426 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3427 } else { 3428 uint32_t fsr = arm_fi_to_lfsc(&fi); 3429 3430 par64 |= 1; /* F */ 3431 par64 |= (fsr & 0x3f) << 1; /* FS */ 3432 if (fi.stage2) { 3433 par64 |= (1 << 9); /* S */ 3434 } 3435 if (fi.s1ptw) { 3436 par64 |= (1 << 8); /* PTW */ 3437 } 3438 } 3439 } else { 3440 /* 3441 * fsr is a DFSR/IFSR value for the short descriptor 3442 * translation table format (with WnR always clear). 3443 * Convert it to a 32-bit PAR. 3444 */ 3445 if (!ret) { 3446 /* We do not set any attribute bits in the PAR */ 3447 if (res.f.lg_page_size == 24 3448 && arm_feature(env, ARM_FEATURE_V7)) { 3449 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3450 } else { 3451 par64 = res.f.phys_addr & 0xfffff000; 3452 } 3453 if (!res.f.attrs.secure) { 3454 par64 |= (1 << 9); /* NS */ 3455 } 3456 } else { 3457 uint32_t fsr = arm_fi_to_sfsc(&fi); 3458 3459 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3460 ((fsr & 0xf) << 1) | 1; 3461 } 3462 } 3463 return par64; 3464 } 3465 #endif /* CONFIG_TCG */ 3466 3467 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3468 { 3469 #ifdef CONFIG_TCG 3470 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3471 uint64_t par64; 3472 ARMMMUIdx mmu_idx; 3473 int el = arm_current_el(env); 3474 bool secure = arm_is_secure_below_el3(env); 3475 3476 switch (ri->opc2 & 6) { 3477 case 0: 3478 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3479 switch (el) { 3480 case 3: 3481 mmu_idx = ARMMMUIdx_E3; 3482 secure = true; 3483 break; 3484 case 2: 3485 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3486 /* fall through */ 3487 case 1: 3488 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3489 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3490 } else { 3491 mmu_idx = ARMMMUIdx_Stage1_E1; 3492 } 3493 break; 3494 default: 3495 g_assert_not_reached(); 3496 } 3497 break; 3498 case 2: 3499 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3500 switch (el) { 3501 case 3: 3502 mmu_idx = ARMMMUIdx_E10_0; 3503 secure = true; 3504 break; 3505 case 2: 3506 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3507 mmu_idx = ARMMMUIdx_Stage1_E0; 3508 break; 3509 case 1: 3510 mmu_idx = ARMMMUIdx_Stage1_E0; 3511 break; 3512 default: 3513 g_assert_not_reached(); 3514 } 3515 break; 3516 case 4: 3517 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3518 mmu_idx = ARMMMUIdx_E10_1; 3519 secure = false; 3520 break; 3521 case 6: 3522 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3523 mmu_idx = ARMMMUIdx_E10_0; 3524 secure = false; 3525 break; 3526 default: 3527 g_assert_not_reached(); 3528 } 3529 3530 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3531 3532 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3533 #else 3534 /* Handled by hardware accelerator. */ 3535 g_assert_not_reached(); 3536 #endif /* CONFIG_TCG */ 3537 } 3538 3539 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3540 uint64_t value) 3541 { 3542 #ifdef CONFIG_TCG 3543 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3544 uint64_t par64; 3545 3546 /* There is no SecureEL2 for AArch32. */ 3547 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3548 3549 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3550 #else 3551 /* Handled by hardware accelerator. */ 3552 g_assert_not_reached(); 3553 #endif /* CONFIG_TCG */ 3554 } 3555 3556 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3557 bool isread) 3558 { 3559 if (arm_current_el(env) == 3 && 3560 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3561 return CP_ACCESS_TRAP; 3562 } 3563 return CP_ACCESS_OK; 3564 } 3565 3566 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3567 uint64_t value) 3568 { 3569 #ifdef CONFIG_TCG 3570 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3571 ARMMMUIdx mmu_idx; 3572 int secure = arm_is_secure_below_el3(env); 3573 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3574 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3575 3576 switch (ri->opc2 & 6) { 3577 case 0: 3578 switch (ri->opc1) { 3579 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3580 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3581 mmu_idx = regime_e20 ? 3582 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3583 } else { 3584 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3585 } 3586 break; 3587 case 4: /* AT S1E2R, AT S1E2W */ 3588 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3589 break; 3590 case 6: /* AT S1E3R, AT S1E3W */ 3591 mmu_idx = ARMMMUIdx_E3; 3592 secure = true; 3593 break; 3594 default: 3595 g_assert_not_reached(); 3596 } 3597 break; 3598 case 2: /* AT S1E0R, AT S1E0W */ 3599 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3600 break; 3601 case 4: /* AT S12E1R, AT S12E1W */ 3602 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3603 break; 3604 case 6: /* AT S12E0R, AT S12E0W */ 3605 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3606 break; 3607 default: 3608 g_assert_not_reached(); 3609 } 3610 3611 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3612 mmu_idx, secure); 3613 #else 3614 /* Handled by hardware accelerator. */ 3615 g_assert_not_reached(); 3616 #endif /* CONFIG_TCG */ 3617 } 3618 #endif 3619 3620 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3621 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3622 .access = PL1_RW, .resetvalue = 0, 3623 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3624 offsetoflow32(CPUARMState, cp15.par_ns) }, 3625 .writefn = par_write }, 3626 #ifndef CONFIG_USER_ONLY 3627 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3628 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3629 .access = PL1_W, .accessfn = ats_access, 3630 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3631 #endif 3632 }; 3633 3634 /* Return basic MPU access permission bits. */ 3635 static uint32_t simple_mpu_ap_bits(uint32_t val) 3636 { 3637 uint32_t ret; 3638 uint32_t mask; 3639 int i; 3640 ret = 0; 3641 mask = 3; 3642 for (i = 0; i < 16; i += 2) { 3643 ret |= (val >> i) & mask; 3644 mask <<= 2; 3645 } 3646 return ret; 3647 } 3648 3649 /* Pad basic MPU access permission bits to extended format. */ 3650 static uint32_t extended_mpu_ap_bits(uint32_t val) 3651 { 3652 uint32_t ret; 3653 uint32_t mask; 3654 int i; 3655 ret = 0; 3656 mask = 3; 3657 for (i = 0; i < 16; i += 2) { 3658 ret |= (val & mask) << i; 3659 mask <<= 2; 3660 } 3661 return ret; 3662 } 3663 3664 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3665 uint64_t value) 3666 { 3667 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3668 } 3669 3670 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3671 { 3672 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3673 } 3674 3675 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3676 uint64_t value) 3677 { 3678 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3679 } 3680 3681 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3682 { 3683 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3684 } 3685 3686 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3687 { 3688 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3689 3690 if (!u32p) { 3691 return 0; 3692 } 3693 3694 u32p += env->pmsav7.rnr[M_REG_NS]; 3695 return *u32p; 3696 } 3697 3698 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3699 uint64_t value) 3700 { 3701 ARMCPU *cpu = env_archcpu(env); 3702 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3703 3704 if (!u32p) { 3705 return; 3706 } 3707 3708 u32p += env->pmsav7.rnr[M_REG_NS]; 3709 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3710 *u32p = value; 3711 } 3712 3713 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3714 uint64_t value) 3715 { 3716 ARMCPU *cpu = env_archcpu(env); 3717 uint32_t nrgs = cpu->pmsav7_dregion; 3718 3719 if (value >= nrgs) { 3720 qemu_log_mask(LOG_GUEST_ERROR, 3721 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3722 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3723 return; 3724 } 3725 3726 raw_write(env, ri, value); 3727 } 3728 3729 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3730 uint64_t value) 3731 { 3732 ARMCPU *cpu = env_archcpu(env); 3733 3734 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3735 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3736 } 3737 3738 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3739 { 3740 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3741 } 3742 3743 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3744 uint64_t value) 3745 { 3746 ARMCPU *cpu = env_archcpu(env); 3747 3748 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3749 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3750 } 3751 3752 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3753 { 3754 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3755 } 3756 3757 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3758 uint64_t value) 3759 { 3760 ARMCPU *cpu = env_archcpu(env); 3761 3762 /* 3763 * Ignore writes that would select not implemented region. 3764 * This is architecturally UNPREDICTABLE. 3765 */ 3766 if (value >= cpu->pmsav7_dregion) { 3767 return; 3768 } 3769 3770 env->pmsav7.rnr[M_REG_NS] = value; 3771 } 3772 3773 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3774 uint64_t value) 3775 { 3776 ARMCPU *cpu = env_archcpu(env); 3777 3778 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3779 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3780 } 3781 3782 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3783 { 3784 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3785 } 3786 3787 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3788 uint64_t value) 3789 { 3790 ARMCPU *cpu = env_archcpu(env); 3791 3792 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3793 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3794 } 3795 3796 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3797 { 3798 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3799 } 3800 3801 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3802 uint64_t value) 3803 { 3804 uint32_t n; 3805 uint32_t bit; 3806 ARMCPU *cpu = env_archcpu(env); 3807 3808 /* Ignore writes to unimplemented regions */ 3809 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3810 value &= MAKE_64BIT_MASK(0, rmax); 3811 3812 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3813 3814 /* Register alias is only valid for first 32 indexes */ 3815 for (n = 0; n < rmax; ++n) { 3816 bit = extract32(value, n, 1); 3817 env->pmsav8.hprlar[n] = deposit32( 3818 env->pmsav8.hprlar[n], 0, 1, bit); 3819 } 3820 } 3821 3822 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3823 { 3824 uint32_t n; 3825 uint32_t result = 0x0; 3826 ARMCPU *cpu = env_archcpu(env); 3827 3828 /* Register alias is only valid for first 32 indexes */ 3829 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3830 if (env->pmsav8.hprlar[n] & 0x1) { 3831 result |= (0x1 << n); 3832 } 3833 } 3834 return result; 3835 } 3836 3837 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3838 uint64_t value) 3839 { 3840 ARMCPU *cpu = env_archcpu(env); 3841 3842 /* 3843 * Ignore writes that would select not implemented region. 3844 * This is architecturally UNPREDICTABLE. 3845 */ 3846 if (value >= cpu->pmsav8r_hdregion) { 3847 return; 3848 } 3849 3850 env->pmsav8.hprselr = value; 3851 } 3852 3853 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3854 uint64_t value) 3855 { 3856 ARMCPU *cpu = env_archcpu(env); 3857 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3858 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3859 3860 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3861 3862 if (ri->opc1 & 4) { 3863 if (index >= cpu->pmsav8r_hdregion) { 3864 return; 3865 } 3866 if (ri->opc2 & 0x1) { 3867 env->pmsav8.hprlar[index] = value; 3868 } else { 3869 env->pmsav8.hprbar[index] = value; 3870 } 3871 } else { 3872 if (index >= cpu->pmsav7_dregion) { 3873 return; 3874 } 3875 if (ri->opc2 & 0x1) { 3876 env->pmsav8.rlar[M_REG_NS][index] = value; 3877 } else { 3878 env->pmsav8.rbar[M_REG_NS][index] = value; 3879 } 3880 } 3881 } 3882 3883 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3884 { 3885 ARMCPU *cpu = env_archcpu(env); 3886 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3887 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3888 3889 if (ri->opc1 & 4) { 3890 if (index >= cpu->pmsav8r_hdregion) { 3891 return 0x0; 3892 } 3893 if (ri->opc2 & 0x1) { 3894 return env->pmsav8.hprlar[index]; 3895 } else { 3896 return env->pmsav8.hprbar[index]; 3897 } 3898 } else { 3899 if (index >= cpu->pmsav7_dregion) { 3900 return 0x0; 3901 } 3902 if (ri->opc2 & 0x1) { 3903 return env->pmsav8.rlar[M_REG_NS][index]; 3904 } else { 3905 return env->pmsav8.rbar[M_REG_NS][index]; 3906 } 3907 } 3908 } 3909 3910 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 3911 { .name = "PRBAR", 3912 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 3913 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3914 .accessfn = access_tvm_trvm, 3915 .readfn = prbar_read, .writefn = prbar_write }, 3916 { .name = "PRLAR", 3917 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 3918 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3919 .accessfn = access_tvm_trvm, 3920 .readfn = prlar_read, .writefn = prlar_write }, 3921 { .name = "PRSELR", .resetvalue = 0, 3922 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 3923 .access = PL1_RW, .accessfn = access_tvm_trvm, 3924 .writefn = prselr_write, 3925 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 3926 { .name = "HPRBAR", .resetvalue = 0, 3927 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 3928 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3929 .readfn = hprbar_read, .writefn = hprbar_write }, 3930 { .name = "HPRLAR", 3931 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 3932 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3933 .readfn = hprlar_read, .writefn = hprlar_write }, 3934 { .name = "HPRSELR", .resetvalue = 0, 3935 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 3936 .access = PL2_RW, 3937 .writefn = hprselr_write, 3938 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 3939 { .name = "HPRENR", 3940 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 3941 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3942 .readfn = hprenr_read, .writefn = hprenr_write }, 3943 }; 3944 3945 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3946 /* 3947 * Reset for all these registers is handled in arm_cpu_reset(), 3948 * because the PMSAv7 is also used by M-profile CPUs, which do 3949 * not register cpregs but still need the state to be reset. 3950 */ 3951 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3952 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3953 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3954 .readfn = pmsav7_read, .writefn = pmsav7_write, 3955 .resetfn = arm_cp_reset_ignore }, 3956 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3957 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3958 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3959 .readfn = pmsav7_read, .writefn = pmsav7_write, 3960 .resetfn = arm_cp_reset_ignore }, 3961 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3962 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3963 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3964 .readfn = pmsav7_read, .writefn = pmsav7_write, 3965 .resetfn = arm_cp_reset_ignore }, 3966 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3967 .access = PL1_RW, 3968 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3969 .writefn = pmsav7_rgnr_write, 3970 .resetfn = arm_cp_reset_ignore }, 3971 }; 3972 3973 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3974 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3975 .access = PL1_RW, .type = ARM_CP_ALIAS, 3976 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3977 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3978 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3979 .access = PL1_RW, .type = ARM_CP_ALIAS, 3980 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3981 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3982 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3983 .access = PL1_RW, 3984 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3985 .resetvalue = 0, }, 3986 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3987 .access = PL1_RW, 3988 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3989 .resetvalue = 0, }, 3990 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3991 .access = PL1_RW, 3992 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3993 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3994 .access = PL1_RW, 3995 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3996 /* Protection region base and size registers */ 3997 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3998 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3999 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4000 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4001 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4002 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4003 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4004 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4005 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4006 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4007 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4008 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4009 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4010 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4011 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4012 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4013 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4014 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4015 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4016 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4017 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4018 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4019 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4020 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4021 }; 4022 4023 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4024 uint64_t value) 4025 { 4026 ARMCPU *cpu = env_archcpu(env); 4027 4028 if (!arm_feature(env, ARM_FEATURE_V8)) { 4029 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4030 /* 4031 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4032 * using Long-descriptor translation table format 4033 */ 4034 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4035 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4036 /* 4037 * In an implementation that includes the Security Extensions 4038 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4039 * Short-descriptor translation table format. 4040 */ 4041 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4042 } else { 4043 value &= TTBCR_N; 4044 } 4045 } 4046 4047 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4048 /* 4049 * With LPAE the TTBCR could result in a change of ASID 4050 * via the TTBCR.A1 bit, so do a TLB flush. 4051 */ 4052 tlb_flush(CPU(cpu)); 4053 } 4054 raw_write(env, ri, value); 4055 } 4056 4057 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4058 uint64_t value) 4059 { 4060 ARMCPU *cpu = env_archcpu(env); 4061 4062 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4063 tlb_flush(CPU(cpu)); 4064 raw_write(env, ri, value); 4065 } 4066 4067 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4068 uint64_t value) 4069 { 4070 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4071 if (cpreg_field_is_64bit(ri) && 4072 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4073 ARMCPU *cpu = env_archcpu(env); 4074 tlb_flush(CPU(cpu)); 4075 } 4076 raw_write(env, ri, value); 4077 } 4078 4079 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4080 uint64_t value) 4081 { 4082 /* 4083 * If we are running with E2&0 regime, then an ASID is active. 4084 * Flush if that might be changing. Note we're not checking 4085 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4086 * holds the active ASID, only checking the field that might. 4087 */ 4088 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4089 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4090 uint16_t mask = ARMMMUIdxBit_E20_2 | 4091 ARMMMUIdxBit_E20_2_PAN | 4092 ARMMMUIdxBit_E20_0; 4093 tlb_flush_by_mmuidx(env_cpu(env), mask); 4094 } 4095 raw_write(env, ri, value); 4096 } 4097 4098 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4099 uint64_t value) 4100 { 4101 ARMCPU *cpu = env_archcpu(env); 4102 CPUState *cs = CPU(cpu); 4103 4104 /* 4105 * A change in VMID to the stage2 page table (Stage2) invalidates 4106 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4107 */ 4108 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4109 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4110 } 4111 raw_write(env, ri, value); 4112 } 4113 4114 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4115 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4116 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4117 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4118 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4119 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4120 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4121 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4122 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4123 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4124 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4125 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4126 offsetof(CPUARMState, cp15.dfar_ns) } }, 4127 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4128 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4129 .access = PL1_RW, .accessfn = access_tvm_trvm, 4130 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4131 .resetvalue = 0, }, 4132 }; 4133 4134 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4135 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4136 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4137 .access = PL1_RW, .accessfn = access_tvm_trvm, 4138 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4139 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4140 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4141 .access = PL1_RW, .accessfn = access_tvm_trvm, 4142 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4143 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4144 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4145 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4146 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4147 .access = PL1_RW, .accessfn = access_tvm_trvm, 4148 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4149 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4150 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4151 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4152 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4153 .access = PL1_RW, .accessfn = access_tvm_trvm, 4154 .writefn = vmsa_tcr_el12_write, 4155 .raw_writefn = raw_write, 4156 .resetvalue = 0, 4157 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4158 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4159 .access = PL1_RW, .accessfn = access_tvm_trvm, 4160 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4161 .raw_writefn = raw_write, 4162 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4163 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4164 }; 4165 4166 /* 4167 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4168 * qemu tlbs nor adjusting cached masks. 4169 */ 4170 static const ARMCPRegInfo ttbcr2_reginfo = { 4171 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4172 .access = PL1_RW, .accessfn = access_tvm_trvm, 4173 .type = ARM_CP_ALIAS, 4174 .bank_fieldoffsets = { 4175 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4176 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4177 }, 4178 }; 4179 4180 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4181 uint64_t value) 4182 { 4183 env->cp15.c15_ticonfig = value & 0xe7; 4184 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4185 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4186 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4187 } 4188 4189 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4190 uint64_t value) 4191 { 4192 env->cp15.c15_threadid = value & 0xffff; 4193 } 4194 4195 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4196 uint64_t value) 4197 { 4198 /* Wait-for-interrupt (deprecated) */ 4199 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4200 } 4201 4202 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4203 uint64_t value) 4204 { 4205 /* 4206 * On OMAP there are registers indicating the max/min index of dcache lines 4207 * containing a dirty line; cache flush operations have to reset these. 4208 */ 4209 env->cp15.c15_i_max = 0x000; 4210 env->cp15.c15_i_min = 0xff0; 4211 } 4212 4213 static const ARMCPRegInfo omap_cp_reginfo[] = { 4214 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4215 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4216 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4217 .resetvalue = 0, }, 4218 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4219 .access = PL1_RW, .type = ARM_CP_NOP }, 4220 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4221 .access = PL1_RW, 4222 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4223 .writefn = omap_ticonfig_write }, 4224 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4225 .access = PL1_RW, 4226 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4227 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4228 .access = PL1_RW, .resetvalue = 0xff0, 4229 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4230 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4231 .access = PL1_RW, 4232 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4233 .writefn = omap_threadid_write }, 4234 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4235 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4236 .type = ARM_CP_NO_RAW, 4237 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4238 /* 4239 * TODO: Peripheral port remap register: 4240 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4241 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4242 * when MMU is off. 4243 */ 4244 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4245 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4246 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4247 .writefn = omap_cachemaint_write }, 4248 { .name = "C9", .cp = 15, .crn = 9, 4249 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4250 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4251 }; 4252 4253 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4254 uint64_t value) 4255 { 4256 env->cp15.c15_cpar = value & 0x3fff; 4257 } 4258 4259 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4260 { .name = "XSCALE_CPAR", 4261 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4262 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4263 .writefn = xscale_cpar_write, }, 4264 { .name = "XSCALE_AUXCR", 4265 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4266 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4267 .resetvalue = 0, }, 4268 /* 4269 * XScale specific cache-lockdown: since we have no cache we NOP these 4270 * and hope the guest does not really rely on cache behaviour. 4271 */ 4272 { .name = "XSCALE_LOCK_ICACHE_LINE", 4273 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4274 .access = PL1_W, .type = ARM_CP_NOP }, 4275 { .name = "XSCALE_UNLOCK_ICACHE", 4276 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4277 .access = PL1_W, .type = ARM_CP_NOP }, 4278 { .name = "XSCALE_DCACHE_LOCK", 4279 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4280 .access = PL1_RW, .type = ARM_CP_NOP }, 4281 { .name = "XSCALE_UNLOCK_DCACHE", 4282 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4283 .access = PL1_W, .type = ARM_CP_NOP }, 4284 }; 4285 4286 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4287 /* 4288 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4289 * implementation of this implementation-defined space. 4290 * Ideally this should eventually disappear in favour of actually 4291 * implementing the correct behaviour for all cores. 4292 */ 4293 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4294 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4295 .access = PL1_RW, 4296 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4297 .resetvalue = 0 }, 4298 }; 4299 4300 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4301 /* Cache status: RAZ because we have no cache so it's always clean */ 4302 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4303 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4304 .resetvalue = 0 }, 4305 }; 4306 4307 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4308 /* We never have a block transfer operation in progress */ 4309 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4310 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4311 .resetvalue = 0 }, 4312 /* The cache ops themselves: these all NOP for QEMU */ 4313 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4314 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4315 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4316 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4317 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4318 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4319 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4320 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4321 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4322 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4323 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4324 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4325 }; 4326 4327 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4328 /* 4329 * The cache test-and-clean instructions always return (1 << 30) 4330 * to indicate that there are no dirty cache lines. 4331 */ 4332 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4333 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4334 .resetvalue = (1 << 30) }, 4335 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4336 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4337 .resetvalue = (1 << 30) }, 4338 }; 4339 4340 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4341 /* Ignore ReadBuffer accesses */ 4342 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4343 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4344 .access = PL1_RW, .resetvalue = 0, 4345 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4346 }; 4347 4348 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4349 { 4350 unsigned int cur_el = arm_current_el(env); 4351 4352 if (arm_is_el2_enabled(env) && cur_el == 1) { 4353 return env->cp15.vpidr_el2; 4354 } 4355 return raw_read(env, ri); 4356 } 4357 4358 static uint64_t mpidr_read_val(CPUARMState *env) 4359 { 4360 ARMCPU *cpu = env_archcpu(env); 4361 uint64_t mpidr = cpu->mp_affinity; 4362 4363 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4364 mpidr |= (1U << 31); 4365 /* 4366 * Cores which are uniprocessor (non-coherent) 4367 * but still implement the MP extensions set 4368 * bit 30. (For instance, Cortex-R5). 4369 */ 4370 if (cpu->mp_is_up) { 4371 mpidr |= (1u << 30); 4372 } 4373 } 4374 return mpidr; 4375 } 4376 4377 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4378 { 4379 unsigned int cur_el = arm_current_el(env); 4380 4381 if (arm_is_el2_enabled(env) && cur_el == 1) { 4382 return env->cp15.vmpidr_el2; 4383 } 4384 return mpidr_read_val(env); 4385 } 4386 4387 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4388 /* NOP AMAIR0/1 */ 4389 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4390 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4391 .access = PL1_RW, .accessfn = access_tvm_trvm, 4392 .type = ARM_CP_CONST, .resetvalue = 0 }, 4393 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4394 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4395 .access = PL1_RW, .accessfn = access_tvm_trvm, 4396 .type = ARM_CP_CONST, .resetvalue = 0 }, 4397 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4398 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4399 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4400 offsetof(CPUARMState, cp15.par_ns)} }, 4401 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4402 .access = PL1_RW, .accessfn = access_tvm_trvm, 4403 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4404 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4405 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4406 .writefn = vmsa_ttbr_write, }, 4407 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4408 .access = PL1_RW, .accessfn = access_tvm_trvm, 4409 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4410 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4411 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4412 .writefn = vmsa_ttbr_write, }, 4413 }; 4414 4415 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4416 { 4417 return vfp_get_fpcr(env); 4418 } 4419 4420 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4421 uint64_t value) 4422 { 4423 vfp_set_fpcr(env, value); 4424 } 4425 4426 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4427 { 4428 return vfp_get_fpsr(env); 4429 } 4430 4431 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4432 uint64_t value) 4433 { 4434 vfp_set_fpsr(env, value); 4435 } 4436 4437 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4438 bool isread) 4439 { 4440 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4441 return CP_ACCESS_TRAP; 4442 } 4443 return CP_ACCESS_OK; 4444 } 4445 4446 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4447 uint64_t value) 4448 { 4449 env->daif = value & PSTATE_DAIF; 4450 } 4451 4452 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4453 { 4454 return env->pstate & PSTATE_PAN; 4455 } 4456 4457 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4458 uint64_t value) 4459 { 4460 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4461 } 4462 4463 static const ARMCPRegInfo pan_reginfo = { 4464 .name = "PAN", .state = ARM_CP_STATE_AA64, 4465 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4466 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4467 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4468 }; 4469 4470 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4471 { 4472 return env->pstate & PSTATE_UAO; 4473 } 4474 4475 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4476 uint64_t value) 4477 { 4478 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4479 } 4480 4481 static const ARMCPRegInfo uao_reginfo = { 4482 .name = "UAO", .state = ARM_CP_STATE_AA64, 4483 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4484 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4485 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4486 }; 4487 4488 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4489 { 4490 return env->pstate & PSTATE_DIT; 4491 } 4492 4493 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4494 uint64_t value) 4495 { 4496 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4497 } 4498 4499 static const ARMCPRegInfo dit_reginfo = { 4500 .name = "DIT", .state = ARM_CP_STATE_AA64, 4501 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4502 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4503 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4504 }; 4505 4506 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4507 { 4508 return env->pstate & PSTATE_SSBS; 4509 } 4510 4511 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4512 uint64_t value) 4513 { 4514 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4515 } 4516 4517 static const ARMCPRegInfo ssbs_reginfo = { 4518 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4519 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4520 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4521 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4522 }; 4523 4524 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4525 const ARMCPRegInfo *ri, 4526 bool isread) 4527 { 4528 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4529 switch (arm_current_el(env)) { 4530 case 0: 4531 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4532 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4533 return CP_ACCESS_TRAP; 4534 } 4535 /* fall through */ 4536 case 1: 4537 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4538 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4539 return CP_ACCESS_TRAP_EL2; 4540 } 4541 break; 4542 } 4543 return CP_ACCESS_OK; 4544 } 4545 4546 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4547 { 4548 /* Cache invalidate/clean to Point of Unification... */ 4549 switch (arm_current_el(env)) { 4550 case 0: 4551 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4552 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4553 return CP_ACCESS_TRAP; 4554 } 4555 /* fall through */ 4556 case 1: 4557 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4558 if (arm_hcr_el2_eff(env) & hcrflags) { 4559 return CP_ACCESS_TRAP_EL2; 4560 } 4561 break; 4562 } 4563 return CP_ACCESS_OK; 4564 } 4565 4566 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4567 bool isread) 4568 { 4569 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4570 } 4571 4572 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4573 bool isread) 4574 { 4575 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4576 } 4577 4578 /* 4579 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4580 * Page D4-1736 (DDI0487A.b) 4581 */ 4582 4583 static int vae1_tlbmask(CPUARMState *env) 4584 { 4585 uint64_t hcr = arm_hcr_el2_eff(env); 4586 uint16_t mask; 4587 4588 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4589 mask = ARMMMUIdxBit_E20_2 | 4590 ARMMMUIdxBit_E20_2_PAN | 4591 ARMMMUIdxBit_E20_0; 4592 } else { 4593 mask = ARMMMUIdxBit_E10_1 | 4594 ARMMMUIdxBit_E10_1_PAN | 4595 ARMMMUIdxBit_E10_0; 4596 } 4597 return mask; 4598 } 4599 4600 /* Return 56 if TBI is enabled, 64 otherwise. */ 4601 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4602 uint64_t addr) 4603 { 4604 uint64_t tcr = regime_tcr(env, mmu_idx); 4605 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4606 int select = extract64(addr, 55, 1); 4607 4608 return (tbi >> select) & 1 ? 56 : 64; 4609 } 4610 4611 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4612 { 4613 uint64_t hcr = arm_hcr_el2_eff(env); 4614 ARMMMUIdx mmu_idx; 4615 4616 /* Only the regime of the mmu_idx below is significant. */ 4617 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4618 mmu_idx = ARMMMUIdx_E20_0; 4619 } else { 4620 mmu_idx = ARMMMUIdx_E10_0; 4621 } 4622 4623 return tlbbits_for_regime(env, mmu_idx, addr); 4624 } 4625 4626 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4627 uint64_t value) 4628 { 4629 CPUState *cs = env_cpu(env); 4630 int mask = vae1_tlbmask(env); 4631 4632 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4633 } 4634 4635 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4636 uint64_t value) 4637 { 4638 CPUState *cs = env_cpu(env); 4639 int mask = vae1_tlbmask(env); 4640 4641 if (tlb_force_broadcast(env)) { 4642 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4643 } else { 4644 tlb_flush_by_mmuidx(cs, mask); 4645 } 4646 } 4647 4648 static int e2_tlbmask(CPUARMState *env) 4649 { 4650 return (ARMMMUIdxBit_E20_0 | 4651 ARMMMUIdxBit_E20_2 | 4652 ARMMMUIdxBit_E20_2_PAN | 4653 ARMMMUIdxBit_E2); 4654 } 4655 4656 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4657 uint64_t value) 4658 { 4659 CPUState *cs = env_cpu(env); 4660 int mask = alle1_tlbmask(env); 4661 4662 tlb_flush_by_mmuidx(cs, mask); 4663 } 4664 4665 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4666 uint64_t value) 4667 { 4668 CPUState *cs = env_cpu(env); 4669 int mask = e2_tlbmask(env); 4670 4671 tlb_flush_by_mmuidx(cs, mask); 4672 } 4673 4674 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4675 uint64_t value) 4676 { 4677 ARMCPU *cpu = env_archcpu(env); 4678 CPUState *cs = CPU(cpu); 4679 4680 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4681 } 4682 4683 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4684 uint64_t value) 4685 { 4686 CPUState *cs = env_cpu(env); 4687 int mask = alle1_tlbmask(env); 4688 4689 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4690 } 4691 4692 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4693 uint64_t value) 4694 { 4695 CPUState *cs = env_cpu(env); 4696 int mask = e2_tlbmask(env); 4697 4698 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4699 } 4700 4701 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4702 uint64_t value) 4703 { 4704 CPUState *cs = env_cpu(env); 4705 4706 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4707 } 4708 4709 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4710 uint64_t value) 4711 { 4712 /* 4713 * Invalidate by VA, EL2 4714 * Currently handles both VAE2 and VALE2, since we don't support 4715 * flush-last-level-only. 4716 */ 4717 CPUState *cs = env_cpu(env); 4718 int mask = e2_tlbmask(env); 4719 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4720 4721 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4722 } 4723 4724 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4725 uint64_t value) 4726 { 4727 /* 4728 * Invalidate by VA, EL3 4729 * Currently handles both VAE3 and VALE3, since we don't support 4730 * flush-last-level-only. 4731 */ 4732 ARMCPU *cpu = env_archcpu(env); 4733 CPUState *cs = CPU(cpu); 4734 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4735 4736 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4737 } 4738 4739 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4740 uint64_t value) 4741 { 4742 CPUState *cs = env_cpu(env); 4743 int mask = vae1_tlbmask(env); 4744 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4745 int bits = vae1_tlbbits(env, pageaddr); 4746 4747 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4748 } 4749 4750 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4751 uint64_t value) 4752 { 4753 /* 4754 * Invalidate by VA, EL1&0 (AArch64 version). 4755 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4756 * since we don't support flush-for-specific-ASID-only or 4757 * flush-last-level-only. 4758 */ 4759 CPUState *cs = env_cpu(env); 4760 int mask = vae1_tlbmask(env); 4761 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4762 int bits = vae1_tlbbits(env, pageaddr); 4763 4764 if (tlb_force_broadcast(env)) { 4765 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4766 } else { 4767 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4768 } 4769 } 4770 4771 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4772 uint64_t value) 4773 { 4774 CPUState *cs = env_cpu(env); 4775 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4776 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4777 4778 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4779 ARMMMUIdxBit_E2, bits); 4780 } 4781 4782 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4783 uint64_t value) 4784 { 4785 CPUState *cs = env_cpu(env); 4786 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4787 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4788 4789 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4790 ARMMMUIdxBit_E3, bits); 4791 } 4792 4793 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4794 { 4795 /* 4796 * The MSB of value is the NS field, which only applies if SEL2 4797 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4798 */ 4799 return (value >= 0 4800 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4801 && arm_is_secure_below_el3(env) 4802 ? ARMMMUIdxBit_Stage2_S 4803 : ARMMMUIdxBit_Stage2); 4804 } 4805 4806 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4807 uint64_t value) 4808 { 4809 CPUState *cs = env_cpu(env); 4810 int mask = ipas2e1_tlbmask(env, value); 4811 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4812 4813 if (tlb_force_broadcast(env)) { 4814 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4815 } else { 4816 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4817 } 4818 } 4819 4820 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4821 uint64_t value) 4822 { 4823 CPUState *cs = env_cpu(env); 4824 int mask = ipas2e1_tlbmask(env, value); 4825 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4826 4827 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4828 } 4829 4830 #ifdef TARGET_AARCH64 4831 typedef struct { 4832 uint64_t base; 4833 uint64_t length; 4834 } TLBIRange; 4835 4836 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4837 { 4838 /* 4839 * Note that the TLBI range TG field encoding differs from both 4840 * TG0 and TG1 encodings. 4841 */ 4842 switch (tg) { 4843 case 1: 4844 return Gran4K; 4845 case 2: 4846 return Gran16K; 4847 case 3: 4848 return Gran64K; 4849 default: 4850 return GranInvalid; 4851 } 4852 } 4853 4854 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4855 uint64_t value) 4856 { 4857 unsigned int page_size_granule, page_shift, num, scale, exponent; 4858 /* Extract one bit to represent the va selector in use. */ 4859 uint64_t select = sextract64(value, 36, 1); 4860 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4861 TLBIRange ret = { }; 4862 ARMGranuleSize gran; 4863 4864 page_size_granule = extract64(value, 46, 2); 4865 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4866 4867 /* The granule encoded in value must match the granule in use. */ 4868 if (gran != param.gran) { 4869 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4870 page_size_granule); 4871 return ret; 4872 } 4873 4874 page_shift = arm_granule_bits(gran); 4875 num = extract64(value, 39, 5); 4876 scale = extract64(value, 44, 2); 4877 exponent = (5 * scale) + 1; 4878 4879 ret.length = (num + 1) << (exponent + page_shift); 4880 4881 if (param.select) { 4882 ret.base = sextract64(value, 0, 37); 4883 } else { 4884 ret.base = extract64(value, 0, 37); 4885 } 4886 if (param.ds) { 4887 /* 4888 * With DS=1, BaseADDR is always shifted 16 so that it is able 4889 * to address all 52 va bits. The input address is perforce 4890 * aligned on a 64k boundary regardless of translation granule. 4891 */ 4892 page_shift = 16; 4893 } 4894 ret.base <<= page_shift; 4895 4896 return ret; 4897 } 4898 4899 static void do_rvae_write(CPUARMState *env, uint64_t value, 4900 int idxmap, bool synced) 4901 { 4902 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4903 TLBIRange range; 4904 int bits; 4905 4906 range = tlbi_aa64_get_range(env, one_idx, value); 4907 bits = tlbbits_for_regime(env, one_idx, range.base); 4908 4909 if (synced) { 4910 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4911 range.base, 4912 range.length, 4913 idxmap, 4914 bits); 4915 } else { 4916 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4917 range.length, idxmap, bits); 4918 } 4919 } 4920 4921 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4922 const ARMCPRegInfo *ri, 4923 uint64_t value) 4924 { 4925 /* 4926 * Invalidate by VA range, EL1&0. 4927 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4928 * since we don't support flush-for-specific-ASID-only or 4929 * flush-last-level-only. 4930 */ 4931 4932 do_rvae_write(env, value, vae1_tlbmask(env), 4933 tlb_force_broadcast(env)); 4934 } 4935 4936 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4937 const ARMCPRegInfo *ri, 4938 uint64_t value) 4939 { 4940 /* 4941 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4942 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4943 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4944 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4945 * shareable specific flushes. 4946 */ 4947 4948 do_rvae_write(env, value, vae1_tlbmask(env), true); 4949 } 4950 4951 static int vae2_tlbmask(CPUARMState *env) 4952 { 4953 return ARMMMUIdxBit_E2; 4954 } 4955 4956 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4957 const ARMCPRegInfo *ri, 4958 uint64_t value) 4959 { 4960 /* 4961 * Invalidate by VA range, EL2. 4962 * Currently handles all of RVAE2 and RVALE2, 4963 * since we don't support flush-for-specific-ASID-only or 4964 * flush-last-level-only. 4965 */ 4966 4967 do_rvae_write(env, value, vae2_tlbmask(env), 4968 tlb_force_broadcast(env)); 4969 4970 4971 } 4972 4973 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4974 const ARMCPRegInfo *ri, 4975 uint64_t value) 4976 { 4977 /* 4978 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4979 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4980 * since we don't support flush-for-specific-ASID-only, 4981 * flush-last-level-only or inner/outer shareable specific flushes. 4982 */ 4983 4984 do_rvae_write(env, value, vae2_tlbmask(env), true); 4985 4986 } 4987 4988 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4989 const ARMCPRegInfo *ri, 4990 uint64_t value) 4991 { 4992 /* 4993 * Invalidate by VA range, EL3. 4994 * Currently handles all of RVAE3 and RVALE3, 4995 * since we don't support flush-for-specific-ASID-only or 4996 * flush-last-level-only. 4997 */ 4998 4999 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5000 } 5001 5002 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5003 const ARMCPRegInfo *ri, 5004 uint64_t value) 5005 { 5006 /* 5007 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5008 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5009 * since we don't support flush-for-specific-ASID-only, 5010 * flush-last-level-only or inner/outer specific flushes. 5011 */ 5012 5013 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5014 } 5015 5016 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5017 uint64_t value) 5018 { 5019 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5020 tlb_force_broadcast(env)); 5021 } 5022 5023 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5024 const ARMCPRegInfo *ri, 5025 uint64_t value) 5026 { 5027 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5028 } 5029 #endif 5030 5031 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5032 bool isread) 5033 { 5034 int cur_el = arm_current_el(env); 5035 5036 if (cur_el < 2) { 5037 uint64_t hcr = arm_hcr_el2_eff(env); 5038 5039 if (cur_el == 0) { 5040 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5041 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5042 return CP_ACCESS_TRAP_EL2; 5043 } 5044 } else { 5045 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5046 return CP_ACCESS_TRAP; 5047 } 5048 if (hcr & HCR_TDZ) { 5049 return CP_ACCESS_TRAP_EL2; 5050 } 5051 } 5052 } else if (hcr & HCR_TDZ) { 5053 return CP_ACCESS_TRAP_EL2; 5054 } 5055 } 5056 return CP_ACCESS_OK; 5057 } 5058 5059 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5060 { 5061 ARMCPU *cpu = env_archcpu(env); 5062 int dzp_bit = 1 << 4; 5063 5064 /* DZP indicates whether DC ZVA access is allowed */ 5065 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5066 dzp_bit = 0; 5067 } 5068 return cpu->dcz_blocksize | dzp_bit; 5069 } 5070 5071 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5072 bool isread) 5073 { 5074 if (!(env->pstate & PSTATE_SP)) { 5075 /* 5076 * Access to SP_EL0 is undefined if it's being used as 5077 * the stack pointer. 5078 */ 5079 return CP_ACCESS_TRAP_UNCATEGORIZED; 5080 } 5081 return CP_ACCESS_OK; 5082 } 5083 5084 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5085 { 5086 return env->pstate & PSTATE_SP; 5087 } 5088 5089 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5090 { 5091 update_spsel(env, val); 5092 } 5093 5094 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5095 uint64_t value) 5096 { 5097 ARMCPU *cpu = env_archcpu(env); 5098 5099 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5100 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5101 value &= ~SCTLR_M; 5102 } 5103 5104 /* ??? Lots of these bits are not implemented. */ 5105 5106 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5107 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5108 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5109 } else { 5110 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5111 SCTLR_ATA0 | SCTLR_ATA); 5112 } 5113 } 5114 5115 if (raw_read(env, ri) == value) { 5116 /* 5117 * Skip the TLB flush if nothing actually changed; Linux likes 5118 * to do a lot of pointless SCTLR writes. 5119 */ 5120 return; 5121 } 5122 5123 raw_write(env, ri, value); 5124 5125 /* This may enable/disable the MMU, so do a TLB flush. */ 5126 tlb_flush(CPU(cpu)); 5127 5128 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 5129 /* 5130 * Normally we would always end the TB on an SCTLR write; see the 5131 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5132 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5133 * of hflags from the translator, so do it here. 5134 */ 5135 arm_rebuild_hflags(env); 5136 } 5137 } 5138 5139 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5140 uint64_t value) 5141 { 5142 /* 5143 * Some MDCR_EL3 bits affect whether PMU counters are running: 5144 * if we are trying to change any of those then we must 5145 * bracket this update with PMU start/finish calls. 5146 */ 5147 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5148 5149 if (pmu_op) { 5150 pmu_op_start(env); 5151 } 5152 env->cp15.mdcr_el3 = value; 5153 if (pmu_op) { 5154 pmu_op_finish(env); 5155 } 5156 } 5157 5158 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5159 uint64_t value) 5160 { 5161 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5162 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5163 } 5164 5165 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5166 uint64_t value) 5167 { 5168 /* 5169 * Some MDCR_EL2 bits affect whether PMU counters are running: 5170 * if we are trying to change any of those then we must 5171 * bracket this update with PMU start/finish calls. 5172 */ 5173 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5174 5175 if (pmu_op) { 5176 pmu_op_start(env); 5177 } 5178 env->cp15.mdcr_el2 = value; 5179 if (pmu_op) { 5180 pmu_op_finish(env); 5181 } 5182 } 5183 5184 static const ARMCPRegInfo v8_cp_reginfo[] = { 5185 /* 5186 * Minimal set of EL0-visible registers. This will need to be expanded 5187 * significantly for system emulation of AArch64 CPUs. 5188 */ 5189 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5190 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5191 .access = PL0_RW, .type = ARM_CP_NZCV }, 5192 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5193 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5194 .type = ARM_CP_NO_RAW, 5195 .access = PL0_RW, .accessfn = aa64_daif_access, 5196 .fieldoffset = offsetof(CPUARMState, daif), 5197 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5198 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5199 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5200 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5201 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5202 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5203 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5204 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5205 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5206 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5207 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5208 .access = PL0_R, .type = ARM_CP_NO_RAW, 5209 .readfn = aa64_dczid_read }, 5210 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5211 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5212 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5213 #ifndef CONFIG_USER_ONLY 5214 /* Avoid overhead of an access check that always passes in user-mode */ 5215 .accessfn = aa64_zva_access, 5216 #endif 5217 }, 5218 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5219 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5220 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5221 /* Cache ops: all NOPs since we don't emulate caches */ 5222 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5223 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5224 .access = PL1_W, .type = ARM_CP_NOP, 5225 .accessfn = access_ticab }, 5226 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5227 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5228 .access = PL1_W, .type = ARM_CP_NOP, 5229 .accessfn = access_tocu }, 5230 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5231 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5232 .access = PL0_W, .type = ARM_CP_NOP, 5233 .accessfn = access_tocu }, 5234 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5235 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5236 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5237 .type = ARM_CP_NOP }, 5238 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5239 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5240 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5241 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5242 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5243 .access = PL0_W, .type = ARM_CP_NOP, 5244 .accessfn = aa64_cacheop_poc_access }, 5245 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5246 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5247 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5248 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5249 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5250 .access = PL0_W, .type = ARM_CP_NOP, 5251 .accessfn = access_tocu }, 5252 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5253 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5254 .access = PL0_W, .type = ARM_CP_NOP, 5255 .accessfn = aa64_cacheop_poc_access }, 5256 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5257 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5258 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5259 /* TLBI operations */ 5260 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5261 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5262 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5263 .writefn = tlbi_aa64_vmalle1is_write }, 5264 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5265 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5266 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5267 .writefn = tlbi_aa64_vae1is_write }, 5268 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5269 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5270 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5271 .writefn = tlbi_aa64_vmalle1is_write }, 5272 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5273 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5274 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5275 .writefn = tlbi_aa64_vae1is_write }, 5276 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5277 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5278 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5279 .writefn = tlbi_aa64_vae1is_write }, 5280 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5281 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5282 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5283 .writefn = tlbi_aa64_vae1is_write }, 5284 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5285 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5286 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5287 .writefn = tlbi_aa64_vmalle1_write }, 5288 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5289 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5290 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5291 .writefn = tlbi_aa64_vae1_write }, 5292 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5293 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5294 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5295 .writefn = tlbi_aa64_vmalle1_write }, 5296 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5297 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5298 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5299 .writefn = tlbi_aa64_vae1_write }, 5300 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5301 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5302 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5303 .writefn = tlbi_aa64_vae1_write }, 5304 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5305 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5306 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5307 .writefn = tlbi_aa64_vae1_write }, 5308 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5309 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5310 .access = PL2_W, .type = ARM_CP_NO_RAW, 5311 .writefn = tlbi_aa64_ipas2e1is_write }, 5312 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5313 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5314 .access = PL2_W, .type = ARM_CP_NO_RAW, 5315 .writefn = tlbi_aa64_ipas2e1is_write }, 5316 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5317 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5318 .access = PL2_W, .type = ARM_CP_NO_RAW, 5319 .writefn = tlbi_aa64_alle1is_write }, 5320 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5321 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5322 .access = PL2_W, .type = ARM_CP_NO_RAW, 5323 .writefn = tlbi_aa64_alle1is_write }, 5324 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5325 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5326 .access = PL2_W, .type = ARM_CP_NO_RAW, 5327 .writefn = tlbi_aa64_ipas2e1_write }, 5328 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5329 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5330 .access = PL2_W, .type = ARM_CP_NO_RAW, 5331 .writefn = tlbi_aa64_ipas2e1_write }, 5332 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5333 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5334 .access = PL2_W, .type = ARM_CP_NO_RAW, 5335 .writefn = tlbi_aa64_alle1_write }, 5336 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5337 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5338 .access = PL2_W, .type = ARM_CP_NO_RAW, 5339 .writefn = tlbi_aa64_alle1is_write }, 5340 #ifndef CONFIG_USER_ONLY 5341 /* 64 bit address translation operations */ 5342 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5343 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5344 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5345 .writefn = ats_write64 }, 5346 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5347 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5348 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5349 .writefn = ats_write64 }, 5350 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5351 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5352 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5353 .writefn = ats_write64 }, 5354 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5355 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5356 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5357 .writefn = ats_write64 }, 5358 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5359 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5360 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5361 .writefn = ats_write64 }, 5362 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5363 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5364 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5365 .writefn = ats_write64 }, 5366 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5367 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5368 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5369 .writefn = ats_write64 }, 5370 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5371 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5372 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5373 .writefn = ats_write64 }, 5374 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5375 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5376 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5377 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5378 .writefn = ats_write64 }, 5379 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5380 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5381 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5382 .writefn = ats_write64 }, 5383 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5384 .type = ARM_CP_ALIAS, 5385 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5386 .access = PL1_RW, .resetvalue = 0, 5387 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5388 .writefn = par_write }, 5389 #endif 5390 /* TLB invalidate last level of translation table walk */ 5391 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5392 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5393 .writefn = tlbimva_is_write }, 5394 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5395 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5396 .writefn = tlbimvaa_is_write }, 5397 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5398 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5399 .writefn = tlbimva_write }, 5400 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5401 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5402 .writefn = tlbimvaa_write }, 5403 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5404 .type = ARM_CP_NO_RAW, .access = PL2_W, 5405 .writefn = tlbimva_hyp_write }, 5406 { .name = "TLBIMVALHIS", 5407 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5408 .type = ARM_CP_NO_RAW, .access = PL2_W, 5409 .writefn = tlbimva_hyp_is_write }, 5410 { .name = "TLBIIPAS2", 5411 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5412 .type = ARM_CP_NO_RAW, .access = PL2_W, 5413 .writefn = tlbiipas2_hyp_write }, 5414 { .name = "TLBIIPAS2IS", 5415 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5416 .type = ARM_CP_NO_RAW, .access = PL2_W, 5417 .writefn = tlbiipas2is_hyp_write }, 5418 { .name = "TLBIIPAS2L", 5419 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5420 .type = ARM_CP_NO_RAW, .access = PL2_W, 5421 .writefn = tlbiipas2_hyp_write }, 5422 { .name = "TLBIIPAS2LIS", 5423 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5424 .type = ARM_CP_NO_RAW, .access = PL2_W, 5425 .writefn = tlbiipas2is_hyp_write }, 5426 /* 32 bit cache operations */ 5427 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5428 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5429 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5430 .type = ARM_CP_NOP, .access = PL1_W }, 5431 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5432 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5433 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5434 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5435 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5436 .type = ARM_CP_NOP, .access = PL1_W }, 5437 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5438 .type = ARM_CP_NOP, .access = PL1_W }, 5439 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5440 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5441 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5442 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5443 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5444 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5445 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5446 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5447 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5448 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5449 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5450 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5451 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5452 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5453 /* MMU Domain access control / MPU write buffer control */ 5454 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5455 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5456 .writefn = dacr_write, .raw_writefn = raw_write, 5457 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5458 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5459 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5460 .type = ARM_CP_ALIAS, 5461 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5462 .access = PL1_RW, 5463 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5464 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5465 .type = ARM_CP_ALIAS, 5466 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5467 .access = PL1_RW, 5468 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5469 /* 5470 * We rely on the access checks not allowing the guest to write to the 5471 * state field when SPSel indicates that it's being used as the stack 5472 * pointer. 5473 */ 5474 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5475 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5476 .access = PL1_RW, .accessfn = sp_el0_access, 5477 .type = ARM_CP_ALIAS, 5478 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5479 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5480 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5481 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5482 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5483 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5484 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5485 .type = ARM_CP_NO_RAW, 5486 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5487 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5488 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5489 .access = PL2_RW, 5490 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5491 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5492 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5493 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5494 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5495 .writefn = dacr_write, .raw_writefn = raw_write, 5496 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5497 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5498 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5499 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5500 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5501 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5502 .type = ARM_CP_ALIAS, 5503 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5504 .access = PL2_RW, 5505 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5506 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5507 .type = ARM_CP_ALIAS, 5508 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5509 .access = PL2_RW, 5510 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5511 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5512 .type = ARM_CP_ALIAS, 5513 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5514 .access = PL2_RW, 5515 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5516 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5517 .type = ARM_CP_ALIAS, 5518 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5519 .access = PL2_RW, 5520 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5521 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5522 .type = ARM_CP_IO, 5523 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5524 .resetvalue = 0, 5525 .access = PL3_RW, 5526 .writefn = mdcr_el3_write, 5527 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5528 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5529 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5530 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5531 .writefn = sdcr_write, 5532 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5533 }; 5534 5535 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5536 { 5537 ARMCPU *cpu = env_archcpu(env); 5538 5539 if (arm_feature(env, ARM_FEATURE_V8)) { 5540 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5541 } else { 5542 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5543 } 5544 5545 if (arm_feature(env, ARM_FEATURE_EL3)) { 5546 valid_mask &= ~HCR_HCD; 5547 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5548 /* 5549 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5550 * However, if we're using the SMC PSCI conduit then QEMU is 5551 * effectively acting like EL3 firmware and so the guest at 5552 * EL2 should retain the ability to prevent EL1 from being 5553 * able to make SMC calls into the ersatz firmware, so in 5554 * that case HCR.TSC should be read/write. 5555 */ 5556 valid_mask &= ~HCR_TSC; 5557 } 5558 5559 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5560 if (cpu_isar_feature(aa64_vh, cpu)) { 5561 valid_mask |= HCR_E2H; 5562 } 5563 if (cpu_isar_feature(aa64_ras, cpu)) { 5564 valid_mask |= HCR_TERR | HCR_TEA; 5565 } 5566 if (cpu_isar_feature(aa64_lor, cpu)) { 5567 valid_mask |= HCR_TLOR; 5568 } 5569 if (cpu_isar_feature(aa64_pauth, cpu)) { 5570 valid_mask |= HCR_API | HCR_APK; 5571 } 5572 if (cpu_isar_feature(aa64_mte, cpu)) { 5573 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5574 } 5575 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5576 valid_mask |= HCR_ENSCXT; 5577 } 5578 if (cpu_isar_feature(aa64_fwb, cpu)) { 5579 valid_mask |= HCR_FWB; 5580 } 5581 } 5582 5583 if (cpu_isar_feature(any_evt, cpu)) { 5584 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5585 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5586 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5587 } 5588 5589 /* Clear RES0 bits. */ 5590 value &= valid_mask; 5591 5592 /* 5593 * These bits change the MMU setup: 5594 * HCR_VM enables stage 2 translation 5595 * HCR_PTW forbids certain page-table setups 5596 * HCR_DC disables stage1 and enables stage2 translation 5597 * HCR_DCT enables tagging on (disabled) stage1 translation 5598 * HCR_FWB changes the interpretation of stage2 descriptor bits 5599 */ 5600 if ((env->cp15.hcr_el2 ^ value) & 5601 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5602 tlb_flush(CPU(cpu)); 5603 } 5604 env->cp15.hcr_el2 = value; 5605 5606 /* 5607 * Updates to VI and VF require us to update the status of 5608 * virtual interrupts, which are the logical OR of these bits 5609 * and the state of the input lines from the GIC. (This requires 5610 * that we have the iothread lock, which is done by marking the 5611 * reginfo structs as ARM_CP_IO.) 5612 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5613 * possible for it to be taken immediately, because VIRQ and 5614 * VFIQ are masked unless running at EL0 or EL1, and HCR 5615 * can only be written at EL2. 5616 */ 5617 g_assert(qemu_mutex_iothread_locked()); 5618 arm_cpu_update_virq(cpu); 5619 arm_cpu_update_vfiq(cpu); 5620 arm_cpu_update_vserr(cpu); 5621 } 5622 5623 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5624 { 5625 do_hcr_write(env, value, 0); 5626 } 5627 5628 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5629 uint64_t value) 5630 { 5631 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5632 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5633 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5634 } 5635 5636 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5637 uint64_t value) 5638 { 5639 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5640 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5641 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5642 } 5643 5644 /* 5645 * Return the effective value of HCR_EL2, at the given security state. 5646 * Bits that are not included here: 5647 * RW (read from SCR_EL3.RW as needed) 5648 */ 5649 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5650 { 5651 uint64_t ret = env->cp15.hcr_el2; 5652 5653 if (!arm_is_el2_enabled_secstate(env, secure)) { 5654 /* 5655 * "This register has no effect if EL2 is not enabled in the 5656 * current Security state". This is ARMv8.4-SecEL2 speak for 5657 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5658 * 5659 * Prior to that, the language was "In an implementation that 5660 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5661 * as if this field is 0 for all purposes other than a direct 5662 * read or write access of HCR_EL2". With lots of enumeration 5663 * on a per-field basis. In current QEMU, this is condition 5664 * is arm_is_secure_below_el3. 5665 * 5666 * Since the v8.4 language applies to the entire register, and 5667 * appears to be backward compatible, use that. 5668 */ 5669 return 0; 5670 } 5671 5672 /* 5673 * For a cpu that supports both aarch64 and aarch32, we can set bits 5674 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5675 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5676 */ 5677 if (!arm_el_is_aa64(env, 2)) { 5678 uint64_t aa32_valid; 5679 5680 /* 5681 * These bits are up-to-date as of ARMv8.6. 5682 * For HCR, it's easiest to list just the 2 bits that are invalid. 5683 * For HCR2, list those that are valid. 5684 */ 5685 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5686 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5687 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5688 ret &= aa32_valid; 5689 } 5690 5691 if (ret & HCR_TGE) { 5692 /* These bits are up-to-date as of ARMv8.6. */ 5693 if (ret & HCR_E2H) { 5694 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5695 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5696 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5697 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5698 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5699 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5700 } else { 5701 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5702 } 5703 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5704 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5705 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5706 HCR_TLOR); 5707 } 5708 5709 return ret; 5710 } 5711 5712 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5713 { 5714 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5715 } 5716 5717 /* 5718 * Corresponds to ARM pseudocode function ELIsInHost(). 5719 */ 5720 bool el_is_in_host(CPUARMState *env, int el) 5721 { 5722 uint64_t mask; 5723 5724 /* 5725 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5726 * Perform the simplest bit tests first, and validate EL2 afterward. 5727 */ 5728 if (el & 1) { 5729 return false; /* EL1 or EL3 */ 5730 } 5731 5732 /* 5733 * Note that hcr_write() checks isar_feature_aa64_vh(), 5734 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5735 */ 5736 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5737 if ((env->cp15.hcr_el2 & mask) != mask) { 5738 return false; 5739 } 5740 5741 /* TGE and/or E2H set: double check those bits are currently legal. */ 5742 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5743 } 5744 5745 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5746 uint64_t value) 5747 { 5748 uint64_t valid_mask = 0; 5749 5750 /* No features adding bits to HCRX are implemented. */ 5751 5752 /* Clear RES0 bits. */ 5753 env->cp15.hcrx_el2 = value & valid_mask; 5754 } 5755 5756 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5757 bool isread) 5758 { 5759 if (arm_current_el(env) < 3 5760 && arm_feature(env, ARM_FEATURE_EL3) 5761 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5762 return CP_ACCESS_TRAP_EL3; 5763 } 5764 return CP_ACCESS_OK; 5765 } 5766 5767 static const ARMCPRegInfo hcrx_el2_reginfo = { 5768 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5769 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5770 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5771 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5772 }; 5773 5774 /* Return the effective value of HCRX_EL2. */ 5775 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5776 { 5777 /* 5778 * The bits in this register behave as 0 for all purposes other than 5779 * direct reads of the register if: 5780 * - EL2 is not enabled in the current security state, 5781 * - SCR_EL3.HXEn is 0. 5782 */ 5783 if (!arm_is_el2_enabled(env) 5784 || (arm_feature(env, ARM_FEATURE_EL3) 5785 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5786 return 0; 5787 } 5788 return env->cp15.hcrx_el2; 5789 } 5790 5791 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5792 uint64_t value) 5793 { 5794 /* 5795 * For A-profile AArch32 EL3, if NSACR.CP10 5796 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5797 */ 5798 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5799 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5800 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5801 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5802 } 5803 env->cp15.cptr_el[2] = value; 5804 } 5805 5806 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5807 { 5808 /* 5809 * For A-profile AArch32 EL3, if NSACR.CP10 5810 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5811 */ 5812 uint64_t value = env->cp15.cptr_el[2]; 5813 5814 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5815 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5816 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5817 } 5818 return value; 5819 } 5820 5821 static const ARMCPRegInfo el2_cp_reginfo[] = { 5822 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5823 .type = ARM_CP_IO, 5824 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5825 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5826 .writefn = hcr_write }, 5827 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5828 .type = ARM_CP_ALIAS | ARM_CP_IO, 5829 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5830 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5831 .writefn = hcr_writelow }, 5832 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5833 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5834 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5835 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5836 .type = ARM_CP_ALIAS, 5837 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5838 .access = PL2_RW, 5839 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5840 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5841 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5842 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5843 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5844 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5845 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5846 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5847 .type = ARM_CP_ALIAS, 5848 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5849 .access = PL2_RW, 5850 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5851 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5852 .type = ARM_CP_ALIAS, 5853 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5854 .access = PL2_RW, 5855 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5856 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5857 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5858 .access = PL2_RW, .writefn = vbar_write, 5859 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5860 .resetvalue = 0 }, 5861 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5862 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5863 .access = PL3_RW, .type = ARM_CP_ALIAS, 5864 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5865 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5866 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5867 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5868 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5869 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5870 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5871 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5872 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5873 .resetvalue = 0 }, 5874 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5875 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5876 .access = PL2_RW, .type = ARM_CP_ALIAS, 5877 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5878 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5879 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5880 .access = PL2_RW, .type = ARM_CP_CONST, 5881 .resetvalue = 0 }, 5882 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5883 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5884 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5885 .access = PL2_RW, .type = ARM_CP_CONST, 5886 .resetvalue = 0 }, 5887 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5888 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5889 .access = PL2_RW, .type = ARM_CP_CONST, 5890 .resetvalue = 0 }, 5891 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5892 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5893 .access = PL2_RW, .type = ARM_CP_CONST, 5894 .resetvalue = 0 }, 5895 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5896 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5897 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5898 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5899 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5900 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5901 .type = ARM_CP_ALIAS, 5902 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5903 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5904 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5905 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5906 .access = PL2_RW, 5907 /* no .writefn needed as this can't cause an ASID change */ 5908 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5909 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5910 .cp = 15, .opc1 = 6, .crm = 2, 5911 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5912 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5913 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5914 .writefn = vttbr_write }, 5915 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5916 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5917 .access = PL2_RW, .writefn = vttbr_write, 5918 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5919 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5920 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5921 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5922 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5923 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5924 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5925 .access = PL2_RW, .resetvalue = 0, 5926 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5927 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5928 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5929 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5930 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5931 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5932 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5933 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5934 { .name = "TLBIALLNSNH", 5935 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5936 .type = ARM_CP_NO_RAW, .access = PL2_W, 5937 .writefn = tlbiall_nsnh_write }, 5938 { .name = "TLBIALLNSNHIS", 5939 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5940 .type = ARM_CP_NO_RAW, .access = PL2_W, 5941 .writefn = tlbiall_nsnh_is_write }, 5942 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5943 .type = ARM_CP_NO_RAW, .access = PL2_W, 5944 .writefn = tlbiall_hyp_write }, 5945 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5946 .type = ARM_CP_NO_RAW, .access = PL2_W, 5947 .writefn = tlbiall_hyp_is_write }, 5948 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5949 .type = ARM_CP_NO_RAW, .access = PL2_W, 5950 .writefn = tlbimva_hyp_write }, 5951 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5952 .type = ARM_CP_NO_RAW, .access = PL2_W, 5953 .writefn = tlbimva_hyp_is_write }, 5954 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5955 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5956 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5957 .writefn = tlbi_aa64_alle2_write }, 5958 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5959 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5960 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5961 .writefn = tlbi_aa64_vae2_write }, 5962 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5963 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5964 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5965 .writefn = tlbi_aa64_vae2_write }, 5966 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5967 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5968 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5969 .writefn = tlbi_aa64_alle2is_write }, 5970 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5971 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5972 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5973 .writefn = tlbi_aa64_vae2is_write }, 5974 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5975 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5976 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5977 .writefn = tlbi_aa64_vae2is_write }, 5978 #ifndef CONFIG_USER_ONLY 5979 /* 5980 * Unlike the other EL2-related AT operations, these must 5981 * UNDEF from EL3 if EL2 is not implemented, which is why we 5982 * define them here rather than with the rest of the AT ops. 5983 */ 5984 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5985 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5986 .access = PL2_W, .accessfn = at_s1e2_access, 5987 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5988 .writefn = ats_write64 }, 5989 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5990 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5991 .access = PL2_W, .accessfn = at_s1e2_access, 5992 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5993 .writefn = ats_write64 }, 5994 /* 5995 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5996 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5997 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5998 * to behave as if SCR.NS was 1. 5999 */ 6000 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6001 .access = PL2_W, 6002 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6003 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6004 .access = PL2_W, 6005 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6006 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6007 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6008 /* 6009 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6010 * reset values as IMPDEF. We choose to reset to 3 to comply with 6011 * both ARMv7 and ARMv8. 6012 */ 6013 .access = PL2_RW, .resetvalue = 3, 6014 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6015 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6016 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6017 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6018 .writefn = gt_cntvoff_write, 6019 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6020 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6021 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6022 .writefn = gt_cntvoff_write, 6023 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6024 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6025 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6026 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6027 .type = ARM_CP_IO, .access = PL2_RW, 6028 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6029 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6030 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6031 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6032 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6033 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6034 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6035 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6036 .resetfn = gt_hyp_timer_reset, 6037 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6038 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6039 .type = ARM_CP_IO, 6040 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6041 .access = PL2_RW, 6042 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6043 .resetvalue = 0, 6044 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6045 #endif 6046 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6047 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6048 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6049 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6050 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6051 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6052 .access = PL2_RW, 6053 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6054 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6055 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6056 .access = PL2_RW, 6057 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6058 }; 6059 6060 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6061 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6062 .type = ARM_CP_ALIAS | ARM_CP_IO, 6063 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6064 .access = PL2_RW, 6065 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6066 .writefn = hcr_writehigh }, 6067 }; 6068 6069 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6070 bool isread) 6071 { 6072 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6073 return CP_ACCESS_OK; 6074 } 6075 return CP_ACCESS_TRAP_UNCATEGORIZED; 6076 } 6077 6078 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6079 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6080 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6081 .access = PL2_RW, .accessfn = sel2_access, 6082 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6083 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6084 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6085 .access = PL2_RW, .accessfn = sel2_access, 6086 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6087 }; 6088 6089 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6090 bool isread) 6091 { 6092 /* 6093 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6094 * At Secure EL1 it traps to EL3 or EL2. 6095 */ 6096 if (arm_current_el(env) == 3) { 6097 return CP_ACCESS_OK; 6098 } 6099 if (arm_is_secure_below_el3(env)) { 6100 if (env->cp15.scr_el3 & SCR_EEL2) { 6101 return CP_ACCESS_TRAP_EL2; 6102 } 6103 return CP_ACCESS_TRAP_EL3; 6104 } 6105 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6106 if (isread) { 6107 return CP_ACCESS_OK; 6108 } 6109 return CP_ACCESS_TRAP_UNCATEGORIZED; 6110 } 6111 6112 static const ARMCPRegInfo el3_cp_reginfo[] = { 6113 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6114 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6115 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6116 .resetfn = scr_reset, .writefn = scr_write }, 6117 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6118 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6119 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6120 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6121 .writefn = scr_write }, 6122 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6123 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6124 .access = PL3_RW, .resetvalue = 0, 6125 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6126 { .name = "SDER", 6127 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6128 .access = PL3_RW, .resetvalue = 0, 6129 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6130 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6131 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6132 .writefn = vbar_write, .resetvalue = 0, 6133 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6134 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6135 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6136 .access = PL3_RW, .resetvalue = 0, 6137 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6138 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6139 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6140 .access = PL3_RW, 6141 /* no .writefn needed as this can't cause an ASID change */ 6142 .resetvalue = 0, 6143 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6144 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6145 .type = ARM_CP_ALIAS, 6146 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6147 .access = PL3_RW, 6148 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6149 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6150 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6151 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6152 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6153 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6154 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6155 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6156 .type = ARM_CP_ALIAS, 6157 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6158 .access = PL3_RW, 6159 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6160 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6161 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6162 .access = PL3_RW, .writefn = vbar_write, 6163 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6164 .resetvalue = 0 }, 6165 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6166 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6167 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6168 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6169 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6170 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6171 .access = PL3_RW, .resetvalue = 0, 6172 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6173 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6174 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6175 .access = PL3_RW, .type = ARM_CP_CONST, 6176 .resetvalue = 0 }, 6177 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6178 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6179 .access = PL3_RW, .type = ARM_CP_CONST, 6180 .resetvalue = 0 }, 6181 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6182 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6183 .access = PL3_RW, .type = ARM_CP_CONST, 6184 .resetvalue = 0 }, 6185 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6186 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6187 .access = PL3_W, .type = ARM_CP_NO_RAW, 6188 .writefn = tlbi_aa64_alle3is_write }, 6189 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6190 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6191 .access = PL3_W, .type = ARM_CP_NO_RAW, 6192 .writefn = tlbi_aa64_vae3is_write }, 6193 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6194 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6195 .access = PL3_W, .type = ARM_CP_NO_RAW, 6196 .writefn = tlbi_aa64_vae3is_write }, 6197 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6198 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6199 .access = PL3_W, .type = ARM_CP_NO_RAW, 6200 .writefn = tlbi_aa64_alle3_write }, 6201 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6202 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6203 .access = PL3_W, .type = ARM_CP_NO_RAW, 6204 .writefn = tlbi_aa64_vae3_write }, 6205 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6206 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6207 .access = PL3_W, .type = ARM_CP_NO_RAW, 6208 .writefn = tlbi_aa64_vae3_write }, 6209 }; 6210 6211 #ifndef CONFIG_USER_ONLY 6212 /* Test if system register redirection is to occur in the current state. */ 6213 static bool redirect_for_e2h(CPUARMState *env) 6214 { 6215 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6216 } 6217 6218 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6219 { 6220 CPReadFn *readfn; 6221 6222 if (redirect_for_e2h(env)) { 6223 /* Switch to the saved EL2 version of the register. */ 6224 ri = ri->opaque; 6225 readfn = ri->readfn; 6226 } else { 6227 readfn = ri->orig_readfn; 6228 } 6229 if (readfn == NULL) { 6230 readfn = raw_read; 6231 } 6232 return readfn(env, ri); 6233 } 6234 6235 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6236 uint64_t value) 6237 { 6238 CPWriteFn *writefn; 6239 6240 if (redirect_for_e2h(env)) { 6241 /* Switch to the saved EL2 version of the register. */ 6242 ri = ri->opaque; 6243 writefn = ri->writefn; 6244 } else { 6245 writefn = ri->orig_writefn; 6246 } 6247 if (writefn == NULL) { 6248 writefn = raw_write; 6249 } 6250 writefn(env, ri, value); 6251 } 6252 6253 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6254 { 6255 struct E2HAlias { 6256 uint32_t src_key, dst_key, new_key; 6257 const char *src_name, *dst_name, *new_name; 6258 bool (*feature)(const ARMISARegisters *id); 6259 }; 6260 6261 #define K(op0, op1, crn, crm, op2) \ 6262 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6263 6264 static const struct E2HAlias aliases[] = { 6265 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6266 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6267 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6268 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6269 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6270 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6271 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6272 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6273 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6274 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6275 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6276 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6277 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6278 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6279 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6280 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6281 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6282 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6283 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6284 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6285 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6286 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6287 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6288 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6289 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6290 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6291 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6292 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6293 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6294 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6295 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6296 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6297 6298 /* 6299 * Note that redirection of ZCR is mentioned in the description 6300 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6301 * not in the summary table. 6302 */ 6303 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6304 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6305 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6306 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6307 6308 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6309 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6310 6311 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6312 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6313 isar_feature_aa64_scxtnum }, 6314 6315 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6316 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6317 }; 6318 #undef K 6319 6320 size_t i; 6321 6322 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6323 const struct E2HAlias *a = &aliases[i]; 6324 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6325 bool ok; 6326 6327 if (a->feature && !a->feature(&cpu->isar)) { 6328 continue; 6329 } 6330 6331 src_reg = g_hash_table_lookup(cpu->cp_regs, 6332 (gpointer)(uintptr_t)a->src_key); 6333 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6334 (gpointer)(uintptr_t)a->dst_key); 6335 g_assert(src_reg != NULL); 6336 g_assert(dst_reg != NULL); 6337 6338 /* Cross-compare names to detect typos in the keys. */ 6339 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6340 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6341 6342 /* None of the core system registers use opaque; we will. */ 6343 g_assert(src_reg->opaque == NULL); 6344 6345 /* Create alias before redirection so we dup the right data. */ 6346 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6347 6348 new_reg->name = a->new_name; 6349 new_reg->type |= ARM_CP_ALIAS; 6350 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6351 new_reg->access &= PL2_RW | PL3_RW; 6352 6353 ok = g_hash_table_insert(cpu->cp_regs, 6354 (gpointer)(uintptr_t)a->new_key, new_reg); 6355 g_assert(ok); 6356 6357 src_reg->opaque = dst_reg; 6358 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6359 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6360 if (!src_reg->raw_readfn) { 6361 src_reg->raw_readfn = raw_read; 6362 } 6363 if (!src_reg->raw_writefn) { 6364 src_reg->raw_writefn = raw_write; 6365 } 6366 src_reg->readfn = el2_e2h_read; 6367 src_reg->writefn = el2_e2h_write; 6368 } 6369 } 6370 #endif 6371 6372 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6373 bool isread) 6374 { 6375 int cur_el = arm_current_el(env); 6376 6377 if (cur_el < 2) { 6378 uint64_t hcr = arm_hcr_el2_eff(env); 6379 6380 if (cur_el == 0) { 6381 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6382 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6383 return CP_ACCESS_TRAP_EL2; 6384 } 6385 } else { 6386 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6387 return CP_ACCESS_TRAP; 6388 } 6389 if (hcr & HCR_TID2) { 6390 return CP_ACCESS_TRAP_EL2; 6391 } 6392 } 6393 } else if (hcr & HCR_TID2) { 6394 return CP_ACCESS_TRAP_EL2; 6395 } 6396 } 6397 6398 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6399 return CP_ACCESS_TRAP_EL2; 6400 } 6401 6402 return CP_ACCESS_OK; 6403 } 6404 6405 /* 6406 * Check for traps to RAS registers, which are controlled 6407 * by HCR_EL2.TERR and SCR_EL3.TERR. 6408 */ 6409 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6410 bool isread) 6411 { 6412 int el = arm_current_el(env); 6413 6414 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6415 return CP_ACCESS_TRAP_EL2; 6416 } 6417 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6418 return CP_ACCESS_TRAP_EL3; 6419 } 6420 return CP_ACCESS_OK; 6421 } 6422 6423 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6424 { 6425 int el = arm_current_el(env); 6426 6427 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6428 return env->cp15.vdisr_el2; 6429 } 6430 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6431 return 0; /* RAZ/WI */ 6432 } 6433 return env->cp15.disr_el1; 6434 } 6435 6436 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6437 { 6438 int el = arm_current_el(env); 6439 6440 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6441 env->cp15.vdisr_el2 = val; 6442 return; 6443 } 6444 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6445 return; /* RAZ/WI */ 6446 } 6447 env->cp15.disr_el1 = val; 6448 } 6449 6450 /* 6451 * Minimal RAS implementation with no Error Records. 6452 * Which means that all of the Error Record registers: 6453 * ERXADDR_EL1 6454 * ERXCTLR_EL1 6455 * ERXFR_EL1 6456 * ERXMISC0_EL1 6457 * ERXMISC1_EL1 6458 * ERXMISC2_EL1 6459 * ERXMISC3_EL1 6460 * ERXPFGCDN_EL1 (RASv1p1) 6461 * ERXPFGCTL_EL1 (RASv1p1) 6462 * ERXPFGF_EL1 (RASv1p1) 6463 * ERXSTATUS_EL1 6464 * and 6465 * ERRSELR_EL1 6466 * may generate UNDEFINED, which is the effect we get by not 6467 * listing them at all. 6468 */ 6469 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6470 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6471 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6472 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6473 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6474 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6475 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6476 .access = PL1_R, .accessfn = access_terr, 6477 .type = ARM_CP_CONST, .resetvalue = 0 }, 6478 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6479 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6480 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6481 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6482 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6483 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6484 }; 6485 6486 /* 6487 * Return the exception level to which exceptions should be taken 6488 * via SVEAccessTrap. This excludes the check for whether the exception 6489 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6490 * be found by testing 0 < fp_exception_el < sve_exception_el. 6491 * 6492 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6493 * pseudocode does *not* separate out the FP trap checks, but has them 6494 * all in one function. 6495 */ 6496 int sve_exception_el(CPUARMState *env, int el) 6497 { 6498 #ifndef CONFIG_USER_ONLY 6499 if (el <= 1 && !el_is_in_host(env, el)) { 6500 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6501 case 1: 6502 if (el != 0) { 6503 break; 6504 } 6505 /* fall through */ 6506 case 0: 6507 case 2: 6508 return 1; 6509 } 6510 } 6511 6512 if (el <= 2 && arm_is_el2_enabled(env)) { 6513 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6514 if (env->cp15.hcr_el2 & HCR_E2H) { 6515 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6516 case 1: 6517 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6518 break; 6519 } 6520 /* fall through */ 6521 case 0: 6522 case 2: 6523 return 2; 6524 } 6525 } else { 6526 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6527 return 2; 6528 } 6529 } 6530 } 6531 6532 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6533 if (arm_feature(env, ARM_FEATURE_EL3) 6534 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6535 return 3; 6536 } 6537 #endif 6538 return 0; 6539 } 6540 6541 /* 6542 * Return the exception level to which exceptions should be taken for SME. 6543 * C.f. the ARM pseudocode function CheckSMEAccess. 6544 */ 6545 int sme_exception_el(CPUARMState *env, int el) 6546 { 6547 #ifndef CONFIG_USER_ONLY 6548 if (el <= 1 && !el_is_in_host(env, el)) { 6549 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6550 case 1: 6551 if (el != 0) { 6552 break; 6553 } 6554 /* fall through */ 6555 case 0: 6556 case 2: 6557 return 1; 6558 } 6559 } 6560 6561 if (el <= 2 && arm_is_el2_enabled(env)) { 6562 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6563 if (env->cp15.hcr_el2 & HCR_E2H) { 6564 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6565 case 1: 6566 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6567 break; 6568 } 6569 /* fall through */ 6570 case 0: 6571 case 2: 6572 return 2; 6573 } 6574 } else { 6575 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6576 return 2; 6577 } 6578 } 6579 } 6580 6581 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6582 if (arm_feature(env, ARM_FEATURE_EL3) 6583 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6584 return 3; 6585 } 6586 #endif 6587 return 0; 6588 } 6589 6590 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ 6591 static bool sme_fa64(CPUARMState *env, int el) 6592 { 6593 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { 6594 return false; 6595 } 6596 6597 if (el <= 1 && !el_is_in_host(env, el)) { 6598 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { 6599 return false; 6600 } 6601 } 6602 if (el <= 2 && arm_is_el2_enabled(env)) { 6603 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { 6604 return false; 6605 } 6606 } 6607 if (arm_feature(env, ARM_FEATURE_EL3)) { 6608 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { 6609 return false; 6610 } 6611 } 6612 6613 return true; 6614 } 6615 6616 /* 6617 * Given that SVE is enabled, return the vector length for EL. 6618 */ 6619 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6620 { 6621 ARMCPU *cpu = env_archcpu(env); 6622 uint64_t *cr = env->vfp.zcr_el; 6623 uint32_t map = cpu->sve_vq.map; 6624 uint32_t len = ARM_MAX_VQ - 1; 6625 6626 if (sm) { 6627 cr = env->vfp.smcr_el; 6628 map = cpu->sme_vq.map; 6629 } 6630 6631 if (el <= 1 && !el_is_in_host(env, el)) { 6632 len = MIN(len, 0xf & (uint32_t)cr[1]); 6633 } 6634 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6635 len = MIN(len, 0xf & (uint32_t)cr[2]); 6636 } 6637 if (arm_feature(env, ARM_FEATURE_EL3)) { 6638 len = MIN(len, 0xf & (uint32_t)cr[3]); 6639 } 6640 6641 map &= MAKE_64BIT_MASK(0, len + 1); 6642 if (map != 0) { 6643 return 31 - clz32(map); 6644 } 6645 6646 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6647 assert(sm); 6648 return ctz32(cpu->sme_vq.map); 6649 } 6650 6651 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6652 { 6653 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6654 } 6655 6656 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6657 uint64_t value) 6658 { 6659 int cur_el = arm_current_el(env); 6660 int old_len = sve_vqm1_for_el(env, cur_el); 6661 int new_len; 6662 6663 /* Bits other than [3:0] are RAZ/WI. */ 6664 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6665 raw_write(env, ri, value & 0xf); 6666 6667 /* 6668 * Because we arrived here, we know both FP and SVE are enabled; 6669 * otherwise we would have trapped access to the ZCR_ELn register. 6670 */ 6671 new_len = sve_vqm1_for_el(env, cur_el); 6672 if (new_len < old_len) { 6673 aarch64_sve_narrow_vq(env, new_len + 1); 6674 } 6675 } 6676 6677 static const ARMCPRegInfo zcr_reginfo[] = { 6678 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6679 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6680 .access = PL1_RW, .type = ARM_CP_SVE, 6681 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6682 .writefn = zcr_write, .raw_writefn = raw_write }, 6683 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6684 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6685 .access = PL2_RW, .type = ARM_CP_SVE, 6686 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6687 .writefn = zcr_write, .raw_writefn = raw_write }, 6688 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6689 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6690 .access = PL3_RW, .type = ARM_CP_SVE, 6691 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6692 .writefn = zcr_write, .raw_writefn = raw_write }, 6693 }; 6694 6695 #ifdef TARGET_AARCH64 6696 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6697 bool isread) 6698 { 6699 int el = arm_current_el(env); 6700 6701 if (el == 0) { 6702 uint64_t sctlr = arm_sctlr(env, el); 6703 if (!(sctlr & SCTLR_EnTP2)) { 6704 return CP_ACCESS_TRAP; 6705 } 6706 } 6707 /* TODO: FEAT_FGT */ 6708 if (el < 3 6709 && arm_feature(env, ARM_FEATURE_EL3) 6710 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6711 return CP_ACCESS_TRAP_EL3; 6712 } 6713 return CP_ACCESS_OK; 6714 } 6715 6716 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6717 bool isread) 6718 { 6719 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6720 if (arm_current_el(env) < 3 6721 && arm_feature(env, ARM_FEATURE_EL3) 6722 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6723 return CP_ACCESS_TRAP_EL3; 6724 } 6725 return CP_ACCESS_OK; 6726 } 6727 6728 /* ResetSVEState */ 6729 static void arm_reset_sve_state(CPUARMState *env) 6730 { 6731 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6732 /* Recall that FFR is stored as pregs[16]. */ 6733 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6734 vfp_set_fpcr(env, 0x0800009f); 6735 } 6736 6737 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6738 { 6739 uint64_t change = (env->svcr ^ new) & mask; 6740 6741 env->svcr ^= change; 6742 6743 if (change & R_SVCR_SM_MASK) { 6744 arm_reset_sve_state(env); 6745 } 6746 } 6747 6748 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6749 uint64_t value) 6750 { 6751 helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM)); 6752 helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA)); 6753 aarch64_set_svcr(env, value, -1); 6754 arm_rebuild_hflags(env); 6755 } 6756 6757 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6758 uint64_t value) 6759 { 6760 int cur_el = arm_current_el(env); 6761 int old_len = sve_vqm1_for_el(env, cur_el); 6762 int new_len; 6763 6764 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6765 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6766 raw_write(env, ri, value); 6767 6768 /* 6769 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6770 * when SVL is widened (old values kept, or zeros). Choose to keep the 6771 * current values for simplicity. But for QEMU internals, we must still 6772 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6773 * above aarch64_sve_narrow_vq. 6774 */ 6775 new_len = sve_vqm1_for_el(env, cur_el); 6776 if (new_len < old_len) { 6777 aarch64_sve_narrow_vq(env, new_len + 1); 6778 } 6779 } 6780 6781 static const ARMCPRegInfo sme_reginfo[] = { 6782 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6783 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6784 .access = PL0_RW, .accessfn = access_tpidr2, 6785 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6786 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6787 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6788 .access = PL0_RW, .type = ARM_CP_SME, 6789 .fieldoffset = offsetof(CPUARMState, svcr), 6790 .writefn = svcr_write, .raw_writefn = raw_write }, 6791 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6792 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6793 .access = PL1_RW, .type = ARM_CP_SME, 6794 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6795 .writefn = smcr_write, .raw_writefn = raw_write }, 6796 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6797 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6798 .access = PL2_RW, .type = ARM_CP_SME, 6799 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6800 .writefn = smcr_write, .raw_writefn = raw_write }, 6801 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6802 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6803 .access = PL3_RW, .type = ARM_CP_SME, 6804 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6805 .writefn = smcr_write, .raw_writefn = raw_write }, 6806 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6807 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6808 .access = PL1_R, .accessfn = access_aa64_tid1, 6809 /* 6810 * IMPLEMENTOR = 0 (software) 6811 * REVISION = 0 (implementation defined) 6812 * SMPS = 0 (no streaming execution priority in QEMU) 6813 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6814 */ 6815 .type = ARM_CP_CONST, .resetvalue = 0, }, 6816 /* 6817 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6818 */ 6819 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6820 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6821 .access = PL1_RW, .accessfn = access_esm, 6822 .type = ARM_CP_CONST, .resetvalue = 0 }, 6823 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6824 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6825 .access = PL2_RW, .accessfn = access_esm, 6826 .type = ARM_CP_CONST, .resetvalue = 0 }, 6827 }; 6828 #endif /* TARGET_AARCH64 */ 6829 6830 static void define_pmu_regs(ARMCPU *cpu) 6831 { 6832 /* 6833 * v7 performance monitor control register: same implementor 6834 * field as main ID register, and we implement four counters in 6835 * addition to the cycle count register. 6836 */ 6837 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6838 ARMCPRegInfo pmcr = { 6839 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6840 .access = PL0_RW, 6841 .type = ARM_CP_IO | ARM_CP_ALIAS, 6842 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6843 .accessfn = pmreg_access, .writefn = pmcr_write, 6844 .raw_writefn = raw_write, 6845 }; 6846 ARMCPRegInfo pmcr64 = { 6847 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6848 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6849 .access = PL0_RW, .accessfn = pmreg_access, 6850 .type = ARM_CP_IO, 6851 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6852 .resetvalue = cpu->isar.reset_pmcr_el0, 6853 .writefn = pmcr_write, .raw_writefn = raw_write, 6854 }; 6855 6856 define_one_arm_cp_reg(cpu, &pmcr); 6857 define_one_arm_cp_reg(cpu, &pmcr64); 6858 for (i = 0; i < pmcrn; i++) { 6859 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6860 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6861 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6862 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6863 ARMCPRegInfo pmev_regs[] = { 6864 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6865 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6866 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6867 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6868 .accessfn = pmreg_access_xevcntr }, 6869 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6870 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6871 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6872 .type = ARM_CP_IO, 6873 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6874 .raw_readfn = pmevcntr_rawread, 6875 .raw_writefn = pmevcntr_rawwrite }, 6876 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6877 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6878 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6879 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6880 .accessfn = pmreg_access }, 6881 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6882 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6883 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6884 .type = ARM_CP_IO, 6885 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6886 .raw_writefn = pmevtyper_rawwrite }, 6887 }; 6888 define_arm_cp_regs(cpu, pmev_regs); 6889 g_free(pmevcntr_name); 6890 g_free(pmevcntr_el0_name); 6891 g_free(pmevtyper_name); 6892 g_free(pmevtyper_el0_name); 6893 } 6894 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6895 ARMCPRegInfo v81_pmu_regs[] = { 6896 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6897 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6898 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6899 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6900 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6901 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6902 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6903 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6904 }; 6905 define_arm_cp_regs(cpu, v81_pmu_regs); 6906 } 6907 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6908 static const ARMCPRegInfo v84_pmmir = { 6909 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6910 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6911 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6912 .resetvalue = 0 6913 }; 6914 define_one_arm_cp_reg(cpu, &v84_pmmir); 6915 } 6916 } 6917 6918 /* 6919 * We don't know until after realize whether there's a GICv3 6920 * attached, and that is what registers the gicv3 sysregs. 6921 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6922 * at runtime. 6923 */ 6924 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6925 { 6926 ARMCPU *cpu = env_archcpu(env); 6927 uint64_t pfr1 = cpu->isar.id_pfr1; 6928 6929 if (env->gicv3state) { 6930 pfr1 |= 1 << 28; 6931 } 6932 return pfr1; 6933 } 6934 6935 #ifndef CONFIG_USER_ONLY 6936 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6937 { 6938 ARMCPU *cpu = env_archcpu(env); 6939 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6940 6941 if (env->gicv3state) { 6942 pfr0 |= 1 << 24; 6943 } 6944 return pfr0; 6945 } 6946 #endif 6947 6948 /* 6949 * Shared logic between LORID and the rest of the LOR* registers. 6950 * Secure state exclusion has already been dealt with. 6951 */ 6952 static CPAccessResult access_lor_ns(CPUARMState *env, 6953 const ARMCPRegInfo *ri, bool isread) 6954 { 6955 int el = arm_current_el(env); 6956 6957 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6958 return CP_ACCESS_TRAP_EL2; 6959 } 6960 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6961 return CP_ACCESS_TRAP_EL3; 6962 } 6963 return CP_ACCESS_OK; 6964 } 6965 6966 static CPAccessResult access_lor_other(CPUARMState *env, 6967 const ARMCPRegInfo *ri, bool isread) 6968 { 6969 if (arm_is_secure_below_el3(env)) { 6970 /* Access denied in secure mode. */ 6971 return CP_ACCESS_TRAP; 6972 } 6973 return access_lor_ns(env, ri, isread); 6974 } 6975 6976 /* 6977 * A trivial implementation of ARMv8.1-LOR leaves all of these 6978 * registers fixed at 0, which indicates that there are zero 6979 * supported Limited Ordering regions. 6980 */ 6981 static const ARMCPRegInfo lor_reginfo[] = { 6982 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6983 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6984 .access = PL1_RW, .accessfn = access_lor_other, 6985 .type = ARM_CP_CONST, .resetvalue = 0 }, 6986 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6987 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6988 .access = PL1_RW, .accessfn = access_lor_other, 6989 .type = ARM_CP_CONST, .resetvalue = 0 }, 6990 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6991 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6992 .access = PL1_RW, .accessfn = access_lor_other, 6993 .type = ARM_CP_CONST, .resetvalue = 0 }, 6994 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6995 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6996 .access = PL1_RW, .accessfn = access_lor_other, 6997 .type = ARM_CP_CONST, .resetvalue = 0 }, 6998 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6999 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7000 .access = PL1_R, .accessfn = access_lor_ns, 7001 .type = ARM_CP_CONST, .resetvalue = 0 }, 7002 }; 7003 7004 #ifdef TARGET_AARCH64 7005 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7006 bool isread) 7007 { 7008 int el = arm_current_el(env); 7009 7010 if (el < 2 && 7011 arm_is_el2_enabled(env) && 7012 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7013 return CP_ACCESS_TRAP_EL2; 7014 } 7015 if (el < 3 && 7016 arm_feature(env, ARM_FEATURE_EL3) && 7017 !(env->cp15.scr_el3 & SCR_APK)) { 7018 return CP_ACCESS_TRAP_EL3; 7019 } 7020 return CP_ACCESS_OK; 7021 } 7022 7023 static const ARMCPRegInfo pauth_reginfo[] = { 7024 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7025 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7026 .access = PL1_RW, .accessfn = access_pauth, 7027 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7028 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7030 .access = PL1_RW, .accessfn = access_pauth, 7031 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7032 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7034 .access = PL1_RW, .accessfn = access_pauth, 7035 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7036 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7037 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7038 .access = PL1_RW, .accessfn = access_pauth, 7039 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7040 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7041 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7042 .access = PL1_RW, .accessfn = access_pauth, 7043 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7044 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7045 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7046 .access = PL1_RW, .accessfn = access_pauth, 7047 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7048 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7049 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7050 .access = PL1_RW, .accessfn = access_pauth, 7051 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7052 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7053 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7054 .access = PL1_RW, .accessfn = access_pauth, 7055 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7056 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7058 .access = PL1_RW, .accessfn = access_pauth, 7059 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7060 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7061 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7062 .access = PL1_RW, .accessfn = access_pauth, 7063 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7064 }; 7065 7066 static const ARMCPRegInfo tlbirange_reginfo[] = { 7067 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7068 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7069 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7070 .writefn = tlbi_aa64_rvae1is_write }, 7071 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7072 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7073 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7074 .writefn = tlbi_aa64_rvae1is_write }, 7075 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7077 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7078 .writefn = tlbi_aa64_rvae1is_write }, 7079 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7081 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7082 .writefn = tlbi_aa64_rvae1is_write }, 7083 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7084 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7085 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7086 .writefn = tlbi_aa64_rvae1is_write }, 7087 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7088 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7089 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7090 .writefn = tlbi_aa64_rvae1is_write }, 7091 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7092 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7093 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7094 .writefn = tlbi_aa64_rvae1is_write }, 7095 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7096 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7097 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7098 .writefn = tlbi_aa64_rvae1is_write }, 7099 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7100 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7101 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7102 .writefn = tlbi_aa64_rvae1_write }, 7103 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7104 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7105 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7106 .writefn = tlbi_aa64_rvae1_write }, 7107 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7108 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7109 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7110 .writefn = tlbi_aa64_rvae1_write }, 7111 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7112 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7113 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7114 .writefn = tlbi_aa64_rvae1_write }, 7115 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7116 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7117 .access = PL2_W, .type = ARM_CP_NO_RAW, 7118 .writefn = tlbi_aa64_ripas2e1is_write }, 7119 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7121 .access = PL2_W, .type = ARM_CP_NO_RAW, 7122 .writefn = tlbi_aa64_ripas2e1is_write }, 7123 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7124 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7125 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7126 .writefn = tlbi_aa64_rvae2is_write }, 7127 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7128 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7129 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7130 .writefn = tlbi_aa64_rvae2is_write }, 7131 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7132 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7133 .access = PL2_W, .type = ARM_CP_NO_RAW, 7134 .writefn = tlbi_aa64_ripas2e1_write }, 7135 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7136 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7137 .access = PL2_W, .type = ARM_CP_NO_RAW, 7138 .writefn = tlbi_aa64_ripas2e1_write }, 7139 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7140 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7141 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7142 .writefn = tlbi_aa64_rvae2is_write }, 7143 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7144 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7145 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7146 .writefn = tlbi_aa64_rvae2is_write }, 7147 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7148 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7149 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7150 .writefn = tlbi_aa64_rvae2_write }, 7151 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7152 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7153 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7154 .writefn = tlbi_aa64_rvae2_write }, 7155 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7156 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7157 .access = PL3_W, .type = ARM_CP_NO_RAW, 7158 .writefn = tlbi_aa64_rvae3is_write }, 7159 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7160 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7161 .access = PL3_W, .type = ARM_CP_NO_RAW, 7162 .writefn = tlbi_aa64_rvae3is_write }, 7163 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7164 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7165 .access = PL3_W, .type = ARM_CP_NO_RAW, 7166 .writefn = tlbi_aa64_rvae3is_write }, 7167 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7168 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7169 .access = PL3_W, .type = ARM_CP_NO_RAW, 7170 .writefn = tlbi_aa64_rvae3is_write }, 7171 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7172 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7173 .access = PL3_W, .type = ARM_CP_NO_RAW, 7174 .writefn = tlbi_aa64_rvae3_write }, 7175 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7176 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7177 .access = PL3_W, .type = ARM_CP_NO_RAW, 7178 .writefn = tlbi_aa64_rvae3_write }, 7179 }; 7180 7181 static const ARMCPRegInfo tlbios_reginfo[] = { 7182 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7183 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7184 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7185 .writefn = tlbi_aa64_vmalle1is_write }, 7186 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7187 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7188 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7189 .writefn = tlbi_aa64_vae1is_write }, 7190 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7191 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7192 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7193 .writefn = tlbi_aa64_vmalle1is_write }, 7194 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7195 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7196 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7197 .writefn = tlbi_aa64_vae1is_write }, 7198 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7199 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7200 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7201 .writefn = tlbi_aa64_vae1is_write }, 7202 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7203 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7204 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7205 .writefn = tlbi_aa64_vae1is_write }, 7206 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7207 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7208 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7209 .writefn = tlbi_aa64_alle2is_write }, 7210 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7211 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7212 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7213 .writefn = tlbi_aa64_vae2is_write }, 7214 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7215 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7216 .access = PL2_W, .type = ARM_CP_NO_RAW, 7217 .writefn = tlbi_aa64_alle1is_write }, 7218 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7219 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7220 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7221 .writefn = tlbi_aa64_vae2is_write }, 7222 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7223 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7224 .access = PL2_W, .type = ARM_CP_NO_RAW, 7225 .writefn = tlbi_aa64_alle1is_write }, 7226 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7227 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7228 .access = PL2_W, .type = ARM_CP_NOP }, 7229 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7230 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7231 .access = PL2_W, .type = ARM_CP_NOP }, 7232 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7233 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7234 .access = PL2_W, .type = ARM_CP_NOP }, 7235 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7236 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7237 .access = PL2_W, .type = ARM_CP_NOP }, 7238 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7239 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7240 .access = PL3_W, .type = ARM_CP_NO_RAW, 7241 .writefn = tlbi_aa64_alle3is_write }, 7242 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7243 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7244 .access = PL3_W, .type = ARM_CP_NO_RAW, 7245 .writefn = tlbi_aa64_vae3is_write }, 7246 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7247 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7248 .access = PL3_W, .type = ARM_CP_NO_RAW, 7249 .writefn = tlbi_aa64_vae3is_write }, 7250 }; 7251 7252 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7253 { 7254 Error *err = NULL; 7255 uint64_t ret; 7256 7257 /* Success sets NZCV = 0000. */ 7258 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7259 7260 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7261 /* 7262 * ??? Failed, for unknown reasons in the crypto subsystem. 7263 * The best we can do is log the reason and return the 7264 * timed-out indication to the guest. There is no reason 7265 * we know to expect this failure to be transitory, so the 7266 * guest may well hang retrying the operation. 7267 */ 7268 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7269 ri->name, error_get_pretty(err)); 7270 error_free(err); 7271 7272 env->ZF = 0; /* NZCF = 0100 */ 7273 return 0; 7274 } 7275 return ret; 7276 } 7277 7278 /* We do not support re-seeding, so the two registers operate the same. */ 7279 static const ARMCPRegInfo rndr_reginfo[] = { 7280 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7281 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7282 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7283 .access = PL0_R, .readfn = rndr_readfn }, 7284 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7285 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7286 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7287 .access = PL0_R, .readfn = rndr_readfn }, 7288 }; 7289 7290 #ifndef CONFIG_USER_ONLY 7291 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7292 uint64_t value) 7293 { 7294 ARMCPU *cpu = env_archcpu(env); 7295 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7296 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7297 uint64_t vaddr_in = (uint64_t) value; 7298 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7299 void *haddr; 7300 int mem_idx = cpu_mmu_index(env, false); 7301 7302 /* This won't be crossing page boundaries */ 7303 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7304 if (haddr) { 7305 7306 ram_addr_t offset; 7307 MemoryRegion *mr; 7308 7309 /* RCU lock is already being held */ 7310 mr = memory_region_from_host(haddr, &offset); 7311 7312 if (mr) { 7313 memory_region_writeback(mr, offset, dline_size); 7314 } 7315 } 7316 } 7317 7318 static const ARMCPRegInfo dcpop_reg[] = { 7319 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7320 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7321 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7322 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7323 }; 7324 7325 static const ARMCPRegInfo dcpodp_reg[] = { 7326 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7327 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7328 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7329 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7330 }; 7331 #endif /*CONFIG_USER_ONLY*/ 7332 7333 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7334 bool isread) 7335 { 7336 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7337 return CP_ACCESS_TRAP_EL2; 7338 } 7339 7340 return CP_ACCESS_OK; 7341 } 7342 7343 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7344 bool isread) 7345 { 7346 int el = arm_current_el(env); 7347 7348 if (el < 2 && arm_is_el2_enabled(env)) { 7349 uint64_t hcr = arm_hcr_el2_eff(env); 7350 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7351 return CP_ACCESS_TRAP_EL2; 7352 } 7353 } 7354 if (el < 3 && 7355 arm_feature(env, ARM_FEATURE_EL3) && 7356 !(env->cp15.scr_el3 & SCR_ATA)) { 7357 return CP_ACCESS_TRAP_EL3; 7358 } 7359 return CP_ACCESS_OK; 7360 } 7361 7362 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7363 { 7364 return env->pstate & PSTATE_TCO; 7365 } 7366 7367 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7368 { 7369 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7370 } 7371 7372 static const ARMCPRegInfo mte_reginfo[] = { 7373 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7374 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7375 .access = PL1_RW, .accessfn = access_mte, 7376 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7377 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7378 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7379 .access = PL1_RW, .accessfn = access_mte, 7380 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7381 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7382 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7383 .access = PL2_RW, .accessfn = access_mte, 7384 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7385 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7386 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7387 .access = PL3_RW, 7388 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7389 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7390 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7391 .access = PL1_RW, .accessfn = access_mte, 7392 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7393 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7394 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7395 .access = PL1_RW, .accessfn = access_mte, 7396 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7397 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7398 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7399 .access = PL1_R, .accessfn = access_aa64_tid5, 7400 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7401 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7402 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7403 .type = ARM_CP_NO_RAW, 7404 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7405 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7406 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7407 .type = ARM_CP_NOP, .access = PL1_W, 7408 .accessfn = aa64_cacheop_poc_access }, 7409 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7410 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7411 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7412 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7413 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7414 .type = ARM_CP_NOP, .access = PL1_W, 7415 .accessfn = aa64_cacheop_poc_access }, 7416 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7417 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7418 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7419 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7420 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7421 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7422 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7423 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7424 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7425 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7426 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7427 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7428 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7429 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7430 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7431 }; 7432 7433 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7434 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7435 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7436 .type = ARM_CP_CONST, .access = PL0_RW, }, 7437 }; 7438 7439 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7440 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7441 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7442 .type = ARM_CP_NOP, .access = PL0_W, 7443 .accessfn = aa64_cacheop_poc_access }, 7444 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7445 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7446 .type = ARM_CP_NOP, .access = PL0_W, 7447 .accessfn = aa64_cacheop_poc_access }, 7448 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7449 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7450 .type = ARM_CP_NOP, .access = PL0_W, 7451 .accessfn = aa64_cacheop_poc_access }, 7452 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7453 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7454 .type = ARM_CP_NOP, .access = PL0_W, 7455 .accessfn = aa64_cacheop_poc_access }, 7456 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7457 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7458 .type = ARM_CP_NOP, .access = PL0_W, 7459 .accessfn = aa64_cacheop_poc_access }, 7460 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7461 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7462 .type = ARM_CP_NOP, .access = PL0_W, 7463 .accessfn = aa64_cacheop_poc_access }, 7464 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7465 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7466 .type = ARM_CP_NOP, .access = PL0_W, 7467 .accessfn = aa64_cacheop_poc_access }, 7468 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7469 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7470 .type = ARM_CP_NOP, .access = PL0_W, 7471 .accessfn = aa64_cacheop_poc_access }, 7472 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7473 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7474 .access = PL0_W, .type = ARM_CP_DC_GVA, 7475 #ifndef CONFIG_USER_ONLY 7476 /* Avoid overhead of an access check that always passes in user-mode */ 7477 .accessfn = aa64_zva_access, 7478 #endif 7479 }, 7480 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7481 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7482 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7483 #ifndef CONFIG_USER_ONLY 7484 /* Avoid overhead of an access check that always passes in user-mode */ 7485 .accessfn = aa64_zva_access, 7486 #endif 7487 }, 7488 }; 7489 7490 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7491 bool isread) 7492 { 7493 uint64_t hcr = arm_hcr_el2_eff(env); 7494 int el = arm_current_el(env); 7495 7496 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7497 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7498 if (hcr & HCR_TGE) { 7499 return CP_ACCESS_TRAP_EL2; 7500 } 7501 return CP_ACCESS_TRAP; 7502 } 7503 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7504 return CP_ACCESS_TRAP_EL2; 7505 } 7506 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7507 return CP_ACCESS_TRAP_EL2; 7508 } 7509 if (el < 3 7510 && arm_feature(env, ARM_FEATURE_EL3) 7511 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7512 return CP_ACCESS_TRAP_EL3; 7513 } 7514 return CP_ACCESS_OK; 7515 } 7516 7517 static const ARMCPRegInfo scxtnum_reginfo[] = { 7518 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7519 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7520 .access = PL0_RW, .accessfn = access_scxtnum, 7521 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7522 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7523 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7524 .access = PL1_RW, .accessfn = access_scxtnum, 7525 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7526 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7527 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7528 .access = PL2_RW, .accessfn = access_scxtnum, 7529 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7530 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7531 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7532 .access = PL3_RW, 7533 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7534 }; 7535 #endif /* TARGET_AARCH64 */ 7536 7537 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7538 bool isread) 7539 { 7540 int el = arm_current_el(env); 7541 7542 if (el == 0) { 7543 uint64_t sctlr = arm_sctlr(env, el); 7544 if (!(sctlr & SCTLR_EnRCTX)) { 7545 return CP_ACCESS_TRAP; 7546 } 7547 } else if (el == 1) { 7548 uint64_t hcr = arm_hcr_el2_eff(env); 7549 if (hcr & HCR_NV) { 7550 return CP_ACCESS_TRAP_EL2; 7551 } 7552 } 7553 return CP_ACCESS_OK; 7554 } 7555 7556 static const ARMCPRegInfo predinv_reginfo[] = { 7557 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7558 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7559 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7560 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7562 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7563 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7564 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7565 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7566 /* 7567 * Note the AArch32 opcodes have a different OPC1. 7568 */ 7569 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7570 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7571 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7572 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7573 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7574 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7575 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7576 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7577 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7578 }; 7579 7580 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7581 { 7582 /* Read the high 32 bits of the current CCSIDR */ 7583 return extract64(ccsidr_read(env, ri), 32, 32); 7584 } 7585 7586 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7587 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7588 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7589 .access = PL1_R, 7590 .accessfn = access_tid4, 7591 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7592 }; 7593 7594 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7595 bool isread) 7596 { 7597 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7598 return CP_ACCESS_TRAP_EL2; 7599 } 7600 7601 return CP_ACCESS_OK; 7602 } 7603 7604 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7605 bool isread) 7606 { 7607 if (arm_feature(env, ARM_FEATURE_V8)) { 7608 return access_aa64_tid3(env, ri, isread); 7609 } 7610 7611 return CP_ACCESS_OK; 7612 } 7613 7614 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7615 bool isread) 7616 { 7617 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7618 return CP_ACCESS_TRAP_EL2; 7619 } 7620 7621 return CP_ACCESS_OK; 7622 } 7623 7624 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7625 const ARMCPRegInfo *ri, bool isread) 7626 { 7627 /* 7628 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7629 * in v7A, not in v8A. 7630 */ 7631 if (!arm_feature(env, ARM_FEATURE_V8) && 7632 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7633 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7634 return CP_ACCESS_TRAP_EL2; 7635 } 7636 return CP_ACCESS_OK; 7637 } 7638 7639 static const ARMCPRegInfo jazelle_regs[] = { 7640 { .name = "JIDR", 7641 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7642 .access = PL1_R, .accessfn = access_jazelle, 7643 .type = ARM_CP_CONST, .resetvalue = 0 }, 7644 { .name = "JOSCR", 7645 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7646 .accessfn = access_joscr_jmcr, 7647 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7648 { .name = "JMCR", 7649 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7650 .accessfn = access_joscr_jmcr, 7651 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7652 }; 7653 7654 static const ARMCPRegInfo contextidr_el2 = { 7655 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7656 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7657 .access = PL2_RW, 7658 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7659 }; 7660 7661 static const ARMCPRegInfo vhe_reginfo[] = { 7662 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7663 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7664 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7665 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7666 #ifndef CONFIG_USER_ONLY 7667 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7668 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7669 .fieldoffset = 7670 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7671 .type = ARM_CP_IO, .access = PL2_RW, 7672 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7673 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7674 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7675 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7676 .resetfn = gt_hv_timer_reset, 7677 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7678 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7679 .type = ARM_CP_IO, 7680 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7681 .access = PL2_RW, 7682 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7683 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7684 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7685 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7686 .type = ARM_CP_IO | ARM_CP_ALIAS, 7687 .access = PL2_RW, .accessfn = e2h_access, 7688 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7689 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7690 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7691 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7692 .type = ARM_CP_IO | ARM_CP_ALIAS, 7693 .access = PL2_RW, .accessfn = e2h_access, 7694 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7695 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7696 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7697 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7698 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7699 .access = PL2_RW, .accessfn = e2h_access, 7700 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7701 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7702 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7703 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7704 .access = PL2_RW, .accessfn = e2h_access, 7705 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7706 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7707 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7708 .type = ARM_CP_IO | ARM_CP_ALIAS, 7709 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7710 .access = PL2_RW, .accessfn = e2h_access, 7711 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7712 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7713 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7714 .type = ARM_CP_IO | ARM_CP_ALIAS, 7715 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7716 .access = PL2_RW, .accessfn = e2h_access, 7717 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7718 #endif 7719 }; 7720 7721 #ifndef CONFIG_USER_ONLY 7722 static const ARMCPRegInfo ats1e1_reginfo[] = { 7723 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7724 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7725 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7726 .writefn = ats_write64 }, 7727 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7728 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7729 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7730 .writefn = ats_write64 }, 7731 }; 7732 7733 static const ARMCPRegInfo ats1cp_reginfo[] = { 7734 { .name = "ATS1CPRP", 7735 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7736 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7737 .writefn = ats_write }, 7738 { .name = "ATS1CPWP", 7739 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7740 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7741 .writefn = ats_write }, 7742 }; 7743 #endif 7744 7745 /* 7746 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7747 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7748 * is non-zero, which is never for ARMv7, optionally in ARMv8 7749 * and mandatorily for ARMv8.2 and up. 7750 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7751 * implementation is RAZ/WI we can ignore this detail, as we 7752 * do for ACTLR. 7753 */ 7754 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7755 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7756 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7757 .access = PL1_RW, .accessfn = access_tacr, 7758 .type = ARM_CP_CONST, .resetvalue = 0 }, 7759 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7760 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7761 .access = PL2_RW, .type = ARM_CP_CONST, 7762 .resetvalue = 0 }, 7763 }; 7764 7765 void register_cp_regs_for_features(ARMCPU *cpu) 7766 { 7767 /* Register all the coprocessor registers based on feature bits */ 7768 CPUARMState *env = &cpu->env; 7769 if (arm_feature(env, ARM_FEATURE_M)) { 7770 /* M profile has no coprocessor registers */ 7771 return; 7772 } 7773 7774 define_arm_cp_regs(cpu, cp_reginfo); 7775 if (!arm_feature(env, ARM_FEATURE_V8)) { 7776 /* 7777 * Must go early as it is full of wildcards that may be 7778 * overridden by later definitions. 7779 */ 7780 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7781 } 7782 7783 if (arm_feature(env, ARM_FEATURE_V6)) { 7784 /* The ID registers all have impdef reset values */ 7785 ARMCPRegInfo v6_idregs[] = { 7786 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7788 .access = PL1_R, .type = ARM_CP_CONST, 7789 .accessfn = access_aa32_tid3, 7790 .resetvalue = cpu->isar.id_pfr0 }, 7791 /* 7792 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7793 * the value of the GIC field until after we define these regs. 7794 */ 7795 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7797 .access = PL1_R, .type = ARM_CP_NO_RAW, 7798 .accessfn = access_aa32_tid3, 7799 .readfn = id_pfr1_read, 7800 .writefn = arm_cp_write_ignore }, 7801 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa32_tid3, 7805 .resetvalue = cpu->isar.id_dfr0 }, 7806 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7808 .access = PL1_R, .type = ARM_CP_CONST, 7809 .accessfn = access_aa32_tid3, 7810 .resetvalue = cpu->id_afr0 }, 7811 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7813 .access = PL1_R, .type = ARM_CP_CONST, 7814 .accessfn = access_aa32_tid3, 7815 .resetvalue = cpu->isar.id_mmfr0 }, 7816 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7818 .access = PL1_R, .type = ARM_CP_CONST, 7819 .accessfn = access_aa32_tid3, 7820 .resetvalue = cpu->isar.id_mmfr1 }, 7821 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7823 .access = PL1_R, .type = ARM_CP_CONST, 7824 .accessfn = access_aa32_tid3, 7825 .resetvalue = cpu->isar.id_mmfr2 }, 7826 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7828 .access = PL1_R, .type = ARM_CP_CONST, 7829 .accessfn = access_aa32_tid3, 7830 .resetvalue = cpu->isar.id_mmfr3 }, 7831 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7833 .access = PL1_R, .type = ARM_CP_CONST, 7834 .accessfn = access_aa32_tid3, 7835 .resetvalue = cpu->isar.id_isar0 }, 7836 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7837 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7838 .access = PL1_R, .type = ARM_CP_CONST, 7839 .accessfn = access_aa32_tid3, 7840 .resetvalue = cpu->isar.id_isar1 }, 7841 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7843 .access = PL1_R, .type = ARM_CP_CONST, 7844 .accessfn = access_aa32_tid3, 7845 .resetvalue = cpu->isar.id_isar2 }, 7846 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7848 .access = PL1_R, .type = ARM_CP_CONST, 7849 .accessfn = access_aa32_tid3, 7850 .resetvalue = cpu->isar.id_isar3 }, 7851 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7853 .access = PL1_R, .type = ARM_CP_CONST, 7854 .accessfn = access_aa32_tid3, 7855 .resetvalue = cpu->isar.id_isar4 }, 7856 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7858 .access = PL1_R, .type = ARM_CP_CONST, 7859 .accessfn = access_aa32_tid3, 7860 .resetvalue = cpu->isar.id_isar5 }, 7861 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7863 .access = PL1_R, .type = ARM_CP_CONST, 7864 .accessfn = access_aa32_tid3, 7865 .resetvalue = cpu->isar.id_mmfr4 }, 7866 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7867 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7868 .access = PL1_R, .type = ARM_CP_CONST, 7869 .accessfn = access_aa32_tid3, 7870 .resetvalue = cpu->isar.id_isar6 }, 7871 }; 7872 define_arm_cp_regs(cpu, v6_idregs); 7873 define_arm_cp_regs(cpu, v6_cp_reginfo); 7874 } else { 7875 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7876 } 7877 if (arm_feature(env, ARM_FEATURE_V6K)) { 7878 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7879 } 7880 if (arm_feature(env, ARM_FEATURE_V7MP) && 7881 !arm_feature(env, ARM_FEATURE_PMSA)) { 7882 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7883 } 7884 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7885 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7886 } 7887 if (arm_feature(env, ARM_FEATURE_V7)) { 7888 ARMCPRegInfo clidr = { 7889 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7890 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7891 .access = PL1_R, .type = ARM_CP_CONST, 7892 .accessfn = access_tid4, 7893 .resetvalue = cpu->clidr 7894 }; 7895 define_one_arm_cp_reg(cpu, &clidr); 7896 define_arm_cp_regs(cpu, v7_cp_reginfo); 7897 define_debug_regs(cpu); 7898 define_pmu_regs(cpu); 7899 } else { 7900 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7901 } 7902 if (arm_feature(env, ARM_FEATURE_V8)) { 7903 /* 7904 * v8 ID registers, which all have impdef reset values. 7905 * Note that within the ID register ranges the unused slots 7906 * must all RAZ, not UNDEF; future architecture versions may 7907 * define new registers here. 7908 * ID registers which are AArch64 views of the AArch32 ID registers 7909 * which already existed in v6 and v7 are handled elsewhere, 7910 * in v6_idregs[]. 7911 */ 7912 int i; 7913 ARMCPRegInfo v8_idregs[] = { 7914 /* 7915 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7916 * emulation because we don't know the right value for the 7917 * GIC field until after we define these regs. 7918 */ 7919 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7920 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7921 .access = PL1_R, 7922 #ifdef CONFIG_USER_ONLY 7923 .type = ARM_CP_CONST, 7924 .resetvalue = cpu->isar.id_aa64pfr0 7925 #else 7926 .type = ARM_CP_NO_RAW, 7927 .accessfn = access_aa64_tid3, 7928 .readfn = id_aa64pfr0_read, 7929 .writefn = arm_cp_write_ignore 7930 #endif 7931 }, 7932 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7933 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7934 .access = PL1_R, .type = ARM_CP_CONST, 7935 .accessfn = access_aa64_tid3, 7936 .resetvalue = cpu->isar.id_aa64pfr1}, 7937 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7938 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7939 .access = PL1_R, .type = ARM_CP_CONST, 7940 .accessfn = access_aa64_tid3, 7941 .resetvalue = 0 }, 7942 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7943 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7944 .access = PL1_R, .type = ARM_CP_CONST, 7945 .accessfn = access_aa64_tid3, 7946 .resetvalue = 0 }, 7947 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7948 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7949 .access = PL1_R, .type = ARM_CP_CONST, 7950 .accessfn = access_aa64_tid3, 7951 .resetvalue = cpu->isar.id_aa64zfr0 }, 7952 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7953 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7954 .access = PL1_R, .type = ARM_CP_CONST, 7955 .accessfn = access_aa64_tid3, 7956 .resetvalue = cpu->isar.id_aa64smfr0 }, 7957 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7959 .access = PL1_R, .type = ARM_CP_CONST, 7960 .accessfn = access_aa64_tid3, 7961 .resetvalue = 0 }, 7962 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7964 .access = PL1_R, .type = ARM_CP_CONST, 7965 .accessfn = access_aa64_tid3, 7966 .resetvalue = 0 }, 7967 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7968 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7969 .access = PL1_R, .type = ARM_CP_CONST, 7970 .accessfn = access_aa64_tid3, 7971 .resetvalue = cpu->isar.id_aa64dfr0 }, 7972 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7973 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7974 .access = PL1_R, .type = ARM_CP_CONST, 7975 .accessfn = access_aa64_tid3, 7976 .resetvalue = cpu->isar.id_aa64dfr1 }, 7977 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7978 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7979 .access = PL1_R, .type = ARM_CP_CONST, 7980 .accessfn = access_aa64_tid3, 7981 .resetvalue = 0 }, 7982 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7983 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7984 .access = PL1_R, .type = ARM_CP_CONST, 7985 .accessfn = access_aa64_tid3, 7986 .resetvalue = 0 }, 7987 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7988 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7989 .access = PL1_R, .type = ARM_CP_CONST, 7990 .accessfn = access_aa64_tid3, 7991 .resetvalue = cpu->id_aa64afr0 }, 7992 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7993 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7994 .access = PL1_R, .type = ARM_CP_CONST, 7995 .accessfn = access_aa64_tid3, 7996 .resetvalue = cpu->id_aa64afr1 }, 7997 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7999 .access = PL1_R, .type = ARM_CP_CONST, 8000 .accessfn = access_aa64_tid3, 8001 .resetvalue = 0 }, 8002 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8003 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8004 .access = PL1_R, .type = ARM_CP_CONST, 8005 .accessfn = access_aa64_tid3, 8006 .resetvalue = 0 }, 8007 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8009 .access = PL1_R, .type = ARM_CP_CONST, 8010 .accessfn = access_aa64_tid3, 8011 .resetvalue = cpu->isar.id_aa64isar0 }, 8012 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8013 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8014 .access = PL1_R, .type = ARM_CP_CONST, 8015 .accessfn = access_aa64_tid3, 8016 .resetvalue = cpu->isar.id_aa64isar1 }, 8017 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8019 .access = PL1_R, .type = ARM_CP_CONST, 8020 .accessfn = access_aa64_tid3, 8021 .resetvalue = 0 }, 8022 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8023 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8024 .access = PL1_R, .type = ARM_CP_CONST, 8025 .accessfn = access_aa64_tid3, 8026 .resetvalue = 0 }, 8027 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8028 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8029 .access = PL1_R, .type = ARM_CP_CONST, 8030 .accessfn = access_aa64_tid3, 8031 .resetvalue = 0 }, 8032 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8033 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8034 .access = PL1_R, .type = ARM_CP_CONST, 8035 .accessfn = access_aa64_tid3, 8036 .resetvalue = 0 }, 8037 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8039 .access = PL1_R, .type = ARM_CP_CONST, 8040 .accessfn = access_aa64_tid3, 8041 .resetvalue = 0 }, 8042 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8043 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8044 .access = PL1_R, .type = ARM_CP_CONST, 8045 .accessfn = access_aa64_tid3, 8046 .resetvalue = 0 }, 8047 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8048 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8049 .access = PL1_R, .type = ARM_CP_CONST, 8050 .accessfn = access_aa64_tid3, 8051 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8052 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8053 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8054 .access = PL1_R, .type = ARM_CP_CONST, 8055 .accessfn = access_aa64_tid3, 8056 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8057 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8059 .access = PL1_R, .type = ARM_CP_CONST, 8060 .accessfn = access_aa64_tid3, 8061 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8062 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8063 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8064 .access = PL1_R, .type = ARM_CP_CONST, 8065 .accessfn = access_aa64_tid3, 8066 .resetvalue = 0 }, 8067 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8068 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8069 .access = PL1_R, .type = ARM_CP_CONST, 8070 .accessfn = access_aa64_tid3, 8071 .resetvalue = 0 }, 8072 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8073 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8074 .access = PL1_R, .type = ARM_CP_CONST, 8075 .accessfn = access_aa64_tid3, 8076 .resetvalue = 0 }, 8077 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8079 .access = PL1_R, .type = ARM_CP_CONST, 8080 .accessfn = access_aa64_tid3, 8081 .resetvalue = 0 }, 8082 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8083 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8084 .access = PL1_R, .type = ARM_CP_CONST, 8085 .accessfn = access_aa64_tid3, 8086 .resetvalue = 0 }, 8087 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8088 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8089 .access = PL1_R, .type = ARM_CP_CONST, 8090 .accessfn = access_aa64_tid3, 8091 .resetvalue = cpu->isar.mvfr0 }, 8092 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8093 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8094 .access = PL1_R, .type = ARM_CP_CONST, 8095 .accessfn = access_aa64_tid3, 8096 .resetvalue = cpu->isar.mvfr1 }, 8097 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8099 .access = PL1_R, .type = ARM_CP_CONST, 8100 .accessfn = access_aa64_tid3, 8101 .resetvalue = cpu->isar.mvfr2 }, 8102 /* 8103 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8104 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8105 * as RAZ, since it is in the "reserved for future ID 8106 * registers, RAZ" part of the AArch32 encoding space. 8107 */ 8108 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8109 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8110 .access = PL1_R, .type = ARM_CP_CONST, 8111 .accessfn = access_aa64_tid3, 8112 .resetvalue = 0 }, 8113 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8114 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8115 .access = PL1_R, .type = ARM_CP_CONST, 8116 .accessfn = access_aa64_tid3, 8117 .resetvalue = 0 }, 8118 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8119 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8120 .access = PL1_R, .type = ARM_CP_CONST, 8121 .accessfn = access_aa64_tid3, 8122 .resetvalue = 0 }, 8123 /* 8124 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8125 * they're also RAZ for AArch64, and in v8 are gradually 8126 * being filled with AArch64-view-of-AArch32-ID-register 8127 * for new ID registers. 8128 */ 8129 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8131 .access = PL1_R, .type = ARM_CP_CONST, 8132 .accessfn = access_aa64_tid3, 8133 .resetvalue = 0 }, 8134 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8136 .access = PL1_R, .type = ARM_CP_CONST, 8137 .accessfn = access_aa64_tid3, 8138 .resetvalue = cpu->isar.id_pfr2 }, 8139 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8140 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8141 .access = PL1_R, .type = ARM_CP_CONST, 8142 .accessfn = access_aa64_tid3, 8143 .resetvalue = cpu->isar.id_dfr1 }, 8144 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8145 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8146 .access = PL1_R, .type = ARM_CP_CONST, 8147 .accessfn = access_aa64_tid3, 8148 .resetvalue = cpu->isar.id_mmfr5 }, 8149 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8151 .access = PL1_R, .type = ARM_CP_CONST, 8152 .accessfn = access_aa64_tid3, 8153 .resetvalue = 0 }, 8154 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8155 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8156 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8157 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8158 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8160 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8161 .resetvalue = cpu->pmceid0 }, 8162 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8163 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8164 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8165 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8166 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8167 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8168 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8169 .resetvalue = cpu->pmceid1 }, 8170 }; 8171 #ifdef CONFIG_USER_ONLY 8172 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8173 { .name = "ID_AA64PFR0_EL1", 8174 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8175 R_ID_AA64PFR0_ADVSIMD_MASK | 8176 R_ID_AA64PFR0_SVE_MASK | 8177 R_ID_AA64PFR0_DIT_MASK, 8178 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8179 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8180 { .name = "ID_AA64PFR1_EL1", 8181 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8182 R_ID_AA64PFR1_SSBS_MASK | 8183 R_ID_AA64PFR1_MTE_MASK | 8184 R_ID_AA64PFR1_SME_MASK }, 8185 { .name = "ID_AA64PFR*_EL1_RESERVED", 8186 .is_glob = true }, 8187 { .name = "ID_AA64ZFR0_EL1", 8188 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8189 R_ID_AA64ZFR0_AES_MASK | 8190 R_ID_AA64ZFR0_BITPERM_MASK | 8191 R_ID_AA64ZFR0_BFLOAT16_MASK | 8192 R_ID_AA64ZFR0_SHA3_MASK | 8193 R_ID_AA64ZFR0_SM4_MASK | 8194 R_ID_AA64ZFR0_I8MM_MASK | 8195 R_ID_AA64ZFR0_F32MM_MASK | 8196 R_ID_AA64ZFR0_F64MM_MASK }, 8197 { .name = "ID_AA64SMFR0_EL1", 8198 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8199 R_ID_AA64SMFR0_B16F32_MASK | 8200 R_ID_AA64SMFR0_F16F32_MASK | 8201 R_ID_AA64SMFR0_I8I32_MASK | 8202 R_ID_AA64SMFR0_F64F64_MASK | 8203 R_ID_AA64SMFR0_I16I64_MASK | 8204 R_ID_AA64SMFR0_FA64_MASK }, 8205 { .name = "ID_AA64MMFR0_EL1", 8206 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8207 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8208 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8209 { .name = "ID_AA64MMFR1_EL1", 8210 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8211 { .name = "ID_AA64MMFR2_EL1", 8212 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8213 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8214 .is_glob = true }, 8215 { .name = "ID_AA64DFR0_EL1", 8216 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8217 { .name = "ID_AA64DFR1_EL1" }, 8218 { .name = "ID_AA64DFR*_EL1_RESERVED", 8219 .is_glob = true }, 8220 { .name = "ID_AA64AFR*", 8221 .is_glob = true }, 8222 { .name = "ID_AA64ISAR0_EL1", 8223 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8224 R_ID_AA64ISAR0_SHA1_MASK | 8225 R_ID_AA64ISAR0_SHA2_MASK | 8226 R_ID_AA64ISAR0_CRC32_MASK | 8227 R_ID_AA64ISAR0_ATOMIC_MASK | 8228 R_ID_AA64ISAR0_RDM_MASK | 8229 R_ID_AA64ISAR0_SHA3_MASK | 8230 R_ID_AA64ISAR0_SM3_MASK | 8231 R_ID_AA64ISAR0_SM4_MASK | 8232 R_ID_AA64ISAR0_DP_MASK | 8233 R_ID_AA64ISAR0_FHM_MASK | 8234 R_ID_AA64ISAR0_TS_MASK | 8235 R_ID_AA64ISAR0_RNDR_MASK }, 8236 { .name = "ID_AA64ISAR1_EL1", 8237 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8238 R_ID_AA64ISAR1_APA_MASK | 8239 R_ID_AA64ISAR1_API_MASK | 8240 R_ID_AA64ISAR1_JSCVT_MASK | 8241 R_ID_AA64ISAR1_FCMA_MASK | 8242 R_ID_AA64ISAR1_LRCPC_MASK | 8243 R_ID_AA64ISAR1_GPA_MASK | 8244 R_ID_AA64ISAR1_GPI_MASK | 8245 R_ID_AA64ISAR1_FRINTTS_MASK | 8246 R_ID_AA64ISAR1_SB_MASK | 8247 R_ID_AA64ISAR1_BF16_MASK | 8248 R_ID_AA64ISAR1_DGH_MASK | 8249 R_ID_AA64ISAR1_I8MM_MASK }, 8250 { .name = "ID_AA64ISAR2_EL1", 8251 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8252 R_ID_AA64ISAR2_RPRES_MASK | 8253 R_ID_AA64ISAR2_GPA3_MASK | 8254 R_ID_AA64ISAR2_APA3_MASK }, 8255 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8256 .is_glob = true }, 8257 }; 8258 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8259 #endif 8260 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8261 if (!arm_feature(env, ARM_FEATURE_EL3) && 8262 !arm_feature(env, ARM_FEATURE_EL2)) { 8263 ARMCPRegInfo rvbar = { 8264 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8265 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8266 .access = PL1_R, 8267 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8268 }; 8269 define_one_arm_cp_reg(cpu, &rvbar); 8270 } 8271 define_arm_cp_regs(cpu, v8_idregs); 8272 define_arm_cp_regs(cpu, v8_cp_reginfo); 8273 8274 for (i = 4; i < 16; i++) { 8275 /* 8276 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8277 * For pre-v8 cores there are RAZ patterns for these in 8278 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8279 * v8 extends the "must RAZ" part of the ID register space 8280 * to also cover c0, 0, c{8-15}, {0-7}. 8281 * These are STATE_AA32 because in the AArch64 sysreg space 8282 * c4-c7 is where the AArch64 ID registers live (and we've 8283 * already defined those in v8_idregs[]), and c8-c15 are not 8284 * "must RAZ" for AArch64. 8285 */ 8286 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8287 ARMCPRegInfo v8_aa32_raz_idregs = { 8288 .name = name, 8289 .state = ARM_CP_STATE_AA32, 8290 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8291 .access = PL1_R, .type = ARM_CP_CONST, 8292 .accessfn = access_aa64_tid3, 8293 .resetvalue = 0 }; 8294 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8295 } 8296 } 8297 8298 /* 8299 * Register the base EL2 cpregs. 8300 * Pre v8, these registers are implemented only as part of the 8301 * Virtualization Extensions (EL2 present). Beginning with v8, 8302 * if EL2 is missing but EL3 is enabled, mostly these become 8303 * RES0 from EL3, with some specific exceptions. 8304 */ 8305 if (arm_feature(env, ARM_FEATURE_EL2) 8306 || (arm_feature(env, ARM_FEATURE_EL3) 8307 && arm_feature(env, ARM_FEATURE_V8))) { 8308 uint64_t vmpidr_def = mpidr_read_val(env); 8309 ARMCPRegInfo vpidr_regs[] = { 8310 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8311 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8312 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8313 .resetvalue = cpu->midr, 8314 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8315 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8316 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8317 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8318 .access = PL2_RW, .resetvalue = cpu->midr, 8319 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8320 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8321 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8322 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8323 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8324 .resetvalue = vmpidr_def, 8325 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8326 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8327 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8328 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8329 .access = PL2_RW, .resetvalue = vmpidr_def, 8330 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8331 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8332 }; 8333 /* 8334 * The only field of MDCR_EL2 that has a defined architectural reset 8335 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8336 */ 8337 ARMCPRegInfo mdcr_el2 = { 8338 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8339 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8340 .writefn = mdcr_el2_write, 8341 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8342 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8343 }; 8344 define_one_arm_cp_reg(cpu, &mdcr_el2); 8345 define_arm_cp_regs(cpu, vpidr_regs); 8346 define_arm_cp_regs(cpu, el2_cp_reginfo); 8347 if (arm_feature(env, ARM_FEATURE_V8)) { 8348 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8349 } 8350 if (cpu_isar_feature(aa64_sel2, cpu)) { 8351 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8352 } 8353 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8354 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8355 ARMCPRegInfo rvbar[] = { 8356 { 8357 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8358 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8359 .access = PL2_R, 8360 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8361 }, 8362 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8363 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8364 .access = PL2_R, 8365 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8366 }, 8367 }; 8368 define_arm_cp_regs(cpu, rvbar); 8369 } 8370 } 8371 8372 /* Register the base EL3 cpregs. */ 8373 if (arm_feature(env, ARM_FEATURE_EL3)) { 8374 define_arm_cp_regs(cpu, el3_cp_reginfo); 8375 ARMCPRegInfo el3_regs[] = { 8376 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8377 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8378 .access = PL3_R, 8379 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8380 }, 8381 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8382 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8383 .access = PL3_RW, 8384 .raw_writefn = raw_write, .writefn = sctlr_write, 8385 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8386 .resetvalue = cpu->reset_sctlr }, 8387 }; 8388 8389 define_arm_cp_regs(cpu, el3_regs); 8390 } 8391 /* 8392 * The behaviour of NSACR is sufficiently various that we don't 8393 * try to describe it in a single reginfo: 8394 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8395 * reads as constant 0xc00 from NS EL1 and NS EL2 8396 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8397 * if v7 without EL3, register doesn't exist 8398 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8399 */ 8400 if (arm_feature(env, ARM_FEATURE_EL3)) { 8401 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8402 static const ARMCPRegInfo nsacr = { 8403 .name = "NSACR", .type = ARM_CP_CONST, 8404 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8405 .access = PL1_RW, .accessfn = nsacr_access, 8406 .resetvalue = 0xc00 8407 }; 8408 define_one_arm_cp_reg(cpu, &nsacr); 8409 } else { 8410 static const ARMCPRegInfo nsacr = { 8411 .name = "NSACR", 8412 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8413 .access = PL3_RW | PL1_R, 8414 .resetvalue = 0, 8415 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8416 }; 8417 define_one_arm_cp_reg(cpu, &nsacr); 8418 } 8419 } else { 8420 if (arm_feature(env, ARM_FEATURE_V8)) { 8421 static const ARMCPRegInfo nsacr = { 8422 .name = "NSACR", .type = ARM_CP_CONST, 8423 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8424 .access = PL1_R, 8425 .resetvalue = 0xc00 8426 }; 8427 define_one_arm_cp_reg(cpu, &nsacr); 8428 } 8429 } 8430 8431 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8432 if (arm_feature(env, ARM_FEATURE_V6)) { 8433 /* PMSAv6 not implemented */ 8434 assert(arm_feature(env, ARM_FEATURE_V7)); 8435 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8436 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8437 } else { 8438 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8439 } 8440 } else { 8441 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8442 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8443 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8444 if (cpu_isar_feature(aa32_hpd, cpu)) { 8445 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8446 } 8447 } 8448 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8449 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8450 } 8451 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8452 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8453 } 8454 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8455 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8456 } 8457 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8458 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8459 } 8460 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8461 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8462 } 8463 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8464 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8465 } 8466 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8467 define_arm_cp_regs(cpu, omap_cp_reginfo); 8468 } 8469 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8470 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8471 } 8472 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8473 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8474 } 8475 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8476 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8477 } 8478 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8479 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8480 } 8481 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8482 define_arm_cp_regs(cpu, jazelle_regs); 8483 } 8484 /* 8485 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8486 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8487 * be read-only (ie write causes UNDEF exception). 8488 */ 8489 { 8490 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8491 /* 8492 * Pre-v8 MIDR space. 8493 * Note that the MIDR isn't a simple constant register because 8494 * of the TI925 behaviour where writes to another register can 8495 * cause the MIDR value to change. 8496 * 8497 * Unimplemented registers in the c15 0 0 0 space default to 8498 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8499 * and friends override accordingly. 8500 */ 8501 { .name = "MIDR", 8502 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8503 .access = PL1_R, .resetvalue = cpu->midr, 8504 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8505 .readfn = midr_read, 8506 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8507 .type = ARM_CP_OVERRIDE }, 8508 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8509 { .name = "DUMMY", 8510 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8511 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8512 { .name = "DUMMY", 8513 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8514 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8515 { .name = "DUMMY", 8516 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8517 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8518 { .name = "DUMMY", 8519 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8520 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8521 { .name = "DUMMY", 8522 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8523 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8524 }; 8525 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8526 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8527 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8528 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8529 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8530 .readfn = midr_read }, 8531 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8532 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8533 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8534 .access = PL1_R, .resetvalue = cpu->midr }, 8535 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8537 .access = PL1_R, 8538 .accessfn = access_aa64_tid1, 8539 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8540 }; 8541 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8542 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8543 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8544 .access = PL1_R, .resetvalue = cpu->midr 8545 }; 8546 ARMCPRegInfo id_cp_reginfo[] = { 8547 /* These are common to v8 and pre-v8 */ 8548 { .name = "CTR", 8549 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8550 .access = PL1_R, .accessfn = ctr_el0_access, 8551 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8552 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8553 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8554 .access = PL0_R, .accessfn = ctr_el0_access, 8555 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8556 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8557 { .name = "TCMTR", 8558 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8559 .access = PL1_R, 8560 .accessfn = access_aa32_tid1, 8561 .type = ARM_CP_CONST, .resetvalue = 0 }, 8562 }; 8563 /* TLBTR is specific to VMSA */ 8564 ARMCPRegInfo id_tlbtr_reginfo = { 8565 .name = "TLBTR", 8566 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8567 .access = PL1_R, 8568 .accessfn = access_aa32_tid1, 8569 .type = ARM_CP_CONST, .resetvalue = 0, 8570 }; 8571 /* MPUIR is specific to PMSA V6+ */ 8572 ARMCPRegInfo id_mpuir_reginfo = { 8573 .name = "MPUIR", 8574 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8575 .access = PL1_R, .type = ARM_CP_CONST, 8576 .resetvalue = cpu->pmsav7_dregion << 8 8577 }; 8578 /* HMPUIR is specific to PMSA V8 */ 8579 ARMCPRegInfo id_hmpuir_reginfo = { 8580 .name = "HMPUIR", 8581 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8582 .access = PL2_R, .type = ARM_CP_CONST, 8583 .resetvalue = cpu->pmsav8r_hdregion 8584 }; 8585 static const ARMCPRegInfo crn0_wi_reginfo = { 8586 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8587 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8588 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8589 }; 8590 #ifdef CONFIG_USER_ONLY 8591 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8592 { .name = "MIDR_EL1", 8593 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8594 R_MIDR_EL1_PARTNUM_MASK | 8595 R_MIDR_EL1_ARCHITECTURE_MASK | 8596 R_MIDR_EL1_VARIANT_MASK | 8597 R_MIDR_EL1_IMPLEMENTER_MASK }, 8598 { .name = "REVIDR_EL1" }, 8599 }; 8600 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8601 #endif 8602 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8603 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8604 size_t i; 8605 /* 8606 * Register the blanket "writes ignored" value first to cover the 8607 * whole space. Then update the specific ID registers to allow write 8608 * access, so that they ignore writes rather than causing them to 8609 * UNDEF. 8610 */ 8611 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8612 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8613 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8614 } 8615 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8616 id_cp_reginfo[i].access = PL1_RW; 8617 } 8618 id_mpuir_reginfo.access = PL1_RW; 8619 id_tlbtr_reginfo.access = PL1_RW; 8620 } 8621 if (arm_feature(env, ARM_FEATURE_V8)) { 8622 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8623 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8624 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8625 } 8626 } else { 8627 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8628 } 8629 define_arm_cp_regs(cpu, id_cp_reginfo); 8630 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8631 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8632 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8633 arm_feature(env, ARM_FEATURE_V8)) { 8634 uint32_t i = 0; 8635 char *tmp_string; 8636 8637 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8638 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8639 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8640 8641 /* Register alias is only valid for first 32 indexes */ 8642 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8643 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8644 uint8_t opc1 = extract32(i, 4, 1); 8645 uint8_t opc2 = extract32(i, 0, 1) << 2; 8646 8647 tmp_string = g_strdup_printf("PRBAR%u", i); 8648 ARMCPRegInfo tmp_prbarn_reginfo = { 8649 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8650 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8651 .access = PL1_RW, .resetvalue = 0, 8652 .accessfn = access_tvm_trvm, 8653 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8654 }; 8655 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8656 g_free(tmp_string); 8657 8658 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8659 tmp_string = g_strdup_printf("PRLAR%u", i); 8660 ARMCPRegInfo tmp_prlarn_reginfo = { 8661 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8662 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8663 .access = PL1_RW, .resetvalue = 0, 8664 .accessfn = access_tvm_trvm, 8665 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8666 }; 8667 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8668 g_free(tmp_string); 8669 } 8670 8671 /* Register alias is only valid for first 32 indexes */ 8672 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8673 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8674 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8675 uint8_t opc2 = extract32(i, 0, 1) << 2; 8676 8677 tmp_string = g_strdup_printf("HPRBAR%u", i); 8678 ARMCPRegInfo tmp_hprbarn_reginfo = { 8679 .name = tmp_string, 8680 .type = ARM_CP_NO_RAW, 8681 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8682 .access = PL2_RW, .resetvalue = 0, 8683 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8684 }; 8685 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8686 g_free(tmp_string); 8687 8688 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8689 tmp_string = g_strdup_printf("HPRLAR%u", i); 8690 ARMCPRegInfo tmp_hprlarn_reginfo = { 8691 .name = tmp_string, 8692 .type = ARM_CP_NO_RAW, 8693 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8694 .access = PL2_RW, .resetvalue = 0, 8695 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8696 }; 8697 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8698 g_free(tmp_string); 8699 } 8700 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8701 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8702 } 8703 } 8704 8705 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8706 ARMCPRegInfo mpidr_cp_reginfo[] = { 8707 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8708 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8709 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8710 }; 8711 #ifdef CONFIG_USER_ONLY 8712 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8713 { .name = "MPIDR_EL1", 8714 .fixed_bits = 0x0000000080000000 }, 8715 }; 8716 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8717 #endif 8718 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8719 } 8720 8721 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8722 ARMCPRegInfo auxcr_reginfo[] = { 8723 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8724 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8725 .access = PL1_RW, .accessfn = access_tacr, 8726 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8727 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8728 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8729 .access = PL2_RW, .type = ARM_CP_CONST, 8730 .resetvalue = 0 }, 8731 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8732 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8733 .access = PL3_RW, .type = ARM_CP_CONST, 8734 .resetvalue = 0 }, 8735 }; 8736 define_arm_cp_regs(cpu, auxcr_reginfo); 8737 if (cpu_isar_feature(aa32_ac2, cpu)) { 8738 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8739 } 8740 } 8741 8742 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8743 /* 8744 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8745 * There are two flavours: 8746 * (1) older 32-bit only cores have a simple 32-bit CBAR 8747 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8748 * 32-bit register visible to AArch32 at a different encoding 8749 * to the "flavour 1" register and with the bits rearranged to 8750 * be able to squash a 64-bit address into the 32-bit view. 8751 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8752 * in future if we support AArch32-only configs of some of the 8753 * AArch64 cores we might need to add a specific feature flag 8754 * to indicate cores with "flavour 2" CBAR. 8755 */ 8756 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8757 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8758 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8759 | extract64(cpu->reset_cbar, 32, 12); 8760 ARMCPRegInfo cbar_reginfo[] = { 8761 { .name = "CBAR", 8762 .type = ARM_CP_CONST, 8763 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8764 .access = PL1_R, .resetvalue = cbar32 }, 8765 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8766 .type = ARM_CP_CONST, 8767 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8768 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8769 }; 8770 /* We don't implement a r/w 64 bit CBAR currently */ 8771 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8772 define_arm_cp_regs(cpu, cbar_reginfo); 8773 } else { 8774 ARMCPRegInfo cbar = { 8775 .name = "CBAR", 8776 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8777 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 8778 .fieldoffset = offsetof(CPUARMState, 8779 cp15.c15_config_base_address) 8780 }; 8781 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8782 cbar.access = PL1_R; 8783 cbar.fieldoffset = 0; 8784 cbar.type = ARM_CP_CONST; 8785 } 8786 define_one_arm_cp_reg(cpu, &cbar); 8787 } 8788 } 8789 8790 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8791 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8792 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8793 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8794 .access = PL1_RW, .writefn = vbar_write, 8795 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8796 offsetof(CPUARMState, cp15.vbar_ns) }, 8797 .resetvalue = 0 }, 8798 }; 8799 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8800 } 8801 8802 /* Generic registers whose values depend on the implementation */ 8803 { 8804 ARMCPRegInfo sctlr = { 8805 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8806 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8807 .access = PL1_RW, .accessfn = access_tvm_trvm, 8808 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8809 offsetof(CPUARMState, cp15.sctlr_ns) }, 8810 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8811 .raw_writefn = raw_write, 8812 }; 8813 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8814 /* 8815 * Normally we would always end the TB on an SCTLR write, but Linux 8816 * arch/arm/mach-pxa/sleep.S expects two instructions following 8817 * an MMU enable to execute from cache. Imitate this behaviour. 8818 */ 8819 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8820 } 8821 define_one_arm_cp_reg(cpu, &sctlr); 8822 8823 if (arm_feature(env, ARM_FEATURE_PMSA) && 8824 arm_feature(env, ARM_FEATURE_V8)) { 8825 ARMCPRegInfo vsctlr = { 8826 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 8827 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 8828 .access = PL2_RW, .resetvalue = 0x0, 8829 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 8830 }; 8831 define_one_arm_cp_reg(cpu, &vsctlr); 8832 } 8833 } 8834 8835 if (cpu_isar_feature(aa64_lor, cpu)) { 8836 define_arm_cp_regs(cpu, lor_reginfo); 8837 } 8838 if (cpu_isar_feature(aa64_pan, cpu)) { 8839 define_one_arm_cp_reg(cpu, &pan_reginfo); 8840 } 8841 #ifndef CONFIG_USER_ONLY 8842 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8843 define_arm_cp_regs(cpu, ats1e1_reginfo); 8844 } 8845 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8846 define_arm_cp_regs(cpu, ats1cp_reginfo); 8847 } 8848 #endif 8849 if (cpu_isar_feature(aa64_uao, cpu)) { 8850 define_one_arm_cp_reg(cpu, &uao_reginfo); 8851 } 8852 8853 if (cpu_isar_feature(aa64_dit, cpu)) { 8854 define_one_arm_cp_reg(cpu, &dit_reginfo); 8855 } 8856 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8857 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8858 } 8859 if (cpu_isar_feature(any_ras, cpu)) { 8860 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8861 } 8862 8863 if (cpu_isar_feature(aa64_vh, cpu) || 8864 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8865 define_one_arm_cp_reg(cpu, &contextidr_el2); 8866 } 8867 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8868 define_arm_cp_regs(cpu, vhe_reginfo); 8869 } 8870 8871 if (cpu_isar_feature(aa64_sve, cpu)) { 8872 define_arm_cp_regs(cpu, zcr_reginfo); 8873 } 8874 8875 if (cpu_isar_feature(aa64_hcx, cpu)) { 8876 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8877 } 8878 8879 #ifdef TARGET_AARCH64 8880 if (cpu_isar_feature(aa64_sme, cpu)) { 8881 define_arm_cp_regs(cpu, sme_reginfo); 8882 } 8883 if (cpu_isar_feature(aa64_pauth, cpu)) { 8884 define_arm_cp_regs(cpu, pauth_reginfo); 8885 } 8886 if (cpu_isar_feature(aa64_rndr, cpu)) { 8887 define_arm_cp_regs(cpu, rndr_reginfo); 8888 } 8889 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8890 define_arm_cp_regs(cpu, tlbirange_reginfo); 8891 } 8892 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8893 define_arm_cp_regs(cpu, tlbios_reginfo); 8894 } 8895 #ifndef CONFIG_USER_ONLY 8896 /* Data Cache clean instructions up to PoP */ 8897 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8898 define_one_arm_cp_reg(cpu, dcpop_reg); 8899 8900 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8901 define_one_arm_cp_reg(cpu, dcpodp_reg); 8902 } 8903 } 8904 #endif /*CONFIG_USER_ONLY*/ 8905 8906 /* 8907 * If full MTE is enabled, add all of the system registers. 8908 * If only "instructions available at EL0" are enabled, 8909 * then define only a RAZ/WI version of PSTATE.TCO. 8910 */ 8911 if (cpu_isar_feature(aa64_mte, cpu)) { 8912 define_arm_cp_regs(cpu, mte_reginfo); 8913 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8914 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8915 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8916 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8917 } 8918 8919 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8920 define_arm_cp_regs(cpu, scxtnum_reginfo); 8921 } 8922 #endif 8923 8924 if (cpu_isar_feature(any_predinv, cpu)) { 8925 define_arm_cp_regs(cpu, predinv_reginfo); 8926 } 8927 8928 if (cpu_isar_feature(any_ccidx, cpu)) { 8929 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8930 } 8931 8932 #ifndef CONFIG_USER_ONLY 8933 /* 8934 * Register redirections and aliases must be done last, 8935 * after the registers from the other extensions have been defined. 8936 */ 8937 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8938 define_arm_vh_e2h_redirects_aliases(cpu); 8939 } 8940 #endif 8941 } 8942 8943 /* Sort alphabetically by type name, except for "any". */ 8944 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8945 { 8946 ObjectClass *class_a = (ObjectClass *)a; 8947 ObjectClass *class_b = (ObjectClass *)b; 8948 const char *name_a, *name_b; 8949 8950 name_a = object_class_get_name(class_a); 8951 name_b = object_class_get_name(class_b); 8952 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8953 return 1; 8954 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8955 return -1; 8956 } else { 8957 return strcmp(name_a, name_b); 8958 } 8959 } 8960 8961 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8962 { 8963 ObjectClass *oc = data; 8964 CPUClass *cc = CPU_CLASS(oc); 8965 const char *typename; 8966 char *name; 8967 8968 typename = object_class_get_name(oc); 8969 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8970 if (cc->deprecation_note) { 8971 qemu_printf(" %s (deprecated)\n", name); 8972 } else { 8973 qemu_printf(" %s\n", name); 8974 } 8975 g_free(name); 8976 } 8977 8978 void arm_cpu_list(void) 8979 { 8980 GSList *list; 8981 8982 list = object_class_get_list(TYPE_ARM_CPU, false); 8983 list = g_slist_sort(list, arm_cpu_list_compare); 8984 qemu_printf("Available CPUs:\n"); 8985 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8986 g_slist_free(list); 8987 } 8988 8989 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8990 { 8991 ObjectClass *oc = data; 8992 CpuDefinitionInfoList **cpu_list = user_data; 8993 CpuDefinitionInfo *info; 8994 const char *typename; 8995 8996 typename = object_class_get_name(oc); 8997 info = g_malloc0(sizeof(*info)); 8998 info->name = g_strndup(typename, 8999 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9000 info->q_typename = g_strdup(typename); 9001 9002 QAPI_LIST_PREPEND(*cpu_list, info); 9003 } 9004 9005 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 9006 { 9007 CpuDefinitionInfoList *cpu_list = NULL; 9008 GSList *list; 9009 9010 list = object_class_get_list(TYPE_ARM_CPU, false); 9011 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 9012 g_slist_free(list); 9013 9014 return cpu_list; 9015 } 9016 9017 /* 9018 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9019 * add a single reginfo struct to the hash table. 9020 */ 9021 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9022 void *opaque, CPState state, 9023 CPSecureState secstate, 9024 int crm, int opc1, int opc2, 9025 const char *name) 9026 { 9027 CPUARMState *env = &cpu->env; 9028 uint32_t key; 9029 ARMCPRegInfo *r2; 9030 bool is64 = r->type & ARM_CP_64BIT; 9031 bool ns = secstate & ARM_CP_SECSTATE_NS; 9032 int cp = r->cp; 9033 size_t name_len; 9034 bool make_const; 9035 9036 switch (state) { 9037 case ARM_CP_STATE_AA32: 9038 /* We assume it is a cp15 register if the .cp field is left unset. */ 9039 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9040 cp = 15; 9041 } 9042 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9043 break; 9044 case ARM_CP_STATE_AA64: 9045 /* 9046 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9047 * cp == 0 as equivalent to the value for "standard guest-visible 9048 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9049 * in their AArch64 view (the .cp value may be non-zero for the 9050 * benefit of the AArch32 view). 9051 */ 9052 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9053 cp = CP_REG_ARM64_SYSREG_CP; 9054 } 9055 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9056 break; 9057 default: 9058 g_assert_not_reached(); 9059 } 9060 9061 /* Overriding of an existing definition must be explicitly requested. */ 9062 if (!(r->type & ARM_CP_OVERRIDE)) { 9063 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9064 if (oldreg) { 9065 assert(oldreg->type & ARM_CP_OVERRIDE); 9066 } 9067 } 9068 9069 /* 9070 * Eliminate registers that are not present because the EL is missing. 9071 * Doing this here makes it easier to put all registers for a given 9072 * feature into the same ARMCPRegInfo array and define them all at once. 9073 */ 9074 make_const = false; 9075 if (arm_feature(env, ARM_FEATURE_EL3)) { 9076 /* 9077 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9078 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9079 */ 9080 int min_el = ctz32(r->access) / 2; 9081 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9082 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9083 return; 9084 } 9085 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9086 } 9087 } else { 9088 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9089 ? PL2_RW : PL1_RW); 9090 if ((r->access & max_el) == 0) { 9091 return; 9092 } 9093 } 9094 9095 /* Combine cpreg and name into one allocation. */ 9096 name_len = strlen(name) + 1; 9097 r2 = g_malloc(sizeof(*r2) + name_len); 9098 *r2 = *r; 9099 r2->name = memcpy(r2 + 1, name, name_len); 9100 9101 /* 9102 * Update fields to match the instantiation, overwiting wildcards 9103 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9104 */ 9105 r2->cp = cp; 9106 r2->crm = crm; 9107 r2->opc1 = opc1; 9108 r2->opc2 = opc2; 9109 r2->state = state; 9110 r2->secure = secstate; 9111 if (opaque) { 9112 r2->opaque = opaque; 9113 } 9114 9115 if (make_const) { 9116 /* This should not have been a very special register to begin. */ 9117 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9118 assert(old_special == 0 || old_special == ARM_CP_NOP); 9119 /* 9120 * Set the special function to CONST, retaining the other flags. 9121 * This is important for e.g. ARM_CP_SVE so that we still 9122 * take the SVE trap if CPTR_EL3.EZ == 0. 9123 */ 9124 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9125 /* 9126 * Usually, these registers become RES0, but there are a few 9127 * special cases like VPIDR_EL2 which have a constant non-zero 9128 * value with writes ignored. 9129 */ 9130 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9131 r2->resetvalue = 0; 9132 } 9133 /* 9134 * ARM_CP_CONST has precedence, so removing the callbacks and 9135 * offsets are not strictly necessary, but it is potentially 9136 * less confusing to debug later. 9137 */ 9138 r2->readfn = NULL; 9139 r2->writefn = NULL; 9140 r2->raw_readfn = NULL; 9141 r2->raw_writefn = NULL; 9142 r2->resetfn = NULL; 9143 r2->fieldoffset = 0; 9144 r2->bank_fieldoffsets[0] = 0; 9145 r2->bank_fieldoffsets[1] = 0; 9146 } else { 9147 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9148 9149 if (isbanked) { 9150 /* 9151 * Register is banked (using both entries in array). 9152 * Overwriting fieldoffset as the array is only used to define 9153 * banked registers but later only fieldoffset is used. 9154 */ 9155 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9156 } 9157 if (state == ARM_CP_STATE_AA32) { 9158 if (isbanked) { 9159 /* 9160 * If the register is banked then we don't need to migrate or 9161 * reset the 32-bit instance in certain cases: 9162 * 9163 * 1) If the register has both 32-bit and 64-bit instances 9164 * then we can count on the 64-bit instance taking care 9165 * of the non-secure bank. 9166 * 2) If ARMv8 is enabled then we can count on a 64-bit 9167 * version taking care of the secure bank. This requires 9168 * that separate 32 and 64-bit definitions are provided. 9169 */ 9170 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9171 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9172 r2->type |= ARM_CP_ALIAS; 9173 } 9174 } else if ((secstate != r->secure) && !ns) { 9175 /* 9176 * The register is not banked so we only want to allow 9177 * migration of the non-secure instance. 9178 */ 9179 r2->type |= ARM_CP_ALIAS; 9180 } 9181 9182 if (HOST_BIG_ENDIAN && 9183 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9184 r2->fieldoffset += sizeof(uint32_t); 9185 } 9186 } 9187 } 9188 9189 /* 9190 * By convention, for wildcarded registers only the first 9191 * entry is used for migration; the others are marked as 9192 * ALIAS so we don't try to transfer the register 9193 * multiple times. Special registers (ie NOP/WFI) are 9194 * never migratable and not even raw-accessible. 9195 */ 9196 if (r2->type & ARM_CP_SPECIAL_MASK) { 9197 r2->type |= ARM_CP_NO_RAW; 9198 } 9199 if (((r->crm == CP_ANY) && crm != 0) || 9200 ((r->opc1 == CP_ANY) && opc1 != 0) || 9201 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9202 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9203 } 9204 9205 /* 9206 * Check that raw accesses are either forbidden or handled. Note that 9207 * we can't assert this earlier because the setup of fieldoffset for 9208 * banked registers has to be done first. 9209 */ 9210 if (!(r2->type & ARM_CP_NO_RAW)) { 9211 assert(!raw_accessors_invalid(r2)); 9212 } 9213 9214 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9215 } 9216 9217 9218 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9219 const ARMCPRegInfo *r, void *opaque) 9220 { 9221 /* 9222 * Define implementations of coprocessor registers. 9223 * We store these in a hashtable because typically 9224 * there are less than 150 registers in a space which 9225 * is 16*16*16*8*8 = 262144 in size. 9226 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9227 * If a register is defined twice then the second definition is 9228 * used, so this can be used to define some generic registers and 9229 * then override them with implementation specific variations. 9230 * At least one of the original and the second definition should 9231 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9232 * against accidental use. 9233 * 9234 * The state field defines whether the register is to be 9235 * visible in the AArch32 or AArch64 execution state. If the 9236 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9237 * reginfo structure for the AArch32 view, which sees the lower 9238 * 32 bits of the 64 bit register. 9239 * 9240 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9241 * be wildcarded. AArch64 registers are always considered to be 64 9242 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9243 * the register, if any. 9244 */ 9245 int crm, opc1, opc2; 9246 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9247 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9248 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9249 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9250 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9251 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9252 CPState state; 9253 9254 /* 64 bit registers have only CRm and Opc1 fields */ 9255 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9256 /* op0 only exists in the AArch64 encodings */ 9257 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9258 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9259 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9260 /* 9261 * This API is only for Arm's system coprocessors (14 and 15) or 9262 * (M-profile or v7A-and-earlier only) for implementation defined 9263 * coprocessors in the range 0..7. Our decode assumes this, since 9264 * 8..13 can be used for other insns including VFP and Neon. See 9265 * valid_cp() in translate.c. Assert here that we haven't tried 9266 * to use an invalid coprocessor number. 9267 */ 9268 switch (r->state) { 9269 case ARM_CP_STATE_BOTH: 9270 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9271 if (r->cp == 0) { 9272 break; 9273 } 9274 /* fall through */ 9275 case ARM_CP_STATE_AA32: 9276 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9277 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9278 assert(r->cp >= 14 && r->cp <= 15); 9279 } else { 9280 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9281 } 9282 break; 9283 case ARM_CP_STATE_AA64: 9284 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9285 break; 9286 default: 9287 g_assert_not_reached(); 9288 } 9289 /* 9290 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9291 * encodes a minimum access level for the register. We roll this 9292 * runtime check into our general permission check code, so check 9293 * here that the reginfo's specified permissions are strict enough 9294 * to encompass the generic architectural permission check. 9295 */ 9296 if (r->state != ARM_CP_STATE_AA32) { 9297 CPAccessRights mask; 9298 switch (r->opc1) { 9299 case 0: 9300 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9301 mask = PL0U_R | PL1_RW; 9302 break; 9303 case 1: case 2: 9304 /* min_EL EL1 */ 9305 mask = PL1_RW; 9306 break; 9307 case 3: 9308 /* min_EL EL0 */ 9309 mask = PL0_RW; 9310 break; 9311 case 4: 9312 case 5: 9313 /* min_EL EL2 */ 9314 mask = PL2_RW; 9315 break; 9316 case 6: 9317 /* min_EL EL3 */ 9318 mask = PL3_RW; 9319 break; 9320 case 7: 9321 /* min_EL EL1, secure mode only (we don't check the latter) */ 9322 mask = PL1_RW; 9323 break; 9324 default: 9325 /* broken reginfo with out-of-range opc1 */ 9326 g_assert_not_reached(); 9327 } 9328 /* assert our permissions are not too lax (stricter is fine) */ 9329 assert((r->access & ~mask) == 0); 9330 } 9331 9332 /* 9333 * Check that the register definition has enough info to handle 9334 * reads and writes if they are permitted. 9335 */ 9336 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9337 if (r->access & PL3_R) { 9338 assert((r->fieldoffset || 9339 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9340 r->readfn); 9341 } 9342 if (r->access & PL3_W) { 9343 assert((r->fieldoffset || 9344 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9345 r->writefn); 9346 } 9347 } 9348 9349 for (crm = crmmin; crm <= crmmax; crm++) { 9350 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9351 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9352 for (state = ARM_CP_STATE_AA32; 9353 state <= ARM_CP_STATE_AA64; state++) { 9354 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9355 continue; 9356 } 9357 if (state == ARM_CP_STATE_AA32) { 9358 /* 9359 * Under AArch32 CP registers can be common 9360 * (same for secure and non-secure world) or banked. 9361 */ 9362 char *name; 9363 9364 switch (r->secure) { 9365 case ARM_CP_SECSTATE_S: 9366 case ARM_CP_SECSTATE_NS: 9367 add_cpreg_to_hashtable(cpu, r, opaque, state, 9368 r->secure, crm, opc1, opc2, 9369 r->name); 9370 break; 9371 case ARM_CP_SECSTATE_BOTH: 9372 name = g_strdup_printf("%s_S", r->name); 9373 add_cpreg_to_hashtable(cpu, r, opaque, state, 9374 ARM_CP_SECSTATE_S, 9375 crm, opc1, opc2, name); 9376 g_free(name); 9377 add_cpreg_to_hashtable(cpu, r, opaque, state, 9378 ARM_CP_SECSTATE_NS, 9379 crm, opc1, opc2, r->name); 9380 break; 9381 default: 9382 g_assert_not_reached(); 9383 } 9384 } else { 9385 /* 9386 * AArch64 registers get mapped to non-secure instance 9387 * of AArch32 9388 */ 9389 add_cpreg_to_hashtable(cpu, r, opaque, state, 9390 ARM_CP_SECSTATE_NS, 9391 crm, opc1, opc2, r->name); 9392 } 9393 } 9394 } 9395 } 9396 } 9397 } 9398 9399 /* Define a whole list of registers */ 9400 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9401 void *opaque, size_t len) 9402 { 9403 size_t i; 9404 for (i = 0; i < len; ++i) { 9405 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9406 } 9407 } 9408 9409 /* 9410 * Modify ARMCPRegInfo for access from userspace. 9411 * 9412 * This is a data driven modification directed by 9413 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9414 * user-space cannot alter any values and dynamic values pertaining to 9415 * execution state are hidden from user space view anyway. 9416 */ 9417 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9418 const ARMCPRegUserSpaceInfo *mods, 9419 size_t mods_len) 9420 { 9421 for (size_t mi = 0; mi < mods_len; ++mi) { 9422 const ARMCPRegUserSpaceInfo *m = mods + mi; 9423 GPatternSpec *pat = NULL; 9424 9425 if (m->is_glob) { 9426 pat = g_pattern_spec_new(m->name); 9427 } 9428 for (size_t ri = 0; ri < regs_len; ++ri) { 9429 ARMCPRegInfo *r = regs + ri; 9430 9431 if (pat && g_pattern_match_string(pat, r->name)) { 9432 r->type = ARM_CP_CONST; 9433 r->access = PL0U_R; 9434 r->resetvalue = 0; 9435 /* continue */ 9436 } else if (strcmp(r->name, m->name) == 0) { 9437 r->type = ARM_CP_CONST; 9438 r->access = PL0U_R; 9439 r->resetvalue &= m->exported_bits; 9440 r->resetvalue |= m->fixed_bits; 9441 break; 9442 } 9443 } 9444 if (pat) { 9445 g_pattern_spec_free(pat); 9446 } 9447 } 9448 } 9449 9450 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9451 { 9452 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9453 } 9454 9455 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9456 uint64_t value) 9457 { 9458 /* Helper coprocessor write function for write-ignore registers */ 9459 } 9460 9461 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9462 { 9463 /* Helper coprocessor write function for read-as-zero registers */ 9464 return 0; 9465 } 9466 9467 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9468 { 9469 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9470 } 9471 9472 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9473 { 9474 /* 9475 * Return true if it is not valid for us to switch to 9476 * this CPU mode (ie all the UNPREDICTABLE cases in 9477 * the ARM ARM CPSRWriteByInstr pseudocode). 9478 */ 9479 9480 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9481 if (write_type == CPSRWriteByInstr && 9482 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9483 mode == ARM_CPU_MODE_HYP)) { 9484 return 1; 9485 } 9486 9487 switch (mode) { 9488 case ARM_CPU_MODE_USR: 9489 return 0; 9490 case ARM_CPU_MODE_SYS: 9491 case ARM_CPU_MODE_SVC: 9492 case ARM_CPU_MODE_ABT: 9493 case ARM_CPU_MODE_UND: 9494 case ARM_CPU_MODE_IRQ: 9495 case ARM_CPU_MODE_FIQ: 9496 /* 9497 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9498 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9499 */ 9500 /* 9501 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9502 * and CPS are treated as illegal mode changes. 9503 */ 9504 if (write_type == CPSRWriteByInstr && 9505 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9506 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9507 return 1; 9508 } 9509 return 0; 9510 case ARM_CPU_MODE_HYP: 9511 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9512 case ARM_CPU_MODE_MON: 9513 return arm_current_el(env) < 3; 9514 default: 9515 return 1; 9516 } 9517 } 9518 9519 uint32_t cpsr_read(CPUARMState *env) 9520 { 9521 int ZF; 9522 ZF = (env->ZF == 0); 9523 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9524 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9525 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9526 | ((env->condexec_bits & 0xfc) << 8) 9527 | (env->GE << 16) | (env->daif & CPSR_AIF); 9528 } 9529 9530 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9531 CPSRWriteType write_type) 9532 { 9533 uint32_t changed_daif; 9534 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9535 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9536 9537 if (mask & CPSR_NZCV) { 9538 env->ZF = (~val) & CPSR_Z; 9539 env->NF = val; 9540 env->CF = (val >> 29) & 1; 9541 env->VF = (val << 3) & 0x80000000; 9542 } 9543 if (mask & CPSR_Q) { 9544 env->QF = ((val & CPSR_Q) != 0); 9545 } 9546 if (mask & CPSR_T) { 9547 env->thumb = ((val & CPSR_T) != 0); 9548 } 9549 if (mask & CPSR_IT_0_1) { 9550 env->condexec_bits &= ~3; 9551 env->condexec_bits |= (val >> 25) & 3; 9552 } 9553 if (mask & CPSR_IT_2_7) { 9554 env->condexec_bits &= 3; 9555 env->condexec_bits |= (val >> 8) & 0xfc; 9556 } 9557 if (mask & CPSR_GE) { 9558 env->GE = (val >> 16) & 0xf; 9559 } 9560 9561 /* 9562 * In a V7 implementation that includes the security extensions but does 9563 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9564 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9565 * bits respectively. 9566 * 9567 * In a V8 implementation, it is permitted for privileged software to 9568 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9569 */ 9570 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9571 arm_feature(env, ARM_FEATURE_EL3) && 9572 !arm_feature(env, ARM_FEATURE_EL2) && 9573 !arm_is_secure(env)) { 9574 9575 changed_daif = (env->daif ^ val) & mask; 9576 9577 if (changed_daif & CPSR_A) { 9578 /* 9579 * Check to see if we are allowed to change the masking of async 9580 * abort exceptions from a non-secure state. 9581 */ 9582 if (!(env->cp15.scr_el3 & SCR_AW)) { 9583 qemu_log_mask(LOG_GUEST_ERROR, 9584 "Ignoring attempt to switch CPSR_A flag from " 9585 "non-secure world with SCR.AW bit clear\n"); 9586 mask &= ~CPSR_A; 9587 } 9588 } 9589 9590 if (changed_daif & CPSR_F) { 9591 /* 9592 * Check to see if we are allowed to change the masking of FIQ 9593 * exceptions from a non-secure state. 9594 */ 9595 if (!(env->cp15.scr_el3 & SCR_FW)) { 9596 qemu_log_mask(LOG_GUEST_ERROR, 9597 "Ignoring attempt to switch CPSR_F flag from " 9598 "non-secure world with SCR.FW bit clear\n"); 9599 mask &= ~CPSR_F; 9600 } 9601 9602 /* 9603 * Check whether non-maskable FIQ (NMFI) support is enabled. 9604 * If this bit is set software is not allowed to mask 9605 * FIQs, but is allowed to set CPSR_F to 0. 9606 */ 9607 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9608 (val & CPSR_F)) { 9609 qemu_log_mask(LOG_GUEST_ERROR, 9610 "Ignoring attempt to enable CPSR_F flag " 9611 "(non-maskable FIQ [NMFI] support enabled)\n"); 9612 mask &= ~CPSR_F; 9613 } 9614 } 9615 } 9616 9617 env->daif &= ~(CPSR_AIF & mask); 9618 env->daif |= val & CPSR_AIF & mask; 9619 9620 if (write_type != CPSRWriteRaw && 9621 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9622 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9623 /* 9624 * Note that we can only get here in USR mode if this is a 9625 * gdb stub write; for this case we follow the architectural 9626 * behaviour for guest writes in USR mode of ignoring an attempt 9627 * to switch mode. (Those are caught by translate.c for writes 9628 * triggered by guest instructions.) 9629 */ 9630 mask &= ~CPSR_M; 9631 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9632 /* 9633 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9634 * v7, and has defined behaviour in v8: 9635 * + leave CPSR.M untouched 9636 * + allow changes to the other CPSR fields 9637 * + set PSTATE.IL 9638 * For user changes via the GDB stub, we don't set PSTATE.IL, 9639 * as this would be unnecessarily harsh for a user error. 9640 */ 9641 mask &= ~CPSR_M; 9642 if (write_type != CPSRWriteByGDBStub && 9643 arm_feature(env, ARM_FEATURE_V8)) { 9644 mask |= CPSR_IL; 9645 val |= CPSR_IL; 9646 } 9647 qemu_log_mask(LOG_GUEST_ERROR, 9648 "Illegal AArch32 mode switch attempt from %s to %s\n", 9649 aarch32_mode_name(env->uncached_cpsr), 9650 aarch32_mode_name(val)); 9651 } else { 9652 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9653 write_type == CPSRWriteExceptionReturn ? 9654 "Exception return from AArch32" : 9655 "AArch32 mode switch from", 9656 aarch32_mode_name(env->uncached_cpsr), 9657 aarch32_mode_name(val), env->regs[15]); 9658 switch_mode(env, val & CPSR_M); 9659 } 9660 } 9661 mask &= ~CACHED_CPSR_BITS; 9662 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9663 if (rebuild_hflags) { 9664 arm_rebuild_hflags(env); 9665 } 9666 } 9667 9668 /* Sign/zero extend */ 9669 uint32_t HELPER(sxtb16)(uint32_t x) 9670 { 9671 uint32_t res; 9672 res = (uint16_t)(int8_t)x; 9673 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9674 return res; 9675 } 9676 9677 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9678 { 9679 /* 9680 * Take a division-by-zero exception if necessary; otherwise return 9681 * to get the usual non-trapping division behaviour (result of 0) 9682 */ 9683 if (arm_feature(env, ARM_FEATURE_M) 9684 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9685 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9686 } 9687 } 9688 9689 uint32_t HELPER(uxtb16)(uint32_t x) 9690 { 9691 uint32_t res; 9692 res = (uint16_t)(uint8_t)x; 9693 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9694 return res; 9695 } 9696 9697 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9698 { 9699 if (den == 0) { 9700 handle_possible_div0_trap(env, GETPC()); 9701 return 0; 9702 } 9703 if (num == INT_MIN && den == -1) { 9704 return INT_MIN; 9705 } 9706 return num / den; 9707 } 9708 9709 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9710 { 9711 if (den == 0) { 9712 handle_possible_div0_trap(env, GETPC()); 9713 return 0; 9714 } 9715 return num / den; 9716 } 9717 9718 uint32_t HELPER(rbit)(uint32_t x) 9719 { 9720 return revbit32(x); 9721 } 9722 9723 #ifdef CONFIG_USER_ONLY 9724 9725 static void switch_mode(CPUARMState *env, int mode) 9726 { 9727 ARMCPU *cpu = env_archcpu(env); 9728 9729 if (mode != ARM_CPU_MODE_USR) { 9730 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9731 } 9732 } 9733 9734 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9735 uint32_t cur_el, bool secure) 9736 { 9737 return 1; 9738 } 9739 9740 void aarch64_sync_64_to_32(CPUARMState *env) 9741 { 9742 g_assert_not_reached(); 9743 } 9744 9745 #else 9746 9747 static void switch_mode(CPUARMState *env, int mode) 9748 { 9749 int old_mode; 9750 int i; 9751 9752 old_mode = env->uncached_cpsr & CPSR_M; 9753 if (mode == old_mode) { 9754 return; 9755 } 9756 9757 if (old_mode == ARM_CPU_MODE_FIQ) { 9758 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9759 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9760 } else if (mode == ARM_CPU_MODE_FIQ) { 9761 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9762 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9763 } 9764 9765 i = bank_number(old_mode); 9766 env->banked_r13[i] = env->regs[13]; 9767 env->banked_spsr[i] = env->spsr; 9768 9769 i = bank_number(mode); 9770 env->regs[13] = env->banked_r13[i]; 9771 env->spsr = env->banked_spsr[i]; 9772 9773 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9774 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9775 } 9776 9777 /* 9778 * Physical Interrupt Target EL Lookup Table 9779 * 9780 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9781 * 9782 * The below multi-dimensional table is used for looking up the target 9783 * exception level given numerous condition criteria. Specifically, the 9784 * target EL is based on SCR and HCR routing controls as well as the 9785 * currently executing EL and secure state. 9786 * 9787 * Dimensions: 9788 * target_el_table[2][2][2][2][2][4] 9789 * | | | | | +--- Current EL 9790 * | | | | +------ Non-secure(0)/Secure(1) 9791 * | | | +--------- HCR mask override 9792 * | | +------------ SCR exec state control 9793 * | +--------------- SCR mask override 9794 * +------------------ 32-bit(0)/64-bit(1) EL3 9795 * 9796 * The table values are as such: 9797 * 0-3 = EL0-EL3 9798 * -1 = Cannot occur 9799 * 9800 * The ARM ARM target EL table includes entries indicating that an "exception 9801 * is not taken". The two cases where this is applicable are: 9802 * 1) An exception is taken from EL3 but the SCR does not have the exception 9803 * routed to EL3. 9804 * 2) An exception is taken from EL2 but the HCR does not have the exception 9805 * routed to EL2. 9806 * In these two cases, the below table contain a target of EL1. This value is 9807 * returned as it is expected that the consumer of the table data will check 9808 * for "target EL >= current EL" to ensure the exception is not taken. 9809 * 9810 * SCR HCR 9811 * 64 EA AMO From 9812 * BIT IRQ IMO Non-secure Secure 9813 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9814 */ 9815 static const int8_t target_el_table[2][2][2][2][2][4] = { 9816 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9817 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9818 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9819 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9820 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9821 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9822 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9823 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9824 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9825 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9826 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9827 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9828 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9829 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9830 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9831 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9832 }; 9833 9834 /* 9835 * Determine the target EL for physical exceptions 9836 */ 9837 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9838 uint32_t cur_el, bool secure) 9839 { 9840 CPUARMState *env = cs->env_ptr; 9841 bool rw; 9842 bool scr; 9843 bool hcr; 9844 int target_el; 9845 /* Is the highest EL AArch64? */ 9846 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9847 uint64_t hcr_el2; 9848 9849 if (arm_feature(env, ARM_FEATURE_EL3)) { 9850 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9851 } else { 9852 /* 9853 * Either EL2 is the highest EL (and so the EL2 register width 9854 * is given by is64); or there is no EL2 or EL3, in which case 9855 * the value of 'rw' does not affect the table lookup anyway. 9856 */ 9857 rw = is64; 9858 } 9859 9860 hcr_el2 = arm_hcr_el2_eff(env); 9861 switch (excp_idx) { 9862 case EXCP_IRQ: 9863 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9864 hcr = hcr_el2 & HCR_IMO; 9865 break; 9866 case EXCP_FIQ: 9867 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9868 hcr = hcr_el2 & HCR_FMO; 9869 break; 9870 default: 9871 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9872 hcr = hcr_el2 & HCR_AMO; 9873 break; 9874 }; 9875 9876 /* 9877 * For these purposes, TGE and AMO/IMO/FMO both force the 9878 * interrupt to EL2. Fold TGE into the bit extracted above. 9879 */ 9880 hcr |= (hcr_el2 & HCR_TGE) != 0; 9881 9882 /* Perform a table-lookup for the target EL given the current state */ 9883 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9884 9885 assert(target_el > 0); 9886 9887 return target_el; 9888 } 9889 9890 void arm_log_exception(CPUState *cs) 9891 { 9892 int idx = cs->exception_index; 9893 9894 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9895 const char *exc = NULL; 9896 static const char * const excnames[] = { 9897 [EXCP_UDEF] = "Undefined Instruction", 9898 [EXCP_SWI] = "SVC", 9899 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9900 [EXCP_DATA_ABORT] = "Data Abort", 9901 [EXCP_IRQ] = "IRQ", 9902 [EXCP_FIQ] = "FIQ", 9903 [EXCP_BKPT] = "Breakpoint", 9904 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9905 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9906 [EXCP_HVC] = "Hypervisor Call", 9907 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9908 [EXCP_SMC] = "Secure Monitor Call", 9909 [EXCP_VIRQ] = "Virtual IRQ", 9910 [EXCP_VFIQ] = "Virtual FIQ", 9911 [EXCP_SEMIHOST] = "Semihosting call", 9912 [EXCP_NOCP] = "v7M NOCP UsageFault", 9913 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9914 [EXCP_STKOF] = "v8M STKOF UsageFault", 9915 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9916 [EXCP_LSERR] = "v8M LSERR UsageFault", 9917 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9918 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9919 [EXCP_VSERR] = "Virtual SERR", 9920 }; 9921 9922 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9923 exc = excnames[idx]; 9924 } 9925 if (!exc) { 9926 exc = "unknown"; 9927 } 9928 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9929 idx, exc, cs->cpu_index); 9930 } 9931 } 9932 9933 /* 9934 * Function used to synchronize QEMU's AArch64 register set with AArch32 9935 * register set. This is necessary when switching between AArch32 and AArch64 9936 * execution state. 9937 */ 9938 void aarch64_sync_32_to_64(CPUARMState *env) 9939 { 9940 int i; 9941 uint32_t mode = env->uncached_cpsr & CPSR_M; 9942 9943 /* We can blanket copy R[0:7] to X[0:7] */ 9944 for (i = 0; i < 8; i++) { 9945 env->xregs[i] = env->regs[i]; 9946 } 9947 9948 /* 9949 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9950 * Otherwise, they come from the banked user regs. 9951 */ 9952 if (mode == ARM_CPU_MODE_FIQ) { 9953 for (i = 8; i < 13; i++) { 9954 env->xregs[i] = env->usr_regs[i - 8]; 9955 } 9956 } else { 9957 for (i = 8; i < 13; i++) { 9958 env->xregs[i] = env->regs[i]; 9959 } 9960 } 9961 9962 /* 9963 * Registers x13-x23 are the various mode SP and FP registers. Registers 9964 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9965 * from the mode banked register. 9966 */ 9967 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9968 env->xregs[13] = env->regs[13]; 9969 env->xregs[14] = env->regs[14]; 9970 } else { 9971 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9972 /* HYP is an exception in that it is copied from r14 */ 9973 if (mode == ARM_CPU_MODE_HYP) { 9974 env->xregs[14] = env->regs[14]; 9975 } else { 9976 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9977 } 9978 } 9979 9980 if (mode == ARM_CPU_MODE_HYP) { 9981 env->xregs[15] = env->regs[13]; 9982 } else { 9983 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9984 } 9985 9986 if (mode == ARM_CPU_MODE_IRQ) { 9987 env->xregs[16] = env->regs[14]; 9988 env->xregs[17] = env->regs[13]; 9989 } else { 9990 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9991 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9992 } 9993 9994 if (mode == ARM_CPU_MODE_SVC) { 9995 env->xregs[18] = env->regs[14]; 9996 env->xregs[19] = env->regs[13]; 9997 } else { 9998 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9999 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10000 } 10001 10002 if (mode == ARM_CPU_MODE_ABT) { 10003 env->xregs[20] = env->regs[14]; 10004 env->xregs[21] = env->regs[13]; 10005 } else { 10006 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10007 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10008 } 10009 10010 if (mode == ARM_CPU_MODE_UND) { 10011 env->xregs[22] = env->regs[14]; 10012 env->xregs[23] = env->regs[13]; 10013 } else { 10014 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10015 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10016 } 10017 10018 /* 10019 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10020 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10021 * FIQ bank for r8-r14. 10022 */ 10023 if (mode == ARM_CPU_MODE_FIQ) { 10024 for (i = 24; i < 31; i++) { 10025 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10026 } 10027 } else { 10028 for (i = 24; i < 29; i++) { 10029 env->xregs[i] = env->fiq_regs[i - 24]; 10030 } 10031 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10032 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10033 } 10034 10035 env->pc = env->regs[15]; 10036 } 10037 10038 /* 10039 * Function used to synchronize QEMU's AArch32 register set with AArch64 10040 * register set. This is necessary when switching between AArch32 and AArch64 10041 * execution state. 10042 */ 10043 void aarch64_sync_64_to_32(CPUARMState *env) 10044 { 10045 int i; 10046 uint32_t mode = env->uncached_cpsr & CPSR_M; 10047 10048 /* We can blanket copy X[0:7] to R[0:7] */ 10049 for (i = 0; i < 8; i++) { 10050 env->regs[i] = env->xregs[i]; 10051 } 10052 10053 /* 10054 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10055 * Otherwise, we copy x8-x12 into the banked user regs. 10056 */ 10057 if (mode == ARM_CPU_MODE_FIQ) { 10058 for (i = 8; i < 13; i++) { 10059 env->usr_regs[i - 8] = env->xregs[i]; 10060 } 10061 } else { 10062 for (i = 8; i < 13; i++) { 10063 env->regs[i] = env->xregs[i]; 10064 } 10065 } 10066 10067 /* 10068 * Registers r13 & r14 depend on the current mode. 10069 * If we are in a given mode, we copy the corresponding x registers to r13 10070 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10071 * for the mode. 10072 */ 10073 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10074 env->regs[13] = env->xregs[13]; 10075 env->regs[14] = env->xregs[14]; 10076 } else { 10077 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10078 10079 /* 10080 * HYP is an exception in that it does not have its own banked r14 but 10081 * shares the USR r14 10082 */ 10083 if (mode == ARM_CPU_MODE_HYP) { 10084 env->regs[14] = env->xregs[14]; 10085 } else { 10086 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10087 } 10088 } 10089 10090 if (mode == ARM_CPU_MODE_HYP) { 10091 env->regs[13] = env->xregs[15]; 10092 } else { 10093 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10094 } 10095 10096 if (mode == ARM_CPU_MODE_IRQ) { 10097 env->regs[14] = env->xregs[16]; 10098 env->regs[13] = env->xregs[17]; 10099 } else { 10100 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10101 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10102 } 10103 10104 if (mode == ARM_CPU_MODE_SVC) { 10105 env->regs[14] = env->xregs[18]; 10106 env->regs[13] = env->xregs[19]; 10107 } else { 10108 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10109 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10110 } 10111 10112 if (mode == ARM_CPU_MODE_ABT) { 10113 env->regs[14] = env->xregs[20]; 10114 env->regs[13] = env->xregs[21]; 10115 } else { 10116 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10117 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10118 } 10119 10120 if (mode == ARM_CPU_MODE_UND) { 10121 env->regs[14] = env->xregs[22]; 10122 env->regs[13] = env->xregs[23]; 10123 } else { 10124 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10125 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10126 } 10127 10128 /* 10129 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10130 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10131 * FIQ bank for r8-r14. 10132 */ 10133 if (mode == ARM_CPU_MODE_FIQ) { 10134 for (i = 24; i < 31; i++) { 10135 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10136 } 10137 } else { 10138 for (i = 24; i < 29; i++) { 10139 env->fiq_regs[i - 24] = env->xregs[i]; 10140 } 10141 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10142 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10143 } 10144 10145 env->regs[15] = env->pc; 10146 } 10147 10148 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10149 uint32_t mask, uint32_t offset, 10150 uint32_t newpc) 10151 { 10152 int new_el; 10153 10154 /* Change the CPU state so as to actually take the exception. */ 10155 switch_mode(env, new_mode); 10156 10157 /* 10158 * For exceptions taken to AArch32 we must clear the SS bit in both 10159 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10160 */ 10161 env->pstate &= ~PSTATE_SS; 10162 env->spsr = cpsr_read(env); 10163 /* Clear IT bits. */ 10164 env->condexec_bits = 0; 10165 /* Switch to the new mode, and to the correct instruction set. */ 10166 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10167 10168 /* This must be after mode switching. */ 10169 new_el = arm_current_el(env); 10170 10171 /* Set new mode endianness */ 10172 env->uncached_cpsr &= ~CPSR_E; 10173 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10174 env->uncached_cpsr |= CPSR_E; 10175 } 10176 /* J and IL must always be cleared for exception entry */ 10177 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10178 env->daif |= mask; 10179 10180 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10181 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10182 env->uncached_cpsr |= CPSR_SSBS; 10183 } else { 10184 env->uncached_cpsr &= ~CPSR_SSBS; 10185 } 10186 } 10187 10188 if (new_mode == ARM_CPU_MODE_HYP) { 10189 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10190 env->elr_el[2] = env->regs[15]; 10191 } else { 10192 /* CPSR.PAN is normally preserved preserved unless... */ 10193 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10194 switch (new_el) { 10195 case 3: 10196 if (!arm_is_secure_below_el3(env)) { 10197 /* ... the target is EL3, from non-secure state. */ 10198 env->uncached_cpsr &= ~CPSR_PAN; 10199 break; 10200 } 10201 /* ... the target is EL3, from secure state ... */ 10202 /* fall through */ 10203 case 1: 10204 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10205 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10206 env->uncached_cpsr |= CPSR_PAN; 10207 } 10208 break; 10209 } 10210 } 10211 /* 10212 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10213 * and we should just guard the thumb mode on V4 10214 */ 10215 if (arm_feature(env, ARM_FEATURE_V4T)) { 10216 env->thumb = 10217 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10218 } 10219 env->regs[14] = env->regs[15] + offset; 10220 } 10221 env->regs[15] = newpc; 10222 arm_rebuild_hflags(env); 10223 } 10224 10225 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10226 { 10227 /* 10228 * Handle exception entry to Hyp mode; this is sufficiently 10229 * different to entry to other AArch32 modes that we handle it 10230 * separately here. 10231 * 10232 * The vector table entry used is always the 0x14 Hyp mode entry point, 10233 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10234 * The offset applied to the preferred return address is always zero 10235 * (see DDI0487C.a section G1.12.3). 10236 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10237 */ 10238 uint32_t addr, mask; 10239 ARMCPU *cpu = ARM_CPU(cs); 10240 CPUARMState *env = &cpu->env; 10241 10242 switch (cs->exception_index) { 10243 case EXCP_UDEF: 10244 addr = 0x04; 10245 break; 10246 case EXCP_SWI: 10247 addr = 0x08; 10248 break; 10249 case EXCP_BKPT: 10250 /* Fall through to prefetch abort. */ 10251 case EXCP_PREFETCH_ABORT: 10252 env->cp15.ifar_s = env->exception.vaddress; 10253 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10254 (uint32_t)env->exception.vaddress); 10255 addr = 0x0c; 10256 break; 10257 case EXCP_DATA_ABORT: 10258 env->cp15.dfar_s = env->exception.vaddress; 10259 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10260 (uint32_t)env->exception.vaddress); 10261 addr = 0x10; 10262 break; 10263 case EXCP_IRQ: 10264 addr = 0x18; 10265 break; 10266 case EXCP_FIQ: 10267 addr = 0x1c; 10268 break; 10269 case EXCP_HVC: 10270 addr = 0x08; 10271 break; 10272 case EXCP_HYP_TRAP: 10273 addr = 0x14; 10274 break; 10275 default: 10276 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10277 } 10278 10279 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10280 if (!arm_feature(env, ARM_FEATURE_V8)) { 10281 /* 10282 * QEMU syndrome values are v8-style. v7 has the IL bit 10283 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10284 * If this is a v7 CPU, squash the IL bit in those cases. 10285 */ 10286 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10287 (cs->exception_index == EXCP_DATA_ABORT && 10288 !(env->exception.syndrome & ARM_EL_ISV)) || 10289 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10290 env->exception.syndrome &= ~ARM_EL_IL; 10291 } 10292 } 10293 env->cp15.esr_el[2] = env->exception.syndrome; 10294 } 10295 10296 if (arm_current_el(env) != 2 && addr < 0x14) { 10297 addr = 0x14; 10298 } 10299 10300 mask = 0; 10301 if (!(env->cp15.scr_el3 & SCR_EA)) { 10302 mask |= CPSR_A; 10303 } 10304 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10305 mask |= CPSR_I; 10306 } 10307 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10308 mask |= CPSR_F; 10309 } 10310 10311 addr += env->cp15.hvbar; 10312 10313 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10314 } 10315 10316 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10317 { 10318 ARMCPU *cpu = ARM_CPU(cs); 10319 CPUARMState *env = &cpu->env; 10320 uint32_t addr; 10321 uint32_t mask; 10322 int new_mode; 10323 uint32_t offset; 10324 uint32_t moe; 10325 10326 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10327 switch (syn_get_ec(env->exception.syndrome)) { 10328 case EC_BREAKPOINT: 10329 case EC_BREAKPOINT_SAME_EL: 10330 moe = 1; 10331 break; 10332 case EC_WATCHPOINT: 10333 case EC_WATCHPOINT_SAME_EL: 10334 moe = 10; 10335 break; 10336 case EC_AA32_BKPT: 10337 moe = 3; 10338 break; 10339 case EC_VECTORCATCH: 10340 moe = 5; 10341 break; 10342 default: 10343 moe = 0; 10344 break; 10345 } 10346 10347 if (moe) { 10348 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10349 } 10350 10351 if (env->exception.target_el == 2) { 10352 arm_cpu_do_interrupt_aarch32_hyp(cs); 10353 return; 10354 } 10355 10356 switch (cs->exception_index) { 10357 case EXCP_UDEF: 10358 new_mode = ARM_CPU_MODE_UND; 10359 addr = 0x04; 10360 mask = CPSR_I; 10361 if (env->thumb) { 10362 offset = 2; 10363 } else { 10364 offset = 4; 10365 } 10366 break; 10367 case EXCP_SWI: 10368 new_mode = ARM_CPU_MODE_SVC; 10369 addr = 0x08; 10370 mask = CPSR_I; 10371 /* The PC already points to the next instruction. */ 10372 offset = 0; 10373 break; 10374 case EXCP_BKPT: 10375 /* Fall through to prefetch abort. */ 10376 case EXCP_PREFETCH_ABORT: 10377 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10378 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10379 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10380 env->exception.fsr, (uint32_t)env->exception.vaddress); 10381 new_mode = ARM_CPU_MODE_ABT; 10382 addr = 0x0c; 10383 mask = CPSR_A | CPSR_I; 10384 offset = 4; 10385 break; 10386 case EXCP_DATA_ABORT: 10387 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10388 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10389 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10390 env->exception.fsr, 10391 (uint32_t)env->exception.vaddress); 10392 new_mode = ARM_CPU_MODE_ABT; 10393 addr = 0x10; 10394 mask = CPSR_A | CPSR_I; 10395 offset = 8; 10396 break; 10397 case EXCP_IRQ: 10398 new_mode = ARM_CPU_MODE_IRQ; 10399 addr = 0x18; 10400 /* Disable IRQ and imprecise data aborts. */ 10401 mask = CPSR_A | CPSR_I; 10402 offset = 4; 10403 if (env->cp15.scr_el3 & SCR_IRQ) { 10404 /* IRQ routed to monitor mode */ 10405 new_mode = ARM_CPU_MODE_MON; 10406 mask |= CPSR_F; 10407 } 10408 break; 10409 case EXCP_FIQ: 10410 new_mode = ARM_CPU_MODE_FIQ; 10411 addr = 0x1c; 10412 /* Disable FIQ, IRQ and imprecise data aborts. */ 10413 mask = CPSR_A | CPSR_I | CPSR_F; 10414 if (env->cp15.scr_el3 & SCR_FIQ) { 10415 /* FIQ routed to monitor mode */ 10416 new_mode = ARM_CPU_MODE_MON; 10417 } 10418 offset = 4; 10419 break; 10420 case EXCP_VIRQ: 10421 new_mode = ARM_CPU_MODE_IRQ; 10422 addr = 0x18; 10423 /* Disable IRQ and imprecise data aborts. */ 10424 mask = CPSR_A | CPSR_I; 10425 offset = 4; 10426 break; 10427 case EXCP_VFIQ: 10428 new_mode = ARM_CPU_MODE_FIQ; 10429 addr = 0x1c; 10430 /* Disable FIQ, IRQ and imprecise data aborts. */ 10431 mask = CPSR_A | CPSR_I | CPSR_F; 10432 offset = 4; 10433 break; 10434 case EXCP_VSERR: 10435 { 10436 /* 10437 * Note that this is reported as a data abort, but the DFAR 10438 * has an UNKNOWN value. Construct the SError syndrome from 10439 * AET and ExT fields. 10440 */ 10441 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10442 10443 if (extended_addresses_enabled(env)) { 10444 env->exception.fsr = arm_fi_to_lfsc(&fi); 10445 } else { 10446 env->exception.fsr = arm_fi_to_sfsc(&fi); 10447 } 10448 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10449 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10450 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10451 env->exception.fsr); 10452 10453 new_mode = ARM_CPU_MODE_ABT; 10454 addr = 0x10; 10455 mask = CPSR_A | CPSR_I; 10456 offset = 8; 10457 } 10458 break; 10459 case EXCP_SMC: 10460 new_mode = ARM_CPU_MODE_MON; 10461 addr = 0x08; 10462 mask = CPSR_A | CPSR_I | CPSR_F; 10463 offset = 0; 10464 break; 10465 default: 10466 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10467 return; /* Never happens. Keep compiler happy. */ 10468 } 10469 10470 if (new_mode == ARM_CPU_MODE_MON) { 10471 addr += env->cp15.mvbar; 10472 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10473 /* High vectors. When enabled, base address cannot be remapped. */ 10474 addr += 0xffff0000; 10475 } else { 10476 /* 10477 * ARM v7 architectures provide a vector base address register to remap 10478 * the interrupt vector table. 10479 * This register is only followed in non-monitor mode, and is banked. 10480 * Note: only bits 31:5 are valid. 10481 */ 10482 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10483 } 10484 10485 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10486 env->cp15.scr_el3 &= ~SCR_NS; 10487 } 10488 10489 take_aarch32_exception(env, new_mode, mask, offset, addr); 10490 } 10491 10492 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10493 { 10494 /* 10495 * Return the register number of the AArch64 view of the AArch32 10496 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10497 * be that of the AArch32 mode the exception came from. 10498 */ 10499 int mode = env->uncached_cpsr & CPSR_M; 10500 10501 switch (aarch32_reg) { 10502 case 0 ... 7: 10503 return aarch32_reg; 10504 case 8 ... 12: 10505 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10506 case 13: 10507 switch (mode) { 10508 case ARM_CPU_MODE_USR: 10509 case ARM_CPU_MODE_SYS: 10510 return 13; 10511 case ARM_CPU_MODE_HYP: 10512 return 15; 10513 case ARM_CPU_MODE_IRQ: 10514 return 17; 10515 case ARM_CPU_MODE_SVC: 10516 return 19; 10517 case ARM_CPU_MODE_ABT: 10518 return 21; 10519 case ARM_CPU_MODE_UND: 10520 return 23; 10521 case ARM_CPU_MODE_FIQ: 10522 return 29; 10523 default: 10524 g_assert_not_reached(); 10525 } 10526 case 14: 10527 switch (mode) { 10528 case ARM_CPU_MODE_USR: 10529 case ARM_CPU_MODE_SYS: 10530 case ARM_CPU_MODE_HYP: 10531 return 14; 10532 case ARM_CPU_MODE_IRQ: 10533 return 16; 10534 case ARM_CPU_MODE_SVC: 10535 return 18; 10536 case ARM_CPU_MODE_ABT: 10537 return 20; 10538 case ARM_CPU_MODE_UND: 10539 return 22; 10540 case ARM_CPU_MODE_FIQ: 10541 return 30; 10542 default: 10543 g_assert_not_reached(); 10544 } 10545 case 15: 10546 return 31; 10547 default: 10548 g_assert_not_reached(); 10549 } 10550 } 10551 10552 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10553 { 10554 uint32_t ret = cpsr_read(env); 10555 10556 /* Move DIT to the correct location for SPSR_ELx */ 10557 if (ret & CPSR_DIT) { 10558 ret &= ~CPSR_DIT; 10559 ret |= PSTATE_DIT; 10560 } 10561 /* Merge PSTATE.SS into SPSR_ELx */ 10562 ret |= env->pstate & PSTATE_SS; 10563 10564 return ret; 10565 } 10566 10567 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10568 { 10569 /* Return true if this syndrome value is a synchronous external abort */ 10570 switch (syn_get_ec(syndrome)) { 10571 case EC_INSNABORT: 10572 case EC_INSNABORT_SAME_EL: 10573 case EC_DATAABORT: 10574 case EC_DATAABORT_SAME_EL: 10575 /* Look at fault status code for all the synchronous ext abort cases */ 10576 switch (syndrome & 0x3f) { 10577 case 0x10: 10578 case 0x13: 10579 case 0x14: 10580 case 0x15: 10581 case 0x16: 10582 case 0x17: 10583 return true; 10584 default: 10585 return false; 10586 } 10587 default: 10588 return false; 10589 } 10590 } 10591 10592 /* Handle exception entry to a target EL which is using AArch64 */ 10593 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10594 { 10595 ARMCPU *cpu = ARM_CPU(cs); 10596 CPUARMState *env = &cpu->env; 10597 unsigned int new_el = env->exception.target_el; 10598 target_ulong addr = env->cp15.vbar_el[new_el]; 10599 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10600 unsigned int old_mode; 10601 unsigned int cur_el = arm_current_el(env); 10602 int rt; 10603 10604 /* 10605 * Note that new_el can never be 0. If cur_el is 0, then 10606 * el0_a64 is is_a64(), else el0_a64 is ignored. 10607 */ 10608 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10609 10610 if (cur_el < new_el) { 10611 /* 10612 * Entry vector offset depends on whether the implemented EL 10613 * immediately lower than the target level is using AArch32 or AArch64 10614 */ 10615 bool is_aa64; 10616 uint64_t hcr; 10617 10618 switch (new_el) { 10619 case 3: 10620 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10621 break; 10622 case 2: 10623 hcr = arm_hcr_el2_eff(env); 10624 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10625 is_aa64 = (hcr & HCR_RW) != 0; 10626 break; 10627 } 10628 /* fall through */ 10629 case 1: 10630 is_aa64 = is_a64(env); 10631 break; 10632 default: 10633 g_assert_not_reached(); 10634 } 10635 10636 if (is_aa64) { 10637 addr += 0x400; 10638 } else { 10639 addr += 0x600; 10640 } 10641 } else if (pstate_read(env) & PSTATE_SP) { 10642 addr += 0x200; 10643 } 10644 10645 switch (cs->exception_index) { 10646 case EXCP_PREFETCH_ABORT: 10647 case EXCP_DATA_ABORT: 10648 /* 10649 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10650 * to be taken to the SError vector entrypoint. 10651 */ 10652 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10653 syndrome_is_sync_extabt(env->exception.syndrome)) { 10654 addr += 0x180; 10655 } 10656 env->cp15.far_el[new_el] = env->exception.vaddress; 10657 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10658 env->cp15.far_el[new_el]); 10659 /* fall through */ 10660 case EXCP_BKPT: 10661 case EXCP_UDEF: 10662 case EXCP_SWI: 10663 case EXCP_HVC: 10664 case EXCP_HYP_TRAP: 10665 case EXCP_SMC: 10666 switch (syn_get_ec(env->exception.syndrome)) { 10667 case EC_ADVSIMDFPACCESSTRAP: 10668 /* 10669 * QEMU internal FP/SIMD syndromes from AArch32 include the 10670 * TA and coproc fields which are only exposed if the exception 10671 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10672 * AArch64 format syndrome. 10673 */ 10674 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10675 break; 10676 case EC_CP14RTTRAP: 10677 case EC_CP15RTTRAP: 10678 case EC_CP14DTTRAP: 10679 /* 10680 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10681 * the raw register field from the insn; when taking this to 10682 * AArch64 we must convert it to the AArch64 view of the register 10683 * number. Notice that we read a 4-bit AArch32 register number and 10684 * write back a 5-bit AArch64 one. 10685 */ 10686 rt = extract32(env->exception.syndrome, 5, 4); 10687 rt = aarch64_regnum(env, rt); 10688 env->exception.syndrome = deposit32(env->exception.syndrome, 10689 5, 5, rt); 10690 break; 10691 case EC_CP15RRTTRAP: 10692 case EC_CP14RRTTRAP: 10693 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10694 rt = extract32(env->exception.syndrome, 5, 4); 10695 rt = aarch64_regnum(env, rt); 10696 env->exception.syndrome = deposit32(env->exception.syndrome, 10697 5, 5, rt); 10698 rt = extract32(env->exception.syndrome, 10, 4); 10699 rt = aarch64_regnum(env, rt); 10700 env->exception.syndrome = deposit32(env->exception.syndrome, 10701 10, 5, rt); 10702 break; 10703 } 10704 env->cp15.esr_el[new_el] = env->exception.syndrome; 10705 break; 10706 case EXCP_IRQ: 10707 case EXCP_VIRQ: 10708 addr += 0x80; 10709 break; 10710 case EXCP_FIQ: 10711 case EXCP_VFIQ: 10712 addr += 0x100; 10713 break; 10714 case EXCP_VSERR: 10715 addr += 0x180; 10716 /* Construct the SError syndrome from IDS and ISS fields. */ 10717 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10718 env->cp15.esr_el[new_el] = env->exception.syndrome; 10719 break; 10720 default: 10721 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10722 } 10723 10724 if (is_a64(env)) { 10725 old_mode = pstate_read(env); 10726 aarch64_save_sp(env, arm_current_el(env)); 10727 env->elr_el[new_el] = env->pc; 10728 } else { 10729 old_mode = cpsr_read_for_spsr_elx(env); 10730 env->elr_el[new_el] = env->regs[15]; 10731 10732 aarch64_sync_32_to_64(env); 10733 10734 env->condexec_bits = 0; 10735 } 10736 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10737 10738 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10739 env->elr_el[new_el]); 10740 10741 if (cpu_isar_feature(aa64_pan, cpu)) { 10742 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10743 new_mode |= old_mode & PSTATE_PAN; 10744 switch (new_el) { 10745 case 2: 10746 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10747 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10748 != (HCR_E2H | HCR_TGE)) { 10749 break; 10750 } 10751 /* fall through */ 10752 case 1: 10753 /* ... the target is EL1 ... */ 10754 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10755 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10756 new_mode |= PSTATE_PAN; 10757 } 10758 break; 10759 } 10760 } 10761 if (cpu_isar_feature(aa64_mte, cpu)) { 10762 new_mode |= PSTATE_TCO; 10763 } 10764 10765 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10766 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10767 new_mode |= PSTATE_SSBS; 10768 } else { 10769 new_mode &= ~PSTATE_SSBS; 10770 } 10771 } 10772 10773 pstate_write(env, PSTATE_DAIF | new_mode); 10774 env->aarch64 = true; 10775 aarch64_restore_sp(env, new_el); 10776 helper_rebuild_hflags_a64(env, new_el); 10777 10778 env->pc = addr; 10779 10780 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10781 new_el, env->pc, pstate_read(env)); 10782 } 10783 10784 /* 10785 * Do semihosting call and set the appropriate return value. All the 10786 * permission and validity checks have been done at translate time. 10787 * 10788 * We only see semihosting exceptions in TCG only as they are not 10789 * trapped to the hypervisor in KVM. 10790 */ 10791 #ifdef CONFIG_TCG 10792 static void handle_semihosting(CPUState *cs) 10793 { 10794 ARMCPU *cpu = ARM_CPU(cs); 10795 CPUARMState *env = &cpu->env; 10796 10797 if (is_a64(env)) { 10798 qemu_log_mask(CPU_LOG_INT, 10799 "...handling as semihosting call 0x%" PRIx64 "\n", 10800 env->xregs[0]); 10801 do_common_semihosting(cs); 10802 env->pc += 4; 10803 } else { 10804 qemu_log_mask(CPU_LOG_INT, 10805 "...handling as semihosting call 0x%x\n", 10806 env->regs[0]); 10807 do_common_semihosting(cs); 10808 env->regs[15] += env->thumb ? 2 : 4; 10809 } 10810 } 10811 #endif 10812 10813 /* 10814 * Handle a CPU exception for A and R profile CPUs. 10815 * Do any appropriate logging, handle PSCI calls, and then hand off 10816 * to the AArch64-entry or AArch32-entry function depending on the 10817 * target exception level's register width. 10818 * 10819 * Note: this is used for both TCG (as the do_interrupt tcg op), 10820 * and KVM to re-inject guest debug exceptions, and to 10821 * inject a Synchronous-External-Abort. 10822 */ 10823 void arm_cpu_do_interrupt(CPUState *cs) 10824 { 10825 ARMCPU *cpu = ARM_CPU(cs); 10826 CPUARMState *env = &cpu->env; 10827 unsigned int new_el = env->exception.target_el; 10828 10829 assert(!arm_feature(env, ARM_FEATURE_M)); 10830 10831 arm_log_exception(cs); 10832 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10833 new_el); 10834 if (qemu_loglevel_mask(CPU_LOG_INT) 10835 && !excp_is_internal(cs->exception_index)) { 10836 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10837 syn_get_ec(env->exception.syndrome), 10838 env->exception.syndrome); 10839 } 10840 10841 if (arm_is_psci_call(cpu, cs->exception_index)) { 10842 arm_handle_psci_call(cpu); 10843 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10844 return; 10845 } 10846 10847 /* 10848 * Semihosting semantics depend on the register width of the code 10849 * that caused the exception, not the target exception level, so 10850 * must be handled here. 10851 */ 10852 #ifdef CONFIG_TCG 10853 if (cs->exception_index == EXCP_SEMIHOST) { 10854 handle_semihosting(cs); 10855 return; 10856 } 10857 #endif 10858 10859 /* 10860 * Hooks may change global state so BQL should be held, also the 10861 * BQL needs to be held for any modification of 10862 * cs->interrupt_request. 10863 */ 10864 g_assert(qemu_mutex_iothread_locked()); 10865 10866 arm_call_pre_el_change_hook(cpu); 10867 10868 assert(!excp_is_internal(cs->exception_index)); 10869 if (arm_el_is_aa64(env, new_el)) { 10870 arm_cpu_do_interrupt_aarch64(cs); 10871 } else { 10872 arm_cpu_do_interrupt_aarch32(cs); 10873 } 10874 10875 arm_call_el_change_hook(cpu); 10876 10877 if (!kvm_enabled()) { 10878 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10879 } 10880 } 10881 #endif /* !CONFIG_USER_ONLY */ 10882 10883 uint64_t arm_sctlr(CPUARMState *env, int el) 10884 { 10885 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10886 if (el == 0) { 10887 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10888 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 10889 } 10890 return env->cp15.sctlr_el[el]; 10891 } 10892 10893 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10894 { 10895 if (regime_has_2_ranges(mmu_idx)) { 10896 return extract64(tcr, 37, 2); 10897 } else if (regime_is_stage2(mmu_idx)) { 10898 return 0; /* VTCR_EL2 */ 10899 } else { 10900 /* Replicate the single TBI bit so we always have 2 bits. */ 10901 return extract32(tcr, 20, 1) * 3; 10902 } 10903 } 10904 10905 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10906 { 10907 if (regime_has_2_ranges(mmu_idx)) { 10908 return extract64(tcr, 51, 2); 10909 } else if (regime_is_stage2(mmu_idx)) { 10910 return 0; /* VTCR_EL2 */ 10911 } else { 10912 /* Replicate the single TBID bit so we always have 2 bits. */ 10913 return extract32(tcr, 29, 1) * 3; 10914 } 10915 } 10916 10917 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10918 { 10919 if (regime_has_2_ranges(mmu_idx)) { 10920 return extract64(tcr, 57, 2); 10921 } else { 10922 /* Replicate the single TCMA bit so we always have 2 bits. */ 10923 return extract32(tcr, 30, 1) * 3; 10924 } 10925 } 10926 10927 static ARMGranuleSize tg0_to_gran_size(int tg) 10928 { 10929 switch (tg) { 10930 case 0: 10931 return Gran4K; 10932 case 1: 10933 return Gran64K; 10934 case 2: 10935 return Gran16K; 10936 default: 10937 return GranInvalid; 10938 } 10939 } 10940 10941 static ARMGranuleSize tg1_to_gran_size(int tg) 10942 { 10943 switch (tg) { 10944 case 1: 10945 return Gran16K; 10946 case 2: 10947 return Gran4K; 10948 case 3: 10949 return Gran64K; 10950 default: 10951 return GranInvalid; 10952 } 10953 } 10954 10955 static inline bool have4k(ARMCPU *cpu, bool stage2) 10956 { 10957 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 10958 : cpu_isar_feature(aa64_tgran4, cpu); 10959 } 10960 10961 static inline bool have16k(ARMCPU *cpu, bool stage2) 10962 { 10963 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 10964 : cpu_isar_feature(aa64_tgran16, cpu); 10965 } 10966 10967 static inline bool have64k(ARMCPU *cpu, bool stage2) 10968 { 10969 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 10970 : cpu_isar_feature(aa64_tgran64, cpu); 10971 } 10972 10973 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 10974 bool stage2) 10975 { 10976 switch (gran) { 10977 case Gran4K: 10978 if (have4k(cpu, stage2)) { 10979 return gran; 10980 } 10981 break; 10982 case Gran16K: 10983 if (have16k(cpu, stage2)) { 10984 return gran; 10985 } 10986 break; 10987 case Gran64K: 10988 if (have64k(cpu, stage2)) { 10989 return gran; 10990 } 10991 break; 10992 case GranInvalid: 10993 break; 10994 } 10995 /* 10996 * If the guest selects a granule size that isn't implemented, 10997 * the architecture requires that we behave as if it selected one 10998 * that is (with an IMPDEF choice of which one to pick). We choose 10999 * to implement the smallest supported granule size. 11000 */ 11001 if (have4k(cpu, stage2)) { 11002 return Gran4K; 11003 } 11004 if (have16k(cpu, stage2)) { 11005 return Gran16K; 11006 } 11007 assert(have64k(cpu, stage2)); 11008 return Gran64K; 11009 } 11010 11011 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11012 ARMMMUIdx mmu_idx, bool data) 11013 { 11014 uint64_t tcr = regime_tcr(env, mmu_idx); 11015 bool epd, hpd, tsz_oob, ds, ha, hd; 11016 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11017 ARMGranuleSize gran; 11018 ARMCPU *cpu = env_archcpu(env); 11019 bool stage2 = regime_is_stage2(mmu_idx); 11020 11021 if (!regime_has_2_ranges(mmu_idx)) { 11022 select = 0; 11023 tsz = extract32(tcr, 0, 6); 11024 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11025 if (stage2) { 11026 /* VTCR_EL2 */ 11027 hpd = false; 11028 } else { 11029 hpd = extract32(tcr, 24, 1); 11030 } 11031 epd = false; 11032 sh = extract32(tcr, 12, 2); 11033 ps = extract32(tcr, 16, 3); 11034 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11035 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11036 ds = extract64(tcr, 32, 1); 11037 } else { 11038 bool e0pd; 11039 11040 /* 11041 * Bit 55 is always between the two regions, and is canonical for 11042 * determining if address tagging is enabled. 11043 */ 11044 select = extract64(va, 55, 1); 11045 if (!select) { 11046 tsz = extract32(tcr, 0, 6); 11047 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11048 epd = extract32(tcr, 7, 1); 11049 sh = extract32(tcr, 12, 2); 11050 hpd = extract64(tcr, 41, 1); 11051 e0pd = extract64(tcr, 55, 1); 11052 } else { 11053 tsz = extract32(tcr, 16, 6); 11054 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11055 epd = extract32(tcr, 23, 1); 11056 sh = extract32(tcr, 28, 2); 11057 hpd = extract64(tcr, 42, 1); 11058 e0pd = extract64(tcr, 56, 1); 11059 } 11060 ps = extract64(tcr, 32, 3); 11061 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11062 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11063 ds = extract64(tcr, 59, 1); 11064 11065 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11066 regime_is_user(env, mmu_idx)) { 11067 epd = true; 11068 } 11069 } 11070 11071 gran = sanitize_gran_size(cpu, gran, stage2); 11072 11073 if (cpu_isar_feature(aa64_st, cpu)) { 11074 max_tsz = 48 - (gran == Gran64K); 11075 } else { 11076 max_tsz = 39; 11077 } 11078 11079 /* 11080 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11081 * adjust the effective value of DS, as documented. 11082 */ 11083 min_tsz = 16; 11084 if (gran == Gran64K) { 11085 if (cpu_isar_feature(aa64_lva, cpu)) { 11086 min_tsz = 12; 11087 } 11088 ds = false; 11089 } else if (ds) { 11090 if (regime_is_stage2(mmu_idx)) { 11091 if (gran == Gran16K) { 11092 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11093 } else { 11094 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11095 } 11096 } else { 11097 if (gran == Gran16K) { 11098 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11099 } else { 11100 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11101 } 11102 } 11103 if (ds) { 11104 min_tsz = 12; 11105 } 11106 } 11107 11108 if (tsz > max_tsz) { 11109 tsz = max_tsz; 11110 tsz_oob = true; 11111 } else if (tsz < min_tsz) { 11112 tsz = min_tsz; 11113 tsz_oob = true; 11114 } else { 11115 tsz_oob = false; 11116 } 11117 11118 /* Present TBI as a composite with TBID. */ 11119 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11120 if (!data) { 11121 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11122 } 11123 tbi = (tbi >> select) & 1; 11124 11125 return (ARMVAParameters) { 11126 .tsz = tsz, 11127 .ps = ps, 11128 .sh = sh, 11129 .select = select, 11130 .tbi = tbi, 11131 .epd = epd, 11132 .hpd = hpd, 11133 .tsz_oob = tsz_oob, 11134 .ds = ds, 11135 .ha = ha, 11136 .hd = ha && hd, 11137 .gran = gran, 11138 }; 11139 } 11140 11141 /* 11142 * Note that signed overflow is undefined in C. The following routines are 11143 * careful to use unsigned types where modulo arithmetic is required. 11144 * Failure to do so _will_ break on newer gcc. 11145 */ 11146 11147 /* Signed saturating arithmetic. */ 11148 11149 /* Perform 16-bit signed saturating addition. */ 11150 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11151 { 11152 uint16_t res; 11153 11154 res = a + b; 11155 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11156 if (a & 0x8000) { 11157 res = 0x8000; 11158 } else { 11159 res = 0x7fff; 11160 } 11161 } 11162 return res; 11163 } 11164 11165 /* Perform 8-bit signed saturating addition. */ 11166 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11167 { 11168 uint8_t res; 11169 11170 res = a + b; 11171 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11172 if (a & 0x80) { 11173 res = 0x80; 11174 } else { 11175 res = 0x7f; 11176 } 11177 } 11178 return res; 11179 } 11180 11181 /* Perform 16-bit signed saturating subtraction. */ 11182 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11183 { 11184 uint16_t res; 11185 11186 res = a - b; 11187 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11188 if (a & 0x8000) { 11189 res = 0x8000; 11190 } else { 11191 res = 0x7fff; 11192 } 11193 } 11194 return res; 11195 } 11196 11197 /* Perform 8-bit signed saturating subtraction. */ 11198 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11199 { 11200 uint8_t res; 11201 11202 res = a - b; 11203 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11204 if (a & 0x80) { 11205 res = 0x80; 11206 } else { 11207 res = 0x7f; 11208 } 11209 } 11210 return res; 11211 } 11212 11213 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11214 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11215 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11216 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11217 #define PFX q 11218 11219 #include "op_addsub.h" 11220 11221 /* Unsigned saturating arithmetic. */ 11222 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11223 { 11224 uint16_t res; 11225 res = a + b; 11226 if (res < a) { 11227 res = 0xffff; 11228 } 11229 return res; 11230 } 11231 11232 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11233 { 11234 if (a > b) { 11235 return a - b; 11236 } else { 11237 return 0; 11238 } 11239 } 11240 11241 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11242 { 11243 uint8_t res; 11244 res = a + b; 11245 if (res < a) { 11246 res = 0xff; 11247 } 11248 return res; 11249 } 11250 11251 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11252 { 11253 if (a > b) { 11254 return a - b; 11255 } else { 11256 return 0; 11257 } 11258 } 11259 11260 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11261 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11262 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11263 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11264 #define PFX uq 11265 11266 #include "op_addsub.h" 11267 11268 /* Signed modulo arithmetic. */ 11269 #define SARITH16(a, b, n, op) do { \ 11270 int32_t sum; \ 11271 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11272 RESULT(sum, n, 16); \ 11273 if (sum >= 0) \ 11274 ge |= 3 << (n * 2); \ 11275 } while (0) 11276 11277 #define SARITH8(a, b, n, op) do { \ 11278 int32_t sum; \ 11279 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11280 RESULT(sum, n, 8); \ 11281 if (sum >= 0) \ 11282 ge |= 1 << n; \ 11283 } while (0) 11284 11285 11286 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11287 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11288 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11289 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11290 #define PFX s 11291 #define ARITH_GE 11292 11293 #include "op_addsub.h" 11294 11295 /* Unsigned modulo arithmetic. */ 11296 #define ADD16(a, b, n) do { \ 11297 uint32_t sum; \ 11298 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11299 RESULT(sum, n, 16); \ 11300 if ((sum >> 16) == 1) \ 11301 ge |= 3 << (n * 2); \ 11302 } while (0) 11303 11304 #define ADD8(a, b, n) do { \ 11305 uint32_t sum; \ 11306 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11307 RESULT(sum, n, 8); \ 11308 if ((sum >> 8) == 1) \ 11309 ge |= 1 << n; \ 11310 } while (0) 11311 11312 #define SUB16(a, b, n) do { \ 11313 uint32_t sum; \ 11314 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11315 RESULT(sum, n, 16); \ 11316 if ((sum >> 16) == 0) \ 11317 ge |= 3 << (n * 2); \ 11318 } while (0) 11319 11320 #define SUB8(a, b, n) do { \ 11321 uint32_t sum; \ 11322 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11323 RESULT(sum, n, 8); \ 11324 if ((sum >> 8) == 0) \ 11325 ge |= 1 << n; \ 11326 } while (0) 11327 11328 #define PFX u 11329 #define ARITH_GE 11330 11331 #include "op_addsub.h" 11332 11333 /* Halved signed arithmetic. */ 11334 #define ADD16(a, b, n) \ 11335 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11336 #define SUB16(a, b, n) \ 11337 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11338 #define ADD8(a, b, n) \ 11339 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11340 #define SUB8(a, b, n) \ 11341 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11342 #define PFX sh 11343 11344 #include "op_addsub.h" 11345 11346 /* Halved unsigned arithmetic. */ 11347 #define ADD16(a, b, n) \ 11348 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11349 #define SUB16(a, b, n) \ 11350 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11351 #define ADD8(a, b, n) \ 11352 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11353 #define SUB8(a, b, n) \ 11354 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11355 #define PFX uh 11356 11357 #include "op_addsub.h" 11358 11359 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11360 { 11361 if (a > b) { 11362 return a - b; 11363 } else { 11364 return b - a; 11365 } 11366 } 11367 11368 /* Unsigned sum of absolute byte differences. */ 11369 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11370 { 11371 uint32_t sum; 11372 sum = do_usad(a, b); 11373 sum += do_usad(a >> 8, b >> 8); 11374 sum += do_usad(a >> 16, b >> 16); 11375 sum += do_usad(a >> 24, b >> 24); 11376 return sum; 11377 } 11378 11379 /* For ARMv6 SEL instruction. */ 11380 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11381 { 11382 uint32_t mask; 11383 11384 mask = 0; 11385 if (flags & 1) { 11386 mask |= 0xff; 11387 } 11388 if (flags & 2) { 11389 mask |= 0xff00; 11390 } 11391 if (flags & 4) { 11392 mask |= 0xff0000; 11393 } 11394 if (flags & 8) { 11395 mask |= 0xff000000; 11396 } 11397 return (a & mask) | (b & ~mask); 11398 } 11399 11400 /* 11401 * CRC helpers. 11402 * The upper bytes of val (above the number specified by 'bytes') must have 11403 * been zeroed out by the caller. 11404 */ 11405 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11406 { 11407 uint8_t buf[4]; 11408 11409 stl_le_p(buf, val); 11410 11411 /* zlib crc32 converts the accumulator and output to one's complement. */ 11412 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11413 } 11414 11415 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11416 { 11417 uint8_t buf[4]; 11418 11419 stl_le_p(buf, val); 11420 11421 /* Linux crc32c converts the output to one's complement. */ 11422 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11423 } 11424 11425 /* 11426 * Return the exception level to which FP-disabled exceptions should 11427 * be taken, or 0 if FP is enabled. 11428 */ 11429 int fp_exception_el(CPUARMState *env, int cur_el) 11430 { 11431 #ifndef CONFIG_USER_ONLY 11432 uint64_t hcr_el2; 11433 11434 /* 11435 * CPACR and the CPTR registers don't exist before v6, so FP is 11436 * always accessible 11437 */ 11438 if (!arm_feature(env, ARM_FEATURE_V6)) { 11439 return 0; 11440 } 11441 11442 if (arm_feature(env, ARM_FEATURE_M)) { 11443 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11444 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11445 return 1; 11446 } 11447 11448 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11449 if (!extract32(env->v7m.nsacr, 10, 1)) { 11450 /* FP insns cause a NOCP UsageFault taken to Secure */ 11451 return 3; 11452 } 11453 } 11454 11455 return 0; 11456 } 11457 11458 hcr_el2 = arm_hcr_el2_eff(env); 11459 11460 /* 11461 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11462 * 0, 2 : trap EL0 and EL1/PL1 accesses 11463 * 1 : trap only EL0 accesses 11464 * 3 : trap no accesses 11465 * This register is ignored if E2H+TGE are both set. 11466 */ 11467 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11468 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11469 11470 switch (fpen) { 11471 case 1: 11472 if (cur_el != 0) { 11473 break; 11474 } 11475 /* fall through */ 11476 case 0: 11477 case 2: 11478 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11479 if (!arm_el_is_aa64(env, 3) 11480 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11481 return 3; 11482 } 11483 if (cur_el <= 1) { 11484 return 1; 11485 } 11486 break; 11487 } 11488 } 11489 11490 /* 11491 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11492 * to control non-secure access to the FPU. It doesn't have any 11493 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11494 */ 11495 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11496 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11497 if (!extract32(env->cp15.nsacr, 10, 1)) { 11498 /* FP insns act as UNDEF */ 11499 return cur_el == 2 ? 2 : 1; 11500 } 11501 } 11502 11503 /* 11504 * CPTR_EL2 is present in v7VE or v8, and changes format 11505 * with HCR_EL2.E2H (regardless of TGE). 11506 */ 11507 if (cur_el <= 2) { 11508 if (hcr_el2 & HCR_E2H) { 11509 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11510 case 1: 11511 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11512 break; 11513 } 11514 /* fall through */ 11515 case 0: 11516 case 2: 11517 return 2; 11518 } 11519 } else if (arm_is_el2_enabled(env)) { 11520 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11521 return 2; 11522 } 11523 } 11524 } 11525 11526 /* CPTR_EL3 : present in v8 */ 11527 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11528 /* Trap all FP ops to EL3 */ 11529 return 3; 11530 } 11531 #endif 11532 return 0; 11533 } 11534 11535 /* Return the exception level we're running at if this is our mmu_idx */ 11536 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11537 { 11538 if (mmu_idx & ARM_MMU_IDX_M) { 11539 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11540 } 11541 11542 switch (mmu_idx) { 11543 case ARMMMUIdx_E10_0: 11544 case ARMMMUIdx_E20_0: 11545 return 0; 11546 case ARMMMUIdx_E10_1: 11547 case ARMMMUIdx_E10_1_PAN: 11548 return 1; 11549 case ARMMMUIdx_E2: 11550 case ARMMMUIdx_E20_2: 11551 case ARMMMUIdx_E20_2_PAN: 11552 return 2; 11553 case ARMMMUIdx_E3: 11554 return 3; 11555 default: 11556 g_assert_not_reached(); 11557 } 11558 } 11559 11560 #ifndef CONFIG_TCG 11561 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11562 { 11563 g_assert_not_reached(); 11564 } 11565 #endif 11566 11567 static bool arm_pan_enabled(CPUARMState *env) 11568 { 11569 if (is_a64(env)) { 11570 return env->pstate & PSTATE_PAN; 11571 } else { 11572 return env->uncached_cpsr & CPSR_PAN; 11573 } 11574 } 11575 11576 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11577 { 11578 ARMMMUIdx idx; 11579 uint64_t hcr; 11580 11581 if (arm_feature(env, ARM_FEATURE_M)) { 11582 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11583 } 11584 11585 /* See ARM pseudo-function ELIsInHost. */ 11586 switch (el) { 11587 case 0: 11588 hcr = arm_hcr_el2_eff(env); 11589 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11590 idx = ARMMMUIdx_E20_0; 11591 } else { 11592 idx = ARMMMUIdx_E10_0; 11593 } 11594 break; 11595 case 1: 11596 if (arm_pan_enabled(env)) { 11597 idx = ARMMMUIdx_E10_1_PAN; 11598 } else { 11599 idx = ARMMMUIdx_E10_1; 11600 } 11601 break; 11602 case 2: 11603 /* Note that TGE does not apply at EL2. */ 11604 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11605 if (arm_pan_enabled(env)) { 11606 idx = ARMMMUIdx_E20_2_PAN; 11607 } else { 11608 idx = ARMMMUIdx_E20_2; 11609 } 11610 } else { 11611 idx = ARMMMUIdx_E2; 11612 } 11613 break; 11614 case 3: 11615 return ARMMMUIdx_E3; 11616 default: 11617 g_assert_not_reached(); 11618 } 11619 11620 return idx; 11621 } 11622 11623 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11624 { 11625 return arm_mmu_idx_el(env, arm_current_el(env)); 11626 } 11627 11628 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 11629 ARMMMUIdx mmu_idx, 11630 CPUARMTBFlags flags) 11631 { 11632 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 11633 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 11634 11635 if (arm_singlestep_active(env)) { 11636 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 11637 } 11638 return flags; 11639 } 11640 11641 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11642 ARMMMUIdx mmu_idx, 11643 CPUARMTBFlags flags) 11644 { 11645 bool sctlr_b = arm_sctlr_b(env); 11646 11647 if (sctlr_b) { 11648 DP_TBFLAG_A32(flags, SCTLR__B, 1); 11649 } 11650 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11651 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11652 } 11653 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 11654 11655 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11656 } 11657 11658 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 11659 ARMMMUIdx mmu_idx) 11660 { 11661 CPUARMTBFlags flags = {}; 11662 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 11663 11664 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 11665 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 11666 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11667 } 11668 11669 if (arm_v7m_is_handler_mode(env)) { 11670 DP_TBFLAG_M32(flags, HANDLER, 1); 11671 } 11672 11673 /* 11674 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11675 * is suppressing them because the requested execution priority 11676 * is less than 0. 11677 */ 11678 if (arm_feature(env, ARM_FEATURE_V8) && 11679 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11680 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11681 DP_TBFLAG_M32(flags, STACKCHECK, 1); 11682 } 11683 11684 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) { 11685 DP_TBFLAG_M32(flags, SECURE, 1); 11686 } 11687 11688 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11689 } 11690 11691 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 11692 ARMMMUIdx mmu_idx) 11693 { 11694 CPUARMTBFlags flags = {}; 11695 int el = arm_current_el(env); 11696 11697 if (arm_sctlr(env, el) & SCTLR_A) { 11698 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11699 } 11700 11701 if (arm_el_is_aa64(env, 1)) { 11702 DP_TBFLAG_A32(flags, VFPEN, 1); 11703 } 11704 11705 if (el < 2 && env->cp15.hstr_el2 && 11706 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11707 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 11708 } 11709 11710 if (env->uncached_cpsr & CPSR_IL) { 11711 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11712 } 11713 11714 /* 11715 * The SME exception we are testing for is raised via 11716 * AArch64.CheckFPAdvSIMDEnabled(), as called from 11717 * AArch32.CheckAdvSIMDOrFPEnabled(). 11718 */ 11719 if (el == 0 11720 && FIELD_EX64(env->svcr, SVCR, SM) 11721 && (!arm_is_el2_enabled(env) 11722 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) 11723 && arm_el_is_aa64(env, 1) 11724 && !sme_fa64(env, el)) { 11725 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); 11726 } 11727 11728 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11729 } 11730 11731 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11732 ARMMMUIdx mmu_idx) 11733 { 11734 CPUARMTBFlags flags = {}; 11735 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11736 uint64_t tcr = regime_tcr(env, mmu_idx); 11737 uint64_t sctlr; 11738 int tbii, tbid; 11739 11740 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 11741 11742 /* Get control bits for tagged addresses. */ 11743 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 11744 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 11745 11746 DP_TBFLAG_A64(flags, TBII, tbii); 11747 DP_TBFLAG_A64(flags, TBID, tbid); 11748 11749 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11750 int sve_el = sve_exception_el(env, el); 11751 11752 /* 11753 * If either FP or SVE are disabled, translator does not need len. 11754 * If SVE EL > FP EL, FP exception has precedence, and translator 11755 * does not need SVE EL. Save potential re-translations by forcing 11756 * the unneeded data to zero. 11757 */ 11758 if (fp_el != 0) { 11759 if (sve_el > fp_el) { 11760 sve_el = 0; 11761 } 11762 } else if (sve_el == 0) { 11763 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 11764 } 11765 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 11766 } 11767 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 11768 int sme_el = sme_exception_el(env, el); 11769 bool sm = FIELD_EX64(env->svcr, SVCR, SM); 11770 11771 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); 11772 if (sme_el == 0) { 11773 /* Similarly, do not compute SVL if SME is disabled. */ 11774 int svl = sve_vqm1_for_el_sm(env, el, true); 11775 DP_TBFLAG_A64(flags, SVL, svl); 11776 if (sm) { 11777 /* If SVE is disabled, we will not have set VL above. */ 11778 DP_TBFLAG_A64(flags, VL, svl); 11779 } 11780 } 11781 if (sm) { 11782 DP_TBFLAG_A64(flags, PSTATE_SM, 1); 11783 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); 11784 } 11785 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); 11786 } 11787 11788 sctlr = regime_sctlr(env, stage1); 11789 11790 if (sctlr & SCTLR_A) { 11791 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11792 } 11793 11794 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11795 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11796 } 11797 11798 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11799 /* 11800 * In order to save space in flags, we record only whether 11801 * pauth is "inactive", meaning all insns are implemented as 11802 * a nop, or "active" when some action must be performed. 11803 * The decision of which action to take is left to a helper. 11804 */ 11805 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11806 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 11807 } 11808 } 11809 11810 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11811 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11812 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11813 DP_TBFLAG_A64(flags, BT, 1); 11814 } 11815 } 11816 11817 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 11818 if (!(env->pstate & PSTATE_UAO)) { 11819 switch (mmu_idx) { 11820 case ARMMMUIdx_E10_1: 11821 case ARMMMUIdx_E10_1_PAN: 11822 /* TODO: ARMv8.3-NV */ 11823 DP_TBFLAG_A64(flags, UNPRIV, 1); 11824 break; 11825 case ARMMMUIdx_E20_2: 11826 case ARMMMUIdx_E20_2_PAN: 11827 /* 11828 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 11829 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 11830 */ 11831 if (env->cp15.hcr_el2 & HCR_TGE) { 11832 DP_TBFLAG_A64(flags, UNPRIV, 1); 11833 } 11834 break; 11835 default: 11836 break; 11837 } 11838 } 11839 11840 if (env->pstate & PSTATE_IL) { 11841 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11842 } 11843 11844 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 11845 /* 11846 * Set MTE_ACTIVE if any access may be Checked, and leave clear 11847 * if all accesses must be Unchecked: 11848 * 1) If no TBI, then there are no tags in the address to check, 11849 * 2) If Tag Check Override, then all accesses are Unchecked, 11850 * 3) If Tag Check Fail == 0, then Checked access have no effect, 11851 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 11852 */ 11853 if (allocation_tag_access_enabled(env, el, sctlr)) { 11854 DP_TBFLAG_A64(flags, ATA, 1); 11855 if (tbid 11856 && !(env->pstate & PSTATE_TCO) 11857 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 11858 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 11859 } 11860 } 11861 /* And again for unprivileged accesses, if required. */ 11862 if (EX_TBFLAG_A64(flags, UNPRIV) 11863 && tbid 11864 && !(env->pstate & PSTATE_TCO) 11865 && (sctlr & SCTLR_TCF0) 11866 && allocation_tag_access_enabled(env, 0, sctlr)) { 11867 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 11868 } 11869 /* Cache TCMA as well as TBI. */ 11870 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 11871 } 11872 11873 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11874 } 11875 11876 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 11877 { 11878 int el = arm_current_el(env); 11879 int fp_el = fp_exception_el(env, el); 11880 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11881 11882 if (is_a64(env)) { 11883 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11884 } else if (arm_feature(env, ARM_FEATURE_M)) { 11885 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11886 } else { 11887 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11888 } 11889 } 11890 11891 void arm_rebuild_hflags(CPUARMState *env) 11892 { 11893 env->hflags = rebuild_hflags_internal(env); 11894 } 11895 11896 /* 11897 * If we have triggered a EL state change we can't rely on the 11898 * translator having passed it to us, we need to recompute. 11899 */ 11900 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 11901 { 11902 int el = arm_current_el(env); 11903 int fp_el = fp_exception_el(env, el); 11904 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11905 11906 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11907 } 11908 11909 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11910 { 11911 int fp_el = fp_exception_el(env, el); 11912 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11913 11914 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11915 } 11916 11917 /* 11918 * If we have triggered a EL state change we can't rely on the 11919 * translator having passed it to us, we need to recompute. 11920 */ 11921 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 11922 { 11923 int el = arm_current_el(env); 11924 int fp_el = fp_exception_el(env, el); 11925 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11926 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11927 } 11928 11929 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11930 { 11931 int fp_el = fp_exception_el(env, el); 11932 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11933 11934 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11935 } 11936 11937 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11938 { 11939 int fp_el = fp_exception_el(env, el); 11940 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11941 11942 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11943 } 11944 11945 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 11946 { 11947 #ifdef CONFIG_DEBUG_TCG 11948 CPUARMTBFlags c = env->hflags; 11949 CPUARMTBFlags r = rebuild_hflags_internal(env); 11950 11951 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 11952 fprintf(stderr, "TCG hflags mismatch " 11953 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 11954 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 11955 c.flags, c.flags2, r.flags, r.flags2); 11956 abort(); 11957 } 11958 #endif 11959 } 11960 11961 static bool mve_no_pred(CPUARMState *env) 11962 { 11963 /* 11964 * Return true if there is definitely no predication of MVE 11965 * instructions by VPR or LTPSIZE. (Returning false even if there 11966 * isn't any predication is OK; generated code will just be 11967 * a little worse.) 11968 * If the CPU does not implement MVE then this TB flag is always 0. 11969 * 11970 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11971 * logic in gen_update_fp_context() needs to be updated to match. 11972 * 11973 * We do not include the effect of the ECI bits here -- they are 11974 * tracked in other TB flags. This simplifies the logic for 11975 * "when did we emit code that changes the MVE_NO_PRED TB flag 11976 * and thus need to end the TB?". 11977 */ 11978 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11979 return false; 11980 } 11981 if (env->v7m.vpr) { 11982 return false; 11983 } 11984 if (env->v7m.ltpsize < 4) { 11985 return false; 11986 } 11987 return true; 11988 } 11989 11990 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11991 target_ulong *cs_base, uint32_t *pflags) 11992 { 11993 CPUARMTBFlags flags; 11994 11995 assert_hflags_rebuild_correctly(env); 11996 flags = env->hflags; 11997 11998 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11999 *pc = env->pc; 12000 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12001 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12002 } 12003 } else { 12004 *pc = env->regs[15]; 12005 12006 if (arm_feature(env, ARM_FEATURE_M)) { 12007 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12008 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12009 != env->v7m.secure) { 12010 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12011 } 12012 12013 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12014 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12015 (env->v7m.secure && 12016 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12017 /* 12018 * ASPEN is set, but FPCA/SFPA indicate that there is no 12019 * active FP context; we must create a new FP context before 12020 * executing any FP insn. 12021 */ 12022 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12023 } 12024 12025 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12026 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12027 DP_TBFLAG_M32(flags, LSPACT, 1); 12028 } 12029 12030 if (mve_no_pred(env)) { 12031 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12032 } 12033 } else { 12034 /* 12035 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12036 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12037 */ 12038 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12039 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12040 } else { 12041 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12042 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12043 } 12044 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12045 DP_TBFLAG_A32(flags, VFPEN, 1); 12046 } 12047 } 12048 12049 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12050 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12051 } 12052 12053 /* 12054 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12055 * states defined in the ARM ARM for software singlestep: 12056 * SS_ACTIVE PSTATE.SS State 12057 * 0 x Inactive (the TB flag for SS is always 0) 12058 * 1 0 Active-pending 12059 * 1 1 Active-not-pending 12060 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12061 */ 12062 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12063 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12064 } 12065 12066 *pflags = flags.flags; 12067 *cs_base = flags.flags2; 12068 } 12069 12070 #ifdef TARGET_AARCH64 12071 /* 12072 * The manual says that when SVE is enabled and VQ is widened the 12073 * implementation is allowed to zero the previously inaccessible 12074 * portion of the registers. The corollary to that is that when 12075 * SVE is enabled and VQ is narrowed we are also allowed to zero 12076 * the now inaccessible portion of the registers. 12077 * 12078 * The intent of this is that no predicate bit beyond VQ is ever set. 12079 * Which means that some operations on predicate registers themselves 12080 * may operate on full uint64_t or even unrolled across the maximum 12081 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12082 * may well be cheaper than conditionals to restrict the operation 12083 * to the relevant portion of a uint16_t[16]. 12084 */ 12085 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12086 { 12087 int i, j; 12088 uint64_t pmask; 12089 12090 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12091 assert(vq <= env_archcpu(env)->sve_max_vq); 12092 12093 /* Zap the high bits of the zregs. */ 12094 for (i = 0; i < 32; i++) { 12095 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12096 } 12097 12098 /* Zap the high bits of the pregs and ffr. */ 12099 pmask = 0; 12100 if (vq & 3) { 12101 pmask = ~(-1ULL << (16 * (vq & 3))); 12102 } 12103 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12104 for (i = 0; i < 17; ++i) { 12105 env->vfp.pregs[i].p[j] &= pmask; 12106 } 12107 pmask = 0; 12108 } 12109 } 12110 12111 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12112 { 12113 int exc_el; 12114 12115 if (sm) { 12116 exc_el = sme_exception_el(env, el); 12117 } else { 12118 exc_el = sve_exception_el(env, el); 12119 } 12120 if (exc_el) { 12121 return 0; /* disabled */ 12122 } 12123 return sve_vqm1_for_el_sm(env, el, sm); 12124 } 12125 12126 /* 12127 * Notice a change in SVE vector size when changing EL. 12128 */ 12129 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12130 int new_el, bool el0_a64) 12131 { 12132 ARMCPU *cpu = env_archcpu(env); 12133 int old_len, new_len; 12134 bool old_a64, new_a64, sm; 12135 12136 /* Nothing to do if no SVE. */ 12137 if (!cpu_isar_feature(aa64_sve, cpu)) { 12138 return; 12139 } 12140 12141 /* Nothing to do if FP is disabled in either EL. */ 12142 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12143 return; 12144 } 12145 12146 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12147 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12148 12149 /* 12150 * Both AArch64.TakeException and AArch64.ExceptionReturn 12151 * invoke ResetSVEState when taking an exception from, or 12152 * returning to, AArch32 state when PSTATE.SM is enabled. 12153 */ 12154 sm = FIELD_EX64(env->svcr, SVCR, SM); 12155 if (old_a64 != new_a64 && sm) { 12156 arm_reset_sve_state(env); 12157 return; 12158 } 12159 12160 /* 12161 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12162 * at ELx, or not available because the EL is in AArch32 state, then 12163 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12164 * has an effective value of 0". 12165 * 12166 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12167 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12168 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12169 * we already have the correct register contents when encountering the 12170 * vq0->vq0 transition between EL0->EL1. 12171 */ 12172 old_len = new_len = 0; 12173 if (old_a64) { 12174 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12175 } 12176 if (new_a64) { 12177 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12178 } 12179 12180 /* When changing vector length, clear inaccessible state. */ 12181 if (new_len < old_len) { 12182 aarch64_sve_narrow_vq(env, new_len + 1); 12183 } 12184 } 12185 #endif 12186