xref: /openbmc/qemu/target/arm/helper.c (revision 7e0019a7196ebed177c95824875cf852e1a6f667)
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18 
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 
21 #ifndef CONFIG_USER_ONLY
22 /* Cacheability and shareability attributes for a memory access */
23 typedef struct ARMCacheAttrs {
24     unsigned int attrs:8; /* as in the MAIR register encoding */
25     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
26 } ARMCacheAttrs;
27 
28 static bool get_phys_addr(CPUARMState *env, target_ulong address,
29                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
30                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
31                           target_ulong *page_size,
32                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
33 
34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
35                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
36                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
37                                target_ulong *page_size_ptr,
38                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
39 
40 /* Security attributes for an address, as returned by v8m_security_lookup. */
41 typedef struct V8M_SAttributes {
42     bool ns;
43     bool nsc;
44     uint8_t sregion;
45     bool srvalid;
46     uint8_t iregion;
47     bool irvalid;
48 } V8M_SAttributes;
49 
50 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
51                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
52                                 V8M_SAttributes *sattrs);
53 
54 /* Definitions for the PMCCNTR and PMCR registers */
55 #define PMCRD   0x8
56 #define PMCRC   0x4
57 #define PMCRE   0x1
58 #endif
59 
60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
61 {
62     int nregs;
63 
64     /* VFP data registers are always little-endian.  */
65     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
66     if (reg < nregs) {
67         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
68         return 8;
69     }
70     if (arm_feature(env, ARM_FEATURE_NEON)) {
71         /* Aliases for Q regs.  */
72         nregs += 16;
73         if (reg < nregs) {
74             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
75             stq_le_p(buf, q[0]);
76             stq_le_p(buf + 8, q[1]);
77             return 16;
78         }
79     }
80     switch (reg - nregs) {
81     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
82     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
83     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
84     }
85     return 0;
86 }
87 
88 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
89 {
90     int nregs;
91 
92     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
93     if (reg < nregs) {
94         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
95         return 8;
96     }
97     if (arm_feature(env, ARM_FEATURE_NEON)) {
98         nregs += 16;
99         if (reg < nregs) {
100             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
101             q[0] = ldq_le_p(buf);
102             q[1] = ldq_le_p(buf + 8);
103             return 16;
104         }
105     }
106     switch (reg - nregs) {
107     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
108     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
109     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
110     }
111     return 0;
112 }
113 
114 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
115 {
116     switch (reg) {
117     case 0 ... 31:
118         /* 128 bit FP register */
119         {
120             uint64_t *q = aa64_vfp_qreg(env, reg);
121             stq_le_p(buf, q[0]);
122             stq_le_p(buf + 8, q[1]);
123             return 16;
124         }
125     case 32:
126         /* FPSR */
127         stl_p(buf, vfp_get_fpsr(env));
128         return 4;
129     case 33:
130         /* FPCR */
131         stl_p(buf, vfp_get_fpcr(env));
132         return 4;
133     default:
134         return 0;
135     }
136 }
137 
138 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
139 {
140     switch (reg) {
141     case 0 ... 31:
142         /* 128 bit FP register */
143         {
144             uint64_t *q = aa64_vfp_qreg(env, reg);
145             q[0] = ldq_le_p(buf);
146             q[1] = ldq_le_p(buf + 8);
147             return 16;
148         }
149     case 32:
150         /* FPSR */
151         vfp_set_fpsr(env, ldl_p(buf));
152         return 4;
153     case 33:
154         /* FPCR */
155         vfp_set_fpcr(env, ldl_p(buf));
156         return 4;
157     default:
158         return 0;
159     }
160 }
161 
162 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
163 {
164     assert(ri->fieldoffset);
165     if (cpreg_field_is_64bit(ri)) {
166         return CPREG_FIELD64(env, ri);
167     } else {
168         return CPREG_FIELD32(env, ri);
169     }
170 }
171 
172 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
173                       uint64_t value)
174 {
175     assert(ri->fieldoffset);
176     if (cpreg_field_is_64bit(ri)) {
177         CPREG_FIELD64(env, ri) = value;
178     } else {
179         CPREG_FIELD32(env, ri) = value;
180     }
181 }
182 
183 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
184 {
185     return (char *)env + ri->fieldoffset;
186 }
187 
188 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
189 {
190     /* Raw read of a coprocessor register (as needed for migration, etc). */
191     if (ri->type & ARM_CP_CONST) {
192         return ri->resetvalue;
193     } else if (ri->raw_readfn) {
194         return ri->raw_readfn(env, ri);
195     } else if (ri->readfn) {
196         return ri->readfn(env, ri);
197     } else {
198         return raw_read(env, ri);
199     }
200 }
201 
202 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
203                              uint64_t v)
204 {
205     /* Raw write of a coprocessor register (as needed for migration, etc).
206      * Note that constant registers are treated as write-ignored; the
207      * caller should check for success by whether a readback gives the
208      * value written.
209      */
210     if (ri->type & ARM_CP_CONST) {
211         return;
212     } else if (ri->raw_writefn) {
213         ri->raw_writefn(env, ri, v);
214     } else if (ri->writefn) {
215         ri->writefn(env, ri, v);
216     } else {
217         raw_write(env, ri, v);
218     }
219 }
220 
221 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
222 {
223    /* Return true if the regdef would cause an assertion if you called
224     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
225     * program bug for it not to have the NO_RAW flag).
226     * NB that returning false here doesn't necessarily mean that calling
227     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
228     * read/write access functions which are safe for raw use" from "has
229     * read/write access functions which have side effects but has forgotten
230     * to provide raw access functions".
231     * The tests here line up with the conditions in read/write_raw_cp_reg()
232     * and assertions in raw_read()/raw_write().
233     */
234     if ((ri->type & ARM_CP_CONST) ||
235         ri->fieldoffset ||
236         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
237         return false;
238     }
239     return true;
240 }
241 
242 bool write_cpustate_to_list(ARMCPU *cpu)
243 {
244     /* Write the coprocessor state from cpu->env to the (index,value) list. */
245     int i;
246     bool ok = true;
247 
248     for (i = 0; i < cpu->cpreg_array_len; i++) {
249         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
250         const ARMCPRegInfo *ri;
251 
252         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
253         if (!ri) {
254             ok = false;
255             continue;
256         }
257         if (ri->type & ARM_CP_NO_RAW) {
258             continue;
259         }
260         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
261     }
262     return ok;
263 }
264 
265 bool write_list_to_cpustate(ARMCPU *cpu)
266 {
267     int i;
268     bool ok = true;
269 
270     for (i = 0; i < cpu->cpreg_array_len; i++) {
271         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
272         uint64_t v = cpu->cpreg_values[i];
273         const ARMCPRegInfo *ri;
274 
275         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
276         if (!ri) {
277             ok = false;
278             continue;
279         }
280         if (ri->type & ARM_CP_NO_RAW) {
281             continue;
282         }
283         /* Write value and confirm it reads back as written
284          * (to catch read-only registers and partially read-only
285          * registers where the incoming migration value doesn't match)
286          */
287         write_raw_cp_reg(&cpu->env, ri, v);
288         if (read_raw_cp_reg(&cpu->env, ri) != v) {
289             ok = false;
290         }
291     }
292     return ok;
293 }
294 
295 static void add_cpreg_to_list(gpointer key, gpointer opaque)
296 {
297     ARMCPU *cpu = opaque;
298     uint64_t regidx;
299     const ARMCPRegInfo *ri;
300 
301     regidx = *(uint32_t *)key;
302     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
303 
304     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
305         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
306         /* The value array need not be initialized at this point */
307         cpu->cpreg_array_len++;
308     }
309 }
310 
311 static void count_cpreg(gpointer key, gpointer opaque)
312 {
313     ARMCPU *cpu = opaque;
314     uint64_t regidx;
315     const ARMCPRegInfo *ri;
316 
317     regidx = *(uint32_t *)key;
318     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
319 
320     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
321         cpu->cpreg_array_len++;
322     }
323 }
324 
325 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
326 {
327     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
328     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
329 
330     if (aidx > bidx) {
331         return 1;
332     }
333     if (aidx < bidx) {
334         return -1;
335     }
336     return 0;
337 }
338 
339 void init_cpreg_list(ARMCPU *cpu)
340 {
341     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
342      * Note that we require cpreg_tuples[] to be sorted by key ID.
343      */
344     GList *keys;
345     int arraylen;
346 
347     keys = g_hash_table_get_keys(cpu->cp_regs);
348     keys = g_list_sort(keys, cpreg_key_compare);
349 
350     cpu->cpreg_array_len = 0;
351 
352     g_list_foreach(keys, count_cpreg, cpu);
353 
354     arraylen = cpu->cpreg_array_len;
355     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
356     cpu->cpreg_values = g_new(uint64_t, arraylen);
357     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
358     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
359     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
360     cpu->cpreg_array_len = 0;
361 
362     g_list_foreach(keys, add_cpreg_to_list, cpu);
363 
364     assert(cpu->cpreg_array_len == arraylen);
365 
366     g_list_free(keys);
367 }
368 
369 /*
370  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
371  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
372  *
373  * access_el3_aa32ns: Used to check AArch32 register views.
374  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
375  */
376 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
377                                         const ARMCPRegInfo *ri,
378                                         bool isread)
379 {
380     bool secure = arm_is_secure_below_el3(env);
381 
382     assert(!arm_el_is_aa64(env, 3));
383     if (secure) {
384         return CP_ACCESS_TRAP_UNCATEGORIZED;
385     }
386     return CP_ACCESS_OK;
387 }
388 
389 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
390                                                 const ARMCPRegInfo *ri,
391                                                 bool isread)
392 {
393     if (!arm_el_is_aa64(env, 3)) {
394         return access_el3_aa32ns(env, ri, isread);
395     }
396     return CP_ACCESS_OK;
397 }
398 
399 /* Some secure-only AArch32 registers trap to EL3 if used from
400  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
401  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
402  * We assume that the .access field is set to PL1_RW.
403  */
404 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
405                                             const ARMCPRegInfo *ri,
406                                             bool isread)
407 {
408     if (arm_current_el(env) == 3) {
409         return CP_ACCESS_OK;
410     }
411     if (arm_is_secure_below_el3(env)) {
412         return CP_ACCESS_TRAP_EL3;
413     }
414     /* This will be EL1 NS and EL2 NS, which just UNDEF */
415     return CP_ACCESS_TRAP_UNCATEGORIZED;
416 }
417 
418 /* Check for traps to "powerdown debug" registers, which are controlled
419  * by MDCR.TDOSA
420  */
421 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
422                                    bool isread)
423 {
424     int el = arm_current_el(env);
425 
426     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
427         && !arm_is_secure_below_el3(env)) {
428         return CP_ACCESS_TRAP_EL2;
429     }
430     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
431         return CP_ACCESS_TRAP_EL3;
432     }
433     return CP_ACCESS_OK;
434 }
435 
436 /* Check for traps to "debug ROM" registers, which are controlled
437  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
438  */
439 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
440                                   bool isread)
441 {
442     int el = arm_current_el(env);
443 
444     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
445         && !arm_is_secure_below_el3(env)) {
446         return CP_ACCESS_TRAP_EL2;
447     }
448     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
449         return CP_ACCESS_TRAP_EL3;
450     }
451     return CP_ACCESS_OK;
452 }
453 
454 /* Check for traps to general debug registers, which are controlled
455  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
456  */
457 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
458                                   bool isread)
459 {
460     int el = arm_current_el(env);
461 
462     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
463         && !arm_is_secure_below_el3(env)) {
464         return CP_ACCESS_TRAP_EL2;
465     }
466     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
467         return CP_ACCESS_TRAP_EL3;
468     }
469     return CP_ACCESS_OK;
470 }
471 
472 /* Check for traps to performance monitor registers, which are controlled
473  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
474  */
475 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
476                                  bool isread)
477 {
478     int el = arm_current_el(env);
479 
480     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
481         && !arm_is_secure_below_el3(env)) {
482         return CP_ACCESS_TRAP_EL2;
483     }
484     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
485         return CP_ACCESS_TRAP_EL3;
486     }
487     return CP_ACCESS_OK;
488 }
489 
490 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
491 {
492     ARMCPU *cpu = arm_env_get_cpu(env);
493 
494     raw_write(env, ri, value);
495     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
496 }
497 
498 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
499 {
500     ARMCPU *cpu = arm_env_get_cpu(env);
501 
502     if (raw_read(env, ri) != value) {
503         /* Unlike real hardware the qemu TLB uses virtual addresses,
504          * not modified virtual addresses, so this causes a TLB flush.
505          */
506         tlb_flush(CPU(cpu));
507         raw_write(env, ri, value);
508     }
509 }
510 
511 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
512                              uint64_t value)
513 {
514     ARMCPU *cpu = arm_env_get_cpu(env);
515 
516     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
517         && !extended_addresses_enabled(env)) {
518         /* For VMSA (when not using the LPAE long descriptor page table
519          * format) this register includes the ASID, so do a TLB flush.
520          * For PMSA it is purely a process ID and no action is needed.
521          */
522         tlb_flush(CPU(cpu));
523     }
524     raw_write(env, ri, value);
525 }
526 
527 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
528                           uint64_t value)
529 {
530     /* Invalidate all (TLBIALL) */
531     ARMCPU *cpu = arm_env_get_cpu(env);
532 
533     tlb_flush(CPU(cpu));
534 }
535 
536 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
537                           uint64_t value)
538 {
539     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
540     ARMCPU *cpu = arm_env_get_cpu(env);
541 
542     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
543 }
544 
545 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
546                            uint64_t value)
547 {
548     /* Invalidate by ASID (TLBIASID) */
549     ARMCPU *cpu = arm_env_get_cpu(env);
550 
551     tlb_flush(CPU(cpu));
552 }
553 
554 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
555                            uint64_t value)
556 {
557     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
558     ARMCPU *cpu = arm_env_get_cpu(env);
559 
560     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
561 }
562 
563 /* IS variants of TLB operations must affect all cores */
564 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                              uint64_t value)
566 {
567     CPUState *cs = ENV_GET_CPU(env);
568 
569     tlb_flush_all_cpus_synced(cs);
570 }
571 
572 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                              uint64_t value)
574 {
575     CPUState *cs = ENV_GET_CPU(env);
576 
577     tlb_flush_all_cpus_synced(cs);
578 }
579 
580 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
581                              uint64_t value)
582 {
583     CPUState *cs = ENV_GET_CPU(env);
584 
585     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
586 }
587 
588 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
589                              uint64_t value)
590 {
591     CPUState *cs = ENV_GET_CPU(env);
592 
593     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
594 }
595 
596 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
597                                uint64_t value)
598 {
599     CPUState *cs = ENV_GET_CPU(env);
600 
601     tlb_flush_by_mmuidx(cs,
602                         ARMMMUIdxBit_S12NSE1 |
603                         ARMMMUIdxBit_S12NSE0 |
604                         ARMMMUIdxBit_S2NS);
605 }
606 
607 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
608                                   uint64_t value)
609 {
610     CPUState *cs = ENV_GET_CPU(env);
611 
612     tlb_flush_by_mmuidx_all_cpus_synced(cs,
613                                         ARMMMUIdxBit_S12NSE1 |
614                                         ARMMMUIdxBit_S12NSE0 |
615                                         ARMMMUIdxBit_S2NS);
616 }
617 
618 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
619                             uint64_t value)
620 {
621     /* Invalidate by IPA. This has to invalidate any structures that
622      * contain only stage 2 translation information, but does not need
623      * to apply to structures that contain combined stage 1 and stage 2
624      * translation information.
625      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
626      */
627     CPUState *cs = ENV_GET_CPU(env);
628     uint64_t pageaddr;
629 
630     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
631         return;
632     }
633 
634     pageaddr = sextract64(value << 12, 0, 40);
635 
636     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
637 }
638 
639 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
640                                uint64_t value)
641 {
642     CPUState *cs = ENV_GET_CPU(env);
643     uint64_t pageaddr;
644 
645     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
646         return;
647     }
648 
649     pageaddr = sextract64(value << 12, 0, 40);
650 
651     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
652                                              ARMMMUIdxBit_S2NS);
653 }
654 
655 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
656                               uint64_t value)
657 {
658     CPUState *cs = ENV_GET_CPU(env);
659 
660     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
661 }
662 
663 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
664                                  uint64_t value)
665 {
666     CPUState *cs = ENV_GET_CPU(env);
667 
668     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
669 }
670 
671 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
672                               uint64_t value)
673 {
674     CPUState *cs = ENV_GET_CPU(env);
675     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
676 
677     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
678 }
679 
680 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
681                                  uint64_t value)
682 {
683     CPUState *cs = ENV_GET_CPU(env);
684     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
685 
686     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
687                                              ARMMMUIdxBit_S1E2);
688 }
689 
690 static const ARMCPRegInfo cp_reginfo[] = {
691     /* Define the secure and non-secure FCSE identifier CP registers
692      * separately because there is no secure bank in V8 (no _EL3).  This allows
693      * the secure register to be properly reset and migrated. There is also no
694      * v8 EL1 version of the register so the non-secure instance stands alone.
695      */
696     { .name = "FCSEIDR(NS)",
697       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
698       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
699       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
700       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
701     { .name = "FCSEIDR(S)",
702       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
703       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
704       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
705       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
706     /* Define the secure and non-secure context identifier CP registers
707      * separately because there is no secure bank in V8 (no _EL3).  This allows
708      * the secure register to be properly reset and migrated.  In the
709      * non-secure case, the 32-bit register will have reset and migration
710      * disabled during registration as it is handled by the 64-bit instance.
711      */
712     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
713       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
714       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
715       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
716       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
717     { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
718       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
719       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
720       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
721       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
722     REGINFO_SENTINEL
723 };
724 
725 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
726     /* NB: Some of these registers exist in v8 but with more precise
727      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
728      */
729     /* MMU Domain access control / MPU write buffer control */
730     { .name = "DACR",
731       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
732       .access = PL1_RW, .resetvalue = 0,
733       .writefn = dacr_write, .raw_writefn = raw_write,
734       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
735                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
736     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
737      * For v6 and v5, these mappings are overly broad.
738      */
739     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
740       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
741     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
742       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
743     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
744       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
745     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
746       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
747     /* Cache maintenance ops; some of this space may be overridden later. */
748     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
749       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
750       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
751     REGINFO_SENTINEL
752 };
753 
754 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
755     /* Not all pre-v6 cores implemented this WFI, so this is slightly
756      * over-broad.
757      */
758     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
759       .access = PL1_W, .type = ARM_CP_WFI },
760     REGINFO_SENTINEL
761 };
762 
763 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
764     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
765      * is UNPREDICTABLE; we choose to NOP as most implementations do).
766      */
767     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
768       .access = PL1_W, .type = ARM_CP_WFI },
769     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
770      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
771      * OMAPCP will override this space.
772      */
773     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
774       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
775       .resetvalue = 0 },
776     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
777       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
778       .resetvalue = 0 },
779     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
780     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
781       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
782       .resetvalue = 0 },
783     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
784      * implementing it as RAZ means the "debug architecture version" bits
785      * will read as a reserved value, which should cause Linux to not try
786      * to use the debug hardware.
787      */
788     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
789       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
790     /* MMU TLB control. Note that the wildcarding means we cover not just
791      * the unified TLB ops but also the dside/iside/inner-shareable variants.
792      */
793     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
794       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
795       .type = ARM_CP_NO_RAW },
796     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
797       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
798       .type = ARM_CP_NO_RAW },
799     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
800       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
801       .type = ARM_CP_NO_RAW },
802     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
803       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
804       .type = ARM_CP_NO_RAW },
805     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
806       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
807     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
808       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
809     REGINFO_SENTINEL
810 };
811 
812 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
813                         uint64_t value)
814 {
815     uint32_t mask = 0;
816 
817     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
818     if (!arm_feature(env, ARM_FEATURE_V8)) {
819         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
820          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
821          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
822          */
823         if (arm_feature(env, ARM_FEATURE_VFP)) {
824             /* VFP coprocessor: cp10 & cp11 [23:20] */
825             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
826 
827             if (!arm_feature(env, ARM_FEATURE_NEON)) {
828                 /* ASEDIS [31] bit is RAO/WI */
829                 value |= (1 << 31);
830             }
831 
832             /* VFPv3 and upwards with NEON implement 32 double precision
833              * registers (D0-D31).
834              */
835             if (!arm_feature(env, ARM_FEATURE_NEON) ||
836                     !arm_feature(env, ARM_FEATURE_VFP3)) {
837                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
838                 value |= (1 << 30);
839             }
840         }
841         value &= mask;
842     }
843     env->cp15.cpacr_el1 = value;
844 }
845 
846 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847                                    bool isread)
848 {
849     if (arm_feature(env, ARM_FEATURE_V8)) {
850         /* Check if CPACR accesses are to be trapped to EL2 */
851         if (arm_current_el(env) == 1 &&
852             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
853             return CP_ACCESS_TRAP_EL2;
854         /* Check if CPACR accesses are to be trapped to EL3 */
855         } else if (arm_current_el(env) < 3 &&
856                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
857             return CP_ACCESS_TRAP_EL3;
858         }
859     }
860 
861     return CP_ACCESS_OK;
862 }
863 
864 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
865                                   bool isread)
866 {
867     /* Check if CPTR accesses are set to trap to EL3 */
868     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
869         return CP_ACCESS_TRAP_EL3;
870     }
871 
872     return CP_ACCESS_OK;
873 }
874 
875 static const ARMCPRegInfo v6_cp_reginfo[] = {
876     /* prefetch by MVA in v6, NOP in v7 */
877     { .name = "MVA_prefetch",
878       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
879       .access = PL1_W, .type = ARM_CP_NOP },
880     /* We need to break the TB after ISB to execute self-modifying code
881      * correctly and also to take any pending interrupts immediately.
882      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
883      */
884     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
885       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
886     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
887       .access = PL0_W, .type = ARM_CP_NOP },
888     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
889       .access = PL0_W, .type = ARM_CP_NOP },
890     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
891       .access = PL1_RW,
892       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
893                              offsetof(CPUARMState, cp15.ifar_ns) },
894       .resetvalue = 0, },
895     /* Watchpoint Fault Address Register : should actually only be present
896      * for 1136, 1176, 11MPCore.
897      */
898     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
899       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
900     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
901       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
902       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
903       .resetvalue = 0, .writefn = cpacr_write },
904     REGINFO_SENTINEL
905 };
906 
907 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
908                                    bool isread)
909 {
910     /* Performance monitor registers user accessibility is controlled
911      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
912      * trapping to EL2 or EL3 for other accesses.
913      */
914     int el = arm_current_el(env);
915 
916     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
917         return CP_ACCESS_TRAP;
918     }
919     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
920         && !arm_is_secure_below_el3(env)) {
921         return CP_ACCESS_TRAP_EL2;
922     }
923     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
924         return CP_ACCESS_TRAP_EL3;
925     }
926 
927     return CP_ACCESS_OK;
928 }
929 
930 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
931                                            const ARMCPRegInfo *ri,
932                                            bool isread)
933 {
934     /* ER: event counter read trap control */
935     if (arm_feature(env, ARM_FEATURE_V8)
936         && arm_current_el(env) == 0
937         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
938         && isread) {
939         return CP_ACCESS_OK;
940     }
941 
942     return pmreg_access(env, ri, isread);
943 }
944 
945 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
946                                          const ARMCPRegInfo *ri,
947                                          bool isread)
948 {
949     /* SW: software increment write trap control */
950     if (arm_feature(env, ARM_FEATURE_V8)
951         && arm_current_el(env) == 0
952         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
953         && !isread) {
954         return CP_ACCESS_OK;
955     }
956 
957     return pmreg_access(env, ri, isread);
958 }
959 
960 #ifndef CONFIG_USER_ONLY
961 
962 static CPAccessResult pmreg_access_selr(CPUARMState *env,
963                                         const ARMCPRegInfo *ri,
964                                         bool isread)
965 {
966     /* ER: event counter read trap control */
967     if (arm_feature(env, ARM_FEATURE_V8)
968         && arm_current_el(env) == 0
969         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
970         return CP_ACCESS_OK;
971     }
972 
973     return pmreg_access(env, ri, isread);
974 }
975 
976 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
977                                          const ARMCPRegInfo *ri,
978                                          bool isread)
979 {
980     /* CR: cycle counter read trap control */
981     if (arm_feature(env, ARM_FEATURE_V8)
982         && arm_current_el(env) == 0
983         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
984         && isread) {
985         return CP_ACCESS_OK;
986     }
987 
988     return pmreg_access(env, ri, isread);
989 }
990 
991 static inline bool arm_ccnt_enabled(CPUARMState *env)
992 {
993     /* This does not support checking PMCCFILTR_EL0 register */
994 
995     if (!(env->cp15.c9_pmcr & PMCRE)) {
996         return false;
997     }
998 
999     return true;
1000 }
1001 
1002 void pmccntr_sync(CPUARMState *env)
1003 {
1004     uint64_t temp_ticks;
1005 
1006     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1007                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1008 
1009     if (env->cp15.c9_pmcr & PMCRD) {
1010         /* Increment once every 64 processor clock cycles */
1011         temp_ticks /= 64;
1012     }
1013 
1014     if (arm_ccnt_enabled(env)) {
1015         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1016     }
1017 }
1018 
1019 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1020                        uint64_t value)
1021 {
1022     pmccntr_sync(env);
1023 
1024     if (value & PMCRC) {
1025         /* The counter has been reset */
1026         env->cp15.c15_ccnt = 0;
1027     }
1028 
1029     /* only the DP, X, D and E bits are writable */
1030     env->cp15.c9_pmcr &= ~0x39;
1031     env->cp15.c9_pmcr |= (value & 0x39);
1032 
1033     pmccntr_sync(env);
1034 }
1035 
1036 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1037 {
1038     uint64_t total_ticks;
1039 
1040     if (!arm_ccnt_enabled(env)) {
1041         /* Counter is disabled, do not change value */
1042         return env->cp15.c15_ccnt;
1043     }
1044 
1045     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1046                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1047 
1048     if (env->cp15.c9_pmcr & PMCRD) {
1049         /* Increment once every 64 processor clock cycles */
1050         total_ticks /= 64;
1051     }
1052     return total_ticks - env->cp15.c15_ccnt;
1053 }
1054 
1055 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1056                          uint64_t value)
1057 {
1058     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1059      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1060      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1061      * accessed.
1062      */
1063     env->cp15.c9_pmselr = value & 0x1f;
1064 }
1065 
1066 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1067                         uint64_t value)
1068 {
1069     uint64_t total_ticks;
1070 
1071     if (!arm_ccnt_enabled(env)) {
1072         /* Counter is disabled, set the absolute value */
1073         env->cp15.c15_ccnt = value;
1074         return;
1075     }
1076 
1077     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1078                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1079 
1080     if (env->cp15.c9_pmcr & PMCRD) {
1081         /* Increment once every 64 processor clock cycles */
1082         total_ticks /= 64;
1083     }
1084     env->cp15.c15_ccnt = total_ticks - value;
1085 }
1086 
1087 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1088                             uint64_t value)
1089 {
1090     uint64_t cur_val = pmccntr_read(env, NULL);
1091 
1092     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1093 }
1094 
1095 #else /* CONFIG_USER_ONLY */
1096 
1097 void pmccntr_sync(CPUARMState *env)
1098 {
1099 }
1100 
1101 #endif
1102 
1103 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104                             uint64_t value)
1105 {
1106     pmccntr_sync(env);
1107     env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1108     pmccntr_sync(env);
1109 }
1110 
1111 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1112                             uint64_t value)
1113 {
1114     value &= (1 << 31);
1115     env->cp15.c9_pmcnten |= value;
1116 }
1117 
1118 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1119                              uint64_t value)
1120 {
1121     value &= (1 << 31);
1122     env->cp15.c9_pmcnten &= ~value;
1123 }
1124 
1125 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1126                          uint64_t value)
1127 {
1128     env->cp15.c9_pmovsr &= ~value;
1129 }
1130 
1131 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1132                              uint64_t value)
1133 {
1134     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1135      * PMSELR value is equal to or greater than the number of implemented
1136      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1137      */
1138     if (env->cp15.c9_pmselr == 0x1f) {
1139         pmccfiltr_write(env, ri, value);
1140     }
1141 }
1142 
1143 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1144 {
1145     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1146      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1147      */
1148     if (env->cp15.c9_pmselr == 0x1f) {
1149         return env->cp15.pmccfiltr_el0;
1150     } else {
1151         return 0;
1152     }
1153 }
1154 
1155 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1156                             uint64_t value)
1157 {
1158     if (arm_feature(env, ARM_FEATURE_V8)) {
1159         env->cp15.c9_pmuserenr = value & 0xf;
1160     } else {
1161         env->cp15.c9_pmuserenr = value & 1;
1162     }
1163 }
1164 
1165 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166                              uint64_t value)
1167 {
1168     /* We have no event counters so only the C bit can be changed */
1169     value &= (1 << 31);
1170     env->cp15.c9_pminten |= value;
1171 }
1172 
1173 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1174                              uint64_t value)
1175 {
1176     value &= (1 << 31);
1177     env->cp15.c9_pminten &= ~value;
1178 }
1179 
1180 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1181                        uint64_t value)
1182 {
1183     /* Note that even though the AArch64 view of this register has bits
1184      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1185      * architectural requirements for bits which are RES0 only in some
1186      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1187      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1188      */
1189     raw_write(env, ri, value & ~0x1FULL);
1190 }
1191 
1192 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1193 {
1194     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1195      * For bits that vary between AArch32/64, code needs to check the
1196      * current execution mode before directly using the feature bit.
1197      */
1198     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1199 
1200     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1201         valid_mask &= ~SCR_HCE;
1202 
1203         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1204          * supported if EL2 exists. The bit is UNK/SBZP when
1205          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1206          * when EL2 is unavailable.
1207          * On ARMv8, this bit is always available.
1208          */
1209         if (arm_feature(env, ARM_FEATURE_V7) &&
1210             !arm_feature(env, ARM_FEATURE_V8)) {
1211             valid_mask &= ~SCR_SMD;
1212         }
1213     }
1214 
1215     /* Clear all-context RES0 bits.  */
1216     value &= valid_mask;
1217     raw_write(env, ri, value);
1218 }
1219 
1220 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1221 {
1222     ARMCPU *cpu = arm_env_get_cpu(env);
1223 
1224     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1225      * bank
1226      */
1227     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1228                                         ri->secure & ARM_CP_SECSTATE_S);
1229 
1230     return cpu->ccsidr[index];
1231 }
1232 
1233 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1234                          uint64_t value)
1235 {
1236     raw_write(env, ri, value & 0xf);
1237 }
1238 
1239 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1240 {
1241     CPUState *cs = ENV_GET_CPU(env);
1242     uint64_t ret = 0;
1243 
1244     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1245         ret |= CPSR_I;
1246     }
1247     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1248         ret |= CPSR_F;
1249     }
1250     /* External aborts are not possible in QEMU so A bit is always clear */
1251     return ret;
1252 }
1253 
1254 static const ARMCPRegInfo v7_cp_reginfo[] = {
1255     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1256     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1257       .access = PL1_W, .type = ARM_CP_NOP },
1258     /* Performance monitors are implementation defined in v7,
1259      * but with an ARM recommended set of registers, which we
1260      * follow (although we don't actually implement any counters)
1261      *
1262      * Performance registers fall into three categories:
1263      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1264      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1265      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1266      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1267      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1268      */
1269     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1270       .access = PL0_RW, .type = ARM_CP_ALIAS,
1271       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1272       .writefn = pmcntenset_write,
1273       .accessfn = pmreg_access,
1274       .raw_writefn = raw_write },
1275     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1276       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1277       .access = PL0_RW, .accessfn = pmreg_access,
1278       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1279       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1280     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1281       .access = PL0_RW,
1282       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1283       .accessfn = pmreg_access,
1284       .writefn = pmcntenclr_write,
1285       .type = ARM_CP_ALIAS },
1286     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1287       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1288       .access = PL0_RW, .accessfn = pmreg_access,
1289       .type = ARM_CP_ALIAS,
1290       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1291       .writefn = pmcntenclr_write },
1292     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1293       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1294       .accessfn = pmreg_access,
1295       .writefn = pmovsr_write,
1296       .raw_writefn = raw_write },
1297     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1298       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1299       .access = PL0_RW, .accessfn = pmreg_access,
1300       .type = ARM_CP_ALIAS,
1301       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1302       .writefn = pmovsr_write,
1303       .raw_writefn = raw_write },
1304     /* Unimplemented so WI. */
1305     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1306       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1307 #ifndef CONFIG_USER_ONLY
1308     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1309       .access = PL0_RW, .type = ARM_CP_ALIAS,
1310       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1311       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1312       .raw_writefn = raw_write},
1313     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1314       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1315       .access = PL0_RW, .accessfn = pmreg_access_selr,
1316       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1317       .writefn = pmselr_write, .raw_writefn = raw_write, },
1318     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1319       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1320       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1321       .accessfn = pmreg_access_ccntr },
1322     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1323       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1324       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1325       .type = ARM_CP_IO,
1326       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1327 #endif
1328     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1329       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1330       .writefn = pmccfiltr_write,
1331       .access = PL0_RW, .accessfn = pmreg_access,
1332       .type = ARM_CP_IO,
1333       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1334       .resetvalue = 0, },
1335     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1336       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1337       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1338     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1339       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1340       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1341       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1342     /* Unimplemented, RAZ/WI. */
1343     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1344       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1345       .accessfn = pmreg_access_xevcntr },
1346     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1347       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1348       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1349       .resetvalue = 0,
1350       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1351     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1352       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1353       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1354       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1355       .resetvalue = 0,
1356       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1357     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1358       .access = PL1_RW, .accessfn = access_tpm,
1359       .type = ARM_CP_ALIAS,
1360       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1361       .resetvalue = 0,
1362       .writefn = pmintenset_write, .raw_writefn = raw_write },
1363     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1364       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1365       .access = PL1_RW, .accessfn = access_tpm,
1366       .type = ARM_CP_IO,
1367       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1368       .writefn = pmintenset_write, .raw_writefn = raw_write,
1369       .resetvalue = 0x0 },
1370     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1371       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1372       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1373       .writefn = pmintenclr_write, },
1374     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1375       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1376       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1377       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1378       .writefn = pmintenclr_write },
1379     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1380       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1381       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1382     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1383       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1384       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1385       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1386                              offsetof(CPUARMState, cp15.csselr_ns) } },
1387     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1388      * just RAZ for all cores:
1389      */
1390     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1391       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1392       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1393     /* Auxiliary fault status registers: these also are IMPDEF, and we
1394      * choose to RAZ/WI for all cores.
1395      */
1396     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1397       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1398       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1399     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1400       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1401       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1402     /* MAIR can just read-as-written because we don't implement caches
1403      * and so don't need to care about memory attributes.
1404      */
1405     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1406       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1407       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1408       .resetvalue = 0 },
1409     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1410       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1411       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1412       .resetvalue = 0 },
1413     /* For non-long-descriptor page tables these are PRRR and NMRR;
1414      * regardless they still act as reads-as-written for QEMU.
1415      */
1416      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1417       * allows them to assign the correct fieldoffset based on the endianness
1418       * handled in the field definitions.
1419       */
1420     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1421       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1422       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1423                              offsetof(CPUARMState, cp15.mair0_ns) },
1424       .resetfn = arm_cp_reset_ignore },
1425     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1426       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1427       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1428                              offsetof(CPUARMState, cp15.mair1_ns) },
1429       .resetfn = arm_cp_reset_ignore },
1430     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1431       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1432       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1433     /* 32 bit ITLB invalidates */
1434     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1435       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1436     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1437       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1438     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1439       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1440     /* 32 bit DTLB invalidates */
1441     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1442       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1443     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1444       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1445     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1446       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1447     /* 32 bit TLB invalidates */
1448     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1449       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1450     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1451       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1452     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1453       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1454     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1455       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1456     REGINFO_SENTINEL
1457 };
1458 
1459 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1460     /* 32 bit TLB invalidates, Inner Shareable */
1461     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1462       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1463     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1464       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1465     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1466       .type = ARM_CP_NO_RAW, .access = PL1_W,
1467       .writefn = tlbiasid_is_write },
1468     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1469       .type = ARM_CP_NO_RAW, .access = PL1_W,
1470       .writefn = tlbimvaa_is_write },
1471     REGINFO_SENTINEL
1472 };
1473 
1474 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1475                         uint64_t value)
1476 {
1477     value &= 1;
1478     env->teecr = value;
1479 }
1480 
1481 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1482                                     bool isread)
1483 {
1484     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1485         return CP_ACCESS_TRAP;
1486     }
1487     return CP_ACCESS_OK;
1488 }
1489 
1490 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1491     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1492       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1493       .resetvalue = 0,
1494       .writefn = teecr_write },
1495     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1496       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1497       .accessfn = teehbr_access, .resetvalue = 0 },
1498     REGINFO_SENTINEL
1499 };
1500 
1501 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1502     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1503       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1504       .access = PL0_RW,
1505       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1506     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1507       .access = PL0_RW,
1508       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1509                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1510       .resetfn = arm_cp_reset_ignore },
1511     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1512       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1513       .access = PL0_R|PL1_W,
1514       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1515       .resetvalue = 0},
1516     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1517       .access = PL0_R|PL1_W,
1518       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1519                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1520       .resetfn = arm_cp_reset_ignore },
1521     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1522       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1523       .access = PL1_RW,
1524       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1525     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1526       .access = PL1_RW,
1527       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1528                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1529       .resetvalue = 0 },
1530     REGINFO_SENTINEL
1531 };
1532 
1533 #ifndef CONFIG_USER_ONLY
1534 
1535 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1536                                        bool isread)
1537 {
1538     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1539      * Writable only at the highest implemented exception level.
1540      */
1541     int el = arm_current_el(env);
1542 
1543     switch (el) {
1544     case 0:
1545         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1546             return CP_ACCESS_TRAP;
1547         }
1548         break;
1549     case 1:
1550         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1551             arm_is_secure_below_el3(env)) {
1552             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1553             return CP_ACCESS_TRAP_UNCATEGORIZED;
1554         }
1555         break;
1556     case 2:
1557     case 3:
1558         break;
1559     }
1560 
1561     if (!isread && el < arm_highest_el(env)) {
1562         return CP_ACCESS_TRAP_UNCATEGORIZED;
1563     }
1564 
1565     return CP_ACCESS_OK;
1566 }
1567 
1568 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1569                                         bool isread)
1570 {
1571     unsigned int cur_el = arm_current_el(env);
1572     bool secure = arm_is_secure(env);
1573 
1574     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1575     if (cur_el == 0 &&
1576         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1577         return CP_ACCESS_TRAP;
1578     }
1579 
1580     if (arm_feature(env, ARM_FEATURE_EL2) &&
1581         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1582         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1583         return CP_ACCESS_TRAP_EL2;
1584     }
1585     return CP_ACCESS_OK;
1586 }
1587 
1588 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1589                                       bool isread)
1590 {
1591     unsigned int cur_el = arm_current_el(env);
1592     bool secure = arm_is_secure(env);
1593 
1594     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1595      * EL0[PV]TEN is zero.
1596      */
1597     if (cur_el == 0 &&
1598         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1599         return CP_ACCESS_TRAP;
1600     }
1601 
1602     if (arm_feature(env, ARM_FEATURE_EL2) &&
1603         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1604         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1605         return CP_ACCESS_TRAP_EL2;
1606     }
1607     return CP_ACCESS_OK;
1608 }
1609 
1610 static CPAccessResult gt_pct_access(CPUARMState *env,
1611                                     const ARMCPRegInfo *ri,
1612                                     bool isread)
1613 {
1614     return gt_counter_access(env, GTIMER_PHYS, isread);
1615 }
1616 
1617 static CPAccessResult gt_vct_access(CPUARMState *env,
1618                                     const ARMCPRegInfo *ri,
1619                                     bool isread)
1620 {
1621     return gt_counter_access(env, GTIMER_VIRT, isread);
1622 }
1623 
1624 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1625                                        bool isread)
1626 {
1627     return gt_timer_access(env, GTIMER_PHYS, isread);
1628 }
1629 
1630 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1631                                        bool isread)
1632 {
1633     return gt_timer_access(env, GTIMER_VIRT, isread);
1634 }
1635 
1636 static CPAccessResult gt_stimer_access(CPUARMState *env,
1637                                        const ARMCPRegInfo *ri,
1638                                        bool isread)
1639 {
1640     /* The AArch64 register view of the secure physical timer is
1641      * always accessible from EL3, and configurably accessible from
1642      * Secure EL1.
1643      */
1644     switch (arm_current_el(env)) {
1645     case 1:
1646         if (!arm_is_secure(env)) {
1647             return CP_ACCESS_TRAP;
1648         }
1649         if (!(env->cp15.scr_el3 & SCR_ST)) {
1650             return CP_ACCESS_TRAP_EL3;
1651         }
1652         return CP_ACCESS_OK;
1653     case 0:
1654     case 2:
1655         return CP_ACCESS_TRAP;
1656     case 3:
1657         return CP_ACCESS_OK;
1658     default:
1659         g_assert_not_reached();
1660     }
1661 }
1662 
1663 static uint64_t gt_get_countervalue(CPUARMState *env)
1664 {
1665     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1666 }
1667 
1668 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1669 {
1670     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1671 
1672     if (gt->ctl & 1) {
1673         /* Timer enabled: calculate and set current ISTATUS, irq, and
1674          * reset timer to when ISTATUS next has to change
1675          */
1676         uint64_t offset = timeridx == GTIMER_VIRT ?
1677                                       cpu->env.cp15.cntvoff_el2 : 0;
1678         uint64_t count = gt_get_countervalue(&cpu->env);
1679         /* Note that this must be unsigned 64 bit arithmetic: */
1680         int istatus = count - offset >= gt->cval;
1681         uint64_t nexttick;
1682         int irqstate;
1683 
1684         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1685 
1686         irqstate = (istatus && !(gt->ctl & 2));
1687         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1688 
1689         if (istatus) {
1690             /* Next transition is when count rolls back over to zero */
1691             nexttick = UINT64_MAX;
1692         } else {
1693             /* Next transition is when we hit cval */
1694             nexttick = gt->cval + offset;
1695         }
1696         /* Note that the desired next expiry time might be beyond the
1697          * signed-64-bit range of a QEMUTimer -- in this case we just
1698          * set the timer for as far in the future as possible. When the
1699          * timer expires we will reset the timer for any remaining period.
1700          */
1701         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1702             nexttick = INT64_MAX / GTIMER_SCALE;
1703         }
1704         timer_mod(cpu->gt_timer[timeridx], nexttick);
1705         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1706     } else {
1707         /* Timer disabled: ISTATUS and timer output always clear */
1708         gt->ctl &= ~4;
1709         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1710         timer_del(cpu->gt_timer[timeridx]);
1711         trace_arm_gt_recalc_disabled(timeridx);
1712     }
1713 }
1714 
1715 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1716                            int timeridx)
1717 {
1718     ARMCPU *cpu = arm_env_get_cpu(env);
1719 
1720     timer_del(cpu->gt_timer[timeridx]);
1721 }
1722 
1723 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1724 {
1725     return gt_get_countervalue(env);
1726 }
1727 
1728 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1729 {
1730     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1731 }
1732 
1733 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                           int timeridx,
1735                           uint64_t value)
1736 {
1737     trace_arm_gt_cval_write(timeridx, value);
1738     env->cp15.c14_timer[timeridx].cval = value;
1739     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1740 }
1741 
1742 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1743                              int timeridx)
1744 {
1745     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1746 
1747     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1748                       (gt_get_countervalue(env) - offset));
1749 }
1750 
1751 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1752                           int timeridx,
1753                           uint64_t value)
1754 {
1755     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1756 
1757     trace_arm_gt_tval_write(timeridx, value);
1758     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1759                                          sextract64(value, 0, 32);
1760     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1761 }
1762 
1763 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764                          int timeridx,
1765                          uint64_t value)
1766 {
1767     ARMCPU *cpu = arm_env_get_cpu(env);
1768     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1769 
1770     trace_arm_gt_ctl_write(timeridx, value);
1771     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1772     if ((oldval ^ value) & 1) {
1773         /* Enable toggled */
1774         gt_recalc_timer(cpu, timeridx);
1775     } else if ((oldval ^ value) & 2) {
1776         /* IMASK toggled: don't need to recalculate,
1777          * just set the interrupt line based on ISTATUS
1778          */
1779         int irqstate = (oldval & 4) && !(value & 2);
1780 
1781         trace_arm_gt_imask_toggle(timeridx, irqstate);
1782         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1783     }
1784 }
1785 
1786 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1787 {
1788     gt_timer_reset(env, ri, GTIMER_PHYS);
1789 }
1790 
1791 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                                uint64_t value)
1793 {
1794     gt_cval_write(env, ri, GTIMER_PHYS, value);
1795 }
1796 
1797 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1798 {
1799     return gt_tval_read(env, ri, GTIMER_PHYS);
1800 }
1801 
1802 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803                                uint64_t value)
1804 {
1805     gt_tval_write(env, ri, GTIMER_PHYS, value);
1806 }
1807 
1808 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809                               uint64_t value)
1810 {
1811     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1812 }
1813 
1814 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1815 {
1816     gt_timer_reset(env, ri, GTIMER_VIRT);
1817 }
1818 
1819 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1820                                uint64_t value)
1821 {
1822     gt_cval_write(env, ri, GTIMER_VIRT, value);
1823 }
1824 
1825 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1826 {
1827     return gt_tval_read(env, ri, GTIMER_VIRT);
1828 }
1829 
1830 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1831                                uint64_t value)
1832 {
1833     gt_tval_write(env, ri, GTIMER_VIRT, value);
1834 }
1835 
1836 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1837                               uint64_t value)
1838 {
1839     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1840 }
1841 
1842 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1843                               uint64_t value)
1844 {
1845     ARMCPU *cpu = arm_env_get_cpu(env);
1846 
1847     trace_arm_gt_cntvoff_write(value);
1848     raw_write(env, ri, value);
1849     gt_recalc_timer(cpu, GTIMER_VIRT);
1850 }
1851 
1852 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1853 {
1854     gt_timer_reset(env, ri, GTIMER_HYP);
1855 }
1856 
1857 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858                               uint64_t value)
1859 {
1860     gt_cval_write(env, ri, GTIMER_HYP, value);
1861 }
1862 
1863 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1864 {
1865     return gt_tval_read(env, ri, GTIMER_HYP);
1866 }
1867 
1868 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869                               uint64_t value)
1870 {
1871     gt_tval_write(env, ri, GTIMER_HYP, value);
1872 }
1873 
1874 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875                               uint64_t value)
1876 {
1877     gt_ctl_write(env, ri, GTIMER_HYP, value);
1878 }
1879 
1880 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1881 {
1882     gt_timer_reset(env, ri, GTIMER_SEC);
1883 }
1884 
1885 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1886                               uint64_t value)
1887 {
1888     gt_cval_write(env, ri, GTIMER_SEC, value);
1889 }
1890 
1891 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1892 {
1893     return gt_tval_read(env, ri, GTIMER_SEC);
1894 }
1895 
1896 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1897                               uint64_t value)
1898 {
1899     gt_tval_write(env, ri, GTIMER_SEC, value);
1900 }
1901 
1902 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1903                               uint64_t value)
1904 {
1905     gt_ctl_write(env, ri, GTIMER_SEC, value);
1906 }
1907 
1908 void arm_gt_ptimer_cb(void *opaque)
1909 {
1910     ARMCPU *cpu = opaque;
1911 
1912     gt_recalc_timer(cpu, GTIMER_PHYS);
1913 }
1914 
1915 void arm_gt_vtimer_cb(void *opaque)
1916 {
1917     ARMCPU *cpu = opaque;
1918 
1919     gt_recalc_timer(cpu, GTIMER_VIRT);
1920 }
1921 
1922 void arm_gt_htimer_cb(void *opaque)
1923 {
1924     ARMCPU *cpu = opaque;
1925 
1926     gt_recalc_timer(cpu, GTIMER_HYP);
1927 }
1928 
1929 void arm_gt_stimer_cb(void *opaque)
1930 {
1931     ARMCPU *cpu = opaque;
1932 
1933     gt_recalc_timer(cpu, GTIMER_SEC);
1934 }
1935 
1936 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1937     /* Note that CNTFRQ is purely reads-as-written for the benefit
1938      * of software; writing it doesn't actually change the timer frequency.
1939      * Our reset value matches the fixed frequency we implement the timer at.
1940      */
1941     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1942       .type = ARM_CP_ALIAS,
1943       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1944       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1945     },
1946     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1947       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1948       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1949       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1950       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1951     },
1952     /* overall control: mostly access permissions */
1953     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1954       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1955       .access = PL1_RW,
1956       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1957       .resetvalue = 0,
1958     },
1959     /* per-timer control */
1960     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1961       .secure = ARM_CP_SECSTATE_NS,
1962       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1963       .accessfn = gt_ptimer_access,
1964       .fieldoffset = offsetoflow32(CPUARMState,
1965                                    cp15.c14_timer[GTIMER_PHYS].ctl),
1966       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1967     },
1968     { .name = "CNTP_CTL(S)",
1969       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1970       .secure = ARM_CP_SECSTATE_S,
1971       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1972       .accessfn = gt_ptimer_access,
1973       .fieldoffset = offsetoflow32(CPUARMState,
1974                                    cp15.c14_timer[GTIMER_SEC].ctl),
1975       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1976     },
1977     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1978       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1979       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1980       .accessfn = gt_ptimer_access,
1981       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1982       .resetvalue = 0,
1983       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1984     },
1985     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1986       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1987       .accessfn = gt_vtimer_access,
1988       .fieldoffset = offsetoflow32(CPUARMState,
1989                                    cp15.c14_timer[GTIMER_VIRT].ctl),
1990       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1991     },
1992     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1993       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1994       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1995       .accessfn = gt_vtimer_access,
1996       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1997       .resetvalue = 0,
1998       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1999     },
2000     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2001     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2002       .secure = ARM_CP_SECSTATE_NS,
2003       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2004       .accessfn = gt_ptimer_access,
2005       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2006     },
2007     { .name = "CNTP_TVAL(S)",
2008       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2009       .secure = ARM_CP_SECSTATE_S,
2010       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2011       .accessfn = gt_ptimer_access,
2012       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2013     },
2014     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2015       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2016       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2017       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2018       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2019     },
2020     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2021       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2022       .accessfn = gt_vtimer_access,
2023       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2024     },
2025     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2026       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2027       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2028       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2029       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2030     },
2031     /* The counter itself */
2032     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2033       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2034       .accessfn = gt_pct_access,
2035       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2036     },
2037     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2038       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2039       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2040       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2041     },
2042     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2043       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2044       .accessfn = gt_vct_access,
2045       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2046     },
2047     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2048       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2049       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2050       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2051     },
2052     /* Comparison value, indicating when the timer goes off */
2053     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2054       .secure = ARM_CP_SECSTATE_NS,
2055       .access = PL1_RW | PL0_R,
2056       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2057       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2058       .accessfn = gt_ptimer_access,
2059       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2060     },
2061     { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2062       .secure = ARM_CP_SECSTATE_S,
2063       .access = PL1_RW | PL0_R,
2064       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2065       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2066       .accessfn = gt_ptimer_access,
2067       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2068     },
2069     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2070       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2071       .access = PL1_RW | PL0_R,
2072       .type = ARM_CP_IO,
2073       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2074       .resetvalue = 0, .accessfn = gt_ptimer_access,
2075       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2076     },
2077     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2078       .access = PL1_RW | PL0_R,
2079       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2080       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2081       .accessfn = gt_vtimer_access,
2082       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2083     },
2084     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2085       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2086       .access = PL1_RW | PL0_R,
2087       .type = ARM_CP_IO,
2088       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2089       .resetvalue = 0, .accessfn = gt_vtimer_access,
2090       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2091     },
2092     /* Secure timer -- this is actually restricted to only EL3
2093      * and configurably Secure-EL1 via the accessfn.
2094      */
2095     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2096       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2097       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2098       .accessfn = gt_stimer_access,
2099       .readfn = gt_sec_tval_read,
2100       .writefn = gt_sec_tval_write,
2101       .resetfn = gt_sec_timer_reset,
2102     },
2103     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2104       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2105       .type = ARM_CP_IO, .access = PL1_RW,
2106       .accessfn = gt_stimer_access,
2107       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2108       .resetvalue = 0,
2109       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2110     },
2111     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2112       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2113       .type = ARM_CP_IO, .access = PL1_RW,
2114       .accessfn = gt_stimer_access,
2115       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2116       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2117     },
2118     REGINFO_SENTINEL
2119 };
2120 
2121 #else
2122 /* In user-mode none of the generic timer registers are accessible,
2123  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2124  * so instead just don't register any of them.
2125  */
2126 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2127     REGINFO_SENTINEL
2128 };
2129 
2130 #endif
2131 
2132 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2133 {
2134     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2135         raw_write(env, ri, value);
2136     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2137         raw_write(env, ri, value & 0xfffff6ff);
2138     } else {
2139         raw_write(env, ri, value & 0xfffff1ff);
2140     }
2141 }
2142 
2143 #ifndef CONFIG_USER_ONLY
2144 /* get_phys_addr() isn't present for user-mode-only targets */
2145 
2146 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2147                                  bool isread)
2148 {
2149     if (ri->opc2 & 4) {
2150         /* The ATS12NSO* operations must trap to EL3 if executed in
2151          * Secure EL1 (which can only happen if EL3 is AArch64).
2152          * They are simply UNDEF if executed from NS EL1.
2153          * They function normally from EL2 or EL3.
2154          */
2155         if (arm_current_el(env) == 1) {
2156             if (arm_is_secure_below_el3(env)) {
2157                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2158             }
2159             return CP_ACCESS_TRAP_UNCATEGORIZED;
2160         }
2161     }
2162     return CP_ACCESS_OK;
2163 }
2164 
2165 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2166                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2167 {
2168     hwaddr phys_addr;
2169     target_ulong page_size;
2170     int prot;
2171     bool ret;
2172     uint64_t par64;
2173     bool format64 = false;
2174     MemTxAttrs attrs = {};
2175     ARMMMUFaultInfo fi = {};
2176     ARMCacheAttrs cacheattrs = {};
2177 
2178     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2179                         &prot, &page_size, &fi, &cacheattrs);
2180 
2181     if (is_a64(env)) {
2182         format64 = true;
2183     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2184         /*
2185          * ATS1Cxx:
2186          * * TTBCR.EAE determines whether the result is returned using the
2187          *   32-bit or the 64-bit PAR format
2188          * * Instructions executed in Hyp mode always use the 64bit format
2189          *
2190          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2191          * * The Non-secure TTBCR.EAE bit is set to 1
2192          * * The implementation includes EL2, and the value of HCR.VM is 1
2193          *
2194          * ATS1Hx always uses the 64bit format (not supported yet).
2195          */
2196         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2197 
2198         if (arm_feature(env, ARM_FEATURE_EL2)) {
2199             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2200                 format64 |= env->cp15.hcr_el2 & HCR_VM;
2201             } else {
2202                 format64 |= arm_current_el(env) == 2;
2203             }
2204         }
2205     }
2206 
2207     if (format64) {
2208         /* Create a 64-bit PAR */
2209         par64 = (1 << 11); /* LPAE bit always set */
2210         if (!ret) {
2211             par64 |= phys_addr & ~0xfffULL;
2212             if (!attrs.secure) {
2213                 par64 |= (1 << 9); /* NS */
2214             }
2215             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2216             par64 |= cacheattrs.shareability << 7; /* SH */
2217         } else {
2218             uint32_t fsr = arm_fi_to_lfsc(&fi);
2219 
2220             par64 |= 1; /* F */
2221             par64 |= (fsr & 0x3f) << 1; /* FS */
2222             /* Note that S2WLK and FSTAGE are always zero, because we don't
2223              * implement virtualization and therefore there can't be a stage 2
2224              * fault.
2225              */
2226         }
2227     } else {
2228         /* fsr is a DFSR/IFSR value for the short descriptor
2229          * translation table format (with WnR always clear).
2230          * Convert it to a 32-bit PAR.
2231          */
2232         if (!ret) {
2233             /* We do not set any attribute bits in the PAR */
2234             if (page_size == (1 << 24)
2235                 && arm_feature(env, ARM_FEATURE_V7)) {
2236                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2237             } else {
2238                 par64 = phys_addr & 0xfffff000;
2239             }
2240             if (!attrs.secure) {
2241                 par64 |= (1 << 9); /* NS */
2242             }
2243         } else {
2244             uint32_t fsr = arm_fi_to_sfsc(&fi);
2245 
2246             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2247                     ((fsr & 0xf) << 1) | 1;
2248         }
2249     }
2250     return par64;
2251 }
2252 
2253 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2254 {
2255     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2256     uint64_t par64;
2257     ARMMMUIdx mmu_idx;
2258     int el = arm_current_el(env);
2259     bool secure = arm_is_secure_below_el3(env);
2260 
2261     switch (ri->opc2 & 6) {
2262     case 0:
2263         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2264         switch (el) {
2265         case 3:
2266             mmu_idx = ARMMMUIdx_S1E3;
2267             break;
2268         case 2:
2269             mmu_idx = ARMMMUIdx_S1NSE1;
2270             break;
2271         case 1:
2272             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2273             break;
2274         default:
2275             g_assert_not_reached();
2276         }
2277         break;
2278     case 2:
2279         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2280         switch (el) {
2281         case 3:
2282             mmu_idx = ARMMMUIdx_S1SE0;
2283             break;
2284         case 2:
2285             mmu_idx = ARMMMUIdx_S1NSE0;
2286             break;
2287         case 1:
2288             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2289             break;
2290         default:
2291             g_assert_not_reached();
2292         }
2293         break;
2294     case 4:
2295         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2296         mmu_idx = ARMMMUIdx_S12NSE1;
2297         break;
2298     case 6:
2299         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2300         mmu_idx = ARMMMUIdx_S12NSE0;
2301         break;
2302     default:
2303         g_assert_not_reached();
2304     }
2305 
2306     par64 = do_ats_write(env, value, access_type, mmu_idx);
2307 
2308     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2309 }
2310 
2311 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2312                         uint64_t value)
2313 {
2314     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2315     uint64_t par64;
2316 
2317     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2318 
2319     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2320 }
2321 
2322 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2323                                      bool isread)
2324 {
2325     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2326         return CP_ACCESS_TRAP;
2327     }
2328     return CP_ACCESS_OK;
2329 }
2330 
2331 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2332                         uint64_t value)
2333 {
2334     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2335     ARMMMUIdx mmu_idx;
2336     int secure = arm_is_secure_below_el3(env);
2337 
2338     switch (ri->opc2 & 6) {
2339     case 0:
2340         switch (ri->opc1) {
2341         case 0: /* AT S1E1R, AT S1E1W */
2342             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2343             break;
2344         case 4: /* AT S1E2R, AT S1E2W */
2345             mmu_idx = ARMMMUIdx_S1E2;
2346             break;
2347         case 6: /* AT S1E3R, AT S1E3W */
2348             mmu_idx = ARMMMUIdx_S1E3;
2349             break;
2350         default:
2351             g_assert_not_reached();
2352         }
2353         break;
2354     case 2: /* AT S1E0R, AT S1E0W */
2355         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2356         break;
2357     case 4: /* AT S12E1R, AT S12E1W */
2358         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2359         break;
2360     case 6: /* AT S12E0R, AT S12E0W */
2361         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2362         break;
2363     default:
2364         g_assert_not_reached();
2365     }
2366 
2367     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2368 }
2369 #endif
2370 
2371 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2372     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2373       .access = PL1_RW, .resetvalue = 0,
2374       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2375                              offsetoflow32(CPUARMState, cp15.par_ns) },
2376       .writefn = par_write },
2377 #ifndef CONFIG_USER_ONLY
2378     /* This underdecoding is safe because the reginfo is NO_RAW. */
2379     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2380       .access = PL1_W, .accessfn = ats_access,
2381       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2382 #endif
2383     REGINFO_SENTINEL
2384 };
2385 
2386 /* Return basic MPU access permission bits.  */
2387 static uint32_t simple_mpu_ap_bits(uint32_t val)
2388 {
2389     uint32_t ret;
2390     uint32_t mask;
2391     int i;
2392     ret = 0;
2393     mask = 3;
2394     for (i = 0; i < 16; i += 2) {
2395         ret |= (val >> i) & mask;
2396         mask <<= 2;
2397     }
2398     return ret;
2399 }
2400 
2401 /* Pad basic MPU access permission bits to extended format.  */
2402 static uint32_t extended_mpu_ap_bits(uint32_t val)
2403 {
2404     uint32_t ret;
2405     uint32_t mask;
2406     int i;
2407     ret = 0;
2408     mask = 3;
2409     for (i = 0; i < 16; i += 2) {
2410         ret |= (val & mask) << i;
2411         mask <<= 2;
2412     }
2413     return ret;
2414 }
2415 
2416 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2417                                  uint64_t value)
2418 {
2419     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2420 }
2421 
2422 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2423 {
2424     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2425 }
2426 
2427 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2428                                  uint64_t value)
2429 {
2430     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2431 }
2432 
2433 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2434 {
2435     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2436 }
2437 
2438 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2439 {
2440     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2441 
2442     if (!u32p) {
2443         return 0;
2444     }
2445 
2446     u32p += env->pmsav7.rnr[M_REG_NS];
2447     return *u32p;
2448 }
2449 
2450 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2451                          uint64_t value)
2452 {
2453     ARMCPU *cpu = arm_env_get_cpu(env);
2454     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2455 
2456     if (!u32p) {
2457         return;
2458     }
2459 
2460     u32p += env->pmsav7.rnr[M_REG_NS];
2461     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2462     *u32p = value;
2463 }
2464 
2465 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2466                               uint64_t value)
2467 {
2468     ARMCPU *cpu = arm_env_get_cpu(env);
2469     uint32_t nrgs = cpu->pmsav7_dregion;
2470 
2471     if (value >= nrgs) {
2472         qemu_log_mask(LOG_GUEST_ERROR,
2473                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2474                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2475         return;
2476     }
2477 
2478     raw_write(env, ri, value);
2479 }
2480 
2481 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2482     /* Reset for all these registers is handled in arm_cpu_reset(),
2483      * because the PMSAv7 is also used by M-profile CPUs, which do
2484      * not register cpregs but still need the state to be reset.
2485      */
2486     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2487       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2488       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2489       .readfn = pmsav7_read, .writefn = pmsav7_write,
2490       .resetfn = arm_cp_reset_ignore },
2491     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2492       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2493       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2494       .readfn = pmsav7_read, .writefn = pmsav7_write,
2495       .resetfn = arm_cp_reset_ignore },
2496     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2497       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2498       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2499       .readfn = pmsav7_read, .writefn = pmsav7_write,
2500       .resetfn = arm_cp_reset_ignore },
2501     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2502       .access = PL1_RW,
2503       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2504       .writefn = pmsav7_rgnr_write,
2505       .resetfn = arm_cp_reset_ignore },
2506     REGINFO_SENTINEL
2507 };
2508 
2509 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2510     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2511       .access = PL1_RW, .type = ARM_CP_ALIAS,
2512       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2513       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2514     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2515       .access = PL1_RW, .type = ARM_CP_ALIAS,
2516       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2517       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2518     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2519       .access = PL1_RW,
2520       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2521       .resetvalue = 0, },
2522     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2523       .access = PL1_RW,
2524       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2525       .resetvalue = 0, },
2526     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2527       .access = PL1_RW,
2528       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2529     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2530       .access = PL1_RW,
2531       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2532     /* Protection region base and size registers */
2533     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2534       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2535       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2536     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2537       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2538       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2539     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2540       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2541       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2542     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2543       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2544       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2545     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2546       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2547       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2548     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2549       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2550       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2551     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2552       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2553       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2554     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2555       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2556       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2557     REGINFO_SENTINEL
2558 };
2559 
2560 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2561                                  uint64_t value)
2562 {
2563     TCR *tcr = raw_ptr(env, ri);
2564     int maskshift = extract32(value, 0, 3);
2565 
2566     if (!arm_feature(env, ARM_FEATURE_V8)) {
2567         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2568             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2569              * using Long-desciptor translation table format */
2570             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2571         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2572             /* In an implementation that includes the Security Extensions
2573              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2574              * Short-descriptor translation table format.
2575              */
2576             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2577         } else {
2578             value &= TTBCR_N;
2579         }
2580     }
2581 
2582     /* Update the masks corresponding to the TCR bank being written
2583      * Note that we always calculate mask and base_mask, but
2584      * they are only used for short-descriptor tables (ie if EAE is 0);
2585      * for long-descriptor tables the TCR fields are used differently
2586      * and the mask and base_mask values are meaningless.
2587      */
2588     tcr->raw_tcr = value;
2589     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2590     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2591 }
2592 
2593 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2594                              uint64_t value)
2595 {
2596     ARMCPU *cpu = arm_env_get_cpu(env);
2597 
2598     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2599         /* With LPAE the TTBCR could result in a change of ASID
2600          * via the TTBCR.A1 bit, so do a TLB flush.
2601          */
2602         tlb_flush(CPU(cpu));
2603     }
2604     vmsa_ttbcr_raw_write(env, ri, value);
2605 }
2606 
2607 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2608 {
2609     TCR *tcr = raw_ptr(env, ri);
2610 
2611     /* Reset both the TCR as well as the masks corresponding to the bank of
2612      * the TCR being reset.
2613      */
2614     tcr->raw_tcr = 0;
2615     tcr->mask = 0;
2616     tcr->base_mask = 0xffffc000u;
2617 }
2618 
2619 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2620                                uint64_t value)
2621 {
2622     ARMCPU *cpu = arm_env_get_cpu(env);
2623     TCR *tcr = raw_ptr(env, ri);
2624 
2625     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2626     tlb_flush(CPU(cpu));
2627     tcr->raw_tcr = value;
2628 }
2629 
2630 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2631                             uint64_t value)
2632 {
2633     /* 64 bit accesses to the TTBRs can change the ASID and so we
2634      * must flush the TLB.
2635      */
2636     if (cpreg_field_is_64bit(ri)) {
2637         ARMCPU *cpu = arm_env_get_cpu(env);
2638 
2639         tlb_flush(CPU(cpu));
2640     }
2641     raw_write(env, ri, value);
2642 }
2643 
2644 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2645                         uint64_t value)
2646 {
2647     ARMCPU *cpu = arm_env_get_cpu(env);
2648     CPUState *cs = CPU(cpu);
2649 
2650     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2651     if (raw_read(env, ri) != value) {
2652         tlb_flush_by_mmuidx(cs,
2653                             ARMMMUIdxBit_S12NSE1 |
2654                             ARMMMUIdxBit_S12NSE0 |
2655                             ARMMMUIdxBit_S2NS);
2656         raw_write(env, ri, value);
2657     }
2658 }
2659 
2660 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2661     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2662       .access = PL1_RW, .type = ARM_CP_ALIAS,
2663       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2664                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2665     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2666       .access = PL1_RW, .resetvalue = 0,
2667       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2668                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2669     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2670       .access = PL1_RW, .resetvalue = 0,
2671       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2672                              offsetof(CPUARMState, cp15.dfar_ns) } },
2673     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2674       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2675       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2676       .resetvalue = 0, },
2677     REGINFO_SENTINEL
2678 };
2679 
2680 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2681     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2682       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2683       .access = PL1_RW,
2684       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2685     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2686       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2687       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2688       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2689                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2690     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2691       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2692       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2693       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2694                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2695     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2696       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2697       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2698       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2699       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2700     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2701       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2702       .raw_writefn = vmsa_ttbcr_raw_write,
2703       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2704                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2705     REGINFO_SENTINEL
2706 };
2707 
2708 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2709                                 uint64_t value)
2710 {
2711     env->cp15.c15_ticonfig = value & 0xe7;
2712     /* The OS_TYPE bit in this register changes the reported CPUID! */
2713     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2714         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2715 }
2716 
2717 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2718                                 uint64_t value)
2719 {
2720     env->cp15.c15_threadid = value & 0xffff;
2721 }
2722 
2723 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2724                            uint64_t value)
2725 {
2726     /* Wait-for-interrupt (deprecated) */
2727     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2728 }
2729 
2730 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2731                                   uint64_t value)
2732 {
2733     /* On OMAP there are registers indicating the max/min index of dcache lines
2734      * containing a dirty line; cache flush operations have to reset these.
2735      */
2736     env->cp15.c15_i_max = 0x000;
2737     env->cp15.c15_i_min = 0xff0;
2738 }
2739 
2740 static const ARMCPRegInfo omap_cp_reginfo[] = {
2741     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2742       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2743       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2744       .resetvalue = 0, },
2745     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2746       .access = PL1_RW, .type = ARM_CP_NOP },
2747     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2748       .access = PL1_RW,
2749       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2750       .writefn = omap_ticonfig_write },
2751     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2752       .access = PL1_RW,
2753       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2754     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2755       .access = PL1_RW, .resetvalue = 0xff0,
2756       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2757     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2758       .access = PL1_RW,
2759       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2760       .writefn = omap_threadid_write },
2761     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2762       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2763       .type = ARM_CP_NO_RAW,
2764       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2765     /* TODO: Peripheral port remap register:
2766      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2767      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2768      * when MMU is off.
2769      */
2770     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2771       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2772       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2773       .writefn = omap_cachemaint_write },
2774     { .name = "C9", .cp = 15, .crn = 9,
2775       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2776       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2777     REGINFO_SENTINEL
2778 };
2779 
2780 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2781                               uint64_t value)
2782 {
2783     env->cp15.c15_cpar = value & 0x3fff;
2784 }
2785 
2786 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2787     { .name = "XSCALE_CPAR",
2788       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2789       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2790       .writefn = xscale_cpar_write, },
2791     { .name = "XSCALE_AUXCR",
2792       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2793       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2794       .resetvalue = 0, },
2795     /* XScale specific cache-lockdown: since we have no cache we NOP these
2796      * and hope the guest does not really rely on cache behaviour.
2797      */
2798     { .name = "XSCALE_LOCK_ICACHE_LINE",
2799       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2800       .access = PL1_W, .type = ARM_CP_NOP },
2801     { .name = "XSCALE_UNLOCK_ICACHE",
2802       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2803       .access = PL1_W, .type = ARM_CP_NOP },
2804     { .name = "XSCALE_DCACHE_LOCK",
2805       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2806       .access = PL1_RW, .type = ARM_CP_NOP },
2807     { .name = "XSCALE_UNLOCK_DCACHE",
2808       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2809       .access = PL1_W, .type = ARM_CP_NOP },
2810     REGINFO_SENTINEL
2811 };
2812 
2813 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2814     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2815      * implementation of this implementation-defined space.
2816      * Ideally this should eventually disappear in favour of actually
2817      * implementing the correct behaviour for all cores.
2818      */
2819     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2820       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2821       .access = PL1_RW,
2822       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2823       .resetvalue = 0 },
2824     REGINFO_SENTINEL
2825 };
2826 
2827 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2828     /* Cache status: RAZ because we have no cache so it's always clean */
2829     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2830       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2831       .resetvalue = 0 },
2832     REGINFO_SENTINEL
2833 };
2834 
2835 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2836     /* We never have a a block transfer operation in progress */
2837     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2838       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2839       .resetvalue = 0 },
2840     /* The cache ops themselves: these all NOP for QEMU */
2841     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2842       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2843     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2844       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2845     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2846       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2847     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2848       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2849     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2850       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2851     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2852       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2853     REGINFO_SENTINEL
2854 };
2855 
2856 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2857     /* The cache test-and-clean instructions always return (1 << 30)
2858      * to indicate that there are no dirty cache lines.
2859      */
2860     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2861       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2862       .resetvalue = (1 << 30) },
2863     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2864       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2865       .resetvalue = (1 << 30) },
2866     REGINFO_SENTINEL
2867 };
2868 
2869 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2870     /* Ignore ReadBuffer accesses */
2871     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2872       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2873       .access = PL1_RW, .resetvalue = 0,
2874       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2875     REGINFO_SENTINEL
2876 };
2877 
2878 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2879 {
2880     ARMCPU *cpu = arm_env_get_cpu(env);
2881     unsigned int cur_el = arm_current_el(env);
2882     bool secure = arm_is_secure(env);
2883 
2884     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2885         return env->cp15.vpidr_el2;
2886     }
2887     return raw_read(env, ri);
2888 }
2889 
2890 static uint64_t mpidr_read_val(CPUARMState *env)
2891 {
2892     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2893     uint64_t mpidr = cpu->mp_affinity;
2894 
2895     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2896         mpidr |= (1U << 31);
2897         /* Cores which are uniprocessor (non-coherent)
2898          * but still implement the MP extensions set
2899          * bit 30. (For instance, Cortex-R5).
2900          */
2901         if (cpu->mp_is_up) {
2902             mpidr |= (1u << 30);
2903         }
2904     }
2905     return mpidr;
2906 }
2907 
2908 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2909 {
2910     unsigned int cur_el = arm_current_el(env);
2911     bool secure = arm_is_secure(env);
2912 
2913     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2914         return env->cp15.vmpidr_el2;
2915     }
2916     return mpidr_read_val(env);
2917 }
2918 
2919 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2920     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2921       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2922       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2923     REGINFO_SENTINEL
2924 };
2925 
2926 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2927     /* NOP AMAIR0/1 */
2928     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2929       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2930       .access = PL1_RW, .type = ARM_CP_CONST,
2931       .resetvalue = 0 },
2932     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2933     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2934       .access = PL1_RW, .type = ARM_CP_CONST,
2935       .resetvalue = 0 },
2936     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2937       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2938       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2939                              offsetof(CPUARMState, cp15.par_ns)} },
2940     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2941       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2942       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2943                              offsetof(CPUARMState, cp15.ttbr0_ns) },
2944       .writefn = vmsa_ttbr_write, },
2945     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2946       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2947       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2948                              offsetof(CPUARMState, cp15.ttbr1_ns) },
2949       .writefn = vmsa_ttbr_write, },
2950     REGINFO_SENTINEL
2951 };
2952 
2953 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2954 {
2955     return vfp_get_fpcr(env);
2956 }
2957 
2958 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2959                             uint64_t value)
2960 {
2961     vfp_set_fpcr(env, value);
2962 }
2963 
2964 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2965 {
2966     return vfp_get_fpsr(env);
2967 }
2968 
2969 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970                             uint64_t value)
2971 {
2972     vfp_set_fpsr(env, value);
2973 }
2974 
2975 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2976                                        bool isread)
2977 {
2978     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2979         return CP_ACCESS_TRAP;
2980     }
2981     return CP_ACCESS_OK;
2982 }
2983 
2984 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2985                             uint64_t value)
2986 {
2987     env->daif = value & PSTATE_DAIF;
2988 }
2989 
2990 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2991                                           const ARMCPRegInfo *ri,
2992                                           bool isread)
2993 {
2994     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2995      * SCTLR_EL1.UCI is set.
2996      */
2997     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2998         return CP_ACCESS_TRAP;
2999     }
3000     return CP_ACCESS_OK;
3001 }
3002 
3003 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3004  * Page D4-1736 (DDI0487A.b)
3005  */
3006 
3007 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3008                                     uint64_t value)
3009 {
3010     CPUState *cs = ENV_GET_CPU(env);
3011 
3012     if (arm_is_secure_below_el3(env)) {
3013         tlb_flush_by_mmuidx(cs,
3014                             ARMMMUIdxBit_S1SE1 |
3015                             ARMMMUIdxBit_S1SE0);
3016     } else {
3017         tlb_flush_by_mmuidx(cs,
3018                             ARMMMUIdxBit_S12NSE1 |
3019                             ARMMMUIdxBit_S12NSE0);
3020     }
3021 }
3022 
3023 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024                                       uint64_t value)
3025 {
3026     CPUState *cs = ENV_GET_CPU(env);
3027     bool sec = arm_is_secure_below_el3(env);
3028 
3029     if (sec) {
3030         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3031                                             ARMMMUIdxBit_S1SE1 |
3032                                             ARMMMUIdxBit_S1SE0);
3033     } else {
3034         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3035                                             ARMMMUIdxBit_S12NSE1 |
3036                                             ARMMMUIdxBit_S12NSE0);
3037     }
3038 }
3039 
3040 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3041                                   uint64_t value)
3042 {
3043     /* Note that the 'ALL' scope must invalidate both stage 1 and
3044      * stage 2 translations, whereas most other scopes only invalidate
3045      * stage 1 translations.
3046      */
3047     ARMCPU *cpu = arm_env_get_cpu(env);
3048     CPUState *cs = CPU(cpu);
3049 
3050     if (arm_is_secure_below_el3(env)) {
3051         tlb_flush_by_mmuidx(cs,
3052                             ARMMMUIdxBit_S1SE1 |
3053                             ARMMMUIdxBit_S1SE0);
3054     } else {
3055         if (arm_feature(env, ARM_FEATURE_EL2)) {
3056             tlb_flush_by_mmuidx(cs,
3057                                 ARMMMUIdxBit_S12NSE1 |
3058                                 ARMMMUIdxBit_S12NSE0 |
3059                                 ARMMMUIdxBit_S2NS);
3060         } else {
3061             tlb_flush_by_mmuidx(cs,
3062                                 ARMMMUIdxBit_S12NSE1 |
3063                                 ARMMMUIdxBit_S12NSE0);
3064         }
3065     }
3066 }
3067 
3068 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3069                                   uint64_t value)
3070 {
3071     ARMCPU *cpu = arm_env_get_cpu(env);
3072     CPUState *cs = CPU(cpu);
3073 
3074     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3075 }
3076 
3077 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078                                   uint64_t value)
3079 {
3080     ARMCPU *cpu = arm_env_get_cpu(env);
3081     CPUState *cs = CPU(cpu);
3082 
3083     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3084 }
3085 
3086 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3087                                     uint64_t value)
3088 {
3089     /* Note that the 'ALL' scope must invalidate both stage 1 and
3090      * stage 2 translations, whereas most other scopes only invalidate
3091      * stage 1 translations.
3092      */
3093     CPUState *cs = ENV_GET_CPU(env);
3094     bool sec = arm_is_secure_below_el3(env);
3095     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3096 
3097     if (sec) {
3098         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3099                                             ARMMMUIdxBit_S1SE1 |
3100                                             ARMMMUIdxBit_S1SE0);
3101     } else if (has_el2) {
3102         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3103                                             ARMMMUIdxBit_S12NSE1 |
3104                                             ARMMMUIdxBit_S12NSE0 |
3105                                             ARMMMUIdxBit_S2NS);
3106     } else {
3107           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3108                                               ARMMMUIdxBit_S12NSE1 |
3109                                               ARMMMUIdxBit_S12NSE0);
3110     }
3111 }
3112 
3113 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3114                                     uint64_t value)
3115 {
3116     CPUState *cs = ENV_GET_CPU(env);
3117 
3118     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3119 }
3120 
3121 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3122                                     uint64_t value)
3123 {
3124     CPUState *cs = ENV_GET_CPU(env);
3125 
3126     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3127 }
3128 
3129 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3130                                  uint64_t value)
3131 {
3132     /* Invalidate by VA, EL1&0 (AArch64 version).
3133      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3134      * since we don't support flush-for-specific-ASID-only or
3135      * flush-last-level-only.
3136      */
3137     ARMCPU *cpu = arm_env_get_cpu(env);
3138     CPUState *cs = CPU(cpu);
3139     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3140 
3141     if (arm_is_secure_below_el3(env)) {
3142         tlb_flush_page_by_mmuidx(cs, pageaddr,
3143                                  ARMMMUIdxBit_S1SE1 |
3144                                  ARMMMUIdxBit_S1SE0);
3145     } else {
3146         tlb_flush_page_by_mmuidx(cs, pageaddr,
3147                                  ARMMMUIdxBit_S12NSE1 |
3148                                  ARMMMUIdxBit_S12NSE0);
3149     }
3150 }
3151 
3152 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3153                                  uint64_t value)
3154 {
3155     /* Invalidate by VA, EL2
3156      * Currently handles both VAE2 and VALE2, since we don't support
3157      * flush-last-level-only.
3158      */
3159     ARMCPU *cpu = arm_env_get_cpu(env);
3160     CPUState *cs = CPU(cpu);
3161     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3162 
3163     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3164 }
3165 
3166 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3167                                  uint64_t value)
3168 {
3169     /* Invalidate by VA, EL3
3170      * Currently handles both VAE3 and VALE3, since we don't support
3171      * flush-last-level-only.
3172      */
3173     ARMCPU *cpu = arm_env_get_cpu(env);
3174     CPUState *cs = CPU(cpu);
3175     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3176 
3177     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3178 }
3179 
3180 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3181                                    uint64_t value)
3182 {
3183     ARMCPU *cpu = arm_env_get_cpu(env);
3184     CPUState *cs = CPU(cpu);
3185     bool sec = arm_is_secure_below_el3(env);
3186     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3187 
3188     if (sec) {
3189         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3190                                                  ARMMMUIdxBit_S1SE1 |
3191                                                  ARMMMUIdxBit_S1SE0);
3192     } else {
3193         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3194                                                  ARMMMUIdxBit_S12NSE1 |
3195                                                  ARMMMUIdxBit_S12NSE0);
3196     }
3197 }
3198 
3199 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3200                                    uint64_t value)
3201 {
3202     CPUState *cs = ENV_GET_CPU(env);
3203     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3204 
3205     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3206                                              ARMMMUIdxBit_S1E2);
3207 }
3208 
3209 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3210                                    uint64_t value)
3211 {
3212     CPUState *cs = ENV_GET_CPU(env);
3213     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3214 
3215     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3216                                              ARMMMUIdxBit_S1E3);
3217 }
3218 
3219 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3220                                     uint64_t value)
3221 {
3222     /* Invalidate by IPA. This has to invalidate any structures that
3223      * contain only stage 2 translation information, but does not need
3224      * to apply to structures that contain combined stage 1 and stage 2
3225      * translation information.
3226      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3227      */
3228     ARMCPU *cpu = arm_env_get_cpu(env);
3229     CPUState *cs = CPU(cpu);
3230     uint64_t pageaddr;
3231 
3232     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3233         return;
3234     }
3235 
3236     pageaddr = sextract64(value << 12, 0, 48);
3237 
3238     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3239 }
3240 
3241 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3242                                       uint64_t value)
3243 {
3244     CPUState *cs = ENV_GET_CPU(env);
3245     uint64_t pageaddr;
3246 
3247     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3248         return;
3249     }
3250 
3251     pageaddr = sextract64(value << 12, 0, 48);
3252 
3253     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3254                                              ARMMMUIdxBit_S2NS);
3255 }
3256 
3257 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3258                                       bool isread)
3259 {
3260     /* We don't implement EL2, so the only control on DC ZVA is the
3261      * bit in the SCTLR which can prohibit access for EL0.
3262      */
3263     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3264         return CP_ACCESS_TRAP;
3265     }
3266     return CP_ACCESS_OK;
3267 }
3268 
3269 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3270 {
3271     ARMCPU *cpu = arm_env_get_cpu(env);
3272     int dzp_bit = 1 << 4;
3273 
3274     /* DZP indicates whether DC ZVA access is allowed */
3275     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3276         dzp_bit = 0;
3277     }
3278     return cpu->dcz_blocksize | dzp_bit;
3279 }
3280 
3281 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3282                                     bool isread)
3283 {
3284     if (!(env->pstate & PSTATE_SP)) {
3285         /* Access to SP_EL0 is undefined if it's being used as
3286          * the stack pointer.
3287          */
3288         return CP_ACCESS_TRAP_UNCATEGORIZED;
3289     }
3290     return CP_ACCESS_OK;
3291 }
3292 
3293 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3294 {
3295     return env->pstate & PSTATE_SP;
3296 }
3297 
3298 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3299 {
3300     update_spsel(env, val);
3301 }
3302 
3303 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3304                         uint64_t value)
3305 {
3306     ARMCPU *cpu = arm_env_get_cpu(env);
3307 
3308     if (raw_read(env, ri) == value) {
3309         /* Skip the TLB flush if nothing actually changed; Linux likes
3310          * to do a lot of pointless SCTLR writes.
3311          */
3312         return;
3313     }
3314 
3315     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3316         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3317         value &= ~SCTLR_M;
3318     }
3319 
3320     raw_write(env, ri, value);
3321     /* ??? Lots of these bits are not implemented.  */
3322     /* This may enable/disable the MMU, so do a TLB flush.  */
3323     tlb_flush(CPU(cpu));
3324 }
3325 
3326 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3327                                      bool isread)
3328 {
3329     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3330         return CP_ACCESS_TRAP_FP_EL2;
3331     }
3332     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3333         return CP_ACCESS_TRAP_FP_EL3;
3334     }
3335     return CP_ACCESS_OK;
3336 }
3337 
3338 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3339                        uint64_t value)
3340 {
3341     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3342 }
3343 
3344 static const ARMCPRegInfo v8_cp_reginfo[] = {
3345     /* Minimal set of EL0-visible registers. This will need to be expanded
3346      * significantly for system emulation of AArch64 CPUs.
3347      */
3348     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3349       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3350       .access = PL0_RW, .type = ARM_CP_NZCV },
3351     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3352       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3353       .type = ARM_CP_NO_RAW,
3354       .access = PL0_RW, .accessfn = aa64_daif_access,
3355       .fieldoffset = offsetof(CPUARMState, daif),
3356       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3357     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3358       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3359       .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3360     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3361       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3362       .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3363     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3364       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3365       .access = PL0_R, .type = ARM_CP_NO_RAW,
3366       .readfn = aa64_dczid_read },
3367     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3368       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3369       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3370 #ifndef CONFIG_USER_ONLY
3371       /* Avoid overhead of an access check that always passes in user-mode */
3372       .accessfn = aa64_zva_access,
3373 #endif
3374     },
3375     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3376       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3377       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3378     /* Cache ops: all NOPs since we don't emulate caches */
3379     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3380       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3381       .access = PL1_W, .type = ARM_CP_NOP },
3382     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3383       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3384       .access = PL1_W, .type = ARM_CP_NOP },
3385     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3386       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3387       .access = PL0_W, .type = ARM_CP_NOP,
3388       .accessfn = aa64_cacheop_access },
3389     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3390       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3391       .access = PL1_W, .type = ARM_CP_NOP },
3392     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3393       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3394       .access = PL1_W, .type = ARM_CP_NOP },
3395     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3396       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3397       .access = PL0_W, .type = ARM_CP_NOP,
3398       .accessfn = aa64_cacheop_access },
3399     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3400       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3401       .access = PL1_W, .type = ARM_CP_NOP },
3402     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3403       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3404       .access = PL0_W, .type = ARM_CP_NOP,
3405       .accessfn = aa64_cacheop_access },
3406     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3407       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3408       .access = PL0_W, .type = ARM_CP_NOP,
3409       .accessfn = aa64_cacheop_access },
3410     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3411       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3412       .access = PL1_W, .type = ARM_CP_NOP },
3413     /* TLBI operations */
3414     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3415       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3416       .access = PL1_W, .type = ARM_CP_NO_RAW,
3417       .writefn = tlbi_aa64_vmalle1is_write },
3418     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3419       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3420       .access = PL1_W, .type = ARM_CP_NO_RAW,
3421       .writefn = tlbi_aa64_vae1is_write },
3422     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3423       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3424       .access = PL1_W, .type = ARM_CP_NO_RAW,
3425       .writefn = tlbi_aa64_vmalle1is_write },
3426     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3427       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3428       .access = PL1_W, .type = ARM_CP_NO_RAW,
3429       .writefn = tlbi_aa64_vae1is_write },
3430     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3431       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3432       .access = PL1_W, .type = ARM_CP_NO_RAW,
3433       .writefn = tlbi_aa64_vae1is_write },
3434     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3435       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3436       .access = PL1_W, .type = ARM_CP_NO_RAW,
3437       .writefn = tlbi_aa64_vae1is_write },
3438     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3439       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3440       .access = PL1_W, .type = ARM_CP_NO_RAW,
3441       .writefn = tlbi_aa64_vmalle1_write },
3442     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3443       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3444       .access = PL1_W, .type = ARM_CP_NO_RAW,
3445       .writefn = tlbi_aa64_vae1_write },
3446     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3447       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3448       .access = PL1_W, .type = ARM_CP_NO_RAW,
3449       .writefn = tlbi_aa64_vmalle1_write },
3450     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3451       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3452       .access = PL1_W, .type = ARM_CP_NO_RAW,
3453       .writefn = tlbi_aa64_vae1_write },
3454     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3455       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3456       .access = PL1_W, .type = ARM_CP_NO_RAW,
3457       .writefn = tlbi_aa64_vae1_write },
3458     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3459       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3460       .access = PL1_W, .type = ARM_CP_NO_RAW,
3461       .writefn = tlbi_aa64_vae1_write },
3462     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3463       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3464       .access = PL2_W, .type = ARM_CP_NO_RAW,
3465       .writefn = tlbi_aa64_ipas2e1is_write },
3466     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3467       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3468       .access = PL2_W, .type = ARM_CP_NO_RAW,
3469       .writefn = tlbi_aa64_ipas2e1is_write },
3470     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3471       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3472       .access = PL2_W, .type = ARM_CP_NO_RAW,
3473       .writefn = tlbi_aa64_alle1is_write },
3474     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3475       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3476       .access = PL2_W, .type = ARM_CP_NO_RAW,
3477       .writefn = tlbi_aa64_alle1is_write },
3478     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3479       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3480       .access = PL2_W, .type = ARM_CP_NO_RAW,
3481       .writefn = tlbi_aa64_ipas2e1_write },
3482     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3483       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3484       .access = PL2_W, .type = ARM_CP_NO_RAW,
3485       .writefn = tlbi_aa64_ipas2e1_write },
3486     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3487       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3488       .access = PL2_W, .type = ARM_CP_NO_RAW,
3489       .writefn = tlbi_aa64_alle1_write },
3490     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3491       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3492       .access = PL2_W, .type = ARM_CP_NO_RAW,
3493       .writefn = tlbi_aa64_alle1is_write },
3494 #ifndef CONFIG_USER_ONLY
3495     /* 64 bit address translation operations */
3496     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3497       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3498       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3499     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3500       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3501       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3502     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3503       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3504       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3505     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3506       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3507       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3508     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3509       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3510       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3511     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3512       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3513       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3514     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3515       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3516       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3517     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3518       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3519       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3520     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3521     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3522       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3523       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3524     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3525       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3526       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3527     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3528       .type = ARM_CP_ALIAS,
3529       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3530       .access = PL1_RW, .resetvalue = 0,
3531       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3532       .writefn = par_write },
3533 #endif
3534     /* TLB invalidate last level of translation table walk */
3535     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3536       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3537     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3538       .type = ARM_CP_NO_RAW, .access = PL1_W,
3539       .writefn = tlbimvaa_is_write },
3540     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3541       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3542     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3543       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3544     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3545       .type = ARM_CP_NO_RAW, .access = PL2_W,
3546       .writefn = tlbimva_hyp_write },
3547     { .name = "TLBIMVALHIS",
3548       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3549       .type = ARM_CP_NO_RAW, .access = PL2_W,
3550       .writefn = tlbimva_hyp_is_write },
3551     { .name = "TLBIIPAS2",
3552       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3553       .type = ARM_CP_NO_RAW, .access = PL2_W,
3554       .writefn = tlbiipas2_write },
3555     { .name = "TLBIIPAS2IS",
3556       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3557       .type = ARM_CP_NO_RAW, .access = PL2_W,
3558       .writefn = tlbiipas2_is_write },
3559     { .name = "TLBIIPAS2L",
3560       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3561       .type = ARM_CP_NO_RAW, .access = PL2_W,
3562       .writefn = tlbiipas2_write },
3563     { .name = "TLBIIPAS2LIS",
3564       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3565       .type = ARM_CP_NO_RAW, .access = PL2_W,
3566       .writefn = tlbiipas2_is_write },
3567     /* 32 bit cache operations */
3568     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3569       .type = ARM_CP_NOP, .access = PL1_W },
3570     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3571       .type = ARM_CP_NOP, .access = PL1_W },
3572     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3573       .type = ARM_CP_NOP, .access = PL1_W },
3574     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3575       .type = ARM_CP_NOP, .access = PL1_W },
3576     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3577       .type = ARM_CP_NOP, .access = PL1_W },
3578     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3579       .type = ARM_CP_NOP, .access = PL1_W },
3580     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3581       .type = ARM_CP_NOP, .access = PL1_W },
3582     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3583       .type = ARM_CP_NOP, .access = PL1_W },
3584     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3585       .type = ARM_CP_NOP, .access = PL1_W },
3586     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3587       .type = ARM_CP_NOP, .access = PL1_W },
3588     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3589       .type = ARM_CP_NOP, .access = PL1_W },
3590     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3591       .type = ARM_CP_NOP, .access = PL1_W },
3592     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3593       .type = ARM_CP_NOP, .access = PL1_W },
3594     /* MMU Domain access control / MPU write buffer control */
3595     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3596       .access = PL1_RW, .resetvalue = 0,
3597       .writefn = dacr_write, .raw_writefn = raw_write,
3598       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3599                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3600     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3601       .type = ARM_CP_ALIAS,
3602       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3603       .access = PL1_RW,
3604       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3605     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3606       .type = ARM_CP_ALIAS,
3607       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3608       .access = PL1_RW,
3609       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3610     /* We rely on the access checks not allowing the guest to write to the
3611      * state field when SPSel indicates that it's being used as the stack
3612      * pointer.
3613      */
3614     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3615       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3616       .access = PL1_RW, .accessfn = sp_el0_access,
3617       .type = ARM_CP_ALIAS,
3618       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3619     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3620       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3621       .access = PL2_RW, .type = ARM_CP_ALIAS,
3622       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3623     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3624       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3625       .type = ARM_CP_NO_RAW,
3626       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3627     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3628       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3629       .type = ARM_CP_ALIAS,
3630       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3631       .access = PL2_RW, .accessfn = fpexc32_access },
3632     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3633       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3634       .access = PL2_RW, .resetvalue = 0,
3635       .writefn = dacr_write, .raw_writefn = raw_write,
3636       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3637     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3638       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3639       .access = PL2_RW, .resetvalue = 0,
3640       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3641     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3642       .type = ARM_CP_ALIAS,
3643       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3644       .access = PL2_RW,
3645       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3646     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3647       .type = ARM_CP_ALIAS,
3648       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3649       .access = PL2_RW,
3650       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3651     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3652       .type = ARM_CP_ALIAS,
3653       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3654       .access = PL2_RW,
3655       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3656     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3657       .type = ARM_CP_ALIAS,
3658       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3659       .access = PL2_RW,
3660       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3661     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3662       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3663       .resetvalue = 0,
3664       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3665     { .name = "SDCR", .type = ARM_CP_ALIAS,
3666       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3667       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3668       .writefn = sdcr_write,
3669       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3670     REGINFO_SENTINEL
3671 };
3672 
3673 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3674 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3675     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3676       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3677       .access = PL2_RW,
3678       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3679     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3680       .type = ARM_CP_NO_RAW,
3681       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3682       .access = PL2_RW,
3683       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3684     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3685       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3686       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3687     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3688       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3689       .access = PL2_RW, .type = ARM_CP_CONST,
3690       .resetvalue = 0 },
3691     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3692       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3693       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3694     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3695       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3696       .access = PL2_RW, .type = ARM_CP_CONST,
3697       .resetvalue = 0 },
3698     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3699       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3700       .access = PL2_RW, .type = ARM_CP_CONST,
3701       .resetvalue = 0 },
3702     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3703       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3704       .access = PL2_RW, .type = ARM_CP_CONST,
3705       .resetvalue = 0 },
3706     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3707       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3708       .access = PL2_RW, .type = ARM_CP_CONST,
3709       .resetvalue = 0 },
3710     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3711       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3712       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3713     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3714       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3715       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3716       .type = ARM_CP_CONST, .resetvalue = 0 },
3717     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3718       .cp = 15, .opc1 = 6, .crm = 2,
3719       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3720       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3721     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3722       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3723       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3724     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3725       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3726       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3727     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3728       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3729       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3730     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3731       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3732       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3733     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3734       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3735       .resetvalue = 0 },
3736     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3737       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3738       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3739     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3740       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3741       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3742     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3743       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3744       .resetvalue = 0 },
3745     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3746       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3747       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3748     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3749       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3750       .resetvalue = 0 },
3751     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3752       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3753       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3754     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3755       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3756       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3757     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3758       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3759       .access = PL2_RW, .accessfn = access_tda,
3760       .type = ARM_CP_CONST, .resetvalue = 0 },
3761     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3762       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3763       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3764       .type = ARM_CP_CONST, .resetvalue = 0 },
3765     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3766       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3767       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3768     REGINFO_SENTINEL
3769 };
3770 
3771 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3772 {
3773     ARMCPU *cpu = arm_env_get_cpu(env);
3774     uint64_t valid_mask = HCR_MASK;
3775 
3776     if (arm_feature(env, ARM_FEATURE_EL3)) {
3777         valid_mask &= ~HCR_HCD;
3778     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3779         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3780          * However, if we're using the SMC PSCI conduit then QEMU is
3781          * effectively acting like EL3 firmware and so the guest at
3782          * EL2 should retain the ability to prevent EL1 from being
3783          * able to make SMC calls into the ersatz firmware, so in
3784          * that case HCR.TSC should be read/write.
3785          */
3786         valid_mask &= ~HCR_TSC;
3787     }
3788 
3789     /* Clear RES0 bits.  */
3790     value &= valid_mask;
3791 
3792     /* These bits change the MMU setup:
3793      * HCR_VM enables stage 2 translation
3794      * HCR_PTW forbids certain page-table setups
3795      * HCR_DC Disables stage1 and enables stage2 translation
3796      */
3797     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3798         tlb_flush(CPU(cpu));
3799     }
3800     raw_write(env, ri, value);
3801 }
3802 
3803 static const ARMCPRegInfo el2_cp_reginfo[] = {
3804     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3805       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3806       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3807       .writefn = hcr_write },
3808     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3809       .type = ARM_CP_ALIAS,
3810       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3811       .access = PL2_RW,
3812       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3813     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3814       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3815       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3816     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3817       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3818       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3819     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3820       .type = ARM_CP_ALIAS,
3821       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3822       .access = PL2_RW,
3823       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3824     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3825       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3826       .access = PL2_RW, .writefn = vbar_write,
3827       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3828       .resetvalue = 0 },
3829     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3830       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3831       .access = PL3_RW, .type = ARM_CP_ALIAS,
3832       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3833     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3834       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3835       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3836       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3837     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3838       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3839       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3840       .resetvalue = 0 },
3841     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3842       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3843       .access = PL2_RW, .type = ARM_CP_ALIAS,
3844       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3845     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3846       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3847       .access = PL2_RW, .type = ARM_CP_CONST,
3848       .resetvalue = 0 },
3849     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3850     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3851       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3852       .access = PL2_RW, .type = ARM_CP_CONST,
3853       .resetvalue = 0 },
3854     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3855       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3856       .access = PL2_RW, .type = ARM_CP_CONST,
3857       .resetvalue = 0 },
3858     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3859       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3860       .access = PL2_RW, .type = ARM_CP_CONST,
3861       .resetvalue = 0 },
3862     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3863       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3864       .access = PL2_RW,
3865       /* no .writefn needed as this can't cause an ASID change;
3866        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3867        */
3868       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3869     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3870       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3871       .type = ARM_CP_ALIAS,
3872       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3873       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3874     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3875       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3876       .access = PL2_RW,
3877       /* no .writefn needed as this can't cause an ASID change;
3878        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3879        */
3880       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3881     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3882       .cp = 15, .opc1 = 6, .crm = 2,
3883       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3884       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3885       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3886       .writefn = vttbr_write },
3887     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3888       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3889       .access = PL2_RW, .writefn = vttbr_write,
3890       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3891     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3892       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3893       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3894       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3895     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3896       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3897       .access = PL2_RW, .resetvalue = 0,
3898       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3899     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3900       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3901       .access = PL2_RW, .resetvalue = 0,
3902       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3903     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3904       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3905       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3906     { .name = "TLBIALLNSNH",
3907       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3908       .type = ARM_CP_NO_RAW, .access = PL2_W,
3909       .writefn = tlbiall_nsnh_write },
3910     { .name = "TLBIALLNSNHIS",
3911       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3912       .type = ARM_CP_NO_RAW, .access = PL2_W,
3913       .writefn = tlbiall_nsnh_is_write },
3914     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3915       .type = ARM_CP_NO_RAW, .access = PL2_W,
3916       .writefn = tlbiall_hyp_write },
3917     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3918       .type = ARM_CP_NO_RAW, .access = PL2_W,
3919       .writefn = tlbiall_hyp_is_write },
3920     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3921       .type = ARM_CP_NO_RAW, .access = PL2_W,
3922       .writefn = tlbimva_hyp_write },
3923     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3924       .type = ARM_CP_NO_RAW, .access = PL2_W,
3925       .writefn = tlbimva_hyp_is_write },
3926     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3927       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3928       .type = ARM_CP_NO_RAW, .access = PL2_W,
3929       .writefn = tlbi_aa64_alle2_write },
3930     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3931       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3932       .type = ARM_CP_NO_RAW, .access = PL2_W,
3933       .writefn = tlbi_aa64_vae2_write },
3934     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3935       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3936       .access = PL2_W, .type = ARM_CP_NO_RAW,
3937       .writefn = tlbi_aa64_vae2_write },
3938     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3939       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3940       .access = PL2_W, .type = ARM_CP_NO_RAW,
3941       .writefn = tlbi_aa64_alle2is_write },
3942     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3943       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3944       .type = ARM_CP_NO_RAW, .access = PL2_W,
3945       .writefn = tlbi_aa64_vae2is_write },
3946     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3947       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3948       .access = PL2_W, .type = ARM_CP_NO_RAW,
3949       .writefn = tlbi_aa64_vae2is_write },
3950 #ifndef CONFIG_USER_ONLY
3951     /* Unlike the other EL2-related AT operations, these must
3952      * UNDEF from EL3 if EL2 is not implemented, which is why we
3953      * define them here rather than with the rest of the AT ops.
3954      */
3955     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3956       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3957       .access = PL2_W, .accessfn = at_s1e2_access,
3958       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3959     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3960       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3961       .access = PL2_W, .accessfn = at_s1e2_access,
3962       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3963     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3964      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3965      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3966      * to behave as if SCR.NS was 1.
3967      */
3968     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3969       .access = PL2_W,
3970       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3971     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3972       .access = PL2_W,
3973       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3974     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3975       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3976       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3977        * reset values as IMPDEF. We choose to reset to 3 to comply with
3978        * both ARMv7 and ARMv8.
3979        */
3980       .access = PL2_RW, .resetvalue = 3,
3981       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3982     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3983       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3984       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3985       .writefn = gt_cntvoff_write,
3986       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3987     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3988       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3989       .writefn = gt_cntvoff_write,
3990       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3991     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3992       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3993       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3994       .type = ARM_CP_IO, .access = PL2_RW,
3995       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3996     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3997       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3998       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3999       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4000     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4001       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4002       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4003       .resetfn = gt_hyp_timer_reset,
4004       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4005     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4006       .type = ARM_CP_IO,
4007       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4008       .access = PL2_RW,
4009       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4010       .resetvalue = 0,
4011       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4012 #endif
4013     /* The only field of MDCR_EL2 that has a defined architectural reset value
4014      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4015      * don't impelment any PMU event counters, so using zero as a reset
4016      * value for MDCR_EL2 is okay
4017      */
4018     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4019       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4020       .access = PL2_RW, .resetvalue = 0,
4021       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4022     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4023       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4024       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4025       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4026     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4027       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4028       .access = PL2_RW,
4029       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4030     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4031       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4032       .access = PL2_RW,
4033       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4034     REGINFO_SENTINEL
4035 };
4036 
4037 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4038                                    bool isread)
4039 {
4040     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4041      * At Secure EL1 it traps to EL3.
4042      */
4043     if (arm_current_el(env) == 3) {
4044         return CP_ACCESS_OK;
4045     }
4046     if (arm_is_secure_below_el3(env)) {
4047         return CP_ACCESS_TRAP_EL3;
4048     }
4049     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4050     if (isread) {
4051         return CP_ACCESS_OK;
4052     }
4053     return CP_ACCESS_TRAP_UNCATEGORIZED;
4054 }
4055 
4056 static const ARMCPRegInfo el3_cp_reginfo[] = {
4057     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4058       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4059       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4060       .resetvalue = 0, .writefn = scr_write },
4061     { .name = "SCR",  .type = ARM_CP_ALIAS,
4062       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4063       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4064       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4065       .writefn = scr_write },
4066     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4067       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4068       .access = PL3_RW, .resetvalue = 0,
4069       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4070     { .name = "SDER",
4071       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4072       .access = PL3_RW, .resetvalue = 0,
4073       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4074     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4075       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4076       .writefn = vbar_write, .resetvalue = 0,
4077       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4078     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4079       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4080       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4081       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4082     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4083       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4084       .access = PL3_RW,
4085       /* no .writefn needed as this can't cause an ASID change;
4086        * we must provide a .raw_writefn and .resetfn because we handle
4087        * reset and migration for the AArch32 TTBCR(S), which might be
4088        * using mask and base_mask.
4089        */
4090       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4091       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4092     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4093       .type = ARM_CP_ALIAS,
4094       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4095       .access = PL3_RW,
4096       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4097     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4098       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4099       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4100     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4101       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4102       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4103     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4104       .type = ARM_CP_ALIAS,
4105       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4106       .access = PL3_RW,
4107       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4108     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4109       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4110       .access = PL3_RW, .writefn = vbar_write,
4111       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4112       .resetvalue = 0 },
4113     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4114       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4115       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4116       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4117     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4118       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4119       .access = PL3_RW, .resetvalue = 0,
4120       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4121     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4122       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4123       .access = PL3_RW, .type = ARM_CP_CONST,
4124       .resetvalue = 0 },
4125     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4126       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4127       .access = PL3_RW, .type = ARM_CP_CONST,
4128       .resetvalue = 0 },
4129     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4130       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4131       .access = PL3_RW, .type = ARM_CP_CONST,
4132       .resetvalue = 0 },
4133     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4134       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4135       .access = PL3_W, .type = ARM_CP_NO_RAW,
4136       .writefn = tlbi_aa64_alle3is_write },
4137     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4138       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4139       .access = PL3_W, .type = ARM_CP_NO_RAW,
4140       .writefn = tlbi_aa64_vae3is_write },
4141     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4142       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4143       .access = PL3_W, .type = ARM_CP_NO_RAW,
4144       .writefn = tlbi_aa64_vae3is_write },
4145     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4146       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4147       .access = PL3_W, .type = ARM_CP_NO_RAW,
4148       .writefn = tlbi_aa64_alle3_write },
4149     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4150       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4151       .access = PL3_W, .type = ARM_CP_NO_RAW,
4152       .writefn = tlbi_aa64_vae3_write },
4153     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4154       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4155       .access = PL3_W, .type = ARM_CP_NO_RAW,
4156       .writefn = tlbi_aa64_vae3_write },
4157     REGINFO_SENTINEL
4158 };
4159 
4160 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4161                                      bool isread)
4162 {
4163     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4164      * but the AArch32 CTR has its own reginfo struct)
4165      */
4166     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4167         return CP_ACCESS_TRAP;
4168     }
4169     return CP_ACCESS_OK;
4170 }
4171 
4172 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4173                         uint64_t value)
4174 {
4175     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4176      * read via a bit in OSLSR_EL1.
4177      */
4178     int oslock;
4179 
4180     if (ri->state == ARM_CP_STATE_AA32) {
4181         oslock = (value == 0xC5ACCE55);
4182     } else {
4183         oslock = value & 1;
4184     }
4185 
4186     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4187 }
4188 
4189 static const ARMCPRegInfo debug_cp_reginfo[] = {
4190     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4191      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4192      * unlike DBGDRAR it is never accessible from EL0.
4193      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4194      * accessor.
4195      */
4196     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4197       .access = PL0_R, .accessfn = access_tdra,
4198       .type = ARM_CP_CONST, .resetvalue = 0 },
4199     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4200       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4201       .access = PL1_R, .accessfn = access_tdra,
4202       .type = ARM_CP_CONST, .resetvalue = 0 },
4203     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4204       .access = PL0_R, .accessfn = access_tdra,
4205       .type = ARM_CP_CONST, .resetvalue = 0 },
4206     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4207     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4208       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4209       .access = PL1_RW, .accessfn = access_tda,
4210       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4211       .resetvalue = 0 },
4212     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4213      * We don't implement the configurable EL0 access.
4214      */
4215     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4216       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4217       .type = ARM_CP_ALIAS,
4218       .access = PL1_R, .accessfn = access_tda,
4219       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4220     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4221       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4222       .access = PL1_W, .type = ARM_CP_NO_RAW,
4223       .accessfn = access_tdosa,
4224       .writefn = oslar_write },
4225     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4226       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4227       .access = PL1_R, .resetvalue = 10,
4228       .accessfn = access_tdosa,
4229       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4230     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4231     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4232       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4233       .access = PL1_RW, .accessfn = access_tdosa,
4234       .type = ARM_CP_NOP },
4235     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4236      * implement vector catch debug events yet.
4237      */
4238     { .name = "DBGVCR",
4239       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4240       .access = PL1_RW, .accessfn = access_tda,
4241       .type = ARM_CP_NOP },
4242     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4243      * to save and restore a 32-bit guest's DBGVCR)
4244      */
4245     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4246       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4247       .access = PL2_RW, .accessfn = access_tda,
4248       .type = ARM_CP_NOP },
4249     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4250      * Channel but Linux may try to access this register. The 32-bit
4251      * alias is DBGDCCINT.
4252      */
4253     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4254       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4255       .access = PL1_RW, .accessfn = access_tda,
4256       .type = ARM_CP_NOP },
4257     REGINFO_SENTINEL
4258 };
4259 
4260 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4261     /* 64 bit access versions of the (dummy) debug registers */
4262     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4263       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4264     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4265       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4266     REGINFO_SENTINEL
4267 };
4268 
4269 /* Return the exception level to which SVE-disabled exceptions should
4270  * be taken, or 0 if SVE is enabled.
4271  */
4272 static int sve_exception_el(CPUARMState *env)
4273 {
4274 #ifndef CONFIG_USER_ONLY
4275     unsigned current_el = arm_current_el(env);
4276 
4277     /* The CPACR.ZEN controls traps to EL1:
4278      * 0, 2 : trap EL0 and EL1 accesses
4279      * 1    : trap only EL0 accesses
4280      * 3    : trap no accesses
4281      */
4282     switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
4283     default:
4284         if (current_el <= 1) {
4285             /* Trap to PL1, which might be EL1 or EL3 */
4286             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4287                 return 3;
4288             }
4289             return 1;
4290         }
4291         break;
4292     case 1:
4293         if (current_el == 0) {
4294             return 1;
4295         }
4296         break;
4297     case 3:
4298         break;
4299     }
4300 
4301     /* Similarly for CPACR.FPEN, after having checked ZEN.  */
4302     switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
4303     default:
4304         if (current_el <= 1) {
4305             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4306                 return 3;
4307             }
4308             return 1;
4309         }
4310         break;
4311     case 1:
4312         if (current_el == 0) {
4313             return 1;
4314         }
4315         break;
4316     case 3:
4317         break;
4318     }
4319 
4320     /* CPTR_EL2.  Check both TZ and TFP.  */
4321     if (current_el <= 2
4322         && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
4323         && !arm_is_secure_below_el3(env)) {
4324         return 2;
4325     }
4326 
4327     /* CPTR_EL3.  Check both EZ and TFP.  */
4328     if (!(env->cp15.cptr_el[3] & CPTR_EZ)
4329         || (env->cp15.cptr_el[3] & CPTR_TFP)) {
4330         return 3;
4331     }
4332 #endif
4333     return 0;
4334 }
4335 
4336 static CPAccessResult zcr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4337                                  bool isread)
4338 {
4339     switch (sve_exception_el(env)) {
4340     case 3:
4341         return CP_ACCESS_TRAP_EL3;
4342     case 2:
4343         return CP_ACCESS_TRAP_EL2;
4344     case 1:
4345         return CP_ACCESS_TRAP;
4346     }
4347     return CP_ACCESS_OK;
4348 }
4349 
4350 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4351                       uint64_t value)
4352 {
4353     /* Bits other than [3:0] are RAZ/WI.  */
4354     raw_write(env, ri, value & 0xf);
4355 }
4356 
4357 static const ARMCPRegInfo zcr_el1_reginfo = {
4358     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4359     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4360     .access = PL1_RW, .accessfn = zcr_access, .type = ARM_CP_64BIT,
4361     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4362     .writefn = zcr_write, .raw_writefn = raw_write
4363 };
4364 
4365 static const ARMCPRegInfo zcr_el2_reginfo = {
4366     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4367     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4368     .access = PL2_RW, .accessfn = zcr_access, .type = ARM_CP_64BIT,
4369     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4370     .writefn = zcr_write, .raw_writefn = raw_write
4371 };
4372 
4373 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4374     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4375     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4376     .access = PL2_RW, .type = ARM_CP_64BIT,
4377     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4378 };
4379 
4380 static const ARMCPRegInfo zcr_el3_reginfo = {
4381     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4382     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4383     .access = PL3_RW, .accessfn = zcr_access, .type = ARM_CP_64BIT,
4384     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4385     .writefn = zcr_write, .raw_writefn = raw_write
4386 };
4387 
4388 void hw_watchpoint_update(ARMCPU *cpu, int n)
4389 {
4390     CPUARMState *env = &cpu->env;
4391     vaddr len = 0;
4392     vaddr wvr = env->cp15.dbgwvr[n];
4393     uint64_t wcr = env->cp15.dbgwcr[n];
4394     int mask;
4395     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4396 
4397     if (env->cpu_watchpoint[n]) {
4398         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4399         env->cpu_watchpoint[n] = NULL;
4400     }
4401 
4402     if (!extract64(wcr, 0, 1)) {
4403         /* E bit clear : watchpoint disabled */
4404         return;
4405     }
4406 
4407     switch (extract64(wcr, 3, 2)) {
4408     case 0:
4409         /* LSC 00 is reserved and must behave as if the wp is disabled */
4410         return;
4411     case 1:
4412         flags |= BP_MEM_READ;
4413         break;
4414     case 2:
4415         flags |= BP_MEM_WRITE;
4416         break;
4417     case 3:
4418         flags |= BP_MEM_ACCESS;
4419         break;
4420     }
4421 
4422     /* Attempts to use both MASK and BAS fields simultaneously are
4423      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4424      * thus generating a watchpoint for every byte in the masked region.
4425      */
4426     mask = extract64(wcr, 24, 4);
4427     if (mask == 1 || mask == 2) {
4428         /* Reserved values of MASK; we must act as if the mask value was
4429          * some non-reserved value, or as if the watchpoint were disabled.
4430          * We choose the latter.
4431          */
4432         return;
4433     } else if (mask) {
4434         /* Watchpoint covers an aligned area up to 2GB in size */
4435         len = 1ULL << mask;
4436         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4437          * whether the watchpoint fires when the unmasked bits match; we opt
4438          * to generate the exceptions.
4439          */
4440         wvr &= ~(len - 1);
4441     } else {
4442         /* Watchpoint covers bytes defined by the byte address select bits */
4443         int bas = extract64(wcr, 5, 8);
4444         int basstart;
4445 
4446         if (bas == 0) {
4447             /* This must act as if the watchpoint is disabled */
4448             return;
4449         }
4450 
4451         if (extract64(wvr, 2, 1)) {
4452             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4453              * ignored, and BAS[3:0] define which bytes to watch.
4454              */
4455             bas &= 0xf;
4456         }
4457         /* The BAS bits are supposed to be programmed to indicate a contiguous
4458          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4459          * we fire for each byte in the word/doubleword addressed by the WVR.
4460          * We choose to ignore any non-zero bits after the first range of 1s.
4461          */
4462         basstart = ctz32(bas);
4463         len = cto32(bas >> basstart);
4464         wvr += basstart;
4465     }
4466 
4467     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4468                           &env->cpu_watchpoint[n]);
4469 }
4470 
4471 void hw_watchpoint_update_all(ARMCPU *cpu)
4472 {
4473     int i;
4474     CPUARMState *env = &cpu->env;
4475 
4476     /* Completely clear out existing QEMU watchpoints and our array, to
4477      * avoid possible stale entries following migration load.
4478      */
4479     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4480     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4481 
4482     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4483         hw_watchpoint_update(cpu, i);
4484     }
4485 }
4486 
4487 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4488                          uint64_t value)
4489 {
4490     ARMCPU *cpu = arm_env_get_cpu(env);
4491     int i = ri->crm;
4492 
4493     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4494      * register reads and behaves as if values written are sign extended.
4495      * Bits [1:0] are RES0.
4496      */
4497     value = sextract64(value, 0, 49) & ~3ULL;
4498 
4499     raw_write(env, ri, value);
4500     hw_watchpoint_update(cpu, i);
4501 }
4502 
4503 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4504                          uint64_t value)
4505 {
4506     ARMCPU *cpu = arm_env_get_cpu(env);
4507     int i = ri->crm;
4508 
4509     raw_write(env, ri, value);
4510     hw_watchpoint_update(cpu, i);
4511 }
4512 
4513 void hw_breakpoint_update(ARMCPU *cpu, int n)
4514 {
4515     CPUARMState *env = &cpu->env;
4516     uint64_t bvr = env->cp15.dbgbvr[n];
4517     uint64_t bcr = env->cp15.dbgbcr[n];
4518     vaddr addr;
4519     int bt;
4520     int flags = BP_CPU;
4521 
4522     if (env->cpu_breakpoint[n]) {
4523         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4524         env->cpu_breakpoint[n] = NULL;
4525     }
4526 
4527     if (!extract64(bcr, 0, 1)) {
4528         /* E bit clear : watchpoint disabled */
4529         return;
4530     }
4531 
4532     bt = extract64(bcr, 20, 4);
4533 
4534     switch (bt) {
4535     case 4: /* unlinked address mismatch (reserved if AArch64) */
4536     case 5: /* linked address mismatch (reserved if AArch64) */
4537         qemu_log_mask(LOG_UNIMP,
4538                       "arm: address mismatch breakpoint types not implemented");
4539         return;
4540     case 0: /* unlinked address match */
4541     case 1: /* linked address match */
4542     {
4543         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4544          * we behave as if the register was sign extended. Bits [1:0] are
4545          * RES0. The BAS field is used to allow setting breakpoints on 16
4546          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4547          * a bp will fire if the addresses covered by the bp and the addresses
4548          * covered by the insn overlap but the insn doesn't start at the
4549          * start of the bp address range. We choose to require the insn and
4550          * the bp to have the same address. The constraints on writing to
4551          * BAS enforced in dbgbcr_write mean we have only four cases:
4552          *  0b0000  => no breakpoint
4553          *  0b0011  => breakpoint on addr
4554          *  0b1100  => breakpoint on addr + 2
4555          *  0b1111  => breakpoint on addr
4556          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4557          */
4558         int bas = extract64(bcr, 5, 4);
4559         addr = sextract64(bvr, 0, 49) & ~3ULL;
4560         if (bas == 0) {
4561             return;
4562         }
4563         if (bas == 0xc) {
4564             addr += 2;
4565         }
4566         break;
4567     }
4568     case 2: /* unlinked context ID match */
4569     case 8: /* unlinked VMID match (reserved if no EL2) */
4570     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4571         qemu_log_mask(LOG_UNIMP,
4572                       "arm: unlinked context breakpoint types not implemented");
4573         return;
4574     case 9: /* linked VMID match (reserved if no EL2) */
4575     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4576     case 3: /* linked context ID match */
4577     default:
4578         /* We must generate no events for Linked context matches (unless
4579          * they are linked to by some other bp/wp, which is handled in
4580          * updates for the linking bp/wp). We choose to also generate no events
4581          * for reserved values.
4582          */
4583         return;
4584     }
4585 
4586     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4587 }
4588 
4589 void hw_breakpoint_update_all(ARMCPU *cpu)
4590 {
4591     int i;
4592     CPUARMState *env = &cpu->env;
4593 
4594     /* Completely clear out existing QEMU breakpoints and our array, to
4595      * avoid possible stale entries following migration load.
4596      */
4597     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4598     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4599 
4600     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4601         hw_breakpoint_update(cpu, i);
4602     }
4603 }
4604 
4605 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4606                          uint64_t value)
4607 {
4608     ARMCPU *cpu = arm_env_get_cpu(env);
4609     int i = ri->crm;
4610 
4611     raw_write(env, ri, value);
4612     hw_breakpoint_update(cpu, i);
4613 }
4614 
4615 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4616                          uint64_t value)
4617 {
4618     ARMCPU *cpu = arm_env_get_cpu(env);
4619     int i = ri->crm;
4620 
4621     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4622      * copy of BAS[0].
4623      */
4624     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4625     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4626 
4627     raw_write(env, ri, value);
4628     hw_breakpoint_update(cpu, i);
4629 }
4630 
4631 static void define_debug_regs(ARMCPU *cpu)
4632 {
4633     /* Define v7 and v8 architectural debug registers.
4634      * These are just dummy implementations for now.
4635      */
4636     int i;
4637     int wrps, brps, ctx_cmps;
4638     ARMCPRegInfo dbgdidr = {
4639         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4640         .access = PL0_R, .accessfn = access_tda,
4641         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4642     };
4643 
4644     /* Note that all these register fields hold "number of Xs minus 1". */
4645     brps = extract32(cpu->dbgdidr, 24, 4);
4646     wrps = extract32(cpu->dbgdidr, 28, 4);
4647     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4648 
4649     assert(ctx_cmps <= brps);
4650 
4651     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4652      * of the debug registers such as number of breakpoints;
4653      * check that if they both exist then they agree.
4654      */
4655     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4656         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4657         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4658         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4659     }
4660 
4661     define_one_arm_cp_reg(cpu, &dbgdidr);
4662     define_arm_cp_regs(cpu, debug_cp_reginfo);
4663 
4664     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4665         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4666     }
4667 
4668     for (i = 0; i < brps + 1; i++) {
4669         ARMCPRegInfo dbgregs[] = {
4670             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4671               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4672               .access = PL1_RW, .accessfn = access_tda,
4673               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4674               .writefn = dbgbvr_write, .raw_writefn = raw_write
4675             },
4676             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4677               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4678               .access = PL1_RW, .accessfn = access_tda,
4679               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4680               .writefn = dbgbcr_write, .raw_writefn = raw_write
4681             },
4682             REGINFO_SENTINEL
4683         };
4684         define_arm_cp_regs(cpu, dbgregs);
4685     }
4686 
4687     for (i = 0; i < wrps + 1; i++) {
4688         ARMCPRegInfo dbgregs[] = {
4689             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4690               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4691               .access = PL1_RW, .accessfn = access_tda,
4692               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4693               .writefn = dbgwvr_write, .raw_writefn = raw_write
4694             },
4695             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4696               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4697               .access = PL1_RW, .accessfn = access_tda,
4698               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4699               .writefn = dbgwcr_write, .raw_writefn = raw_write
4700             },
4701             REGINFO_SENTINEL
4702         };
4703         define_arm_cp_regs(cpu, dbgregs);
4704     }
4705 }
4706 
4707 /* We don't know until after realize whether there's a GICv3
4708  * attached, and that is what registers the gicv3 sysregs.
4709  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4710  * at runtime.
4711  */
4712 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4713 {
4714     ARMCPU *cpu = arm_env_get_cpu(env);
4715     uint64_t pfr1 = cpu->id_pfr1;
4716 
4717     if (env->gicv3state) {
4718         pfr1 |= 1 << 28;
4719     }
4720     return pfr1;
4721 }
4722 
4723 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4724 {
4725     ARMCPU *cpu = arm_env_get_cpu(env);
4726     uint64_t pfr0 = cpu->id_aa64pfr0;
4727 
4728     if (env->gicv3state) {
4729         pfr0 |= 1 << 24;
4730     }
4731     return pfr0;
4732 }
4733 
4734 void register_cp_regs_for_features(ARMCPU *cpu)
4735 {
4736     /* Register all the coprocessor registers based on feature bits */
4737     CPUARMState *env = &cpu->env;
4738     if (arm_feature(env, ARM_FEATURE_M)) {
4739         /* M profile has no coprocessor registers */
4740         return;
4741     }
4742 
4743     define_arm_cp_regs(cpu, cp_reginfo);
4744     if (!arm_feature(env, ARM_FEATURE_V8)) {
4745         /* Must go early as it is full of wildcards that may be
4746          * overridden by later definitions.
4747          */
4748         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4749     }
4750 
4751     if (arm_feature(env, ARM_FEATURE_V6)) {
4752         /* The ID registers all have impdef reset values */
4753         ARMCPRegInfo v6_idregs[] = {
4754             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4755               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4756               .access = PL1_R, .type = ARM_CP_CONST,
4757               .resetvalue = cpu->id_pfr0 },
4758             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4759              * the value of the GIC field until after we define these regs.
4760              */
4761             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4762               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4763               .access = PL1_R, .type = ARM_CP_NO_RAW,
4764               .readfn = id_pfr1_read,
4765               .writefn = arm_cp_write_ignore },
4766             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4767               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4768               .access = PL1_R, .type = ARM_CP_CONST,
4769               .resetvalue = cpu->id_dfr0 },
4770             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4771               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4772               .access = PL1_R, .type = ARM_CP_CONST,
4773               .resetvalue = cpu->id_afr0 },
4774             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4775               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4776               .access = PL1_R, .type = ARM_CP_CONST,
4777               .resetvalue = cpu->id_mmfr0 },
4778             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4779               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4780               .access = PL1_R, .type = ARM_CP_CONST,
4781               .resetvalue = cpu->id_mmfr1 },
4782             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4783               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4784               .access = PL1_R, .type = ARM_CP_CONST,
4785               .resetvalue = cpu->id_mmfr2 },
4786             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4787               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4788               .access = PL1_R, .type = ARM_CP_CONST,
4789               .resetvalue = cpu->id_mmfr3 },
4790             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4791               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4792               .access = PL1_R, .type = ARM_CP_CONST,
4793               .resetvalue = cpu->id_isar0 },
4794             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4795               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4796               .access = PL1_R, .type = ARM_CP_CONST,
4797               .resetvalue = cpu->id_isar1 },
4798             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4799               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4800               .access = PL1_R, .type = ARM_CP_CONST,
4801               .resetvalue = cpu->id_isar2 },
4802             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4803               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4804               .access = PL1_R, .type = ARM_CP_CONST,
4805               .resetvalue = cpu->id_isar3 },
4806             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4807               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4808               .access = PL1_R, .type = ARM_CP_CONST,
4809               .resetvalue = cpu->id_isar4 },
4810             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4811               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4812               .access = PL1_R, .type = ARM_CP_CONST,
4813               .resetvalue = cpu->id_isar5 },
4814             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4815               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4816               .access = PL1_R, .type = ARM_CP_CONST,
4817               .resetvalue = cpu->id_mmfr4 },
4818             /* 7 is as yet unallocated and must RAZ */
4819             { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4820               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4821               .access = PL1_R, .type = ARM_CP_CONST,
4822               .resetvalue = 0 },
4823             REGINFO_SENTINEL
4824         };
4825         define_arm_cp_regs(cpu, v6_idregs);
4826         define_arm_cp_regs(cpu, v6_cp_reginfo);
4827     } else {
4828         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4829     }
4830     if (arm_feature(env, ARM_FEATURE_V6K)) {
4831         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4832     }
4833     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4834         !arm_feature(env, ARM_FEATURE_PMSA)) {
4835         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4836     }
4837     if (arm_feature(env, ARM_FEATURE_V7)) {
4838         /* v7 performance monitor control register: same implementor
4839          * field as main ID register, and we implement only the cycle
4840          * count register.
4841          */
4842 #ifndef CONFIG_USER_ONLY
4843         ARMCPRegInfo pmcr = {
4844             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4845             .access = PL0_RW,
4846             .type = ARM_CP_IO | ARM_CP_ALIAS,
4847             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4848             .accessfn = pmreg_access, .writefn = pmcr_write,
4849             .raw_writefn = raw_write,
4850         };
4851         ARMCPRegInfo pmcr64 = {
4852             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4853             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4854             .access = PL0_RW, .accessfn = pmreg_access,
4855             .type = ARM_CP_IO,
4856             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4857             .resetvalue = cpu->midr & 0xff000000,
4858             .writefn = pmcr_write, .raw_writefn = raw_write,
4859         };
4860         define_one_arm_cp_reg(cpu, &pmcr);
4861         define_one_arm_cp_reg(cpu, &pmcr64);
4862 #endif
4863         ARMCPRegInfo clidr = {
4864             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4865             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4866             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4867         };
4868         define_one_arm_cp_reg(cpu, &clidr);
4869         define_arm_cp_regs(cpu, v7_cp_reginfo);
4870         define_debug_regs(cpu);
4871     } else {
4872         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4873     }
4874     if (arm_feature(env, ARM_FEATURE_V8)) {
4875         /* AArch64 ID registers, which all have impdef reset values.
4876          * Note that within the ID register ranges the unused slots
4877          * must all RAZ, not UNDEF; future architecture versions may
4878          * define new registers here.
4879          */
4880         ARMCPRegInfo v8_idregs[] = {
4881             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4882              * know the right value for the GIC field until after we
4883              * define these regs.
4884              */
4885             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4886               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4887               .access = PL1_R, .type = ARM_CP_NO_RAW,
4888               .readfn = id_aa64pfr0_read,
4889               .writefn = arm_cp_write_ignore },
4890             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4891               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4892               .access = PL1_R, .type = ARM_CP_CONST,
4893               .resetvalue = cpu->id_aa64pfr1},
4894             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4895               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4896               .access = PL1_R, .type = ARM_CP_CONST,
4897               .resetvalue = 0 },
4898             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4899               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4900               .access = PL1_R, .type = ARM_CP_CONST,
4901               .resetvalue = 0 },
4902             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4903               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4904               .access = PL1_R, .type = ARM_CP_CONST,
4905               .resetvalue = 0 },
4906             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4907               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4908               .access = PL1_R, .type = ARM_CP_CONST,
4909               .resetvalue = 0 },
4910             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4911               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4912               .access = PL1_R, .type = ARM_CP_CONST,
4913               .resetvalue = 0 },
4914             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4915               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4916               .access = PL1_R, .type = ARM_CP_CONST,
4917               .resetvalue = 0 },
4918             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4919               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4920               .access = PL1_R, .type = ARM_CP_CONST,
4921               .resetvalue = cpu->id_aa64dfr0 },
4922             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4923               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4924               .access = PL1_R, .type = ARM_CP_CONST,
4925               .resetvalue = cpu->id_aa64dfr1 },
4926             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4927               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4928               .access = PL1_R, .type = ARM_CP_CONST,
4929               .resetvalue = 0 },
4930             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4931               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4932               .access = PL1_R, .type = ARM_CP_CONST,
4933               .resetvalue = 0 },
4934             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4935               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4936               .access = PL1_R, .type = ARM_CP_CONST,
4937               .resetvalue = cpu->id_aa64afr0 },
4938             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4939               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4940               .access = PL1_R, .type = ARM_CP_CONST,
4941               .resetvalue = cpu->id_aa64afr1 },
4942             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4943               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4944               .access = PL1_R, .type = ARM_CP_CONST,
4945               .resetvalue = 0 },
4946             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4947               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4948               .access = PL1_R, .type = ARM_CP_CONST,
4949               .resetvalue = 0 },
4950             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4951               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4952               .access = PL1_R, .type = ARM_CP_CONST,
4953               .resetvalue = cpu->id_aa64isar0 },
4954             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4955               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4956               .access = PL1_R, .type = ARM_CP_CONST,
4957               .resetvalue = cpu->id_aa64isar1 },
4958             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4959               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4960               .access = PL1_R, .type = ARM_CP_CONST,
4961               .resetvalue = 0 },
4962             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4963               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4964               .access = PL1_R, .type = ARM_CP_CONST,
4965               .resetvalue = 0 },
4966             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4967               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4968               .access = PL1_R, .type = ARM_CP_CONST,
4969               .resetvalue = 0 },
4970             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4971               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4972               .access = PL1_R, .type = ARM_CP_CONST,
4973               .resetvalue = 0 },
4974             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4975               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4976               .access = PL1_R, .type = ARM_CP_CONST,
4977               .resetvalue = 0 },
4978             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4979               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4980               .access = PL1_R, .type = ARM_CP_CONST,
4981               .resetvalue = 0 },
4982             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4983               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4984               .access = PL1_R, .type = ARM_CP_CONST,
4985               .resetvalue = cpu->id_aa64mmfr0 },
4986             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4987               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4988               .access = PL1_R, .type = ARM_CP_CONST,
4989               .resetvalue = cpu->id_aa64mmfr1 },
4990             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4991               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4992               .access = PL1_R, .type = ARM_CP_CONST,
4993               .resetvalue = 0 },
4994             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4995               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4996               .access = PL1_R, .type = ARM_CP_CONST,
4997               .resetvalue = 0 },
4998             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4999               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5000               .access = PL1_R, .type = ARM_CP_CONST,
5001               .resetvalue = 0 },
5002             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5003               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5004               .access = PL1_R, .type = ARM_CP_CONST,
5005               .resetvalue = 0 },
5006             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5007               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5008               .access = PL1_R, .type = ARM_CP_CONST,
5009               .resetvalue = 0 },
5010             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5011               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5012               .access = PL1_R, .type = ARM_CP_CONST,
5013               .resetvalue = 0 },
5014             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5015               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5016               .access = PL1_R, .type = ARM_CP_CONST,
5017               .resetvalue = cpu->mvfr0 },
5018             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5019               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5020               .access = PL1_R, .type = ARM_CP_CONST,
5021               .resetvalue = cpu->mvfr1 },
5022             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5023               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5024               .access = PL1_R, .type = ARM_CP_CONST,
5025               .resetvalue = cpu->mvfr2 },
5026             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5027               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5028               .access = PL1_R, .type = ARM_CP_CONST,
5029               .resetvalue = 0 },
5030             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5031               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5032               .access = PL1_R, .type = ARM_CP_CONST,
5033               .resetvalue = 0 },
5034             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5035               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5036               .access = PL1_R, .type = ARM_CP_CONST,
5037               .resetvalue = 0 },
5038             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5039               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5040               .access = PL1_R, .type = ARM_CP_CONST,
5041               .resetvalue = 0 },
5042             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5043               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5044               .access = PL1_R, .type = ARM_CP_CONST,
5045               .resetvalue = 0 },
5046             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5047               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5048               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5049               .resetvalue = cpu->pmceid0 },
5050             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5051               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5052               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5053               .resetvalue = cpu->pmceid0 },
5054             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5055               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5056               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5057               .resetvalue = cpu->pmceid1 },
5058             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5059               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5060               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5061               .resetvalue = cpu->pmceid1 },
5062             REGINFO_SENTINEL
5063         };
5064         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5065         if (!arm_feature(env, ARM_FEATURE_EL3) &&
5066             !arm_feature(env, ARM_FEATURE_EL2)) {
5067             ARMCPRegInfo rvbar = {
5068                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5069                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5070                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5071             };
5072             define_one_arm_cp_reg(cpu, &rvbar);
5073         }
5074         define_arm_cp_regs(cpu, v8_idregs);
5075         define_arm_cp_regs(cpu, v8_cp_reginfo);
5076     }
5077     if (arm_feature(env, ARM_FEATURE_EL2)) {
5078         uint64_t vmpidr_def = mpidr_read_val(env);
5079         ARMCPRegInfo vpidr_regs[] = {
5080             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5081               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5082               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5083               .resetvalue = cpu->midr,
5084               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5085             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5086               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5087               .access = PL2_RW, .resetvalue = cpu->midr,
5088               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5089             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5090               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5091               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5092               .resetvalue = vmpidr_def,
5093               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5094             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5095               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5096               .access = PL2_RW,
5097               .resetvalue = vmpidr_def,
5098               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5099             REGINFO_SENTINEL
5100         };
5101         define_arm_cp_regs(cpu, vpidr_regs);
5102         define_arm_cp_regs(cpu, el2_cp_reginfo);
5103         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5104         if (!arm_feature(env, ARM_FEATURE_EL3)) {
5105             ARMCPRegInfo rvbar = {
5106                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5107                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5108                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5109             };
5110             define_one_arm_cp_reg(cpu, &rvbar);
5111         }
5112     } else {
5113         /* If EL2 is missing but higher ELs are enabled, we need to
5114          * register the no_el2 reginfos.
5115          */
5116         if (arm_feature(env, ARM_FEATURE_EL3)) {
5117             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5118              * of MIDR_EL1 and MPIDR_EL1.
5119              */
5120             ARMCPRegInfo vpidr_regs[] = {
5121                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5122                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5123                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5124                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5125                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5126                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5127                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5128                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5129                   .type = ARM_CP_NO_RAW,
5130                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5131                 REGINFO_SENTINEL
5132             };
5133             define_arm_cp_regs(cpu, vpidr_regs);
5134             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5135         }
5136     }
5137     if (arm_feature(env, ARM_FEATURE_EL3)) {
5138         define_arm_cp_regs(cpu, el3_cp_reginfo);
5139         ARMCPRegInfo el3_regs[] = {
5140             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5141               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5142               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5143             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5144               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5145               .access = PL3_RW,
5146               .raw_writefn = raw_write, .writefn = sctlr_write,
5147               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5148               .resetvalue = cpu->reset_sctlr },
5149             REGINFO_SENTINEL
5150         };
5151 
5152         define_arm_cp_regs(cpu, el3_regs);
5153     }
5154     /* The behaviour of NSACR is sufficiently various that we don't
5155      * try to describe it in a single reginfo:
5156      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
5157      *     reads as constant 0xc00 from NS EL1 and NS EL2
5158      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5159      *  if v7 without EL3, register doesn't exist
5160      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5161      */
5162     if (arm_feature(env, ARM_FEATURE_EL3)) {
5163         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5164             ARMCPRegInfo nsacr = {
5165                 .name = "NSACR", .type = ARM_CP_CONST,
5166                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5167                 .access = PL1_RW, .accessfn = nsacr_access,
5168                 .resetvalue = 0xc00
5169             };
5170             define_one_arm_cp_reg(cpu, &nsacr);
5171         } else {
5172             ARMCPRegInfo nsacr = {
5173                 .name = "NSACR",
5174                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5175                 .access = PL3_RW | PL1_R,
5176                 .resetvalue = 0,
5177                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5178             };
5179             define_one_arm_cp_reg(cpu, &nsacr);
5180         }
5181     } else {
5182         if (arm_feature(env, ARM_FEATURE_V8)) {
5183             ARMCPRegInfo nsacr = {
5184                 .name = "NSACR", .type = ARM_CP_CONST,
5185                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5186                 .access = PL1_R,
5187                 .resetvalue = 0xc00
5188             };
5189             define_one_arm_cp_reg(cpu, &nsacr);
5190         }
5191     }
5192 
5193     if (arm_feature(env, ARM_FEATURE_PMSA)) {
5194         if (arm_feature(env, ARM_FEATURE_V6)) {
5195             /* PMSAv6 not implemented */
5196             assert(arm_feature(env, ARM_FEATURE_V7));
5197             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5198             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5199         } else {
5200             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5201         }
5202     } else {
5203         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5204         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5205     }
5206     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5207         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5208     }
5209     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5210         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5211     }
5212     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5213         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5214     }
5215     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5216         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5217     }
5218     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5219         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5220     }
5221     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5222         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5223     }
5224     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5225         define_arm_cp_regs(cpu, omap_cp_reginfo);
5226     }
5227     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5228         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5229     }
5230     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5231         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5232     }
5233     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5234         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5235     }
5236     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5237         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5238     }
5239     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5240      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5241      * be read-only (ie write causes UNDEF exception).
5242      */
5243     {
5244         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5245             /* Pre-v8 MIDR space.
5246              * Note that the MIDR isn't a simple constant register because
5247              * of the TI925 behaviour where writes to another register can
5248              * cause the MIDR value to change.
5249              *
5250              * Unimplemented registers in the c15 0 0 0 space default to
5251              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5252              * and friends override accordingly.
5253              */
5254             { .name = "MIDR",
5255               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5256               .access = PL1_R, .resetvalue = cpu->midr,
5257               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5258               .readfn = midr_read,
5259               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5260               .type = ARM_CP_OVERRIDE },
5261             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5262             { .name = "DUMMY",
5263               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5264               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5265             { .name = "DUMMY",
5266               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5267               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5268             { .name = "DUMMY",
5269               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5270               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5271             { .name = "DUMMY",
5272               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5273               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5274             { .name = "DUMMY",
5275               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5276               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5277             REGINFO_SENTINEL
5278         };
5279         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5280             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5281               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5282               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5283               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5284               .readfn = midr_read },
5285             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5286             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5287               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5288               .access = PL1_R, .resetvalue = cpu->midr },
5289             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5290               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5291               .access = PL1_R, .resetvalue = cpu->midr },
5292             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5293               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5294               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5295             REGINFO_SENTINEL
5296         };
5297         ARMCPRegInfo id_cp_reginfo[] = {
5298             /* These are common to v8 and pre-v8 */
5299             { .name = "CTR",
5300               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5301               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5302             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5303               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5304               .access = PL0_R, .accessfn = ctr_el0_access,
5305               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5306             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5307             { .name = "TCMTR",
5308               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5309               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5310             REGINFO_SENTINEL
5311         };
5312         /* TLBTR is specific to VMSA */
5313         ARMCPRegInfo id_tlbtr_reginfo = {
5314               .name = "TLBTR",
5315               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5316               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5317         };
5318         /* MPUIR is specific to PMSA V6+ */
5319         ARMCPRegInfo id_mpuir_reginfo = {
5320               .name = "MPUIR",
5321               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5322               .access = PL1_R, .type = ARM_CP_CONST,
5323               .resetvalue = cpu->pmsav7_dregion << 8
5324         };
5325         ARMCPRegInfo crn0_wi_reginfo = {
5326             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5327             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5328             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5329         };
5330         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5331             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5332             ARMCPRegInfo *r;
5333             /* Register the blanket "writes ignored" value first to cover the
5334              * whole space. Then update the specific ID registers to allow write
5335              * access, so that they ignore writes rather than causing them to
5336              * UNDEF.
5337              */
5338             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5339             for (r = id_pre_v8_midr_cp_reginfo;
5340                  r->type != ARM_CP_SENTINEL; r++) {
5341                 r->access = PL1_RW;
5342             }
5343             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5344                 r->access = PL1_RW;
5345             }
5346             id_tlbtr_reginfo.access = PL1_RW;
5347             id_tlbtr_reginfo.access = PL1_RW;
5348         }
5349         if (arm_feature(env, ARM_FEATURE_V8)) {
5350             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5351         } else {
5352             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5353         }
5354         define_arm_cp_regs(cpu, id_cp_reginfo);
5355         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5356             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5357         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5358             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5359         }
5360     }
5361 
5362     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5363         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5364     }
5365 
5366     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5367         ARMCPRegInfo auxcr_reginfo[] = {
5368             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5369               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5370               .access = PL1_RW, .type = ARM_CP_CONST,
5371               .resetvalue = cpu->reset_auxcr },
5372             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5373               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5374               .access = PL2_RW, .type = ARM_CP_CONST,
5375               .resetvalue = 0 },
5376             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5377               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5378               .access = PL3_RW, .type = ARM_CP_CONST,
5379               .resetvalue = 0 },
5380             REGINFO_SENTINEL
5381         };
5382         define_arm_cp_regs(cpu, auxcr_reginfo);
5383     }
5384 
5385     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5386         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5387             /* 32 bit view is [31:18] 0...0 [43:32]. */
5388             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5389                 | extract64(cpu->reset_cbar, 32, 12);
5390             ARMCPRegInfo cbar_reginfo[] = {
5391                 { .name = "CBAR",
5392                   .type = ARM_CP_CONST,
5393                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5394                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5395                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5396                   .type = ARM_CP_CONST,
5397                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5398                   .access = PL1_R, .resetvalue = cbar32 },
5399                 REGINFO_SENTINEL
5400             };
5401             /* We don't implement a r/w 64 bit CBAR currently */
5402             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5403             define_arm_cp_regs(cpu, cbar_reginfo);
5404         } else {
5405             ARMCPRegInfo cbar = {
5406                 .name = "CBAR",
5407                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5408                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5409                 .fieldoffset = offsetof(CPUARMState,
5410                                         cp15.c15_config_base_address)
5411             };
5412             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5413                 cbar.access = PL1_R;
5414                 cbar.fieldoffset = 0;
5415                 cbar.type = ARM_CP_CONST;
5416             }
5417             define_one_arm_cp_reg(cpu, &cbar);
5418         }
5419     }
5420 
5421     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5422         ARMCPRegInfo vbar_cp_reginfo[] = {
5423             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5424               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5425               .access = PL1_RW, .writefn = vbar_write,
5426               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5427                                      offsetof(CPUARMState, cp15.vbar_ns) },
5428               .resetvalue = 0 },
5429             REGINFO_SENTINEL
5430         };
5431         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5432     }
5433 
5434     /* Generic registers whose values depend on the implementation */
5435     {
5436         ARMCPRegInfo sctlr = {
5437             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5438             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5439             .access = PL1_RW,
5440             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5441                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5442             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5443             .raw_writefn = raw_write,
5444         };
5445         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5446             /* Normally we would always end the TB on an SCTLR write, but Linux
5447              * arch/arm/mach-pxa/sleep.S expects two instructions following
5448              * an MMU enable to execute from cache.  Imitate this behaviour.
5449              */
5450             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5451         }
5452         define_one_arm_cp_reg(cpu, &sctlr);
5453     }
5454 
5455     if (arm_feature(env, ARM_FEATURE_SVE)) {
5456         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5457         if (arm_feature(env, ARM_FEATURE_EL2)) {
5458             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5459         } else {
5460             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5461         }
5462         if (arm_feature(env, ARM_FEATURE_EL3)) {
5463             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5464         }
5465     }
5466 }
5467 
5468 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5469 {
5470     CPUState *cs = CPU(cpu);
5471     CPUARMState *env = &cpu->env;
5472 
5473     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5474         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5475                                  aarch64_fpu_gdb_set_reg,
5476                                  34, "aarch64-fpu.xml", 0);
5477     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5478         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5479                                  51, "arm-neon.xml", 0);
5480     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5481         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5482                                  35, "arm-vfp3.xml", 0);
5483     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5484         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5485                                  19, "arm-vfp.xml", 0);
5486     }
5487 }
5488 
5489 /* Sort alphabetically by type name, except for "any". */
5490 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5491 {
5492     ObjectClass *class_a = (ObjectClass *)a;
5493     ObjectClass *class_b = (ObjectClass *)b;
5494     const char *name_a, *name_b;
5495 
5496     name_a = object_class_get_name(class_a);
5497     name_b = object_class_get_name(class_b);
5498     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5499         return 1;
5500     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5501         return -1;
5502     } else {
5503         return strcmp(name_a, name_b);
5504     }
5505 }
5506 
5507 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5508 {
5509     ObjectClass *oc = data;
5510     CPUListState *s = user_data;
5511     const char *typename;
5512     char *name;
5513 
5514     typename = object_class_get_name(oc);
5515     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5516     (*s->cpu_fprintf)(s->file, "  %s\n",
5517                       name);
5518     g_free(name);
5519 }
5520 
5521 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5522 {
5523     CPUListState s = {
5524         .file = f,
5525         .cpu_fprintf = cpu_fprintf,
5526     };
5527     GSList *list;
5528 
5529     list = object_class_get_list(TYPE_ARM_CPU, false);
5530     list = g_slist_sort(list, arm_cpu_list_compare);
5531     (*cpu_fprintf)(f, "Available CPUs:\n");
5532     g_slist_foreach(list, arm_cpu_list_entry, &s);
5533     g_slist_free(list);
5534 #ifdef CONFIG_KVM
5535     /* The 'host' CPU type is dynamically registered only if KVM is
5536      * enabled, so we have to special-case it here:
5537      */
5538     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5539 #endif
5540 }
5541 
5542 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5543 {
5544     ObjectClass *oc = data;
5545     CpuDefinitionInfoList **cpu_list = user_data;
5546     CpuDefinitionInfoList *entry;
5547     CpuDefinitionInfo *info;
5548     const char *typename;
5549 
5550     typename = object_class_get_name(oc);
5551     info = g_malloc0(sizeof(*info));
5552     info->name = g_strndup(typename,
5553                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5554     info->q_typename = g_strdup(typename);
5555 
5556     entry = g_malloc0(sizeof(*entry));
5557     entry->value = info;
5558     entry->next = *cpu_list;
5559     *cpu_list = entry;
5560 }
5561 
5562 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5563 {
5564     CpuDefinitionInfoList *cpu_list = NULL;
5565     GSList *list;
5566 
5567     list = object_class_get_list(TYPE_ARM_CPU, false);
5568     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5569     g_slist_free(list);
5570 
5571     return cpu_list;
5572 }
5573 
5574 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5575                                    void *opaque, int state, int secstate,
5576                                    int crm, int opc1, int opc2)
5577 {
5578     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5579      * add a single reginfo struct to the hash table.
5580      */
5581     uint32_t *key = g_new(uint32_t, 1);
5582     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5583     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5584     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5585 
5586     /* Reset the secure state to the specific incoming state.  This is
5587      * necessary as the register may have been defined with both states.
5588      */
5589     r2->secure = secstate;
5590 
5591     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5592         /* Register is banked (using both entries in array).
5593          * Overwriting fieldoffset as the array is only used to define
5594          * banked registers but later only fieldoffset is used.
5595          */
5596         r2->fieldoffset = r->bank_fieldoffsets[ns];
5597     }
5598 
5599     if (state == ARM_CP_STATE_AA32) {
5600         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5601             /* If the register is banked then we don't need to migrate or
5602              * reset the 32-bit instance in certain cases:
5603              *
5604              * 1) If the register has both 32-bit and 64-bit instances then we
5605              *    can count on the 64-bit instance taking care of the
5606              *    non-secure bank.
5607              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5608              *    taking care of the secure bank.  This requires that separate
5609              *    32 and 64-bit definitions are provided.
5610              */
5611             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5612                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5613                 r2->type |= ARM_CP_ALIAS;
5614             }
5615         } else if ((secstate != r->secure) && !ns) {
5616             /* The register is not banked so we only want to allow migration of
5617              * the non-secure instance.
5618              */
5619             r2->type |= ARM_CP_ALIAS;
5620         }
5621 
5622         if (r->state == ARM_CP_STATE_BOTH) {
5623             /* We assume it is a cp15 register if the .cp field is left unset.
5624              */
5625             if (r2->cp == 0) {
5626                 r2->cp = 15;
5627             }
5628 
5629 #ifdef HOST_WORDS_BIGENDIAN
5630             if (r2->fieldoffset) {
5631                 r2->fieldoffset += sizeof(uint32_t);
5632             }
5633 #endif
5634         }
5635     }
5636     if (state == ARM_CP_STATE_AA64) {
5637         /* To allow abbreviation of ARMCPRegInfo
5638          * definitions, we treat cp == 0 as equivalent to
5639          * the value for "standard guest-visible sysreg".
5640          * STATE_BOTH definitions are also always "standard
5641          * sysreg" in their AArch64 view (the .cp value may
5642          * be non-zero for the benefit of the AArch32 view).
5643          */
5644         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5645             r2->cp = CP_REG_ARM64_SYSREG_CP;
5646         }
5647         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5648                                   r2->opc0, opc1, opc2);
5649     } else {
5650         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5651     }
5652     if (opaque) {
5653         r2->opaque = opaque;
5654     }
5655     /* reginfo passed to helpers is correct for the actual access,
5656      * and is never ARM_CP_STATE_BOTH:
5657      */
5658     r2->state = state;
5659     /* Make sure reginfo passed to helpers for wildcarded regs
5660      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5661      */
5662     r2->crm = crm;
5663     r2->opc1 = opc1;
5664     r2->opc2 = opc2;
5665     /* By convention, for wildcarded registers only the first
5666      * entry is used for migration; the others are marked as
5667      * ALIAS so we don't try to transfer the register
5668      * multiple times. Special registers (ie NOP/WFI) are
5669      * never migratable and not even raw-accessible.
5670      */
5671     if ((r->type & ARM_CP_SPECIAL)) {
5672         r2->type |= ARM_CP_NO_RAW;
5673     }
5674     if (((r->crm == CP_ANY) && crm != 0) ||
5675         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5676         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5677         r2->type |= ARM_CP_ALIAS;
5678     }
5679 
5680     /* Check that raw accesses are either forbidden or handled. Note that
5681      * we can't assert this earlier because the setup of fieldoffset for
5682      * banked registers has to be done first.
5683      */
5684     if (!(r2->type & ARM_CP_NO_RAW)) {
5685         assert(!raw_accessors_invalid(r2));
5686     }
5687 
5688     /* Overriding of an existing definition must be explicitly
5689      * requested.
5690      */
5691     if (!(r->type & ARM_CP_OVERRIDE)) {
5692         ARMCPRegInfo *oldreg;
5693         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5694         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5695             fprintf(stderr, "Register redefined: cp=%d %d bit "
5696                     "crn=%d crm=%d opc1=%d opc2=%d, "
5697                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5698                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5699                     oldreg->name, r2->name);
5700             g_assert_not_reached();
5701         }
5702     }
5703     g_hash_table_insert(cpu->cp_regs, key, r2);
5704 }
5705 
5706 
5707 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5708                                        const ARMCPRegInfo *r, void *opaque)
5709 {
5710     /* Define implementations of coprocessor registers.
5711      * We store these in a hashtable because typically
5712      * there are less than 150 registers in a space which
5713      * is 16*16*16*8*8 = 262144 in size.
5714      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5715      * If a register is defined twice then the second definition is
5716      * used, so this can be used to define some generic registers and
5717      * then override them with implementation specific variations.
5718      * At least one of the original and the second definition should
5719      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5720      * against accidental use.
5721      *
5722      * The state field defines whether the register is to be
5723      * visible in the AArch32 or AArch64 execution state. If the
5724      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5725      * reginfo structure for the AArch32 view, which sees the lower
5726      * 32 bits of the 64 bit register.
5727      *
5728      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5729      * be wildcarded. AArch64 registers are always considered to be 64
5730      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5731      * the register, if any.
5732      */
5733     int crm, opc1, opc2, state;
5734     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5735     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5736     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5737     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5738     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5739     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5740     /* 64 bit registers have only CRm and Opc1 fields */
5741     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5742     /* op0 only exists in the AArch64 encodings */
5743     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5744     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5745     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5746     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5747      * encodes a minimum access level for the register. We roll this
5748      * runtime check into our general permission check code, so check
5749      * here that the reginfo's specified permissions are strict enough
5750      * to encompass the generic architectural permission check.
5751      */
5752     if (r->state != ARM_CP_STATE_AA32) {
5753         int mask = 0;
5754         switch (r->opc1) {
5755         case 0: case 1: case 2:
5756             /* min_EL EL1 */
5757             mask = PL1_RW;
5758             break;
5759         case 3:
5760             /* min_EL EL0 */
5761             mask = PL0_RW;
5762             break;
5763         case 4:
5764             /* min_EL EL2 */
5765             mask = PL2_RW;
5766             break;
5767         case 5:
5768             /* unallocated encoding, so not possible */
5769             assert(false);
5770             break;
5771         case 6:
5772             /* min_EL EL3 */
5773             mask = PL3_RW;
5774             break;
5775         case 7:
5776             /* min_EL EL1, secure mode only (we don't check the latter) */
5777             mask = PL1_RW;
5778             break;
5779         default:
5780             /* broken reginfo with out-of-range opc1 */
5781             assert(false);
5782             break;
5783         }
5784         /* assert our permissions are not too lax (stricter is fine) */
5785         assert((r->access & ~mask) == 0);
5786     }
5787 
5788     /* Check that the register definition has enough info to handle
5789      * reads and writes if they are permitted.
5790      */
5791     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5792         if (r->access & PL3_R) {
5793             assert((r->fieldoffset ||
5794                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5795                    r->readfn);
5796         }
5797         if (r->access & PL3_W) {
5798             assert((r->fieldoffset ||
5799                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5800                    r->writefn);
5801         }
5802     }
5803     /* Bad type field probably means missing sentinel at end of reg list */
5804     assert(cptype_valid(r->type));
5805     for (crm = crmmin; crm <= crmmax; crm++) {
5806         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5807             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5808                 for (state = ARM_CP_STATE_AA32;
5809                      state <= ARM_CP_STATE_AA64; state++) {
5810                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5811                         continue;
5812                     }
5813                     if (state == ARM_CP_STATE_AA32) {
5814                         /* Under AArch32 CP registers can be common
5815                          * (same for secure and non-secure world) or banked.
5816                          */
5817                         switch (r->secure) {
5818                         case ARM_CP_SECSTATE_S:
5819                         case ARM_CP_SECSTATE_NS:
5820                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5821                                                    r->secure, crm, opc1, opc2);
5822                             break;
5823                         default:
5824                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5825                                                    ARM_CP_SECSTATE_S,
5826                                                    crm, opc1, opc2);
5827                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5828                                                    ARM_CP_SECSTATE_NS,
5829                                                    crm, opc1, opc2);
5830                             break;
5831                         }
5832                     } else {
5833                         /* AArch64 registers get mapped to non-secure instance
5834                          * of AArch32 */
5835                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5836                                                ARM_CP_SECSTATE_NS,
5837                                                crm, opc1, opc2);
5838                     }
5839                 }
5840             }
5841         }
5842     }
5843 }
5844 
5845 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5846                                     const ARMCPRegInfo *regs, void *opaque)
5847 {
5848     /* Define a whole list of registers */
5849     const ARMCPRegInfo *r;
5850     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5851         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5852     }
5853 }
5854 
5855 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5856 {
5857     return g_hash_table_lookup(cpregs, &encoded_cp);
5858 }
5859 
5860 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5861                          uint64_t value)
5862 {
5863     /* Helper coprocessor write function for write-ignore registers */
5864 }
5865 
5866 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5867 {
5868     /* Helper coprocessor write function for read-as-zero registers */
5869     return 0;
5870 }
5871 
5872 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5873 {
5874     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5875 }
5876 
5877 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5878 {
5879     /* Return true if it is not valid for us to switch to
5880      * this CPU mode (ie all the UNPREDICTABLE cases in
5881      * the ARM ARM CPSRWriteByInstr pseudocode).
5882      */
5883 
5884     /* Changes to or from Hyp via MSR and CPS are illegal. */
5885     if (write_type == CPSRWriteByInstr &&
5886         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5887          mode == ARM_CPU_MODE_HYP)) {
5888         return 1;
5889     }
5890 
5891     switch (mode) {
5892     case ARM_CPU_MODE_USR:
5893         return 0;
5894     case ARM_CPU_MODE_SYS:
5895     case ARM_CPU_MODE_SVC:
5896     case ARM_CPU_MODE_ABT:
5897     case ARM_CPU_MODE_UND:
5898     case ARM_CPU_MODE_IRQ:
5899     case ARM_CPU_MODE_FIQ:
5900         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5901          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5902          */
5903         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5904          * and CPS are treated as illegal mode changes.
5905          */
5906         if (write_type == CPSRWriteByInstr &&
5907             (env->cp15.hcr_el2 & HCR_TGE) &&
5908             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5909             !arm_is_secure_below_el3(env)) {
5910             return 1;
5911         }
5912         return 0;
5913     case ARM_CPU_MODE_HYP:
5914         return !arm_feature(env, ARM_FEATURE_EL2)
5915             || arm_current_el(env) < 2 || arm_is_secure(env);
5916     case ARM_CPU_MODE_MON:
5917         return arm_current_el(env) < 3;
5918     default:
5919         return 1;
5920     }
5921 }
5922 
5923 uint32_t cpsr_read(CPUARMState *env)
5924 {
5925     int ZF;
5926     ZF = (env->ZF == 0);
5927     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5928         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5929         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5930         | ((env->condexec_bits & 0xfc) << 8)
5931         | (env->GE << 16) | (env->daif & CPSR_AIF);
5932 }
5933 
5934 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5935                 CPSRWriteType write_type)
5936 {
5937     uint32_t changed_daif;
5938 
5939     if (mask & CPSR_NZCV) {
5940         env->ZF = (~val) & CPSR_Z;
5941         env->NF = val;
5942         env->CF = (val >> 29) & 1;
5943         env->VF = (val << 3) & 0x80000000;
5944     }
5945     if (mask & CPSR_Q)
5946         env->QF = ((val & CPSR_Q) != 0);
5947     if (mask & CPSR_T)
5948         env->thumb = ((val & CPSR_T) != 0);
5949     if (mask & CPSR_IT_0_1) {
5950         env->condexec_bits &= ~3;
5951         env->condexec_bits |= (val >> 25) & 3;
5952     }
5953     if (mask & CPSR_IT_2_7) {
5954         env->condexec_bits &= 3;
5955         env->condexec_bits |= (val >> 8) & 0xfc;
5956     }
5957     if (mask & CPSR_GE) {
5958         env->GE = (val >> 16) & 0xf;
5959     }
5960 
5961     /* In a V7 implementation that includes the security extensions but does
5962      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5963      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5964      * bits respectively.
5965      *
5966      * In a V8 implementation, it is permitted for privileged software to
5967      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5968      */
5969     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5970         arm_feature(env, ARM_FEATURE_EL3) &&
5971         !arm_feature(env, ARM_FEATURE_EL2) &&
5972         !arm_is_secure(env)) {
5973 
5974         changed_daif = (env->daif ^ val) & mask;
5975 
5976         if (changed_daif & CPSR_A) {
5977             /* Check to see if we are allowed to change the masking of async
5978              * abort exceptions from a non-secure state.
5979              */
5980             if (!(env->cp15.scr_el3 & SCR_AW)) {
5981                 qemu_log_mask(LOG_GUEST_ERROR,
5982                               "Ignoring attempt to switch CPSR_A flag from "
5983                               "non-secure world with SCR.AW bit clear\n");
5984                 mask &= ~CPSR_A;
5985             }
5986         }
5987 
5988         if (changed_daif & CPSR_F) {
5989             /* Check to see if we are allowed to change the masking of FIQ
5990              * exceptions from a non-secure state.
5991              */
5992             if (!(env->cp15.scr_el3 & SCR_FW)) {
5993                 qemu_log_mask(LOG_GUEST_ERROR,
5994                               "Ignoring attempt to switch CPSR_F flag from "
5995                               "non-secure world with SCR.FW bit clear\n");
5996                 mask &= ~CPSR_F;
5997             }
5998 
5999             /* Check whether non-maskable FIQ (NMFI) support is enabled.
6000              * If this bit is set software is not allowed to mask
6001              * FIQs, but is allowed to set CPSR_F to 0.
6002              */
6003             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6004                 (val & CPSR_F)) {
6005                 qemu_log_mask(LOG_GUEST_ERROR,
6006                               "Ignoring attempt to enable CPSR_F flag "
6007                               "(non-maskable FIQ [NMFI] support enabled)\n");
6008                 mask &= ~CPSR_F;
6009             }
6010         }
6011     }
6012 
6013     env->daif &= ~(CPSR_AIF & mask);
6014     env->daif |= val & CPSR_AIF & mask;
6015 
6016     if (write_type != CPSRWriteRaw &&
6017         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6018         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6019             /* Note that we can only get here in USR mode if this is a
6020              * gdb stub write; for this case we follow the architectural
6021              * behaviour for guest writes in USR mode of ignoring an attempt
6022              * to switch mode. (Those are caught by translate.c for writes
6023              * triggered by guest instructions.)
6024              */
6025             mask &= ~CPSR_M;
6026         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6027             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6028              * v7, and has defined behaviour in v8:
6029              *  + leave CPSR.M untouched
6030              *  + allow changes to the other CPSR fields
6031              *  + set PSTATE.IL
6032              * For user changes via the GDB stub, we don't set PSTATE.IL,
6033              * as this would be unnecessarily harsh for a user error.
6034              */
6035             mask &= ~CPSR_M;
6036             if (write_type != CPSRWriteByGDBStub &&
6037                 arm_feature(env, ARM_FEATURE_V8)) {
6038                 mask |= CPSR_IL;
6039                 val |= CPSR_IL;
6040             }
6041         } else {
6042             switch_mode(env, val & CPSR_M);
6043         }
6044     }
6045     mask &= ~CACHED_CPSR_BITS;
6046     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6047 }
6048 
6049 /* Sign/zero extend */
6050 uint32_t HELPER(sxtb16)(uint32_t x)
6051 {
6052     uint32_t res;
6053     res = (uint16_t)(int8_t)x;
6054     res |= (uint32_t)(int8_t)(x >> 16) << 16;
6055     return res;
6056 }
6057 
6058 uint32_t HELPER(uxtb16)(uint32_t x)
6059 {
6060     uint32_t res;
6061     res = (uint16_t)(uint8_t)x;
6062     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6063     return res;
6064 }
6065 
6066 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6067 {
6068     if (den == 0)
6069       return 0;
6070     if (num == INT_MIN && den == -1)
6071       return INT_MIN;
6072     return num / den;
6073 }
6074 
6075 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6076 {
6077     if (den == 0)
6078       return 0;
6079     return num / den;
6080 }
6081 
6082 uint32_t HELPER(rbit)(uint32_t x)
6083 {
6084     return revbit32(x);
6085 }
6086 
6087 #if defined(CONFIG_USER_ONLY)
6088 
6089 /* These should probably raise undefined insn exceptions.  */
6090 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6091 {
6092     ARMCPU *cpu = arm_env_get_cpu(env);
6093 
6094     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6095 }
6096 
6097 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6098 {
6099     ARMCPU *cpu = arm_env_get_cpu(env);
6100 
6101     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6102     return 0;
6103 }
6104 
6105 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6106 {
6107     /* translate.c should never generate calls here in user-only mode */
6108     g_assert_not_reached();
6109 }
6110 
6111 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6112 {
6113     /* translate.c should never generate calls here in user-only mode */
6114     g_assert_not_reached();
6115 }
6116 
6117 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6118 {
6119     /* The TT instructions can be used by unprivileged code, but in
6120      * user-only emulation we don't have the MPU.
6121      * Luckily since we know we are NonSecure unprivileged (and that in
6122      * turn means that the A flag wasn't specified), all the bits in the
6123      * register must be zero:
6124      *  IREGION: 0 because IRVALID is 0
6125      *  IRVALID: 0 because NS
6126      *  S: 0 because NS
6127      *  NSRW: 0 because NS
6128      *  NSR: 0 because NS
6129      *  RW: 0 because unpriv and A flag not set
6130      *  R: 0 because unpriv and A flag not set
6131      *  SRVALID: 0 because NS
6132      *  MRVALID: 0 because unpriv and A flag not set
6133      *  SREGION: 0 becaus SRVALID is 0
6134      *  MREGION: 0 because MRVALID is 0
6135      */
6136     return 0;
6137 }
6138 
6139 void switch_mode(CPUARMState *env, int mode)
6140 {
6141     ARMCPU *cpu = arm_env_get_cpu(env);
6142 
6143     if (mode != ARM_CPU_MODE_USR) {
6144         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6145     }
6146 }
6147 
6148 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6149                                  uint32_t cur_el, bool secure)
6150 {
6151     return 1;
6152 }
6153 
6154 void aarch64_sync_64_to_32(CPUARMState *env)
6155 {
6156     g_assert_not_reached();
6157 }
6158 
6159 #else
6160 
6161 void switch_mode(CPUARMState *env, int mode)
6162 {
6163     int old_mode;
6164     int i;
6165 
6166     old_mode = env->uncached_cpsr & CPSR_M;
6167     if (mode == old_mode)
6168         return;
6169 
6170     if (old_mode == ARM_CPU_MODE_FIQ) {
6171         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6172         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6173     } else if (mode == ARM_CPU_MODE_FIQ) {
6174         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6175         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6176     }
6177 
6178     i = bank_number(old_mode);
6179     env->banked_r13[i] = env->regs[13];
6180     env->banked_r14[i] = env->regs[14];
6181     env->banked_spsr[i] = env->spsr;
6182 
6183     i = bank_number(mode);
6184     env->regs[13] = env->banked_r13[i];
6185     env->regs[14] = env->banked_r14[i];
6186     env->spsr = env->banked_spsr[i];
6187 }
6188 
6189 /* Physical Interrupt Target EL Lookup Table
6190  *
6191  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6192  *
6193  * The below multi-dimensional table is used for looking up the target
6194  * exception level given numerous condition criteria.  Specifically, the
6195  * target EL is based on SCR and HCR routing controls as well as the
6196  * currently executing EL and secure state.
6197  *
6198  *    Dimensions:
6199  *    target_el_table[2][2][2][2][2][4]
6200  *                    |  |  |  |  |  +--- Current EL
6201  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
6202  *                    |  |  |  +--------- HCR mask override
6203  *                    |  |  +------------ SCR exec state control
6204  *                    |  +--------------- SCR mask override
6205  *                    +------------------ 32-bit(0)/64-bit(1) EL3
6206  *
6207  *    The table values are as such:
6208  *    0-3 = EL0-EL3
6209  *     -1 = Cannot occur
6210  *
6211  * The ARM ARM target EL table includes entries indicating that an "exception
6212  * is not taken".  The two cases where this is applicable are:
6213  *    1) An exception is taken from EL3 but the SCR does not have the exception
6214  *    routed to EL3.
6215  *    2) An exception is taken from EL2 but the HCR does not have the exception
6216  *    routed to EL2.
6217  * In these two cases, the below table contain a target of EL1.  This value is
6218  * returned as it is expected that the consumer of the table data will check
6219  * for "target EL >= current EL" to ensure the exception is not taken.
6220  *
6221  *            SCR     HCR
6222  *         64  EA     AMO                 From
6223  *        BIT IRQ     IMO      Non-secure         Secure
6224  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
6225  */
6226 static const int8_t target_el_table[2][2][2][2][2][4] = {
6227     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6228        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
6229       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6230        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
6231      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6232        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
6233       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6234        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
6235     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
6236        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
6237       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
6238        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
6239      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6240        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
6241       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6242        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
6243 };
6244 
6245 /*
6246  * Determine the target EL for physical exceptions
6247  */
6248 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6249                                  uint32_t cur_el, bool secure)
6250 {
6251     CPUARMState *env = cs->env_ptr;
6252     int rw;
6253     int scr;
6254     int hcr;
6255     int target_el;
6256     /* Is the highest EL AArch64? */
6257     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6258 
6259     if (arm_feature(env, ARM_FEATURE_EL3)) {
6260         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6261     } else {
6262         /* Either EL2 is the highest EL (and so the EL2 register width
6263          * is given by is64); or there is no EL2 or EL3, in which case
6264          * the value of 'rw' does not affect the table lookup anyway.
6265          */
6266         rw = is64;
6267     }
6268 
6269     switch (excp_idx) {
6270     case EXCP_IRQ:
6271         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6272         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6273         break;
6274     case EXCP_FIQ:
6275         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6276         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6277         break;
6278     default:
6279         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6280         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6281         break;
6282     };
6283 
6284     /* If HCR.TGE is set then HCR is treated as being 1 */
6285     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6286 
6287     /* Perform a table-lookup for the target EL given the current state */
6288     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6289 
6290     assert(target_el > 0);
6291 
6292     return target_el;
6293 }
6294 
6295 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6296                             ARMMMUIdx mmu_idx, bool ignfault)
6297 {
6298     CPUState *cs = CPU(cpu);
6299     CPUARMState *env = &cpu->env;
6300     MemTxAttrs attrs = {};
6301     MemTxResult txres;
6302     target_ulong page_size;
6303     hwaddr physaddr;
6304     int prot;
6305     ARMMMUFaultInfo fi;
6306     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6307     int exc;
6308     bool exc_secure;
6309 
6310     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6311                       &attrs, &prot, &page_size, &fi, NULL)) {
6312         /* MPU/SAU lookup failed */
6313         if (fi.type == ARMFault_QEMU_SFault) {
6314             qemu_log_mask(CPU_LOG_INT,
6315                           "...SecureFault with SFSR.AUVIOL during stacking\n");
6316             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6317             env->v7m.sfar = addr;
6318             exc = ARMV7M_EXCP_SECURE;
6319             exc_secure = false;
6320         } else {
6321             qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6322             env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6323             exc = ARMV7M_EXCP_MEM;
6324             exc_secure = secure;
6325         }
6326         goto pend_fault;
6327     }
6328     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6329                          attrs, &txres);
6330     if (txres != MEMTX_OK) {
6331         /* BusFault trying to write the data */
6332         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6333         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6334         exc = ARMV7M_EXCP_BUS;
6335         exc_secure = false;
6336         goto pend_fault;
6337     }
6338     return true;
6339 
6340 pend_fault:
6341     /* By pending the exception at this point we are making
6342      * the IMPDEF choice "overridden exceptions pended" (see the
6343      * MergeExcInfo() pseudocode). The other choice would be to not
6344      * pend them now and then make a choice about which to throw away
6345      * later if we have two derived exceptions.
6346      * The only case when we must not pend the exception but instead
6347      * throw it away is if we are doing the push of the callee registers
6348      * and we've already generated a derived exception. Even in this
6349      * case we will still update the fault status registers.
6350      */
6351     if (!ignfault) {
6352         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6353     }
6354     return false;
6355 }
6356 
6357 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6358                            ARMMMUIdx mmu_idx)
6359 {
6360     CPUState *cs = CPU(cpu);
6361     CPUARMState *env = &cpu->env;
6362     MemTxAttrs attrs = {};
6363     MemTxResult txres;
6364     target_ulong page_size;
6365     hwaddr physaddr;
6366     int prot;
6367     ARMMMUFaultInfo fi;
6368     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6369     int exc;
6370     bool exc_secure;
6371     uint32_t value;
6372 
6373     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6374                       &attrs, &prot, &page_size, &fi, NULL)) {
6375         /* MPU/SAU lookup failed */
6376         if (fi.type == ARMFault_QEMU_SFault) {
6377             qemu_log_mask(CPU_LOG_INT,
6378                           "...SecureFault with SFSR.AUVIOL during unstack\n");
6379             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6380             env->v7m.sfar = addr;
6381             exc = ARMV7M_EXCP_SECURE;
6382             exc_secure = false;
6383         } else {
6384             qemu_log_mask(CPU_LOG_INT,
6385                           "...MemManageFault with CFSR.MUNSTKERR\n");
6386             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6387             exc = ARMV7M_EXCP_MEM;
6388             exc_secure = secure;
6389         }
6390         goto pend_fault;
6391     }
6392 
6393     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6394                               attrs, &txres);
6395     if (txres != MEMTX_OK) {
6396         /* BusFault trying to read the data */
6397         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6398         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6399         exc = ARMV7M_EXCP_BUS;
6400         exc_secure = false;
6401         goto pend_fault;
6402     }
6403 
6404     *dest = value;
6405     return true;
6406 
6407 pend_fault:
6408     /* By pending the exception at this point we are making
6409      * the IMPDEF choice "overridden exceptions pended" (see the
6410      * MergeExcInfo() pseudocode). The other choice would be to not
6411      * pend them now and then make a choice about which to throw away
6412      * later if we have two derived exceptions.
6413      */
6414     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6415     return false;
6416 }
6417 
6418 /* Return true if we're using the process stack pointer (not the MSP) */
6419 static bool v7m_using_psp(CPUARMState *env)
6420 {
6421     /* Handler mode always uses the main stack; for thread mode
6422      * the CONTROL.SPSEL bit determines the answer.
6423      * Note that in v7M it is not possible to be in Handler mode with
6424      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6425      */
6426     return !arm_v7m_is_handler_mode(env) &&
6427         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6428 }
6429 
6430 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6431  * This may change the current stack pointer between Main and Process
6432  * stack pointers if it is done for the CONTROL register for the current
6433  * security state.
6434  */
6435 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6436                                                  bool new_spsel,
6437                                                  bool secstate)
6438 {
6439     bool old_is_psp = v7m_using_psp(env);
6440 
6441     env->v7m.control[secstate] =
6442         deposit32(env->v7m.control[secstate],
6443                   R_V7M_CONTROL_SPSEL_SHIFT,
6444                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6445 
6446     if (secstate == env->v7m.secure) {
6447         bool new_is_psp = v7m_using_psp(env);
6448         uint32_t tmp;
6449 
6450         if (old_is_psp != new_is_psp) {
6451             tmp = env->v7m.other_sp;
6452             env->v7m.other_sp = env->regs[13];
6453             env->regs[13] = tmp;
6454         }
6455     }
6456 }
6457 
6458 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6459  * stack pointer between Main and Process stack pointers.
6460  */
6461 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6462 {
6463     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6464 }
6465 
6466 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6467 {
6468     /* Write a new value to v7m.exception, thus transitioning into or out
6469      * of Handler mode; this may result in a change of active stack pointer.
6470      */
6471     bool new_is_psp, old_is_psp = v7m_using_psp(env);
6472     uint32_t tmp;
6473 
6474     env->v7m.exception = new_exc;
6475 
6476     new_is_psp = v7m_using_psp(env);
6477 
6478     if (old_is_psp != new_is_psp) {
6479         tmp = env->v7m.other_sp;
6480         env->v7m.other_sp = env->regs[13];
6481         env->regs[13] = tmp;
6482     }
6483 }
6484 
6485 /* Switch M profile security state between NS and S */
6486 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6487 {
6488     uint32_t new_ss_msp, new_ss_psp;
6489 
6490     if (env->v7m.secure == new_secstate) {
6491         return;
6492     }
6493 
6494     /* All the banked state is accessed by looking at env->v7m.secure
6495      * except for the stack pointer; rearrange the SP appropriately.
6496      */
6497     new_ss_msp = env->v7m.other_ss_msp;
6498     new_ss_psp = env->v7m.other_ss_psp;
6499 
6500     if (v7m_using_psp(env)) {
6501         env->v7m.other_ss_psp = env->regs[13];
6502         env->v7m.other_ss_msp = env->v7m.other_sp;
6503     } else {
6504         env->v7m.other_ss_msp = env->regs[13];
6505         env->v7m.other_ss_psp = env->v7m.other_sp;
6506     }
6507 
6508     env->v7m.secure = new_secstate;
6509 
6510     if (v7m_using_psp(env)) {
6511         env->regs[13] = new_ss_psp;
6512         env->v7m.other_sp = new_ss_msp;
6513     } else {
6514         env->regs[13] = new_ss_msp;
6515         env->v7m.other_sp = new_ss_psp;
6516     }
6517 }
6518 
6519 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6520 {
6521     /* Handle v7M BXNS:
6522      *  - if the return value is a magic value, do exception return (like BX)
6523      *  - otherwise bit 0 of the return value is the target security state
6524      */
6525     uint32_t min_magic;
6526 
6527     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6528         /* Covers FNC_RETURN and EXC_RETURN magic */
6529         min_magic = FNC_RETURN_MIN_MAGIC;
6530     } else {
6531         /* EXC_RETURN magic only */
6532         min_magic = EXC_RETURN_MIN_MAGIC;
6533     }
6534 
6535     if (dest >= min_magic) {
6536         /* This is an exception return magic value; put it where
6537          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6538          * Note that if we ever add gen_ss_advance() singlestep support to
6539          * M profile this should count as an "instruction execution complete"
6540          * event (compare gen_bx_excret_final_code()).
6541          */
6542         env->regs[15] = dest & ~1;
6543         env->thumb = dest & 1;
6544         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6545         /* notreached */
6546     }
6547 
6548     /* translate.c should have made BXNS UNDEF unless we're secure */
6549     assert(env->v7m.secure);
6550 
6551     switch_v7m_security_state(env, dest & 1);
6552     env->thumb = 1;
6553     env->regs[15] = dest & ~1;
6554 }
6555 
6556 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6557 {
6558     /* Handle v7M BLXNS:
6559      *  - bit 0 of the destination address is the target security state
6560      */
6561 
6562     /* At this point regs[15] is the address just after the BLXNS */
6563     uint32_t nextinst = env->regs[15] | 1;
6564     uint32_t sp = env->regs[13] - 8;
6565     uint32_t saved_psr;
6566 
6567     /* translate.c will have made BLXNS UNDEF unless we're secure */
6568     assert(env->v7m.secure);
6569 
6570     if (dest & 1) {
6571         /* target is Secure, so this is just a normal BLX,
6572          * except that the low bit doesn't indicate Thumb/not.
6573          */
6574         env->regs[14] = nextinst;
6575         env->thumb = 1;
6576         env->regs[15] = dest & ~1;
6577         return;
6578     }
6579 
6580     /* Target is non-secure: first push a stack frame */
6581     if (!QEMU_IS_ALIGNED(sp, 8)) {
6582         qemu_log_mask(LOG_GUEST_ERROR,
6583                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
6584     }
6585 
6586     saved_psr = env->v7m.exception;
6587     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6588         saved_psr |= XPSR_SFPA;
6589     }
6590 
6591     /* Note that these stores can throw exceptions on MPU faults */
6592     cpu_stl_data(env, sp, nextinst);
6593     cpu_stl_data(env, sp + 4, saved_psr);
6594 
6595     env->regs[13] = sp;
6596     env->regs[14] = 0xfeffffff;
6597     if (arm_v7m_is_handler_mode(env)) {
6598         /* Write a dummy value to IPSR, to avoid leaking the current secure
6599          * exception number to non-secure code. This is guaranteed not
6600          * to cause write_v7m_exception() to actually change stacks.
6601          */
6602         write_v7m_exception(env, 1);
6603     }
6604     switch_v7m_security_state(env, 0);
6605     env->thumb = 1;
6606     env->regs[15] = dest;
6607 }
6608 
6609 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6610                                 bool spsel)
6611 {
6612     /* Return a pointer to the location where we currently store the
6613      * stack pointer for the requested security state and thread mode.
6614      * This pointer will become invalid if the CPU state is updated
6615      * such that the stack pointers are switched around (eg changing
6616      * the SPSEL control bit).
6617      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6618      * Unlike that pseudocode, we require the caller to pass us in the
6619      * SPSEL control bit value; this is because we also use this
6620      * function in handling of pushing of the callee-saves registers
6621      * part of the v8M stack frame (pseudocode PushCalleeStack()),
6622      * and in the tailchain codepath the SPSEL bit comes from the exception
6623      * return magic LR value from the previous exception. The pseudocode
6624      * opencodes the stack-selection in PushCalleeStack(), but we prefer
6625      * to make this utility function generic enough to do the job.
6626      */
6627     bool want_psp = threadmode && spsel;
6628 
6629     if (secure == env->v7m.secure) {
6630         if (want_psp == v7m_using_psp(env)) {
6631             return &env->regs[13];
6632         } else {
6633             return &env->v7m.other_sp;
6634         }
6635     } else {
6636         if (want_psp) {
6637             return &env->v7m.other_ss_psp;
6638         } else {
6639             return &env->v7m.other_ss_msp;
6640         }
6641     }
6642 }
6643 
6644 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6645                                 uint32_t *pvec)
6646 {
6647     CPUState *cs = CPU(cpu);
6648     CPUARMState *env = &cpu->env;
6649     MemTxResult result;
6650     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6651     uint32_t vector_entry;
6652     MemTxAttrs attrs = {};
6653     ARMMMUIdx mmu_idx;
6654     bool exc_secure;
6655 
6656     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6657 
6658     /* We don't do a get_phys_addr() here because the rules for vector
6659      * loads are special: they always use the default memory map, and
6660      * the default memory map permits reads from all addresses.
6661      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6662      * that we want this special case which would always say "yes",
6663      * we just do the SAU lookup here followed by a direct physical load.
6664      */
6665     attrs.secure = targets_secure;
6666     attrs.user = false;
6667 
6668     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6669         V8M_SAttributes sattrs = {};
6670 
6671         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6672         if (sattrs.ns) {
6673             attrs.secure = false;
6674         } else if (!targets_secure) {
6675             /* NS access to S memory */
6676             goto load_fail;
6677         }
6678     }
6679 
6680     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6681                                      attrs, &result);
6682     if (result != MEMTX_OK) {
6683         goto load_fail;
6684     }
6685     *pvec = vector_entry;
6686     return true;
6687 
6688 load_fail:
6689     /* All vector table fetch fails are reported as HardFault, with
6690      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6691      * technically the underlying exception is a MemManage or BusFault
6692      * that is escalated to HardFault.) This is a terminal exception,
6693      * so we will either take the HardFault immediately or else enter
6694      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6695      */
6696     exc_secure = targets_secure ||
6697         !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6698     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6699     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6700     return false;
6701 }
6702 
6703 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6704                                   bool ignore_faults)
6705 {
6706     /* For v8M, push the callee-saves register part of the stack frame.
6707      * Compare the v8M pseudocode PushCalleeStack().
6708      * In the tailchaining case this may not be the current stack.
6709      */
6710     CPUARMState *env = &cpu->env;
6711     uint32_t *frame_sp_p;
6712     uint32_t frameptr;
6713     ARMMMUIdx mmu_idx;
6714     bool stacked_ok;
6715 
6716     if (dotailchain) {
6717         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6718         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6719             !mode;
6720 
6721         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6722         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6723                                     lr & R_V7M_EXCRET_SPSEL_MASK);
6724     } else {
6725         mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6726         frame_sp_p = &env->regs[13];
6727     }
6728 
6729     frameptr = *frame_sp_p - 0x28;
6730 
6731     /* Write as much of the stack frame as we can. A write failure may
6732      * cause us to pend a derived exception.
6733      */
6734     stacked_ok =
6735         v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
6736         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
6737                         ignore_faults) &&
6738         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
6739                         ignore_faults) &&
6740         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
6741                         ignore_faults) &&
6742         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
6743                         ignore_faults) &&
6744         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
6745                         ignore_faults) &&
6746         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
6747                         ignore_faults) &&
6748         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
6749                         ignore_faults) &&
6750         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
6751                         ignore_faults);
6752 
6753     /* Update SP regardless of whether any of the stack accesses failed.
6754      * When we implement v8M stack limit checking then this attempt to
6755      * update SP might also fail and result in a derived exception.
6756      */
6757     *frame_sp_p = frameptr;
6758 
6759     return !stacked_ok;
6760 }
6761 
6762 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6763                                 bool ignore_stackfaults)
6764 {
6765     /* Do the "take the exception" parts of exception entry,
6766      * but not the pushing of state to the stack. This is
6767      * similar to the pseudocode ExceptionTaken() function.
6768      */
6769     CPUARMState *env = &cpu->env;
6770     uint32_t addr;
6771     bool targets_secure;
6772     int exc;
6773     bool push_failed = false;
6774 
6775     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6776 
6777     if (arm_feature(env, ARM_FEATURE_V8)) {
6778         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6779             (lr & R_V7M_EXCRET_S_MASK)) {
6780             /* The background code (the owner of the registers in the
6781              * exception frame) is Secure. This means it may either already
6782              * have or now needs to push callee-saves registers.
6783              */
6784             if (targets_secure) {
6785                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6786                     /* We took an exception from Secure to NonSecure
6787                      * (which means the callee-saved registers got stacked)
6788                      * and are now tailchaining to a Secure exception.
6789                      * Clear DCRS so eventual return from this Secure
6790                      * exception unstacks the callee-saved registers.
6791                      */
6792                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
6793                 }
6794             } else {
6795                 /* We're going to a non-secure exception; push the
6796                  * callee-saves registers to the stack now, if they're
6797                  * not already saved.
6798                  */
6799                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6800                     !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6801                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
6802                                                         ignore_stackfaults);
6803                 }
6804                 lr |= R_V7M_EXCRET_DCRS_MASK;
6805             }
6806         }
6807 
6808         lr &= ~R_V7M_EXCRET_ES_MASK;
6809         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6810             lr |= R_V7M_EXCRET_ES_MASK;
6811         }
6812         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6813         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6814             lr |= R_V7M_EXCRET_SPSEL_MASK;
6815         }
6816 
6817         /* Clear registers if necessary to prevent non-secure exception
6818          * code being able to see register values from secure code.
6819          * Where register values become architecturally UNKNOWN we leave
6820          * them with their previous values.
6821          */
6822         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6823             if (!targets_secure) {
6824                 /* Always clear the caller-saved registers (they have been
6825                  * pushed to the stack earlier in v7m_push_stack()).
6826                  * Clear callee-saved registers if the background code is
6827                  * Secure (in which case these regs were saved in
6828                  * v7m_push_callee_stack()).
6829                  */
6830                 int i;
6831 
6832                 for (i = 0; i < 13; i++) {
6833                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6834                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6835                         env->regs[i] = 0;
6836                     }
6837                 }
6838                 /* Clear EAPSR */
6839                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6840             }
6841         }
6842     }
6843 
6844     if (push_failed && !ignore_stackfaults) {
6845         /* Derived exception on callee-saves register stacking:
6846          * we might now want to take a different exception which
6847          * targets a different security state, so try again from the top.
6848          */
6849         v7m_exception_taken(cpu, lr, true, true);
6850         return;
6851     }
6852 
6853     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
6854         /* Vector load failed: derived exception */
6855         v7m_exception_taken(cpu, lr, true, true);
6856         return;
6857     }
6858 
6859     /* Now we've done everything that might cause a derived exception
6860      * we can go ahead and activate whichever exception we're going to
6861      * take (which might now be the derived exception).
6862      */
6863     armv7m_nvic_acknowledge_irq(env->nvic);
6864 
6865     /* Switch to target security state -- must do this before writing SPSEL */
6866     switch_v7m_security_state(env, targets_secure);
6867     write_v7m_control_spsel(env, 0);
6868     arm_clear_exclusive(env);
6869     /* Clear IT bits */
6870     env->condexec_bits = 0;
6871     env->regs[14] = lr;
6872     env->regs[15] = addr & 0xfffffffe;
6873     env->thumb = addr & 1;
6874 }
6875 
6876 static bool v7m_push_stack(ARMCPU *cpu)
6877 {
6878     /* Do the "set up stack frame" part of exception entry,
6879      * similar to pseudocode PushStack().
6880      * Return true if we generate a derived exception (and so
6881      * should ignore further stack faults trying to process
6882      * that derived exception.)
6883      */
6884     bool stacked_ok;
6885     CPUARMState *env = &cpu->env;
6886     uint32_t xpsr = xpsr_read(env);
6887     uint32_t frameptr = env->regs[13];
6888     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6889 
6890     /* Align stack pointer if the guest wants that */
6891     if ((frameptr & 4) &&
6892         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6893         frameptr -= 4;
6894         xpsr |= XPSR_SPREALIGN;
6895     }
6896 
6897     frameptr -= 0x20;
6898 
6899     /* Write as much of the stack frame as we can. If we fail a stack
6900      * write this will result in a derived exception being pended
6901      * (which may be taken in preference to the one we started with
6902      * if it has higher priority).
6903      */
6904     stacked_ok =
6905         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
6906         v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
6907         v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
6908         v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
6909         v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
6910         v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
6911         v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
6912         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
6913 
6914     /* Update SP regardless of whether any of the stack accesses failed.
6915      * When we implement v8M stack limit checking then this attempt to
6916      * update SP might also fail and result in a derived exception.
6917      */
6918     env->regs[13] = frameptr;
6919 
6920     return !stacked_ok;
6921 }
6922 
6923 static void do_v7m_exception_exit(ARMCPU *cpu)
6924 {
6925     CPUARMState *env = &cpu->env;
6926     CPUState *cs = CPU(cpu);
6927     uint32_t excret;
6928     uint32_t xpsr;
6929     bool ufault = false;
6930     bool sfault = false;
6931     bool return_to_sp_process;
6932     bool return_to_handler;
6933     bool rettobase = false;
6934     bool exc_secure = false;
6935     bool return_to_secure;
6936 
6937     /* If we're not in Handler mode then jumps to magic exception-exit
6938      * addresses don't have magic behaviour. However for the v8M
6939      * security extensions the magic secure-function-return has to
6940      * work in thread mode too, so to avoid doing an extra check in
6941      * the generated code we allow exception-exit magic to also cause the
6942      * internal exception and bring us here in thread mode. Correct code
6943      * will never try to do this (the following insn fetch will always
6944      * fault) so we the overhead of having taken an unnecessary exception
6945      * doesn't matter.
6946      */
6947     if (!arm_v7m_is_handler_mode(env)) {
6948         return;
6949     }
6950 
6951     /* In the spec pseudocode ExceptionReturn() is called directly
6952      * from BXWritePC() and gets the full target PC value including
6953      * bit zero. In QEMU's implementation we treat it as a normal
6954      * jump-to-register (which is then caught later on), and so split
6955      * the target value up between env->regs[15] and env->thumb in
6956      * gen_bx(). Reconstitute it.
6957      */
6958     excret = env->regs[15];
6959     if (env->thumb) {
6960         excret |= 1;
6961     }
6962 
6963     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6964                   " previous exception %d\n",
6965                   excret, env->v7m.exception);
6966 
6967     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6968         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6969                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6970                       excret);
6971     }
6972 
6973     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6974         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6975          * we pick which FAULTMASK to clear.
6976          */
6977         if (!env->v7m.secure &&
6978             ((excret & R_V7M_EXCRET_ES_MASK) ||
6979              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6980             sfault = 1;
6981             /* For all other purposes, treat ES as 0 (R_HXSR) */
6982             excret &= ~R_V7M_EXCRET_ES_MASK;
6983         }
6984     }
6985 
6986     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6987         /* Auto-clear FAULTMASK on return from other than NMI.
6988          * If the security extension is implemented then this only
6989          * happens if the raw execution priority is >= 0; the
6990          * value of the ES bit in the exception return value indicates
6991          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6992          */
6993         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6994             exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6995             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6996                 env->v7m.faultmask[exc_secure] = 0;
6997             }
6998         } else {
6999             env->v7m.faultmask[M_REG_NS] = 0;
7000         }
7001     }
7002 
7003     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
7004                                      exc_secure)) {
7005     case -1:
7006         /* attempt to exit an exception that isn't active */
7007         ufault = true;
7008         break;
7009     case 0:
7010         /* still an irq active now */
7011         break;
7012     case 1:
7013         /* we returned to base exception level, no nesting.
7014          * (In the pseudocode this is written using "NestedActivation != 1"
7015          * where we have 'rettobase == false'.)
7016          */
7017         rettobase = true;
7018         break;
7019     default:
7020         g_assert_not_reached();
7021     }
7022 
7023     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7024     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7025     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7026         (excret & R_V7M_EXCRET_S_MASK);
7027 
7028     if (arm_feature(env, ARM_FEATURE_V8)) {
7029         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7030             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7031              * we choose to take the UsageFault.
7032              */
7033             if ((excret & R_V7M_EXCRET_S_MASK) ||
7034                 (excret & R_V7M_EXCRET_ES_MASK) ||
7035                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7036                 ufault = true;
7037             }
7038         }
7039         if (excret & R_V7M_EXCRET_RES0_MASK) {
7040             ufault = true;
7041         }
7042     } else {
7043         /* For v7M we only recognize certain combinations of the low bits */
7044         switch (excret & 0xf) {
7045         case 1: /* Return to Handler */
7046             break;
7047         case 13: /* Return to Thread using Process stack */
7048         case 9: /* Return to Thread using Main stack */
7049             /* We only need to check NONBASETHRDENA for v7M, because in
7050              * v8M this bit does not exist (it is RES1).
7051              */
7052             if (!rettobase &&
7053                 !(env->v7m.ccr[env->v7m.secure] &
7054                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
7055                 ufault = true;
7056             }
7057             break;
7058         default:
7059             ufault = true;
7060         }
7061     }
7062 
7063     if (sfault) {
7064         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7065         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7066         v7m_exception_taken(cpu, excret, true, false);
7067         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7068                       "stackframe: failed EXC_RETURN.ES validity check\n");
7069         return;
7070     }
7071 
7072     if (ufault) {
7073         /* Bad exception return: instead of popping the exception
7074          * stack, directly take a usage fault on the current stack.
7075          */
7076         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7077         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7078         v7m_exception_taken(cpu, excret, true, false);
7079         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7080                       "stackframe: failed exception return integrity check\n");
7081         return;
7082     }
7083 
7084     /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7085      * Handler mode (and will be until we write the new XPSR.Interrupt
7086      * field) this does not switch around the current stack pointer.
7087      */
7088     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7089 
7090     switch_v7m_security_state(env, return_to_secure);
7091 
7092     {
7093         /* The stack pointer we should be reading the exception frame from
7094          * depends on bits in the magic exception return type value (and
7095          * for v8M isn't necessarily the stack pointer we will eventually
7096          * end up resuming execution with). Get a pointer to the location
7097          * in the CPU state struct where the SP we need is currently being
7098          * stored; we will use and modify it in place.
7099          * We use this limited C variable scope so we don't accidentally
7100          * use 'frame_sp_p' after we do something that makes it invalid.
7101          */
7102         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7103                                               return_to_secure,
7104                                               !return_to_handler,
7105                                               return_to_sp_process);
7106         uint32_t frameptr = *frame_sp_p;
7107         bool pop_ok = true;
7108         ARMMMUIdx mmu_idx;
7109 
7110         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7111                                                         !return_to_handler);
7112 
7113         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7114             arm_feature(env, ARM_FEATURE_V8)) {
7115             qemu_log_mask(LOG_GUEST_ERROR,
7116                           "M profile exception return with non-8-aligned SP "
7117                           "for destination state is UNPREDICTABLE\n");
7118         }
7119 
7120         /* Do we need to pop callee-saved registers? */
7121         if (return_to_secure &&
7122             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7123              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7124             uint32_t expected_sig = 0xfefa125b;
7125             uint32_t actual_sig = ldl_phys(cs->as, frameptr);
7126 
7127             if (expected_sig != actual_sig) {
7128                 /* Take a SecureFault on the current stack */
7129                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7130                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7131                 v7m_exception_taken(cpu, excret, true, false);
7132                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7133                               "stackframe: failed exception return integrity "
7134                               "signature check\n");
7135                 return;
7136             }
7137 
7138             pop_ok =
7139                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7140                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7141                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7142                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7143                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7144                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7145                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7146                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7147                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7148 
7149             frameptr += 0x28;
7150         }
7151 
7152         /* Pop registers */
7153         pop_ok = pop_ok &&
7154             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7155             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7156             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7157             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7158             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7159             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7160             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7161             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7162 
7163         if (!pop_ok) {
7164             /* v7m_stack_read() pended a fault, so take it (as a tail
7165              * chained exception on the same stack frame)
7166              */
7167             v7m_exception_taken(cpu, excret, true, false);
7168             return;
7169         }
7170 
7171         /* Returning from an exception with a PC with bit 0 set is defined
7172          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7173          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7174          * the lsbit, and there are several RTOSes out there which incorrectly
7175          * assume the r15 in the stack frame should be a Thumb-style "lsbit
7176          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7177          * complain about the badly behaved guest.
7178          */
7179         if (env->regs[15] & 1) {
7180             env->regs[15] &= ~1U;
7181             if (!arm_feature(env, ARM_FEATURE_V8)) {
7182                 qemu_log_mask(LOG_GUEST_ERROR,
7183                               "M profile return from interrupt with misaligned "
7184                               "PC is UNPREDICTABLE on v7M\n");
7185             }
7186         }
7187 
7188         if (arm_feature(env, ARM_FEATURE_V8)) {
7189             /* For v8M we have to check whether the xPSR exception field
7190              * matches the EXCRET value for return to handler/thread
7191              * before we commit to changing the SP and xPSR.
7192              */
7193             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7194             if (return_to_handler != will_be_handler) {
7195                 /* Take an INVPC UsageFault on the current stack.
7196                  * By this point we will have switched to the security state
7197                  * for the background state, so this UsageFault will target
7198                  * that state.
7199                  */
7200                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7201                                         env->v7m.secure);
7202                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7203                 v7m_exception_taken(cpu, excret, true, false);
7204                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7205                               "stackframe: failed exception return integrity "
7206                               "check\n");
7207                 return;
7208             }
7209         }
7210 
7211         /* Commit to consuming the stack frame */
7212         frameptr += 0x20;
7213         /* Undo stack alignment (the SPREALIGN bit indicates that the original
7214          * pre-exception SP was not 8-aligned and we added a padding word to
7215          * align it, so we undo this by ORing in the bit that increases it
7216          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7217          * would work too but a logical OR is how the pseudocode specifies it.)
7218          */
7219         if (xpsr & XPSR_SPREALIGN) {
7220             frameptr |= 4;
7221         }
7222         *frame_sp_p = frameptr;
7223     }
7224     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7225     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7226 
7227     /* The restored xPSR exception field will be zero if we're
7228      * resuming in Thread mode. If that doesn't match what the
7229      * exception return excret specified then this is a UsageFault.
7230      * v7M requires we make this check here; v8M did it earlier.
7231      */
7232     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7233         /* Take an INVPC UsageFault by pushing the stack again;
7234          * we know we're v7M so this is never a Secure UsageFault.
7235          */
7236         bool ignore_stackfaults;
7237 
7238         assert(!arm_feature(env, ARM_FEATURE_V8));
7239         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7240         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7241         ignore_stackfaults = v7m_push_stack(cpu);
7242         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7243         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7244                       "failed exception return integrity check\n");
7245         return;
7246     }
7247 
7248     /* Otherwise, we have a successful exception exit. */
7249     arm_clear_exclusive(env);
7250     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7251 }
7252 
7253 static bool do_v7m_function_return(ARMCPU *cpu)
7254 {
7255     /* v8M security extensions magic function return.
7256      * We may either:
7257      *  (1) throw an exception (longjump)
7258      *  (2) return true if we successfully handled the function return
7259      *  (3) return false if we failed a consistency check and have
7260      *      pended a UsageFault that needs to be taken now
7261      *
7262      * At this point the magic return value is split between env->regs[15]
7263      * and env->thumb. We don't bother to reconstitute it because we don't
7264      * need it (all values are handled the same way).
7265      */
7266     CPUARMState *env = &cpu->env;
7267     uint32_t newpc, newpsr, newpsr_exc;
7268 
7269     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7270 
7271     {
7272         bool threadmode, spsel;
7273         TCGMemOpIdx oi;
7274         ARMMMUIdx mmu_idx;
7275         uint32_t *frame_sp_p;
7276         uint32_t frameptr;
7277 
7278         /* Pull the return address and IPSR from the Secure stack */
7279         threadmode = !arm_v7m_is_handler_mode(env);
7280         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7281 
7282         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7283         frameptr = *frame_sp_p;
7284 
7285         /* These loads may throw an exception (for MPU faults). We want to
7286          * do them as secure, so work out what MMU index that is.
7287          */
7288         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7289         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7290         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7291         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7292 
7293         /* Consistency checks on new IPSR */
7294         newpsr_exc = newpsr & XPSR_EXCP;
7295         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7296               (env->v7m.exception == 1 && newpsr_exc != 0))) {
7297             /* Pend the fault and tell our caller to take it */
7298             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7299             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7300                                     env->v7m.secure);
7301             qemu_log_mask(CPU_LOG_INT,
7302                           "...taking INVPC UsageFault: "
7303                           "IPSR consistency check failed\n");
7304             return false;
7305         }
7306 
7307         *frame_sp_p = frameptr + 8;
7308     }
7309 
7310     /* This invalidates frame_sp_p */
7311     switch_v7m_security_state(env, true);
7312     env->v7m.exception = newpsr_exc;
7313     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7314     if (newpsr & XPSR_SFPA) {
7315         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7316     }
7317     xpsr_write(env, 0, XPSR_IT);
7318     env->thumb = newpc & 1;
7319     env->regs[15] = newpc & ~1;
7320 
7321     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7322     return true;
7323 }
7324 
7325 static void arm_log_exception(int idx)
7326 {
7327     if (qemu_loglevel_mask(CPU_LOG_INT)) {
7328         const char *exc = NULL;
7329         static const char * const excnames[] = {
7330             [EXCP_UDEF] = "Undefined Instruction",
7331             [EXCP_SWI] = "SVC",
7332             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7333             [EXCP_DATA_ABORT] = "Data Abort",
7334             [EXCP_IRQ] = "IRQ",
7335             [EXCP_FIQ] = "FIQ",
7336             [EXCP_BKPT] = "Breakpoint",
7337             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7338             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7339             [EXCP_HVC] = "Hypervisor Call",
7340             [EXCP_HYP_TRAP] = "Hypervisor Trap",
7341             [EXCP_SMC] = "Secure Monitor Call",
7342             [EXCP_VIRQ] = "Virtual IRQ",
7343             [EXCP_VFIQ] = "Virtual FIQ",
7344             [EXCP_SEMIHOST] = "Semihosting call",
7345             [EXCP_NOCP] = "v7M NOCP UsageFault",
7346             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7347         };
7348 
7349         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7350             exc = excnames[idx];
7351         }
7352         if (!exc) {
7353             exc = "unknown";
7354         }
7355         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7356     }
7357 }
7358 
7359 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7360                                uint32_t addr, uint16_t *insn)
7361 {
7362     /* Load a 16-bit portion of a v7M instruction, returning true on success,
7363      * or false on failure (in which case we will have pended the appropriate
7364      * exception).
7365      * We need to do the instruction fetch's MPU and SAU checks
7366      * like this because there is no MMU index that would allow
7367      * doing the load with a single function call. Instead we must
7368      * first check that the security attributes permit the load
7369      * and that they don't mismatch on the two halves of the instruction,
7370      * and then we do the load as a secure load (ie using the security
7371      * attributes of the address, not the CPU, as architecturally required).
7372      */
7373     CPUState *cs = CPU(cpu);
7374     CPUARMState *env = &cpu->env;
7375     V8M_SAttributes sattrs = {};
7376     MemTxAttrs attrs = {};
7377     ARMMMUFaultInfo fi = {};
7378     MemTxResult txres;
7379     target_ulong page_size;
7380     hwaddr physaddr;
7381     int prot;
7382 
7383     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7384     if (!sattrs.nsc || sattrs.ns) {
7385         /* This must be the second half of the insn, and it straddles a
7386          * region boundary with the second half not being S&NSC.
7387          */
7388         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7389         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7390         qemu_log_mask(CPU_LOG_INT,
7391                       "...really SecureFault with SFSR.INVEP\n");
7392         return false;
7393     }
7394     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7395                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7396         /* the MPU lookup failed */
7397         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7398         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7399         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7400         return false;
7401     }
7402     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7403                                  attrs, &txres);
7404     if (txres != MEMTX_OK) {
7405         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7406         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7407         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7408         return false;
7409     }
7410     return true;
7411 }
7412 
7413 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7414 {
7415     /* Check whether this attempt to execute code in a Secure & NS-Callable
7416      * memory region is for an SG instruction; if so, then emulate the
7417      * effect of the SG instruction and return true. Otherwise pend
7418      * the correct kind of exception and return false.
7419      */
7420     CPUARMState *env = &cpu->env;
7421     ARMMMUIdx mmu_idx;
7422     uint16_t insn;
7423 
7424     /* We should never get here unless get_phys_addr_pmsav8() caused
7425      * an exception for NS executing in S&NSC memory.
7426      */
7427     assert(!env->v7m.secure);
7428     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7429 
7430     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7431     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7432 
7433     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7434         return false;
7435     }
7436 
7437     if (!env->thumb) {
7438         goto gen_invep;
7439     }
7440 
7441     if (insn != 0xe97f) {
7442         /* Not an SG instruction first half (we choose the IMPDEF
7443          * early-SG-check option).
7444          */
7445         goto gen_invep;
7446     }
7447 
7448     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7449         return false;
7450     }
7451 
7452     if (insn != 0xe97f) {
7453         /* Not an SG instruction second half (yes, both halves of the SG
7454          * insn have the same hex value)
7455          */
7456         goto gen_invep;
7457     }
7458 
7459     /* OK, we have confirmed that we really have an SG instruction.
7460      * We know we're NS in S memory so don't need to repeat those checks.
7461      */
7462     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7463                   ", executing it\n", env->regs[15]);
7464     env->regs[14] &= ~1;
7465     switch_v7m_security_state(env, true);
7466     xpsr_write(env, 0, XPSR_IT);
7467     env->regs[15] += 4;
7468     return true;
7469 
7470 gen_invep:
7471     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7472     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7473     qemu_log_mask(CPU_LOG_INT,
7474                   "...really SecureFault with SFSR.INVEP\n");
7475     return false;
7476 }
7477 
7478 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7479 {
7480     ARMCPU *cpu = ARM_CPU(cs);
7481     CPUARMState *env = &cpu->env;
7482     uint32_t lr;
7483     bool ignore_stackfaults;
7484 
7485     arm_log_exception(cs->exception_index);
7486 
7487     /* For exceptions we just mark as pending on the NVIC, and let that
7488        handle it.  */
7489     switch (cs->exception_index) {
7490     case EXCP_UDEF:
7491         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7492         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7493         break;
7494     case EXCP_NOCP:
7495         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7496         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7497         break;
7498     case EXCP_INVSTATE:
7499         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7500         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7501         break;
7502     case EXCP_SWI:
7503         /* The PC already points to the next instruction.  */
7504         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7505         break;
7506     case EXCP_PREFETCH_ABORT:
7507     case EXCP_DATA_ABORT:
7508         /* Note that for M profile we don't have a guest facing FSR, but
7509          * the env->exception.fsr will be populated by the code that
7510          * raises the fault, in the A profile short-descriptor format.
7511          */
7512         switch (env->exception.fsr & 0xf) {
7513         case M_FAKE_FSR_NSC_EXEC:
7514             /* Exception generated when we try to execute code at an address
7515              * which is marked as Secure & Non-Secure Callable and the CPU
7516              * is in the Non-Secure state. The only instruction which can
7517              * be executed like this is SG (and that only if both halves of
7518              * the SG instruction have the same security attributes.)
7519              * Everything else must generate an INVEP SecureFault, so we
7520              * emulate the SG instruction here.
7521              */
7522             if (v7m_handle_execute_nsc(cpu)) {
7523                 return;
7524             }
7525             break;
7526         case M_FAKE_FSR_SFAULT:
7527             /* Various flavours of SecureFault for attempts to execute or
7528              * access data in the wrong security state.
7529              */
7530             switch (cs->exception_index) {
7531             case EXCP_PREFETCH_ABORT:
7532                 if (env->v7m.secure) {
7533                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7534                     qemu_log_mask(CPU_LOG_INT,
7535                                   "...really SecureFault with SFSR.INVTRAN\n");
7536                 } else {
7537                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7538                     qemu_log_mask(CPU_LOG_INT,
7539                                   "...really SecureFault with SFSR.INVEP\n");
7540                 }
7541                 break;
7542             case EXCP_DATA_ABORT:
7543                 /* This must be an NS access to S memory */
7544                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7545                 qemu_log_mask(CPU_LOG_INT,
7546                               "...really SecureFault with SFSR.AUVIOL\n");
7547                 break;
7548             }
7549             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7550             break;
7551         case 0x8: /* External Abort */
7552             switch (cs->exception_index) {
7553             case EXCP_PREFETCH_ABORT:
7554                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7555                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7556                 break;
7557             case EXCP_DATA_ABORT:
7558                 env->v7m.cfsr[M_REG_NS] |=
7559                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7560                 env->v7m.bfar = env->exception.vaddress;
7561                 qemu_log_mask(CPU_LOG_INT,
7562                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
7563                               env->v7m.bfar);
7564                 break;
7565             }
7566             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7567             break;
7568         default:
7569             /* All other FSR values are either MPU faults or "can't happen
7570              * for M profile" cases.
7571              */
7572             switch (cs->exception_index) {
7573             case EXCP_PREFETCH_ABORT:
7574                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7575                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7576                 break;
7577             case EXCP_DATA_ABORT:
7578                 env->v7m.cfsr[env->v7m.secure] |=
7579                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7580                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7581                 qemu_log_mask(CPU_LOG_INT,
7582                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7583                               env->v7m.mmfar[env->v7m.secure]);
7584                 break;
7585             }
7586             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7587                                     env->v7m.secure);
7588             break;
7589         }
7590         break;
7591     case EXCP_BKPT:
7592         if (semihosting_enabled()) {
7593             int nr;
7594             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7595             if (nr == 0xab) {
7596                 env->regs[15] += 2;
7597                 qemu_log_mask(CPU_LOG_INT,
7598                               "...handling as semihosting call 0x%x\n",
7599                               env->regs[0]);
7600                 env->regs[0] = do_arm_semihosting(env);
7601                 return;
7602             }
7603         }
7604         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7605         break;
7606     case EXCP_IRQ:
7607         break;
7608     case EXCP_EXCEPTION_EXIT:
7609         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7610             /* Must be v8M security extension function return */
7611             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7612             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7613             if (do_v7m_function_return(cpu)) {
7614                 return;
7615             }
7616         } else {
7617             do_v7m_exception_exit(cpu);
7618             return;
7619         }
7620         break;
7621     default:
7622         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7623         return; /* Never happens.  Keep compiler happy.  */
7624     }
7625 
7626     if (arm_feature(env, ARM_FEATURE_V8)) {
7627         lr = R_V7M_EXCRET_RES1_MASK |
7628             R_V7M_EXCRET_DCRS_MASK |
7629             R_V7M_EXCRET_FTYPE_MASK;
7630         /* The S bit indicates whether we should return to Secure
7631          * or NonSecure (ie our current state).
7632          * The ES bit indicates whether we're taking this exception
7633          * to Secure or NonSecure (ie our target state). We set it
7634          * later, in v7m_exception_taken().
7635          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7636          * This corresponds to the ARM ARM pseudocode for v8M setting
7637          * some LR bits in PushStack() and some in ExceptionTaken();
7638          * the distinction matters for the tailchain cases where we
7639          * can take an exception without pushing the stack.
7640          */
7641         if (env->v7m.secure) {
7642             lr |= R_V7M_EXCRET_S_MASK;
7643         }
7644     } else {
7645         lr = R_V7M_EXCRET_RES1_MASK |
7646             R_V7M_EXCRET_S_MASK |
7647             R_V7M_EXCRET_DCRS_MASK |
7648             R_V7M_EXCRET_FTYPE_MASK |
7649             R_V7M_EXCRET_ES_MASK;
7650         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7651             lr |= R_V7M_EXCRET_SPSEL_MASK;
7652         }
7653     }
7654     if (!arm_v7m_is_handler_mode(env)) {
7655         lr |= R_V7M_EXCRET_MODE_MASK;
7656     }
7657 
7658     ignore_stackfaults = v7m_push_stack(cpu);
7659     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7660     qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7661 }
7662 
7663 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7664  * register set.  This is necessary when switching between AArch32 and AArch64
7665  * execution state.
7666  */
7667 void aarch64_sync_32_to_64(CPUARMState *env)
7668 {
7669     int i;
7670     uint32_t mode = env->uncached_cpsr & CPSR_M;
7671 
7672     /* We can blanket copy R[0:7] to X[0:7] */
7673     for (i = 0; i < 8; i++) {
7674         env->xregs[i] = env->regs[i];
7675     }
7676 
7677     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7678      * Otherwise, they come from the banked user regs.
7679      */
7680     if (mode == ARM_CPU_MODE_FIQ) {
7681         for (i = 8; i < 13; i++) {
7682             env->xregs[i] = env->usr_regs[i - 8];
7683         }
7684     } else {
7685         for (i = 8; i < 13; i++) {
7686             env->xregs[i] = env->regs[i];
7687         }
7688     }
7689 
7690     /* Registers x13-x23 are the various mode SP and FP registers. Registers
7691      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7692      * from the mode banked register.
7693      */
7694     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7695         env->xregs[13] = env->regs[13];
7696         env->xregs[14] = env->regs[14];
7697     } else {
7698         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7699         /* HYP is an exception in that it is copied from r14 */
7700         if (mode == ARM_CPU_MODE_HYP) {
7701             env->xregs[14] = env->regs[14];
7702         } else {
7703             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7704         }
7705     }
7706 
7707     if (mode == ARM_CPU_MODE_HYP) {
7708         env->xregs[15] = env->regs[13];
7709     } else {
7710         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7711     }
7712 
7713     if (mode == ARM_CPU_MODE_IRQ) {
7714         env->xregs[16] = env->regs[14];
7715         env->xregs[17] = env->regs[13];
7716     } else {
7717         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7718         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7719     }
7720 
7721     if (mode == ARM_CPU_MODE_SVC) {
7722         env->xregs[18] = env->regs[14];
7723         env->xregs[19] = env->regs[13];
7724     } else {
7725         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7726         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7727     }
7728 
7729     if (mode == ARM_CPU_MODE_ABT) {
7730         env->xregs[20] = env->regs[14];
7731         env->xregs[21] = env->regs[13];
7732     } else {
7733         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7734         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7735     }
7736 
7737     if (mode == ARM_CPU_MODE_UND) {
7738         env->xregs[22] = env->regs[14];
7739         env->xregs[23] = env->regs[13];
7740     } else {
7741         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7742         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7743     }
7744 
7745     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7746      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7747      * FIQ bank for r8-r14.
7748      */
7749     if (mode == ARM_CPU_MODE_FIQ) {
7750         for (i = 24; i < 31; i++) {
7751             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7752         }
7753     } else {
7754         for (i = 24; i < 29; i++) {
7755             env->xregs[i] = env->fiq_regs[i - 24];
7756         }
7757         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7758         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7759     }
7760 
7761     env->pc = env->regs[15];
7762 }
7763 
7764 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7765  * register set.  This is necessary when switching between AArch32 and AArch64
7766  * execution state.
7767  */
7768 void aarch64_sync_64_to_32(CPUARMState *env)
7769 {
7770     int i;
7771     uint32_t mode = env->uncached_cpsr & CPSR_M;
7772 
7773     /* We can blanket copy X[0:7] to R[0:7] */
7774     for (i = 0; i < 8; i++) {
7775         env->regs[i] = env->xregs[i];
7776     }
7777 
7778     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7779      * Otherwise, we copy x8-x12 into the banked user regs.
7780      */
7781     if (mode == ARM_CPU_MODE_FIQ) {
7782         for (i = 8; i < 13; i++) {
7783             env->usr_regs[i - 8] = env->xregs[i];
7784         }
7785     } else {
7786         for (i = 8; i < 13; i++) {
7787             env->regs[i] = env->xregs[i];
7788         }
7789     }
7790 
7791     /* Registers r13 & r14 depend on the current mode.
7792      * If we are in a given mode, we copy the corresponding x registers to r13
7793      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7794      * for the mode.
7795      */
7796     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7797         env->regs[13] = env->xregs[13];
7798         env->regs[14] = env->xregs[14];
7799     } else {
7800         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7801 
7802         /* HYP is an exception in that it does not have its own banked r14 but
7803          * shares the USR r14
7804          */
7805         if (mode == ARM_CPU_MODE_HYP) {
7806             env->regs[14] = env->xregs[14];
7807         } else {
7808             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7809         }
7810     }
7811 
7812     if (mode == ARM_CPU_MODE_HYP) {
7813         env->regs[13] = env->xregs[15];
7814     } else {
7815         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7816     }
7817 
7818     if (mode == ARM_CPU_MODE_IRQ) {
7819         env->regs[14] = env->xregs[16];
7820         env->regs[13] = env->xregs[17];
7821     } else {
7822         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7823         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7824     }
7825 
7826     if (mode == ARM_CPU_MODE_SVC) {
7827         env->regs[14] = env->xregs[18];
7828         env->regs[13] = env->xregs[19];
7829     } else {
7830         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7831         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7832     }
7833 
7834     if (mode == ARM_CPU_MODE_ABT) {
7835         env->regs[14] = env->xregs[20];
7836         env->regs[13] = env->xregs[21];
7837     } else {
7838         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7839         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7840     }
7841 
7842     if (mode == ARM_CPU_MODE_UND) {
7843         env->regs[14] = env->xregs[22];
7844         env->regs[13] = env->xregs[23];
7845     } else {
7846         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7847         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7848     }
7849 
7850     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7851      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
7852      * FIQ bank for r8-r14.
7853      */
7854     if (mode == ARM_CPU_MODE_FIQ) {
7855         for (i = 24; i < 31; i++) {
7856             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
7857         }
7858     } else {
7859         for (i = 24; i < 29; i++) {
7860             env->fiq_regs[i - 24] = env->xregs[i];
7861         }
7862         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7863         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7864     }
7865 
7866     env->regs[15] = env->pc;
7867 }
7868 
7869 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7870 {
7871     ARMCPU *cpu = ARM_CPU(cs);
7872     CPUARMState *env = &cpu->env;
7873     uint32_t addr;
7874     uint32_t mask;
7875     int new_mode;
7876     uint32_t offset;
7877     uint32_t moe;
7878 
7879     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7880     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7881     case EC_BREAKPOINT:
7882     case EC_BREAKPOINT_SAME_EL:
7883         moe = 1;
7884         break;
7885     case EC_WATCHPOINT:
7886     case EC_WATCHPOINT_SAME_EL:
7887         moe = 10;
7888         break;
7889     case EC_AA32_BKPT:
7890         moe = 3;
7891         break;
7892     case EC_VECTORCATCH:
7893         moe = 5;
7894         break;
7895     default:
7896         moe = 0;
7897         break;
7898     }
7899 
7900     if (moe) {
7901         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7902     }
7903 
7904     /* TODO: Vectored interrupt controller.  */
7905     switch (cs->exception_index) {
7906     case EXCP_UDEF:
7907         new_mode = ARM_CPU_MODE_UND;
7908         addr = 0x04;
7909         mask = CPSR_I;
7910         if (env->thumb)
7911             offset = 2;
7912         else
7913             offset = 4;
7914         break;
7915     case EXCP_SWI:
7916         new_mode = ARM_CPU_MODE_SVC;
7917         addr = 0x08;
7918         mask = CPSR_I;
7919         /* The PC already points to the next instruction.  */
7920         offset = 0;
7921         break;
7922     case EXCP_BKPT:
7923         env->exception.fsr = 2;
7924         /* Fall through to prefetch abort.  */
7925     case EXCP_PREFETCH_ABORT:
7926         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7927         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7928         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7929                       env->exception.fsr, (uint32_t)env->exception.vaddress);
7930         new_mode = ARM_CPU_MODE_ABT;
7931         addr = 0x0c;
7932         mask = CPSR_A | CPSR_I;
7933         offset = 4;
7934         break;
7935     case EXCP_DATA_ABORT:
7936         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7937         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7938         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7939                       env->exception.fsr,
7940                       (uint32_t)env->exception.vaddress);
7941         new_mode = ARM_CPU_MODE_ABT;
7942         addr = 0x10;
7943         mask = CPSR_A | CPSR_I;
7944         offset = 8;
7945         break;
7946     case EXCP_IRQ:
7947         new_mode = ARM_CPU_MODE_IRQ;
7948         addr = 0x18;
7949         /* Disable IRQ and imprecise data aborts.  */
7950         mask = CPSR_A | CPSR_I;
7951         offset = 4;
7952         if (env->cp15.scr_el3 & SCR_IRQ) {
7953             /* IRQ routed to monitor mode */
7954             new_mode = ARM_CPU_MODE_MON;
7955             mask |= CPSR_F;
7956         }
7957         break;
7958     case EXCP_FIQ:
7959         new_mode = ARM_CPU_MODE_FIQ;
7960         addr = 0x1c;
7961         /* Disable FIQ, IRQ and imprecise data aborts.  */
7962         mask = CPSR_A | CPSR_I | CPSR_F;
7963         if (env->cp15.scr_el3 & SCR_FIQ) {
7964             /* FIQ routed to monitor mode */
7965             new_mode = ARM_CPU_MODE_MON;
7966         }
7967         offset = 4;
7968         break;
7969     case EXCP_VIRQ:
7970         new_mode = ARM_CPU_MODE_IRQ;
7971         addr = 0x18;
7972         /* Disable IRQ and imprecise data aborts.  */
7973         mask = CPSR_A | CPSR_I;
7974         offset = 4;
7975         break;
7976     case EXCP_VFIQ:
7977         new_mode = ARM_CPU_MODE_FIQ;
7978         addr = 0x1c;
7979         /* Disable FIQ, IRQ and imprecise data aborts.  */
7980         mask = CPSR_A | CPSR_I | CPSR_F;
7981         offset = 4;
7982         break;
7983     case EXCP_SMC:
7984         new_mode = ARM_CPU_MODE_MON;
7985         addr = 0x08;
7986         mask = CPSR_A | CPSR_I | CPSR_F;
7987         offset = 0;
7988         break;
7989     default:
7990         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7991         return; /* Never happens.  Keep compiler happy.  */
7992     }
7993 
7994     if (new_mode == ARM_CPU_MODE_MON) {
7995         addr += env->cp15.mvbar;
7996     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7997         /* High vectors. When enabled, base address cannot be remapped. */
7998         addr += 0xffff0000;
7999     } else {
8000         /* ARM v7 architectures provide a vector base address register to remap
8001          * the interrupt vector table.
8002          * This register is only followed in non-monitor mode, and is banked.
8003          * Note: only bits 31:5 are valid.
8004          */
8005         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8006     }
8007 
8008     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8009         env->cp15.scr_el3 &= ~SCR_NS;
8010     }
8011 
8012     switch_mode (env, new_mode);
8013     /* For exceptions taken to AArch32 we must clear the SS bit in both
8014      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8015      */
8016     env->uncached_cpsr &= ~PSTATE_SS;
8017     env->spsr = cpsr_read(env);
8018     /* Clear IT bits.  */
8019     env->condexec_bits = 0;
8020     /* Switch to the new mode, and to the correct instruction set.  */
8021     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8022     /* Set new mode endianness */
8023     env->uncached_cpsr &= ~CPSR_E;
8024     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8025         env->uncached_cpsr |= CPSR_E;
8026     }
8027     env->daif |= mask;
8028     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
8029      * and we should just guard the thumb mode on V4 */
8030     if (arm_feature(env, ARM_FEATURE_V4T)) {
8031         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8032     }
8033     env->regs[14] = env->regs[15] + offset;
8034     env->regs[15] = addr;
8035 }
8036 
8037 /* Handle exception entry to a target EL which is using AArch64 */
8038 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8039 {
8040     ARMCPU *cpu = ARM_CPU(cs);
8041     CPUARMState *env = &cpu->env;
8042     unsigned int new_el = env->exception.target_el;
8043     target_ulong addr = env->cp15.vbar_el[new_el];
8044     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8045 
8046     if (arm_current_el(env) < new_el) {
8047         /* Entry vector offset depends on whether the implemented EL
8048          * immediately lower than the target level is using AArch32 or AArch64
8049          */
8050         bool is_aa64;
8051 
8052         switch (new_el) {
8053         case 3:
8054             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8055             break;
8056         case 2:
8057             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8058             break;
8059         case 1:
8060             is_aa64 = is_a64(env);
8061             break;
8062         default:
8063             g_assert_not_reached();
8064         }
8065 
8066         if (is_aa64) {
8067             addr += 0x400;
8068         } else {
8069             addr += 0x600;
8070         }
8071     } else if (pstate_read(env) & PSTATE_SP) {
8072         addr += 0x200;
8073     }
8074 
8075     switch (cs->exception_index) {
8076     case EXCP_PREFETCH_ABORT:
8077     case EXCP_DATA_ABORT:
8078         env->cp15.far_el[new_el] = env->exception.vaddress;
8079         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8080                       env->cp15.far_el[new_el]);
8081         /* fall through */
8082     case EXCP_BKPT:
8083     case EXCP_UDEF:
8084     case EXCP_SWI:
8085     case EXCP_HVC:
8086     case EXCP_HYP_TRAP:
8087     case EXCP_SMC:
8088         env->cp15.esr_el[new_el] = env->exception.syndrome;
8089         break;
8090     case EXCP_IRQ:
8091     case EXCP_VIRQ:
8092         addr += 0x80;
8093         break;
8094     case EXCP_FIQ:
8095     case EXCP_VFIQ:
8096         addr += 0x100;
8097         break;
8098     case EXCP_SEMIHOST:
8099         qemu_log_mask(CPU_LOG_INT,
8100                       "...handling as semihosting call 0x%" PRIx64 "\n",
8101                       env->xregs[0]);
8102         env->xregs[0] = do_arm_semihosting(env);
8103         return;
8104     default:
8105         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8106     }
8107 
8108     if (is_a64(env)) {
8109         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8110         aarch64_save_sp(env, arm_current_el(env));
8111         env->elr_el[new_el] = env->pc;
8112     } else {
8113         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8114         env->elr_el[new_el] = env->regs[15];
8115 
8116         aarch64_sync_32_to_64(env);
8117 
8118         env->condexec_bits = 0;
8119     }
8120     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8121                   env->elr_el[new_el]);
8122 
8123     pstate_write(env, PSTATE_DAIF | new_mode);
8124     env->aarch64 = 1;
8125     aarch64_restore_sp(env, new_el);
8126 
8127     env->pc = addr;
8128 
8129     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8130                   new_el, env->pc, pstate_read(env));
8131 }
8132 
8133 static inline bool check_for_semihosting(CPUState *cs)
8134 {
8135     /* Check whether this exception is a semihosting call; if so
8136      * then handle it and return true; otherwise return false.
8137      */
8138     ARMCPU *cpu = ARM_CPU(cs);
8139     CPUARMState *env = &cpu->env;
8140 
8141     if (is_a64(env)) {
8142         if (cs->exception_index == EXCP_SEMIHOST) {
8143             /* This is always the 64-bit semihosting exception.
8144              * The "is this usermode" and "is semihosting enabled"
8145              * checks have been done at translate time.
8146              */
8147             qemu_log_mask(CPU_LOG_INT,
8148                           "...handling as semihosting call 0x%" PRIx64 "\n",
8149                           env->xregs[0]);
8150             env->xregs[0] = do_arm_semihosting(env);
8151             return true;
8152         }
8153         return false;
8154     } else {
8155         uint32_t imm;
8156 
8157         /* Only intercept calls from privileged modes, to provide some
8158          * semblance of security.
8159          */
8160         if (cs->exception_index != EXCP_SEMIHOST &&
8161             (!semihosting_enabled() ||
8162              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8163             return false;
8164         }
8165 
8166         switch (cs->exception_index) {
8167         case EXCP_SEMIHOST:
8168             /* This is always a semihosting call; the "is this usermode"
8169              * and "is semihosting enabled" checks have been done at
8170              * translate time.
8171              */
8172             break;
8173         case EXCP_SWI:
8174             /* Check for semihosting interrupt.  */
8175             if (env->thumb) {
8176                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8177                     & 0xff;
8178                 if (imm == 0xab) {
8179                     break;
8180                 }
8181             } else {
8182                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8183                     & 0xffffff;
8184                 if (imm == 0x123456) {
8185                     break;
8186                 }
8187             }
8188             return false;
8189         case EXCP_BKPT:
8190             /* See if this is a semihosting syscall.  */
8191             if (env->thumb) {
8192                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8193                     & 0xff;
8194                 if (imm == 0xab) {
8195                     env->regs[15] += 2;
8196                     break;
8197                 }
8198             }
8199             return false;
8200         default:
8201             return false;
8202         }
8203 
8204         qemu_log_mask(CPU_LOG_INT,
8205                       "...handling as semihosting call 0x%x\n",
8206                       env->regs[0]);
8207         env->regs[0] = do_arm_semihosting(env);
8208         return true;
8209     }
8210 }
8211 
8212 /* Handle a CPU exception for A and R profile CPUs.
8213  * Do any appropriate logging, handle PSCI calls, and then hand off
8214  * to the AArch64-entry or AArch32-entry function depending on the
8215  * target exception level's register width.
8216  */
8217 void arm_cpu_do_interrupt(CPUState *cs)
8218 {
8219     ARMCPU *cpu = ARM_CPU(cs);
8220     CPUARMState *env = &cpu->env;
8221     unsigned int new_el = env->exception.target_el;
8222 
8223     assert(!arm_feature(env, ARM_FEATURE_M));
8224 
8225     arm_log_exception(cs->exception_index);
8226     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8227                   new_el);
8228     if (qemu_loglevel_mask(CPU_LOG_INT)
8229         && !excp_is_internal(cs->exception_index)) {
8230         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8231                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
8232                       env->exception.syndrome);
8233     }
8234 
8235     if (arm_is_psci_call(cpu, cs->exception_index)) {
8236         arm_handle_psci_call(cpu);
8237         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8238         return;
8239     }
8240 
8241     /* Semihosting semantics depend on the register width of the
8242      * code that caused the exception, not the target exception level,
8243      * so must be handled here.
8244      */
8245     if (check_for_semihosting(cs)) {
8246         return;
8247     }
8248 
8249     assert(!excp_is_internal(cs->exception_index));
8250     if (arm_el_is_aa64(env, new_el)) {
8251         arm_cpu_do_interrupt_aarch64(cs);
8252     } else {
8253         arm_cpu_do_interrupt_aarch32(cs);
8254     }
8255 
8256     /* Hooks may change global state so BQL should be held, also the
8257      * BQL needs to be held for any modification of
8258      * cs->interrupt_request.
8259      */
8260     g_assert(qemu_mutex_iothread_locked());
8261 
8262     arm_call_el_change_hook(cpu);
8263 
8264     if (!kvm_enabled()) {
8265         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8266     }
8267 }
8268 
8269 /* Return the exception level which controls this address translation regime */
8270 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8271 {
8272     switch (mmu_idx) {
8273     case ARMMMUIdx_S2NS:
8274     case ARMMMUIdx_S1E2:
8275         return 2;
8276     case ARMMMUIdx_S1E3:
8277         return 3;
8278     case ARMMMUIdx_S1SE0:
8279         return arm_el_is_aa64(env, 3) ? 1 : 3;
8280     case ARMMMUIdx_S1SE1:
8281     case ARMMMUIdx_S1NSE0:
8282     case ARMMMUIdx_S1NSE1:
8283     case ARMMMUIdx_MPrivNegPri:
8284     case ARMMMUIdx_MUserNegPri:
8285     case ARMMMUIdx_MPriv:
8286     case ARMMMUIdx_MUser:
8287     case ARMMMUIdx_MSPrivNegPri:
8288     case ARMMMUIdx_MSUserNegPri:
8289     case ARMMMUIdx_MSPriv:
8290     case ARMMMUIdx_MSUser:
8291         return 1;
8292     default:
8293         g_assert_not_reached();
8294     }
8295 }
8296 
8297 /* Return the SCTLR value which controls this address translation regime */
8298 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8299 {
8300     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8301 }
8302 
8303 /* Return true if the specified stage of address translation is disabled */
8304 static inline bool regime_translation_disabled(CPUARMState *env,
8305                                                ARMMMUIdx mmu_idx)
8306 {
8307     if (arm_feature(env, ARM_FEATURE_M)) {
8308         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8309                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8310         case R_V7M_MPU_CTRL_ENABLE_MASK:
8311             /* Enabled, but not for HardFault and NMI */
8312             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8313         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8314             /* Enabled for all cases */
8315             return false;
8316         case 0:
8317         default:
8318             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8319              * we warned about that in armv7m_nvic.c when the guest set it.
8320              */
8321             return true;
8322         }
8323     }
8324 
8325     if (mmu_idx == ARMMMUIdx_S2NS) {
8326         return (env->cp15.hcr_el2 & HCR_VM) == 0;
8327     }
8328     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8329 }
8330 
8331 static inline bool regime_translation_big_endian(CPUARMState *env,
8332                                                  ARMMMUIdx mmu_idx)
8333 {
8334     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8335 }
8336 
8337 /* Return the TCR controlling this translation regime */
8338 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8339 {
8340     if (mmu_idx == ARMMMUIdx_S2NS) {
8341         return &env->cp15.vtcr_el2;
8342     }
8343     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8344 }
8345 
8346 /* Convert a possible stage1+2 MMU index into the appropriate
8347  * stage 1 MMU index
8348  */
8349 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8350 {
8351     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8352         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8353     }
8354     return mmu_idx;
8355 }
8356 
8357 /* Returns TBI0 value for current regime el */
8358 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8359 {
8360     TCR *tcr;
8361     uint32_t el;
8362 
8363     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8364      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8365      */
8366     mmu_idx = stage_1_mmu_idx(mmu_idx);
8367 
8368     tcr = regime_tcr(env, mmu_idx);
8369     el = regime_el(env, mmu_idx);
8370 
8371     if (el > 1) {
8372         return extract64(tcr->raw_tcr, 20, 1);
8373     } else {
8374         return extract64(tcr->raw_tcr, 37, 1);
8375     }
8376 }
8377 
8378 /* Returns TBI1 value for current regime el */
8379 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8380 {
8381     TCR *tcr;
8382     uint32_t el;
8383 
8384     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8385      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8386      */
8387     mmu_idx = stage_1_mmu_idx(mmu_idx);
8388 
8389     tcr = regime_tcr(env, mmu_idx);
8390     el = regime_el(env, mmu_idx);
8391 
8392     if (el > 1) {
8393         return 0;
8394     } else {
8395         return extract64(tcr->raw_tcr, 38, 1);
8396     }
8397 }
8398 
8399 /* Return the TTBR associated with this translation regime */
8400 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8401                                    int ttbrn)
8402 {
8403     if (mmu_idx == ARMMMUIdx_S2NS) {
8404         return env->cp15.vttbr_el2;
8405     }
8406     if (ttbrn == 0) {
8407         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8408     } else {
8409         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8410     }
8411 }
8412 
8413 /* Return true if the translation regime is using LPAE format page tables */
8414 static inline bool regime_using_lpae_format(CPUARMState *env,
8415                                             ARMMMUIdx mmu_idx)
8416 {
8417     int el = regime_el(env, mmu_idx);
8418     if (el == 2 || arm_el_is_aa64(env, el)) {
8419         return true;
8420     }
8421     if (arm_feature(env, ARM_FEATURE_LPAE)
8422         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8423         return true;
8424     }
8425     return false;
8426 }
8427 
8428 /* Returns true if the stage 1 translation regime is using LPAE format page
8429  * tables. Used when raising alignment exceptions, whose FSR changes depending
8430  * on whether the long or short descriptor format is in use. */
8431 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8432 {
8433     mmu_idx = stage_1_mmu_idx(mmu_idx);
8434 
8435     return regime_using_lpae_format(env, mmu_idx);
8436 }
8437 
8438 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8439 {
8440     switch (mmu_idx) {
8441     case ARMMMUIdx_S1SE0:
8442     case ARMMMUIdx_S1NSE0:
8443     case ARMMMUIdx_MUser:
8444     case ARMMMUIdx_MSUser:
8445     case ARMMMUIdx_MUserNegPri:
8446     case ARMMMUIdx_MSUserNegPri:
8447         return true;
8448     default:
8449         return false;
8450     case ARMMMUIdx_S12NSE0:
8451     case ARMMMUIdx_S12NSE1:
8452         g_assert_not_reached();
8453     }
8454 }
8455 
8456 /* Translate section/page access permissions to page
8457  * R/W protection flags
8458  *
8459  * @env:         CPUARMState
8460  * @mmu_idx:     MMU index indicating required translation regime
8461  * @ap:          The 3-bit access permissions (AP[2:0])
8462  * @domain_prot: The 2-bit domain access permissions
8463  */
8464 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8465                                 int ap, int domain_prot)
8466 {
8467     bool is_user = regime_is_user(env, mmu_idx);
8468 
8469     if (domain_prot == 3) {
8470         return PAGE_READ | PAGE_WRITE;
8471     }
8472 
8473     switch (ap) {
8474     case 0:
8475         if (arm_feature(env, ARM_FEATURE_V7)) {
8476             return 0;
8477         }
8478         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8479         case SCTLR_S:
8480             return is_user ? 0 : PAGE_READ;
8481         case SCTLR_R:
8482             return PAGE_READ;
8483         default:
8484             return 0;
8485         }
8486     case 1:
8487         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8488     case 2:
8489         if (is_user) {
8490             return PAGE_READ;
8491         } else {
8492             return PAGE_READ | PAGE_WRITE;
8493         }
8494     case 3:
8495         return PAGE_READ | PAGE_WRITE;
8496     case 4: /* Reserved.  */
8497         return 0;
8498     case 5:
8499         return is_user ? 0 : PAGE_READ;
8500     case 6:
8501         return PAGE_READ;
8502     case 7:
8503         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8504             return 0;
8505         }
8506         return PAGE_READ;
8507     default:
8508         g_assert_not_reached();
8509     }
8510 }
8511 
8512 /* Translate section/page access permissions to page
8513  * R/W protection flags.
8514  *
8515  * @ap:      The 2-bit simple AP (AP[2:1])
8516  * @is_user: TRUE if accessing from PL0
8517  */
8518 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8519 {
8520     switch (ap) {
8521     case 0:
8522         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8523     case 1:
8524         return PAGE_READ | PAGE_WRITE;
8525     case 2:
8526         return is_user ? 0 : PAGE_READ;
8527     case 3:
8528         return PAGE_READ;
8529     default:
8530         g_assert_not_reached();
8531     }
8532 }
8533 
8534 static inline int
8535 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8536 {
8537     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8538 }
8539 
8540 /* Translate S2 section/page access permissions to protection flags
8541  *
8542  * @env:     CPUARMState
8543  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8544  * @xn:      XN (execute-never) bit
8545  */
8546 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8547 {
8548     int prot = 0;
8549 
8550     if (s2ap & 1) {
8551         prot |= PAGE_READ;
8552     }
8553     if (s2ap & 2) {
8554         prot |= PAGE_WRITE;
8555     }
8556     if (!xn) {
8557         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8558             prot |= PAGE_EXEC;
8559         }
8560     }
8561     return prot;
8562 }
8563 
8564 /* Translate section/page access permissions to protection flags
8565  *
8566  * @env:     CPUARMState
8567  * @mmu_idx: MMU index indicating required translation regime
8568  * @is_aa64: TRUE if AArch64
8569  * @ap:      The 2-bit simple AP (AP[2:1])
8570  * @ns:      NS (non-secure) bit
8571  * @xn:      XN (execute-never) bit
8572  * @pxn:     PXN (privileged execute-never) bit
8573  */
8574 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8575                       int ap, int ns, int xn, int pxn)
8576 {
8577     bool is_user = regime_is_user(env, mmu_idx);
8578     int prot_rw, user_rw;
8579     bool have_wxn;
8580     int wxn = 0;
8581 
8582     assert(mmu_idx != ARMMMUIdx_S2NS);
8583 
8584     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8585     if (is_user) {
8586         prot_rw = user_rw;
8587     } else {
8588         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8589     }
8590 
8591     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8592         return prot_rw;
8593     }
8594 
8595     /* TODO have_wxn should be replaced with
8596      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8597      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8598      * compatible processors have EL2, which is required for [U]WXN.
8599      */
8600     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8601 
8602     if (have_wxn) {
8603         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8604     }
8605 
8606     if (is_aa64) {
8607         switch (regime_el(env, mmu_idx)) {
8608         case 1:
8609             if (!is_user) {
8610                 xn = pxn || (user_rw & PAGE_WRITE);
8611             }
8612             break;
8613         case 2:
8614         case 3:
8615             break;
8616         }
8617     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8618         switch (regime_el(env, mmu_idx)) {
8619         case 1:
8620         case 3:
8621             if (is_user) {
8622                 xn = xn || !(user_rw & PAGE_READ);
8623             } else {
8624                 int uwxn = 0;
8625                 if (have_wxn) {
8626                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8627                 }
8628                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8629                      (uwxn && (user_rw & PAGE_WRITE));
8630             }
8631             break;
8632         case 2:
8633             break;
8634         }
8635     } else {
8636         xn = wxn = 0;
8637     }
8638 
8639     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8640         return prot_rw;
8641     }
8642     return prot_rw | PAGE_EXEC;
8643 }
8644 
8645 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8646                                      uint32_t *table, uint32_t address)
8647 {
8648     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8649     TCR *tcr = regime_tcr(env, mmu_idx);
8650 
8651     if (address & tcr->mask) {
8652         if (tcr->raw_tcr & TTBCR_PD1) {
8653             /* Translation table walk disabled for TTBR1 */
8654             return false;
8655         }
8656         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8657     } else {
8658         if (tcr->raw_tcr & TTBCR_PD0) {
8659             /* Translation table walk disabled for TTBR0 */
8660             return false;
8661         }
8662         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8663     }
8664     *table |= (address >> 18) & 0x3ffc;
8665     return true;
8666 }
8667 
8668 /* Translate a S1 pagetable walk through S2 if needed.  */
8669 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8670                                hwaddr addr, MemTxAttrs txattrs,
8671                                ARMMMUFaultInfo *fi)
8672 {
8673     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8674         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8675         target_ulong s2size;
8676         hwaddr s2pa;
8677         int s2prot;
8678         int ret;
8679 
8680         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8681                                  &txattrs, &s2prot, &s2size, fi, NULL);
8682         if (ret) {
8683             assert(fi->type != ARMFault_None);
8684             fi->s2addr = addr;
8685             fi->stage2 = true;
8686             fi->s1ptw = true;
8687             return ~0;
8688         }
8689         addr = s2pa;
8690     }
8691     return addr;
8692 }
8693 
8694 /* All loads done in the course of a page table walk go through here.
8695  * TODO: rather than ignoring errors from physical memory reads (which
8696  * are external aborts in ARM terminology) we should propagate this
8697  * error out so that we can turn it into a Data Abort if this walk
8698  * was being done for a CPU load/store or an address translation instruction
8699  * (but not if it was for a debug access).
8700  */
8701 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8702                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8703 {
8704     ARMCPU *cpu = ARM_CPU(cs);
8705     CPUARMState *env = &cpu->env;
8706     MemTxAttrs attrs = {};
8707     MemTxResult result = MEMTX_OK;
8708     AddressSpace *as;
8709     uint32_t data;
8710 
8711     attrs.secure = is_secure;
8712     as = arm_addressspace(cs, attrs);
8713     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8714     if (fi->s1ptw) {
8715         return 0;
8716     }
8717     if (regime_translation_big_endian(env, mmu_idx)) {
8718         data = address_space_ldl_be(as, addr, attrs, &result);
8719     } else {
8720         data = address_space_ldl_le(as, addr, attrs, &result);
8721     }
8722     if (result == MEMTX_OK) {
8723         return data;
8724     }
8725     fi->type = ARMFault_SyncExternalOnWalk;
8726     fi->ea = arm_extabort_type(result);
8727     return 0;
8728 }
8729 
8730 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8731                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8732 {
8733     ARMCPU *cpu = ARM_CPU(cs);
8734     CPUARMState *env = &cpu->env;
8735     MemTxAttrs attrs = {};
8736     MemTxResult result = MEMTX_OK;
8737     AddressSpace *as;
8738     uint64_t data;
8739 
8740     attrs.secure = is_secure;
8741     as = arm_addressspace(cs, attrs);
8742     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8743     if (fi->s1ptw) {
8744         return 0;
8745     }
8746     if (regime_translation_big_endian(env, mmu_idx)) {
8747         data = address_space_ldq_be(as, addr, attrs, &result);
8748     } else {
8749         data = address_space_ldq_le(as, addr, attrs, &result);
8750     }
8751     if (result == MEMTX_OK) {
8752         return data;
8753     }
8754     fi->type = ARMFault_SyncExternalOnWalk;
8755     fi->ea = arm_extabort_type(result);
8756     return 0;
8757 }
8758 
8759 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8760                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8761                              hwaddr *phys_ptr, int *prot,
8762                              target_ulong *page_size,
8763                              ARMMMUFaultInfo *fi)
8764 {
8765     CPUState *cs = CPU(arm_env_get_cpu(env));
8766     int level = 1;
8767     uint32_t table;
8768     uint32_t desc;
8769     int type;
8770     int ap;
8771     int domain = 0;
8772     int domain_prot;
8773     hwaddr phys_addr;
8774     uint32_t dacr;
8775 
8776     /* Pagetable walk.  */
8777     /* Lookup l1 descriptor.  */
8778     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8779         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8780         fi->type = ARMFault_Translation;
8781         goto do_fault;
8782     }
8783     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8784                        mmu_idx, fi);
8785     if (fi->type != ARMFault_None) {
8786         goto do_fault;
8787     }
8788     type = (desc & 3);
8789     domain = (desc >> 5) & 0x0f;
8790     if (regime_el(env, mmu_idx) == 1) {
8791         dacr = env->cp15.dacr_ns;
8792     } else {
8793         dacr = env->cp15.dacr_s;
8794     }
8795     domain_prot = (dacr >> (domain * 2)) & 3;
8796     if (type == 0) {
8797         /* Section translation fault.  */
8798         fi->type = ARMFault_Translation;
8799         goto do_fault;
8800     }
8801     if (type != 2) {
8802         level = 2;
8803     }
8804     if (domain_prot == 0 || domain_prot == 2) {
8805         fi->type = ARMFault_Domain;
8806         goto do_fault;
8807     }
8808     if (type == 2) {
8809         /* 1Mb section.  */
8810         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8811         ap = (desc >> 10) & 3;
8812         *page_size = 1024 * 1024;
8813     } else {
8814         /* Lookup l2 entry.  */
8815         if (type == 1) {
8816             /* Coarse pagetable.  */
8817             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8818         } else {
8819             /* Fine pagetable.  */
8820             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8821         }
8822         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8823                            mmu_idx, fi);
8824         if (fi->type != ARMFault_None) {
8825             goto do_fault;
8826         }
8827         switch (desc & 3) {
8828         case 0: /* Page translation fault.  */
8829             fi->type = ARMFault_Translation;
8830             goto do_fault;
8831         case 1: /* 64k page.  */
8832             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8833             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8834             *page_size = 0x10000;
8835             break;
8836         case 2: /* 4k page.  */
8837             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8838             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8839             *page_size = 0x1000;
8840             break;
8841         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8842             if (type == 1) {
8843                 /* ARMv6/XScale extended small page format */
8844                 if (arm_feature(env, ARM_FEATURE_XSCALE)
8845                     || arm_feature(env, ARM_FEATURE_V6)) {
8846                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8847                     *page_size = 0x1000;
8848                 } else {
8849                     /* UNPREDICTABLE in ARMv5; we choose to take a
8850                      * page translation fault.
8851                      */
8852                     fi->type = ARMFault_Translation;
8853                     goto do_fault;
8854                 }
8855             } else {
8856                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8857                 *page_size = 0x400;
8858             }
8859             ap = (desc >> 4) & 3;
8860             break;
8861         default:
8862             /* Never happens, but compiler isn't smart enough to tell.  */
8863             abort();
8864         }
8865     }
8866     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8867     *prot |= *prot ? PAGE_EXEC : 0;
8868     if (!(*prot & (1 << access_type))) {
8869         /* Access permission fault.  */
8870         fi->type = ARMFault_Permission;
8871         goto do_fault;
8872     }
8873     *phys_ptr = phys_addr;
8874     return false;
8875 do_fault:
8876     fi->domain = domain;
8877     fi->level = level;
8878     return true;
8879 }
8880 
8881 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8882                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8883                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8884                              target_ulong *page_size, ARMMMUFaultInfo *fi)
8885 {
8886     CPUState *cs = CPU(arm_env_get_cpu(env));
8887     int level = 1;
8888     uint32_t table;
8889     uint32_t desc;
8890     uint32_t xn;
8891     uint32_t pxn = 0;
8892     int type;
8893     int ap;
8894     int domain = 0;
8895     int domain_prot;
8896     hwaddr phys_addr;
8897     uint32_t dacr;
8898     bool ns;
8899 
8900     /* Pagetable walk.  */
8901     /* Lookup l1 descriptor.  */
8902     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8903         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8904         fi->type = ARMFault_Translation;
8905         goto do_fault;
8906     }
8907     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8908                        mmu_idx, fi);
8909     if (fi->type != ARMFault_None) {
8910         goto do_fault;
8911     }
8912     type = (desc & 3);
8913     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8914         /* Section translation fault, or attempt to use the encoding
8915          * which is Reserved on implementations without PXN.
8916          */
8917         fi->type = ARMFault_Translation;
8918         goto do_fault;
8919     }
8920     if ((type == 1) || !(desc & (1 << 18))) {
8921         /* Page or Section.  */
8922         domain = (desc >> 5) & 0x0f;
8923     }
8924     if (regime_el(env, mmu_idx) == 1) {
8925         dacr = env->cp15.dacr_ns;
8926     } else {
8927         dacr = env->cp15.dacr_s;
8928     }
8929     if (type == 1) {
8930         level = 2;
8931     }
8932     domain_prot = (dacr >> (domain * 2)) & 3;
8933     if (domain_prot == 0 || domain_prot == 2) {
8934         /* Section or Page domain fault */
8935         fi->type = ARMFault_Domain;
8936         goto do_fault;
8937     }
8938     if (type != 1) {
8939         if (desc & (1 << 18)) {
8940             /* Supersection.  */
8941             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8942             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8943             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8944             *page_size = 0x1000000;
8945         } else {
8946             /* Section.  */
8947             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8948             *page_size = 0x100000;
8949         }
8950         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8951         xn = desc & (1 << 4);
8952         pxn = desc & 1;
8953         ns = extract32(desc, 19, 1);
8954     } else {
8955         if (arm_feature(env, ARM_FEATURE_PXN)) {
8956             pxn = (desc >> 2) & 1;
8957         }
8958         ns = extract32(desc, 3, 1);
8959         /* Lookup l2 entry.  */
8960         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8961         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8962                            mmu_idx, fi);
8963         if (fi->type != ARMFault_None) {
8964             goto do_fault;
8965         }
8966         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8967         switch (desc & 3) {
8968         case 0: /* Page translation fault.  */
8969             fi->type = ARMFault_Translation;
8970             goto do_fault;
8971         case 1: /* 64k page.  */
8972             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8973             xn = desc & (1 << 15);
8974             *page_size = 0x10000;
8975             break;
8976         case 2: case 3: /* 4k page.  */
8977             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8978             xn = desc & 1;
8979             *page_size = 0x1000;
8980             break;
8981         default:
8982             /* Never happens, but compiler isn't smart enough to tell.  */
8983             abort();
8984         }
8985     }
8986     if (domain_prot == 3) {
8987         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8988     } else {
8989         if (pxn && !regime_is_user(env, mmu_idx)) {
8990             xn = 1;
8991         }
8992         if (xn && access_type == MMU_INST_FETCH) {
8993             fi->type = ARMFault_Permission;
8994             goto do_fault;
8995         }
8996 
8997         if (arm_feature(env, ARM_FEATURE_V6K) &&
8998                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8999             /* The simplified model uses AP[0] as an access control bit.  */
9000             if ((ap & 1) == 0) {
9001                 /* Access flag fault.  */
9002                 fi->type = ARMFault_AccessFlag;
9003                 goto do_fault;
9004             }
9005             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9006         } else {
9007             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9008         }
9009         if (*prot && !xn) {
9010             *prot |= PAGE_EXEC;
9011         }
9012         if (!(*prot & (1 << access_type))) {
9013             /* Access permission fault.  */
9014             fi->type = ARMFault_Permission;
9015             goto do_fault;
9016         }
9017     }
9018     if (ns) {
9019         /* The NS bit will (as required by the architecture) have no effect if
9020          * the CPU doesn't support TZ or this is a non-secure translation
9021          * regime, because the attribute will already be non-secure.
9022          */
9023         attrs->secure = false;
9024     }
9025     *phys_ptr = phys_addr;
9026     return false;
9027 do_fault:
9028     fi->domain = domain;
9029     fi->level = level;
9030     return true;
9031 }
9032 
9033 /*
9034  * check_s2_mmu_setup
9035  * @cpu:        ARMCPU
9036  * @is_aa64:    True if the translation regime is in AArch64 state
9037  * @startlevel: Suggested starting level
9038  * @inputsize:  Bitsize of IPAs
9039  * @stride:     Page-table stride (See the ARM ARM)
9040  *
9041  * Returns true if the suggested S2 translation parameters are OK and
9042  * false otherwise.
9043  */
9044 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9045                                int inputsize, int stride)
9046 {
9047     const int grainsize = stride + 3;
9048     int startsizecheck;
9049 
9050     /* Negative levels are never allowed.  */
9051     if (level < 0) {
9052         return false;
9053     }
9054 
9055     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9056     if (startsizecheck < 1 || startsizecheck > stride + 4) {
9057         return false;
9058     }
9059 
9060     if (is_aa64) {
9061         CPUARMState *env = &cpu->env;
9062         unsigned int pamax = arm_pamax(cpu);
9063 
9064         switch (stride) {
9065         case 13: /* 64KB Pages.  */
9066             if (level == 0 || (level == 1 && pamax <= 42)) {
9067                 return false;
9068             }
9069             break;
9070         case 11: /* 16KB Pages.  */
9071             if (level == 0 || (level == 1 && pamax <= 40)) {
9072                 return false;
9073             }
9074             break;
9075         case 9: /* 4KB Pages.  */
9076             if (level == 0 && pamax <= 42) {
9077                 return false;
9078             }
9079             break;
9080         default:
9081             g_assert_not_reached();
9082         }
9083 
9084         /* Inputsize checks.  */
9085         if (inputsize > pamax &&
9086             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9087             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
9088             return false;
9089         }
9090     } else {
9091         /* AArch32 only supports 4KB pages. Assert on that.  */
9092         assert(stride == 9);
9093 
9094         if (level == 0) {
9095             return false;
9096         }
9097     }
9098     return true;
9099 }
9100 
9101 /* Translate from the 4-bit stage 2 representation of
9102  * memory attributes (without cache-allocation hints) to
9103  * the 8-bit representation of the stage 1 MAIR registers
9104  * (which includes allocation hints).
9105  *
9106  * ref: shared/translation/attrs/S2AttrDecode()
9107  *      .../S2ConvertAttrsHints()
9108  */
9109 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9110 {
9111     uint8_t hiattr = extract32(s2attrs, 2, 2);
9112     uint8_t loattr = extract32(s2attrs, 0, 2);
9113     uint8_t hihint = 0, lohint = 0;
9114 
9115     if (hiattr != 0) { /* normal memory */
9116         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9117             hiattr = loattr = 1; /* non-cacheable */
9118         } else {
9119             if (hiattr != 1) { /* Write-through or write-back */
9120                 hihint = 3; /* RW allocate */
9121             }
9122             if (loattr != 1) { /* Write-through or write-back */
9123                 lohint = 3; /* RW allocate */
9124             }
9125         }
9126     }
9127 
9128     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9129 }
9130 
9131 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9132                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
9133                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9134                                target_ulong *page_size_ptr,
9135                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9136 {
9137     ARMCPU *cpu = arm_env_get_cpu(env);
9138     CPUState *cs = CPU(cpu);
9139     /* Read an LPAE long-descriptor translation table. */
9140     ARMFaultType fault_type = ARMFault_Translation;
9141     uint32_t level;
9142     uint32_t epd = 0;
9143     int32_t t0sz, t1sz;
9144     uint32_t tg;
9145     uint64_t ttbr;
9146     int ttbr_select;
9147     hwaddr descaddr, indexmask, indexmask_grainsize;
9148     uint32_t tableattrs;
9149     target_ulong page_size;
9150     uint32_t attrs;
9151     int32_t stride = 9;
9152     int32_t addrsize;
9153     int inputsize;
9154     int32_t tbi = 0;
9155     TCR *tcr = regime_tcr(env, mmu_idx);
9156     int ap, ns, xn, pxn;
9157     uint32_t el = regime_el(env, mmu_idx);
9158     bool ttbr1_valid = true;
9159     uint64_t descaddrmask;
9160     bool aarch64 = arm_el_is_aa64(env, el);
9161 
9162     /* TODO:
9163      * This code does not handle the different format TCR for VTCR_EL2.
9164      * This code also does not support shareability levels.
9165      * Attribute and permission bit handling should also be checked when adding
9166      * support for those page table walks.
9167      */
9168     if (aarch64) {
9169         level = 0;
9170         addrsize = 64;
9171         if (el > 1) {
9172             if (mmu_idx != ARMMMUIdx_S2NS) {
9173                 tbi = extract64(tcr->raw_tcr, 20, 1);
9174             }
9175         } else {
9176             if (extract64(address, 55, 1)) {
9177                 tbi = extract64(tcr->raw_tcr, 38, 1);
9178             } else {
9179                 tbi = extract64(tcr->raw_tcr, 37, 1);
9180             }
9181         }
9182         tbi *= 8;
9183 
9184         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9185          * invalid.
9186          */
9187         if (el > 1) {
9188             ttbr1_valid = false;
9189         }
9190     } else {
9191         level = 1;
9192         addrsize = 32;
9193         /* There is no TTBR1 for EL2 */
9194         if (el == 2) {
9195             ttbr1_valid = false;
9196         }
9197     }
9198 
9199     /* Determine whether this address is in the region controlled by
9200      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9201      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9202      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9203      */
9204     if (aarch64) {
9205         /* AArch64 translation.  */
9206         t0sz = extract32(tcr->raw_tcr, 0, 6);
9207         t0sz = MIN(t0sz, 39);
9208         t0sz = MAX(t0sz, 16);
9209     } else if (mmu_idx != ARMMMUIdx_S2NS) {
9210         /* AArch32 stage 1 translation.  */
9211         t0sz = extract32(tcr->raw_tcr, 0, 3);
9212     } else {
9213         /* AArch32 stage 2 translation.  */
9214         bool sext = extract32(tcr->raw_tcr, 4, 1);
9215         bool sign = extract32(tcr->raw_tcr, 3, 1);
9216         /* Address size is 40-bit for a stage 2 translation,
9217          * and t0sz can be negative (from -8 to 7),
9218          * so we need to adjust it to use the TTBR selecting logic below.
9219          */
9220         addrsize = 40;
9221         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9222 
9223         /* If the sign-extend bit is not the same as t0sz[3], the result
9224          * is unpredictable. Flag this as a guest error.  */
9225         if (sign != sext) {
9226             qemu_log_mask(LOG_GUEST_ERROR,
9227                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9228         }
9229     }
9230     t1sz = extract32(tcr->raw_tcr, 16, 6);
9231     if (aarch64) {
9232         t1sz = MIN(t1sz, 39);
9233         t1sz = MAX(t1sz, 16);
9234     }
9235     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9236         /* there is a ttbr0 region and we are in it (high bits all zero) */
9237         ttbr_select = 0;
9238     } else if (ttbr1_valid && t1sz &&
9239                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9240         /* there is a ttbr1 region and we are in it (high bits all one) */
9241         ttbr_select = 1;
9242     } else if (!t0sz) {
9243         /* ttbr0 region is "everything not in the ttbr1 region" */
9244         ttbr_select = 0;
9245     } else if (!t1sz && ttbr1_valid) {
9246         /* ttbr1 region is "everything not in the ttbr0 region" */
9247         ttbr_select = 1;
9248     } else {
9249         /* in the gap between the two regions, this is a Translation fault */
9250         fault_type = ARMFault_Translation;
9251         goto do_fault;
9252     }
9253 
9254     /* Note that QEMU ignores shareability and cacheability attributes,
9255      * so we don't need to do anything with the SH, ORGN, IRGN fields
9256      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
9257      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9258      * implement any ASID-like capability so we can ignore it (instead
9259      * we will always flush the TLB any time the ASID is changed).
9260      */
9261     if (ttbr_select == 0) {
9262         ttbr = regime_ttbr(env, mmu_idx, 0);
9263         if (el < 2) {
9264             epd = extract32(tcr->raw_tcr, 7, 1);
9265         }
9266         inputsize = addrsize - t0sz;
9267 
9268         tg = extract32(tcr->raw_tcr, 14, 2);
9269         if (tg == 1) { /* 64KB pages */
9270             stride = 13;
9271         }
9272         if (tg == 2) { /* 16KB pages */
9273             stride = 11;
9274         }
9275     } else {
9276         /* We should only be here if TTBR1 is valid */
9277         assert(ttbr1_valid);
9278 
9279         ttbr = regime_ttbr(env, mmu_idx, 1);
9280         epd = extract32(tcr->raw_tcr, 23, 1);
9281         inputsize = addrsize - t1sz;
9282 
9283         tg = extract32(tcr->raw_tcr, 30, 2);
9284         if (tg == 3)  { /* 64KB pages */
9285             stride = 13;
9286         }
9287         if (tg == 1) { /* 16KB pages */
9288             stride = 11;
9289         }
9290     }
9291 
9292     /* Here we should have set up all the parameters for the translation:
9293      * inputsize, ttbr, epd, stride, tbi
9294      */
9295 
9296     if (epd) {
9297         /* Translation table walk disabled => Translation fault on TLB miss
9298          * Note: This is always 0 on 64-bit EL2 and EL3.
9299          */
9300         goto do_fault;
9301     }
9302 
9303     if (mmu_idx != ARMMMUIdx_S2NS) {
9304         /* The starting level depends on the virtual address size (which can
9305          * be up to 48 bits) and the translation granule size. It indicates
9306          * the number of strides (stride bits at a time) needed to
9307          * consume the bits of the input address. In the pseudocode this is:
9308          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
9309          * where their 'inputsize' is our 'inputsize', 'grainsize' is
9310          * our 'stride + 3' and 'stride' is our 'stride'.
9311          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9312          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9313          * = 4 - (inputsize - 4) / stride;
9314          */
9315         level = 4 - (inputsize - 4) / stride;
9316     } else {
9317         /* For stage 2 translations the starting level is specified by the
9318          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9319          */
9320         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9321         uint32_t startlevel;
9322         bool ok;
9323 
9324         if (!aarch64 || stride == 9) {
9325             /* AArch32 or 4KB pages */
9326             startlevel = 2 - sl0;
9327         } else {
9328             /* 16KB or 64KB pages */
9329             startlevel = 3 - sl0;
9330         }
9331 
9332         /* Check that the starting level is valid. */
9333         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9334                                 inputsize, stride);
9335         if (!ok) {
9336             fault_type = ARMFault_Translation;
9337             goto do_fault;
9338         }
9339         level = startlevel;
9340     }
9341 
9342     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9343     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9344 
9345     /* Now we can extract the actual base address from the TTBR */
9346     descaddr = extract64(ttbr, 0, 48);
9347     descaddr &= ~indexmask;
9348 
9349     /* The address field in the descriptor goes up to bit 39 for ARMv7
9350      * but up to bit 47 for ARMv8, but we use the descaddrmask
9351      * up to bit 39 for AArch32, because we don't need other bits in that case
9352      * to construct next descriptor address (anyway they should be all zeroes).
9353      */
9354     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9355                    ~indexmask_grainsize;
9356 
9357     /* Secure accesses start with the page table in secure memory and
9358      * can be downgraded to non-secure at any step. Non-secure accesses
9359      * remain non-secure. We implement this by just ORing in the NSTable/NS
9360      * bits at each step.
9361      */
9362     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9363     for (;;) {
9364         uint64_t descriptor;
9365         bool nstable;
9366 
9367         descaddr |= (address >> (stride * (4 - level))) & indexmask;
9368         descaddr &= ~7ULL;
9369         nstable = extract32(tableattrs, 4, 1);
9370         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9371         if (fi->type != ARMFault_None) {
9372             goto do_fault;
9373         }
9374 
9375         if (!(descriptor & 1) ||
9376             (!(descriptor & 2) && (level == 3))) {
9377             /* Invalid, or the Reserved level 3 encoding */
9378             goto do_fault;
9379         }
9380         descaddr = descriptor & descaddrmask;
9381 
9382         if ((descriptor & 2) && (level < 3)) {
9383             /* Table entry. The top five bits are attributes which  may
9384              * propagate down through lower levels of the table (and
9385              * which are all arranged so that 0 means "no effect", so
9386              * we can gather them up by ORing in the bits at each level).
9387              */
9388             tableattrs |= extract64(descriptor, 59, 5);
9389             level++;
9390             indexmask = indexmask_grainsize;
9391             continue;
9392         }
9393         /* Block entry at level 1 or 2, or page entry at level 3.
9394          * These are basically the same thing, although the number
9395          * of bits we pull in from the vaddr varies.
9396          */
9397         page_size = (1ULL << ((stride * (4 - level)) + 3));
9398         descaddr |= (address & (page_size - 1));
9399         /* Extract attributes from the descriptor */
9400         attrs = extract64(descriptor, 2, 10)
9401             | (extract64(descriptor, 52, 12) << 10);
9402 
9403         if (mmu_idx == ARMMMUIdx_S2NS) {
9404             /* Stage 2 table descriptors do not include any attribute fields */
9405             break;
9406         }
9407         /* Merge in attributes from table descriptors */
9408         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9409         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9410         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9411          * means "force PL1 access only", which means forcing AP[1] to 0.
9412          */
9413         if (extract32(tableattrs, 2, 1)) {
9414             attrs &= ~(1 << 4);
9415         }
9416         attrs |= nstable << 3; /* NS */
9417         break;
9418     }
9419     /* Here descaddr is the final physical address, and attributes
9420      * are all in attrs.
9421      */
9422     fault_type = ARMFault_AccessFlag;
9423     if ((attrs & (1 << 8)) == 0) {
9424         /* Access flag */
9425         goto do_fault;
9426     }
9427 
9428     ap = extract32(attrs, 4, 2);
9429     xn = extract32(attrs, 12, 1);
9430 
9431     if (mmu_idx == ARMMMUIdx_S2NS) {
9432         ns = true;
9433         *prot = get_S2prot(env, ap, xn);
9434     } else {
9435         ns = extract32(attrs, 3, 1);
9436         pxn = extract32(attrs, 11, 1);
9437         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9438     }
9439 
9440     fault_type = ARMFault_Permission;
9441     if (!(*prot & (1 << access_type))) {
9442         goto do_fault;
9443     }
9444 
9445     if (ns) {
9446         /* The NS bit will (as required by the architecture) have no effect if
9447          * the CPU doesn't support TZ or this is a non-secure translation
9448          * regime, because the attribute will already be non-secure.
9449          */
9450         txattrs->secure = false;
9451     }
9452 
9453     if (cacheattrs != NULL) {
9454         if (mmu_idx == ARMMMUIdx_S2NS) {
9455             cacheattrs->attrs = convert_stage2_attrs(env,
9456                                                      extract32(attrs, 0, 4));
9457         } else {
9458             /* Index into MAIR registers for cache attributes */
9459             uint8_t attrindx = extract32(attrs, 0, 3);
9460             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9461             assert(attrindx <= 7);
9462             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9463         }
9464         cacheattrs->shareability = extract32(attrs, 6, 2);
9465     }
9466 
9467     *phys_ptr = descaddr;
9468     *page_size_ptr = page_size;
9469     return false;
9470 
9471 do_fault:
9472     fi->type = fault_type;
9473     fi->level = level;
9474     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9475     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9476     return true;
9477 }
9478 
9479 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9480                                                 ARMMMUIdx mmu_idx,
9481                                                 int32_t address, int *prot)
9482 {
9483     if (!arm_feature(env, ARM_FEATURE_M)) {
9484         *prot = PAGE_READ | PAGE_WRITE;
9485         switch (address) {
9486         case 0xF0000000 ... 0xFFFFFFFF:
9487             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9488                 /* hivecs execing is ok */
9489                 *prot |= PAGE_EXEC;
9490             }
9491             break;
9492         case 0x00000000 ... 0x7FFFFFFF:
9493             *prot |= PAGE_EXEC;
9494             break;
9495         }
9496     } else {
9497         /* Default system address map for M profile cores.
9498          * The architecture specifies which regions are execute-never;
9499          * at the MPU level no other checks are defined.
9500          */
9501         switch (address) {
9502         case 0x00000000 ... 0x1fffffff: /* ROM */
9503         case 0x20000000 ... 0x3fffffff: /* SRAM */
9504         case 0x60000000 ... 0x7fffffff: /* RAM */
9505         case 0x80000000 ... 0x9fffffff: /* RAM */
9506             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9507             break;
9508         case 0x40000000 ... 0x5fffffff: /* Peripheral */
9509         case 0xa0000000 ... 0xbfffffff: /* Device */
9510         case 0xc0000000 ... 0xdfffffff: /* Device */
9511         case 0xe0000000 ... 0xffffffff: /* System */
9512             *prot = PAGE_READ | PAGE_WRITE;
9513             break;
9514         default:
9515             g_assert_not_reached();
9516         }
9517     }
9518 }
9519 
9520 static bool pmsav7_use_background_region(ARMCPU *cpu,
9521                                          ARMMMUIdx mmu_idx, bool is_user)
9522 {
9523     /* Return true if we should use the default memory map as a
9524      * "background" region if there are no hits against any MPU regions.
9525      */
9526     CPUARMState *env = &cpu->env;
9527 
9528     if (is_user) {
9529         return false;
9530     }
9531 
9532     if (arm_feature(env, ARM_FEATURE_M)) {
9533         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9534             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9535     } else {
9536         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9537     }
9538 }
9539 
9540 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9541 {
9542     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9543     return arm_feature(env, ARM_FEATURE_M) &&
9544         extract32(address, 20, 12) == 0xe00;
9545 }
9546 
9547 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9548 {
9549     /* True if address is in the M profile system region
9550      * 0xe0000000 - 0xffffffff
9551      */
9552     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9553 }
9554 
9555 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9556                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9557                                  hwaddr *phys_ptr, int *prot,
9558                                  ARMMMUFaultInfo *fi)
9559 {
9560     ARMCPU *cpu = arm_env_get_cpu(env);
9561     int n;
9562     bool is_user = regime_is_user(env, mmu_idx);
9563 
9564     *phys_ptr = address;
9565     *prot = 0;
9566 
9567     if (regime_translation_disabled(env, mmu_idx) ||
9568         m_is_ppb_region(env, address)) {
9569         /* MPU disabled or M profile PPB access: use default memory map.
9570          * The other case which uses the default memory map in the
9571          * v7M ARM ARM pseudocode is exception vector reads from the vector
9572          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9573          * which always does a direct read using address_space_ldl(), rather
9574          * than going via this function, so we don't need to check that here.
9575          */
9576         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9577     } else { /* MPU enabled */
9578         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9579             /* region search */
9580             uint32_t base = env->pmsav7.drbar[n];
9581             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9582             uint32_t rmask;
9583             bool srdis = false;
9584 
9585             if (!(env->pmsav7.drsr[n] & 0x1)) {
9586                 continue;
9587             }
9588 
9589             if (!rsize) {
9590                 qemu_log_mask(LOG_GUEST_ERROR,
9591                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9592                 continue;
9593             }
9594             rsize++;
9595             rmask = (1ull << rsize) - 1;
9596 
9597             if (base & rmask) {
9598                 qemu_log_mask(LOG_GUEST_ERROR,
9599                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9600                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9601                               n, base, rmask);
9602                 continue;
9603             }
9604 
9605             if (address < base || address > base + rmask) {
9606                 continue;
9607             }
9608 
9609             /* Region matched */
9610 
9611             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9612                 int i, snd;
9613                 uint32_t srdis_mask;
9614 
9615                 rsize -= 3; /* sub region size (power of 2) */
9616                 snd = ((address - base) >> rsize) & 0x7;
9617                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9618 
9619                 srdis_mask = srdis ? 0x3 : 0x0;
9620                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9621                     /* This will check in groups of 2, 4 and then 8, whether
9622                      * the subregion bits are consistent. rsize is incremented
9623                      * back up to give the region size, considering consistent
9624                      * adjacent subregions as one region. Stop testing if rsize
9625                      * is already big enough for an entire QEMU page.
9626                      */
9627                     int snd_rounded = snd & ~(i - 1);
9628                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9629                                                      snd_rounded + 8, i);
9630                     if (srdis_mask ^ srdis_multi) {
9631                         break;
9632                     }
9633                     srdis_mask = (srdis_mask << i) | srdis_mask;
9634                     rsize++;
9635                 }
9636             }
9637             if (rsize < TARGET_PAGE_BITS) {
9638                 qemu_log_mask(LOG_UNIMP,
9639                               "DRSR[%d]: No support for MPU (sub)region "
9640                               "alignment of %" PRIu32 " bits. Minimum is %d\n",
9641                               n, rsize, TARGET_PAGE_BITS);
9642                 continue;
9643             }
9644             if (srdis) {
9645                 continue;
9646             }
9647             break;
9648         }
9649 
9650         if (n == -1) { /* no hits */
9651             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9652                 /* background fault */
9653                 fi->type = ARMFault_Background;
9654                 return true;
9655             }
9656             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9657         } else { /* a MPU hit! */
9658             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9659             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9660 
9661             if (m_is_system_region(env, address)) {
9662                 /* System space is always execute never */
9663                 xn = 1;
9664             }
9665 
9666             if (is_user) { /* User mode AP bit decoding */
9667                 switch (ap) {
9668                 case 0:
9669                 case 1:
9670                 case 5:
9671                     break; /* no access */
9672                 case 3:
9673                     *prot |= PAGE_WRITE;
9674                     /* fall through */
9675                 case 2:
9676                 case 6:
9677                     *prot |= PAGE_READ | PAGE_EXEC;
9678                     break;
9679                 case 7:
9680                     /* for v7M, same as 6; for R profile a reserved value */
9681                     if (arm_feature(env, ARM_FEATURE_M)) {
9682                         *prot |= PAGE_READ | PAGE_EXEC;
9683                         break;
9684                     }
9685                     /* fall through */
9686                 default:
9687                     qemu_log_mask(LOG_GUEST_ERROR,
9688                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9689                                   PRIx32 "\n", n, ap);
9690                 }
9691             } else { /* Priv. mode AP bits decoding */
9692                 switch (ap) {
9693                 case 0:
9694                     break; /* no access */
9695                 case 1:
9696                 case 2:
9697                 case 3:
9698                     *prot |= PAGE_WRITE;
9699                     /* fall through */
9700                 case 5:
9701                 case 6:
9702                     *prot |= PAGE_READ | PAGE_EXEC;
9703                     break;
9704                 case 7:
9705                     /* for v7M, same as 6; for R profile a reserved value */
9706                     if (arm_feature(env, ARM_FEATURE_M)) {
9707                         *prot |= PAGE_READ | PAGE_EXEC;
9708                         break;
9709                     }
9710                     /* fall through */
9711                 default:
9712                     qemu_log_mask(LOG_GUEST_ERROR,
9713                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9714                                   PRIx32 "\n", n, ap);
9715                 }
9716             }
9717 
9718             /* execute never */
9719             if (xn) {
9720                 *prot &= ~PAGE_EXEC;
9721             }
9722         }
9723     }
9724 
9725     fi->type = ARMFault_Permission;
9726     fi->level = 1;
9727     return !(*prot & (1 << access_type));
9728 }
9729 
9730 static bool v8m_is_sau_exempt(CPUARMState *env,
9731                               uint32_t address, MMUAccessType access_type)
9732 {
9733     /* The architecture specifies that certain address ranges are
9734      * exempt from v8M SAU/IDAU checks.
9735      */
9736     return
9737         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9738         (address >= 0xe0000000 && address <= 0xe0002fff) ||
9739         (address >= 0xe000e000 && address <= 0xe000efff) ||
9740         (address >= 0xe002e000 && address <= 0xe002efff) ||
9741         (address >= 0xe0040000 && address <= 0xe0041fff) ||
9742         (address >= 0xe00ff000 && address <= 0xe00fffff);
9743 }
9744 
9745 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9746                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9747                                 V8M_SAttributes *sattrs)
9748 {
9749     /* Look up the security attributes for this address. Compare the
9750      * pseudocode SecurityCheck() function.
9751      * We assume the caller has zero-initialized *sattrs.
9752      */
9753     ARMCPU *cpu = arm_env_get_cpu(env);
9754     int r;
9755 
9756     /* TODO: implement IDAU */
9757 
9758     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9759         /* 0xf0000000..0xffffffff is always S for insn fetches */
9760         return;
9761     }
9762 
9763     if (v8m_is_sau_exempt(env, address, access_type)) {
9764         sattrs->ns = !regime_is_secure(env, mmu_idx);
9765         return;
9766     }
9767 
9768     switch (env->sau.ctrl & 3) {
9769     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9770         break;
9771     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9772         sattrs->ns = true;
9773         break;
9774     default: /* SAU.ENABLE == 1 */
9775         for (r = 0; r < cpu->sau_sregion; r++) {
9776             if (env->sau.rlar[r] & 1) {
9777                 uint32_t base = env->sau.rbar[r] & ~0x1f;
9778                 uint32_t limit = env->sau.rlar[r] | 0x1f;
9779 
9780                 if (base <= address && limit >= address) {
9781                     if (sattrs->srvalid) {
9782                         /* If we hit in more than one region then we must report
9783                          * as Secure, not NS-Callable, with no valid region
9784                          * number info.
9785                          */
9786                         sattrs->ns = false;
9787                         sattrs->nsc = false;
9788                         sattrs->sregion = 0;
9789                         sattrs->srvalid = false;
9790                         break;
9791                     } else {
9792                         if (env->sau.rlar[r] & 2) {
9793                             sattrs->nsc = true;
9794                         } else {
9795                             sattrs->ns = true;
9796                         }
9797                         sattrs->srvalid = true;
9798                         sattrs->sregion = r;
9799                     }
9800                 }
9801             }
9802         }
9803 
9804         /* TODO when we support the IDAU then it may override the result here */
9805         break;
9806     }
9807 }
9808 
9809 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9810                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
9811                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
9812                               int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion)
9813 {
9814     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9815      * that a full phys-to-virt translation does).
9816      * mregion is (if not NULL) set to the region number which matched,
9817      * or -1 if no region number is returned (MPU off, address did not
9818      * hit a region, address hit in multiple regions).
9819      */
9820     ARMCPU *cpu = arm_env_get_cpu(env);
9821     bool is_user = regime_is_user(env, mmu_idx);
9822     uint32_t secure = regime_is_secure(env, mmu_idx);
9823     int n;
9824     int matchregion = -1;
9825     bool hit = false;
9826 
9827     *phys_ptr = address;
9828     *prot = 0;
9829     if (mregion) {
9830         *mregion = -1;
9831     }
9832 
9833     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9834      * was an exception vector read from the vector table (which is always
9835      * done using the default system address map), because those accesses
9836      * are done in arm_v7m_load_vector(), which always does a direct
9837      * read using address_space_ldl(), rather than going via this function.
9838      */
9839     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9840         hit = true;
9841     } else if (m_is_ppb_region(env, address)) {
9842         hit = true;
9843     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9844         hit = true;
9845     } else {
9846         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9847             /* region search */
9848             /* Note that the base address is bits [31:5] from the register
9849              * with bits [4:0] all zeroes, but the limit address is bits
9850              * [31:5] from the register with bits [4:0] all ones.
9851              */
9852             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9853             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9854 
9855             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9856                 /* Region disabled */
9857                 continue;
9858             }
9859 
9860             if (address < base || address > limit) {
9861                 continue;
9862             }
9863 
9864             if (hit) {
9865                 /* Multiple regions match -- always a failure (unlike
9866                  * PMSAv7 where highest-numbered-region wins)
9867                  */
9868                 fi->type = ARMFault_Permission;
9869                 fi->level = 1;
9870                 return true;
9871             }
9872 
9873             matchregion = n;
9874             hit = true;
9875 
9876             if (base & ~TARGET_PAGE_MASK) {
9877                 qemu_log_mask(LOG_UNIMP,
9878                               "MPU_RBAR[%d]: No support for MPU region base"
9879                               "address of 0x%" PRIx32 ". Minimum alignment is "
9880                               "%d\n",
9881                               n, base, TARGET_PAGE_BITS);
9882                 continue;
9883             }
9884             if ((limit + 1) & ~TARGET_PAGE_MASK) {
9885                 qemu_log_mask(LOG_UNIMP,
9886                               "MPU_RBAR[%d]: No support for MPU region limit"
9887                               "address of 0x%" PRIx32 ". Minimum alignment is "
9888                               "%d\n",
9889                               n, limit, TARGET_PAGE_BITS);
9890                 continue;
9891             }
9892         }
9893     }
9894 
9895     if (!hit) {
9896         /* background fault */
9897         fi->type = ARMFault_Background;
9898         return true;
9899     }
9900 
9901     if (matchregion == -1) {
9902         /* hit using the background region */
9903         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9904     } else {
9905         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9906         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9907 
9908         if (m_is_system_region(env, address)) {
9909             /* System space is always execute never */
9910             xn = 1;
9911         }
9912 
9913         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9914         if (*prot && !xn) {
9915             *prot |= PAGE_EXEC;
9916         }
9917         /* We don't need to look the attribute up in the MAIR0/MAIR1
9918          * registers because that only tells us about cacheability.
9919          */
9920         if (mregion) {
9921             *mregion = matchregion;
9922         }
9923     }
9924 
9925     fi->type = ARMFault_Permission;
9926     fi->level = 1;
9927     return !(*prot & (1 << access_type));
9928 }
9929 
9930 
9931 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9932                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9933                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
9934                                  int *prot, ARMMMUFaultInfo *fi)
9935 {
9936     uint32_t secure = regime_is_secure(env, mmu_idx);
9937     V8M_SAttributes sattrs = {};
9938 
9939     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9940         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
9941         if (access_type == MMU_INST_FETCH) {
9942             /* Instruction fetches always use the MMU bank and the
9943              * transaction attribute determined by the fetch address,
9944              * regardless of CPU state. This is painful for QEMU
9945              * to handle, because it would mean we need to encode
9946              * into the mmu_idx not just the (user, negpri) information
9947              * for the current security state but also that for the
9948              * other security state, which would balloon the number
9949              * of mmu_idx values needed alarmingly.
9950              * Fortunately we can avoid this because it's not actually
9951              * possible to arbitrarily execute code from memory with
9952              * the wrong security attribute: it will always generate
9953              * an exception of some kind or another, apart from the
9954              * special case of an NS CPU executing an SG instruction
9955              * in S&NSC memory. So we always just fail the translation
9956              * here and sort things out in the exception handler
9957              * (including possibly emulating an SG instruction).
9958              */
9959             if (sattrs.ns != !secure) {
9960                 if (sattrs.nsc) {
9961                     fi->type = ARMFault_QEMU_NSCExec;
9962                 } else {
9963                     fi->type = ARMFault_QEMU_SFault;
9964                 }
9965                 *phys_ptr = address;
9966                 *prot = 0;
9967                 return true;
9968             }
9969         } else {
9970             /* For data accesses we always use the MMU bank indicated
9971              * by the current CPU state, but the security attributes
9972              * might downgrade a secure access to nonsecure.
9973              */
9974             if (sattrs.ns) {
9975                 txattrs->secure = false;
9976             } else if (!secure) {
9977                 /* NS access to S memory must fault.
9978                  * Architecturally we should first check whether the
9979                  * MPU information for this address indicates that we
9980                  * are doing an unaligned access to Device memory, which
9981                  * should generate a UsageFault instead. QEMU does not
9982                  * currently check for that kind of unaligned access though.
9983                  * If we added it we would need to do so as a special case
9984                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9985                  */
9986                 fi->type = ARMFault_QEMU_SFault;
9987                 *phys_ptr = address;
9988                 *prot = 0;
9989                 return true;
9990             }
9991         }
9992     }
9993 
9994     return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
9995                              txattrs, prot, fi, NULL);
9996 }
9997 
9998 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
9999                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10000                                  hwaddr *phys_ptr, int *prot,
10001                                  ARMMMUFaultInfo *fi)
10002 {
10003     int n;
10004     uint32_t mask;
10005     uint32_t base;
10006     bool is_user = regime_is_user(env, mmu_idx);
10007 
10008     if (regime_translation_disabled(env, mmu_idx)) {
10009         /* MPU disabled.  */
10010         *phys_ptr = address;
10011         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10012         return false;
10013     }
10014 
10015     *phys_ptr = address;
10016     for (n = 7; n >= 0; n--) {
10017         base = env->cp15.c6_region[n];
10018         if ((base & 1) == 0) {
10019             continue;
10020         }
10021         mask = 1 << ((base >> 1) & 0x1f);
10022         /* Keep this shift separate from the above to avoid an
10023            (undefined) << 32.  */
10024         mask = (mask << 1) - 1;
10025         if (((base ^ address) & ~mask) == 0) {
10026             break;
10027         }
10028     }
10029     if (n < 0) {
10030         fi->type = ARMFault_Background;
10031         return true;
10032     }
10033 
10034     if (access_type == MMU_INST_FETCH) {
10035         mask = env->cp15.pmsav5_insn_ap;
10036     } else {
10037         mask = env->cp15.pmsav5_data_ap;
10038     }
10039     mask = (mask >> (n * 4)) & 0xf;
10040     switch (mask) {
10041     case 0:
10042         fi->type = ARMFault_Permission;
10043         fi->level = 1;
10044         return true;
10045     case 1:
10046         if (is_user) {
10047             fi->type = ARMFault_Permission;
10048             fi->level = 1;
10049             return true;
10050         }
10051         *prot = PAGE_READ | PAGE_WRITE;
10052         break;
10053     case 2:
10054         *prot = PAGE_READ;
10055         if (!is_user) {
10056             *prot |= PAGE_WRITE;
10057         }
10058         break;
10059     case 3:
10060         *prot = PAGE_READ | PAGE_WRITE;
10061         break;
10062     case 5:
10063         if (is_user) {
10064             fi->type = ARMFault_Permission;
10065             fi->level = 1;
10066             return true;
10067         }
10068         *prot = PAGE_READ;
10069         break;
10070     case 6:
10071         *prot = PAGE_READ;
10072         break;
10073     default:
10074         /* Bad permission.  */
10075         fi->type = ARMFault_Permission;
10076         fi->level = 1;
10077         return true;
10078     }
10079     *prot |= PAGE_EXEC;
10080     return false;
10081 }
10082 
10083 /* Combine either inner or outer cacheability attributes for normal
10084  * memory, according to table D4-42 and pseudocode procedure
10085  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10086  *
10087  * NB: only stage 1 includes allocation hints (RW bits), leading to
10088  * some asymmetry.
10089  */
10090 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10091 {
10092     if (s1 == 4 || s2 == 4) {
10093         /* non-cacheable has precedence */
10094         return 4;
10095     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10096         /* stage 1 write-through takes precedence */
10097         return s1;
10098     } else if (extract32(s2, 2, 2) == 2) {
10099         /* stage 2 write-through takes precedence, but the allocation hint
10100          * is still taken from stage 1
10101          */
10102         return (2 << 2) | extract32(s1, 0, 2);
10103     } else { /* write-back */
10104         return s1;
10105     }
10106 }
10107 
10108 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10109  * and CombineS1S2Desc()
10110  *
10111  * @s1:      Attributes from stage 1 walk
10112  * @s2:      Attributes from stage 2 walk
10113  */
10114 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10115 {
10116     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10117     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10118     ARMCacheAttrs ret;
10119 
10120     /* Combine shareability attributes (table D4-43) */
10121     if (s1.shareability == 2 || s2.shareability == 2) {
10122         /* if either are outer-shareable, the result is outer-shareable */
10123         ret.shareability = 2;
10124     } else if (s1.shareability == 3 || s2.shareability == 3) {
10125         /* if either are inner-shareable, the result is inner-shareable */
10126         ret.shareability = 3;
10127     } else {
10128         /* both non-shareable */
10129         ret.shareability = 0;
10130     }
10131 
10132     /* Combine memory type and cacheability attributes */
10133     if (s1hi == 0 || s2hi == 0) {
10134         /* Device has precedence over normal */
10135         if (s1lo == 0 || s2lo == 0) {
10136             /* nGnRnE has precedence over anything */
10137             ret.attrs = 0;
10138         } else if (s1lo == 4 || s2lo == 4) {
10139             /* non-Reordering has precedence over Reordering */
10140             ret.attrs = 4;  /* nGnRE */
10141         } else if (s1lo == 8 || s2lo == 8) {
10142             /* non-Gathering has precedence over Gathering */
10143             ret.attrs = 8;  /* nGRE */
10144         } else {
10145             ret.attrs = 0xc; /* GRE */
10146         }
10147 
10148         /* Any location for which the resultant memory type is any
10149          * type of Device memory is always treated as Outer Shareable.
10150          */
10151         ret.shareability = 2;
10152     } else { /* Normal memory */
10153         /* Outer/inner cacheability combine independently */
10154         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10155                   | combine_cacheattr_nibble(s1lo, s2lo);
10156 
10157         if (ret.attrs == 0x44) {
10158             /* Any location for which the resultant memory type is Normal
10159              * Inner Non-cacheable, Outer Non-cacheable is always treated
10160              * as Outer Shareable.
10161              */
10162             ret.shareability = 2;
10163         }
10164     }
10165 
10166     return ret;
10167 }
10168 
10169 
10170 /* get_phys_addr - get the physical address for this virtual address
10171  *
10172  * Find the physical address corresponding to the given virtual address,
10173  * by doing a translation table walk on MMU based systems or using the
10174  * MPU state on MPU based systems.
10175  *
10176  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10177  * prot and page_size may not be filled in, and the populated fsr value provides
10178  * information on why the translation aborted, in the format of a
10179  * DFSR/IFSR fault register, with the following caveats:
10180  *  * we honour the short vs long DFSR format differences.
10181  *  * the WnR bit is never set (the caller must do this).
10182  *  * for PSMAv5 based systems we don't bother to return a full FSR format
10183  *    value.
10184  *
10185  * @env: CPUARMState
10186  * @address: virtual address to get physical address for
10187  * @access_type: 0 for read, 1 for write, 2 for execute
10188  * @mmu_idx: MMU index indicating required translation regime
10189  * @phys_ptr: set to the physical address corresponding to the virtual address
10190  * @attrs: set to the memory transaction attributes to use
10191  * @prot: set to the permissions for the page containing phys_ptr
10192  * @page_size: set to the size of the page containing phys_ptr
10193  * @fi: set to fault info if the translation fails
10194  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10195  */
10196 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10197                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
10198                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10199                           target_ulong *page_size,
10200                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10201 {
10202     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10203         /* Call ourselves recursively to do the stage 1 and then stage 2
10204          * translations.
10205          */
10206         if (arm_feature(env, ARM_FEATURE_EL2)) {
10207             hwaddr ipa;
10208             int s2_prot;
10209             int ret;
10210             ARMCacheAttrs cacheattrs2 = {};
10211 
10212             ret = get_phys_addr(env, address, access_type,
10213                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10214                                 prot, page_size, fi, cacheattrs);
10215 
10216             /* If S1 fails or S2 is disabled, return early.  */
10217             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10218                 *phys_ptr = ipa;
10219                 return ret;
10220             }
10221 
10222             /* S1 is done. Now do S2 translation.  */
10223             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10224                                      phys_ptr, attrs, &s2_prot,
10225                                      page_size, fi,
10226                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
10227             fi->s2addr = ipa;
10228             /* Combine the S1 and S2 perms.  */
10229             *prot &= s2_prot;
10230 
10231             /* Combine the S1 and S2 cache attributes, if needed */
10232             if (!ret && cacheattrs != NULL) {
10233                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10234             }
10235 
10236             return ret;
10237         } else {
10238             /*
10239              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10240              */
10241             mmu_idx = stage_1_mmu_idx(mmu_idx);
10242         }
10243     }
10244 
10245     /* The page table entries may downgrade secure to non-secure, but
10246      * cannot upgrade an non-secure translation regime's attributes
10247      * to secure.
10248      */
10249     attrs->secure = regime_is_secure(env, mmu_idx);
10250     attrs->user = regime_is_user(env, mmu_idx);
10251 
10252     /* Fast Context Switch Extension. This doesn't exist at all in v8.
10253      * In v7 and earlier it affects all stage 1 translations.
10254      */
10255     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10256         && !arm_feature(env, ARM_FEATURE_V8)) {
10257         if (regime_el(env, mmu_idx) == 3) {
10258             address += env->cp15.fcseidr_s;
10259         } else {
10260             address += env->cp15.fcseidr_ns;
10261         }
10262     }
10263 
10264     if (arm_feature(env, ARM_FEATURE_PMSA)) {
10265         bool ret;
10266         *page_size = TARGET_PAGE_SIZE;
10267 
10268         if (arm_feature(env, ARM_FEATURE_V8)) {
10269             /* PMSAv8 */
10270             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10271                                        phys_ptr, attrs, prot, fi);
10272         } else if (arm_feature(env, ARM_FEATURE_V7)) {
10273             /* PMSAv7 */
10274             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10275                                        phys_ptr, prot, fi);
10276         } else {
10277             /* Pre-v7 MPU */
10278             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10279                                        phys_ptr, prot, fi);
10280         }
10281         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10282                       " mmu_idx %u -> %s (prot %c%c%c)\n",
10283                       access_type == MMU_DATA_LOAD ? "reading" :
10284                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10285                       (uint32_t)address, mmu_idx,
10286                       ret ? "Miss" : "Hit",
10287                       *prot & PAGE_READ ? 'r' : '-',
10288                       *prot & PAGE_WRITE ? 'w' : '-',
10289                       *prot & PAGE_EXEC ? 'x' : '-');
10290 
10291         return ret;
10292     }
10293 
10294     /* Definitely a real MMU, not an MPU */
10295 
10296     if (regime_translation_disabled(env, mmu_idx)) {
10297         /* MMU disabled. */
10298         *phys_ptr = address;
10299         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10300         *page_size = TARGET_PAGE_SIZE;
10301         return 0;
10302     }
10303 
10304     if (regime_using_lpae_format(env, mmu_idx)) {
10305         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10306                                   phys_ptr, attrs, prot, page_size,
10307                                   fi, cacheattrs);
10308     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10309         return get_phys_addr_v6(env, address, access_type, mmu_idx,
10310                                 phys_ptr, attrs, prot, page_size, fi);
10311     } else {
10312         return get_phys_addr_v5(env, address, access_type, mmu_idx,
10313                                     phys_ptr, prot, page_size, fi);
10314     }
10315 }
10316 
10317 /* Walk the page table and (if the mapping exists) add the page
10318  * to the TLB. Return false on success, or true on failure. Populate
10319  * fsr with ARM DFSR/IFSR fault register format value on failure.
10320  */
10321 bool arm_tlb_fill(CPUState *cs, vaddr address,
10322                   MMUAccessType access_type, int mmu_idx,
10323                   ARMMMUFaultInfo *fi)
10324 {
10325     ARMCPU *cpu = ARM_CPU(cs);
10326     CPUARMState *env = &cpu->env;
10327     hwaddr phys_addr;
10328     target_ulong page_size;
10329     int prot;
10330     int ret;
10331     MemTxAttrs attrs = {};
10332 
10333     ret = get_phys_addr(env, address, access_type,
10334                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10335                         &attrs, &prot, &page_size, fi, NULL);
10336     if (!ret) {
10337         /* Map a single [sub]page.  */
10338         phys_addr &= TARGET_PAGE_MASK;
10339         address &= TARGET_PAGE_MASK;
10340         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10341                                 prot, mmu_idx, page_size);
10342         return 0;
10343     }
10344 
10345     return ret;
10346 }
10347 
10348 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10349                                          MemTxAttrs *attrs)
10350 {
10351     ARMCPU *cpu = ARM_CPU(cs);
10352     CPUARMState *env = &cpu->env;
10353     hwaddr phys_addr;
10354     target_ulong page_size;
10355     int prot;
10356     bool ret;
10357     ARMMMUFaultInfo fi = {};
10358     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10359 
10360     *attrs = (MemTxAttrs) {};
10361 
10362     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10363                         attrs, &prot, &page_size, &fi, NULL);
10364 
10365     if (ret) {
10366         return -1;
10367     }
10368     return phys_addr;
10369 }
10370 
10371 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10372 {
10373     uint32_t mask;
10374     unsigned el = arm_current_el(env);
10375 
10376     /* First handle registers which unprivileged can read */
10377 
10378     switch (reg) {
10379     case 0 ... 7: /* xPSR sub-fields */
10380         mask = 0;
10381         if ((reg & 1) && el) {
10382             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10383         }
10384         if (!(reg & 4)) {
10385             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10386         }
10387         /* EPSR reads as zero */
10388         return xpsr_read(env) & mask;
10389         break;
10390     case 20: /* CONTROL */
10391         return env->v7m.control[env->v7m.secure];
10392     case 0x94: /* CONTROL_NS */
10393         /* We have to handle this here because unprivileged Secure code
10394          * can read the NS CONTROL register.
10395          */
10396         if (!env->v7m.secure) {
10397             return 0;
10398         }
10399         return env->v7m.control[M_REG_NS];
10400     }
10401 
10402     if (el == 0) {
10403         return 0; /* unprivileged reads others as zero */
10404     }
10405 
10406     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10407         switch (reg) {
10408         case 0x88: /* MSP_NS */
10409             if (!env->v7m.secure) {
10410                 return 0;
10411             }
10412             return env->v7m.other_ss_msp;
10413         case 0x89: /* PSP_NS */
10414             if (!env->v7m.secure) {
10415                 return 0;
10416             }
10417             return env->v7m.other_ss_psp;
10418         case 0x90: /* PRIMASK_NS */
10419             if (!env->v7m.secure) {
10420                 return 0;
10421             }
10422             return env->v7m.primask[M_REG_NS];
10423         case 0x91: /* BASEPRI_NS */
10424             if (!env->v7m.secure) {
10425                 return 0;
10426             }
10427             return env->v7m.basepri[M_REG_NS];
10428         case 0x93: /* FAULTMASK_NS */
10429             if (!env->v7m.secure) {
10430                 return 0;
10431             }
10432             return env->v7m.faultmask[M_REG_NS];
10433         case 0x98: /* SP_NS */
10434         {
10435             /* This gives the non-secure SP selected based on whether we're
10436              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10437              */
10438             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10439 
10440             if (!env->v7m.secure) {
10441                 return 0;
10442             }
10443             if (!arm_v7m_is_handler_mode(env) && spsel) {
10444                 return env->v7m.other_ss_psp;
10445             } else {
10446                 return env->v7m.other_ss_msp;
10447             }
10448         }
10449         default:
10450             break;
10451         }
10452     }
10453 
10454     switch (reg) {
10455     case 8: /* MSP */
10456         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10457     case 9: /* PSP */
10458         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10459     case 16: /* PRIMASK */
10460         return env->v7m.primask[env->v7m.secure];
10461     case 17: /* BASEPRI */
10462     case 18: /* BASEPRI_MAX */
10463         return env->v7m.basepri[env->v7m.secure];
10464     case 19: /* FAULTMASK */
10465         return env->v7m.faultmask[env->v7m.secure];
10466     default:
10467         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10468                                        " register %d\n", reg);
10469         return 0;
10470     }
10471 }
10472 
10473 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10474 {
10475     /* We're passed bits [11..0] of the instruction; extract
10476      * SYSm and the mask bits.
10477      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10478      * we choose to treat them as if the mask bits were valid.
10479      * NB that the pseudocode 'mask' variable is bits [11..10],
10480      * whereas ours is [11..8].
10481      */
10482     uint32_t mask = extract32(maskreg, 8, 4);
10483     uint32_t reg = extract32(maskreg, 0, 8);
10484 
10485     if (arm_current_el(env) == 0 && reg > 7) {
10486         /* only xPSR sub-fields may be written by unprivileged */
10487         return;
10488     }
10489 
10490     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10491         switch (reg) {
10492         case 0x88: /* MSP_NS */
10493             if (!env->v7m.secure) {
10494                 return;
10495             }
10496             env->v7m.other_ss_msp = val;
10497             return;
10498         case 0x89: /* PSP_NS */
10499             if (!env->v7m.secure) {
10500                 return;
10501             }
10502             env->v7m.other_ss_psp = val;
10503             return;
10504         case 0x90: /* PRIMASK_NS */
10505             if (!env->v7m.secure) {
10506                 return;
10507             }
10508             env->v7m.primask[M_REG_NS] = val & 1;
10509             return;
10510         case 0x91: /* BASEPRI_NS */
10511             if (!env->v7m.secure) {
10512                 return;
10513             }
10514             env->v7m.basepri[M_REG_NS] = val & 0xff;
10515             return;
10516         case 0x93: /* FAULTMASK_NS */
10517             if (!env->v7m.secure) {
10518                 return;
10519             }
10520             env->v7m.faultmask[M_REG_NS] = val & 1;
10521             return;
10522         case 0x98: /* SP_NS */
10523         {
10524             /* This gives the non-secure SP selected based on whether we're
10525              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10526              */
10527             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10528 
10529             if (!env->v7m.secure) {
10530                 return;
10531             }
10532             if (!arm_v7m_is_handler_mode(env) && spsel) {
10533                 env->v7m.other_ss_psp = val;
10534             } else {
10535                 env->v7m.other_ss_msp = val;
10536             }
10537             return;
10538         }
10539         default:
10540             break;
10541         }
10542     }
10543 
10544     switch (reg) {
10545     case 0 ... 7: /* xPSR sub-fields */
10546         /* only APSR is actually writable */
10547         if (!(reg & 4)) {
10548             uint32_t apsrmask = 0;
10549 
10550             if (mask & 8) {
10551                 apsrmask |= XPSR_NZCV | XPSR_Q;
10552             }
10553             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10554                 apsrmask |= XPSR_GE;
10555             }
10556             xpsr_write(env, val, apsrmask);
10557         }
10558         break;
10559     case 8: /* MSP */
10560         if (v7m_using_psp(env)) {
10561             env->v7m.other_sp = val;
10562         } else {
10563             env->regs[13] = val;
10564         }
10565         break;
10566     case 9: /* PSP */
10567         if (v7m_using_psp(env)) {
10568             env->regs[13] = val;
10569         } else {
10570             env->v7m.other_sp = val;
10571         }
10572         break;
10573     case 16: /* PRIMASK */
10574         env->v7m.primask[env->v7m.secure] = val & 1;
10575         break;
10576     case 17: /* BASEPRI */
10577         env->v7m.basepri[env->v7m.secure] = val & 0xff;
10578         break;
10579     case 18: /* BASEPRI_MAX */
10580         val &= 0xff;
10581         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10582                          || env->v7m.basepri[env->v7m.secure] == 0)) {
10583             env->v7m.basepri[env->v7m.secure] = val;
10584         }
10585         break;
10586     case 19: /* FAULTMASK */
10587         env->v7m.faultmask[env->v7m.secure] = val & 1;
10588         break;
10589     case 20: /* CONTROL */
10590         /* Writing to the SPSEL bit only has an effect if we are in
10591          * thread mode; other bits can be updated by any privileged code.
10592          * write_v7m_control_spsel() deals with updating the SPSEL bit in
10593          * env->v7m.control, so we only need update the others.
10594          * For v7M, we must just ignore explicit writes to SPSEL in handler
10595          * mode; for v8M the write is permitted but will have no effect.
10596          */
10597         if (arm_feature(env, ARM_FEATURE_V8) ||
10598             !arm_v7m_is_handler_mode(env)) {
10599             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10600         }
10601         env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10602         env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10603         break;
10604     default:
10605         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10606                                        " register %d\n", reg);
10607         return;
10608     }
10609 }
10610 
10611 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10612 {
10613     /* Implement the TT instruction. op is bits [7:6] of the insn. */
10614     bool forceunpriv = op & 1;
10615     bool alt = op & 2;
10616     V8M_SAttributes sattrs = {};
10617     uint32_t tt_resp;
10618     bool r, rw, nsr, nsrw, mrvalid;
10619     int prot;
10620     ARMMMUFaultInfo fi = {};
10621     MemTxAttrs attrs = {};
10622     hwaddr phys_addr;
10623     ARMMMUIdx mmu_idx;
10624     uint32_t mregion;
10625     bool targetpriv;
10626     bool targetsec = env->v7m.secure;
10627 
10628     /* Work out what the security state and privilege level we're
10629      * interested in is...
10630      */
10631     if (alt) {
10632         targetsec = !targetsec;
10633     }
10634 
10635     if (forceunpriv) {
10636         targetpriv = false;
10637     } else {
10638         targetpriv = arm_v7m_is_handler_mode(env) ||
10639             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10640     }
10641 
10642     /* ...and then figure out which MMU index this is */
10643     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10644 
10645     /* We know that the MPU and SAU don't care about the access type
10646      * for our purposes beyond that we don't want to claim to be
10647      * an insn fetch, so we arbitrarily call this a read.
10648      */
10649 
10650     /* MPU region info only available for privileged or if
10651      * inspecting the other MPU state.
10652      */
10653     if (arm_current_el(env) != 0 || alt) {
10654         /* We can ignore the return value as prot is always set */
10655         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10656                           &phys_addr, &attrs, &prot, &fi, &mregion);
10657         if (mregion == -1) {
10658             mrvalid = false;
10659             mregion = 0;
10660         } else {
10661             mrvalid = true;
10662         }
10663         r = prot & PAGE_READ;
10664         rw = prot & PAGE_WRITE;
10665     } else {
10666         r = false;
10667         rw = false;
10668         mrvalid = false;
10669         mregion = 0;
10670     }
10671 
10672     if (env->v7m.secure) {
10673         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10674         nsr = sattrs.ns && r;
10675         nsrw = sattrs.ns && rw;
10676     } else {
10677         sattrs.ns = true;
10678         nsr = false;
10679         nsrw = false;
10680     }
10681 
10682     tt_resp = (sattrs.iregion << 24) |
10683         (sattrs.irvalid << 23) |
10684         ((!sattrs.ns) << 22) |
10685         (nsrw << 21) |
10686         (nsr << 20) |
10687         (rw << 19) |
10688         (r << 18) |
10689         (sattrs.srvalid << 17) |
10690         (mrvalid << 16) |
10691         (sattrs.sregion << 8) |
10692         mregion;
10693 
10694     return tt_resp;
10695 }
10696 
10697 #endif
10698 
10699 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10700 {
10701     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10702      * Note that we do not implement the (architecturally mandated)
10703      * alignment fault for attempts to use this on Device memory
10704      * (which matches the usual QEMU behaviour of not implementing either
10705      * alignment faults or any memory attribute handling).
10706      */
10707 
10708     ARMCPU *cpu = arm_env_get_cpu(env);
10709     uint64_t blocklen = 4 << cpu->dcz_blocksize;
10710     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10711 
10712 #ifndef CONFIG_USER_ONLY
10713     {
10714         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10715          * the block size so we might have to do more than one TLB lookup.
10716          * We know that in fact for any v8 CPU the page size is at least 4K
10717          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10718          * 1K as an artefact of legacy v5 subpage support being present in the
10719          * same QEMU executable.
10720          */
10721         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10722         void *hostaddr[maxidx];
10723         int try, i;
10724         unsigned mmu_idx = cpu_mmu_index(env, false);
10725         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10726 
10727         for (try = 0; try < 2; try++) {
10728 
10729             for (i = 0; i < maxidx; i++) {
10730                 hostaddr[i] = tlb_vaddr_to_host(env,
10731                                                 vaddr + TARGET_PAGE_SIZE * i,
10732                                                 1, mmu_idx);
10733                 if (!hostaddr[i]) {
10734                     break;
10735                 }
10736             }
10737             if (i == maxidx) {
10738                 /* If it's all in the TLB it's fair game for just writing to;
10739                  * we know we don't need to update dirty status, etc.
10740                  */
10741                 for (i = 0; i < maxidx - 1; i++) {
10742                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10743                 }
10744                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10745                 return;
10746             }
10747             /* OK, try a store and see if we can populate the tlb. This
10748              * might cause an exception if the memory isn't writable,
10749              * in which case we will longjmp out of here. We must for
10750              * this purpose use the actual register value passed to us
10751              * so that we get the fault address right.
10752              */
10753             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10754             /* Now we can populate the other TLB entries, if any */
10755             for (i = 0; i < maxidx; i++) {
10756                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10757                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
10758                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10759                 }
10760             }
10761         }
10762 
10763         /* Slow path (probably attempt to do this to an I/O device or
10764          * similar, or clearing of a block of code we have translations
10765          * cached for). Just do a series of byte writes as the architecture
10766          * demands. It's not worth trying to use a cpu_physical_memory_map(),
10767          * memset(), unmap() sequence here because:
10768          *  + we'd need to account for the blocksize being larger than a page
10769          *  + the direct-RAM access case is almost always going to be dealt
10770          *    with in the fastpath code above, so there's no speed benefit
10771          *  + we would have to deal with the map returning NULL because the
10772          *    bounce buffer was in use
10773          */
10774         for (i = 0; i < blocklen; i++) {
10775             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10776         }
10777     }
10778 #else
10779     memset(g2h(vaddr), 0, blocklen);
10780 #endif
10781 }
10782 
10783 /* Note that signed overflow is undefined in C.  The following routines are
10784    careful to use unsigned types where modulo arithmetic is required.
10785    Failure to do so _will_ break on newer gcc.  */
10786 
10787 /* Signed saturating arithmetic.  */
10788 
10789 /* Perform 16-bit signed saturating addition.  */
10790 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10791 {
10792     uint16_t res;
10793 
10794     res = a + b;
10795     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10796         if (a & 0x8000)
10797             res = 0x8000;
10798         else
10799             res = 0x7fff;
10800     }
10801     return res;
10802 }
10803 
10804 /* Perform 8-bit signed saturating addition.  */
10805 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10806 {
10807     uint8_t res;
10808 
10809     res = a + b;
10810     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10811         if (a & 0x80)
10812             res = 0x80;
10813         else
10814             res = 0x7f;
10815     }
10816     return res;
10817 }
10818 
10819 /* Perform 16-bit signed saturating subtraction.  */
10820 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10821 {
10822     uint16_t res;
10823 
10824     res = a - b;
10825     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10826         if (a & 0x8000)
10827             res = 0x8000;
10828         else
10829             res = 0x7fff;
10830     }
10831     return res;
10832 }
10833 
10834 /* Perform 8-bit signed saturating subtraction.  */
10835 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10836 {
10837     uint8_t res;
10838 
10839     res = a - b;
10840     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10841         if (a & 0x80)
10842             res = 0x80;
10843         else
10844             res = 0x7f;
10845     }
10846     return res;
10847 }
10848 
10849 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10850 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10851 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10852 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10853 #define PFX q
10854 
10855 #include "op_addsub.h"
10856 
10857 /* Unsigned saturating arithmetic.  */
10858 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10859 {
10860     uint16_t res;
10861     res = a + b;
10862     if (res < a)
10863         res = 0xffff;
10864     return res;
10865 }
10866 
10867 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10868 {
10869     if (a > b)
10870         return a - b;
10871     else
10872         return 0;
10873 }
10874 
10875 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10876 {
10877     uint8_t res;
10878     res = a + b;
10879     if (res < a)
10880         res = 0xff;
10881     return res;
10882 }
10883 
10884 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10885 {
10886     if (a > b)
10887         return a - b;
10888     else
10889         return 0;
10890 }
10891 
10892 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10893 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10894 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
10895 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
10896 #define PFX uq
10897 
10898 #include "op_addsub.h"
10899 
10900 /* Signed modulo arithmetic.  */
10901 #define SARITH16(a, b, n, op) do { \
10902     int32_t sum; \
10903     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10904     RESULT(sum, n, 16); \
10905     if (sum >= 0) \
10906         ge |= 3 << (n * 2); \
10907     } while(0)
10908 
10909 #define SARITH8(a, b, n, op) do { \
10910     int32_t sum; \
10911     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10912     RESULT(sum, n, 8); \
10913     if (sum >= 0) \
10914         ge |= 1 << n; \
10915     } while(0)
10916 
10917 
10918 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10919 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10920 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
10921 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
10922 #define PFX s
10923 #define ARITH_GE
10924 
10925 #include "op_addsub.h"
10926 
10927 /* Unsigned modulo arithmetic.  */
10928 #define ADD16(a, b, n) do { \
10929     uint32_t sum; \
10930     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10931     RESULT(sum, n, 16); \
10932     if ((sum >> 16) == 1) \
10933         ge |= 3 << (n * 2); \
10934     } while(0)
10935 
10936 #define ADD8(a, b, n) do { \
10937     uint32_t sum; \
10938     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10939     RESULT(sum, n, 8); \
10940     if ((sum >> 8) == 1) \
10941         ge |= 1 << n; \
10942     } while(0)
10943 
10944 #define SUB16(a, b, n) do { \
10945     uint32_t sum; \
10946     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10947     RESULT(sum, n, 16); \
10948     if ((sum >> 16) == 0) \
10949         ge |= 3 << (n * 2); \
10950     } while(0)
10951 
10952 #define SUB8(a, b, n) do { \
10953     uint32_t sum; \
10954     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10955     RESULT(sum, n, 8); \
10956     if ((sum >> 8) == 0) \
10957         ge |= 1 << n; \
10958     } while(0)
10959 
10960 #define PFX u
10961 #define ARITH_GE
10962 
10963 #include "op_addsub.h"
10964 
10965 /* Halved signed arithmetic.  */
10966 #define ADD16(a, b, n) \
10967   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10968 #define SUB16(a, b, n) \
10969   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10970 #define ADD8(a, b, n) \
10971   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10972 #define SUB8(a, b, n) \
10973   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10974 #define PFX sh
10975 
10976 #include "op_addsub.h"
10977 
10978 /* Halved unsigned arithmetic.  */
10979 #define ADD16(a, b, n) \
10980   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10981 #define SUB16(a, b, n) \
10982   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10983 #define ADD8(a, b, n) \
10984   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10985 #define SUB8(a, b, n) \
10986   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10987 #define PFX uh
10988 
10989 #include "op_addsub.h"
10990 
10991 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10992 {
10993     if (a > b)
10994         return a - b;
10995     else
10996         return b - a;
10997 }
10998 
10999 /* Unsigned sum of absolute byte differences.  */
11000 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11001 {
11002     uint32_t sum;
11003     sum = do_usad(a, b);
11004     sum += do_usad(a >> 8, b >> 8);
11005     sum += do_usad(a >> 16, b >>16);
11006     sum += do_usad(a >> 24, b >> 24);
11007     return sum;
11008 }
11009 
11010 /* For ARMv6 SEL instruction.  */
11011 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11012 {
11013     uint32_t mask;
11014 
11015     mask = 0;
11016     if (flags & 1)
11017         mask |= 0xff;
11018     if (flags & 2)
11019         mask |= 0xff00;
11020     if (flags & 4)
11021         mask |= 0xff0000;
11022     if (flags & 8)
11023         mask |= 0xff000000;
11024     return (a & mask) | (b & ~mask);
11025 }
11026 
11027 /* VFP support.  We follow the convention used for VFP instructions:
11028    Single precision routines have a "s" suffix, double precision a
11029    "d" suffix.  */
11030 
11031 /* Convert host exception flags to vfp form.  */
11032 static inline int vfp_exceptbits_from_host(int host_bits)
11033 {
11034     int target_bits = 0;
11035 
11036     if (host_bits & float_flag_invalid)
11037         target_bits |= 1;
11038     if (host_bits & float_flag_divbyzero)
11039         target_bits |= 2;
11040     if (host_bits & float_flag_overflow)
11041         target_bits |= 4;
11042     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11043         target_bits |= 8;
11044     if (host_bits & float_flag_inexact)
11045         target_bits |= 0x10;
11046     if (host_bits & float_flag_input_denormal)
11047         target_bits |= 0x80;
11048     return target_bits;
11049 }
11050 
11051 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11052 {
11053     int i;
11054     uint32_t fpscr;
11055 
11056     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11057             | (env->vfp.vec_len << 16)
11058             | (env->vfp.vec_stride << 20);
11059     i = get_float_exception_flags(&env->vfp.fp_status);
11060     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11061     fpscr |= vfp_exceptbits_from_host(i);
11062     return fpscr;
11063 }
11064 
11065 uint32_t vfp_get_fpscr(CPUARMState *env)
11066 {
11067     return HELPER(vfp_get_fpscr)(env);
11068 }
11069 
11070 /* Convert vfp exception flags to target form.  */
11071 static inline int vfp_exceptbits_to_host(int target_bits)
11072 {
11073     int host_bits = 0;
11074 
11075     if (target_bits & 1)
11076         host_bits |= float_flag_invalid;
11077     if (target_bits & 2)
11078         host_bits |= float_flag_divbyzero;
11079     if (target_bits & 4)
11080         host_bits |= float_flag_overflow;
11081     if (target_bits & 8)
11082         host_bits |= float_flag_underflow;
11083     if (target_bits & 0x10)
11084         host_bits |= float_flag_inexact;
11085     if (target_bits & 0x80)
11086         host_bits |= float_flag_input_denormal;
11087     return host_bits;
11088 }
11089 
11090 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11091 {
11092     int i;
11093     uint32_t changed;
11094 
11095     changed = env->vfp.xregs[ARM_VFP_FPSCR];
11096     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11097     env->vfp.vec_len = (val >> 16) & 7;
11098     env->vfp.vec_stride = (val >> 20) & 3;
11099 
11100     changed ^= val;
11101     if (changed & (3 << 22)) {
11102         i = (val >> 22) & 3;
11103         switch (i) {
11104         case FPROUNDING_TIEEVEN:
11105             i = float_round_nearest_even;
11106             break;
11107         case FPROUNDING_POSINF:
11108             i = float_round_up;
11109             break;
11110         case FPROUNDING_NEGINF:
11111             i = float_round_down;
11112             break;
11113         case FPROUNDING_ZERO:
11114             i = float_round_to_zero;
11115             break;
11116         }
11117         set_float_rounding_mode(i, &env->vfp.fp_status);
11118     }
11119     if (changed & (1 << 24)) {
11120         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
11121         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
11122     }
11123     if (changed & (1 << 25))
11124         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
11125 
11126     i = vfp_exceptbits_to_host(val);
11127     set_float_exception_flags(i, &env->vfp.fp_status);
11128     set_float_exception_flags(0, &env->vfp.standard_fp_status);
11129 }
11130 
11131 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11132 {
11133     HELPER(vfp_set_fpscr)(env, val);
11134 }
11135 
11136 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11137 
11138 #define VFP_BINOP(name) \
11139 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11140 { \
11141     float_status *fpst = fpstp; \
11142     return float32_ ## name(a, b, fpst); \
11143 } \
11144 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11145 { \
11146     float_status *fpst = fpstp; \
11147     return float64_ ## name(a, b, fpst); \
11148 }
11149 VFP_BINOP(add)
11150 VFP_BINOP(sub)
11151 VFP_BINOP(mul)
11152 VFP_BINOP(div)
11153 VFP_BINOP(min)
11154 VFP_BINOP(max)
11155 VFP_BINOP(minnum)
11156 VFP_BINOP(maxnum)
11157 #undef VFP_BINOP
11158 
11159 float32 VFP_HELPER(neg, s)(float32 a)
11160 {
11161     return float32_chs(a);
11162 }
11163 
11164 float64 VFP_HELPER(neg, d)(float64 a)
11165 {
11166     return float64_chs(a);
11167 }
11168 
11169 float32 VFP_HELPER(abs, s)(float32 a)
11170 {
11171     return float32_abs(a);
11172 }
11173 
11174 float64 VFP_HELPER(abs, d)(float64 a)
11175 {
11176     return float64_abs(a);
11177 }
11178 
11179 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11180 {
11181     return float32_sqrt(a, &env->vfp.fp_status);
11182 }
11183 
11184 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11185 {
11186     return float64_sqrt(a, &env->vfp.fp_status);
11187 }
11188 
11189 /* XXX: check quiet/signaling case */
11190 #define DO_VFP_cmp(p, type) \
11191 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
11192 { \
11193     uint32_t flags; \
11194     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11195     case 0: flags = 0x6; break; \
11196     case -1: flags = 0x8; break; \
11197     case 1: flags = 0x2; break; \
11198     default: case 2: flags = 0x3; break; \
11199     } \
11200     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11201         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11202 } \
11203 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11204 { \
11205     uint32_t flags; \
11206     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11207     case 0: flags = 0x6; break; \
11208     case -1: flags = 0x8; break; \
11209     case 1: flags = 0x2; break; \
11210     default: case 2: flags = 0x3; break; \
11211     } \
11212     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11213         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11214 }
11215 DO_VFP_cmp(s, float32)
11216 DO_VFP_cmp(d, float64)
11217 #undef DO_VFP_cmp
11218 
11219 /* Integer to float and float to integer conversions */
11220 
11221 #define CONV_ITOF(name, fsz, sign) \
11222     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
11223 { \
11224     float_status *fpst = fpstp; \
11225     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
11226 }
11227 
11228 #define CONV_FTOI(name, fsz, sign, round) \
11229 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
11230 { \
11231     float_status *fpst = fpstp; \
11232     if (float##fsz##_is_any_nan(x)) { \
11233         float_raise(float_flag_invalid, fpst); \
11234         return 0; \
11235     } \
11236     return float##fsz##_to_##sign##int32##round(x, fpst); \
11237 }
11238 
11239 #define FLOAT_CONVS(name, p, fsz, sign) \
11240 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
11241 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
11242 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
11243 
11244 FLOAT_CONVS(si, s, 32, )
11245 FLOAT_CONVS(si, d, 64, )
11246 FLOAT_CONVS(ui, s, 32, u)
11247 FLOAT_CONVS(ui, d, 64, u)
11248 
11249 #undef CONV_ITOF
11250 #undef CONV_FTOI
11251 #undef FLOAT_CONVS
11252 
11253 /* floating point conversion */
11254 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11255 {
11256     float64 r = float32_to_float64(x, &env->vfp.fp_status);
11257     /* ARM requires that S<->D conversion of any kind of NaN generates
11258      * a quiet NaN by forcing the most significant frac bit to 1.
11259      */
11260     return float64_maybe_silence_nan(r, &env->vfp.fp_status);
11261 }
11262 
11263 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11264 {
11265     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
11266     /* ARM requires that S<->D conversion of any kind of NaN generates
11267      * a quiet NaN by forcing the most significant frac bit to 1.
11268      */
11269     return float32_maybe_silence_nan(r, &env->vfp.fp_status);
11270 }
11271 
11272 /* VFP3 fixed point conversion.  */
11273 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11274 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
11275                                      void *fpstp) \
11276 { \
11277     float_status *fpst = fpstp; \
11278     float##fsz tmp; \
11279     tmp = itype##_to_##float##fsz(x, fpst); \
11280     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
11281 }
11282 
11283 /* Notice that we want only input-denormal exception flags from the
11284  * scalbn operation: the other possible flags (overflow+inexact if
11285  * we overflow to infinity, output-denormal) aren't correct for the
11286  * complete scale-and-convert operation.
11287  */
11288 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
11289 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
11290                                              uint32_t shift, \
11291                                              void *fpstp) \
11292 { \
11293     float_status *fpst = fpstp; \
11294     int old_exc_flags = get_float_exception_flags(fpst); \
11295     float##fsz tmp; \
11296     if (float##fsz##_is_any_nan(x)) { \
11297         float_raise(float_flag_invalid, fpst); \
11298         return 0; \
11299     } \
11300     tmp = float##fsz##_scalbn(x, shift, fpst); \
11301     old_exc_flags |= get_float_exception_flags(fpst) \
11302         & float_flag_input_denormal; \
11303     set_float_exception_flags(old_exc_flags, fpst); \
11304     return float##fsz##_to_##itype##round(tmp, fpst); \
11305 }
11306 
11307 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
11308 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11309 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
11310 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11311 
11312 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
11313 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11314 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11315 
11316 VFP_CONV_FIX(sh, d, 64, 64, int16)
11317 VFP_CONV_FIX(sl, d, 64, 64, int32)
11318 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11319 VFP_CONV_FIX(uh, d, 64, 64, uint16)
11320 VFP_CONV_FIX(ul, d, 64, 64, uint32)
11321 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11322 VFP_CONV_FIX(sh, s, 32, 32, int16)
11323 VFP_CONV_FIX(sl, s, 32, 32, int32)
11324 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11325 VFP_CONV_FIX(uh, s, 32, 32, uint16)
11326 VFP_CONV_FIX(ul, s, 32, 32, uint32)
11327 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11328 #undef VFP_CONV_FIX
11329 #undef VFP_CONV_FIX_FLOAT
11330 #undef VFP_CONV_FLOAT_FIX_ROUND
11331 
11332 /* Set the current fp rounding mode and return the old one.
11333  * The argument is a softfloat float_round_ value.
11334  */
11335 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
11336 {
11337     float_status *fp_status = &env->vfp.fp_status;
11338 
11339     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11340     set_float_rounding_mode(rmode, fp_status);
11341 
11342     return prev_rmode;
11343 }
11344 
11345 /* Set the current fp rounding mode in the standard fp status and return
11346  * the old one. This is for NEON instructions that need to change the
11347  * rounding mode but wish to use the standard FPSCR values for everything
11348  * else. Always set the rounding mode back to the correct value after
11349  * modifying it.
11350  * The argument is a softfloat float_round_ value.
11351  */
11352 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
11353 {
11354     float_status *fp_status = &env->vfp.standard_fp_status;
11355 
11356     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11357     set_float_rounding_mode(rmode, fp_status);
11358 
11359     return prev_rmode;
11360 }
11361 
11362 /* Half precision conversions.  */
11363 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
11364 {
11365     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11366     float32 r = float16_to_float32(make_float16(a), ieee, s);
11367     if (ieee) {
11368         return float32_maybe_silence_nan(r, s);
11369     }
11370     return r;
11371 }
11372 
11373 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
11374 {
11375     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11376     float16 r = float32_to_float16(a, ieee, s);
11377     if (ieee) {
11378         r = float16_maybe_silence_nan(r, s);
11379     }
11380     return float16_val(r);
11381 }
11382 
11383 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
11384 {
11385     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
11386 }
11387 
11388 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
11389 {
11390     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
11391 }
11392 
11393 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
11394 {
11395     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
11396 }
11397 
11398 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
11399 {
11400     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
11401 }
11402 
11403 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
11404 {
11405     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11406     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
11407     if (ieee) {
11408         return float64_maybe_silence_nan(r, &env->vfp.fp_status);
11409     }
11410     return r;
11411 }
11412 
11413 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
11414 {
11415     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11416     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
11417     if (ieee) {
11418         r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
11419     }
11420     return float16_val(r);
11421 }
11422 
11423 #define float32_two make_float32(0x40000000)
11424 #define float32_three make_float32(0x40400000)
11425 #define float32_one_point_five make_float32(0x3fc00000)
11426 
11427 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11428 {
11429     float_status *s = &env->vfp.standard_fp_status;
11430     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11431         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11432         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11433             float_raise(float_flag_input_denormal, s);
11434         }
11435         return float32_two;
11436     }
11437     return float32_sub(float32_two, float32_mul(a, b, s), s);
11438 }
11439 
11440 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11441 {
11442     float_status *s = &env->vfp.standard_fp_status;
11443     float32 product;
11444     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11445         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11446         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11447             float_raise(float_flag_input_denormal, s);
11448         }
11449         return float32_one_point_five;
11450     }
11451     product = float32_mul(a, b, s);
11452     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11453 }
11454 
11455 /* NEON helpers.  */
11456 
11457 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11458  * int->float conversions at run-time.  */
11459 #define float64_256 make_float64(0x4070000000000000LL)
11460 #define float64_512 make_float64(0x4080000000000000LL)
11461 #define float32_maxnorm make_float32(0x7f7fffff)
11462 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11463 
11464 /* Reciprocal functions
11465  *
11466  * The algorithm that must be used to calculate the estimate
11467  * is specified by the ARM ARM, see FPRecipEstimate()
11468  */
11469 
11470 static float64 recip_estimate(float64 a, float_status *real_fp_status)
11471 {
11472     /* These calculations mustn't set any fp exception flags,
11473      * so we use a local copy of the fp_status.
11474      */
11475     float_status dummy_status = *real_fp_status;
11476     float_status *s = &dummy_status;
11477     /* q = (int)(a * 512.0) */
11478     float64 q = float64_mul(float64_512, a, s);
11479     int64_t q_int = float64_to_int64_round_to_zero(q, s);
11480 
11481     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
11482     q = int64_to_float64(q_int, s);
11483     q = float64_add(q, float64_half, s);
11484     q = float64_div(q, float64_512, s);
11485     q = float64_div(float64_one, q, s);
11486 
11487     /* s = (int)(256.0 * r + 0.5) */
11488     q = float64_mul(q, float64_256, s);
11489     q = float64_add(q, float64_half, s);
11490     q_int = float64_to_int64_round_to_zero(q, s);
11491 
11492     /* return (double)s / 256.0 */
11493     return float64_div(int64_to_float64(q_int, s), float64_256, s);
11494 }
11495 
11496 /* Common wrapper to call recip_estimate */
11497 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
11498 {
11499     uint64_t val64 = float64_val(num);
11500     uint64_t frac = extract64(val64, 0, 52);
11501     int64_t exp = extract64(val64, 52, 11);
11502     uint64_t sbit;
11503     float64 scaled, estimate;
11504 
11505     /* Generate the scaled number for the estimate function */
11506     if (exp == 0) {
11507         if (extract64(frac, 51, 1) == 0) {
11508             exp = -1;
11509             frac = extract64(frac, 0, 50) << 2;
11510         } else {
11511             frac = extract64(frac, 0, 51) << 1;
11512         }
11513     }
11514 
11515     /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
11516     scaled = make_float64((0x3feULL << 52)
11517                           | extract64(frac, 44, 8) << 44);
11518 
11519     estimate = recip_estimate(scaled, fpst);
11520 
11521     /* Build new result */
11522     val64 = float64_val(estimate);
11523     sbit = 0x8000000000000000ULL & val64;
11524     exp = off - exp;
11525     frac = extract64(val64, 0, 52);
11526 
11527     if (exp == 0) {
11528         frac = 1ULL << 51 | extract64(frac, 1, 51);
11529     } else if (exp == -1) {
11530         frac = 1ULL << 50 | extract64(frac, 2, 50);
11531         exp = 0;
11532     }
11533 
11534     return make_float64(sbit | (exp << 52) | frac);
11535 }
11536 
11537 static bool round_to_inf(float_status *fpst, bool sign_bit)
11538 {
11539     switch (fpst->float_rounding_mode) {
11540     case float_round_nearest_even: /* Round to Nearest */
11541         return true;
11542     case float_round_up: /* Round to +Inf */
11543         return !sign_bit;
11544     case float_round_down: /* Round to -Inf */
11545         return sign_bit;
11546     case float_round_to_zero: /* Round to Zero */
11547         return false;
11548     }
11549 
11550     g_assert_not_reached();
11551 }
11552 
11553 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11554 {
11555     float_status *fpst = fpstp;
11556     float32 f32 = float32_squash_input_denormal(input, fpst);
11557     uint32_t f32_val = float32_val(f32);
11558     uint32_t f32_sbit = 0x80000000ULL & f32_val;
11559     int32_t f32_exp = extract32(f32_val, 23, 8);
11560     uint32_t f32_frac = extract32(f32_val, 0, 23);
11561     float64 f64, r64;
11562     uint64_t r64_val;
11563     int64_t r64_exp;
11564     uint64_t r64_frac;
11565 
11566     if (float32_is_any_nan(f32)) {
11567         float32 nan = f32;
11568         if (float32_is_signaling_nan(f32, fpst)) {
11569             float_raise(float_flag_invalid, fpst);
11570             nan = float32_maybe_silence_nan(f32, fpst);
11571         }
11572         if (fpst->default_nan_mode) {
11573             nan =  float32_default_nan(fpst);
11574         }
11575         return nan;
11576     } else if (float32_is_infinity(f32)) {
11577         return float32_set_sign(float32_zero, float32_is_neg(f32));
11578     } else if (float32_is_zero(f32)) {
11579         float_raise(float_flag_divbyzero, fpst);
11580         return float32_set_sign(float32_infinity, float32_is_neg(f32));
11581     } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
11582         /* Abs(value) < 2.0^-128 */
11583         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11584         if (round_to_inf(fpst, f32_sbit)) {
11585             return float32_set_sign(float32_infinity, float32_is_neg(f32));
11586         } else {
11587             return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
11588         }
11589     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11590         float_raise(float_flag_underflow, fpst);
11591         return float32_set_sign(float32_zero, float32_is_neg(f32));
11592     }
11593 
11594 
11595     f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
11596     r64 = call_recip_estimate(f64, 253, fpst);
11597     r64_val = float64_val(r64);
11598     r64_exp = extract64(r64_val, 52, 11);
11599     r64_frac = extract64(r64_val, 0, 52);
11600 
11601     /* result = sign : result_exp<7:0> : fraction<51:29>; */
11602     return make_float32(f32_sbit |
11603                         (r64_exp & 0xff) << 23 |
11604                         extract64(r64_frac, 29, 24));
11605 }
11606 
11607 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11608 {
11609     float_status *fpst = fpstp;
11610     float64 f64 = float64_squash_input_denormal(input, fpst);
11611     uint64_t f64_val = float64_val(f64);
11612     uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
11613     int64_t f64_exp = extract64(f64_val, 52, 11);
11614     float64 r64;
11615     uint64_t r64_val;
11616     int64_t r64_exp;
11617     uint64_t r64_frac;
11618 
11619     /* Deal with any special cases */
11620     if (float64_is_any_nan(f64)) {
11621         float64 nan = f64;
11622         if (float64_is_signaling_nan(f64, fpst)) {
11623             float_raise(float_flag_invalid, fpst);
11624             nan = float64_maybe_silence_nan(f64, fpst);
11625         }
11626         if (fpst->default_nan_mode) {
11627             nan =  float64_default_nan(fpst);
11628         }
11629         return nan;
11630     } else if (float64_is_infinity(f64)) {
11631         return float64_set_sign(float64_zero, float64_is_neg(f64));
11632     } else if (float64_is_zero(f64)) {
11633         float_raise(float_flag_divbyzero, fpst);
11634         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11635     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11636         /* Abs(value) < 2.0^-1024 */
11637         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11638         if (round_to_inf(fpst, f64_sbit)) {
11639             return float64_set_sign(float64_infinity, float64_is_neg(f64));
11640         } else {
11641             return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
11642         }
11643     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11644         float_raise(float_flag_underflow, fpst);
11645         return float64_set_sign(float64_zero, float64_is_neg(f64));
11646     }
11647 
11648     r64 = call_recip_estimate(f64, 2045, fpst);
11649     r64_val = float64_val(r64);
11650     r64_exp = extract64(r64_val, 52, 11);
11651     r64_frac = extract64(r64_val, 0, 52);
11652 
11653     /* result = sign : result_exp<10:0> : fraction<51:0> */
11654     return make_float64(f64_sbit |
11655                         ((r64_exp & 0x7ff) << 52) |
11656                         r64_frac);
11657 }
11658 
11659 /* The algorithm that must be used to calculate the estimate
11660  * is specified by the ARM ARM.
11661  */
11662 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
11663 {
11664     /* These calculations mustn't set any fp exception flags,
11665      * so we use a local copy of the fp_status.
11666      */
11667     float_status dummy_status = *real_fp_status;
11668     float_status *s = &dummy_status;
11669     float64 q;
11670     int64_t q_int;
11671 
11672     if (float64_lt(a, float64_half, s)) {
11673         /* range 0.25 <= a < 0.5 */
11674 
11675         /* a in units of 1/512 rounded down */
11676         /* q0 = (int)(a * 512.0);  */
11677         q = float64_mul(float64_512, a, s);
11678         q_int = float64_to_int64_round_to_zero(q, s);
11679 
11680         /* reciprocal root r */
11681         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
11682         q = int64_to_float64(q_int, s);
11683         q = float64_add(q, float64_half, s);
11684         q = float64_div(q, float64_512, s);
11685         q = float64_sqrt(q, s);
11686         q = float64_div(float64_one, q, s);
11687     } else {
11688         /* range 0.5 <= a < 1.0 */
11689 
11690         /* a in units of 1/256 rounded down */
11691         /* q1 = (int)(a * 256.0); */
11692         q = float64_mul(float64_256, a, s);
11693         int64_t q_int = float64_to_int64_round_to_zero(q, s);
11694 
11695         /* reciprocal root r */
11696         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
11697         q = int64_to_float64(q_int, s);
11698         q = float64_add(q, float64_half, s);
11699         q = float64_div(q, float64_256, s);
11700         q = float64_sqrt(q, s);
11701         q = float64_div(float64_one, q, s);
11702     }
11703     /* r in units of 1/256 rounded to nearest */
11704     /* s = (int)(256.0 * r + 0.5); */
11705 
11706     q = float64_mul(q, float64_256,s );
11707     q = float64_add(q, float64_half, s);
11708     q_int = float64_to_int64_round_to_zero(q, s);
11709 
11710     /* return (double)s / 256.0;*/
11711     return float64_div(int64_to_float64(q_int, s), float64_256, s);
11712 }
11713 
11714 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
11715 {
11716     float_status *s = fpstp;
11717     float32 f32 = float32_squash_input_denormal(input, s);
11718     uint32_t val = float32_val(f32);
11719     uint32_t f32_sbit = 0x80000000 & val;
11720     int32_t f32_exp = extract32(val, 23, 8);
11721     uint32_t f32_frac = extract32(val, 0, 23);
11722     uint64_t f64_frac;
11723     uint64_t val64;
11724     int result_exp;
11725     float64 f64;
11726 
11727     if (float32_is_any_nan(f32)) {
11728         float32 nan = f32;
11729         if (float32_is_signaling_nan(f32, s)) {
11730             float_raise(float_flag_invalid, s);
11731             nan = float32_maybe_silence_nan(f32, s);
11732         }
11733         if (s->default_nan_mode) {
11734             nan =  float32_default_nan(s);
11735         }
11736         return nan;
11737     } else if (float32_is_zero(f32)) {
11738         float_raise(float_flag_divbyzero, s);
11739         return float32_set_sign(float32_infinity, float32_is_neg(f32));
11740     } else if (float32_is_neg(f32)) {
11741         float_raise(float_flag_invalid, s);
11742         return float32_default_nan(s);
11743     } else if (float32_is_infinity(f32)) {
11744         return float32_zero;
11745     }
11746 
11747     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11748      * preserving the parity of the exponent.  */
11749 
11750     f64_frac = ((uint64_t) f32_frac) << 29;
11751     if (f32_exp == 0) {
11752         while (extract64(f64_frac, 51, 1) == 0) {
11753             f64_frac = f64_frac << 1;
11754             f32_exp = f32_exp-1;
11755         }
11756         f64_frac = extract64(f64_frac, 0, 51) << 1;
11757     }
11758 
11759     if (extract64(f32_exp, 0, 1) == 0) {
11760         f64 = make_float64(((uint64_t) f32_sbit) << 32
11761                            | (0x3feULL << 52)
11762                            | f64_frac);
11763     } else {
11764         f64 = make_float64(((uint64_t) f32_sbit) << 32
11765                            | (0x3fdULL << 52)
11766                            | f64_frac);
11767     }
11768 
11769     result_exp = (380 - f32_exp) / 2;
11770 
11771     f64 = recip_sqrt_estimate(f64, s);
11772 
11773     val64 = float64_val(f64);
11774 
11775     val = ((result_exp & 0xff) << 23)
11776         | ((val64 >> 29)  & 0x7fffff);
11777     return make_float32(val);
11778 }
11779 
11780 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
11781 {
11782     float_status *s = fpstp;
11783     float64 f64 = float64_squash_input_denormal(input, s);
11784     uint64_t val = float64_val(f64);
11785     uint64_t f64_sbit = 0x8000000000000000ULL & val;
11786     int64_t f64_exp = extract64(val, 52, 11);
11787     uint64_t f64_frac = extract64(val, 0, 52);
11788     int64_t result_exp;
11789     uint64_t result_frac;
11790 
11791     if (float64_is_any_nan(f64)) {
11792         float64 nan = f64;
11793         if (float64_is_signaling_nan(f64, s)) {
11794             float_raise(float_flag_invalid, s);
11795             nan = float64_maybe_silence_nan(f64, s);
11796         }
11797         if (s->default_nan_mode) {
11798             nan =  float64_default_nan(s);
11799         }
11800         return nan;
11801     } else if (float64_is_zero(f64)) {
11802         float_raise(float_flag_divbyzero, s);
11803         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11804     } else if (float64_is_neg(f64)) {
11805         float_raise(float_flag_invalid, s);
11806         return float64_default_nan(s);
11807     } else if (float64_is_infinity(f64)) {
11808         return float64_zero;
11809     }
11810 
11811     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11812      * preserving the parity of the exponent.  */
11813 
11814     if (f64_exp == 0) {
11815         while (extract64(f64_frac, 51, 1) == 0) {
11816             f64_frac = f64_frac << 1;
11817             f64_exp = f64_exp - 1;
11818         }
11819         f64_frac = extract64(f64_frac, 0, 51) << 1;
11820     }
11821 
11822     if (extract64(f64_exp, 0, 1) == 0) {
11823         f64 = make_float64(f64_sbit
11824                            | (0x3feULL << 52)
11825                            | f64_frac);
11826     } else {
11827         f64 = make_float64(f64_sbit
11828                            | (0x3fdULL << 52)
11829                            | f64_frac);
11830     }
11831 
11832     result_exp = (3068 - f64_exp) / 2;
11833 
11834     f64 = recip_sqrt_estimate(f64, s);
11835 
11836     result_frac = extract64(float64_val(f64), 0, 52);
11837 
11838     return make_float64(f64_sbit |
11839                         ((result_exp & 0x7ff) << 52) |
11840                         result_frac);
11841 }
11842 
11843 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
11844 {
11845     float_status *s = fpstp;
11846     float64 f64;
11847 
11848     if ((a & 0x80000000) == 0) {
11849         return 0xffffffff;
11850     }
11851 
11852     f64 = make_float64((0x3feULL << 52)
11853                        | ((int64_t)(a & 0x7fffffff) << 21));
11854 
11855     f64 = recip_estimate(f64, s);
11856 
11857     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11858 }
11859 
11860 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
11861 {
11862     float_status *fpst = fpstp;
11863     float64 f64;
11864 
11865     if ((a & 0xc0000000) == 0) {
11866         return 0xffffffff;
11867     }
11868 
11869     if (a & 0x80000000) {
11870         f64 = make_float64((0x3feULL << 52)
11871                            | ((uint64_t)(a & 0x7fffffff) << 21));
11872     } else { /* bits 31-30 == '01' */
11873         f64 = make_float64((0x3fdULL << 52)
11874                            | ((uint64_t)(a & 0x3fffffff) << 22));
11875     }
11876 
11877     f64 = recip_sqrt_estimate(f64, fpst);
11878 
11879     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11880 }
11881 
11882 /* VFPv4 fused multiply-accumulate */
11883 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
11884 {
11885     float_status *fpst = fpstp;
11886     return float32_muladd(a, b, c, 0, fpst);
11887 }
11888 
11889 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
11890 {
11891     float_status *fpst = fpstp;
11892     return float64_muladd(a, b, c, 0, fpst);
11893 }
11894 
11895 /* ARMv8 round to integral */
11896 float32 HELPER(rints_exact)(float32 x, void *fp_status)
11897 {
11898     return float32_round_to_int(x, fp_status);
11899 }
11900 
11901 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
11902 {
11903     return float64_round_to_int(x, fp_status);
11904 }
11905 
11906 float32 HELPER(rints)(float32 x, void *fp_status)
11907 {
11908     int old_flags = get_float_exception_flags(fp_status), new_flags;
11909     float32 ret;
11910 
11911     ret = float32_round_to_int(x, fp_status);
11912 
11913     /* Suppress any inexact exceptions the conversion produced */
11914     if (!(old_flags & float_flag_inexact)) {
11915         new_flags = get_float_exception_flags(fp_status);
11916         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11917     }
11918 
11919     return ret;
11920 }
11921 
11922 float64 HELPER(rintd)(float64 x, void *fp_status)
11923 {
11924     int old_flags = get_float_exception_flags(fp_status), new_flags;
11925     float64 ret;
11926 
11927     ret = float64_round_to_int(x, fp_status);
11928 
11929     new_flags = get_float_exception_flags(fp_status);
11930 
11931     /* Suppress any inexact exceptions the conversion produced */
11932     if (!(old_flags & float_flag_inexact)) {
11933         new_flags = get_float_exception_flags(fp_status);
11934         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11935     }
11936 
11937     return ret;
11938 }
11939 
11940 /* Convert ARM rounding mode to softfloat */
11941 int arm_rmode_to_sf(int rmode)
11942 {
11943     switch (rmode) {
11944     case FPROUNDING_TIEAWAY:
11945         rmode = float_round_ties_away;
11946         break;
11947     case FPROUNDING_ODD:
11948         /* FIXME: add support for TIEAWAY and ODD */
11949         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
11950                       rmode);
11951     case FPROUNDING_TIEEVEN:
11952     default:
11953         rmode = float_round_nearest_even;
11954         break;
11955     case FPROUNDING_POSINF:
11956         rmode = float_round_up;
11957         break;
11958     case FPROUNDING_NEGINF:
11959         rmode = float_round_down;
11960         break;
11961     case FPROUNDING_ZERO:
11962         rmode = float_round_to_zero;
11963         break;
11964     }
11965     return rmode;
11966 }
11967 
11968 /* CRC helpers.
11969  * The upper bytes of val (above the number specified by 'bytes') must have
11970  * been zeroed out by the caller.
11971  */
11972 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11973 {
11974     uint8_t buf[4];
11975 
11976     stl_le_p(buf, val);
11977 
11978     /* zlib crc32 converts the accumulator and output to one's complement.  */
11979     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11980 }
11981 
11982 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11983 {
11984     uint8_t buf[4];
11985 
11986     stl_le_p(buf, val);
11987 
11988     /* Linux crc32c converts the output to one's complement.  */
11989     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11990 }
11991 
11992 /* Return the exception level to which FP-disabled exceptions should
11993  * be taken, or 0 if FP is enabled.
11994  */
11995 static inline int fp_exception_el(CPUARMState *env)
11996 {
11997 #ifndef CONFIG_USER_ONLY
11998     int fpen;
11999     int cur_el = arm_current_el(env);
12000 
12001     /* CPACR and the CPTR registers don't exist before v6, so FP is
12002      * always accessible
12003      */
12004     if (!arm_feature(env, ARM_FEATURE_V6)) {
12005         return 0;
12006     }
12007 
12008     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12009      * 0, 2 : trap EL0 and EL1/PL1 accesses
12010      * 1    : trap only EL0 accesses
12011      * 3    : trap no accesses
12012      */
12013     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12014     switch (fpen) {
12015     case 0:
12016     case 2:
12017         if (cur_el == 0 || cur_el == 1) {
12018             /* Trap to PL1, which might be EL1 or EL3 */
12019             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12020                 return 3;
12021             }
12022             return 1;
12023         }
12024         if (cur_el == 3 && !is_a64(env)) {
12025             /* Secure PL1 running at EL3 */
12026             return 3;
12027         }
12028         break;
12029     case 1:
12030         if (cur_el == 0) {
12031             return 1;
12032         }
12033         break;
12034     case 3:
12035         break;
12036     }
12037 
12038     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12039      * check because zero bits in the registers mean "don't trap".
12040      */
12041 
12042     /* CPTR_EL2 : present in v7VE or v8 */
12043     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12044         && !arm_is_secure_below_el3(env)) {
12045         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12046         return 2;
12047     }
12048 
12049     /* CPTR_EL3 : present in v8 */
12050     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12051         /* Trap all FP ops to EL3 */
12052         return 3;
12053     }
12054 #endif
12055     return 0;
12056 }
12057 
12058 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12059                           target_ulong *cs_base, uint32_t *pflags)
12060 {
12061     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12062     int fp_el = fp_exception_el(env);
12063     uint32_t flags;
12064 
12065     if (is_a64(env)) {
12066         int sve_el = sve_exception_el(env);
12067         uint32_t zcr_len;
12068 
12069         *pc = env->pc;
12070         flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12071         /* Get control bits for tagged addresses */
12072         flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12073         flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12074         flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12075 
12076         /* If SVE is disabled, but FP is enabled,
12077            then the effective len is 0.  */
12078         if (sve_el != 0 && fp_el == 0) {
12079             zcr_len = 0;
12080         } else {
12081             int current_el = arm_current_el(env);
12082 
12083             zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el];
12084             zcr_len &= 0xf;
12085             if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
12086                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
12087             }
12088             if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
12089                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
12090             }
12091         }
12092         flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12093     } else {
12094         *pc = env->regs[15];
12095         flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12096             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12097             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12098             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12099             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12100         if (!(access_secure_reg(env))) {
12101             flags |= ARM_TBFLAG_NS_MASK;
12102         }
12103         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12104             || arm_el_is_aa64(env, 1)) {
12105             flags |= ARM_TBFLAG_VFPEN_MASK;
12106         }
12107         flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12108                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12109     }
12110 
12111     flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12112 
12113     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12114      * states defined in the ARM ARM for software singlestep:
12115      *  SS_ACTIVE   PSTATE.SS   State
12116      *     0            x       Inactive (the TB flag for SS is always 0)
12117      *     1            0       Active-pending
12118      *     1            1       Active-not-pending
12119      */
12120     if (arm_singlestep_active(env)) {
12121         flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12122         if (is_a64(env)) {
12123             if (env->pstate & PSTATE_SS) {
12124                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12125             }
12126         } else {
12127             if (env->uncached_cpsr & PSTATE_SS) {
12128                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12129             }
12130         }
12131     }
12132     if (arm_cpu_data_is_big_endian(env)) {
12133         flags |= ARM_TBFLAG_BE_DATA_MASK;
12134     }
12135     flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12136 
12137     if (arm_v7m_is_handler_mode(env)) {
12138         flags |= ARM_TBFLAG_HANDLER_MASK;
12139     }
12140 
12141     *pflags = flags;
12142     *cs_base = 0;
12143 }
12144