1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 42 43 #ifndef CONFIG_USER_ONLY 44 45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 46 MMUAccessType access_type, ARMMMUIdx mmu_idx, 47 bool s1_is_el0, 48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 49 target_ulong *page_size_ptr, 50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 51 __attribute__((nonnull)); 52 #endif 53 54 static void switch_mode(CPUARMState *env, int mode); 55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 56 57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 58 { 59 ARMCPU *cpu = env_archcpu(env); 60 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 61 62 /* VFP data registers are always little-endian. */ 63 if (reg < nregs) { 64 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 65 } 66 if (arm_feature(env, ARM_FEATURE_NEON)) { 67 /* Aliases for Q regs. */ 68 nregs += 16; 69 if (reg < nregs) { 70 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 71 return gdb_get_reg128(buf, q[0], q[1]); 72 } 73 } 74 switch (reg - nregs) { 75 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 76 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 77 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 78 } 79 return 0; 80 } 81 82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 83 { 84 ARMCPU *cpu = env_archcpu(env); 85 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 86 87 if (reg < nregs) { 88 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 89 return 8; 90 } 91 if (arm_feature(env, ARM_FEATURE_NEON)) { 92 nregs += 16; 93 if (reg < nregs) { 94 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 95 q[0] = ldq_le_p(buf); 96 q[1] = ldq_le_p(buf + 8); 97 return 16; 98 } 99 } 100 switch (reg - nregs) { 101 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 102 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 103 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 104 } 105 return 0; 106 } 107 108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 109 { 110 switch (reg) { 111 case 0 ... 31: 112 { 113 /* 128 bit FP register - quads are in LE order */ 114 uint64_t *q = aa64_vfp_qreg(env, reg); 115 return gdb_get_reg128(buf, q[1], q[0]); 116 } 117 case 32: 118 /* FPSR */ 119 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 120 case 33: 121 /* FPCR */ 122 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 /** 212 * arm_get/set_gdb_*: get/set a gdb register 213 * @env: the CPU state 214 * @buf: a buffer to copy to/from 215 * @reg: register number (offset from start of group) 216 * 217 * We return the number of bytes copied 218 */ 219 220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 221 { 222 ARMCPU *cpu = env_archcpu(env); 223 const ARMCPRegInfo *ri; 224 uint32_t key; 225 226 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 227 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 228 if (ri) { 229 if (cpreg_field_is_64bit(ri)) { 230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 231 } else { 232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 233 } 234 } 235 return 0; 236 } 237 238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 239 { 240 return 0; 241 } 242 243 #ifdef TARGET_AARCH64 244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 245 { 246 ARMCPU *cpu = env_archcpu(env); 247 248 switch (reg) { 249 /* The first 32 registers are the zregs */ 250 case 0 ... 31: 251 { 252 int vq, len = 0; 253 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 254 len += gdb_get_reg128(buf, 255 env->vfp.zregs[reg].d[vq * 2 + 1], 256 env->vfp.zregs[reg].d[vq * 2]); 257 } 258 return len; 259 } 260 case 32: 261 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 262 case 33: 263 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 264 /* then 16 predicates and the ffr */ 265 case 34 ... 50: 266 { 267 int preg = reg - 34; 268 int vq, len = 0; 269 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 270 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 271 } 272 return len; 273 } 274 case 51: 275 { 276 /* 277 * We report in Vector Granules (VG) which is 64bit in a Z reg 278 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 279 */ 280 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 281 return gdb_get_reg64(buf, vq * 2); 282 } 283 default: 284 /* gdbstub asked for something out our range */ 285 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 286 break; 287 } 288 289 return 0; 290 } 291 292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 293 { 294 ARMCPU *cpu = env_archcpu(env); 295 296 /* The first 32 registers are the zregs */ 297 switch (reg) { 298 /* The first 32 registers are the zregs */ 299 case 0 ... 31: 300 { 301 int vq, len = 0; 302 uint64_t *p = (uint64_t *) buf; 303 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 304 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 305 env->vfp.zregs[reg].d[vq * 2] = *p++; 306 len += 16; 307 } 308 return len; 309 } 310 case 32: 311 vfp_set_fpsr(env, *(uint32_t *)buf); 312 return 4; 313 case 33: 314 vfp_set_fpcr(env, *(uint32_t *)buf); 315 return 4; 316 case 34 ... 50: 317 { 318 int preg = reg - 34; 319 int vq, len = 0; 320 uint64_t *p = (uint64_t *) buf; 321 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 322 env->vfp.pregs[preg].p[vq / 4] = *p++; 323 len += 8; 324 } 325 return len; 326 } 327 case 51: 328 /* cannot set vg via gdbstub */ 329 return 0; 330 default: 331 /* gdbstub asked for something out our range */ 332 break; 333 } 334 335 return 0; 336 } 337 #endif /* TARGET_AARCH64 */ 338 339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 340 { 341 /* Return true if the regdef would cause an assertion if you called 342 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 343 * program bug for it not to have the NO_RAW flag). 344 * NB that returning false here doesn't necessarily mean that calling 345 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 346 * read/write access functions which are safe for raw use" from "has 347 * read/write access functions which have side effects but has forgotten 348 * to provide raw access functions". 349 * The tests here line up with the conditions in read/write_raw_cp_reg() 350 * and assertions in raw_read()/raw_write(). 351 */ 352 if ((ri->type & ARM_CP_CONST) || 353 ri->fieldoffset || 354 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 355 return false; 356 } 357 return true; 358 } 359 360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 361 { 362 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 363 int i; 364 bool ok = true; 365 366 for (i = 0; i < cpu->cpreg_array_len; i++) { 367 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 368 const ARMCPRegInfo *ri; 369 uint64_t newval; 370 371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 372 if (!ri) { 373 ok = false; 374 continue; 375 } 376 if (ri->type & ARM_CP_NO_RAW) { 377 continue; 378 } 379 380 newval = read_raw_cp_reg(&cpu->env, ri); 381 if (kvm_sync) { 382 /* 383 * Only sync if the previous list->cpustate sync succeeded. 384 * Rather than tracking the success/failure state for every 385 * item in the list, we just recheck "does the raw write we must 386 * have made in write_list_to_cpustate() read back OK" here. 387 */ 388 uint64_t oldval = cpu->cpreg_values[i]; 389 390 if (oldval == newval) { 391 continue; 392 } 393 394 write_raw_cp_reg(&cpu->env, ri, oldval); 395 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 396 continue; 397 } 398 399 write_raw_cp_reg(&cpu->env, ri, newval); 400 } 401 cpu->cpreg_values[i] = newval; 402 } 403 return ok; 404 } 405 406 bool write_list_to_cpustate(ARMCPU *cpu) 407 { 408 int i; 409 bool ok = true; 410 411 for (i = 0; i < cpu->cpreg_array_len; i++) { 412 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 413 uint64_t v = cpu->cpreg_values[i]; 414 const ARMCPRegInfo *ri; 415 416 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 417 if (!ri) { 418 ok = false; 419 continue; 420 } 421 if (ri->type & ARM_CP_NO_RAW) { 422 continue; 423 } 424 /* Write value and confirm it reads back as written 425 * (to catch read-only registers and partially read-only 426 * registers where the incoming migration value doesn't match) 427 */ 428 write_raw_cp_reg(&cpu->env, ri, v); 429 if (read_raw_cp_reg(&cpu->env, ri) != v) { 430 ok = false; 431 } 432 } 433 return ok; 434 } 435 436 static void add_cpreg_to_list(gpointer key, gpointer opaque) 437 { 438 ARMCPU *cpu = opaque; 439 uint64_t regidx; 440 const ARMCPRegInfo *ri; 441 442 regidx = *(uint32_t *)key; 443 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 444 445 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 446 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 447 /* The value array need not be initialized at this point */ 448 cpu->cpreg_array_len++; 449 } 450 } 451 452 static void count_cpreg(gpointer key, gpointer opaque) 453 { 454 ARMCPU *cpu = opaque; 455 uint64_t regidx; 456 const ARMCPRegInfo *ri; 457 458 regidx = *(uint32_t *)key; 459 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 460 461 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 462 cpu->cpreg_array_len++; 463 } 464 } 465 466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 467 { 468 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 469 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 470 471 if (aidx > bidx) { 472 return 1; 473 } 474 if (aidx < bidx) { 475 return -1; 476 } 477 return 0; 478 } 479 480 void init_cpreg_list(ARMCPU *cpu) 481 { 482 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 483 * Note that we require cpreg_tuples[] to be sorted by key ID. 484 */ 485 GList *keys; 486 int arraylen; 487 488 keys = g_hash_table_get_keys(cpu->cp_regs); 489 keys = g_list_sort(keys, cpreg_key_compare); 490 491 cpu->cpreg_array_len = 0; 492 493 g_list_foreach(keys, count_cpreg, cpu); 494 495 arraylen = cpu->cpreg_array_len; 496 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 497 cpu->cpreg_values = g_new(uint64_t, arraylen); 498 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 499 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 500 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 501 cpu->cpreg_array_len = 0; 502 503 g_list_foreach(keys, add_cpreg_to_list, cpu); 504 505 assert(cpu->cpreg_array_len == arraylen); 506 507 g_list_free(keys); 508 } 509 510 /* 511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 512 */ 513 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 514 const ARMCPRegInfo *ri, 515 bool isread) 516 { 517 if (!is_a64(env) && arm_current_el(env) == 3 && 518 arm_is_secure_below_el3(env)) { 519 return CP_ACCESS_TRAP_UNCATEGORIZED; 520 } 521 return CP_ACCESS_OK; 522 } 523 524 /* Some secure-only AArch32 registers trap to EL3 if used from 525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 527 * We assume that the .access field is set to PL1_RW. 528 */ 529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 530 const ARMCPRegInfo *ri, 531 bool isread) 532 { 533 if (arm_current_el(env) == 3) { 534 return CP_ACCESS_OK; 535 } 536 if (arm_is_secure_below_el3(env)) { 537 if (env->cp15.scr_el3 & SCR_EEL2) { 538 return CP_ACCESS_TRAP_EL2; 539 } 540 return CP_ACCESS_TRAP_EL3; 541 } 542 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 543 return CP_ACCESS_TRAP_UNCATEGORIZED; 544 } 545 546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 547 { 548 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 549 } 550 551 /* Check for traps to "powerdown debug" registers, which are controlled 552 * by MDCR.TDOSA 553 */ 554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 555 bool isread) 556 { 557 int el = arm_current_el(env); 558 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 559 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 560 (arm_hcr_el2_eff(env) & HCR_TGE); 561 562 if (el < 2 && mdcr_el2_tdosa) { 563 return CP_ACCESS_TRAP_EL2; 564 } 565 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 566 return CP_ACCESS_TRAP_EL3; 567 } 568 return CP_ACCESS_OK; 569 } 570 571 /* Check for traps to "debug ROM" registers, which are controlled 572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 573 */ 574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 575 bool isread) 576 { 577 int el = arm_current_el(env); 578 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 579 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 580 (arm_hcr_el2_eff(env) & HCR_TGE); 581 582 if (el < 2 && mdcr_el2_tdra) { 583 return CP_ACCESS_TRAP_EL2; 584 } 585 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 586 return CP_ACCESS_TRAP_EL3; 587 } 588 return CP_ACCESS_OK; 589 } 590 591 /* Check for traps to general debug registers, which are controlled 592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 593 */ 594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 595 bool isread) 596 { 597 int el = arm_current_el(env); 598 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 599 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 600 (arm_hcr_el2_eff(env) & HCR_TGE); 601 602 if (el < 2 && mdcr_el2_tda) { 603 return CP_ACCESS_TRAP_EL2; 604 } 605 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 606 return CP_ACCESS_TRAP_EL3; 607 } 608 return CP_ACCESS_OK; 609 } 610 611 /* Check for traps to performance monitor registers, which are controlled 612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 613 */ 614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 615 bool isread) 616 { 617 int el = arm_current_el(env); 618 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 619 620 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 621 return CP_ACCESS_TRAP_EL2; 622 } 623 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 624 return CP_ACCESS_TRAP_EL3; 625 } 626 return CP_ACCESS_OK; 627 } 628 629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 631 bool isread) 632 { 633 if (arm_current_el(env) == 1) { 634 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 635 if (arm_hcr_el2_eff(env) & trap) { 636 return CP_ACCESS_TRAP_EL2; 637 } 638 } 639 return CP_ACCESS_OK; 640 } 641 642 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 644 bool isread) 645 { 646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 647 return CP_ACCESS_TRAP_EL2; 648 } 649 return CP_ACCESS_OK; 650 } 651 652 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 654 bool isread) 655 { 656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 657 return CP_ACCESS_TRAP_EL2; 658 } 659 return CP_ACCESS_OK; 660 } 661 662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 664 bool isread) 665 { 666 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 667 return CP_ACCESS_TRAP_EL2; 668 } 669 return CP_ACCESS_OK; 670 } 671 672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 673 { 674 ARMCPU *cpu = env_archcpu(env); 675 676 raw_write(env, ri, value); 677 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 678 } 679 680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 681 { 682 ARMCPU *cpu = env_archcpu(env); 683 684 if (raw_read(env, ri) != value) { 685 /* Unlike real hardware the qemu TLB uses virtual addresses, 686 * not modified virtual addresses, so this causes a TLB flush. 687 */ 688 tlb_flush(CPU(cpu)); 689 raw_write(env, ri, value); 690 } 691 } 692 693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 694 uint64_t value) 695 { 696 ARMCPU *cpu = env_archcpu(env); 697 698 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 699 && !extended_addresses_enabled(env)) { 700 /* For VMSA (when not using the LPAE long descriptor page table 701 * format) this register includes the ASID, so do a TLB flush. 702 * For PMSA it is purely a process ID and no action is needed. 703 */ 704 tlb_flush(CPU(cpu)); 705 } 706 raw_write(env, ri, value); 707 } 708 709 /* IS variants of TLB operations must affect all cores */ 710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 711 uint64_t value) 712 { 713 CPUState *cs = env_cpu(env); 714 715 tlb_flush_all_cpus_synced(cs); 716 } 717 718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 719 uint64_t value) 720 { 721 CPUState *cs = env_cpu(env); 722 723 tlb_flush_all_cpus_synced(cs); 724 } 725 726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 727 uint64_t value) 728 { 729 CPUState *cs = env_cpu(env); 730 731 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 732 } 733 734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 735 uint64_t value) 736 { 737 CPUState *cs = env_cpu(env); 738 739 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 740 } 741 742 /* 743 * Non-IS variants of TLB operations are upgraded to 744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 745 * force broadcast of these operations. 746 */ 747 static bool tlb_force_broadcast(CPUARMState *env) 748 { 749 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 750 } 751 752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 753 uint64_t value) 754 { 755 /* Invalidate all (TLBIALL) */ 756 CPUState *cs = env_cpu(env); 757 758 if (tlb_force_broadcast(env)) { 759 tlb_flush_all_cpus_synced(cs); 760 } else { 761 tlb_flush(cs); 762 } 763 } 764 765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 766 uint64_t value) 767 { 768 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 769 CPUState *cs = env_cpu(env); 770 771 value &= TARGET_PAGE_MASK; 772 if (tlb_force_broadcast(env)) { 773 tlb_flush_page_all_cpus_synced(cs, value); 774 } else { 775 tlb_flush_page(cs, value); 776 } 777 } 778 779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 780 uint64_t value) 781 { 782 /* Invalidate by ASID (TLBIASID) */ 783 CPUState *cs = env_cpu(env); 784 785 if (tlb_force_broadcast(env)) { 786 tlb_flush_all_cpus_synced(cs); 787 } else { 788 tlb_flush(cs); 789 } 790 } 791 792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 793 uint64_t value) 794 { 795 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 796 CPUState *cs = env_cpu(env); 797 798 value &= TARGET_PAGE_MASK; 799 if (tlb_force_broadcast(env)) { 800 tlb_flush_page_all_cpus_synced(cs, value); 801 } else { 802 tlb_flush_page(cs, value); 803 } 804 } 805 806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 807 uint64_t value) 808 { 809 CPUState *cs = env_cpu(env); 810 811 tlb_flush_by_mmuidx(cs, 812 ARMMMUIdxBit_E10_1 | 813 ARMMMUIdxBit_E10_1_PAN | 814 ARMMMUIdxBit_E10_0); 815 } 816 817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 818 uint64_t value) 819 { 820 CPUState *cs = env_cpu(env); 821 822 tlb_flush_by_mmuidx_all_cpus_synced(cs, 823 ARMMMUIdxBit_E10_1 | 824 ARMMMUIdxBit_E10_1_PAN | 825 ARMMMUIdxBit_E10_0); 826 } 827 828 829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 830 uint64_t value) 831 { 832 CPUState *cs = env_cpu(env); 833 834 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 835 } 836 837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 838 uint64_t value) 839 { 840 CPUState *cs = env_cpu(env); 841 842 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 843 } 844 845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 846 uint64_t value) 847 { 848 CPUState *cs = env_cpu(env); 849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 850 851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 852 } 853 854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 855 uint64_t value) 856 { 857 CPUState *cs = env_cpu(env); 858 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 859 860 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 861 ARMMMUIdxBit_E2); 862 } 863 864 static const ARMCPRegInfo cp_reginfo[] = { 865 /* Define the secure and non-secure FCSE identifier CP registers 866 * separately because there is no secure bank in V8 (no _EL3). This allows 867 * the secure register to be properly reset and migrated. There is also no 868 * v8 EL1 version of the register so the non-secure instance stands alone. 869 */ 870 { .name = "FCSEIDR", 871 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 872 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 873 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 874 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 875 { .name = "FCSEIDR_S", 876 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 877 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 878 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 879 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 880 /* Define the secure and non-secure context identifier CP registers 881 * separately because there is no secure bank in V8 (no _EL3). This allows 882 * the secure register to be properly reset and migrated. In the 883 * non-secure case, the 32-bit register will have reset and migration 884 * disabled during registration as it is handled by the 64-bit instance. 885 */ 886 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 887 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 888 .access = PL1_RW, .accessfn = access_tvm_trvm, 889 .secure = ARM_CP_SECSTATE_NS, 890 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 891 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 892 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 893 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 894 .access = PL1_RW, .accessfn = access_tvm_trvm, 895 .secure = ARM_CP_SECSTATE_S, 896 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 897 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 898 REGINFO_SENTINEL 899 }; 900 901 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 902 /* NB: Some of these registers exist in v8 but with more precise 903 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 904 */ 905 /* MMU Domain access control / MPU write buffer control */ 906 { .name = "DACR", 907 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 908 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 909 .writefn = dacr_write, .raw_writefn = raw_write, 910 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 911 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 912 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 913 * For v6 and v5, these mappings are overly broad. 914 */ 915 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 916 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 917 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 918 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 919 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 920 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 921 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 922 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 923 /* Cache maintenance ops; some of this space may be overridden later. */ 924 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 925 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 926 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 927 REGINFO_SENTINEL 928 }; 929 930 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 931 /* Not all pre-v6 cores implemented this WFI, so this is slightly 932 * over-broad. 933 */ 934 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 935 .access = PL1_W, .type = ARM_CP_WFI }, 936 REGINFO_SENTINEL 937 }; 938 939 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 940 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 941 * is UNPREDICTABLE; we choose to NOP as most implementations do). 942 */ 943 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 944 .access = PL1_W, .type = ARM_CP_WFI }, 945 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 946 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 947 * OMAPCP will override this space. 948 */ 949 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 950 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 951 .resetvalue = 0 }, 952 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 953 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 954 .resetvalue = 0 }, 955 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 956 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 957 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 958 .resetvalue = 0 }, 959 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 960 * implementing it as RAZ means the "debug architecture version" bits 961 * will read as a reserved value, which should cause Linux to not try 962 * to use the debug hardware. 963 */ 964 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 965 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 966 /* MMU TLB control. Note that the wildcarding means we cover not just 967 * the unified TLB ops but also the dside/iside/inner-shareable variants. 968 */ 969 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 970 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 971 .type = ARM_CP_NO_RAW }, 972 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 973 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 974 .type = ARM_CP_NO_RAW }, 975 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 976 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 977 .type = ARM_CP_NO_RAW }, 978 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 979 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 980 .type = ARM_CP_NO_RAW }, 981 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 982 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 983 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 984 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 985 REGINFO_SENTINEL 986 }; 987 988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 989 uint64_t value) 990 { 991 uint32_t mask = 0; 992 993 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 994 if (!arm_feature(env, ARM_FEATURE_V8)) { 995 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 996 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 997 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 998 */ 999 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 1000 /* VFP coprocessor: cp10 & cp11 [23:20] */ 1001 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 1002 1003 if (!arm_feature(env, ARM_FEATURE_NEON)) { 1004 /* ASEDIS [31] bit is RAO/WI */ 1005 value |= (1 << 31); 1006 } 1007 1008 /* VFPv3 and upwards with NEON implement 32 double precision 1009 * registers (D0-D31). 1010 */ 1011 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1012 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1013 value |= (1 << 30); 1014 } 1015 } 1016 value &= mask; 1017 } 1018 1019 /* 1020 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1021 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1022 */ 1023 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1024 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1025 value &= ~(0xf << 20); 1026 value |= env->cp15.cpacr_el1 & (0xf << 20); 1027 } 1028 1029 env->cp15.cpacr_el1 = value; 1030 } 1031 1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1033 { 1034 /* 1035 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1036 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1037 */ 1038 uint64_t value = env->cp15.cpacr_el1; 1039 1040 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1041 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1042 value &= ~(0xf << 20); 1043 } 1044 return value; 1045 } 1046 1047 1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1049 { 1050 /* Call cpacr_write() so that we reset with the correct RAO bits set 1051 * for our CPU features. 1052 */ 1053 cpacr_write(env, ri, 0); 1054 } 1055 1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1057 bool isread) 1058 { 1059 if (arm_feature(env, ARM_FEATURE_V8)) { 1060 /* Check if CPACR accesses are to be trapped to EL2 */ 1061 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 1062 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 1063 return CP_ACCESS_TRAP_EL2; 1064 /* Check if CPACR accesses are to be trapped to EL3 */ 1065 } else if (arm_current_el(env) < 3 && 1066 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1067 return CP_ACCESS_TRAP_EL3; 1068 } 1069 } 1070 1071 return CP_ACCESS_OK; 1072 } 1073 1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1075 bool isread) 1076 { 1077 /* Check if CPTR accesses are set to trap to EL3 */ 1078 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1079 return CP_ACCESS_TRAP_EL3; 1080 } 1081 1082 return CP_ACCESS_OK; 1083 } 1084 1085 static const ARMCPRegInfo v6_cp_reginfo[] = { 1086 /* prefetch by MVA in v6, NOP in v7 */ 1087 { .name = "MVA_prefetch", 1088 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1089 .access = PL1_W, .type = ARM_CP_NOP }, 1090 /* We need to break the TB after ISB to execute self-modifying code 1091 * correctly and also to take any pending interrupts immediately. 1092 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1093 */ 1094 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1095 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1096 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1097 .access = PL0_W, .type = ARM_CP_NOP }, 1098 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1099 .access = PL0_W, .type = ARM_CP_NOP }, 1100 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1101 .access = PL1_RW, .accessfn = access_tvm_trvm, 1102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1103 offsetof(CPUARMState, cp15.ifar_ns) }, 1104 .resetvalue = 0, }, 1105 /* Watchpoint Fault Address Register : should actually only be present 1106 * for 1136, 1176, 11MPCore. 1107 */ 1108 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1110 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1111 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1112 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1113 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1114 REGINFO_SENTINEL 1115 }; 1116 1117 /* Definitions for the PMU registers */ 1118 #define PMCRN_MASK 0xf800 1119 #define PMCRN_SHIFT 11 1120 #define PMCRLC 0x40 1121 #define PMCRDP 0x20 1122 #define PMCRX 0x10 1123 #define PMCRD 0x8 1124 #define PMCRC 0x4 1125 #define PMCRP 0x2 1126 #define PMCRE 0x1 1127 /* 1128 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1129 * which can be written as 1 to trigger behaviour but which stay RAZ). 1130 */ 1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1132 1133 #define PMXEVTYPER_P 0x80000000 1134 #define PMXEVTYPER_U 0x40000000 1135 #define PMXEVTYPER_NSK 0x20000000 1136 #define PMXEVTYPER_NSU 0x10000000 1137 #define PMXEVTYPER_NSH 0x08000000 1138 #define PMXEVTYPER_M 0x04000000 1139 #define PMXEVTYPER_MT 0x02000000 1140 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1141 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1142 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1143 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1144 PMXEVTYPER_EVTCOUNT) 1145 1146 #define PMCCFILTR 0xf8000000 1147 #define PMCCFILTR_M PMXEVTYPER_M 1148 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1149 1150 static inline uint32_t pmu_num_counters(CPUARMState *env) 1151 { 1152 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1153 } 1154 1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1156 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1157 { 1158 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1159 } 1160 1161 typedef struct pm_event { 1162 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1163 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1164 bool (*supported)(CPUARMState *); 1165 /* 1166 * Retrieve the current count of the underlying event. The programmed 1167 * counters hold a difference from the return value from this function 1168 */ 1169 uint64_t (*get_count)(CPUARMState *); 1170 /* 1171 * Return how many nanoseconds it will take (at a minimum) for count events 1172 * to occur. A negative value indicates the counter will never overflow, or 1173 * that the counter has otherwise arranged for the overflow bit to be set 1174 * and the PMU interrupt to be raised on overflow. 1175 */ 1176 int64_t (*ns_per_count)(uint64_t); 1177 } pm_event; 1178 1179 static bool event_always_supported(CPUARMState *env) 1180 { 1181 return true; 1182 } 1183 1184 static uint64_t swinc_get_count(CPUARMState *env) 1185 { 1186 /* 1187 * SW_INCR events are written directly to the pmevcntr's by writes to 1188 * PMSWINC, so there is no underlying count maintained by the PMU itself 1189 */ 1190 return 0; 1191 } 1192 1193 static int64_t swinc_ns_per(uint64_t ignored) 1194 { 1195 return -1; 1196 } 1197 1198 /* 1199 * Return the underlying cycle count for the PMU cycle counters. If we're in 1200 * usermode, simply return 0. 1201 */ 1202 static uint64_t cycles_get_count(CPUARMState *env) 1203 { 1204 #ifndef CONFIG_USER_ONLY 1205 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1206 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1207 #else 1208 return cpu_get_host_ticks(); 1209 #endif 1210 } 1211 1212 #ifndef CONFIG_USER_ONLY 1213 static int64_t cycles_ns_per(uint64_t cycles) 1214 { 1215 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1216 } 1217 1218 static bool instructions_supported(CPUARMState *env) 1219 { 1220 return icount_enabled() == 1; /* Precise instruction counting */ 1221 } 1222 1223 static uint64_t instructions_get_count(CPUARMState *env) 1224 { 1225 return (uint64_t)icount_get_raw(); 1226 } 1227 1228 static int64_t instructions_ns_per(uint64_t icount) 1229 { 1230 return icount_to_ns((int64_t)icount); 1231 } 1232 #endif 1233 1234 static bool pmu_8_1_events_supported(CPUARMState *env) 1235 { 1236 /* For events which are supported in any v8.1 PMU */ 1237 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1238 } 1239 1240 static bool pmu_8_4_events_supported(CPUARMState *env) 1241 { 1242 /* For events which are supported in any v8.1 PMU */ 1243 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1244 } 1245 1246 static uint64_t zero_event_get_count(CPUARMState *env) 1247 { 1248 /* For events which on QEMU never fire, so their count is always zero */ 1249 return 0; 1250 } 1251 1252 static int64_t zero_event_ns_per(uint64_t cycles) 1253 { 1254 /* An event which never fires can never overflow */ 1255 return -1; 1256 } 1257 1258 static const pm_event pm_events[] = { 1259 { .number = 0x000, /* SW_INCR */ 1260 .supported = event_always_supported, 1261 .get_count = swinc_get_count, 1262 .ns_per_count = swinc_ns_per, 1263 }, 1264 #ifndef CONFIG_USER_ONLY 1265 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1266 .supported = instructions_supported, 1267 .get_count = instructions_get_count, 1268 .ns_per_count = instructions_ns_per, 1269 }, 1270 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1271 .supported = event_always_supported, 1272 .get_count = cycles_get_count, 1273 .ns_per_count = cycles_ns_per, 1274 }, 1275 #endif 1276 { .number = 0x023, /* STALL_FRONTEND */ 1277 .supported = pmu_8_1_events_supported, 1278 .get_count = zero_event_get_count, 1279 .ns_per_count = zero_event_ns_per, 1280 }, 1281 { .number = 0x024, /* STALL_BACKEND */ 1282 .supported = pmu_8_1_events_supported, 1283 .get_count = zero_event_get_count, 1284 .ns_per_count = zero_event_ns_per, 1285 }, 1286 { .number = 0x03c, /* STALL */ 1287 .supported = pmu_8_4_events_supported, 1288 .get_count = zero_event_get_count, 1289 .ns_per_count = zero_event_ns_per, 1290 }, 1291 }; 1292 1293 /* 1294 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1295 * events (i.e. the statistical profiling extension), this implementation 1296 * should first be updated to something sparse instead of the current 1297 * supported_event_map[] array. 1298 */ 1299 #define MAX_EVENT_ID 0x3c 1300 #define UNSUPPORTED_EVENT UINT16_MAX 1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1302 1303 /* 1304 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1305 * of ARM event numbers to indices in our pm_events array. 1306 * 1307 * Note: Events in the 0x40XX range are not currently supported. 1308 */ 1309 void pmu_init(ARMCPU *cpu) 1310 { 1311 unsigned int i; 1312 1313 /* 1314 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1315 * events to them 1316 */ 1317 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1318 supported_event_map[i] = UNSUPPORTED_EVENT; 1319 } 1320 cpu->pmceid0 = 0; 1321 cpu->pmceid1 = 0; 1322 1323 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1324 const pm_event *cnt = &pm_events[i]; 1325 assert(cnt->number <= MAX_EVENT_ID); 1326 /* We do not currently support events in the 0x40xx range */ 1327 assert(cnt->number <= 0x3f); 1328 1329 if (cnt->supported(&cpu->env)) { 1330 supported_event_map[cnt->number] = i; 1331 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1332 if (cnt->number & 0x20) { 1333 cpu->pmceid1 |= event_mask; 1334 } else { 1335 cpu->pmceid0 |= event_mask; 1336 } 1337 } 1338 } 1339 } 1340 1341 /* 1342 * Check at runtime whether a PMU event is supported for the current machine 1343 */ 1344 static bool event_supported(uint16_t number) 1345 { 1346 if (number > MAX_EVENT_ID) { 1347 return false; 1348 } 1349 return supported_event_map[number] != UNSUPPORTED_EVENT; 1350 } 1351 1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1353 bool isread) 1354 { 1355 /* Performance monitor registers user accessibility is controlled 1356 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1357 * trapping to EL2 or EL3 for other accesses. 1358 */ 1359 int el = arm_current_el(env); 1360 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1361 1362 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1363 return CP_ACCESS_TRAP; 1364 } 1365 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1366 return CP_ACCESS_TRAP_EL2; 1367 } 1368 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1369 return CP_ACCESS_TRAP_EL3; 1370 } 1371 1372 return CP_ACCESS_OK; 1373 } 1374 1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1376 const ARMCPRegInfo *ri, 1377 bool isread) 1378 { 1379 /* ER: event counter read trap control */ 1380 if (arm_feature(env, ARM_FEATURE_V8) 1381 && arm_current_el(env) == 0 1382 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1383 && isread) { 1384 return CP_ACCESS_OK; 1385 } 1386 1387 return pmreg_access(env, ri, isread); 1388 } 1389 1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1391 const ARMCPRegInfo *ri, 1392 bool isread) 1393 { 1394 /* SW: software increment write trap control */ 1395 if (arm_feature(env, ARM_FEATURE_V8) 1396 && arm_current_el(env) == 0 1397 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1398 && !isread) { 1399 return CP_ACCESS_OK; 1400 } 1401 1402 return pmreg_access(env, ri, isread); 1403 } 1404 1405 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1406 const ARMCPRegInfo *ri, 1407 bool isread) 1408 { 1409 /* ER: event counter read trap control */ 1410 if (arm_feature(env, ARM_FEATURE_V8) 1411 && arm_current_el(env) == 0 1412 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1413 return CP_ACCESS_OK; 1414 } 1415 1416 return pmreg_access(env, ri, isread); 1417 } 1418 1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1420 const ARMCPRegInfo *ri, 1421 bool isread) 1422 { 1423 /* CR: cycle counter read trap control */ 1424 if (arm_feature(env, ARM_FEATURE_V8) 1425 && arm_current_el(env) == 0 1426 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1427 && isread) { 1428 return CP_ACCESS_OK; 1429 } 1430 1431 return pmreg_access(env, ri, isread); 1432 } 1433 1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1435 * the current EL, security state, and register configuration. 1436 */ 1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1438 { 1439 uint64_t filter; 1440 bool e, p, u, nsk, nsu, nsh, m; 1441 bool enabled, prohibited, filtered; 1442 bool secure = arm_is_secure(env); 1443 int el = arm_current_el(env); 1444 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1445 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1446 1447 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1448 return false; 1449 } 1450 1451 if (!arm_feature(env, ARM_FEATURE_EL2) || 1452 (counter < hpmn || counter == 31)) { 1453 e = env->cp15.c9_pmcr & PMCRE; 1454 } else { 1455 e = mdcr_el2 & MDCR_HPME; 1456 } 1457 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1458 1459 if (!secure) { 1460 if (el == 2 && (counter < hpmn || counter == 31)) { 1461 prohibited = mdcr_el2 & MDCR_HPMD; 1462 } else { 1463 prohibited = false; 1464 } 1465 } else { 1466 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1467 !(env->cp15.mdcr_el3 & MDCR_SPME); 1468 } 1469 1470 if (prohibited && counter == 31) { 1471 prohibited = env->cp15.c9_pmcr & PMCRDP; 1472 } 1473 1474 if (counter == 31) { 1475 filter = env->cp15.pmccfiltr_el0; 1476 } else { 1477 filter = env->cp15.c14_pmevtyper[counter]; 1478 } 1479 1480 p = filter & PMXEVTYPER_P; 1481 u = filter & PMXEVTYPER_U; 1482 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1483 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1484 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1485 m = arm_el_is_aa64(env, 1) && 1486 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1487 1488 if (el == 0) { 1489 filtered = secure ? u : u != nsu; 1490 } else if (el == 1) { 1491 filtered = secure ? p : p != nsk; 1492 } else if (el == 2) { 1493 filtered = !nsh; 1494 } else { /* EL3 */ 1495 filtered = m != p; 1496 } 1497 1498 if (counter != 31) { 1499 /* 1500 * If not checking PMCCNTR, ensure the counter is setup to an event we 1501 * support 1502 */ 1503 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1504 if (!event_supported(event)) { 1505 return false; 1506 } 1507 } 1508 1509 return enabled && !prohibited && !filtered; 1510 } 1511 1512 static void pmu_update_irq(CPUARMState *env) 1513 { 1514 ARMCPU *cpu = env_archcpu(env); 1515 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1516 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1517 } 1518 1519 /* 1520 * Ensure c15_ccnt is the guest-visible count so that operations such as 1521 * enabling/disabling the counter or filtering, modifying the count itself, 1522 * etc. can be done logically. This is essentially a no-op if the counter is 1523 * not enabled at the time of the call. 1524 */ 1525 static void pmccntr_op_start(CPUARMState *env) 1526 { 1527 uint64_t cycles = cycles_get_count(env); 1528 1529 if (pmu_counter_enabled(env, 31)) { 1530 uint64_t eff_cycles = cycles; 1531 if (env->cp15.c9_pmcr & PMCRD) { 1532 /* Increment once every 64 processor clock cycles */ 1533 eff_cycles /= 64; 1534 } 1535 1536 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1537 1538 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1539 1ull << 63 : 1ull << 31; 1540 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1541 env->cp15.c9_pmovsr |= (1 << 31); 1542 pmu_update_irq(env); 1543 } 1544 1545 env->cp15.c15_ccnt = new_pmccntr; 1546 } 1547 env->cp15.c15_ccnt_delta = cycles; 1548 } 1549 1550 /* 1551 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1552 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1553 * pmccntr_op_start. 1554 */ 1555 static void pmccntr_op_finish(CPUARMState *env) 1556 { 1557 if (pmu_counter_enabled(env, 31)) { 1558 #ifndef CONFIG_USER_ONLY 1559 /* Calculate when the counter will next overflow */ 1560 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1561 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1562 remaining_cycles = (uint32_t)remaining_cycles; 1563 } 1564 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1565 1566 if (overflow_in > 0) { 1567 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1568 overflow_in; 1569 ARMCPU *cpu = env_archcpu(env); 1570 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1571 } 1572 #endif 1573 1574 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1575 if (env->cp15.c9_pmcr & PMCRD) { 1576 /* Increment once every 64 processor clock cycles */ 1577 prev_cycles /= 64; 1578 } 1579 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1580 } 1581 } 1582 1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1584 { 1585 1586 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1587 uint64_t count = 0; 1588 if (event_supported(event)) { 1589 uint16_t event_idx = supported_event_map[event]; 1590 count = pm_events[event_idx].get_count(env); 1591 } 1592 1593 if (pmu_counter_enabled(env, counter)) { 1594 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1595 1596 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1597 env->cp15.c9_pmovsr |= (1 << counter); 1598 pmu_update_irq(env); 1599 } 1600 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1601 } 1602 env->cp15.c14_pmevcntr_delta[counter] = count; 1603 } 1604 1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1606 { 1607 if (pmu_counter_enabled(env, counter)) { 1608 #ifndef CONFIG_USER_ONLY 1609 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1610 uint16_t event_idx = supported_event_map[event]; 1611 uint64_t delta = UINT32_MAX - 1612 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1613 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1614 1615 if (overflow_in > 0) { 1616 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1617 overflow_in; 1618 ARMCPU *cpu = env_archcpu(env); 1619 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1620 } 1621 #endif 1622 1623 env->cp15.c14_pmevcntr_delta[counter] -= 1624 env->cp15.c14_pmevcntr[counter]; 1625 } 1626 } 1627 1628 void pmu_op_start(CPUARMState *env) 1629 { 1630 unsigned int i; 1631 pmccntr_op_start(env); 1632 for (i = 0; i < pmu_num_counters(env); i++) { 1633 pmevcntr_op_start(env, i); 1634 } 1635 } 1636 1637 void pmu_op_finish(CPUARMState *env) 1638 { 1639 unsigned int i; 1640 pmccntr_op_finish(env); 1641 for (i = 0; i < pmu_num_counters(env); i++) { 1642 pmevcntr_op_finish(env, i); 1643 } 1644 } 1645 1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1647 { 1648 pmu_op_start(&cpu->env); 1649 } 1650 1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1652 { 1653 pmu_op_finish(&cpu->env); 1654 } 1655 1656 void arm_pmu_timer_cb(void *opaque) 1657 { 1658 ARMCPU *cpu = opaque; 1659 1660 /* 1661 * Update all the counter values based on the current underlying counts, 1662 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1663 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1664 * counter may expire. 1665 */ 1666 pmu_op_start(&cpu->env); 1667 pmu_op_finish(&cpu->env); 1668 } 1669 1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1671 uint64_t value) 1672 { 1673 pmu_op_start(env); 1674 1675 if (value & PMCRC) { 1676 /* The counter has been reset */ 1677 env->cp15.c15_ccnt = 0; 1678 } 1679 1680 if (value & PMCRP) { 1681 unsigned int i; 1682 for (i = 0; i < pmu_num_counters(env); i++) { 1683 env->cp15.c14_pmevcntr[i] = 0; 1684 } 1685 } 1686 1687 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1688 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1689 1690 pmu_op_finish(env); 1691 } 1692 1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1694 uint64_t value) 1695 { 1696 unsigned int i; 1697 for (i = 0; i < pmu_num_counters(env); i++) { 1698 /* Increment a counter's count iff: */ 1699 if ((value & (1 << i)) && /* counter's bit is set */ 1700 /* counter is enabled and not filtered */ 1701 pmu_counter_enabled(env, i) && 1702 /* counter is SW_INCR */ 1703 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1704 pmevcntr_op_start(env, i); 1705 1706 /* 1707 * Detect if this write causes an overflow since we can't predict 1708 * PMSWINC overflows like we can for other events 1709 */ 1710 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1711 1712 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1713 env->cp15.c9_pmovsr |= (1 << i); 1714 pmu_update_irq(env); 1715 } 1716 1717 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1718 1719 pmevcntr_op_finish(env, i); 1720 } 1721 } 1722 } 1723 1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1725 { 1726 uint64_t ret; 1727 pmccntr_op_start(env); 1728 ret = env->cp15.c15_ccnt; 1729 pmccntr_op_finish(env); 1730 return ret; 1731 } 1732 1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1737 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1738 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1739 * accessed. 1740 */ 1741 env->cp15.c9_pmselr = value & 0x1f; 1742 } 1743 1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1745 uint64_t value) 1746 { 1747 pmccntr_op_start(env); 1748 env->cp15.c15_ccnt = value; 1749 pmccntr_op_finish(env); 1750 } 1751 1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1753 uint64_t value) 1754 { 1755 uint64_t cur_val = pmccntr_read(env, NULL); 1756 1757 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1758 } 1759 1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 pmccntr_op_start(env); 1764 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1765 pmccntr_op_finish(env); 1766 } 1767 1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1769 uint64_t value) 1770 { 1771 pmccntr_op_start(env); 1772 /* M is not accessible from AArch32 */ 1773 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1774 (value & PMCCFILTR); 1775 pmccntr_op_finish(env); 1776 } 1777 1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 /* M is not visible in AArch32 */ 1781 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1782 } 1783 1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1785 uint64_t value) 1786 { 1787 value &= pmu_counter_mask(env); 1788 env->cp15.c9_pmcnten |= value; 1789 } 1790 1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1792 uint64_t value) 1793 { 1794 value &= pmu_counter_mask(env); 1795 env->cp15.c9_pmcnten &= ~value; 1796 } 1797 1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pmovsr &= ~value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pmovsr |= value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value, const uint8_t counter) 1816 { 1817 if (counter == 31) { 1818 pmccfiltr_write(env, ri, value); 1819 } else if (counter < pmu_num_counters(env)) { 1820 pmevcntr_op_start(env, counter); 1821 1822 /* 1823 * If this counter's event type is changing, store the current 1824 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1825 * pmevcntr_op_finish has the correct baseline when it converts back to 1826 * a delta. 1827 */ 1828 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1829 PMXEVTYPER_EVTCOUNT; 1830 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1831 if (old_event != new_event) { 1832 uint64_t count = 0; 1833 if (event_supported(new_event)) { 1834 uint16_t event_idx = supported_event_map[new_event]; 1835 count = pm_events[event_idx].get_count(env); 1836 } 1837 env->cp15.c14_pmevcntr_delta[counter] = count; 1838 } 1839 1840 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1841 pmevcntr_op_finish(env, counter); 1842 } 1843 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1844 * PMSELR value is equal to or greater than the number of implemented 1845 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1846 */ 1847 } 1848 1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1850 const uint8_t counter) 1851 { 1852 if (counter == 31) { 1853 return env->cp15.pmccfiltr_el0; 1854 } else if (counter < pmu_num_counters(env)) { 1855 return env->cp15.c14_pmevtyper[counter]; 1856 } else { 1857 /* 1858 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1859 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1860 */ 1861 return 0; 1862 } 1863 } 1864 1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1866 uint64_t value) 1867 { 1868 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1869 pmevtyper_write(env, ri, value, counter); 1870 } 1871 1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1873 uint64_t value) 1874 { 1875 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1876 env->cp15.c14_pmevtyper[counter] = value; 1877 1878 /* 1879 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1880 * pmu_op_finish calls when loading saved state for a migration. Because 1881 * we're potentially updating the type of event here, the value written to 1882 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1883 * different counter type. Therefore, we need to set this value to the 1884 * current count for the counter type we're writing so that pmu_op_finish 1885 * has the correct count for its calculation. 1886 */ 1887 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1888 if (event_supported(event)) { 1889 uint16_t event_idx = supported_event_map[event]; 1890 env->cp15.c14_pmevcntr_delta[counter] = 1891 pm_events[event_idx].get_count(env); 1892 } 1893 } 1894 1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1896 { 1897 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1898 return pmevtyper_read(env, ri, counter); 1899 } 1900 1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1902 uint64_t value) 1903 { 1904 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1905 } 1906 1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1908 { 1909 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1910 } 1911 1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1913 uint64_t value, uint8_t counter) 1914 { 1915 if (counter < pmu_num_counters(env)) { 1916 pmevcntr_op_start(env, counter); 1917 env->cp15.c14_pmevcntr[counter] = value; 1918 pmevcntr_op_finish(env, counter); 1919 } 1920 /* 1921 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1922 * are CONSTRAINED UNPREDICTABLE. 1923 */ 1924 } 1925 1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1927 uint8_t counter) 1928 { 1929 if (counter < pmu_num_counters(env)) { 1930 uint64_t ret; 1931 pmevcntr_op_start(env, counter); 1932 ret = env->cp15.c14_pmevcntr[counter]; 1933 pmevcntr_op_finish(env, counter); 1934 return ret; 1935 } else { 1936 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1937 * are CONSTRAINED UNPREDICTABLE. */ 1938 return 0; 1939 } 1940 } 1941 1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1943 uint64_t value) 1944 { 1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1946 pmevcntr_write(env, ri, value, counter); 1947 } 1948 1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1950 { 1951 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1952 return pmevcntr_read(env, ri, counter); 1953 } 1954 1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1956 uint64_t value) 1957 { 1958 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1959 assert(counter < pmu_num_counters(env)); 1960 env->cp15.c14_pmevcntr[counter] = value; 1961 pmevcntr_write(env, ri, value, counter); 1962 } 1963 1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1965 { 1966 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1967 assert(counter < pmu_num_counters(env)); 1968 return env->cp15.c14_pmevcntr[counter]; 1969 } 1970 1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1972 uint64_t value) 1973 { 1974 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1975 } 1976 1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1978 { 1979 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1980 } 1981 1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1983 uint64_t value) 1984 { 1985 if (arm_feature(env, ARM_FEATURE_V8)) { 1986 env->cp15.c9_pmuserenr = value & 0xf; 1987 } else { 1988 env->cp15.c9_pmuserenr = value & 1; 1989 } 1990 } 1991 1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1993 uint64_t value) 1994 { 1995 /* We have no event counters so only the C bit can be changed */ 1996 value &= pmu_counter_mask(env); 1997 env->cp15.c9_pminten |= value; 1998 pmu_update_irq(env); 1999 } 2000 2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2002 uint64_t value) 2003 { 2004 value &= pmu_counter_mask(env); 2005 env->cp15.c9_pminten &= ~value; 2006 pmu_update_irq(env); 2007 } 2008 2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2010 uint64_t value) 2011 { 2012 /* Note that even though the AArch64 view of this register has bits 2013 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2014 * architectural requirements for bits which are RES0 only in some 2015 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2016 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2017 */ 2018 raw_write(env, ri, value & ~0x1FULL); 2019 } 2020 2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2022 { 2023 /* Begin with base v8.0 state. */ 2024 uint32_t valid_mask = 0x3fff; 2025 ARMCPU *cpu = env_archcpu(env); 2026 2027 if (ri->state == ARM_CP_STATE_AA64) { 2028 if (arm_feature(env, ARM_FEATURE_AARCH64) && 2029 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 2030 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2031 } 2032 valid_mask &= ~SCR_NET; 2033 2034 if (cpu_isar_feature(aa64_lor, cpu)) { 2035 valid_mask |= SCR_TLOR; 2036 } 2037 if (cpu_isar_feature(aa64_pauth, cpu)) { 2038 valid_mask |= SCR_API | SCR_APK; 2039 } 2040 if (cpu_isar_feature(aa64_sel2, cpu)) { 2041 valid_mask |= SCR_EEL2; 2042 } 2043 if (cpu_isar_feature(aa64_mte, cpu)) { 2044 valid_mask |= SCR_ATA; 2045 } 2046 } else { 2047 valid_mask &= ~(SCR_RW | SCR_ST); 2048 } 2049 2050 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2051 valid_mask &= ~SCR_HCE; 2052 2053 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2054 * supported if EL2 exists. The bit is UNK/SBZP when 2055 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2056 * when EL2 is unavailable. 2057 * On ARMv8, this bit is always available. 2058 */ 2059 if (arm_feature(env, ARM_FEATURE_V7) && 2060 !arm_feature(env, ARM_FEATURE_V8)) { 2061 valid_mask &= ~SCR_SMD; 2062 } 2063 } 2064 2065 /* Clear all-context RES0 bits. */ 2066 value &= valid_mask; 2067 raw_write(env, ri, value); 2068 } 2069 2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2071 { 2072 /* 2073 * scr_write will set the RES1 bits on an AArch64-only CPU. 2074 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 2075 */ 2076 scr_write(env, ri, 0); 2077 } 2078 2079 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2080 const ARMCPRegInfo *ri, 2081 bool isread) 2082 { 2083 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2084 return CP_ACCESS_TRAP_EL2; 2085 } 2086 2087 return CP_ACCESS_OK; 2088 } 2089 2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2091 { 2092 ARMCPU *cpu = env_archcpu(env); 2093 2094 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2095 * bank 2096 */ 2097 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2098 ri->secure & ARM_CP_SECSTATE_S); 2099 2100 return cpu->ccsidr[index]; 2101 } 2102 2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2104 uint64_t value) 2105 { 2106 raw_write(env, ri, value & 0xf); 2107 } 2108 2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2110 { 2111 CPUState *cs = env_cpu(env); 2112 bool el1 = arm_current_el(env) == 1; 2113 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2114 uint64_t ret = 0; 2115 2116 if (hcr_el2 & HCR_IMO) { 2117 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2118 ret |= CPSR_I; 2119 } 2120 } else { 2121 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2122 ret |= CPSR_I; 2123 } 2124 } 2125 2126 if (hcr_el2 & HCR_FMO) { 2127 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2128 ret |= CPSR_F; 2129 } 2130 } else { 2131 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2132 ret |= CPSR_F; 2133 } 2134 } 2135 2136 /* External aborts are not possible in QEMU so A bit is always clear */ 2137 return ret; 2138 } 2139 2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2141 bool isread) 2142 { 2143 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2144 return CP_ACCESS_TRAP_EL2; 2145 } 2146 2147 return CP_ACCESS_OK; 2148 } 2149 2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2151 bool isread) 2152 { 2153 if (arm_feature(env, ARM_FEATURE_V8)) { 2154 return access_aa64_tid1(env, ri, isread); 2155 } 2156 2157 return CP_ACCESS_OK; 2158 } 2159 2160 static const ARMCPRegInfo v7_cp_reginfo[] = { 2161 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2162 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2163 .access = PL1_W, .type = ARM_CP_NOP }, 2164 /* Performance monitors are implementation defined in v7, 2165 * but with an ARM recommended set of registers, which we 2166 * follow. 2167 * 2168 * Performance registers fall into three categories: 2169 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2170 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2171 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2172 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2173 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2174 */ 2175 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2176 .access = PL0_RW, .type = ARM_CP_ALIAS, 2177 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2178 .writefn = pmcntenset_write, 2179 .accessfn = pmreg_access, 2180 .raw_writefn = raw_write }, 2181 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2183 .access = PL0_RW, .accessfn = pmreg_access, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2185 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2186 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2187 .access = PL0_RW, 2188 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2189 .accessfn = pmreg_access, 2190 .writefn = pmcntenclr_write, 2191 .type = ARM_CP_ALIAS }, 2192 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2194 .access = PL0_RW, .accessfn = pmreg_access, 2195 .type = ARM_CP_ALIAS, 2196 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2197 .writefn = pmcntenclr_write }, 2198 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2199 .access = PL0_RW, .type = ARM_CP_IO, 2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2201 .accessfn = pmreg_access, 2202 .writefn = pmovsr_write, 2203 .raw_writefn = raw_write }, 2204 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2206 .access = PL0_RW, .accessfn = pmreg_access, 2207 .type = ARM_CP_ALIAS | ARM_CP_IO, 2208 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2209 .writefn = pmovsr_write, 2210 .raw_writefn = raw_write }, 2211 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2212 .access = PL0_W, .accessfn = pmreg_access_swinc, 2213 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2214 .writefn = pmswinc_write }, 2215 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2217 .access = PL0_W, .accessfn = pmreg_access_swinc, 2218 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2219 .writefn = pmswinc_write }, 2220 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2221 .access = PL0_RW, .type = ARM_CP_ALIAS, 2222 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2223 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2224 .raw_writefn = raw_write}, 2225 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2226 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2227 .access = PL0_RW, .accessfn = pmreg_access_selr, 2228 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2229 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2230 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2231 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2232 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2233 .accessfn = pmreg_access_ccntr }, 2234 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2236 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2237 .type = ARM_CP_IO, 2238 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2239 .readfn = pmccntr_read, .writefn = pmccntr_write, 2240 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2241 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2242 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2243 .access = PL0_RW, .accessfn = pmreg_access, 2244 .type = ARM_CP_ALIAS | ARM_CP_IO, 2245 .resetvalue = 0, }, 2246 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2248 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2249 .access = PL0_RW, .accessfn = pmreg_access, 2250 .type = ARM_CP_IO, 2251 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2252 .resetvalue = 0, }, 2253 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2254 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2255 .accessfn = pmreg_access, 2256 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2257 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2259 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2260 .accessfn = pmreg_access, 2261 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2262 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2263 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2264 .accessfn = pmreg_access_xevcntr, 2265 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2266 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2267 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2268 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2269 .accessfn = pmreg_access_xevcntr, 2270 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2271 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2272 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2273 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2274 .resetvalue = 0, 2275 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2276 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2277 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2278 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2280 .resetvalue = 0, 2281 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2282 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2283 .access = PL1_RW, .accessfn = access_tpm, 2284 .type = ARM_CP_ALIAS | ARM_CP_IO, 2285 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2286 .resetvalue = 0, 2287 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2288 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2289 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2290 .access = PL1_RW, .accessfn = access_tpm, 2291 .type = ARM_CP_IO, 2292 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2293 .writefn = pmintenset_write, .raw_writefn = raw_write, 2294 .resetvalue = 0x0 }, 2295 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2296 .access = PL1_RW, .accessfn = access_tpm, 2297 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2298 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2299 .writefn = pmintenclr_write, }, 2300 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2301 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2302 .access = PL1_RW, .accessfn = access_tpm, 2303 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2304 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2305 .writefn = pmintenclr_write }, 2306 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2307 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2308 .access = PL1_R, 2309 .accessfn = access_aa64_tid2, 2310 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2311 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2312 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2313 .access = PL1_RW, 2314 .accessfn = access_aa64_tid2, 2315 .writefn = csselr_write, .resetvalue = 0, 2316 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2317 offsetof(CPUARMState, cp15.csselr_ns) } }, 2318 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2319 * just RAZ for all cores: 2320 */ 2321 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2322 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2323 .access = PL1_R, .type = ARM_CP_CONST, 2324 .accessfn = access_aa64_tid1, 2325 .resetvalue = 0 }, 2326 /* Auxiliary fault status registers: these also are IMPDEF, and we 2327 * choose to RAZ/WI for all cores. 2328 */ 2329 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2330 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2331 .access = PL1_RW, .accessfn = access_tvm_trvm, 2332 .type = ARM_CP_CONST, .resetvalue = 0 }, 2333 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2334 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2335 .access = PL1_RW, .accessfn = access_tvm_trvm, 2336 .type = ARM_CP_CONST, .resetvalue = 0 }, 2337 /* MAIR can just read-as-written because we don't implement caches 2338 * and so don't need to care about memory attributes. 2339 */ 2340 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2341 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2342 .access = PL1_RW, .accessfn = access_tvm_trvm, 2343 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2344 .resetvalue = 0 }, 2345 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2346 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2347 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2348 .resetvalue = 0 }, 2349 /* For non-long-descriptor page tables these are PRRR and NMRR; 2350 * regardless they still act as reads-as-written for QEMU. 2351 */ 2352 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2353 * allows them to assign the correct fieldoffset based on the endianness 2354 * handled in the field definitions. 2355 */ 2356 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2357 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2358 .access = PL1_RW, .accessfn = access_tvm_trvm, 2359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2360 offsetof(CPUARMState, cp15.mair0_ns) }, 2361 .resetfn = arm_cp_reset_ignore }, 2362 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2363 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2364 .access = PL1_RW, .accessfn = access_tvm_trvm, 2365 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2366 offsetof(CPUARMState, cp15.mair1_ns) }, 2367 .resetfn = arm_cp_reset_ignore }, 2368 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2369 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2370 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2371 /* 32 bit ITLB invalidates */ 2372 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2374 .writefn = tlbiall_write }, 2375 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2377 .writefn = tlbimva_write }, 2378 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2379 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2380 .writefn = tlbiasid_write }, 2381 /* 32 bit DTLB invalidates */ 2382 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2384 .writefn = tlbiall_write }, 2385 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2387 .writefn = tlbimva_write }, 2388 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2390 .writefn = tlbiasid_write }, 2391 /* 32 bit TLB invalidates */ 2392 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2394 .writefn = tlbiall_write }, 2395 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2397 .writefn = tlbimva_write }, 2398 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2400 .writefn = tlbiasid_write }, 2401 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2403 .writefn = tlbimvaa_write }, 2404 REGINFO_SENTINEL 2405 }; 2406 2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2408 /* 32 bit TLB invalidates, Inner Shareable */ 2409 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2410 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2411 .writefn = tlbiall_is_write }, 2412 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2413 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2414 .writefn = tlbimva_is_write }, 2415 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2417 .writefn = tlbiasid_is_write }, 2418 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2420 .writefn = tlbimvaa_is_write }, 2421 REGINFO_SENTINEL 2422 }; 2423 2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2425 /* PMOVSSET is not implemented in v7 before v7ve */ 2426 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2427 .access = PL0_RW, .accessfn = pmreg_access, 2428 .type = ARM_CP_ALIAS | ARM_CP_IO, 2429 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2430 .writefn = pmovsset_write, 2431 .raw_writefn = raw_write }, 2432 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2433 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2434 .access = PL0_RW, .accessfn = pmreg_access, 2435 .type = ARM_CP_ALIAS | ARM_CP_IO, 2436 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2437 .writefn = pmovsset_write, 2438 .raw_writefn = raw_write }, 2439 REGINFO_SENTINEL 2440 }; 2441 2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2443 uint64_t value) 2444 { 2445 value &= 1; 2446 env->teecr = value; 2447 } 2448 2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2450 bool isread) 2451 { 2452 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2453 return CP_ACCESS_TRAP; 2454 } 2455 return CP_ACCESS_OK; 2456 } 2457 2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2459 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2460 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2461 .resetvalue = 0, 2462 .writefn = teecr_write }, 2463 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2464 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2465 .accessfn = teehbr_access, .resetvalue = 0 }, 2466 REGINFO_SENTINEL 2467 }; 2468 2469 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2470 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2471 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2472 .access = PL0_RW, 2473 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2474 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2475 .access = PL0_RW, 2476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2477 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2478 .resetfn = arm_cp_reset_ignore }, 2479 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2480 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2481 .access = PL0_R|PL1_W, 2482 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2483 .resetvalue = 0}, 2484 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2485 .access = PL0_R|PL1_W, 2486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2487 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2488 .resetfn = arm_cp_reset_ignore }, 2489 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2490 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2491 .access = PL1_RW, 2492 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2493 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2494 .access = PL1_RW, 2495 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2496 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2497 .resetvalue = 0 }, 2498 REGINFO_SENTINEL 2499 }; 2500 2501 #ifndef CONFIG_USER_ONLY 2502 2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2504 bool isread) 2505 { 2506 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2507 * Writable only at the highest implemented exception level. 2508 */ 2509 int el = arm_current_el(env); 2510 uint64_t hcr; 2511 uint32_t cntkctl; 2512 2513 switch (el) { 2514 case 0: 2515 hcr = arm_hcr_el2_eff(env); 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 cntkctl = env->cp15.cnthctl_el2; 2518 } else { 2519 cntkctl = env->cp15.c14_cntkctl; 2520 } 2521 if (!extract32(cntkctl, 0, 2)) { 2522 return CP_ACCESS_TRAP; 2523 } 2524 break; 2525 case 1: 2526 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2527 arm_is_secure_below_el3(env)) { 2528 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2529 return CP_ACCESS_TRAP_UNCATEGORIZED; 2530 } 2531 break; 2532 case 2: 2533 case 3: 2534 break; 2535 } 2536 2537 if (!isread && el < arm_highest_el(env)) { 2538 return CP_ACCESS_TRAP_UNCATEGORIZED; 2539 } 2540 2541 return CP_ACCESS_OK; 2542 } 2543 2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2545 bool isread) 2546 { 2547 unsigned int cur_el = arm_current_el(env); 2548 bool has_el2 = arm_is_el2_enabled(env); 2549 uint64_t hcr = arm_hcr_el2_eff(env); 2550 2551 switch (cur_el) { 2552 case 0: 2553 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2554 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2555 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2556 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2557 } 2558 2559 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2560 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2561 return CP_ACCESS_TRAP; 2562 } 2563 2564 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2565 if (hcr & HCR_E2H) { 2566 if (timeridx == GTIMER_PHYS && 2567 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2568 return CP_ACCESS_TRAP_EL2; 2569 } 2570 } else { 2571 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2572 if (has_el2 && timeridx == GTIMER_PHYS && 2573 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2574 return CP_ACCESS_TRAP_EL2; 2575 } 2576 } 2577 break; 2578 2579 case 1: 2580 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2581 if (has_el2 && timeridx == GTIMER_PHYS && 2582 (hcr & HCR_E2H 2583 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2584 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2585 return CP_ACCESS_TRAP_EL2; 2586 } 2587 break; 2588 } 2589 return CP_ACCESS_OK; 2590 } 2591 2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2593 bool isread) 2594 { 2595 unsigned int cur_el = arm_current_el(env); 2596 bool has_el2 = arm_is_el2_enabled(env); 2597 uint64_t hcr = arm_hcr_el2_eff(env); 2598 2599 switch (cur_el) { 2600 case 0: 2601 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2602 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2603 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2604 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2605 } 2606 2607 /* 2608 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2609 * EL0 if EL0[PV]TEN is zero. 2610 */ 2611 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2612 return CP_ACCESS_TRAP; 2613 } 2614 /* fall through */ 2615 2616 case 1: 2617 if (has_el2 && timeridx == GTIMER_PHYS) { 2618 if (hcr & HCR_E2H) { 2619 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2620 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2621 return CP_ACCESS_TRAP_EL2; 2622 } 2623 } else { 2624 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2625 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2626 return CP_ACCESS_TRAP_EL2; 2627 } 2628 } 2629 } 2630 break; 2631 } 2632 return CP_ACCESS_OK; 2633 } 2634 2635 static CPAccessResult gt_pct_access(CPUARMState *env, 2636 const ARMCPRegInfo *ri, 2637 bool isread) 2638 { 2639 return gt_counter_access(env, GTIMER_PHYS, isread); 2640 } 2641 2642 static CPAccessResult gt_vct_access(CPUARMState *env, 2643 const ARMCPRegInfo *ri, 2644 bool isread) 2645 { 2646 return gt_counter_access(env, GTIMER_VIRT, isread); 2647 } 2648 2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2650 bool isread) 2651 { 2652 return gt_timer_access(env, GTIMER_PHYS, isread); 2653 } 2654 2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2656 bool isread) 2657 { 2658 return gt_timer_access(env, GTIMER_VIRT, isread); 2659 } 2660 2661 static CPAccessResult gt_stimer_access(CPUARMState *env, 2662 const ARMCPRegInfo *ri, 2663 bool isread) 2664 { 2665 /* The AArch64 register view of the secure physical timer is 2666 * always accessible from EL3, and configurably accessible from 2667 * Secure EL1. 2668 */ 2669 switch (arm_current_el(env)) { 2670 case 1: 2671 if (!arm_is_secure(env)) { 2672 return CP_ACCESS_TRAP; 2673 } 2674 if (!(env->cp15.scr_el3 & SCR_ST)) { 2675 return CP_ACCESS_TRAP_EL3; 2676 } 2677 return CP_ACCESS_OK; 2678 case 0: 2679 case 2: 2680 return CP_ACCESS_TRAP; 2681 case 3: 2682 return CP_ACCESS_OK; 2683 default: 2684 g_assert_not_reached(); 2685 } 2686 } 2687 2688 static uint64_t gt_get_countervalue(CPUARMState *env) 2689 { 2690 ARMCPU *cpu = env_archcpu(env); 2691 2692 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2693 } 2694 2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2696 { 2697 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2698 2699 if (gt->ctl & 1) { 2700 /* Timer enabled: calculate and set current ISTATUS, irq, and 2701 * reset timer to when ISTATUS next has to change 2702 */ 2703 uint64_t offset = timeridx == GTIMER_VIRT ? 2704 cpu->env.cp15.cntvoff_el2 : 0; 2705 uint64_t count = gt_get_countervalue(&cpu->env); 2706 /* Note that this must be unsigned 64 bit arithmetic: */ 2707 int istatus = count - offset >= gt->cval; 2708 uint64_t nexttick; 2709 int irqstate; 2710 2711 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2712 2713 irqstate = (istatus && !(gt->ctl & 2)); 2714 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2715 2716 if (istatus) { 2717 /* Next transition is when count rolls back over to zero */ 2718 nexttick = UINT64_MAX; 2719 } else { 2720 /* Next transition is when we hit cval */ 2721 nexttick = gt->cval + offset; 2722 } 2723 /* Note that the desired next expiry time might be beyond the 2724 * signed-64-bit range of a QEMUTimer -- in this case we just 2725 * set the timer for as far in the future as possible. When the 2726 * timer expires we will reset the timer for any remaining period. 2727 */ 2728 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2729 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2730 } else { 2731 timer_mod(cpu->gt_timer[timeridx], nexttick); 2732 } 2733 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2734 } else { 2735 /* Timer disabled: ISTATUS and timer output always clear */ 2736 gt->ctl &= ~4; 2737 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2738 timer_del(cpu->gt_timer[timeridx]); 2739 trace_arm_gt_recalc_disabled(timeridx); 2740 } 2741 } 2742 2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2744 int timeridx) 2745 { 2746 ARMCPU *cpu = env_archcpu(env); 2747 2748 timer_del(cpu->gt_timer[timeridx]); 2749 } 2750 2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2752 { 2753 return gt_get_countervalue(env); 2754 } 2755 2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2757 { 2758 uint64_t hcr; 2759 2760 switch (arm_current_el(env)) { 2761 case 2: 2762 hcr = arm_hcr_el2_eff(env); 2763 if (hcr & HCR_E2H) { 2764 return 0; 2765 } 2766 break; 2767 case 0: 2768 hcr = arm_hcr_el2_eff(env); 2769 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2770 return 0; 2771 } 2772 break; 2773 } 2774 2775 return env->cp15.cntvoff_el2; 2776 } 2777 2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2781 } 2782 2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 int timeridx, 2785 uint64_t value) 2786 { 2787 trace_arm_gt_cval_write(timeridx, value); 2788 env->cp15.c14_timer[timeridx].cval = value; 2789 gt_recalc_timer(env_archcpu(env), timeridx); 2790 } 2791 2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2793 int timeridx) 2794 { 2795 uint64_t offset = 0; 2796 2797 switch (timeridx) { 2798 case GTIMER_VIRT: 2799 case GTIMER_HYPVIRT: 2800 offset = gt_virt_cnt_offset(env); 2801 break; 2802 } 2803 2804 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2805 (gt_get_countervalue(env) - offset)); 2806 } 2807 2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2809 int timeridx, 2810 uint64_t value) 2811 { 2812 uint64_t offset = 0; 2813 2814 switch (timeridx) { 2815 case GTIMER_VIRT: 2816 case GTIMER_HYPVIRT: 2817 offset = gt_virt_cnt_offset(env); 2818 break; 2819 } 2820 2821 trace_arm_gt_tval_write(timeridx, value); 2822 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2823 sextract64(value, 0, 32); 2824 gt_recalc_timer(env_archcpu(env), timeridx); 2825 } 2826 2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2828 int timeridx, 2829 uint64_t value) 2830 { 2831 ARMCPU *cpu = env_archcpu(env); 2832 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2833 2834 trace_arm_gt_ctl_write(timeridx, value); 2835 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2836 if ((oldval ^ value) & 1) { 2837 /* Enable toggled */ 2838 gt_recalc_timer(cpu, timeridx); 2839 } else if ((oldval ^ value) & 2) { 2840 /* IMASK toggled: don't need to recalculate, 2841 * just set the interrupt line based on ISTATUS 2842 */ 2843 int irqstate = (oldval & 4) && !(value & 2); 2844 2845 trace_arm_gt_imask_toggle(timeridx, irqstate); 2846 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2847 } 2848 } 2849 2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2851 { 2852 gt_timer_reset(env, ri, GTIMER_PHYS); 2853 } 2854 2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_cval_write(env, ri, GTIMER_PHYS, value); 2859 } 2860 2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2862 { 2863 return gt_tval_read(env, ri, GTIMER_PHYS); 2864 } 2865 2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2867 uint64_t value) 2868 { 2869 gt_tval_write(env, ri, GTIMER_PHYS, value); 2870 } 2871 2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2873 uint64_t value) 2874 { 2875 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2876 } 2877 2878 static int gt_phys_redir_timeridx(CPUARMState *env) 2879 { 2880 switch (arm_mmu_idx(env)) { 2881 case ARMMMUIdx_E20_0: 2882 case ARMMMUIdx_E20_2: 2883 case ARMMMUIdx_E20_2_PAN: 2884 case ARMMMUIdx_SE20_0: 2885 case ARMMMUIdx_SE20_2: 2886 case ARMMMUIdx_SE20_2_PAN: 2887 return GTIMER_HYP; 2888 default: 2889 return GTIMER_PHYS; 2890 } 2891 } 2892 2893 static int gt_virt_redir_timeridx(CPUARMState *env) 2894 { 2895 switch (arm_mmu_idx(env)) { 2896 case ARMMMUIdx_E20_0: 2897 case ARMMMUIdx_E20_2: 2898 case ARMMMUIdx_E20_2_PAN: 2899 case ARMMMUIdx_SE20_0: 2900 case ARMMMUIdx_SE20_2: 2901 case ARMMMUIdx_SE20_2_PAN: 2902 return GTIMER_HYPVIRT; 2903 default: 2904 return GTIMER_VIRT; 2905 } 2906 } 2907 2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2909 const ARMCPRegInfo *ri) 2910 { 2911 int timeridx = gt_phys_redir_timeridx(env); 2912 return env->cp15.c14_timer[timeridx].cval; 2913 } 2914 2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2916 uint64_t value) 2917 { 2918 int timeridx = gt_phys_redir_timeridx(env); 2919 gt_cval_write(env, ri, timeridx, value); 2920 } 2921 2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2923 const ARMCPRegInfo *ri) 2924 { 2925 int timeridx = gt_phys_redir_timeridx(env); 2926 return gt_tval_read(env, ri, timeridx); 2927 } 2928 2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2930 uint64_t value) 2931 { 2932 int timeridx = gt_phys_redir_timeridx(env); 2933 gt_tval_write(env, ri, timeridx, value); 2934 } 2935 2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2937 const ARMCPRegInfo *ri) 2938 { 2939 int timeridx = gt_phys_redir_timeridx(env); 2940 return env->cp15.c14_timer[timeridx].ctl; 2941 } 2942 2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2944 uint64_t value) 2945 { 2946 int timeridx = gt_phys_redir_timeridx(env); 2947 gt_ctl_write(env, ri, timeridx, value); 2948 } 2949 2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2951 { 2952 gt_timer_reset(env, ri, GTIMER_VIRT); 2953 } 2954 2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2956 uint64_t value) 2957 { 2958 gt_cval_write(env, ri, GTIMER_VIRT, value); 2959 } 2960 2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2962 { 2963 return gt_tval_read(env, ri, GTIMER_VIRT); 2964 } 2965 2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2967 uint64_t value) 2968 { 2969 gt_tval_write(env, ri, GTIMER_VIRT, value); 2970 } 2971 2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2973 uint64_t value) 2974 { 2975 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2976 } 2977 2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2979 uint64_t value) 2980 { 2981 ARMCPU *cpu = env_archcpu(env); 2982 2983 trace_arm_gt_cntvoff_write(value); 2984 raw_write(env, ri, value); 2985 gt_recalc_timer(cpu, GTIMER_VIRT); 2986 } 2987 2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2989 const ARMCPRegInfo *ri) 2990 { 2991 int timeridx = gt_virt_redir_timeridx(env); 2992 return env->cp15.c14_timer[timeridx].cval; 2993 } 2994 2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2996 uint64_t value) 2997 { 2998 int timeridx = gt_virt_redir_timeridx(env); 2999 gt_cval_write(env, ri, timeridx, value); 3000 } 3001 3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3003 const ARMCPRegInfo *ri) 3004 { 3005 int timeridx = gt_virt_redir_timeridx(env); 3006 return gt_tval_read(env, ri, timeridx); 3007 } 3008 3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3010 uint64_t value) 3011 { 3012 int timeridx = gt_virt_redir_timeridx(env); 3013 gt_tval_write(env, ri, timeridx, value); 3014 } 3015 3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3017 const ARMCPRegInfo *ri) 3018 { 3019 int timeridx = gt_virt_redir_timeridx(env); 3020 return env->cp15.c14_timer[timeridx].ctl; 3021 } 3022 3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3024 uint64_t value) 3025 { 3026 int timeridx = gt_virt_redir_timeridx(env); 3027 gt_ctl_write(env, ri, timeridx, value); 3028 } 3029 3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3031 { 3032 gt_timer_reset(env, ri, GTIMER_HYP); 3033 } 3034 3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3036 uint64_t value) 3037 { 3038 gt_cval_write(env, ri, GTIMER_HYP, value); 3039 } 3040 3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3042 { 3043 return gt_tval_read(env, ri, GTIMER_HYP); 3044 } 3045 3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 gt_tval_write(env, ri, GTIMER_HYP, value); 3050 } 3051 3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3053 uint64_t value) 3054 { 3055 gt_ctl_write(env, ri, GTIMER_HYP, value); 3056 } 3057 3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3059 { 3060 gt_timer_reset(env, ri, GTIMER_SEC); 3061 } 3062 3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3064 uint64_t value) 3065 { 3066 gt_cval_write(env, ri, GTIMER_SEC, value); 3067 } 3068 3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3070 { 3071 return gt_tval_read(env, ri, GTIMER_SEC); 3072 } 3073 3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3075 uint64_t value) 3076 { 3077 gt_tval_write(env, ri, GTIMER_SEC, value); 3078 } 3079 3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3081 uint64_t value) 3082 { 3083 gt_ctl_write(env, ri, GTIMER_SEC, value); 3084 } 3085 3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3087 { 3088 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3089 } 3090 3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3092 uint64_t value) 3093 { 3094 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3095 } 3096 3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3098 { 3099 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3100 } 3101 3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3103 uint64_t value) 3104 { 3105 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3106 } 3107 3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3109 uint64_t value) 3110 { 3111 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3112 } 3113 3114 void arm_gt_ptimer_cb(void *opaque) 3115 { 3116 ARMCPU *cpu = opaque; 3117 3118 gt_recalc_timer(cpu, GTIMER_PHYS); 3119 } 3120 3121 void arm_gt_vtimer_cb(void *opaque) 3122 { 3123 ARMCPU *cpu = opaque; 3124 3125 gt_recalc_timer(cpu, GTIMER_VIRT); 3126 } 3127 3128 void arm_gt_htimer_cb(void *opaque) 3129 { 3130 ARMCPU *cpu = opaque; 3131 3132 gt_recalc_timer(cpu, GTIMER_HYP); 3133 } 3134 3135 void arm_gt_stimer_cb(void *opaque) 3136 { 3137 ARMCPU *cpu = opaque; 3138 3139 gt_recalc_timer(cpu, GTIMER_SEC); 3140 } 3141 3142 void arm_gt_hvtimer_cb(void *opaque) 3143 { 3144 ARMCPU *cpu = opaque; 3145 3146 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3147 } 3148 3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3150 { 3151 ARMCPU *cpu = env_archcpu(env); 3152 3153 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3154 } 3155 3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3157 /* Note that CNTFRQ is purely reads-as-written for the benefit 3158 * of software; writing it doesn't actually change the timer frequency. 3159 * Our reset value matches the fixed frequency we implement the timer at. 3160 */ 3161 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3162 .type = ARM_CP_ALIAS, 3163 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3165 }, 3166 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3167 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3168 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3169 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3170 .resetfn = arm_gt_cntfrq_reset, 3171 }, 3172 /* overall control: mostly access permissions */ 3173 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3174 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3175 .access = PL1_RW, 3176 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3177 .resetvalue = 0, 3178 }, 3179 /* per-timer control */ 3180 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3181 .secure = ARM_CP_SECSTATE_NS, 3182 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3183 .accessfn = gt_ptimer_access, 3184 .fieldoffset = offsetoflow32(CPUARMState, 3185 cp15.c14_timer[GTIMER_PHYS].ctl), 3186 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3187 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3188 }, 3189 { .name = "CNTP_CTL_S", 3190 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3191 .secure = ARM_CP_SECSTATE_S, 3192 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3193 .accessfn = gt_ptimer_access, 3194 .fieldoffset = offsetoflow32(CPUARMState, 3195 cp15.c14_timer[GTIMER_SEC].ctl), 3196 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3197 }, 3198 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3200 .type = ARM_CP_IO, .access = PL0_RW, 3201 .accessfn = gt_ptimer_access, 3202 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3203 .resetvalue = 0, 3204 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3205 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3206 }, 3207 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3208 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3209 .accessfn = gt_vtimer_access, 3210 .fieldoffset = offsetoflow32(CPUARMState, 3211 cp15.c14_timer[GTIMER_VIRT].ctl), 3212 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3213 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3214 }, 3215 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3216 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3217 .type = ARM_CP_IO, .access = PL0_RW, 3218 .accessfn = gt_vtimer_access, 3219 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3220 .resetvalue = 0, 3221 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3222 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3223 }, 3224 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3225 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3226 .secure = ARM_CP_SECSTATE_NS, 3227 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3228 .accessfn = gt_ptimer_access, 3229 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3230 }, 3231 { .name = "CNTP_TVAL_S", 3232 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3233 .secure = ARM_CP_SECSTATE_S, 3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3235 .accessfn = gt_ptimer_access, 3236 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3237 }, 3238 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3239 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3241 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3242 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3243 }, 3244 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3245 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3246 .accessfn = gt_vtimer_access, 3247 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3248 }, 3249 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3251 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3252 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3253 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3254 }, 3255 /* The counter itself */ 3256 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3257 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3258 .accessfn = gt_pct_access, 3259 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3260 }, 3261 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3262 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3263 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3264 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3265 }, 3266 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3267 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3268 .accessfn = gt_vct_access, 3269 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3270 }, 3271 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3272 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3273 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3274 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3275 }, 3276 /* Comparison value, indicating when the timer goes off */ 3277 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3278 .secure = ARM_CP_SECSTATE_NS, 3279 .access = PL0_RW, 3280 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3282 .accessfn = gt_ptimer_access, 3283 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3284 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3285 }, 3286 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3287 .secure = ARM_CP_SECSTATE_S, 3288 .access = PL0_RW, 3289 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3291 .accessfn = gt_ptimer_access, 3292 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3293 }, 3294 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3295 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3296 .access = PL0_RW, 3297 .type = ARM_CP_IO, 3298 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3299 .resetvalue = 0, .accessfn = gt_ptimer_access, 3300 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3301 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3302 }, 3303 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3304 .access = PL0_RW, 3305 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3306 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3307 .accessfn = gt_vtimer_access, 3308 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3309 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3310 }, 3311 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3312 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3313 .access = PL0_RW, 3314 .type = ARM_CP_IO, 3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3316 .resetvalue = 0, .accessfn = gt_vtimer_access, 3317 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3318 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3319 }, 3320 /* Secure timer -- this is actually restricted to only EL3 3321 * and configurably Secure-EL1 via the accessfn. 3322 */ 3323 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3326 .accessfn = gt_stimer_access, 3327 .readfn = gt_sec_tval_read, 3328 .writefn = gt_sec_tval_write, 3329 .resetfn = gt_sec_timer_reset, 3330 }, 3331 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3332 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3333 .type = ARM_CP_IO, .access = PL1_RW, 3334 .accessfn = gt_stimer_access, 3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3336 .resetvalue = 0, 3337 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3338 }, 3339 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3340 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3341 .type = ARM_CP_IO, .access = PL1_RW, 3342 .accessfn = gt_stimer_access, 3343 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3344 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3345 }, 3346 REGINFO_SENTINEL 3347 }; 3348 3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3350 bool isread) 3351 { 3352 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3353 return CP_ACCESS_TRAP; 3354 } 3355 return CP_ACCESS_OK; 3356 } 3357 3358 #else 3359 3360 /* In user-mode most of the generic timer registers are inaccessible 3361 * however modern kernels (4.12+) allow access to cntvct_el0 3362 */ 3363 3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3365 { 3366 ARMCPU *cpu = env_archcpu(env); 3367 3368 /* Currently we have no support for QEMUTimer in linux-user so we 3369 * can't call gt_get_countervalue(env), instead we directly 3370 * call the lower level functions. 3371 */ 3372 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3373 } 3374 3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3376 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3377 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3378 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3380 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3381 }, 3382 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3384 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3385 .readfn = gt_virt_cnt_read, 3386 }, 3387 REGINFO_SENTINEL 3388 }; 3389 3390 #endif 3391 3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3393 { 3394 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3395 raw_write(env, ri, value); 3396 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3397 raw_write(env, ri, value & 0xfffff6ff); 3398 } else { 3399 raw_write(env, ri, value & 0xfffff1ff); 3400 } 3401 } 3402 3403 #ifndef CONFIG_USER_ONLY 3404 /* get_phys_addr() isn't present for user-mode-only targets */ 3405 3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3407 bool isread) 3408 { 3409 if (ri->opc2 & 4) { 3410 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3411 * Secure EL1 (which can only happen if EL3 is AArch64). 3412 * They are simply UNDEF if executed from NS EL1. 3413 * They function normally from EL2 or EL3. 3414 */ 3415 if (arm_current_el(env) == 1) { 3416 if (arm_is_secure_below_el3(env)) { 3417 if (env->cp15.scr_el3 & SCR_EEL2) { 3418 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3419 } 3420 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3421 } 3422 return CP_ACCESS_TRAP_UNCATEGORIZED; 3423 } 3424 } 3425 return CP_ACCESS_OK; 3426 } 3427 3428 #ifdef CONFIG_TCG 3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3430 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3431 { 3432 hwaddr phys_addr; 3433 target_ulong page_size; 3434 int prot; 3435 bool ret; 3436 uint64_t par64; 3437 bool format64 = false; 3438 MemTxAttrs attrs = {}; 3439 ARMMMUFaultInfo fi = {}; 3440 ARMCacheAttrs cacheattrs = {}; 3441 3442 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3443 &prot, &page_size, &fi, &cacheattrs); 3444 3445 if (ret) { 3446 /* 3447 * Some kinds of translation fault must cause exceptions rather 3448 * than being reported in the PAR. 3449 */ 3450 int current_el = arm_current_el(env); 3451 int target_el; 3452 uint32_t syn, fsr, fsc; 3453 bool take_exc = false; 3454 3455 if (fi.s1ptw && current_el == 1 3456 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3457 /* 3458 * Synchronous stage 2 fault on an access made as part of the 3459 * translation table walk for AT S1E0* or AT S1E1* insn 3460 * executed from NS EL1. If this is a synchronous external abort 3461 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3462 * to EL3. Otherwise the fault is taken as an exception to EL2, 3463 * and HPFAR_EL2 holds the faulting IPA. 3464 */ 3465 if (fi.type == ARMFault_SyncExternalOnWalk && 3466 (env->cp15.scr_el3 & SCR_EA)) { 3467 target_el = 3; 3468 } else { 3469 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3470 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3471 env->cp15.hpfar_el2 |= HPFAR_NS; 3472 } 3473 target_el = 2; 3474 } 3475 take_exc = true; 3476 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3477 /* 3478 * Synchronous external aborts during a translation table walk 3479 * are taken as Data Abort exceptions. 3480 */ 3481 if (fi.stage2) { 3482 if (current_el == 3) { 3483 target_el = 3; 3484 } else { 3485 target_el = 2; 3486 } 3487 } else { 3488 target_el = exception_target_el(env); 3489 } 3490 take_exc = true; 3491 } 3492 3493 if (take_exc) { 3494 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3495 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3496 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3497 fsr = arm_fi_to_lfsc(&fi); 3498 fsc = extract32(fsr, 0, 6); 3499 } else { 3500 fsr = arm_fi_to_sfsc(&fi); 3501 fsc = 0x3f; 3502 } 3503 /* 3504 * Report exception with ESR indicating a fault due to a 3505 * translation table walk for a cache maintenance instruction. 3506 */ 3507 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3508 fi.ea, 1, fi.s1ptw, 1, fsc); 3509 env->exception.vaddress = value; 3510 env->exception.fsr = fsr; 3511 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3512 } 3513 } 3514 3515 if (is_a64(env)) { 3516 format64 = true; 3517 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3518 /* 3519 * ATS1Cxx: 3520 * * TTBCR.EAE determines whether the result is returned using the 3521 * 32-bit or the 64-bit PAR format 3522 * * Instructions executed in Hyp mode always use the 64bit format 3523 * 3524 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3525 * * The Non-secure TTBCR.EAE bit is set to 1 3526 * * The implementation includes EL2, and the value of HCR.VM is 1 3527 * 3528 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3529 * 3530 * ATS1Hx always uses the 64bit format. 3531 */ 3532 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3533 3534 if (arm_feature(env, ARM_FEATURE_EL2)) { 3535 if (mmu_idx == ARMMMUIdx_E10_0 || 3536 mmu_idx == ARMMMUIdx_E10_1 || 3537 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3538 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3539 } else { 3540 format64 |= arm_current_el(env) == 2; 3541 } 3542 } 3543 } 3544 3545 if (format64) { 3546 /* Create a 64-bit PAR */ 3547 par64 = (1 << 11); /* LPAE bit always set */ 3548 if (!ret) { 3549 par64 |= phys_addr & ~0xfffULL; 3550 if (!attrs.secure) { 3551 par64 |= (1 << 9); /* NS */ 3552 } 3553 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3554 par64 |= cacheattrs.shareability << 7; /* SH */ 3555 } else { 3556 uint32_t fsr = arm_fi_to_lfsc(&fi); 3557 3558 par64 |= 1; /* F */ 3559 par64 |= (fsr & 0x3f) << 1; /* FS */ 3560 if (fi.stage2) { 3561 par64 |= (1 << 9); /* S */ 3562 } 3563 if (fi.s1ptw) { 3564 par64 |= (1 << 8); /* PTW */ 3565 } 3566 } 3567 } else { 3568 /* fsr is a DFSR/IFSR value for the short descriptor 3569 * translation table format (with WnR always clear). 3570 * Convert it to a 32-bit PAR. 3571 */ 3572 if (!ret) { 3573 /* We do not set any attribute bits in the PAR */ 3574 if (page_size == (1 << 24) 3575 && arm_feature(env, ARM_FEATURE_V7)) { 3576 par64 = (phys_addr & 0xff000000) | (1 << 1); 3577 } else { 3578 par64 = phys_addr & 0xfffff000; 3579 } 3580 if (!attrs.secure) { 3581 par64 |= (1 << 9); /* NS */ 3582 } 3583 } else { 3584 uint32_t fsr = arm_fi_to_sfsc(&fi); 3585 3586 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3587 ((fsr & 0xf) << 1) | 1; 3588 } 3589 } 3590 return par64; 3591 } 3592 #endif /* CONFIG_TCG */ 3593 3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3595 { 3596 #ifdef CONFIG_TCG 3597 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3598 uint64_t par64; 3599 ARMMMUIdx mmu_idx; 3600 int el = arm_current_el(env); 3601 bool secure = arm_is_secure_below_el3(env); 3602 3603 switch (ri->opc2 & 6) { 3604 case 0: 3605 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3606 switch (el) { 3607 case 3: 3608 mmu_idx = ARMMMUIdx_SE3; 3609 break; 3610 case 2: 3611 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3612 /* fall through */ 3613 case 1: 3614 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3615 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3616 : ARMMMUIdx_Stage1_E1_PAN); 3617 } else { 3618 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3619 } 3620 break; 3621 default: 3622 g_assert_not_reached(); 3623 } 3624 break; 3625 case 2: 3626 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3627 switch (el) { 3628 case 3: 3629 mmu_idx = ARMMMUIdx_SE10_0; 3630 break; 3631 case 2: 3632 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3633 mmu_idx = ARMMMUIdx_Stage1_E0; 3634 break; 3635 case 1: 3636 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3637 break; 3638 default: 3639 g_assert_not_reached(); 3640 } 3641 break; 3642 case 4: 3643 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3644 mmu_idx = ARMMMUIdx_E10_1; 3645 break; 3646 case 6: 3647 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3648 mmu_idx = ARMMMUIdx_E10_0; 3649 break; 3650 default: 3651 g_assert_not_reached(); 3652 } 3653 3654 par64 = do_ats_write(env, value, access_type, mmu_idx); 3655 3656 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3657 #else 3658 /* Handled by hardware accelerator. */ 3659 g_assert_not_reached(); 3660 #endif /* CONFIG_TCG */ 3661 } 3662 3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3664 uint64_t value) 3665 { 3666 #ifdef CONFIG_TCG 3667 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3668 uint64_t par64; 3669 3670 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3671 3672 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3673 #else 3674 /* Handled by hardware accelerator. */ 3675 g_assert_not_reached(); 3676 #endif /* CONFIG_TCG */ 3677 } 3678 3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3680 bool isread) 3681 { 3682 if (arm_current_el(env) == 3 && 3683 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3684 return CP_ACCESS_TRAP; 3685 } 3686 return CP_ACCESS_OK; 3687 } 3688 3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3690 uint64_t value) 3691 { 3692 #ifdef CONFIG_TCG 3693 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3694 ARMMMUIdx mmu_idx; 3695 int secure = arm_is_secure_below_el3(env); 3696 3697 switch (ri->opc2 & 6) { 3698 case 0: 3699 switch (ri->opc1) { 3700 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3701 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3702 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3703 : ARMMMUIdx_Stage1_E1_PAN); 3704 } else { 3705 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3706 } 3707 break; 3708 case 4: /* AT S1E2R, AT S1E2W */ 3709 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3710 break; 3711 case 6: /* AT S1E3R, AT S1E3W */ 3712 mmu_idx = ARMMMUIdx_SE3; 3713 break; 3714 default: 3715 g_assert_not_reached(); 3716 } 3717 break; 3718 case 2: /* AT S1E0R, AT S1E0W */ 3719 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3720 break; 3721 case 4: /* AT S12E1R, AT S12E1W */ 3722 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3723 break; 3724 case 6: /* AT S12E0R, AT S12E0W */ 3725 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3726 break; 3727 default: 3728 g_assert_not_reached(); 3729 } 3730 3731 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3732 #else 3733 /* Handled by hardware accelerator. */ 3734 g_assert_not_reached(); 3735 #endif /* CONFIG_TCG */ 3736 } 3737 #endif 3738 3739 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3740 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3741 .access = PL1_RW, .resetvalue = 0, 3742 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3743 offsetoflow32(CPUARMState, cp15.par_ns) }, 3744 .writefn = par_write }, 3745 #ifndef CONFIG_USER_ONLY 3746 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3747 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3748 .access = PL1_W, .accessfn = ats_access, 3749 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3750 #endif 3751 REGINFO_SENTINEL 3752 }; 3753 3754 /* Return basic MPU access permission bits. */ 3755 static uint32_t simple_mpu_ap_bits(uint32_t val) 3756 { 3757 uint32_t ret; 3758 uint32_t mask; 3759 int i; 3760 ret = 0; 3761 mask = 3; 3762 for (i = 0; i < 16; i += 2) { 3763 ret |= (val >> i) & mask; 3764 mask <<= 2; 3765 } 3766 return ret; 3767 } 3768 3769 /* Pad basic MPU access permission bits to extended format. */ 3770 static uint32_t extended_mpu_ap_bits(uint32_t val) 3771 { 3772 uint32_t ret; 3773 uint32_t mask; 3774 int i; 3775 ret = 0; 3776 mask = 3; 3777 for (i = 0; i < 16; i += 2) { 3778 ret |= (val & mask) << i; 3779 mask <<= 2; 3780 } 3781 return ret; 3782 } 3783 3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3788 } 3789 3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3791 { 3792 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3793 } 3794 3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3796 uint64_t value) 3797 { 3798 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3799 } 3800 3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3802 { 3803 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3804 } 3805 3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3807 { 3808 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3809 3810 if (!u32p) { 3811 return 0; 3812 } 3813 3814 u32p += env->pmsav7.rnr[M_REG_NS]; 3815 return *u32p; 3816 } 3817 3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3819 uint64_t value) 3820 { 3821 ARMCPU *cpu = env_archcpu(env); 3822 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3823 3824 if (!u32p) { 3825 return; 3826 } 3827 3828 u32p += env->pmsav7.rnr[M_REG_NS]; 3829 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3830 *u32p = value; 3831 } 3832 3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3834 uint64_t value) 3835 { 3836 ARMCPU *cpu = env_archcpu(env); 3837 uint32_t nrgs = cpu->pmsav7_dregion; 3838 3839 if (value >= nrgs) { 3840 qemu_log_mask(LOG_GUEST_ERROR, 3841 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3842 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3843 return; 3844 } 3845 3846 raw_write(env, ri, value); 3847 } 3848 3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3850 /* Reset for all these registers is handled in arm_cpu_reset(), 3851 * because the PMSAv7 is also used by M-profile CPUs, which do 3852 * not register cpregs but still need the state to be reset. 3853 */ 3854 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3855 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3856 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3857 .readfn = pmsav7_read, .writefn = pmsav7_write, 3858 .resetfn = arm_cp_reset_ignore }, 3859 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3860 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3861 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3862 .readfn = pmsav7_read, .writefn = pmsav7_write, 3863 .resetfn = arm_cp_reset_ignore }, 3864 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3865 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3866 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3867 .readfn = pmsav7_read, .writefn = pmsav7_write, 3868 .resetfn = arm_cp_reset_ignore }, 3869 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3870 .access = PL1_RW, 3871 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3872 .writefn = pmsav7_rgnr_write, 3873 .resetfn = arm_cp_reset_ignore }, 3874 REGINFO_SENTINEL 3875 }; 3876 3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3878 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3879 .access = PL1_RW, .type = ARM_CP_ALIAS, 3880 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3881 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3882 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3883 .access = PL1_RW, .type = ARM_CP_ALIAS, 3884 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3885 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3886 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3887 .access = PL1_RW, 3888 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3889 .resetvalue = 0, }, 3890 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3891 .access = PL1_RW, 3892 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3893 .resetvalue = 0, }, 3894 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3895 .access = PL1_RW, 3896 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3897 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3898 .access = PL1_RW, 3899 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3900 /* Protection region base and size registers */ 3901 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3902 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3903 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3904 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3905 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3906 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3907 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3908 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3909 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3910 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3911 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3912 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3913 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3914 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3915 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3916 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3917 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3918 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3919 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3920 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3922 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3923 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3925 REGINFO_SENTINEL 3926 }; 3927 3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3929 uint64_t value) 3930 { 3931 TCR *tcr = raw_ptr(env, ri); 3932 int maskshift = extract32(value, 0, 3); 3933 3934 if (!arm_feature(env, ARM_FEATURE_V8)) { 3935 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3936 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3937 * using Long-desciptor translation table format */ 3938 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3939 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3940 /* In an implementation that includes the Security Extensions 3941 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3942 * Short-descriptor translation table format. 3943 */ 3944 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3945 } else { 3946 value &= TTBCR_N; 3947 } 3948 } 3949 3950 /* Update the masks corresponding to the TCR bank being written 3951 * Note that we always calculate mask and base_mask, but 3952 * they are only used for short-descriptor tables (ie if EAE is 0); 3953 * for long-descriptor tables the TCR fields are used differently 3954 * and the mask and base_mask values are meaningless. 3955 */ 3956 tcr->raw_tcr = value; 3957 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3958 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3959 } 3960 3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3962 uint64_t value) 3963 { 3964 ARMCPU *cpu = env_archcpu(env); 3965 TCR *tcr = raw_ptr(env, ri); 3966 3967 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3968 /* With LPAE the TTBCR could result in a change of ASID 3969 * via the TTBCR.A1 bit, so do a TLB flush. 3970 */ 3971 tlb_flush(CPU(cpu)); 3972 } 3973 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3974 value = deposit64(tcr->raw_tcr, 0, 32, value); 3975 vmsa_ttbcr_raw_write(env, ri, value); 3976 } 3977 3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3979 { 3980 TCR *tcr = raw_ptr(env, ri); 3981 3982 /* Reset both the TCR as well as the masks corresponding to the bank of 3983 * the TCR being reset. 3984 */ 3985 tcr->raw_tcr = 0; 3986 tcr->mask = 0; 3987 tcr->base_mask = 0xffffc000u; 3988 } 3989 3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3991 uint64_t value) 3992 { 3993 ARMCPU *cpu = env_archcpu(env); 3994 TCR *tcr = raw_ptr(env, ri); 3995 3996 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3997 tlb_flush(CPU(cpu)); 3998 tcr->raw_tcr = value; 3999 } 4000 4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4002 uint64_t value) 4003 { 4004 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4005 if (cpreg_field_is_64bit(ri) && 4006 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4007 ARMCPU *cpu = env_archcpu(env); 4008 tlb_flush(CPU(cpu)); 4009 } 4010 raw_write(env, ri, value); 4011 } 4012 4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4014 uint64_t value) 4015 { 4016 /* 4017 * If we are running with E2&0 regime, then an ASID is active. 4018 * Flush if that might be changing. Note we're not checking 4019 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4020 * holds the active ASID, only checking the field that might. 4021 */ 4022 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4023 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4024 uint16_t mask = ARMMMUIdxBit_E20_2 | 4025 ARMMMUIdxBit_E20_2_PAN | 4026 ARMMMUIdxBit_E20_0; 4027 4028 if (arm_is_secure_below_el3(env)) { 4029 mask >>= ARM_MMU_IDX_A_NS; 4030 } 4031 4032 tlb_flush_by_mmuidx(env_cpu(env), mask); 4033 } 4034 raw_write(env, ri, value); 4035 } 4036 4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4038 uint64_t value) 4039 { 4040 ARMCPU *cpu = env_archcpu(env); 4041 CPUState *cs = CPU(cpu); 4042 4043 /* 4044 * A change in VMID to the stage2 page table (Stage2) invalidates 4045 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4046 */ 4047 if (raw_read(env, ri) != value) { 4048 uint16_t mask = ARMMMUIdxBit_E10_1 | 4049 ARMMMUIdxBit_E10_1_PAN | 4050 ARMMMUIdxBit_E10_0; 4051 4052 if (arm_is_secure_below_el3(env)) { 4053 mask >>= ARM_MMU_IDX_A_NS; 4054 } 4055 4056 tlb_flush_by_mmuidx(cs, mask); 4057 raw_write(env, ri, value); 4058 } 4059 } 4060 4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4062 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4063 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4064 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4065 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4066 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4067 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4068 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4069 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4070 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4071 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4072 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4073 offsetof(CPUARMState, cp15.dfar_ns) } }, 4074 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4075 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4076 .access = PL1_RW, .accessfn = access_tvm_trvm, 4077 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4078 .resetvalue = 0, }, 4079 REGINFO_SENTINEL 4080 }; 4081 4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4083 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4084 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4085 .access = PL1_RW, .accessfn = access_tvm_trvm, 4086 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4087 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4088 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4089 .access = PL1_RW, .accessfn = access_tvm_trvm, 4090 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4092 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4093 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4094 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4095 .access = PL1_RW, .accessfn = access_tvm_trvm, 4096 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4098 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4099 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4100 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4101 .access = PL1_RW, .accessfn = access_tvm_trvm, 4102 .writefn = vmsa_tcr_el12_write, 4103 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4104 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4105 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4106 .access = PL1_RW, .accessfn = access_tvm_trvm, 4107 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4108 .raw_writefn = vmsa_ttbcr_raw_write, 4109 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 4110 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 4111 offsetof(CPUARMState, cp15.tcr_el[1])} }, 4112 REGINFO_SENTINEL 4113 }; 4114 4115 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4116 * qemu tlbs nor adjusting cached masks. 4117 */ 4118 static const ARMCPRegInfo ttbcr2_reginfo = { 4119 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4120 .access = PL1_RW, .accessfn = access_tvm_trvm, 4121 .type = ARM_CP_ALIAS, 4122 .bank_fieldoffsets = { 4123 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 4124 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 4125 }, 4126 }; 4127 4128 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 env->cp15.c15_ticonfig = value & 0xe7; 4132 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4133 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4134 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4135 } 4136 4137 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4138 uint64_t value) 4139 { 4140 env->cp15.c15_threadid = value & 0xffff; 4141 } 4142 4143 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4144 uint64_t value) 4145 { 4146 /* Wait-for-interrupt (deprecated) */ 4147 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4148 } 4149 4150 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4151 uint64_t value) 4152 { 4153 /* On OMAP there are registers indicating the max/min index of dcache lines 4154 * containing a dirty line; cache flush operations have to reset these. 4155 */ 4156 env->cp15.c15_i_max = 0x000; 4157 env->cp15.c15_i_min = 0xff0; 4158 } 4159 4160 static const ARMCPRegInfo omap_cp_reginfo[] = { 4161 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4162 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4163 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4164 .resetvalue = 0, }, 4165 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4166 .access = PL1_RW, .type = ARM_CP_NOP }, 4167 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4168 .access = PL1_RW, 4169 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4170 .writefn = omap_ticonfig_write }, 4171 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4172 .access = PL1_RW, 4173 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4174 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4175 .access = PL1_RW, .resetvalue = 0xff0, 4176 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4177 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4178 .access = PL1_RW, 4179 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4180 .writefn = omap_threadid_write }, 4181 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4182 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4183 .type = ARM_CP_NO_RAW, 4184 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4185 /* TODO: Peripheral port remap register: 4186 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4187 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4188 * when MMU is off. 4189 */ 4190 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4191 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4192 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4193 .writefn = omap_cachemaint_write }, 4194 { .name = "C9", .cp = 15, .crn = 9, 4195 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4196 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4197 REGINFO_SENTINEL 4198 }; 4199 4200 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4201 uint64_t value) 4202 { 4203 env->cp15.c15_cpar = value & 0x3fff; 4204 } 4205 4206 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4207 { .name = "XSCALE_CPAR", 4208 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4209 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4210 .writefn = xscale_cpar_write, }, 4211 { .name = "XSCALE_AUXCR", 4212 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4213 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4214 .resetvalue = 0, }, 4215 /* XScale specific cache-lockdown: since we have no cache we NOP these 4216 * and hope the guest does not really rely on cache behaviour. 4217 */ 4218 { .name = "XSCALE_LOCK_ICACHE_LINE", 4219 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4220 .access = PL1_W, .type = ARM_CP_NOP }, 4221 { .name = "XSCALE_UNLOCK_ICACHE", 4222 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4223 .access = PL1_W, .type = ARM_CP_NOP }, 4224 { .name = "XSCALE_DCACHE_LOCK", 4225 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4226 .access = PL1_RW, .type = ARM_CP_NOP }, 4227 { .name = "XSCALE_UNLOCK_DCACHE", 4228 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4229 .access = PL1_W, .type = ARM_CP_NOP }, 4230 REGINFO_SENTINEL 4231 }; 4232 4233 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4234 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4235 * implementation of this implementation-defined space. 4236 * Ideally this should eventually disappear in favour of actually 4237 * implementing the correct behaviour for all cores. 4238 */ 4239 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4240 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4241 .access = PL1_RW, 4242 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4243 .resetvalue = 0 }, 4244 REGINFO_SENTINEL 4245 }; 4246 4247 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4248 /* Cache status: RAZ because we have no cache so it's always clean */ 4249 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4250 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4251 .resetvalue = 0 }, 4252 REGINFO_SENTINEL 4253 }; 4254 4255 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4256 /* We never have a a block transfer operation in progress */ 4257 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4258 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4259 .resetvalue = 0 }, 4260 /* The cache ops themselves: these all NOP for QEMU */ 4261 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4262 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4263 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4264 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4265 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4266 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4267 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4268 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4269 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4270 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4271 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4272 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4273 REGINFO_SENTINEL 4274 }; 4275 4276 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4277 /* The cache test-and-clean instructions always return (1 << 30) 4278 * to indicate that there are no dirty cache lines. 4279 */ 4280 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4281 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4282 .resetvalue = (1 << 30) }, 4283 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4284 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4285 .resetvalue = (1 << 30) }, 4286 REGINFO_SENTINEL 4287 }; 4288 4289 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4290 /* Ignore ReadBuffer accesses */ 4291 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4292 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4293 .access = PL1_RW, .resetvalue = 0, 4294 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4295 REGINFO_SENTINEL 4296 }; 4297 4298 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4299 { 4300 unsigned int cur_el = arm_current_el(env); 4301 4302 if (arm_is_el2_enabled(env) && cur_el == 1) { 4303 return env->cp15.vpidr_el2; 4304 } 4305 return raw_read(env, ri); 4306 } 4307 4308 static uint64_t mpidr_read_val(CPUARMState *env) 4309 { 4310 ARMCPU *cpu = env_archcpu(env); 4311 uint64_t mpidr = cpu->mp_affinity; 4312 4313 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4314 mpidr |= (1U << 31); 4315 /* Cores which are uniprocessor (non-coherent) 4316 * but still implement the MP extensions set 4317 * bit 30. (For instance, Cortex-R5). 4318 */ 4319 if (cpu->mp_is_up) { 4320 mpidr |= (1u << 30); 4321 } 4322 } 4323 return mpidr; 4324 } 4325 4326 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4327 { 4328 unsigned int cur_el = arm_current_el(env); 4329 4330 if (arm_is_el2_enabled(env) && cur_el == 1) { 4331 return env->cp15.vmpidr_el2; 4332 } 4333 return mpidr_read_val(env); 4334 } 4335 4336 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4337 /* NOP AMAIR0/1 */ 4338 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4339 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4340 .access = PL1_RW, .accessfn = access_tvm_trvm, 4341 .type = ARM_CP_CONST, .resetvalue = 0 }, 4342 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4343 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4344 .access = PL1_RW, .accessfn = access_tvm_trvm, 4345 .type = ARM_CP_CONST, .resetvalue = 0 }, 4346 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4347 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4348 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4349 offsetof(CPUARMState, cp15.par_ns)} }, 4350 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4351 .access = PL1_RW, .accessfn = access_tvm_trvm, 4352 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4353 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4354 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4355 .writefn = vmsa_ttbr_write, }, 4356 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4357 .access = PL1_RW, .accessfn = access_tvm_trvm, 4358 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4360 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4361 .writefn = vmsa_ttbr_write, }, 4362 REGINFO_SENTINEL 4363 }; 4364 4365 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4366 { 4367 return vfp_get_fpcr(env); 4368 } 4369 4370 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4371 uint64_t value) 4372 { 4373 vfp_set_fpcr(env, value); 4374 } 4375 4376 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4377 { 4378 return vfp_get_fpsr(env); 4379 } 4380 4381 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4382 uint64_t value) 4383 { 4384 vfp_set_fpsr(env, value); 4385 } 4386 4387 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4388 bool isread) 4389 { 4390 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4391 return CP_ACCESS_TRAP; 4392 } 4393 return CP_ACCESS_OK; 4394 } 4395 4396 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4397 uint64_t value) 4398 { 4399 env->daif = value & PSTATE_DAIF; 4400 } 4401 4402 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4403 { 4404 return env->pstate & PSTATE_PAN; 4405 } 4406 4407 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4408 uint64_t value) 4409 { 4410 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4411 } 4412 4413 static const ARMCPRegInfo pan_reginfo = { 4414 .name = "PAN", .state = ARM_CP_STATE_AA64, 4415 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4416 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4417 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4418 }; 4419 4420 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4421 { 4422 return env->pstate & PSTATE_UAO; 4423 } 4424 4425 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4426 uint64_t value) 4427 { 4428 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4429 } 4430 4431 static const ARMCPRegInfo uao_reginfo = { 4432 .name = "UAO", .state = ARM_CP_STATE_AA64, 4433 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4434 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4435 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4436 }; 4437 4438 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4439 { 4440 return env->pstate & PSTATE_DIT; 4441 } 4442 4443 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4444 uint64_t value) 4445 { 4446 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4447 } 4448 4449 static const ARMCPRegInfo dit_reginfo = { 4450 .name = "DIT", .state = ARM_CP_STATE_AA64, 4451 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4452 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4453 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4454 }; 4455 4456 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4457 { 4458 return env->pstate & PSTATE_SSBS; 4459 } 4460 4461 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4462 uint64_t value) 4463 { 4464 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4465 } 4466 4467 static const ARMCPRegInfo ssbs_reginfo = { 4468 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4469 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4470 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4471 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4472 }; 4473 4474 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4475 const ARMCPRegInfo *ri, 4476 bool isread) 4477 { 4478 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4479 switch (arm_current_el(env)) { 4480 case 0: 4481 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4482 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4483 return CP_ACCESS_TRAP; 4484 } 4485 /* fall through */ 4486 case 1: 4487 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4488 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4489 return CP_ACCESS_TRAP_EL2; 4490 } 4491 break; 4492 } 4493 return CP_ACCESS_OK; 4494 } 4495 4496 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4497 const ARMCPRegInfo *ri, 4498 bool isread) 4499 { 4500 /* Cache invalidate/clean to Point of Unification... */ 4501 switch (arm_current_el(env)) { 4502 case 0: 4503 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4504 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4505 return CP_ACCESS_TRAP; 4506 } 4507 /* fall through */ 4508 case 1: 4509 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4510 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4511 return CP_ACCESS_TRAP_EL2; 4512 } 4513 break; 4514 } 4515 return CP_ACCESS_OK; 4516 } 4517 4518 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4519 * Page D4-1736 (DDI0487A.b) 4520 */ 4521 4522 static int vae1_tlbmask(CPUARMState *env) 4523 { 4524 uint64_t hcr = arm_hcr_el2_eff(env); 4525 uint16_t mask; 4526 4527 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4528 mask = ARMMMUIdxBit_E20_2 | 4529 ARMMMUIdxBit_E20_2_PAN | 4530 ARMMMUIdxBit_E20_0; 4531 } else { 4532 mask = ARMMMUIdxBit_E10_1 | 4533 ARMMMUIdxBit_E10_1_PAN | 4534 ARMMMUIdxBit_E10_0; 4535 } 4536 4537 if (arm_is_secure_below_el3(env)) { 4538 mask >>= ARM_MMU_IDX_A_NS; 4539 } 4540 4541 return mask; 4542 } 4543 4544 /* Return 56 if TBI is enabled, 64 otherwise. */ 4545 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4546 uint64_t addr) 4547 { 4548 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4549 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4550 int select = extract64(addr, 55, 1); 4551 4552 return (tbi >> select) & 1 ? 56 : 64; 4553 } 4554 4555 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4556 { 4557 uint64_t hcr = arm_hcr_el2_eff(env); 4558 ARMMMUIdx mmu_idx; 4559 4560 /* Only the regime of the mmu_idx below is significant. */ 4561 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4562 mmu_idx = ARMMMUIdx_E20_0; 4563 } else { 4564 mmu_idx = ARMMMUIdx_E10_0; 4565 } 4566 4567 if (arm_is_secure_below_el3(env)) { 4568 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4569 } 4570 4571 return tlbbits_for_regime(env, mmu_idx, addr); 4572 } 4573 4574 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4575 uint64_t value) 4576 { 4577 CPUState *cs = env_cpu(env); 4578 int mask = vae1_tlbmask(env); 4579 4580 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4581 } 4582 4583 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4584 uint64_t value) 4585 { 4586 CPUState *cs = env_cpu(env); 4587 int mask = vae1_tlbmask(env); 4588 4589 if (tlb_force_broadcast(env)) { 4590 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4591 } else { 4592 tlb_flush_by_mmuidx(cs, mask); 4593 } 4594 } 4595 4596 static int alle1_tlbmask(CPUARMState *env) 4597 { 4598 /* 4599 * Note that the 'ALL' scope must invalidate both stage 1 and 4600 * stage 2 translations, whereas most other scopes only invalidate 4601 * stage 1 translations. 4602 */ 4603 if (arm_is_secure_below_el3(env)) { 4604 return ARMMMUIdxBit_SE10_1 | 4605 ARMMMUIdxBit_SE10_1_PAN | 4606 ARMMMUIdxBit_SE10_0; 4607 } else { 4608 return ARMMMUIdxBit_E10_1 | 4609 ARMMMUIdxBit_E10_1_PAN | 4610 ARMMMUIdxBit_E10_0; 4611 } 4612 } 4613 4614 static int e2_tlbmask(CPUARMState *env) 4615 { 4616 if (arm_is_secure_below_el3(env)) { 4617 return ARMMMUIdxBit_SE20_0 | 4618 ARMMMUIdxBit_SE20_2 | 4619 ARMMMUIdxBit_SE20_2_PAN | 4620 ARMMMUIdxBit_SE2; 4621 } else { 4622 return ARMMMUIdxBit_E20_0 | 4623 ARMMMUIdxBit_E20_2 | 4624 ARMMMUIdxBit_E20_2_PAN | 4625 ARMMMUIdxBit_E2; 4626 } 4627 } 4628 4629 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4630 uint64_t value) 4631 { 4632 CPUState *cs = env_cpu(env); 4633 int mask = alle1_tlbmask(env); 4634 4635 tlb_flush_by_mmuidx(cs, mask); 4636 } 4637 4638 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4639 uint64_t value) 4640 { 4641 CPUState *cs = env_cpu(env); 4642 int mask = e2_tlbmask(env); 4643 4644 tlb_flush_by_mmuidx(cs, mask); 4645 } 4646 4647 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4648 uint64_t value) 4649 { 4650 ARMCPU *cpu = env_archcpu(env); 4651 CPUState *cs = CPU(cpu); 4652 4653 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4654 } 4655 4656 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4657 uint64_t value) 4658 { 4659 CPUState *cs = env_cpu(env); 4660 int mask = alle1_tlbmask(env); 4661 4662 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4663 } 4664 4665 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4666 uint64_t value) 4667 { 4668 CPUState *cs = env_cpu(env); 4669 int mask = e2_tlbmask(env); 4670 4671 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4672 } 4673 4674 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4675 uint64_t value) 4676 { 4677 CPUState *cs = env_cpu(env); 4678 4679 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4680 } 4681 4682 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4683 uint64_t value) 4684 { 4685 /* Invalidate by VA, EL2 4686 * Currently handles both VAE2 and VALE2, since we don't support 4687 * flush-last-level-only. 4688 */ 4689 CPUState *cs = env_cpu(env); 4690 int mask = e2_tlbmask(env); 4691 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4692 4693 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4694 } 4695 4696 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4697 uint64_t value) 4698 { 4699 /* Invalidate by VA, EL3 4700 * Currently handles both VAE3 and VALE3, since we don't support 4701 * flush-last-level-only. 4702 */ 4703 ARMCPU *cpu = env_archcpu(env); 4704 CPUState *cs = CPU(cpu); 4705 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4706 4707 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4708 } 4709 4710 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4711 uint64_t value) 4712 { 4713 CPUState *cs = env_cpu(env); 4714 int mask = vae1_tlbmask(env); 4715 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4716 int bits = vae1_tlbbits(env, pageaddr); 4717 4718 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4719 } 4720 4721 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4722 uint64_t value) 4723 { 4724 /* Invalidate by VA, EL1&0 (AArch64 version). 4725 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4726 * since we don't support flush-for-specific-ASID-only or 4727 * flush-last-level-only. 4728 */ 4729 CPUState *cs = env_cpu(env); 4730 int mask = vae1_tlbmask(env); 4731 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4732 int bits = vae1_tlbbits(env, pageaddr); 4733 4734 if (tlb_force_broadcast(env)) { 4735 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4736 } else { 4737 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4738 } 4739 } 4740 4741 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4742 uint64_t value) 4743 { 4744 CPUState *cs = env_cpu(env); 4745 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4746 bool secure = arm_is_secure_below_el3(env); 4747 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4748 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4749 pageaddr); 4750 4751 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4752 } 4753 4754 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4755 uint64_t value) 4756 { 4757 CPUState *cs = env_cpu(env); 4758 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4759 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4760 4761 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4762 ARMMMUIdxBit_SE3, bits); 4763 } 4764 4765 #ifdef TARGET_AARCH64 4766 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env, 4767 uint64_t value) 4768 { 4769 unsigned int page_shift; 4770 unsigned int page_size_granule; 4771 uint64_t num; 4772 uint64_t scale; 4773 uint64_t exponent; 4774 uint64_t length; 4775 4776 num = extract64(value, 39, 4); 4777 scale = extract64(value, 44, 2); 4778 page_size_granule = extract64(value, 46, 2); 4779 4780 page_shift = page_size_granule * 2 + 12; 4781 4782 if (page_size_granule == 0) { 4783 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n", 4784 page_size_granule); 4785 return 0; 4786 } 4787 4788 exponent = (5 * scale) + 1; 4789 length = (num + 1) << (exponent + page_shift); 4790 4791 return length; 4792 } 4793 4794 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value, 4795 bool two_ranges) 4796 { 4797 /* TODO: ARMv8.7 FEAT_LPA2 */ 4798 uint64_t pageaddr; 4799 4800 if (two_ranges) { 4801 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS; 4802 } else { 4803 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS; 4804 } 4805 4806 return pageaddr; 4807 } 4808 4809 static void do_rvae_write(CPUARMState *env, uint64_t value, 4810 int idxmap, bool synced) 4811 { 4812 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4813 bool two_ranges = regime_has_2_ranges(one_idx); 4814 uint64_t baseaddr, length; 4815 int bits; 4816 4817 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges); 4818 length = tlbi_aa64_range_get_length(env, value); 4819 bits = tlbbits_for_regime(env, one_idx, baseaddr); 4820 4821 if (synced) { 4822 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4823 baseaddr, 4824 length, 4825 idxmap, 4826 bits); 4827 } else { 4828 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr, 4829 length, idxmap, bits); 4830 } 4831 } 4832 4833 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4834 const ARMCPRegInfo *ri, 4835 uint64_t value) 4836 { 4837 /* 4838 * Invalidate by VA range, EL1&0. 4839 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4840 * since we don't support flush-for-specific-ASID-only or 4841 * flush-last-level-only. 4842 */ 4843 4844 do_rvae_write(env, value, vae1_tlbmask(env), 4845 tlb_force_broadcast(env)); 4846 } 4847 4848 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4849 const ARMCPRegInfo *ri, 4850 uint64_t value) 4851 { 4852 /* 4853 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4854 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4855 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4856 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4857 * shareable specific flushes. 4858 */ 4859 4860 do_rvae_write(env, value, vae1_tlbmask(env), true); 4861 } 4862 4863 static int vae2_tlbmask(CPUARMState *env) 4864 { 4865 return (arm_is_secure_below_el3(env) 4866 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4867 } 4868 4869 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4870 const ARMCPRegInfo *ri, 4871 uint64_t value) 4872 { 4873 /* 4874 * Invalidate by VA range, EL2. 4875 * Currently handles all of RVAE2 and RVALE2, 4876 * since we don't support flush-for-specific-ASID-only or 4877 * flush-last-level-only. 4878 */ 4879 4880 do_rvae_write(env, value, vae2_tlbmask(env), 4881 tlb_force_broadcast(env)); 4882 4883 4884 } 4885 4886 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4887 const ARMCPRegInfo *ri, 4888 uint64_t value) 4889 { 4890 /* 4891 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4892 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4893 * since we don't support flush-for-specific-ASID-only, 4894 * flush-last-level-only or inner/outer shareable specific flushes. 4895 */ 4896 4897 do_rvae_write(env, value, vae2_tlbmask(env), true); 4898 4899 } 4900 4901 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4902 const ARMCPRegInfo *ri, 4903 uint64_t value) 4904 { 4905 /* 4906 * Invalidate by VA range, EL3. 4907 * Currently handles all of RVAE3 and RVALE3, 4908 * since we don't support flush-for-specific-ASID-only or 4909 * flush-last-level-only. 4910 */ 4911 4912 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4913 tlb_force_broadcast(env)); 4914 } 4915 4916 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4917 const ARMCPRegInfo *ri, 4918 uint64_t value) 4919 { 4920 /* 4921 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4922 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4923 * since we don't support flush-for-specific-ASID-only, 4924 * flush-last-level-only or inner/outer specific flushes. 4925 */ 4926 4927 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4928 } 4929 #endif 4930 4931 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4932 bool isread) 4933 { 4934 int cur_el = arm_current_el(env); 4935 4936 if (cur_el < 2) { 4937 uint64_t hcr = arm_hcr_el2_eff(env); 4938 4939 if (cur_el == 0) { 4940 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4941 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4942 return CP_ACCESS_TRAP_EL2; 4943 } 4944 } else { 4945 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4946 return CP_ACCESS_TRAP; 4947 } 4948 if (hcr & HCR_TDZ) { 4949 return CP_ACCESS_TRAP_EL2; 4950 } 4951 } 4952 } else if (hcr & HCR_TDZ) { 4953 return CP_ACCESS_TRAP_EL2; 4954 } 4955 } 4956 return CP_ACCESS_OK; 4957 } 4958 4959 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4960 { 4961 ARMCPU *cpu = env_archcpu(env); 4962 int dzp_bit = 1 << 4; 4963 4964 /* DZP indicates whether DC ZVA access is allowed */ 4965 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4966 dzp_bit = 0; 4967 } 4968 return cpu->dcz_blocksize | dzp_bit; 4969 } 4970 4971 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4972 bool isread) 4973 { 4974 if (!(env->pstate & PSTATE_SP)) { 4975 /* Access to SP_EL0 is undefined if it's being used as 4976 * the stack pointer. 4977 */ 4978 return CP_ACCESS_TRAP_UNCATEGORIZED; 4979 } 4980 return CP_ACCESS_OK; 4981 } 4982 4983 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4984 { 4985 return env->pstate & PSTATE_SP; 4986 } 4987 4988 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4989 { 4990 update_spsel(env, val); 4991 } 4992 4993 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4994 uint64_t value) 4995 { 4996 ARMCPU *cpu = env_archcpu(env); 4997 4998 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4999 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5000 value &= ~SCTLR_M; 5001 } 5002 5003 /* ??? Lots of these bits are not implemented. */ 5004 5005 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5006 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5007 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5008 } else { 5009 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5010 SCTLR_ATA0 | SCTLR_ATA); 5011 } 5012 } 5013 5014 if (raw_read(env, ri) == value) { 5015 /* Skip the TLB flush if nothing actually changed; Linux likes 5016 * to do a lot of pointless SCTLR writes. 5017 */ 5018 return; 5019 } 5020 5021 raw_write(env, ri, value); 5022 5023 /* This may enable/disable the MMU, so do a TLB flush. */ 5024 tlb_flush(CPU(cpu)); 5025 5026 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 5027 /* 5028 * Normally we would always end the TB on an SCTLR write; see the 5029 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5030 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5031 * of hflags from the translator, so do it here. 5032 */ 5033 arm_rebuild_hflags(env); 5034 } 5035 } 5036 5037 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 5038 bool isread) 5039 { 5040 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 5041 return CP_ACCESS_TRAP_FP_EL2; 5042 } 5043 if (env->cp15.cptr_el[3] & CPTR_TFP) { 5044 return CP_ACCESS_TRAP_FP_EL3; 5045 } 5046 return CP_ACCESS_OK; 5047 } 5048 5049 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5050 uint64_t value) 5051 { 5052 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 5053 } 5054 5055 static const ARMCPRegInfo v8_cp_reginfo[] = { 5056 /* Minimal set of EL0-visible registers. This will need to be expanded 5057 * significantly for system emulation of AArch64 CPUs. 5058 */ 5059 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5060 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5061 .access = PL0_RW, .type = ARM_CP_NZCV }, 5062 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5063 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5064 .type = ARM_CP_NO_RAW, 5065 .access = PL0_RW, .accessfn = aa64_daif_access, 5066 .fieldoffset = offsetof(CPUARMState, daif), 5067 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5068 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5069 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5070 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5071 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5072 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5073 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5074 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5075 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5076 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5077 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5078 .access = PL0_R, .type = ARM_CP_NO_RAW, 5079 .readfn = aa64_dczid_read }, 5080 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5081 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5082 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5083 #ifndef CONFIG_USER_ONLY 5084 /* Avoid overhead of an access check that always passes in user-mode */ 5085 .accessfn = aa64_zva_access, 5086 #endif 5087 }, 5088 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5090 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5091 /* Cache ops: all NOPs since we don't emulate caches */ 5092 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5093 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5094 .access = PL1_W, .type = ARM_CP_NOP, 5095 .accessfn = aa64_cacheop_pou_access }, 5096 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5097 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5098 .access = PL1_W, .type = ARM_CP_NOP, 5099 .accessfn = aa64_cacheop_pou_access }, 5100 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5101 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5102 .access = PL0_W, .type = ARM_CP_NOP, 5103 .accessfn = aa64_cacheop_pou_access }, 5104 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5105 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5106 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5107 .type = ARM_CP_NOP }, 5108 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5109 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5110 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5111 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5112 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5113 .access = PL0_W, .type = ARM_CP_NOP, 5114 .accessfn = aa64_cacheop_poc_access }, 5115 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5116 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5117 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5118 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5119 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5120 .access = PL0_W, .type = ARM_CP_NOP, 5121 .accessfn = aa64_cacheop_pou_access }, 5122 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5123 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5124 .access = PL0_W, .type = ARM_CP_NOP, 5125 .accessfn = aa64_cacheop_poc_access }, 5126 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5127 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5128 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5129 /* TLBI operations */ 5130 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5131 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5132 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5133 .writefn = tlbi_aa64_vmalle1is_write }, 5134 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5135 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5136 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5137 .writefn = tlbi_aa64_vae1is_write }, 5138 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5139 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5140 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5141 .writefn = tlbi_aa64_vmalle1is_write }, 5142 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5143 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5144 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5145 .writefn = tlbi_aa64_vae1is_write }, 5146 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5147 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5148 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5149 .writefn = tlbi_aa64_vae1is_write }, 5150 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5151 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5152 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5153 .writefn = tlbi_aa64_vae1is_write }, 5154 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5155 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5156 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5157 .writefn = tlbi_aa64_vmalle1_write }, 5158 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5159 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5160 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5161 .writefn = tlbi_aa64_vae1_write }, 5162 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5163 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5164 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5165 .writefn = tlbi_aa64_vmalle1_write }, 5166 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5167 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5168 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5169 .writefn = tlbi_aa64_vae1_write }, 5170 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5171 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5172 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5173 .writefn = tlbi_aa64_vae1_write }, 5174 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5175 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5176 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5177 .writefn = tlbi_aa64_vae1_write }, 5178 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5179 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5180 .access = PL2_W, .type = ARM_CP_NOP }, 5181 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5182 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5183 .access = PL2_W, .type = ARM_CP_NOP }, 5184 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5185 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5186 .access = PL2_W, .type = ARM_CP_NO_RAW, 5187 .writefn = tlbi_aa64_alle1is_write }, 5188 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5189 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5190 .access = PL2_W, .type = ARM_CP_NO_RAW, 5191 .writefn = tlbi_aa64_alle1is_write }, 5192 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5193 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5194 .access = PL2_W, .type = ARM_CP_NOP }, 5195 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5196 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5197 .access = PL2_W, .type = ARM_CP_NOP }, 5198 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5199 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5200 .access = PL2_W, .type = ARM_CP_NO_RAW, 5201 .writefn = tlbi_aa64_alle1_write }, 5202 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5203 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5204 .access = PL2_W, .type = ARM_CP_NO_RAW, 5205 .writefn = tlbi_aa64_alle1is_write }, 5206 #ifndef CONFIG_USER_ONLY 5207 /* 64 bit address translation operations */ 5208 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5209 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5210 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5211 .writefn = ats_write64 }, 5212 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5213 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5214 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5215 .writefn = ats_write64 }, 5216 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5217 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5218 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5219 .writefn = ats_write64 }, 5220 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5221 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5222 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5223 .writefn = ats_write64 }, 5224 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5225 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5226 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5227 .writefn = ats_write64 }, 5228 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5229 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5230 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5231 .writefn = ats_write64 }, 5232 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5233 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5234 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5235 .writefn = ats_write64 }, 5236 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5237 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5238 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5239 .writefn = ats_write64 }, 5240 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5241 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5242 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5243 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5244 .writefn = ats_write64 }, 5245 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5246 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5247 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5248 .writefn = ats_write64 }, 5249 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5250 .type = ARM_CP_ALIAS, 5251 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5252 .access = PL1_RW, .resetvalue = 0, 5253 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5254 .writefn = par_write }, 5255 #endif 5256 /* TLB invalidate last level of translation table walk */ 5257 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5258 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5259 .writefn = tlbimva_is_write }, 5260 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5261 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5262 .writefn = tlbimvaa_is_write }, 5263 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5264 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5265 .writefn = tlbimva_write }, 5266 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5267 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5268 .writefn = tlbimvaa_write }, 5269 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5270 .type = ARM_CP_NO_RAW, .access = PL2_W, 5271 .writefn = tlbimva_hyp_write }, 5272 { .name = "TLBIMVALHIS", 5273 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5274 .type = ARM_CP_NO_RAW, .access = PL2_W, 5275 .writefn = tlbimva_hyp_is_write }, 5276 { .name = "TLBIIPAS2", 5277 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5278 .type = ARM_CP_NOP, .access = PL2_W }, 5279 { .name = "TLBIIPAS2IS", 5280 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5281 .type = ARM_CP_NOP, .access = PL2_W }, 5282 { .name = "TLBIIPAS2L", 5283 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5284 .type = ARM_CP_NOP, .access = PL2_W }, 5285 { .name = "TLBIIPAS2LIS", 5286 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5287 .type = ARM_CP_NOP, .access = PL2_W }, 5288 /* 32 bit cache operations */ 5289 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5290 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5291 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5292 .type = ARM_CP_NOP, .access = PL1_W }, 5293 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5294 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5295 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5296 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5297 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5298 .type = ARM_CP_NOP, .access = PL1_W }, 5299 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5300 .type = ARM_CP_NOP, .access = PL1_W }, 5301 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5302 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5303 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5304 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5305 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5306 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5307 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5308 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5309 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5310 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5311 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5312 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5313 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5314 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5315 /* MMU Domain access control / MPU write buffer control */ 5316 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5317 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5318 .writefn = dacr_write, .raw_writefn = raw_write, 5319 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5320 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5321 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5322 .type = ARM_CP_ALIAS, 5323 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5324 .access = PL1_RW, 5325 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5326 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5327 .type = ARM_CP_ALIAS, 5328 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5329 .access = PL1_RW, 5330 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5331 /* We rely on the access checks not allowing the guest to write to the 5332 * state field when SPSel indicates that it's being used as the stack 5333 * pointer. 5334 */ 5335 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5336 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5337 .access = PL1_RW, .accessfn = sp_el0_access, 5338 .type = ARM_CP_ALIAS, 5339 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5340 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5341 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5342 .access = PL2_RW, .type = ARM_CP_ALIAS, 5343 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5344 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5345 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5346 .type = ARM_CP_NO_RAW, 5347 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5348 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5349 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5350 .type = ARM_CP_ALIAS, 5351 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5352 .access = PL2_RW, .accessfn = fpexc32_access }, 5353 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5354 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5355 .access = PL2_RW, .resetvalue = 0, 5356 .writefn = dacr_write, .raw_writefn = raw_write, 5357 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5358 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5359 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5360 .access = PL2_RW, .resetvalue = 0, 5361 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5362 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5363 .type = ARM_CP_ALIAS, 5364 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5365 .access = PL2_RW, 5366 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5367 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5368 .type = ARM_CP_ALIAS, 5369 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5370 .access = PL2_RW, 5371 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5372 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5373 .type = ARM_CP_ALIAS, 5374 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5375 .access = PL2_RW, 5376 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5377 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5378 .type = ARM_CP_ALIAS, 5379 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5380 .access = PL2_RW, 5381 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5382 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5383 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5384 .resetvalue = 0, 5385 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5386 { .name = "SDCR", .type = ARM_CP_ALIAS, 5387 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5388 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5389 .writefn = sdcr_write, 5390 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5391 REGINFO_SENTINEL 5392 }; 5393 5394 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5395 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5396 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5397 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5398 .access = PL2_RW, 5399 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5400 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5401 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5402 .access = PL2_RW, 5403 .type = ARM_CP_CONST, .resetvalue = 0 }, 5404 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5405 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5406 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5407 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5408 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5409 .access = PL2_RW, 5410 .type = ARM_CP_CONST, .resetvalue = 0 }, 5411 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5412 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5413 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5414 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5415 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5416 .access = PL2_RW, .type = ARM_CP_CONST, 5417 .resetvalue = 0 }, 5418 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5419 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5420 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5421 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5422 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5423 .access = PL2_RW, .type = ARM_CP_CONST, 5424 .resetvalue = 0 }, 5425 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5426 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5427 .access = PL2_RW, .type = ARM_CP_CONST, 5428 .resetvalue = 0 }, 5429 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5430 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5431 .access = PL2_RW, .type = ARM_CP_CONST, 5432 .resetvalue = 0 }, 5433 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5434 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5435 .access = PL2_RW, .type = ARM_CP_CONST, 5436 .resetvalue = 0 }, 5437 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5438 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5439 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5440 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5441 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5442 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5443 .type = ARM_CP_CONST, .resetvalue = 0 }, 5444 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5445 .cp = 15, .opc1 = 6, .crm = 2, 5446 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5447 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5448 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5449 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5450 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5451 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5452 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5453 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5454 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5455 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5456 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5457 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5458 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5459 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5460 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5461 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5462 .resetvalue = 0 }, 5463 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5464 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5465 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5466 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5467 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5468 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5469 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5470 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5471 .resetvalue = 0 }, 5472 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5473 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5474 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5475 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5476 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5477 .resetvalue = 0 }, 5478 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5479 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5480 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5481 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5482 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5483 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5484 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5485 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5486 .access = PL2_RW, .accessfn = access_tda, 5487 .type = ARM_CP_CONST, .resetvalue = 0 }, 5488 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5489 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5490 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5491 .type = ARM_CP_CONST, .resetvalue = 0 }, 5492 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5493 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5494 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5495 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5496 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5497 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5498 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5499 .type = ARM_CP_CONST, 5500 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5501 .access = PL2_RW, .resetvalue = 0 }, 5502 REGINFO_SENTINEL 5503 }; 5504 5505 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5506 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5507 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5508 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5509 .access = PL2_RW, 5510 .type = ARM_CP_CONST, .resetvalue = 0 }, 5511 REGINFO_SENTINEL 5512 }; 5513 5514 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5515 { 5516 ARMCPU *cpu = env_archcpu(env); 5517 5518 if (arm_feature(env, ARM_FEATURE_V8)) { 5519 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5520 } else { 5521 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5522 } 5523 5524 if (arm_feature(env, ARM_FEATURE_EL3)) { 5525 valid_mask &= ~HCR_HCD; 5526 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5527 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5528 * However, if we're using the SMC PSCI conduit then QEMU is 5529 * effectively acting like EL3 firmware and so the guest at 5530 * EL2 should retain the ability to prevent EL1 from being 5531 * able to make SMC calls into the ersatz firmware, so in 5532 * that case HCR.TSC should be read/write. 5533 */ 5534 valid_mask &= ~HCR_TSC; 5535 } 5536 5537 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5538 if (cpu_isar_feature(aa64_vh, cpu)) { 5539 valid_mask |= HCR_E2H; 5540 } 5541 if (cpu_isar_feature(aa64_lor, cpu)) { 5542 valid_mask |= HCR_TLOR; 5543 } 5544 if (cpu_isar_feature(aa64_pauth, cpu)) { 5545 valid_mask |= HCR_API | HCR_APK; 5546 } 5547 if (cpu_isar_feature(aa64_mte, cpu)) { 5548 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5549 } 5550 } 5551 5552 /* Clear RES0 bits. */ 5553 value &= valid_mask; 5554 5555 /* 5556 * These bits change the MMU setup: 5557 * HCR_VM enables stage 2 translation 5558 * HCR_PTW forbids certain page-table setups 5559 * HCR_DC disables stage1 and enables stage2 translation 5560 * HCR_DCT enables tagging on (disabled) stage1 translation 5561 */ 5562 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5563 tlb_flush(CPU(cpu)); 5564 } 5565 env->cp15.hcr_el2 = value; 5566 5567 /* 5568 * Updates to VI and VF require us to update the status of 5569 * virtual interrupts, which are the logical OR of these bits 5570 * and the state of the input lines from the GIC. (This requires 5571 * that we have the iothread lock, which is done by marking the 5572 * reginfo structs as ARM_CP_IO.) 5573 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5574 * possible for it to be taken immediately, because VIRQ and 5575 * VFIQ are masked unless running at EL0 or EL1, and HCR 5576 * can only be written at EL2. 5577 */ 5578 g_assert(qemu_mutex_iothread_locked()); 5579 arm_cpu_update_virq(cpu); 5580 arm_cpu_update_vfiq(cpu); 5581 } 5582 5583 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5584 { 5585 do_hcr_write(env, value, 0); 5586 } 5587 5588 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5589 uint64_t value) 5590 { 5591 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5592 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5593 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5594 } 5595 5596 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5597 uint64_t value) 5598 { 5599 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5600 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5601 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5602 } 5603 5604 /* 5605 * Return the effective value of HCR_EL2. 5606 * Bits that are not included here: 5607 * RW (read from SCR_EL3.RW as needed) 5608 */ 5609 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5610 { 5611 uint64_t ret = env->cp15.hcr_el2; 5612 5613 if (!arm_is_el2_enabled(env)) { 5614 /* 5615 * "This register has no effect if EL2 is not enabled in the 5616 * current Security state". This is ARMv8.4-SecEL2 speak for 5617 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5618 * 5619 * Prior to that, the language was "In an implementation that 5620 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5621 * as if this field is 0 for all purposes other than a direct 5622 * read or write access of HCR_EL2". With lots of enumeration 5623 * on a per-field basis. In current QEMU, this is condition 5624 * is arm_is_secure_below_el3. 5625 * 5626 * Since the v8.4 language applies to the entire register, and 5627 * appears to be backward compatible, use that. 5628 */ 5629 return 0; 5630 } 5631 5632 /* 5633 * For a cpu that supports both aarch64 and aarch32, we can set bits 5634 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5635 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5636 */ 5637 if (!arm_el_is_aa64(env, 2)) { 5638 uint64_t aa32_valid; 5639 5640 /* 5641 * These bits are up-to-date as of ARMv8.6. 5642 * For HCR, it's easiest to list just the 2 bits that are invalid. 5643 * For HCR2, list those that are valid. 5644 */ 5645 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5646 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5647 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5648 ret &= aa32_valid; 5649 } 5650 5651 if (ret & HCR_TGE) { 5652 /* These bits are up-to-date as of ARMv8.6. */ 5653 if (ret & HCR_E2H) { 5654 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5655 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5656 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5657 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5658 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5659 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5660 } else { 5661 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5662 } 5663 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5664 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5665 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5666 HCR_TLOR); 5667 } 5668 5669 return ret; 5670 } 5671 5672 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5673 uint64_t value) 5674 { 5675 /* 5676 * For A-profile AArch32 EL3, if NSACR.CP10 5677 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5678 */ 5679 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5680 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5681 value &= ~(0x3 << 10); 5682 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5683 } 5684 env->cp15.cptr_el[2] = value; 5685 } 5686 5687 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5688 { 5689 /* 5690 * For A-profile AArch32 EL3, if NSACR.CP10 5691 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5692 */ 5693 uint64_t value = env->cp15.cptr_el[2]; 5694 5695 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5696 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5697 value |= 0x3 << 10; 5698 } 5699 return value; 5700 } 5701 5702 static const ARMCPRegInfo el2_cp_reginfo[] = { 5703 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5704 .type = ARM_CP_IO, 5705 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5706 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5707 .writefn = hcr_write }, 5708 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5709 .type = ARM_CP_ALIAS | ARM_CP_IO, 5710 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5711 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5712 .writefn = hcr_writelow }, 5713 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5714 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5715 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5716 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5717 .type = ARM_CP_ALIAS, 5718 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5719 .access = PL2_RW, 5720 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5721 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5722 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5723 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5724 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5725 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5726 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5727 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5728 .type = ARM_CP_ALIAS, 5729 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5730 .access = PL2_RW, 5731 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5732 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5733 .type = ARM_CP_ALIAS, 5734 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5735 .access = PL2_RW, 5736 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5737 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5738 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5739 .access = PL2_RW, .writefn = vbar_write, 5740 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5741 .resetvalue = 0 }, 5742 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5743 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5744 .access = PL3_RW, .type = ARM_CP_ALIAS, 5745 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5746 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5747 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5748 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5749 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5750 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5751 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5752 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5753 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5754 .resetvalue = 0 }, 5755 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5756 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5757 .access = PL2_RW, .type = ARM_CP_ALIAS, 5758 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5759 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5760 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5761 .access = PL2_RW, .type = ARM_CP_CONST, 5762 .resetvalue = 0 }, 5763 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5764 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5765 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5766 .access = PL2_RW, .type = ARM_CP_CONST, 5767 .resetvalue = 0 }, 5768 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5769 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5770 .access = PL2_RW, .type = ARM_CP_CONST, 5771 .resetvalue = 0 }, 5772 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5773 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5774 .access = PL2_RW, .type = ARM_CP_CONST, 5775 .resetvalue = 0 }, 5776 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5777 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5778 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5779 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5780 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5781 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5782 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5783 .type = ARM_CP_ALIAS, 5784 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5785 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5786 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5787 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5788 .access = PL2_RW, 5789 /* no .writefn needed as this can't cause an ASID change; 5790 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5791 */ 5792 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5793 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5794 .cp = 15, .opc1 = 6, .crm = 2, 5795 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5796 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5797 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5798 .writefn = vttbr_write }, 5799 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5800 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5801 .access = PL2_RW, .writefn = vttbr_write, 5802 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5803 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5804 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5805 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5806 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5807 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5808 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5809 .access = PL2_RW, .resetvalue = 0, 5810 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5811 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5812 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5813 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5814 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5815 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5816 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5817 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5818 { .name = "TLBIALLNSNH", 5819 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5820 .type = ARM_CP_NO_RAW, .access = PL2_W, 5821 .writefn = tlbiall_nsnh_write }, 5822 { .name = "TLBIALLNSNHIS", 5823 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5824 .type = ARM_CP_NO_RAW, .access = PL2_W, 5825 .writefn = tlbiall_nsnh_is_write }, 5826 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5827 .type = ARM_CP_NO_RAW, .access = PL2_W, 5828 .writefn = tlbiall_hyp_write }, 5829 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5830 .type = ARM_CP_NO_RAW, .access = PL2_W, 5831 .writefn = tlbiall_hyp_is_write }, 5832 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5833 .type = ARM_CP_NO_RAW, .access = PL2_W, 5834 .writefn = tlbimva_hyp_write }, 5835 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5836 .type = ARM_CP_NO_RAW, .access = PL2_W, 5837 .writefn = tlbimva_hyp_is_write }, 5838 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5839 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5840 .type = ARM_CP_NO_RAW, .access = PL2_W, 5841 .writefn = tlbi_aa64_alle2_write }, 5842 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5843 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5844 .type = ARM_CP_NO_RAW, .access = PL2_W, 5845 .writefn = tlbi_aa64_vae2_write }, 5846 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5847 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5848 .access = PL2_W, .type = ARM_CP_NO_RAW, 5849 .writefn = tlbi_aa64_vae2_write }, 5850 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5851 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5852 .access = PL2_W, .type = ARM_CP_NO_RAW, 5853 .writefn = tlbi_aa64_alle2is_write }, 5854 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5855 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5856 .type = ARM_CP_NO_RAW, .access = PL2_W, 5857 .writefn = tlbi_aa64_vae2is_write }, 5858 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5859 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5860 .access = PL2_W, .type = ARM_CP_NO_RAW, 5861 .writefn = tlbi_aa64_vae2is_write }, 5862 #ifndef CONFIG_USER_ONLY 5863 /* Unlike the other EL2-related AT operations, these must 5864 * UNDEF from EL3 if EL2 is not implemented, which is why we 5865 * define them here rather than with the rest of the AT ops. 5866 */ 5867 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5868 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5869 .access = PL2_W, .accessfn = at_s1e2_access, 5870 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5871 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5872 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5873 .access = PL2_W, .accessfn = at_s1e2_access, 5874 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5875 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5876 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5877 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5878 * to behave as if SCR.NS was 1. 5879 */ 5880 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5881 .access = PL2_W, 5882 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5883 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5884 .access = PL2_W, 5885 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5886 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5887 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5888 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5889 * reset values as IMPDEF. We choose to reset to 3 to comply with 5890 * both ARMv7 and ARMv8. 5891 */ 5892 .access = PL2_RW, .resetvalue = 3, 5893 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5894 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5895 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5896 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5897 .writefn = gt_cntvoff_write, 5898 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5899 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5900 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5901 .writefn = gt_cntvoff_write, 5902 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5903 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5904 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5905 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5906 .type = ARM_CP_IO, .access = PL2_RW, 5907 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5908 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5909 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5910 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5911 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5912 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5913 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5914 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5915 .resetfn = gt_hyp_timer_reset, 5916 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5917 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5918 .type = ARM_CP_IO, 5919 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5920 .access = PL2_RW, 5921 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5922 .resetvalue = 0, 5923 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5924 #endif 5925 /* The only field of MDCR_EL2 that has a defined architectural reset value 5926 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5927 */ 5928 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5929 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5930 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5931 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5932 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5933 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5934 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5935 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5936 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5937 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5938 .access = PL2_RW, 5939 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5940 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5941 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5942 .access = PL2_RW, 5943 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5944 REGINFO_SENTINEL 5945 }; 5946 5947 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5948 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5949 .type = ARM_CP_ALIAS | ARM_CP_IO, 5950 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5951 .access = PL2_RW, 5952 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5953 .writefn = hcr_writehigh }, 5954 REGINFO_SENTINEL 5955 }; 5956 5957 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5958 bool isread) 5959 { 5960 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5961 return CP_ACCESS_OK; 5962 } 5963 return CP_ACCESS_TRAP_UNCATEGORIZED; 5964 } 5965 5966 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5967 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5968 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5969 .access = PL2_RW, .accessfn = sel2_access, 5970 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5971 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5972 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5973 .access = PL2_RW, .accessfn = sel2_access, 5974 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5975 REGINFO_SENTINEL 5976 }; 5977 5978 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5979 bool isread) 5980 { 5981 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5982 * At Secure EL1 it traps to EL3 or EL2. 5983 */ 5984 if (arm_current_el(env) == 3) { 5985 return CP_ACCESS_OK; 5986 } 5987 if (arm_is_secure_below_el3(env)) { 5988 if (env->cp15.scr_el3 & SCR_EEL2) { 5989 return CP_ACCESS_TRAP_EL2; 5990 } 5991 return CP_ACCESS_TRAP_EL3; 5992 } 5993 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5994 if (isread) { 5995 return CP_ACCESS_OK; 5996 } 5997 return CP_ACCESS_TRAP_UNCATEGORIZED; 5998 } 5999 6000 static const ARMCPRegInfo el3_cp_reginfo[] = { 6001 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6002 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6003 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6004 .resetfn = scr_reset, .writefn = scr_write }, 6005 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6006 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6007 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6008 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6009 .writefn = scr_write }, 6010 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6011 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6012 .access = PL3_RW, .resetvalue = 0, 6013 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6014 { .name = "SDER", 6015 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6016 .access = PL3_RW, .resetvalue = 0, 6017 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6018 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6019 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6020 .writefn = vbar_write, .resetvalue = 0, 6021 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6022 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6023 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6024 .access = PL3_RW, .resetvalue = 0, 6025 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6026 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6027 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6028 .access = PL3_RW, 6029 /* no .writefn needed as this can't cause an ASID change; 6030 * we must provide a .raw_writefn and .resetfn because we handle 6031 * reset and migration for the AArch32 TTBCR(S), which might be 6032 * using mask and base_mask. 6033 */ 6034 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 6035 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6036 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6037 .type = ARM_CP_ALIAS, 6038 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6039 .access = PL3_RW, 6040 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6041 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6042 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6043 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6044 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6045 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6046 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6047 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6048 .type = ARM_CP_ALIAS, 6049 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6050 .access = PL3_RW, 6051 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6052 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6053 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6054 .access = PL3_RW, .writefn = vbar_write, 6055 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6056 .resetvalue = 0 }, 6057 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6058 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6059 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6060 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6061 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6062 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6063 .access = PL3_RW, .resetvalue = 0, 6064 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6065 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6066 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6067 .access = PL3_RW, .type = ARM_CP_CONST, 6068 .resetvalue = 0 }, 6069 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6070 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6071 .access = PL3_RW, .type = ARM_CP_CONST, 6072 .resetvalue = 0 }, 6073 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6074 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6075 .access = PL3_RW, .type = ARM_CP_CONST, 6076 .resetvalue = 0 }, 6077 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6078 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6079 .access = PL3_W, .type = ARM_CP_NO_RAW, 6080 .writefn = tlbi_aa64_alle3is_write }, 6081 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6082 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6083 .access = PL3_W, .type = ARM_CP_NO_RAW, 6084 .writefn = tlbi_aa64_vae3is_write }, 6085 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6086 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6087 .access = PL3_W, .type = ARM_CP_NO_RAW, 6088 .writefn = tlbi_aa64_vae3is_write }, 6089 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6090 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6091 .access = PL3_W, .type = ARM_CP_NO_RAW, 6092 .writefn = tlbi_aa64_alle3_write }, 6093 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6094 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6095 .access = PL3_W, .type = ARM_CP_NO_RAW, 6096 .writefn = tlbi_aa64_vae3_write }, 6097 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6098 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6099 .access = PL3_W, .type = ARM_CP_NO_RAW, 6100 .writefn = tlbi_aa64_vae3_write }, 6101 REGINFO_SENTINEL 6102 }; 6103 6104 #ifndef CONFIG_USER_ONLY 6105 /* Test if system register redirection is to occur in the current state. */ 6106 static bool redirect_for_e2h(CPUARMState *env) 6107 { 6108 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6109 } 6110 6111 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6112 { 6113 CPReadFn *readfn; 6114 6115 if (redirect_for_e2h(env)) { 6116 /* Switch to the saved EL2 version of the register. */ 6117 ri = ri->opaque; 6118 readfn = ri->readfn; 6119 } else { 6120 readfn = ri->orig_readfn; 6121 } 6122 if (readfn == NULL) { 6123 readfn = raw_read; 6124 } 6125 return readfn(env, ri); 6126 } 6127 6128 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6129 uint64_t value) 6130 { 6131 CPWriteFn *writefn; 6132 6133 if (redirect_for_e2h(env)) { 6134 /* Switch to the saved EL2 version of the register. */ 6135 ri = ri->opaque; 6136 writefn = ri->writefn; 6137 } else { 6138 writefn = ri->orig_writefn; 6139 } 6140 if (writefn == NULL) { 6141 writefn = raw_write; 6142 } 6143 writefn(env, ri, value); 6144 } 6145 6146 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6147 { 6148 struct E2HAlias { 6149 uint32_t src_key, dst_key, new_key; 6150 const char *src_name, *dst_name, *new_name; 6151 bool (*feature)(const ARMISARegisters *id); 6152 }; 6153 6154 #define K(op0, op1, crn, crm, op2) \ 6155 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6156 6157 static const struct E2HAlias aliases[] = { 6158 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6159 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6160 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6161 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6162 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6163 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6164 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6165 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6166 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6167 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6168 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6169 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6170 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6171 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6172 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6173 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6174 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6175 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6176 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6177 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6178 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6179 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6180 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6181 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6182 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6183 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6184 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6185 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6186 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6187 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6188 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6189 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6190 6191 /* 6192 * Note that redirection of ZCR is mentioned in the description 6193 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6194 * not in the summary table. 6195 */ 6196 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6197 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6198 6199 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6200 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6201 6202 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6203 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6204 }; 6205 #undef K 6206 6207 size_t i; 6208 6209 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6210 const struct E2HAlias *a = &aliases[i]; 6211 ARMCPRegInfo *src_reg, *dst_reg; 6212 6213 if (a->feature && !a->feature(&cpu->isar)) { 6214 continue; 6215 } 6216 6217 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 6218 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 6219 g_assert(src_reg != NULL); 6220 g_assert(dst_reg != NULL); 6221 6222 /* Cross-compare names to detect typos in the keys. */ 6223 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6224 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6225 6226 /* None of the core system registers use opaque; we will. */ 6227 g_assert(src_reg->opaque == NULL); 6228 6229 /* Create alias before redirection so we dup the right data. */ 6230 if (a->new_key) { 6231 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6232 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 6233 bool ok; 6234 6235 new_reg->name = a->new_name; 6236 new_reg->type |= ARM_CP_ALIAS; 6237 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6238 new_reg->access &= PL2_RW | PL3_RW; 6239 6240 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 6241 g_assert(ok); 6242 } 6243 6244 src_reg->opaque = dst_reg; 6245 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6246 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6247 if (!src_reg->raw_readfn) { 6248 src_reg->raw_readfn = raw_read; 6249 } 6250 if (!src_reg->raw_writefn) { 6251 src_reg->raw_writefn = raw_write; 6252 } 6253 src_reg->readfn = el2_e2h_read; 6254 src_reg->writefn = el2_e2h_write; 6255 } 6256 } 6257 #endif 6258 6259 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6260 bool isread) 6261 { 6262 int cur_el = arm_current_el(env); 6263 6264 if (cur_el < 2) { 6265 uint64_t hcr = arm_hcr_el2_eff(env); 6266 6267 if (cur_el == 0) { 6268 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6269 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6270 return CP_ACCESS_TRAP_EL2; 6271 } 6272 } else { 6273 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6274 return CP_ACCESS_TRAP; 6275 } 6276 if (hcr & HCR_TID2) { 6277 return CP_ACCESS_TRAP_EL2; 6278 } 6279 } 6280 } else if (hcr & HCR_TID2) { 6281 return CP_ACCESS_TRAP_EL2; 6282 } 6283 } 6284 6285 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6286 return CP_ACCESS_TRAP_EL2; 6287 } 6288 6289 return CP_ACCESS_OK; 6290 } 6291 6292 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6293 uint64_t value) 6294 { 6295 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6296 * read via a bit in OSLSR_EL1. 6297 */ 6298 int oslock; 6299 6300 if (ri->state == ARM_CP_STATE_AA32) { 6301 oslock = (value == 0xC5ACCE55); 6302 } else { 6303 oslock = value & 1; 6304 } 6305 6306 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6307 } 6308 6309 static const ARMCPRegInfo debug_cp_reginfo[] = { 6310 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6311 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6312 * unlike DBGDRAR it is never accessible from EL0. 6313 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6314 * accessor. 6315 */ 6316 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6317 .access = PL0_R, .accessfn = access_tdra, 6318 .type = ARM_CP_CONST, .resetvalue = 0 }, 6319 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6320 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6321 .access = PL1_R, .accessfn = access_tdra, 6322 .type = ARM_CP_CONST, .resetvalue = 0 }, 6323 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6324 .access = PL0_R, .accessfn = access_tdra, 6325 .type = ARM_CP_CONST, .resetvalue = 0 }, 6326 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6327 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6328 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6329 .access = PL1_RW, .accessfn = access_tda, 6330 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6331 .resetvalue = 0 }, 6332 /* 6333 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6334 * Debug Communication Channel is not implemented. 6335 */ 6336 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6337 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6338 .access = PL0_R, .accessfn = access_tda, 6339 .type = ARM_CP_CONST, .resetvalue = 0 }, 6340 /* 6341 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6342 * it is unlikely a guest will care. 6343 * We don't implement the configurable EL0 access. 6344 */ 6345 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6346 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6347 .type = ARM_CP_ALIAS, 6348 .access = PL1_R, .accessfn = access_tda, 6349 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6350 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6351 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6352 .access = PL1_W, .type = ARM_CP_NO_RAW, 6353 .accessfn = access_tdosa, 6354 .writefn = oslar_write }, 6355 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6356 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6357 .access = PL1_R, .resetvalue = 10, 6358 .accessfn = access_tdosa, 6359 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6360 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6361 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6362 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6363 .access = PL1_RW, .accessfn = access_tdosa, 6364 .type = ARM_CP_NOP }, 6365 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6366 * implement vector catch debug events yet. 6367 */ 6368 { .name = "DBGVCR", 6369 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6370 .access = PL1_RW, .accessfn = access_tda, 6371 .type = ARM_CP_NOP }, 6372 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6373 * to save and restore a 32-bit guest's DBGVCR) 6374 */ 6375 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6376 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6377 .access = PL2_RW, .accessfn = access_tda, 6378 .type = ARM_CP_NOP }, 6379 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6380 * Channel but Linux may try to access this register. The 32-bit 6381 * alias is DBGDCCINT. 6382 */ 6383 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6384 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6385 .access = PL1_RW, .accessfn = access_tda, 6386 .type = ARM_CP_NOP }, 6387 REGINFO_SENTINEL 6388 }; 6389 6390 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6391 /* 64 bit access versions of the (dummy) debug registers */ 6392 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6393 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6394 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6395 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6396 REGINFO_SENTINEL 6397 }; 6398 6399 /* Return the exception level to which exceptions should be taken 6400 * via SVEAccessTrap. If an exception should be routed through 6401 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6402 * take care of raising that exception. 6403 * C.f. the ARM pseudocode function CheckSVEEnabled. 6404 */ 6405 int sve_exception_el(CPUARMState *env, int el) 6406 { 6407 #ifndef CONFIG_USER_ONLY 6408 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6409 6410 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6411 bool disabled = false; 6412 6413 /* The CPACR.ZEN controls traps to EL1: 6414 * 0, 2 : trap EL0 and EL1 accesses 6415 * 1 : trap only EL0 accesses 6416 * 3 : trap no accesses 6417 */ 6418 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6419 disabled = true; 6420 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6421 disabled = el == 0; 6422 } 6423 if (disabled) { 6424 /* route_to_el2 */ 6425 return hcr_el2 & HCR_TGE ? 2 : 1; 6426 } 6427 6428 /* Check CPACR.FPEN. */ 6429 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6430 disabled = true; 6431 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6432 disabled = el == 0; 6433 } 6434 if (disabled) { 6435 return 0; 6436 } 6437 } 6438 6439 /* CPTR_EL2. Since TZ and TFP are positive, 6440 * they will be zero when EL2 is not present. 6441 */ 6442 if (el <= 2 && arm_is_el2_enabled(env)) { 6443 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6444 return 2; 6445 } 6446 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6447 return 0; 6448 } 6449 } 6450 6451 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6452 if (arm_feature(env, ARM_FEATURE_EL3) 6453 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6454 return 3; 6455 } 6456 #endif 6457 return 0; 6458 } 6459 6460 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6461 { 6462 uint32_t end_len; 6463 6464 end_len = start_len &= 0xf; 6465 if (!test_bit(start_len, cpu->sve_vq_map)) { 6466 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6467 assert(end_len < start_len); 6468 } 6469 return end_len; 6470 } 6471 6472 /* 6473 * Given that SVE is enabled, return the vector length for EL. 6474 */ 6475 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6476 { 6477 ARMCPU *cpu = env_archcpu(env); 6478 uint32_t zcr_len = cpu->sve_max_vq - 1; 6479 6480 if (el <= 1) { 6481 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6482 } 6483 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6484 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6485 } 6486 if (arm_feature(env, ARM_FEATURE_EL3)) { 6487 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6488 } 6489 6490 return sve_zcr_get_valid_len(cpu, zcr_len); 6491 } 6492 6493 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6494 uint64_t value) 6495 { 6496 int cur_el = arm_current_el(env); 6497 int old_len = sve_zcr_len_for_el(env, cur_el); 6498 int new_len; 6499 6500 /* Bits other than [3:0] are RAZ/WI. */ 6501 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6502 raw_write(env, ri, value & 0xf); 6503 6504 /* 6505 * Because we arrived here, we know both FP and SVE are enabled; 6506 * otherwise we would have trapped access to the ZCR_ELn register. 6507 */ 6508 new_len = sve_zcr_len_for_el(env, cur_el); 6509 if (new_len < old_len) { 6510 aarch64_sve_narrow_vq(env, new_len + 1); 6511 } 6512 } 6513 6514 static const ARMCPRegInfo zcr_el1_reginfo = { 6515 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6516 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6517 .access = PL1_RW, .type = ARM_CP_SVE, 6518 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6519 .writefn = zcr_write, .raw_writefn = raw_write 6520 }; 6521 6522 static const ARMCPRegInfo zcr_el2_reginfo = { 6523 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6524 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6525 .access = PL2_RW, .type = ARM_CP_SVE, 6526 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6527 .writefn = zcr_write, .raw_writefn = raw_write 6528 }; 6529 6530 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6531 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6532 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6533 .access = PL2_RW, .type = ARM_CP_SVE, 6534 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6535 }; 6536 6537 static const ARMCPRegInfo zcr_el3_reginfo = { 6538 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6539 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6540 .access = PL3_RW, .type = ARM_CP_SVE, 6541 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6542 .writefn = zcr_write, .raw_writefn = raw_write 6543 }; 6544 6545 void hw_watchpoint_update(ARMCPU *cpu, int n) 6546 { 6547 CPUARMState *env = &cpu->env; 6548 vaddr len = 0; 6549 vaddr wvr = env->cp15.dbgwvr[n]; 6550 uint64_t wcr = env->cp15.dbgwcr[n]; 6551 int mask; 6552 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6553 6554 if (env->cpu_watchpoint[n]) { 6555 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6556 env->cpu_watchpoint[n] = NULL; 6557 } 6558 6559 if (!extract64(wcr, 0, 1)) { 6560 /* E bit clear : watchpoint disabled */ 6561 return; 6562 } 6563 6564 switch (extract64(wcr, 3, 2)) { 6565 case 0: 6566 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6567 return; 6568 case 1: 6569 flags |= BP_MEM_READ; 6570 break; 6571 case 2: 6572 flags |= BP_MEM_WRITE; 6573 break; 6574 case 3: 6575 flags |= BP_MEM_ACCESS; 6576 break; 6577 } 6578 6579 /* Attempts to use both MASK and BAS fields simultaneously are 6580 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6581 * thus generating a watchpoint for every byte in the masked region. 6582 */ 6583 mask = extract64(wcr, 24, 4); 6584 if (mask == 1 || mask == 2) { 6585 /* Reserved values of MASK; we must act as if the mask value was 6586 * some non-reserved value, or as if the watchpoint were disabled. 6587 * We choose the latter. 6588 */ 6589 return; 6590 } else if (mask) { 6591 /* Watchpoint covers an aligned area up to 2GB in size */ 6592 len = 1ULL << mask; 6593 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6594 * whether the watchpoint fires when the unmasked bits match; we opt 6595 * to generate the exceptions. 6596 */ 6597 wvr &= ~(len - 1); 6598 } else { 6599 /* Watchpoint covers bytes defined by the byte address select bits */ 6600 int bas = extract64(wcr, 5, 8); 6601 int basstart; 6602 6603 if (extract64(wvr, 2, 1)) { 6604 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6605 * ignored, and BAS[3:0] define which bytes to watch. 6606 */ 6607 bas &= 0xf; 6608 } 6609 6610 if (bas == 0) { 6611 /* This must act as if the watchpoint is disabled */ 6612 return; 6613 } 6614 6615 /* The BAS bits are supposed to be programmed to indicate a contiguous 6616 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6617 * we fire for each byte in the word/doubleword addressed by the WVR. 6618 * We choose to ignore any non-zero bits after the first range of 1s. 6619 */ 6620 basstart = ctz32(bas); 6621 len = cto32(bas >> basstart); 6622 wvr += basstart; 6623 } 6624 6625 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6626 &env->cpu_watchpoint[n]); 6627 } 6628 6629 void hw_watchpoint_update_all(ARMCPU *cpu) 6630 { 6631 int i; 6632 CPUARMState *env = &cpu->env; 6633 6634 /* Completely clear out existing QEMU watchpoints and our array, to 6635 * avoid possible stale entries following migration load. 6636 */ 6637 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6638 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6639 6640 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6641 hw_watchpoint_update(cpu, i); 6642 } 6643 } 6644 6645 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6646 uint64_t value) 6647 { 6648 ARMCPU *cpu = env_archcpu(env); 6649 int i = ri->crm; 6650 6651 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6652 * register reads and behaves as if values written are sign extended. 6653 * Bits [1:0] are RES0. 6654 */ 6655 value = sextract64(value, 0, 49) & ~3ULL; 6656 6657 raw_write(env, ri, value); 6658 hw_watchpoint_update(cpu, i); 6659 } 6660 6661 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6662 uint64_t value) 6663 { 6664 ARMCPU *cpu = env_archcpu(env); 6665 int i = ri->crm; 6666 6667 raw_write(env, ri, value); 6668 hw_watchpoint_update(cpu, i); 6669 } 6670 6671 void hw_breakpoint_update(ARMCPU *cpu, int n) 6672 { 6673 CPUARMState *env = &cpu->env; 6674 uint64_t bvr = env->cp15.dbgbvr[n]; 6675 uint64_t bcr = env->cp15.dbgbcr[n]; 6676 vaddr addr; 6677 int bt; 6678 int flags = BP_CPU; 6679 6680 if (env->cpu_breakpoint[n]) { 6681 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6682 env->cpu_breakpoint[n] = NULL; 6683 } 6684 6685 if (!extract64(bcr, 0, 1)) { 6686 /* E bit clear : watchpoint disabled */ 6687 return; 6688 } 6689 6690 bt = extract64(bcr, 20, 4); 6691 6692 switch (bt) { 6693 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6694 case 5: /* linked address mismatch (reserved if AArch64) */ 6695 qemu_log_mask(LOG_UNIMP, 6696 "arm: address mismatch breakpoint types not implemented\n"); 6697 return; 6698 case 0: /* unlinked address match */ 6699 case 1: /* linked address match */ 6700 { 6701 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6702 * we behave as if the register was sign extended. Bits [1:0] are 6703 * RES0. The BAS field is used to allow setting breakpoints on 16 6704 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6705 * a bp will fire if the addresses covered by the bp and the addresses 6706 * covered by the insn overlap but the insn doesn't start at the 6707 * start of the bp address range. We choose to require the insn and 6708 * the bp to have the same address. The constraints on writing to 6709 * BAS enforced in dbgbcr_write mean we have only four cases: 6710 * 0b0000 => no breakpoint 6711 * 0b0011 => breakpoint on addr 6712 * 0b1100 => breakpoint on addr + 2 6713 * 0b1111 => breakpoint on addr 6714 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6715 */ 6716 int bas = extract64(bcr, 5, 4); 6717 addr = sextract64(bvr, 0, 49) & ~3ULL; 6718 if (bas == 0) { 6719 return; 6720 } 6721 if (bas == 0xc) { 6722 addr += 2; 6723 } 6724 break; 6725 } 6726 case 2: /* unlinked context ID match */ 6727 case 8: /* unlinked VMID match (reserved if no EL2) */ 6728 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6729 qemu_log_mask(LOG_UNIMP, 6730 "arm: unlinked context breakpoint types not implemented\n"); 6731 return; 6732 case 9: /* linked VMID match (reserved if no EL2) */ 6733 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6734 case 3: /* linked context ID match */ 6735 default: 6736 /* We must generate no events for Linked context matches (unless 6737 * they are linked to by some other bp/wp, which is handled in 6738 * updates for the linking bp/wp). We choose to also generate no events 6739 * for reserved values. 6740 */ 6741 return; 6742 } 6743 6744 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6745 } 6746 6747 void hw_breakpoint_update_all(ARMCPU *cpu) 6748 { 6749 int i; 6750 CPUARMState *env = &cpu->env; 6751 6752 /* Completely clear out existing QEMU breakpoints and our array, to 6753 * avoid possible stale entries following migration load. 6754 */ 6755 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6756 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6757 6758 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6759 hw_breakpoint_update(cpu, i); 6760 } 6761 } 6762 6763 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6764 uint64_t value) 6765 { 6766 ARMCPU *cpu = env_archcpu(env); 6767 int i = ri->crm; 6768 6769 raw_write(env, ri, value); 6770 hw_breakpoint_update(cpu, i); 6771 } 6772 6773 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6774 uint64_t value) 6775 { 6776 ARMCPU *cpu = env_archcpu(env); 6777 int i = ri->crm; 6778 6779 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6780 * copy of BAS[0]. 6781 */ 6782 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6783 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6784 6785 raw_write(env, ri, value); 6786 hw_breakpoint_update(cpu, i); 6787 } 6788 6789 static void define_debug_regs(ARMCPU *cpu) 6790 { 6791 /* Define v7 and v8 architectural debug registers. 6792 * These are just dummy implementations for now. 6793 */ 6794 int i; 6795 int wrps, brps, ctx_cmps; 6796 6797 /* 6798 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6799 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6800 * the register must not exist for this cpu. 6801 */ 6802 if (cpu->isar.dbgdidr != 0) { 6803 ARMCPRegInfo dbgdidr = { 6804 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6805 .opc1 = 0, .opc2 = 0, 6806 .access = PL0_R, .accessfn = access_tda, 6807 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6808 }; 6809 define_one_arm_cp_reg(cpu, &dbgdidr); 6810 } 6811 6812 /* Note that all these register fields hold "number of Xs minus 1". */ 6813 brps = arm_num_brps(cpu); 6814 wrps = arm_num_wrps(cpu); 6815 ctx_cmps = arm_num_ctx_cmps(cpu); 6816 6817 assert(ctx_cmps <= brps); 6818 6819 define_arm_cp_regs(cpu, debug_cp_reginfo); 6820 6821 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6822 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6823 } 6824 6825 for (i = 0; i < brps; i++) { 6826 ARMCPRegInfo dbgregs[] = { 6827 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6828 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6829 .access = PL1_RW, .accessfn = access_tda, 6830 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6831 .writefn = dbgbvr_write, .raw_writefn = raw_write 6832 }, 6833 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6834 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6835 .access = PL1_RW, .accessfn = access_tda, 6836 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6837 .writefn = dbgbcr_write, .raw_writefn = raw_write 6838 }, 6839 REGINFO_SENTINEL 6840 }; 6841 define_arm_cp_regs(cpu, dbgregs); 6842 } 6843 6844 for (i = 0; i < wrps; i++) { 6845 ARMCPRegInfo dbgregs[] = { 6846 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6847 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6848 .access = PL1_RW, .accessfn = access_tda, 6849 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6850 .writefn = dbgwvr_write, .raw_writefn = raw_write 6851 }, 6852 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6853 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6854 .access = PL1_RW, .accessfn = access_tda, 6855 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6856 .writefn = dbgwcr_write, .raw_writefn = raw_write 6857 }, 6858 REGINFO_SENTINEL 6859 }; 6860 define_arm_cp_regs(cpu, dbgregs); 6861 } 6862 } 6863 6864 static void define_pmu_regs(ARMCPU *cpu) 6865 { 6866 /* 6867 * v7 performance monitor control register: same implementor 6868 * field as main ID register, and we implement four counters in 6869 * addition to the cycle count register. 6870 */ 6871 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6872 ARMCPRegInfo pmcr = { 6873 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6874 .access = PL0_RW, 6875 .type = ARM_CP_IO | ARM_CP_ALIAS, 6876 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6877 .accessfn = pmreg_access, .writefn = pmcr_write, 6878 .raw_writefn = raw_write, 6879 }; 6880 ARMCPRegInfo pmcr64 = { 6881 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6882 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6883 .access = PL0_RW, .accessfn = pmreg_access, 6884 .type = ARM_CP_IO, 6885 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6886 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6887 PMCRLC, 6888 .writefn = pmcr_write, .raw_writefn = raw_write, 6889 }; 6890 define_one_arm_cp_reg(cpu, &pmcr); 6891 define_one_arm_cp_reg(cpu, &pmcr64); 6892 for (i = 0; i < pmcrn; i++) { 6893 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6894 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6895 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6896 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6897 ARMCPRegInfo pmev_regs[] = { 6898 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6899 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6900 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6901 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6902 .accessfn = pmreg_access }, 6903 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6904 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6905 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6906 .type = ARM_CP_IO, 6907 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6908 .raw_readfn = pmevcntr_rawread, 6909 .raw_writefn = pmevcntr_rawwrite }, 6910 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6911 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6912 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6913 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6914 .accessfn = pmreg_access }, 6915 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6916 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6917 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6918 .type = ARM_CP_IO, 6919 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6920 .raw_writefn = pmevtyper_rawwrite }, 6921 REGINFO_SENTINEL 6922 }; 6923 define_arm_cp_regs(cpu, pmev_regs); 6924 g_free(pmevcntr_name); 6925 g_free(pmevcntr_el0_name); 6926 g_free(pmevtyper_name); 6927 g_free(pmevtyper_el0_name); 6928 } 6929 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6930 ARMCPRegInfo v81_pmu_regs[] = { 6931 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6932 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6933 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6934 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6935 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6936 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6937 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6938 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6939 REGINFO_SENTINEL 6940 }; 6941 define_arm_cp_regs(cpu, v81_pmu_regs); 6942 } 6943 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6944 static const ARMCPRegInfo v84_pmmir = { 6945 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6946 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6947 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6948 .resetvalue = 0 6949 }; 6950 define_one_arm_cp_reg(cpu, &v84_pmmir); 6951 } 6952 } 6953 6954 /* We don't know until after realize whether there's a GICv3 6955 * attached, and that is what registers the gicv3 sysregs. 6956 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6957 * at runtime. 6958 */ 6959 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6960 { 6961 ARMCPU *cpu = env_archcpu(env); 6962 uint64_t pfr1 = cpu->isar.id_pfr1; 6963 6964 if (env->gicv3state) { 6965 pfr1 |= 1 << 28; 6966 } 6967 return pfr1; 6968 } 6969 6970 #ifndef CONFIG_USER_ONLY 6971 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6972 { 6973 ARMCPU *cpu = env_archcpu(env); 6974 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6975 6976 if (env->gicv3state) { 6977 pfr0 |= 1 << 24; 6978 } 6979 return pfr0; 6980 } 6981 #endif 6982 6983 /* Shared logic between LORID and the rest of the LOR* registers. 6984 * Secure state exclusion has already been dealt with. 6985 */ 6986 static CPAccessResult access_lor_ns(CPUARMState *env, 6987 const ARMCPRegInfo *ri, bool isread) 6988 { 6989 int el = arm_current_el(env); 6990 6991 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6992 return CP_ACCESS_TRAP_EL2; 6993 } 6994 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6995 return CP_ACCESS_TRAP_EL3; 6996 } 6997 return CP_ACCESS_OK; 6998 } 6999 7000 static CPAccessResult access_lor_other(CPUARMState *env, 7001 const ARMCPRegInfo *ri, bool isread) 7002 { 7003 if (arm_is_secure_below_el3(env)) { 7004 /* Access denied in secure mode. */ 7005 return CP_ACCESS_TRAP; 7006 } 7007 return access_lor_ns(env, ri, isread); 7008 } 7009 7010 /* 7011 * A trivial implementation of ARMv8.1-LOR leaves all of these 7012 * registers fixed at 0, which indicates that there are zero 7013 * supported Limited Ordering regions. 7014 */ 7015 static const ARMCPRegInfo lor_reginfo[] = { 7016 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7017 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7018 .access = PL1_RW, .accessfn = access_lor_other, 7019 .type = ARM_CP_CONST, .resetvalue = 0 }, 7020 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7021 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7022 .access = PL1_RW, .accessfn = access_lor_other, 7023 .type = ARM_CP_CONST, .resetvalue = 0 }, 7024 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7025 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7026 .access = PL1_RW, .accessfn = access_lor_other, 7027 .type = ARM_CP_CONST, .resetvalue = 0 }, 7028 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7030 .access = PL1_RW, .accessfn = access_lor_other, 7031 .type = ARM_CP_CONST, .resetvalue = 0 }, 7032 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7034 .access = PL1_R, .accessfn = access_lor_ns, 7035 .type = ARM_CP_CONST, .resetvalue = 0 }, 7036 REGINFO_SENTINEL 7037 }; 7038 7039 #ifdef TARGET_AARCH64 7040 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7041 bool isread) 7042 { 7043 int el = arm_current_el(env); 7044 7045 if (el < 2 && 7046 arm_feature(env, ARM_FEATURE_EL2) && 7047 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7048 return CP_ACCESS_TRAP_EL2; 7049 } 7050 if (el < 3 && 7051 arm_feature(env, ARM_FEATURE_EL3) && 7052 !(env->cp15.scr_el3 & SCR_APK)) { 7053 return CP_ACCESS_TRAP_EL3; 7054 } 7055 return CP_ACCESS_OK; 7056 } 7057 7058 static const ARMCPRegInfo pauth_reginfo[] = { 7059 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7061 .access = PL1_RW, .accessfn = access_pauth, 7062 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7063 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7064 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7065 .access = PL1_RW, .accessfn = access_pauth, 7066 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7067 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7068 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7069 .access = PL1_RW, .accessfn = access_pauth, 7070 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7071 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7072 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7073 .access = PL1_RW, .accessfn = access_pauth, 7074 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7075 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7077 .access = PL1_RW, .accessfn = access_pauth, 7078 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7079 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7081 .access = PL1_RW, .accessfn = access_pauth, 7082 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7083 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7084 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7085 .access = PL1_RW, .accessfn = access_pauth, 7086 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7087 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7088 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7089 .access = PL1_RW, .accessfn = access_pauth, 7090 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7091 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7092 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7093 .access = PL1_RW, .accessfn = access_pauth, 7094 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7095 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7096 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7097 .access = PL1_RW, .accessfn = access_pauth, 7098 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7099 REGINFO_SENTINEL 7100 }; 7101 7102 static const ARMCPRegInfo tlbirange_reginfo[] = { 7103 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7104 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7105 .access = PL1_W, .type = ARM_CP_NO_RAW, 7106 .writefn = tlbi_aa64_rvae1is_write }, 7107 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7108 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7109 .access = PL1_W, .type = ARM_CP_NO_RAW, 7110 .writefn = tlbi_aa64_rvae1is_write }, 7111 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7112 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7113 .access = PL1_W, .type = ARM_CP_NO_RAW, 7114 .writefn = tlbi_aa64_rvae1is_write }, 7115 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7116 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7117 .access = PL1_W, .type = ARM_CP_NO_RAW, 7118 .writefn = tlbi_aa64_rvae1is_write }, 7119 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7121 .access = PL1_W, .type = ARM_CP_NO_RAW, 7122 .writefn = tlbi_aa64_rvae1is_write }, 7123 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7124 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7125 .access = PL1_W, .type = ARM_CP_NO_RAW, 7126 .writefn = tlbi_aa64_rvae1is_write }, 7127 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7128 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7129 .access = PL1_W, .type = ARM_CP_NO_RAW, 7130 .writefn = tlbi_aa64_rvae1is_write }, 7131 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7132 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7133 .access = PL1_W, .type = ARM_CP_NO_RAW, 7134 .writefn = tlbi_aa64_rvae1is_write }, 7135 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7136 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7137 .access = PL1_W, .type = ARM_CP_NO_RAW, 7138 .writefn = tlbi_aa64_rvae1_write }, 7139 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7140 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7141 .access = PL1_W, .type = ARM_CP_NO_RAW, 7142 .writefn = tlbi_aa64_rvae1_write }, 7143 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7144 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7145 .access = PL1_W, .type = ARM_CP_NO_RAW, 7146 .writefn = tlbi_aa64_rvae1_write }, 7147 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7148 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7149 .access = PL1_W, .type = ARM_CP_NO_RAW, 7150 .writefn = tlbi_aa64_rvae1_write }, 7151 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7152 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7153 .access = PL2_W, .type = ARM_CP_NOP }, 7154 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7155 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7156 .access = PL2_W, .type = ARM_CP_NOP }, 7157 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7158 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7159 .access = PL2_W, .type = ARM_CP_NO_RAW, 7160 .writefn = tlbi_aa64_rvae2is_write }, 7161 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7162 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7163 .access = PL2_W, .type = ARM_CP_NO_RAW, 7164 .writefn = tlbi_aa64_rvae2is_write }, 7165 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7166 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7167 .access = PL2_W, .type = ARM_CP_NOP }, 7168 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7169 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7170 .access = PL2_W, .type = ARM_CP_NOP }, 7171 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7172 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7173 .access = PL2_W, .type = ARM_CP_NO_RAW, 7174 .writefn = tlbi_aa64_rvae2is_write }, 7175 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7176 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7177 .access = PL2_W, .type = ARM_CP_NO_RAW, 7178 .writefn = tlbi_aa64_rvae2is_write }, 7179 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7180 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7181 .access = PL2_W, .type = ARM_CP_NO_RAW, 7182 .writefn = tlbi_aa64_rvae2_write }, 7183 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7184 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7185 .access = PL2_W, .type = ARM_CP_NO_RAW, 7186 .writefn = tlbi_aa64_rvae2_write }, 7187 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7188 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7189 .access = PL3_W, .type = ARM_CP_NO_RAW, 7190 .writefn = tlbi_aa64_rvae3is_write }, 7191 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7192 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7193 .access = PL3_W, .type = ARM_CP_NO_RAW, 7194 .writefn = tlbi_aa64_rvae3is_write }, 7195 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7196 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7197 .access = PL3_W, .type = ARM_CP_NO_RAW, 7198 .writefn = tlbi_aa64_rvae3is_write }, 7199 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7200 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7201 .access = PL3_W, .type = ARM_CP_NO_RAW, 7202 .writefn = tlbi_aa64_rvae3is_write }, 7203 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7204 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7205 .access = PL3_W, .type = ARM_CP_NO_RAW, 7206 .writefn = tlbi_aa64_rvae3_write }, 7207 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7208 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7209 .access = PL3_W, .type = ARM_CP_NO_RAW, 7210 .writefn = tlbi_aa64_rvae3_write }, 7211 REGINFO_SENTINEL 7212 }; 7213 7214 static const ARMCPRegInfo tlbios_reginfo[] = { 7215 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7216 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7217 .access = PL1_W, .type = ARM_CP_NO_RAW, 7218 .writefn = tlbi_aa64_vmalle1is_write }, 7219 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7220 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7221 .access = PL1_W, .type = ARM_CP_NO_RAW, 7222 .writefn = tlbi_aa64_vmalle1is_write }, 7223 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7224 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7225 .access = PL2_W, .type = ARM_CP_NO_RAW, 7226 .writefn = tlbi_aa64_alle2is_write }, 7227 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7228 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7229 .access = PL2_W, .type = ARM_CP_NO_RAW, 7230 .writefn = tlbi_aa64_alle1is_write }, 7231 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7232 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7233 .access = PL2_W, .type = ARM_CP_NO_RAW, 7234 .writefn = tlbi_aa64_alle1is_write }, 7235 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7236 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7237 .access = PL2_W, .type = ARM_CP_NOP }, 7238 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7239 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7240 .access = PL2_W, .type = ARM_CP_NOP }, 7241 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7242 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7243 .access = PL2_W, .type = ARM_CP_NOP }, 7244 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7245 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7246 .access = PL2_W, .type = ARM_CP_NOP }, 7247 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7248 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7249 .access = PL3_W, .type = ARM_CP_NO_RAW, 7250 .writefn = tlbi_aa64_alle3is_write }, 7251 REGINFO_SENTINEL 7252 }; 7253 7254 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7255 { 7256 Error *err = NULL; 7257 uint64_t ret; 7258 7259 /* Success sets NZCV = 0000. */ 7260 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7261 7262 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7263 /* 7264 * ??? Failed, for unknown reasons in the crypto subsystem. 7265 * The best we can do is log the reason and return the 7266 * timed-out indication to the guest. There is no reason 7267 * we know to expect this failure to be transitory, so the 7268 * guest may well hang retrying the operation. 7269 */ 7270 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7271 ri->name, error_get_pretty(err)); 7272 error_free(err); 7273 7274 env->ZF = 0; /* NZCF = 0100 */ 7275 return 0; 7276 } 7277 return ret; 7278 } 7279 7280 /* We do not support re-seeding, so the two registers operate the same. */ 7281 static const ARMCPRegInfo rndr_reginfo[] = { 7282 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7283 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7284 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7285 .access = PL0_R, .readfn = rndr_readfn }, 7286 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7287 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7288 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7289 .access = PL0_R, .readfn = rndr_readfn }, 7290 REGINFO_SENTINEL 7291 }; 7292 7293 #ifndef CONFIG_USER_ONLY 7294 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7295 uint64_t value) 7296 { 7297 ARMCPU *cpu = env_archcpu(env); 7298 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7299 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7300 uint64_t vaddr_in = (uint64_t) value; 7301 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7302 void *haddr; 7303 int mem_idx = cpu_mmu_index(env, false); 7304 7305 /* This won't be crossing page boundaries */ 7306 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7307 if (haddr) { 7308 7309 ram_addr_t offset; 7310 MemoryRegion *mr; 7311 7312 /* RCU lock is already being held */ 7313 mr = memory_region_from_host(haddr, &offset); 7314 7315 if (mr) { 7316 memory_region_writeback(mr, offset, dline_size); 7317 } 7318 } 7319 } 7320 7321 static const ARMCPRegInfo dcpop_reg[] = { 7322 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7323 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7324 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7325 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7326 REGINFO_SENTINEL 7327 }; 7328 7329 static const ARMCPRegInfo dcpodp_reg[] = { 7330 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7331 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7332 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7333 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7334 REGINFO_SENTINEL 7335 }; 7336 #endif /*CONFIG_USER_ONLY*/ 7337 7338 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7339 bool isread) 7340 { 7341 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7342 return CP_ACCESS_TRAP_EL2; 7343 } 7344 7345 return CP_ACCESS_OK; 7346 } 7347 7348 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7349 bool isread) 7350 { 7351 int el = arm_current_el(env); 7352 7353 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7354 uint64_t hcr = arm_hcr_el2_eff(env); 7355 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7356 return CP_ACCESS_TRAP_EL2; 7357 } 7358 } 7359 if (el < 3 && 7360 arm_feature(env, ARM_FEATURE_EL3) && 7361 !(env->cp15.scr_el3 & SCR_ATA)) { 7362 return CP_ACCESS_TRAP_EL3; 7363 } 7364 return CP_ACCESS_OK; 7365 } 7366 7367 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7368 { 7369 return env->pstate & PSTATE_TCO; 7370 } 7371 7372 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7373 { 7374 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7375 } 7376 7377 static const ARMCPRegInfo mte_reginfo[] = { 7378 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7379 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7380 .access = PL1_RW, .accessfn = access_mte, 7381 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7382 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7383 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7384 .access = PL1_RW, .accessfn = access_mte, 7385 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7386 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7387 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7388 .access = PL2_RW, .accessfn = access_mte, 7389 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7390 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7391 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7392 .access = PL3_RW, 7393 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7394 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7395 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7396 .access = PL1_RW, .accessfn = access_mte, 7397 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7398 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7399 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7400 .access = PL1_RW, .accessfn = access_mte, 7401 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7402 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7403 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7404 .access = PL1_R, .accessfn = access_aa64_tid5, 7405 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7406 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7407 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7408 .type = ARM_CP_NO_RAW, 7409 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7410 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7411 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7412 .type = ARM_CP_NOP, .access = PL1_W, 7413 .accessfn = aa64_cacheop_poc_access }, 7414 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7415 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7416 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7417 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7418 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7419 .type = ARM_CP_NOP, .access = PL1_W, 7420 .accessfn = aa64_cacheop_poc_access }, 7421 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7422 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7423 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7424 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7426 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7427 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7428 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7429 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7430 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7432 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7433 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7434 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7435 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7436 REGINFO_SENTINEL 7437 }; 7438 7439 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7440 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7441 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7442 .type = ARM_CP_CONST, .access = PL0_RW, }, 7443 REGINFO_SENTINEL 7444 }; 7445 7446 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7447 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7448 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7449 .type = ARM_CP_NOP, .access = PL0_W, 7450 .accessfn = aa64_cacheop_poc_access }, 7451 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7452 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7453 .type = ARM_CP_NOP, .access = PL0_W, 7454 .accessfn = aa64_cacheop_poc_access }, 7455 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7457 .type = ARM_CP_NOP, .access = PL0_W, 7458 .accessfn = aa64_cacheop_poc_access }, 7459 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7460 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7461 .type = ARM_CP_NOP, .access = PL0_W, 7462 .accessfn = aa64_cacheop_poc_access }, 7463 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7464 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7465 .type = ARM_CP_NOP, .access = PL0_W, 7466 .accessfn = aa64_cacheop_poc_access }, 7467 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7468 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7469 .type = ARM_CP_NOP, .access = PL0_W, 7470 .accessfn = aa64_cacheop_poc_access }, 7471 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7472 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7473 .type = ARM_CP_NOP, .access = PL0_W, 7474 .accessfn = aa64_cacheop_poc_access }, 7475 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7476 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7477 .type = ARM_CP_NOP, .access = PL0_W, 7478 .accessfn = aa64_cacheop_poc_access }, 7479 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7480 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7481 .access = PL0_W, .type = ARM_CP_DC_GVA, 7482 #ifndef CONFIG_USER_ONLY 7483 /* Avoid overhead of an access check that always passes in user-mode */ 7484 .accessfn = aa64_zva_access, 7485 #endif 7486 }, 7487 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7488 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7489 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7490 #ifndef CONFIG_USER_ONLY 7491 /* Avoid overhead of an access check that always passes in user-mode */ 7492 .accessfn = aa64_zva_access, 7493 #endif 7494 }, 7495 REGINFO_SENTINEL 7496 }; 7497 7498 #endif 7499 7500 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7501 bool isread) 7502 { 7503 int el = arm_current_el(env); 7504 7505 if (el == 0) { 7506 uint64_t sctlr = arm_sctlr(env, el); 7507 if (!(sctlr & SCTLR_EnRCTX)) { 7508 return CP_ACCESS_TRAP; 7509 } 7510 } else if (el == 1) { 7511 uint64_t hcr = arm_hcr_el2_eff(env); 7512 if (hcr & HCR_NV) { 7513 return CP_ACCESS_TRAP_EL2; 7514 } 7515 } 7516 return CP_ACCESS_OK; 7517 } 7518 7519 static const ARMCPRegInfo predinv_reginfo[] = { 7520 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7521 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7522 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7523 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7524 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7525 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7526 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7527 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7528 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7529 /* 7530 * Note the AArch32 opcodes have a different OPC1. 7531 */ 7532 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7533 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7534 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7535 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7536 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7537 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7538 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7539 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7540 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7541 REGINFO_SENTINEL 7542 }; 7543 7544 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7545 { 7546 /* Read the high 32 bits of the current CCSIDR */ 7547 return extract64(ccsidr_read(env, ri), 32, 32); 7548 } 7549 7550 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7551 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7552 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7553 .access = PL1_R, 7554 .accessfn = access_aa64_tid2, 7555 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7556 REGINFO_SENTINEL 7557 }; 7558 7559 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7560 bool isread) 7561 { 7562 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7563 return CP_ACCESS_TRAP_EL2; 7564 } 7565 7566 return CP_ACCESS_OK; 7567 } 7568 7569 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7570 bool isread) 7571 { 7572 if (arm_feature(env, ARM_FEATURE_V8)) { 7573 return access_aa64_tid3(env, ri, isread); 7574 } 7575 7576 return CP_ACCESS_OK; 7577 } 7578 7579 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7580 bool isread) 7581 { 7582 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7583 return CP_ACCESS_TRAP_EL2; 7584 } 7585 7586 return CP_ACCESS_OK; 7587 } 7588 7589 static const ARMCPRegInfo jazelle_regs[] = { 7590 { .name = "JIDR", 7591 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7592 .access = PL1_R, .accessfn = access_jazelle, 7593 .type = ARM_CP_CONST, .resetvalue = 0 }, 7594 { .name = "JOSCR", 7595 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7596 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7597 { .name = "JMCR", 7598 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7599 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7600 REGINFO_SENTINEL 7601 }; 7602 7603 static const ARMCPRegInfo vhe_reginfo[] = { 7604 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7605 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7606 .access = PL2_RW, 7607 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7608 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7609 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7610 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7611 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7612 #ifndef CONFIG_USER_ONLY 7613 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7614 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7615 .fieldoffset = 7616 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7617 .type = ARM_CP_IO, .access = PL2_RW, 7618 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7619 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7620 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7621 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7622 .resetfn = gt_hv_timer_reset, 7623 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7624 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7625 .type = ARM_CP_IO, 7626 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7627 .access = PL2_RW, 7628 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7629 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7630 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7631 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7632 .type = ARM_CP_IO | ARM_CP_ALIAS, 7633 .access = PL2_RW, .accessfn = e2h_access, 7634 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7635 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7636 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7637 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7638 .type = ARM_CP_IO | ARM_CP_ALIAS, 7639 .access = PL2_RW, .accessfn = e2h_access, 7640 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7641 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7642 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7643 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7644 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7645 .access = PL2_RW, .accessfn = e2h_access, 7646 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7647 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7648 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7649 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7650 .access = PL2_RW, .accessfn = e2h_access, 7651 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7652 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7653 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7654 .type = ARM_CP_IO | ARM_CP_ALIAS, 7655 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7656 .access = PL2_RW, .accessfn = e2h_access, 7657 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7658 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7659 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7660 .type = ARM_CP_IO | ARM_CP_ALIAS, 7661 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7662 .access = PL2_RW, .accessfn = e2h_access, 7663 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7664 #endif 7665 REGINFO_SENTINEL 7666 }; 7667 7668 #ifndef CONFIG_USER_ONLY 7669 static const ARMCPRegInfo ats1e1_reginfo[] = { 7670 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7671 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7672 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7673 .writefn = ats_write64 }, 7674 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7675 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7676 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7677 .writefn = ats_write64 }, 7678 REGINFO_SENTINEL 7679 }; 7680 7681 static const ARMCPRegInfo ats1cp_reginfo[] = { 7682 { .name = "ATS1CPRP", 7683 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7684 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7685 .writefn = ats_write }, 7686 { .name = "ATS1CPWP", 7687 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7688 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7689 .writefn = ats_write }, 7690 REGINFO_SENTINEL 7691 }; 7692 #endif 7693 7694 /* 7695 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7696 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7697 * is non-zero, which is never for ARMv7, optionally in ARMv8 7698 * and mandatorily for ARMv8.2 and up. 7699 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7700 * implementation is RAZ/WI we can ignore this detail, as we 7701 * do for ACTLR. 7702 */ 7703 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7704 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7705 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7706 .access = PL1_RW, .accessfn = access_tacr, 7707 .type = ARM_CP_CONST, .resetvalue = 0 }, 7708 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7709 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7710 .access = PL2_RW, .type = ARM_CP_CONST, 7711 .resetvalue = 0 }, 7712 REGINFO_SENTINEL 7713 }; 7714 7715 void register_cp_regs_for_features(ARMCPU *cpu) 7716 { 7717 /* Register all the coprocessor registers based on feature bits */ 7718 CPUARMState *env = &cpu->env; 7719 if (arm_feature(env, ARM_FEATURE_M)) { 7720 /* M profile has no coprocessor registers */ 7721 return; 7722 } 7723 7724 define_arm_cp_regs(cpu, cp_reginfo); 7725 if (!arm_feature(env, ARM_FEATURE_V8)) { 7726 /* Must go early as it is full of wildcards that may be 7727 * overridden by later definitions. 7728 */ 7729 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7730 } 7731 7732 if (arm_feature(env, ARM_FEATURE_V6)) { 7733 /* The ID registers all have impdef reset values */ 7734 ARMCPRegInfo v6_idregs[] = { 7735 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7737 .access = PL1_R, .type = ARM_CP_CONST, 7738 .accessfn = access_aa32_tid3, 7739 .resetvalue = cpu->isar.id_pfr0 }, 7740 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7741 * the value of the GIC field until after we define these regs. 7742 */ 7743 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7745 .access = PL1_R, .type = ARM_CP_NO_RAW, 7746 .accessfn = access_aa32_tid3, 7747 .readfn = id_pfr1_read, 7748 .writefn = arm_cp_write_ignore }, 7749 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7751 .access = PL1_R, .type = ARM_CP_CONST, 7752 .accessfn = access_aa32_tid3, 7753 .resetvalue = cpu->isar.id_dfr0 }, 7754 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7756 .access = PL1_R, .type = ARM_CP_CONST, 7757 .accessfn = access_aa32_tid3, 7758 .resetvalue = cpu->id_afr0 }, 7759 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7761 .access = PL1_R, .type = ARM_CP_CONST, 7762 .accessfn = access_aa32_tid3, 7763 .resetvalue = cpu->isar.id_mmfr0 }, 7764 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7766 .access = PL1_R, .type = ARM_CP_CONST, 7767 .accessfn = access_aa32_tid3, 7768 .resetvalue = cpu->isar.id_mmfr1 }, 7769 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7771 .access = PL1_R, .type = ARM_CP_CONST, 7772 .accessfn = access_aa32_tid3, 7773 .resetvalue = cpu->isar.id_mmfr2 }, 7774 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7776 .access = PL1_R, .type = ARM_CP_CONST, 7777 .accessfn = access_aa32_tid3, 7778 .resetvalue = cpu->isar.id_mmfr3 }, 7779 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7781 .access = PL1_R, .type = ARM_CP_CONST, 7782 .accessfn = access_aa32_tid3, 7783 .resetvalue = cpu->isar.id_isar0 }, 7784 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7786 .access = PL1_R, .type = ARM_CP_CONST, 7787 .accessfn = access_aa32_tid3, 7788 .resetvalue = cpu->isar.id_isar1 }, 7789 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7791 .access = PL1_R, .type = ARM_CP_CONST, 7792 .accessfn = access_aa32_tid3, 7793 .resetvalue = cpu->isar.id_isar2 }, 7794 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7796 .access = PL1_R, .type = ARM_CP_CONST, 7797 .accessfn = access_aa32_tid3, 7798 .resetvalue = cpu->isar.id_isar3 }, 7799 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7801 .access = PL1_R, .type = ARM_CP_CONST, 7802 .accessfn = access_aa32_tid3, 7803 .resetvalue = cpu->isar.id_isar4 }, 7804 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7806 .access = PL1_R, .type = ARM_CP_CONST, 7807 .accessfn = access_aa32_tid3, 7808 .resetvalue = cpu->isar.id_isar5 }, 7809 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7811 .access = PL1_R, .type = ARM_CP_CONST, 7812 .accessfn = access_aa32_tid3, 7813 .resetvalue = cpu->isar.id_mmfr4 }, 7814 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7816 .access = PL1_R, .type = ARM_CP_CONST, 7817 .accessfn = access_aa32_tid3, 7818 .resetvalue = cpu->isar.id_isar6 }, 7819 REGINFO_SENTINEL 7820 }; 7821 define_arm_cp_regs(cpu, v6_idregs); 7822 define_arm_cp_regs(cpu, v6_cp_reginfo); 7823 } else { 7824 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7825 } 7826 if (arm_feature(env, ARM_FEATURE_V6K)) { 7827 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7828 } 7829 if (arm_feature(env, ARM_FEATURE_V7MP) && 7830 !arm_feature(env, ARM_FEATURE_PMSA)) { 7831 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7832 } 7833 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7834 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7835 } 7836 if (arm_feature(env, ARM_FEATURE_V7)) { 7837 ARMCPRegInfo clidr = { 7838 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7839 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7840 .access = PL1_R, .type = ARM_CP_CONST, 7841 .accessfn = access_aa64_tid2, 7842 .resetvalue = cpu->clidr 7843 }; 7844 define_one_arm_cp_reg(cpu, &clidr); 7845 define_arm_cp_regs(cpu, v7_cp_reginfo); 7846 define_debug_regs(cpu); 7847 define_pmu_regs(cpu); 7848 } else { 7849 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7850 } 7851 if (arm_feature(env, ARM_FEATURE_V8)) { 7852 /* AArch64 ID registers, which all have impdef reset values. 7853 * Note that within the ID register ranges the unused slots 7854 * must all RAZ, not UNDEF; future architecture versions may 7855 * define new registers here. 7856 */ 7857 ARMCPRegInfo v8_idregs[] = { 7858 /* 7859 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7860 * emulation because we don't know the right value for the 7861 * GIC field until after we define these regs. 7862 */ 7863 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7865 .access = PL1_R, 7866 #ifdef CONFIG_USER_ONLY 7867 .type = ARM_CP_CONST, 7868 .resetvalue = cpu->isar.id_aa64pfr0 7869 #else 7870 .type = ARM_CP_NO_RAW, 7871 .accessfn = access_aa64_tid3, 7872 .readfn = id_aa64pfr0_read, 7873 .writefn = arm_cp_write_ignore 7874 #endif 7875 }, 7876 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7878 .access = PL1_R, .type = ARM_CP_CONST, 7879 .accessfn = access_aa64_tid3, 7880 .resetvalue = cpu->isar.id_aa64pfr1}, 7881 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7883 .access = PL1_R, .type = ARM_CP_CONST, 7884 .accessfn = access_aa64_tid3, 7885 .resetvalue = 0 }, 7886 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7888 .access = PL1_R, .type = ARM_CP_CONST, 7889 .accessfn = access_aa64_tid3, 7890 .resetvalue = 0 }, 7891 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7893 .access = PL1_R, .type = ARM_CP_CONST, 7894 .accessfn = access_aa64_tid3, 7895 .resetvalue = cpu->isar.id_aa64zfr0 }, 7896 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7898 .access = PL1_R, .type = ARM_CP_CONST, 7899 .accessfn = access_aa64_tid3, 7900 .resetvalue = 0 }, 7901 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7903 .access = PL1_R, .type = ARM_CP_CONST, 7904 .accessfn = access_aa64_tid3, 7905 .resetvalue = 0 }, 7906 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7907 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7908 .access = PL1_R, .type = ARM_CP_CONST, 7909 .accessfn = access_aa64_tid3, 7910 .resetvalue = 0 }, 7911 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7913 .access = PL1_R, .type = ARM_CP_CONST, 7914 .accessfn = access_aa64_tid3, 7915 .resetvalue = cpu->isar.id_aa64dfr0 }, 7916 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7918 .access = PL1_R, .type = ARM_CP_CONST, 7919 .accessfn = access_aa64_tid3, 7920 .resetvalue = cpu->isar.id_aa64dfr1 }, 7921 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7923 .access = PL1_R, .type = ARM_CP_CONST, 7924 .accessfn = access_aa64_tid3, 7925 .resetvalue = 0 }, 7926 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7928 .access = PL1_R, .type = ARM_CP_CONST, 7929 .accessfn = access_aa64_tid3, 7930 .resetvalue = 0 }, 7931 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7933 .access = PL1_R, .type = ARM_CP_CONST, 7934 .accessfn = access_aa64_tid3, 7935 .resetvalue = cpu->id_aa64afr0 }, 7936 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7937 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7938 .access = PL1_R, .type = ARM_CP_CONST, 7939 .accessfn = access_aa64_tid3, 7940 .resetvalue = cpu->id_aa64afr1 }, 7941 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7943 .access = PL1_R, .type = ARM_CP_CONST, 7944 .accessfn = access_aa64_tid3, 7945 .resetvalue = 0 }, 7946 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7948 .access = PL1_R, .type = ARM_CP_CONST, 7949 .accessfn = access_aa64_tid3, 7950 .resetvalue = 0 }, 7951 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7952 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7953 .access = PL1_R, .type = ARM_CP_CONST, 7954 .accessfn = access_aa64_tid3, 7955 .resetvalue = cpu->isar.id_aa64isar0 }, 7956 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7958 .access = PL1_R, .type = ARM_CP_CONST, 7959 .accessfn = access_aa64_tid3, 7960 .resetvalue = cpu->isar.id_aa64isar1 }, 7961 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7963 .access = PL1_R, .type = ARM_CP_CONST, 7964 .accessfn = access_aa64_tid3, 7965 .resetvalue = 0 }, 7966 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7968 .access = PL1_R, .type = ARM_CP_CONST, 7969 .accessfn = access_aa64_tid3, 7970 .resetvalue = 0 }, 7971 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7972 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7973 .access = PL1_R, .type = ARM_CP_CONST, 7974 .accessfn = access_aa64_tid3, 7975 .resetvalue = 0 }, 7976 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7977 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7978 .access = PL1_R, .type = ARM_CP_CONST, 7979 .accessfn = access_aa64_tid3, 7980 .resetvalue = 0 }, 7981 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7982 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7983 .access = PL1_R, .type = ARM_CP_CONST, 7984 .accessfn = access_aa64_tid3, 7985 .resetvalue = 0 }, 7986 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7987 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7988 .access = PL1_R, .type = ARM_CP_CONST, 7989 .accessfn = access_aa64_tid3, 7990 .resetvalue = 0 }, 7991 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7993 .access = PL1_R, .type = ARM_CP_CONST, 7994 .accessfn = access_aa64_tid3, 7995 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7996 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7998 .access = PL1_R, .type = ARM_CP_CONST, 7999 .accessfn = access_aa64_tid3, 8000 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8001 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8003 .access = PL1_R, .type = ARM_CP_CONST, 8004 .accessfn = access_aa64_tid3, 8005 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8006 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8007 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8008 .access = PL1_R, .type = ARM_CP_CONST, 8009 .accessfn = access_aa64_tid3, 8010 .resetvalue = 0 }, 8011 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8013 .access = PL1_R, .type = ARM_CP_CONST, 8014 .accessfn = access_aa64_tid3, 8015 .resetvalue = 0 }, 8016 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8018 .access = PL1_R, .type = ARM_CP_CONST, 8019 .accessfn = access_aa64_tid3, 8020 .resetvalue = 0 }, 8021 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8023 .access = PL1_R, .type = ARM_CP_CONST, 8024 .accessfn = access_aa64_tid3, 8025 .resetvalue = 0 }, 8026 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8028 .access = PL1_R, .type = ARM_CP_CONST, 8029 .accessfn = access_aa64_tid3, 8030 .resetvalue = 0 }, 8031 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8033 .access = PL1_R, .type = ARM_CP_CONST, 8034 .accessfn = access_aa64_tid3, 8035 .resetvalue = cpu->isar.mvfr0 }, 8036 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8038 .access = PL1_R, .type = ARM_CP_CONST, 8039 .accessfn = access_aa64_tid3, 8040 .resetvalue = cpu->isar.mvfr1 }, 8041 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8043 .access = PL1_R, .type = ARM_CP_CONST, 8044 .accessfn = access_aa64_tid3, 8045 .resetvalue = cpu->isar.mvfr2 }, 8046 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8047 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8048 .access = PL1_R, .type = ARM_CP_CONST, 8049 .accessfn = access_aa64_tid3, 8050 .resetvalue = 0 }, 8051 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8052 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8053 .access = PL1_R, .type = ARM_CP_CONST, 8054 .accessfn = access_aa64_tid3, 8055 .resetvalue = cpu->isar.id_pfr2 }, 8056 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8057 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8058 .access = PL1_R, .type = ARM_CP_CONST, 8059 .accessfn = access_aa64_tid3, 8060 .resetvalue = 0 }, 8061 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8063 .access = PL1_R, .type = ARM_CP_CONST, 8064 .accessfn = access_aa64_tid3, 8065 .resetvalue = 0 }, 8066 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8067 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8068 .access = PL1_R, .type = ARM_CP_CONST, 8069 .accessfn = access_aa64_tid3, 8070 .resetvalue = 0 }, 8071 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8072 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8073 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8074 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8075 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8076 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8077 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8078 .resetvalue = cpu->pmceid0 }, 8079 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8080 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8081 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8082 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8083 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8084 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8085 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8086 .resetvalue = cpu->pmceid1 }, 8087 REGINFO_SENTINEL 8088 }; 8089 #ifdef CONFIG_USER_ONLY 8090 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8091 { .name = "ID_AA64PFR0_EL1", 8092 .exported_bits = 0x000f000f00ff0000, 8093 .fixed_bits = 0x0000000000000011 }, 8094 { .name = "ID_AA64PFR1_EL1", 8095 .exported_bits = 0x00000000000000f0 }, 8096 { .name = "ID_AA64PFR*_EL1_RESERVED", 8097 .is_glob = true }, 8098 { .name = "ID_AA64ZFR0_EL1" }, 8099 { .name = "ID_AA64MMFR0_EL1", 8100 .fixed_bits = 0x00000000ff000000 }, 8101 { .name = "ID_AA64MMFR1_EL1" }, 8102 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8103 .is_glob = true }, 8104 { .name = "ID_AA64DFR0_EL1", 8105 .fixed_bits = 0x0000000000000006 }, 8106 { .name = "ID_AA64DFR1_EL1" }, 8107 { .name = "ID_AA64DFR*_EL1_RESERVED", 8108 .is_glob = true }, 8109 { .name = "ID_AA64AFR*", 8110 .is_glob = true }, 8111 { .name = "ID_AA64ISAR0_EL1", 8112 .exported_bits = 0x00fffffff0fffff0 }, 8113 { .name = "ID_AA64ISAR1_EL1", 8114 .exported_bits = 0x000000f0ffffffff }, 8115 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8116 .is_glob = true }, 8117 REGUSERINFO_SENTINEL 8118 }; 8119 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8120 #endif 8121 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8122 if (!arm_feature(env, ARM_FEATURE_EL3) && 8123 !arm_feature(env, ARM_FEATURE_EL2)) { 8124 ARMCPRegInfo rvbar = { 8125 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 8126 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8127 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 8128 }; 8129 define_one_arm_cp_reg(cpu, &rvbar); 8130 } 8131 define_arm_cp_regs(cpu, v8_idregs); 8132 define_arm_cp_regs(cpu, v8_cp_reginfo); 8133 } 8134 if (arm_feature(env, ARM_FEATURE_EL2)) { 8135 uint64_t vmpidr_def = mpidr_read_val(env); 8136 ARMCPRegInfo vpidr_regs[] = { 8137 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8138 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8139 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8140 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 8141 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8142 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8143 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8144 .access = PL2_RW, .resetvalue = cpu->midr, 8145 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8146 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8147 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8148 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8149 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 8150 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8151 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8152 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8153 .access = PL2_RW, 8154 .resetvalue = vmpidr_def, 8155 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8156 REGINFO_SENTINEL 8157 }; 8158 define_arm_cp_regs(cpu, vpidr_regs); 8159 define_arm_cp_regs(cpu, el2_cp_reginfo); 8160 if (arm_feature(env, ARM_FEATURE_V8)) { 8161 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8162 } 8163 if (cpu_isar_feature(aa64_sel2, cpu)) { 8164 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8165 } 8166 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8167 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8168 ARMCPRegInfo rvbar = { 8169 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8170 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8171 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 8172 }; 8173 define_one_arm_cp_reg(cpu, &rvbar); 8174 } 8175 } else { 8176 /* If EL2 is missing but higher ELs are enabled, we need to 8177 * register the no_el2 reginfos. 8178 */ 8179 if (arm_feature(env, ARM_FEATURE_EL3)) { 8180 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8181 * of MIDR_EL1 and MPIDR_EL1. 8182 */ 8183 ARMCPRegInfo vpidr_regs[] = { 8184 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8185 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8186 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8187 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8188 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8189 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8190 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8191 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8192 .type = ARM_CP_NO_RAW, 8193 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8194 REGINFO_SENTINEL 8195 }; 8196 define_arm_cp_regs(cpu, vpidr_regs); 8197 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8198 if (arm_feature(env, ARM_FEATURE_V8)) { 8199 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8200 } 8201 } 8202 } 8203 if (arm_feature(env, ARM_FEATURE_EL3)) { 8204 define_arm_cp_regs(cpu, el3_cp_reginfo); 8205 ARMCPRegInfo el3_regs[] = { 8206 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8207 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8208 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 8209 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8210 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8211 .access = PL3_RW, 8212 .raw_writefn = raw_write, .writefn = sctlr_write, 8213 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8214 .resetvalue = cpu->reset_sctlr }, 8215 REGINFO_SENTINEL 8216 }; 8217 8218 define_arm_cp_regs(cpu, el3_regs); 8219 } 8220 /* The behaviour of NSACR is sufficiently various that we don't 8221 * try to describe it in a single reginfo: 8222 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8223 * reads as constant 0xc00 from NS EL1 and NS EL2 8224 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8225 * if v7 without EL3, register doesn't exist 8226 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8227 */ 8228 if (arm_feature(env, ARM_FEATURE_EL3)) { 8229 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8230 ARMCPRegInfo nsacr = { 8231 .name = "NSACR", .type = ARM_CP_CONST, 8232 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8233 .access = PL1_RW, .accessfn = nsacr_access, 8234 .resetvalue = 0xc00 8235 }; 8236 define_one_arm_cp_reg(cpu, &nsacr); 8237 } else { 8238 ARMCPRegInfo nsacr = { 8239 .name = "NSACR", 8240 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8241 .access = PL3_RW | PL1_R, 8242 .resetvalue = 0, 8243 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8244 }; 8245 define_one_arm_cp_reg(cpu, &nsacr); 8246 } 8247 } else { 8248 if (arm_feature(env, ARM_FEATURE_V8)) { 8249 ARMCPRegInfo nsacr = { 8250 .name = "NSACR", .type = ARM_CP_CONST, 8251 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8252 .access = PL1_R, 8253 .resetvalue = 0xc00 8254 }; 8255 define_one_arm_cp_reg(cpu, &nsacr); 8256 } 8257 } 8258 8259 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8260 if (arm_feature(env, ARM_FEATURE_V6)) { 8261 /* PMSAv6 not implemented */ 8262 assert(arm_feature(env, ARM_FEATURE_V7)); 8263 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8264 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8265 } else { 8266 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8267 } 8268 } else { 8269 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8270 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8271 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8272 if (cpu_isar_feature(aa32_hpd, cpu)) { 8273 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8274 } 8275 } 8276 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8277 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8278 } 8279 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8280 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8281 } 8282 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8283 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8284 } 8285 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8286 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8287 } 8288 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8289 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8290 } 8291 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8292 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8293 } 8294 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8295 define_arm_cp_regs(cpu, omap_cp_reginfo); 8296 } 8297 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8298 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8299 } 8300 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8301 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8302 } 8303 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8304 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8305 } 8306 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8307 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8308 } 8309 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8310 define_arm_cp_regs(cpu, jazelle_regs); 8311 } 8312 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8313 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8314 * be read-only (ie write causes UNDEF exception). 8315 */ 8316 { 8317 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8318 /* Pre-v8 MIDR space. 8319 * Note that the MIDR isn't a simple constant register because 8320 * of the TI925 behaviour where writes to another register can 8321 * cause the MIDR value to change. 8322 * 8323 * Unimplemented registers in the c15 0 0 0 space default to 8324 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8325 * and friends override accordingly. 8326 */ 8327 { .name = "MIDR", 8328 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8329 .access = PL1_R, .resetvalue = cpu->midr, 8330 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8331 .readfn = midr_read, 8332 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8333 .type = ARM_CP_OVERRIDE }, 8334 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8335 { .name = "DUMMY", 8336 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8337 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8338 { .name = "DUMMY", 8339 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8340 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8341 { .name = "DUMMY", 8342 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8343 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8344 { .name = "DUMMY", 8345 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8346 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8347 { .name = "DUMMY", 8348 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8349 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8350 REGINFO_SENTINEL 8351 }; 8352 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8353 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8354 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8355 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8356 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8357 .readfn = midr_read }, 8358 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8359 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8360 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8361 .access = PL1_R, .resetvalue = cpu->midr }, 8362 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8363 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8364 .access = PL1_R, .resetvalue = cpu->midr }, 8365 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8367 .access = PL1_R, 8368 .accessfn = access_aa64_tid1, 8369 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8370 REGINFO_SENTINEL 8371 }; 8372 ARMCPRegInfo id_cp_reginfo[] = { 8373 /* These are common to v8 and pre-v8 */ 8374 { .name = "CTR", 8375 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8376 .access = PL1_R, .accessfn = ctr_el0_access, 8377 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8378 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8379 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8380 .access = PL0_R, .accessfn = ctr_el0_access, 8381 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8382 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8383 { .name = "TCMTR", 8384 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8385 .access = PL1_R, 8386 .accessfn = access_aa32_tid1, 8387 .type = ARM_CP_CONST, .resetvalue = 0 }, 8388 REGINFO_SENTINEL 8389 }; 8390 /* TLBTR is specific to VMSA */ 8391 ARMCPRegInfo id_tlbtr_reginfo = { 8392 .name = "TLBTR", 8393 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8394 .access = PL1_R, 8395 .accessfn = access_aa32_tid1, 8396 .type = ARM_CP_CONST, .resetvalue = 0, 8397 }; 8398 /* MPUIR is specific to PMSA V6+ */ 8399 ARMCPRegInfo id_mpuir_reginfo = { 8400 .name = "MPUIR", 8401 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8402 .access = PL1_R, .type = ARM_CP_CONST, 8403 .resetvalue = cpu->pmsav7_dregion << 8 8404 }; 8405 ARMCPRegInfo crn0_wi_reginfo = { 8406 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8407 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8408 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8409 }; 8410 #ifdef CONFIG_USER_ONLY 8411 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8412 { .name = "MIDR_EL1", 8413 .exported_bits = 0x00000000ffffffff }, 8414 { .name = "REVIDR_EL1" }, 8415 REGUSERINFO_SENTINEL 8416 }; 8417 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8418 #endif 8419 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8420 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8421 ARMCPRegInfo *r; 8422 /* Register the blanket "writes ignored" value first to cover the 8423 * whole space. Then update the specific ID registers to allow write 8424 * access, so that they ignore writes rather than causing them to 8425 * UNDEF. 8426 */ 8427 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8428 for (r = id_pre_v8_midr_cp_reginfo; 8429 r->type != ARM_CP_SENTINEL; r++) { 8430 r->access = PL1_RW; 8431 } 8432 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8433 r->access = PL1_RW; 8434 } 8435 id_mpuir_reginfo.access = PL1_RW; 8436 id_tlbtr_reginfo.access = PL1_RW; 8437 } 8438 if (arm_feature(env, ARM_FEATURE_V8)) { 8439 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8440 } else { 8441 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8442 } 8443 define_arm_cp_regs(cpu, id_cp_reginfo); 8444 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8445 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8446 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8447 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8448 } 8449 } 8450 8451 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8452 ARMCPRegInfo mpidr_cp_reginfo[] = { 8453 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8454 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8455 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8456 REGINFO_SENTINEL 8457 }; 8458 #ifdef CONFIG_USER_ONLY 8459 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8460 { .name = "MPIDR_EL1", 8461 .fixed_bits = 0x0000000080000000 }, 8462 REGUSERINFO_SENTINEL 8463 }; 8464 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8465 #endif 8466 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8467 } 8468 8469 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8470 ARMCPRegInfo auxcr_reginfo[] = { 8471 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8472 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8473 .access = PL1_RW, .accessfn = access_tacr, 8474 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8475 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8476 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8477 .access = PL2_RW, .type = ARM_CP_CONST, 8478 .resetvalue = 0 }, 8479 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8480 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8481 .access = PL3_RW, .type = ARM_CP_CONST, 8482 .resetvalue = 0 }, 8483 REGINFO_SENTINEL 8484 }; 8485 define_arm_cp_regs(cpu, auxcr_reginfo); 8486 if (cpu_isar_feature(aa32_ac2, cpu)) { 8487 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8488 } 8489 } 8490 8491 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8492 /* 8493 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8494 * There are two flavours: 8495 * (1) older 32-bit only cores have a simple 32-bit CBAR 8496 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8497 * 32-bit register visible to AArch32 at a different encoding 8498 * to the "flavour 1" register and with the bits rearranged to 8499 * be able to squash a 64-bit address into the 32-bit view. 8500 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8501 * in future if we support AArch32-only configs of some of the 8502 * AArch64 cores we might need to add a specific feature flag 8503 * to indicate cores with "flavour 2" CBAR. 8504 */ 8505 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8506 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8507 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8508 | extract64(cpu->reset_cbar, 32, 12); 8509 ARMCPRegInfo cbar_reginfo[] = { 8510 { .name = "CBAR", 8511 .type = ARM_CP_CONST, 8512 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8513 .access = PL1_R, .resetvalue = cbar32 }, 8514 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8515 .type = ARM_CP_CONST, 8516 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8517 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8518 REGINFO_SENTINEL 8519 }; 8520 /* We don't implement a r/w 64 bit CBAR currently */ 8521 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8522 define_arm_cp_regs(cpu, cbar_reginfo); 8523 } else { 8524 ARMCPRegInfo cbar = { 8525 .name = "CBAR", 8526 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8527 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8528 .fieldoffset = offsetof(CPUARMState, 8529 cp15.c15_config_base_address) 8530 }; 8531 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8532 cbar.access = PL1_R; 8533 cbar.fieldoffset = 0; 8534 cbar.type = ARM_CP_CONST; 8535 } 8536 define_one_arm_cp_reg(cpu, &cbar); 8537 } 8538 } 8539 8540 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8541 ARMCPRegInfo vbar_cp_reginfo[] = { 8542 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8543 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8544 .access = PL1_RW, .writefn = vbar_write, 8545 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8546 offsetof(CPUARMState, cp15.vbar_ns) }, 8547 .resetvalue = 0 }, 8548 REGINFO_SENTINEL 8549 }; 8550 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8551 } 8552 8553 /* Generic registers whose values depend on the implementation */ 8554 { 8555 ARMCPRegInfo sctlr = { 8556 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8557 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8558 .access = PL1_RW, .accessfn = access_tvm_trvm, 8559 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8560 offsetof(CPUARMState, cp15.sctlr_ns) }, 8561 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8562 .raw_writefn = raw_write, 8563 }; 8564 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8565 /* Normally we would always end the TB on an SCTLR write, but Linux 8566 * arch/arm/mach-pxa/sleep.S expects two instructions following 8567 * an MMU enable to execute from cache. Imitate this behaviour. 8568 */ 8569 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8570 } 8571 define_one_arm_cp_reg(cpu, &sctlr); 8572 } 8573 8574 if (cpu_isar_feature(aa64_lor, cpu)) { 8575 define_arm_cp_regs(cpu, lor_reginfo); 8576 } 8577 if (cpu_isar_feature(aa64_pan, cpu)) { 8578 define_one_arm_cp_reg(cpu, &pan_reginfo); 8579 } 8580 #ifndef CONFIG_USER_ONLY 8581 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8582 define_arm_cp_regs(cpu, ats1e1_reginfo); 8583 } 8584 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8585 define_arm_cp_regs(cpu, ats1cp_reginfo); 8586 } 8587 #endif 8588 if (cpu_isar_feature(aa64_uao, cpu)) { 8589 define_one_arm_cp_reg(cpu, &uao_reginfo); 8590 } 8591 8592 if (cpu_isar_feature(aa64_dit, cpu)) { 8593 define_one_arm_cp_reg(cpu, &dit_reginfo); 8594 } 8595 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8596 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8597 } 8598 8599 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8600 define_arm_cp_regs(cpu, vhe_reginfo); 8601 } 8602 8603 if (cpu_isar_feature(aa64_sve, cpu)) { 8604 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8605 if (arm_feature(env, ARM_FEATURE_EL2)) { 8606 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8607 } else { 8608 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8609 } 8610 if (arm_feature(env, ARM_FEATURE_EL3)) { 8611 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8612 } 8613 } 8614 8615 #ifdef TARGET_AARCH64 8616 if (cpu_isar_feature(aa64_pauth, cpu)) { 8617 define_arm_cp_regs(cpu, pauth_reginfo); 8618 } 8619 if (cpu_isar_feature(aa64_rndr, cpu)) { 8620 define_arm_cp_regs(cpu, rndr_reginfo); 8621 } 8622 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8623 define_arm_cp_regs(cpu, tlbirange_reginfo); 8624 } 8625 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8626 define_arm_cp_regs(cpu, tlbios_reginfo); 8627 } 8628 #ifndef CONFIG_USER_ONLY 8629 /* Data Cache clean instructions up to PoP */ 8630 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8631 define_one_arm_cp_reg(cpu, dcpop_reg); 8632 8633 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8634 define_one_arm_cp_reg(cpu, dcpodp_reg); 8635 } 8636 } 8637 #endif /*CONFIG_USER_ONLY*/ 8638 8639 /* 8640 * If full MTE is enabled, add all of the system registers. 8641 * If only "instructions available at EL0" are enabled, 8642 * then define only a RAZ/WI version of PSTATE.TCO. 8643 */ 8644 if (cpu_isar_feature(aa64_mte, cpu)) { 8645 define_arm_cp_regs(cpu, mte_reginfo); 8646 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8647 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8648 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8649 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8650 } 8651 #endif 8652 8653 if (cpu_isar_feature(any_predinv, cpu)) { 8654 define_arm_cp_regs(cpu, predinv_reginfo); 8655 } 8656 8657 if (cpu_isar_feature(any_ccidx, cpu)) { 8658 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8659 } 8660 8661 #ifndef CONFIG_USER_ONLY 8662 /* 8663 * Register redirections and aliases must be done last, 8664 * after the registers from the other extensions have been defined. 8665 */ 8666 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8667 define_arm_vh_e2h_redirects_aliases(cpu); 8668 } 8669 #endif 8670 } 8671 8672 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8673 { 8674 CPUState *cs = CPU(cpu); 8675 CPUARMState *env = &cpu->env; 8676 8677 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8678 /* 8679 * The lower part of each SVE register aliases to the FPU 8680 * registers so we don't need to include both. 8681 */ 8682 #ifdef TARGET_AARCH64 8683 if (isar_feature_aa64_sve(&cpu->isar)) { 8684 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8685 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8686 "sve-registers.xml", 0); 8687 } else 8688 #endif 8689 { 8690 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8691 aarch64_fpu_gdb_set_reg, 8692 34, "aarch64-fpu.xml", 0); 8693 } 8694 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8695 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8696 51, "arm-neon.xml", 0); 8697 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8698 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8699 35, "arm-vfp3.xml", 0); 8700 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8701 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8702 19, "arm-vfp.xml", 0); 8703 } 8704 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8705 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8706 "system-registers.xml", 0); 8707 8708 } 8709 8710 /* Sort alphabetically by type name, except for "any". */ 8711 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8712 { 8713 ObjectClass *class_a = (ObjectClass *)a; 8714 ObjectClass *class_b = (ObjectClass *)b; 8715 const char *name_a, *name_b; 8716 8717 name_a = object_class_get_name(class_a); 8718 name_b = object_class_get_name(class_b); 8719 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8720 return 1; 8721 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8722 return -1; 8723 } else { 8724 return strcmp(name_a, name_b); 8725 } 8726 } 8727 8728 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8729 { 8730 ObjectClass *oc = data; 8731 const char *typename; 8732 char *name; 8733 8734 typename = object_class_get_name(oc); 8735 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8736 qemu_printf(" %s\n", name); 8737 g_free(name); 8738 } 8739 8740 void arm_cpu_list(void) 8741 { 8742 GSList *list; 8743 8744 list = object_class_get_list(TYPE_ARM_CPU, false); 8745 list = g_slist_sort(list, arm_cpu_list_compare); 8746 qemu_printf("Available CPUs:\n"); 8747 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8748 g_slist_free(list); 8749 } 8750 8751 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8752 { 8753 ObjectClass *oc = data; 8754 CpuDefinitionInfoList **cpu_list = user_data; 8755 CpuDefinitionInfo *info; 8756 const char *typename; 8757 8758 typename = object_class_get_name(oc); 8759 info = g_malloc0(sizeof(*info)); 8760 info->name = g_strndup(typename, 8761 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8762 info->q_typename = g_strdup(typename); 8763 8764 QAPI_LIST_PREPEND(*cpu_list, info); 8765 } 8766 8767 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8768 { 8769 CpuDefinitionInfoList *cpu_list = NULL; 8770 GSList *list; 8771 8772 list = object_class_get_list(TYPE_ARM_CPU, false); 8773 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8774 g_slist_free(list); 8775 8776 return cpu_list; 8777 } 8778 8779 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8780 void *opaque, int state, int secstate, 8781 int crm, int opc1, int opc2, 8782 const char *name) 8783 { 8784 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8785 * add a single reginfo struct to the hash table. 8786 */ 8787 uint32_t *key = g_new(uint32_t, 1); 8788 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8789 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8790 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8791 8792 r2->name = g_strdup(name); 8793 /* Reset the secure state to the specific incoming state. This is 8794 * necessary as the register may have been defined with both states. 8795 */ 8796 r2->secure = secstate; 8797 8798 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8799 /* Register is banked (using both entries in array). 8800 * Overwriting fieldoffset as the array is only used to define 8801 * banked registers but later only fieldoffset is used. 8802 */ 8803 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8804 } 8805 8806 if (state == ARM_CP_STATE_AA32) { 8807 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8808 /* If the register is banked then we don't need to migrate or 8809 * reset the 32-bit instance in certain cases: 8810 * 8811 * 1) If the register has both 32-bit and 64-bit instances then we 8812 * can count on the 64-bit instance taking care of the 8813 * non-secure bank. 8814 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8815 * taking care of the secure bank. This requires that separate 8816 * 32 and 64-bit definitions are provided. 8817 */ 8818 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8819 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8820 r2->type |= ARM_CP_ALIAS; 8821 } 8822 } else if ((secstate != r->secure) && !ns) { 8823 /* The register is not banked so we only want to allow migration of 8824 * the non-secure instance. 8825 */ 8826 r2->type |= ARM_CP_ALIAS; 8827 } 8828 8829 if (r->state == ARM_CP_STATE_BOTH) { 8830 /* We assume it is a cp15 register if the .cp field is left unset. 8831 */ 8832 if (r2->cp == 0) { 8833 r2->cp = 15; 8834 } 8835 8836 #ifdef HOST_WORDS_BIGENDIAN 8837 if (r2->fieldoffset) { 8838 r2->fieldoffset += sizeof(uint32_t); 8839 } 8840 #endif 8841 } 8842 } 8843 if (state == ARM_CP_STATE_AA64) { 8844 /* To allow abbreviation of ARMCPRegInfo 8845 * definitions, we treat cp == 0 as equivalent to 8846 * the value for "standard guest-visible sysreg". 8847 * STATE_BOTH definitions are also always "standard 8848 * sysreg" in their AArch64 view (the .cp value may 8849 * be non-zero for the benefit of the AArch32 view). 8850 */ 8851 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8852 r2->cp = CP_REG_ARM64_SYSREG_CP; 8853 } 8854 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8855 r2->opc0, opc1, opc2); 8856 } else { 8857 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8858 } 8859 if (opaque) { 8860 r2->opaque = opaque; 8861 } 8862 /* reginfo passed to helpers is correct for the actual access, 8863 * and is never ARM_CP_STATE_BOTH: 8864 */ 8865 r2->state = state; 8866 /* Make sure reginfo passed to helpers for wildcarded regs 8867 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8868 */ 8869 r2->crm = crm; 8870 r2->opc1 = opc1; 8871 r2->opc2 = opc2; 8872 /* By convention, for wildcarded registers only the first 8873 * entry is used for migration; the others are marked as 8874 * ALIAS so we don't try to transfer the register 8875 * multiple times. Special registers (ie NOP/WFI) are 8876 * never migratable and not even raw-accessible. 8877 */ 8878 if ((r->type & ARM_CP_SPECIAL)) { 8879 r2->type |= ARM_CP_NO_RAW; 8880 } 8881 if (((r->crm == CP_ANY) && crm != 0) || 8882 ((r->opc1 == CP_ANY) && opc1 != 0) || 8883 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8884 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8885 } 8886 8887 /* Check that raw accesses are either forbidden or handled. Note that 8888 * we can't assert this earlier because the setup of fieldoffset for 8889 * banked registers has to be done first. 8890 */ 8891 if (!(r2->type & ARM_CP_NO_RAW)) { 8892 assert(!raw_accessors_invalid(r2)); 8893 } 8894 8895 /* Overriding of an existing definition must be explicitly 8896 * requested. 8897 */ 8898 if (!(r->type & ARM_CP_OVERRIDE)) { 8899 ARMCPRegInfo *oldreg; 8900 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8901 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8902 fprintf(stderr, "Register redefined: cp=%d %d bit " 8903 "crn=%d crm=%d opc1=%d opc2=%d, " 8904 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8905 r2->crn, r2->crm, r2->opc1, r2->opc2, 8906 oldreg->name, r2->name); 8907 g_assert_not_reached(); 8908 } 8909 } 8910 g_hash_table_insert(cpu->cp_regs, key, r2); 8911 } 8912 8913 8914 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8915 const ARMCPRegInfo *r, void *opaque) 8916 { 8917 /* Define implementations of coprocessor registers. 8918 * We store these in a hashtable because typically 8919 * there are less than 150 registers in a space which 8920 * is 16*16*16*8*8 = 262144 in size. 8921 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8922 * If a register is defined twice then the second definition is 8923 * used, so this can be used to define some generic registers and 8924 * then override them with implementation specific variations. 8925 * At least one of the original and the second definition should 8926 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8927 * against accidental use. 8928 * 8929 * The state field defines whether the register is to be 8930 * visible in the AArch32 or AArch64 execution state. If the 8931 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8932 * reginfo structure for the AArch32 view, which sees the lower 8933 * 32 bits of the 64 bit register. 8934 * 8935 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8936 * be wildcarded. AArch64 registers are always considered to be 64 8937 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8938 * the register, if any. 8939 */ 8940 int crm, opc1, opc2, state; 8941 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8942 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8943 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8944 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8945 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8946 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8947 /* 64 bit registers have only CRm and Opc1 fields */ 8948 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8949 /* op0 only exists in the AArch64 encodings */ 8950 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8951 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8952 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8953 /* 8954 * This API is only for Arm's system coprocessors (14 and 15) or 8955 * (M-profile or v7A-and-earlier only) for implementation defined 8956 * coprocessors in the range 0..7. Our decode assumes this, since 8957 * 8..13 can be used for other insns including VFP and Neon. See 8958 * valid_cp() in translate.c. Assert here that we haven't tried 8959 * to use an invalid coprocessor number. 8960 */ 8961 switch (r->state) { 8962 case ARM_CP_STATE_BOTH: 8963 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8964 if (r->cp == 0) { 8965 break; 8966 } 8967 /* fall through */ 8968 case ARM_CP_STATE_AA32: 8969 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8970 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8971 assert(r->cp >= 14 && r->cp <= 15); 8972 } else { 8973 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8974 } 8975 break; 8976 case ARM_CP_STATE_AA64: 8977 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8978 break; 8979 default: 8980 g_assert_not_reached(); 8981 } 8982 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8983 * encodes a minimum access level for the register. We roll this 8984 * runtime check into our general permission check code, so check 8985 * here that the reginfo's specified permissions are strict enough 8986 * to encompass the generic architectural permission check. 8987 */ 8988 if (r->state != ARM_CP_STATE_AA32) { 8989 int mask = 0; 8990 switch (r->opc1) { 8991 case 0: 8992 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8993 mask = PL0U_R | PL1_RW; 8994 break; 8995 case 1: case 2: 8996 /* min_EL EL1 */ 8997 mask = PL1_RW; 8998 break; 8999 case 3: 9000 /* min_EL EL0 */ 9001 mask = PL0_RW; 9002 break; 9003 case 4: 9004 case 5: 9005 /* min_EL EL2 */ 9006 mask = PL2_RW; 9007 break; 9008 case 6: 9009 /* min_EL EL3 */ 9010 mask = PL3_RW; 9011 break; 9012 case 7: 9013 /* min_EL EL1, secure mode only (we don't check the latter) */ 9014 mask = PL1_RW; 9015 break; 9016 default: 9017 /* broken reginfo with out-of-range opc1 */ 9018 assert(false); 9019 break; 9020 } 9021 /* assert our permissions are not too lax (stricter is fine) */ 9022 assert((r->access & ~mask) == 0); 9023 } 9024 9025 /* Check that the register definition has enough info to handle 9026 * reads and writes if they are permitted. 9027 */ 9028 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 9029 if (r->access & PL3_R) { 9030 assert((r->fieldoffset || 9031 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9032 r->readfn); 9033 } 9034 if (r->access & PL3_W) { 9035 assert((r->fieldoffset || 9036 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9037 r->writefn); 9038 } 9039 } 9040 /* Bad type field probably means missing sentinel at end of reg list */ 9041 assert(cptype_valid(r->type)); 9042 for (crm = crmmin; crm <= crmmax; crm++) { 9043 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9044 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9045 for (state = ARM_CP_STATE_AA32; 9046 state <= ARM_CP_STATE_AA64; state++) { 9047 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9048 continue; 9049 } 9050 if (state == ARM_CP_STATE_AA32) { 9051 /* Under AArch32 CP registers can be common 9052 * (same for secure and non-secure world) or banked. 9053 */ 9054 char *name; 9055 9056 switch (r->secure) { 9057 case ARM_CP_SECSTATE_S: 9058 case ARM_CP_SECSTATE_NS: 9059 add_cpreg_to_hashtable(cpu, r, opaque, state, 9060 r->secure, crm, opc1, opc2, 9061 r->name); 9062 break; 9063 default: 9064 name = g_strdup_printf("%s_S", r->name); 9065 add_cpreg_to_hashtable(cpu, r, opaque, state, 9066 ARM_CP_SECSTATE_S, 9067 crm, opc1, opc2, name); 9068 g_free(name); 9069 add_cpreg_to_hashtable(cpu, r, opaque, state, 9070 ARM_CP_SECSTATE_NS, 9071 crm, opc1, opc2, r->name); 9072 break; 9073 } 9074 } else { 9075 /* AArch64 registers get mapped to non-secure instance 9076 * of AArch32 */ 9077 add_cpreg_to_hashtable(cpu, r, opaque, state, 9078 ARM_CP_SECSTATE_NS, 9079 crm, opc1, opc2, r->name); 9080 } 9081 } 9082 } 9083 } 9084 } 9085 } 9086 9087 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 9088 const ARMCPRegInfo *regs, void *opaque) 9089 { 9090 /* Define a whole list of registers */ 9091 const ARMCPRegInfo *r; 9092 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 9093 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 9094 } 9095 } 9096 9097 /* 9098 * Modify ARMCPRegInfo for access from userspace. 9099 * 9100 * This is a data driven modification directed by 9101 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9102 * user-space cannot alter any values and dynamic values pertaining to 9103 * execution state are hidden from user space view anyway. 9104 */ 9105 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 9106 { 9107 const ARMCPRegUserSpaceInfo *m; 9108 ARMCPRegInfo *r; 9109 9110 for (m = mods; m->name; m++) { 9111 GPatternSpec *pat = NULL; 9112 if (m->is_glob) { 9113 pat = g_pattern_spec_new(m->name); 9114 } 9115 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 9116 if (pat && g_pattern_match_string(pat, r->name)) { 9117 r->type = ARM_CP_CONST; 9118 r->access = PL0U_R; 9119 r->resetvalue = 0; 9120 /* continue */ 9121 } else if (strcmp(r->name, m->name) == 0) { 9122 r->type = ARM_CP_CONST; 9123 r->access = PL0U_R; 9124 r->resetvalue &= m->exported_bits; 9125 r->resetvalue |= m->fixed_bits; 9126 break; 9127 } 9128 } 9129 if (pat) { 9130 g_pattern_spec_free(pat); 9131 } 9132 } 9133 } 9134 9135 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9136 { 9137 return g_hash_table_lookup(cpregs, &encoded_cp); 9138 } 9139 9140 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9141 uint64_t value) 9142 { 9143 /* Helper coprocessor write function for write-ignore registers */ 9144 } 9145 9146 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9147 { 9148 /* Helper coprocessor write function for read-as-zero registers */ 9149 return 0; 9150 } 9151 9152 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9153 { 9154 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9155 } 9156 9157 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9158 { 9159 /* Return true if it is not valid for us to switch to 9160 * this CPU mode (ie all the UNPREDICTABLE cases in 9161 * the ARM ARM CPSRWriteByInstr pseudocode). 9162 */ 9163 9164 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9165 if (write_type == CPSRWriteByInstr && 9166 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9167 mode == ARM_CPU_MODE_HYP)) { 9168 return 1; 9169 } 9170 9171 switch (mode) { 9172 case ARM_CPU_MODE_USR: 9173 return 0; 9174 case ARM_CPU_MODE_SYS: 9175 case ARM_CPU_MODE_SVC: 9176 case ARM_CPU_MODE_ABT: 9177 case ARM_CPU_MODE_UND: 9178 case ARM_CPU_MODE_IRQ: 9179 case ARM_CPU_MODE_FIQ: 9180 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 9181 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9182 */ 9183 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9184 * and CPS are treated as illegal mode changes. 9185 */ 9186 if (write_type == CPSRWriteByInstr && 9187 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9188 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9189 return 1; 9190 } 9191 return 0; 9192 case ARM_CPU_MODE_HYP: 9193 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9194 case ARM_CPU_MODE_MON: 9195 return arm_current_el(env) < 3; 9196 default: 9197 return 1; 9198 } 9199 } 9200 9201 uint32_t cpsr_read(CPUARMState *env) 9202 { 9203 int ZF; 9204 ZF = (env->ZF == 0); 9205 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9206 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9207 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9208 | ((env->condexec_bits & 0xfc) << 8) 9209 | (env->GE << 16) | (env->daif & CPSR_AIF); 9210 } 9211 9212 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9213 CPSRWriteType write_type) 9214 { 9215 uint32_t changed_daif; 9216 9217 if (mask & CPSR_NZCV) { 9218 env->ZF = (~val) & CPSR_Z; 9219 env->NF = val; 9220 env->CF = (val >> 29) & 1; 9221 env->VF = (val << 3) & 0x80000000; 9222 } 9223 if (mask & CPSR_Q) 9224 env->QF = ((val & CPSR_Q) != 0); 9225 if (mask & CPSR_T) 9226 env->thumb = ((val & CPSR_T) != 0); 9227 if (mask & CPSR_IT_0_1) { 9228 env->condexec_bits &= ~3; 9229 env->condexec_bits |= (val >> 25) & 3; 9230 } 9231 if (mask & CPSR_IT_2_7) { 9232 env->condexec_bits &= 3; 9233 env->condexec_bits |= (val >> 8) & 0xfc; 9234 } 9235 if (mask & CPSR_GE) { 9236 env->GE = (val >> 16) & 0xf; 9237 } 9238 9239 /* In a V7 implementation that includes the security extensions but does 9240 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9241 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9242 * bits respectively. 9243 * 9244 * In a V8 implementation, it is permitted for privileged software to 9245 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9246 */ 9247 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9248 arm_feature(env, ARM_FEATURE_EL3) && 9249 !arm_feature(env, ARM_FEATURE_EL2) && 9250 !arm_is_secure(env)) { 9251 9252 changed_daif = (env->daif ^ val) & mask; 9253 9254 if (changed_daif & CPSR_A) { 9255 /* Check to see if we are allowed to change the masking of async 9256 * abort exceptions from a non-secure state. 9257 */ 9258 if (!(env->cp15.scr_el3 & SCR_AW)) { 9259 qemu_log_mask(LOG_GUEST_ERROR, 9260 "Ignoring attempt to switch CPSR_A flag from " 9261 "non-secure world with SCR.AW bit clear\n"); 9262 mask &= ~CPSR_A; 9263 } 9264 } 9265 9266 if (changed_daif & CPSR_F) { 9267 /* Check to see if we are allowed to change the masking of FIQ 9268 * exceptions from a non-secure state. 9269 */ 9270 if (!(env->cp15.scr_el3 & SCR_FW)) { 9271 qemu_log_mask(LOG_GUEST_ERROR, 9272 "Ignoring attempt to switch CPSR_F flag from " 9273 "non-secure world with SCR.FW bit clear\n"); 9274 mask &= ~CPSR_F; 9275 } 9276 9277 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9278 * If this bit is set software is not allowed to mask 9279 * FIQs, but is allowed to set CPSR_F to 0. 9280 */ 9281 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9282 (val & CPSR_F)) { 9283 qemu_log_mask(LOG_GUEST_ERROR, 9284 "Ignoring attempt to enable CPSR_F flag " 9285 "(non-maskable FIQ [NMFI] support enabled)\n"); 9286 mask &= ~CPSR_F; 9287 } 9288 } 9289 } 9290 9291 env->daif &= ~(CPSR_AIF & mask); 9292 env->daif |= val & CPSR_AIF & mask; 9293 9294 if (write_type != CPSRWriteRaw && 9295 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9296 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9297 /* Note that we can only get here in USR mode if this is a 9298 * gdb stub write; for this case we follow the architectural 9299 * behaviour for guest writes in USR mode of ignoring an attempt 9300 * to switch mode. (Those are caught by translate.c for writes 9301 * triggered by guest instructions.) 9302 */ 9303 mask &= ~CPSR_M; 9304 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9305 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9306 * v7, and has defined behaviour in v8: 9307 * + leave CPSR.M untouched 9308 * + allow changes to the other CPSR fields 9309 * + set PSTATE.IL 9310 * For user changes via the GDB stub, we don't set PSTATE.IL, 9311 * as this would be unnecessarily harsh for a user error. 9312 */ 9313 mask &= ~CPSR_M; 9314 if (write_type != CPSRWriteByGDBStub && 9315 arm_feature(env, ARM_FEATURE_V8)) { 9316 mask |= CPSR_IL; 9317 val |= CPSR_IL; 9318 } 9319 qemu_log_mask(LOG_GUEST_ERROR, 9320 "Illegal AArch32 mode switch attempt from %s to %s\n", 9321 aarch32_mode_name(env->uncached_cpsr), 9322 aarch32_mode_name(val)); 9323 } else { 9324 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9325 write_type == CPSRWriteExceptionReturn ? 9326 "Exception return from AArch32" : 9327 "AArch32 mode switch from", 9328 aarch32_mode_name(env->uncached_cpsr), 9329 aarch32_mode_name(val), env->regs[15]); 9330 switch_mode(env, val & CPSR_M); 9331 } 9332 } 9333 mask &= ~CACHED_CPSR_BITS; 9334 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9335 } 9336 9337 /* Sign/zero extend */ 9338 uint32_t HELPER(sxtb16)(uint32_t x) 9339 { 9340 uint32_t res; 9341 res = (uint16_t)(int8_t)x; 9342 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9343 return res; 9344 } 9345 9346 uint32_t HELPER(uxtb16)(uint32_t x) 9347 { 9348 uint32_t res; 9349 res = (uint16_t)(uint8_t)x; 9350 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9351 return res; 9352 } 9353 9354 int32_t HELPER(sdiv)(int32_t num, int32_t den) 9355 { 9356 if (den == 0) 9357 return 0; 9358 if (num == INT_MIN && den == -1) 9359 return INT_MIN; 9360 return num / den; 9361 } 9362 9363 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 9364 { 9365 if (den == 0) 9366 return 0; 9367 return num / den; 9368 } 9369 9370 uint32_t HELPER(rbit)(uint32_t x) 9371 { 9372 return revbit32(x); 9373 } 9374 9375 #ifdef CONFIG_USER_ONLY 9376 9377 static void switch_mode(CPUARMState *env, int mode) 9378 { 9379 ARMCPU *cpu = env_archcpu(env); 9380 9381 if (mode != ARM_CPU_MODE_USR) { 9382 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9383 } 9384 } 9385 9386 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9387 uint32_t cur_el, bool secure) 9388 { 9389 return 1; 9390 } 9391 9392 void aarch64_sync_64_to_32(CPUARMState *env) 9393 { 9394 g_assert_not_reached(); 9395 } 9396 9397 #else 9398 9399 static void switch_mode(CPUARMState *env, int mode) 9400 { 9401 int old_mode; 9402 int i; 9403 9404 old_mode = env->uncached_cpsr & CPSR_M; 9405 if (mode == old_mode) 9406 return; 9407 9408 if (old_mode == ARM_CPU_MODE_FIQ) { 9409 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9410 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9411 } else if (mode == ARM_CPU_MODE_FIQ) { 9412 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9413 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9414 } 9415 9416 i = bank_number(old_mode); 9417 env->banked_r13[i] = env->regs[13]; 9418 env->banked_spsr[i] = env->spsr; 9419 9420 i = bank_number(mode); 9421 env->regs[13] = env->banked_r13[i]; 9422 env->spsr = env->banked_spsr[i]; 9423 9424 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9425 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9426 } 9427 9428 /* Physical Interrupt Target EL Lookup Table 9429 * 9430 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9431 * 9432 * The below multi-dimensional table is used for looking up the target 9433 * exception level given numerous condition criteria. Specifically, the 9434 * target EL is based on SCR and HCR routing controls as well as the 9435 * currently executing EL and secure state. 9436 * 9437 * Dimensions: 9438 * target_el_table[2][2][2][2][2][4] 9439 * | | | | | +--- Current EL 9440 * | | | | +------ Non-secure(0)/Secure(1) 9441 * | | | +--------- HCR mask override 9442 * | | +------------ SCR exec state control 9443 * | +--------------- SCR mask override 9444 * +------------------ 32-bit(0)/64-bit(1) EL3 9445 * 9446 * The table values are as such: 9447 * 0-3 = EL0-EL3 9448 * -1 = Cannot occur 9449 * 9450 * The ARM ARM target EL table includes entries indicating that an "exception 9451 * is not taken". The two cases where this is applicable are: 9452 * 1) An exception is taken from EL3 but the SCR does not have the exception 9453 * routed to EL3. 9454 * 2) An exception is taken from EL2 but the HCR does not have the exception 9455 * routed to EL2. 9456 * In these two cases, the below table contain a target of EL1. This value is 9457 * returned as it is expected that the consumer of the table data will check 9458 * for "target EL >= current EL" to ensure the exception is not taken. 9459 * 9460 * SCR HCR 9461 * 64 EA AMO From 9462 * BIT IRQ IMO Non-secure Secure 9463 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9464 */ 9465 static const int8_t target_el_table[2][2][2][2][2][4] = { 9466 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9467 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9468 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9469 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9470 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9471 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9472 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9473 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9474 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9475 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9476 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9477 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9478 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9479 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9480 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9481 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9482 }; 9483 9484 /* 9485 * Determine the target EL for physical exceptions 9486 */ 9487 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9488 uint32_t cur_el, bool secure) 9489 { 9490 CPUARMState *env = cs->env_ptr; 9491 bool rw; 9492 bool scr; 9493 bool hcr; 9494 int target_el; 9495 /* Is the highest EL AArch64? */ 9496 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9497 uint64_t hcr_el2; 9498 9499 if (arm_feature(env, ARM_FEATURE_EL3)) { 9500 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9501 } else { 9502 /* Either EL2 is the highest EL (and so the EL2 register width 9503 * is given by is64); or there is no EL2 or EL3, in which case 9504 * the value of 'rw' does not affect the table lookup anyway. 9505 */ 9506 rw = is64; 9507 } 9508 9509 hcr_el2 = arm_hcr_el2_eff(env); 9510 switch (excp_idx) { 9511 case EXCP_IRQ: 9512 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9513 hcr = hcr_el2 & HCR_IMO; 9514 break; 9515 case EXCP_FIQ: 9516 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9517 hcr = hcr_el2 & HCR_FMO; 9518 break; 9519 default: 9520 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9521 hcr = hcr_el2 & HCR_AMO; 9522 break; 9523 }; 9524 9525 /* 9526 * For these purposes, TGE and AMO/IMO/FMO both force the 9527 * interrupt to EL2. Fold TGE into the bit extracted above. 9528 */ 9529 hcr |= (hcr_el2 & HCR_TGE) != 0; 9530 9531 /* Perform a table-lookup for the target EL given the current state */ 9532 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9533 9534 assert(target_el > 0); 9535 9536 return target_el; 9537 } 9538 9539 void arm_log_exception(int idx) 9540 { 9541 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9542 const char *exc = NULL; 9543 static const char * const excnames[] = { 9544 [EXCP_UDEF] = "Undefined Instruction", 9545 [EXCP_SWI] = "SVC", 9546 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9547 [EXCP_DATA_ABORT] = "Data Abort", 9548 [EXCP_IRQ] = "IRQ", 9549 [EXCP_FIQ] = "FIQ", 9550 [EXCP_BKPT] = "Breakpoint", 9551 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9552 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9553 [EXCP_HVC] = "Hypervisor Call", 9554 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9555 [EXCP_SMC] = "Secure Monitor Call", 9556 [EXCP_VIRQ] = "Virtual IRQ", 9557 [EXCP_VFIQ] = "Virtual FIQ", 9558 [EXCP_SEMIHOST] = "Semihosting call", 9559 [EXCP_NOCP] = "v7M NOCP UsageFault", 9560 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9561 [EXCP_STKOF] = "v8M STKOF UsageFault", 9562 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9563 [EXCP_LSERR] = "v8M LSERR UsageFault", 9564 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9565 }; 9566 9567 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9568 exc = excnames[idx]; 9569 } 9570 if (!exc) { 9571 exc = "unknown"; 9572 } 9573 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9574 } 9575 } 9576 9577 /* 9578 * Function used to synchronize QEMU's AArch64 register set with AArch32 9579 * register set. This is necessary when switching between AArch32 and AArch64 9580 * execution state. 9581 */ 9582 void aarch64_sync_32_to_64(CPUARMState *env) 9583 { 9584 int i; 9585 uint32_t mode = env->uncached_cpsr & CPSR_M; 9586 9587 /* We can blanket copy R[0:7] to X[0:7] */ 9588 for (i = 0; i < 8; i++) { 9589 env->xregs[i] = env->regs[i]; 9590 } 9591 9592 /* 9593 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9594 * Otherwise, they come from the banked user regs. 9595 */ 9596 if (mode == ARM_CPU_MODE_FIQ) { 9597 for (i = 8; i < 13; i++) { 9598 env->xregs[i] = env->usr_regs[i - 8]; 9599 } 9600 } else { 9601 for (i = 8; i < 13; i++) { 9602 env->xregs[i] = env->regs[i]; 9603 } 9604 } 9605 9606 /* 9607 * Registers x13-x23 are the various mode SP and FP registers. Registers 9608 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9609 * from the mode banked register. 9610 */ 9611 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9612 env->xregs[13] = env->regs[13]; 9613 env->xregs[14] = env->regs[14]; 9614 } else { 9615 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9616 /* HYP is an exception in that it is copied from r14 */ 9617 if (mode == ARM_CPU_MODE_HYP) { 9618 env->xregs[14] = env->regs[14]; 9619 } else { 9620 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9621 } 9622 } 9623 9624 if (mode == ARM_CPU_MODE_HYP) { 9625 env->xregs[15] = env->regs[13]; 9626 } else { 9627 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9628 } 9629 9630 if (mode == ARM_CPU_MODE_IRQ) { 9631 env->xregs[16] = env->regs[14]; 9632 env->xregs[17] = env->regs[13]; 9633 } else { 9634 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9635 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9636 } 9637 9638 if (mode == ARM_CPU_MODE_SVC) { 9639 env->xregs[18] = env->regs[14]; 9640 env->xregs[19] = env->regs[13]; 9641 } else { 9642 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9643 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9644 } 9645 9646 if (mode == ARM_CPU_MODE_ABT) { 9647 env->xregs[20] = env->regs[14]; 9648 env->xregs[21] = env->regs[13]; 9649 } else { 9650 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9651 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9652 } 9653 9654 if (mode == ARM_CPU_MODE_UND) { 9655 env->xregs[22] = env->regs[14]; 9656 env->xregs[23] = env->regs[13]; 9657 } else { 9658 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9659 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9660 } 9661 9662 /* 9663 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9664 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9665 * FIQ bank for r8-r14. 9666 */ 9667 if (mode == ARM_CPU_MODE_FIQ) { 9668 for (i = 24; i < 31; i++) { 9669 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9670 } 9671 } else { 9672 for (i = 24; i < 29; i++) { 9673 env->xregs[i] = env->fiq_regs[i - 24]; 9674 } 9675 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9676 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9677 } 9678 9679 env->pc = env->regs[15]; 9680 } 9681 9682 /* 9683 * Function used to synchronize QEMU's AArch32 register set with AArch64 9684 * register set. This is necessary when switching between AArch32 and AArch64 9685 * execution state. 9686 */ 9687 void aarch64_sync_64_to_32(CPUARMState *env) 9688 { 9689 int i; 9690 uint32_t mode = env->uncached_cpsr & CPSR_M; 9691 9692 /* We can blanket copy X[0:7] to R[0:7] */ 9693 for (i = 0; i < 8; i++) { 9694 env->regs[i] = env->xregs[i]; 9695 } 9696 9697 /* 9698 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9699 * Otherwise, we copy x8-x12 into the banked user regs. 9700 */ 9701 if (mode == ARM_CPU_MODE_FIQ) { 9702 for (i = 8; i < 13; i++) { 9703 env->usr_regs[i - 8] = env->xregs[i]; 9704 } 9705 } else { 9706 for (i = 8; i < 13; i++) { 9707 env->regs[i] = env->xregs[i]; 9708 } 9709 } 9710 9711 /* 9712 * Registers r13 & r14 depend on the current mode. 9713 * If we are in a given mode, we copy the corresponding x registers to r13 9714 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9715 * for the mode. 9716 */ 9717 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9718 env->regs[13] = env->xregs[13]; 9719 env->regs[14] = env->xregs[14]; 9720 } else { 9721 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9722 9723 /* 9724 * HYP is an exception in that it does not have its own banked r14 but 9725 * shares the USR r14 9726 */ 9727 if (mode == ARM_CPU_MODE_HYP) { 9728 env->regs[14] = env->xregs[14]; 9729 } else { 9730 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9731 } 9732 } 9733 9734 if (mode == ARM_CPU_MODE_HYP) { 9735 env->regs[13] = env->xregs[15]; 9736 } else { 9737 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9738 } 9739 9740 if (mode == ARM_CPU_MODE_IRQ) { 9741 env->regs[14] = env->xregs[16]; 9742 env->regs[13] = env->xregs[17]; 9743 } else { 9744 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9745 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9746 } 9747 9748 if (mode == ARM_CPU_MODE_SVC) { 9749 env->regs[14] = env->xregs[18]; 9750 env->regs[13] = env->xregs[19]; 9751 } else { 9752 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9753 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9754 } 9755 9756 if (mode == ARM_CPU_MODE_ABT) { 9757 env->regs[14] = env->xregs[20]; 9758 env->regs[13] = env->xregs[21]; 9759 } else { 9760 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9761 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9762 } 9763 9764 if (mode == ARM_CPU_MODE_UND) { 9765 env->regs[14] = env->xregs[22]; 9766 env->regs[13] = env->xregs[23]; 9767 } else { 9768 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9769 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9770 } 9771 9772 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9773 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9774 * FIQ bank for r8-r14. 9775 */ 9776 if (mode == ARM_CPU_MODE_FIQ) { 9777 for (i = 24; i < 31; i++) { 9778 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9779 } 9780 } else { 9781 for (i = 24; i < 29; i++) { 9782 env->fiq_regs[i - 24] = env->xregs[i]; 9783 } 9784 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9785 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9786 } 9787 9788 env->regs[15] = env->pc; 9789 } 9790 9791 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9792 uint32_t mask, uint32_t offset, 9793 uint32_t newpc) 9794 { 9795 int new_el; 9796 9797 /* Change the CPU state so as to actually take the exception. */ 9798 switch_mode(env, new_mode); 9799 9800 /* 9801 * For exceptions taken to AArch32 we must clear the SS bit in both 9802 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9803 */ 9804 env->pstate &= ~PSTATE_SS; 9805 env->spsr = cpsr_read(env); 9806 /* Clear IT bits. */ 9807 env->condexec_bits = 0; 9808 /* Switch to the new mode, and to the correct instruction set. */ 9809 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9810 9811 /* This must be after mode switching. */ 9812 new_el = arm_current_el(env); 9813 9814 /* Set new mode endianness */ 9815 env->uncached_cpsr &= ~CPSR_E; 9816 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9817 env->uncached_cpsr |= CPSR_E; 9818 } 9819 /* J and IL must always be cleared for exception entry */ 9820 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9821 env->daif |= mask; 9822 9823 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9824 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9825 env->uncached_cpsr |= CPSR_SSBS; 9826 } else { 9827 env->uncached_cpsr &= ~CPSR_SSBS; 9828 } 9829 } 9830 9831 if (new_mode == ARM_CPU_MODE_HYP) { 9832 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9833 env->elr_el[2] = env->regs[15]; 9834 } else { 9835 /* CPSR.PAN is normally preserved preserved unless... */ 9836 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9837 switch (new_el) { 9838 case 3: 9839 if (!arm_is_secure_below_el3(env)) { 9840 /* ... the target is EL3, from non-secure state. */ 9841 env->uncached_cpsr &= ~CPSR_PAN; 9842 break; 9843 } 9844 /* ... the target is EL3, from secure state ... */ 9845 /* fall through */ 9846 case 1: 9847 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9848 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9849 env->uncached_cpsr |= CPSR_PAN; 9850 } 9851 break; 9852 } 9853 } 9854 /* 9855 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9856 * and we should just guard the thumb mode on V4 9857 */ 9858 if (arm_feature(env, ARM_FEATURE_V4T)) { 9859 env->thumb = 9860 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9861 } 9862 env->regs[14] = env->regs[15] + offset; 9863 } 9864 env->regs[15] = newpc; 9865 arm_rebuild_hflags(env); 9866 } 9867 9868 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9869 { 9870 /* 9871 * Handle exception entry to Hyp mode; this is sufficiently 9872 * different to entry to other AArch32 modes that we handle it 9873 * separately here. 9874 * 9875 * The vector table entry used is always the 0x14 Hyp mode entry point, 9876 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9877 * The offset applied to the preferred return address is always zero 9878 * (see DDI0487C.a section G1.12.3). 9879 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9880 */ 9881 uint32_t addr, mask; 9882 ARMCPU *cpu = ARM_CPU(cs); 9883 CPUARMState *env = &cpu->env; 9884 9885 switch (cs->exception_index) { 9886 case EXCP_UDEF: 9887 addr = 0x04; 9888 break; 9889 case EXCP_SWI: 9890 addr = 0x14; 9891 break; 9892 case EXCP_BKPT: 9893 /* Fall through to prefetch abort. */ 9894 case EXCP_PREFETCH_ABORT: 9895 env->cp15.ifar_s = env->exception.vaddress; 9896 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9897 (uint32_t)env->exception.vaddress); 9898 addr = 0x0c; 9899 break; 9900 case EXCP_DATA_ABORT: 9901 env->cp15.dfar_s = env->exception.vaddress; 9902 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9903 (uint32_t)env->exception.vaddress); 9904 addr = 0x10; 9905 break; 9906 case EXCP_IRQ: 9907 addr = 0x18; 9908 break; 9909 case EXCP_FIQ: 9910 addr = 0x1c; 9911 break; 9912 case EXCP_HVC: 9913 addr = 0x08; 9914 break; 9915 case EXCP_HYP_TRAP: 9916 addr = 0x14; 9917 break; 9918 default: 9919 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9920 } 9921 9922 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9923 if (!arm_feature(env, ARM_FEATURE_V8)) { 9924 /* 9925 * QEMU syndrome values are v8-style. v7 has the IL bit 9926 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9927 * If this is a v7 CPU, squash the IL bit in those cases. 9928 */ 9929 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9930 (cs->exception_index == EXCP_DATA_ABORT && 9931 !(env->exception.syndrome & ARM_EL_ISV)) || 9932 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9933 env->exception.syndrome &= ~ARM_EL_IL; 9934 } 9935 } 9936 env->cp15.esr_el[2] = env->exception.syndrome; 9937 } 9938 9939 if (arm_current_el(env) != 2 && addr < 0x14) { 9940 addr = 0x14; 9941 } 9942 9943 mask = 0; 9944 if (!(env->cp15.scr_el3 & SCR_EA)) { 9945 mask |= CPSR_A; 9946 } 9947 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9948 mask |= CPSR_I; 9949 } 9950 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9951 mask |= CPSR_F; 9952 } 9953 9954 addr += env->cp15.hvbar; 9955 9956 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9957 } 9958 9959 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9960 { 9961 ARMCPU *cpu = ARM_CPU(cs); 9962 CPUARMState *env = &cpu->env; 9963 uint32_t addr; 9964 uint32_t mask; 9965 int new_mode; 9966 uint32_t offset; 9967 uint32_t moe; 9968 9969 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9970 switch (syn_get_ec(env->exception.syndrome)) { 9971 case EC_BREAKPOINT: 9972 case EC_BREAKPOINT_SAME_EL: 9973 moe = 1; 9974 break; 9975 case EC_WATCHPOINT: 9976 case EC_WATCHPOINT_SAME_EL: 9977 moe = 10; 9978 break; 9979 case EC_AA32_BKPT: 9980 moe = 3; 9981 break; 9982 case EC_VECTORCATCH: 9983 moe = 5; 9984 break; 9985 default: 9986 moe = 0; 9987 break; 9988 } 9989 9990 if (moe) { 9991 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9992 } 9993 9994 if (env->exception.target_el == 2) { 9995 arm_cpu_do_interrupt_aarch32_hyp(cs); 9996 return; 9997 } 9998 9999 switch (cs->exception_index) { 10000 case EXCP_UDEF: 10001 new_mode = ARM_CPU_MODE_UND; 10002 addr = 0x04; 10003 mask = CPSR_I; 10004 if (env->thumb) 10005 offset = 2; 10006 else 10007 offset = 4; 10008 break; 10009 case EXCP_SWI: 10010 new_mode = ARM_CPU_MODE_SVC; 10011 addr = 0x08; 10012 mask = CPSR_I; 10013 /* The PC already points to the next instruction. */ 10014 offset = 0; 10015 break; 10016 case EXCP_BKPT: 10017 /* Fall through to prefetch abort. */ 10018 case EXCP_PREFETCH_ABORT: 10019 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10020 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10021 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10022 env->exception.fsr, (uint32_t)env->exception.vaddress); 10023 new_mode = ARM_CPU_MODE_ABT; 10024 addr = 0x0c; 10025 mask = CPSR_A | CPSR_I; 10026 offset = 4; 10027 break; 10028 case EXCP_DATA_ABORT: 10029 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10030 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10031 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10032 env->exception.fsr, 10033 (uint32_t)env->exception.vaddress); 10034 new_mode = ARM_CPU_MODE_ABT; 10035 addr = 0x10; 10036 mask = CPSR_A | CPSR_I; 10037 offset = 8; 10038 break; 10039 case EXCP_IRQ: 10040 new_mode = ARM_CPU_MODE_IRQ; 10041 addr = 0x18; 10042 /* Disable IRQ and imprecise data aborts. */ 10043 mask = CPSR_A | CPSR_I; 10044 offset = 4; 10045 if (env->cp15.scr_el3 & SCR_IRQ) { 10046 /* IRQ routed to monitor mode */ 10047 new_mode = ARM_CPU_MODE_MON; 10048 mask |= CPSR_F; 10049 } 10050 break; 10051 case EXCP_FIQ: 10052 new_mode = ARM_CPU_MODE_FIQ; 10053 addr = 0x1c; 10054 /* Disable FIQ, IRQ and imprecise data aborts. */ 10055 mask = CPSR_A | CPSR_I | CPSR_F; 10056 if (env->cp15.scr_el3 & SCR_FIQ) { 10057 /* FIQ routed to monitor mode */ 10058 new_mode = ARM_CPU_MODE_MON; 10059 } 10060 offset = 4; 10061 break; 10062 case EXCP_VIRQ: 10063 new_mode = ARM_CPU_MODE_IRQ; 10064 addr = 0x18; 10065 /* Disable IRQ and imprecise data aborts. */ 10066 mask = CPSR_A | CPSR_I; 10067 offset = 4; 10068 break; 10069 case EXCP_VFIQ: 10070 new_mode = ARM_CPU_MODE_FIQ; 10071 addr = 0x1c; 10072 /* Disable FIQ, IRQ and imprecise data aborts. */ 10073 mask = CPSR_A | CPSR_I | CPSR_F; 10074 offset = 4; 10075 break; 10076 case EXCP_SMC: 10077 new_mode = ARM_CPU_MODE_MON; 10078 addr = 0x08; 10079 mask = CPSR_A | CPSR_I | CPSR_F; 10080 offset = 0; 10081 break; 10082 default: 10083 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10084 return; /* Never happens. Keep compiler happy. */ 10085 } 10086 10087 if (new_mode == ARM_CPU_MODE_MON) { 10088 addr += env->cp15.mvbar; 10089 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10090 /* High vectors. When enabled, base address cannot be remapped. */ 10091 addr += 0xffff0000; 10092 } else { 10093 /* ARM v7 architectures provide a vector base address register to remap 10094 * the interrupt vector table. 10095 * This register is only followed in non-monitor mode, and is banked. 10096 * Note: only bits 31:5 are valid. 10097 */ 10098 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10099 } 10100 10101 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10102 env->cp15.scr_el3 &= ~SCR_NS; 10103 } 10104 10105 take_aarch32_exception(env, new_mode, mask, offset, addr); 10106 } 10107 10108 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10109 { 10110 /* 10111 * Return the register number of the AArch64 view of the AArch32 10112 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10113 * be that of the AArch32 mode the exception came from. 10114 */ 10115 int mode = env->uncached_cpsr & CPSR_M; 10116 10117 switch (aarch32_reg) { 10118 case 0 ... 7: 10119 return aarch32_reg; 10120 case 8 ... 12: 10121 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10122 case 13: 10123 switch (mode) { 10124 case ARM_CPU_MODE_USR: 10125 case ARM_CPU_MODE_SYS: 10126 return 13; 10127 case ARM_CPU_MODE_HYP: 10128 return 15; 10129 case ARM_CPU_MODE_IRQ: 10130 return 17; 10131 case ARM_CPU_MODE_SVC: 10132 return 19; 10133 case ARM_CPU_MODE_ABT: 10134 return 21; 10135 case ARM_CPU_MODE_UND: 10136 return 23; 10137 case ARM_CPU_MODE_FIQ: 10138 return 29; 10139 default: 10140 g_assert_not_reached(); 10141 } 10142 case 14: 10143 switch (mode) { 10144 case ARM_CPU_MODE_USR: 10145 case ARM_CPU_MODE_SYS: 10146 case ARM_CPU_MODE_HYP: 10147 return 14; 10148 case ARM_CPU_MODE_IRQ: 10149 return 16; 10150 case ARM_CPU_MODE_SVC: 10151 return 18; 10152 case ARM_CPU_MODE_ABT: 10153 return 20; 10154 case ARM_CPU_MODE_UND: 10155 return 22; 10156 case ARM_CPU_MODE_FIQ: 10157 return 30; 10158 default: 10159 g_assert_not_reached(); 10160 } 10161 case 15: 10162 return 31; 10163 default: 10164 g_assert_not_reached(); 10165 } 10166 } 10167 10168 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10169 { 10170 uint32_t ret = cpsr_read(env); 10171 10172 /* Move DIT to the correct location for SPSR_ELx */ 10173 if (ret & CPSR_DIT) { 10174 ret &= ~CPSR_DIT; 10175 ret |= PSTATE_DIT; 10176 } 10177 /* Merge PSTATE.SS into SPSR_ELx */ 10178 ret |= env->pstate & PSTATE_SS; 10179 10180 return ret; 10181 } 10182 10183 /* Handle exception entry to a target EL which is using AArch64 */ 10184 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10185 { 10186 ARMCPU *cpu = ARM_CPU(cs); 10187 CPUARMState *env = &cpu->env; 10188 unsigned int new_el = env->exception.target_el; 10189 target_ulong addr = env->cp15.vbar_el[new_el]; 10190 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10191 unsigned int old_mode; 10192 unsigned int cur_el = arm_current_el(env); 10193 int rt; 10194 10195 /* 10196 * Note that new_el can never be 0. If cur_el is 0, then 10197 * el0_a64 is is_a64(), else el0_a64 is ignored. 10198 */ 10199 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10200 10201 if (cur_el < new_el) { 10202 /* Entry vector offset depends on whether the implemented EL 10203 * immediately lower than the target level is using AArch32 or AArch64 10204 */ 10205 bool is_aa64; 10206 uint64_t hcr; 10207 10208 switch (new_el) { 10209 case 3: 10210 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10211 break; 10212 case 2: 10213 hcr = arm_hcr_el2_eff(env); 10214 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10215 is_aa64 = (hcr & HCR_RW) != 0; 10216 break; 10217 } 10218 /* fall through */ 10219 case 1: 10220 is_aa64 = is_a64(env); 10221 break; 10222 default: 10223 g_assert_not_reached(); 10224 } 10225 10226 if (is_aa64) { 10227 addr += 0x400; 10228 } else { 10229 addr += 0x600; 10230 } 10231 } else if (pstate_read(env) & PSTATE_SP) { 10232 addr += 0x200; 10233 } 10234 10235 switch (cs->exception_index) { 10236 case EXCP_PREFETCH_ABORT: 10237 case EXCP_DATA_ABORT: 10238 env->cp15.far_el[new_el] = env->exception.vaddress; 10239 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10240 env->cp15.far_el[new_el]); 10241 /* fall through */ 10242 case EXCP_BKPT: 10243 case EXCP_UDEF: 10244 case EXCP_SWI: 10245 case EXCP_HVC: 10246 case EXCP_HYP_TRAP: 10247 case EXCP_SMC: 10248 switch (syn_get_ec(env->exception.syndrome)) { 10249 case EC_ADVSIMDFPACCESSTRAP: 10250 /* 10251 * QEMU internal FP/SIMD syndromes from AArch32 include the 10252 * TA and coproc fields which are only exposed if the exception 10253 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10254 * AArch64 format syndrome. 10255 */ 10256 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10257 break; 10258 case EC_CP14RTTRAP: 10259 case EC_CP15RTTRAP: 10260 case EC_CP14DTTRAP: 10261 /* 10262 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10263 * the raw register field from the insn; when taking this to 10264 * AArch64 we must convert it to the AArch64 view of the register 10265 * number. Notice that we read a 4-bit AArch32 register number and 10266 * write back a 5-bit AArch64 one. 10267 */ 10268 rt = extract32(env->exception.syndrome, 5, 4); 10269 rt = aarch64_regnum(env, rt); 10270 env->exception.syndrome = deposit32(env->exception.syndrome, 10271 5, 5, rt); 10272 break; 10273 case EC_CP15RRTTRAP: 10274 case EC_CP14RRTTRAP: 10275 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10276 rt = extract32(env->exception.syndrome, 5, 4); 10277 rt = aarch64_regnum(env, rt); 10278 env->exception.syndrome = deposit32(env->exception.syndrome, 10279 5, 5, rt); 10280 rt = extract32(env->exception.syndrome, 10, 4); 10281 rt = aarch64_regnum(env, rt); 10282 env->exception.syndrome = deposit32(env->exception.syndrome, 10283 10, 5, rt); 10284 break; 10285 } 10286 env->cp15.esr_el[new_el] = env->exception.syndrome; 10287 break; 10288 case EXCP_IRQ: 10289 case EXCP_VIRQ: 10290 addr += 0x80; 10291 break; 10292 case EXCP_FIQ: 10293 case EXCP_VFIQ: 10294 addr += 0x100; 10295 break; 10296 default: 10297 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10298 } 10299 10300 if (is_a64(env)) { 10301 old_mode = pstate_read(env); 10302 aarch64_save_sp(env, arm_current_el(env)); 10303 env->elr_el[new_el] = env->pc; 10304 } else { 10305 old_mode = cpsr_read_for_spsr_elx(env); 10306 env->elr_el[new_el] = env->regs[15]; 10307 10308 aarch64_sync_32_to_64(env); 10309 10310 env->condexec_bits = 0; 10311 } 10312 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10313 10314 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10315 env->elr_el[new_el]); 10316 10317 if (cpu_isar_feature(aa64_pan, cpu)) { 10318 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10319 new_mode |= old_mode & PSTATE_PAN; 10320 switch (new_el) { 10321 case 2: 10322 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10323 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10324 != (HCR_E2H | HCR_TGE)) { 10325 break; 10326 } 10327 /* fall through */ 10328 case 1: 10329 /* ... the target is EL1 ... */ 10330 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10331 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10332 new_mode |= PSTATE_PAN; 10333 } 10334 break; 10335 } 10336 } 10337 if (cpu_isar_feature(aa64_mte, cpu)) { 10338 new_mode |= PSTATE_TCO; 10339 } 10340 10341 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10342 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10343 new_mode |= PSTATE_SSBS; 10344 } else { 10345 new_mode &= ~PSTATE_SSBS; 10346 } 10347 } 10348 10349 pstate_write(env, PSTATE_DAIF | new_mode); 10350 env->aarch64 = 1; 10351 aarch64_restore_sp(env, new_el); 10352 helper_rebuild_hflags_a64(env, new_el); 10353 10354 env->pc = addr; 10355 10356 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10357 new_el, env->pc, pstate_read(env)); 10358 } 10359 10360 /* 10361 * Do semihosting call and set the appropriate return value. All the 10362 * permission and validity checks have been done at translate time. 10363 * 10364 * We only see semihosting exceptions in TCG only as they are not 10365 * trapped to the hypervisor in KVM. 10366 */ 10367 #ifdef CONFIG_TCG 10368 static void handle_semihosting(CPUState *cs) 10369 { 10370 ARMCPU *cpu = ARM_CPU(cs); 10371 CPUARMState *env = &cpu->env; 10372 10373 if (is_a64(env)) { 10374 qemu_log_mask(CPU_LOG_INT, 10375 "...handling as semihosting call 0x%" PRIx64 "\n", 10376 env->xregs[0]); 10377 env->xregs[0] = do_common_semihosting(cs); 10378 env->pc += 4; 10379 } else { 10380 qemu_log_mask(CPU_LOG_INT, 10381 "...handling as semihosting call 0x%x\n", 10382 env->regs[0]); 10383 env->regs[0] = do_common_semihosting(cs); 10384 env->regs[15] += env->thumb ? 2 : 4; 10385 } 10386 } 10387 #endif 10388 10389 /* Handle a CPU exception for A and R profile CPUs. 10390 * Do any appropriate logging, handle PSCI calls, and then hand off 10391 * to the AArch64-entry or AArch32-entry function depending on the 10392 * target exception level's register width. 10393 * 10394 * Note: this is used for both TCG (as the do_interrupt tcg op), 10395 * and KVM to re-inject guest debug exceptions, and to 10396 * inject a Synchronous-External-Abort. 10397 */ 10398 void arm_cpu_do_interrupt(CPUState *cs) 10399 { 10400 ARMCPU *cpu = ARM_CPU(cs); 10401 CPUARMState *env = &cpu->env; 10402 unsigned int new_el = env->exception.target_el; 10403 10404 assert(!arm_feature(env, ARM_FEATURE_M)); 10405 10406 arm_log_exception(cs->exception_index); 10407 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10408 new_el); 10409 if (qemu_loglevel_mask(CPU_LOG_INT) 10410 && !excp_is_internal(cs->exception_index)) { 10411 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10412 syn_get_ec(env->exception.syndrome), 10413 env->exception.syndrome); 10414 } 10415 10416 if (arm_is_psci_call(cpu, cs->exception_index)) { 10417 arm_handle_psci_call(cpu); 10418 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10419 return; 10420 } 10421 10422 /* 10423 * Semihosting semantics depend on the register width of the code 10424 * that caused the exception, not the target exception level, so 10425 * must be handled here. 10426 */ 10427 #ifdef CONFIG_TCG 10428 if (cs->exception_index == EXCP_SEMIHOST) { 10429 handle_semihosting(cs); 10430 return; 10431 } 10432 #endif 10433 10434 /* Hooks may change global state so BQL should be held, also the 10435 * BQL needs to be held for any modification of 10436 * cs->interrupt_request. 10437 */ 10438 g_assert(qemu_mutex_iothread_locked()); 10439 10440 arm_call_pre_el_change_hook(cpu); 10441 10442 assert(!excp_is_internal(cs->exception_index)); 10443 if (arm_el_is_aa64(env, new_el)) { 10444 arm_cpu_do_interrupt_aarch64(cs); 10445 } else { 10446 arm_cpu_do_interrupt_aarch32(cs); 10447 } 10448 10449 arm_call_el_change_hook(cpu); 10450 10451 if (!kvm_enabled()) { 10452 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10453 } 10454 } 10455 #endif /* !CONFIG_USER_ONLY */ 10456 10457 uint64_t arm_sctlr(CPUARMState *env, int el) 10458 { 10459 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10460 if (el == 0) { 10461 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10462 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10463 ? 2 : 1; 10464 } 10465 return env->cp15.sctlr_el[el]; 10466 } 10467 10468 /* Return the SCTLR value which controls this address translation regime */ 10469 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10470 { 10471 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10472 } 10473 10474 #ifndef CONFIG_USER_ONLY 10475 10476 /* Return true if the specified stage of address translation is disabled */ 10477 static inline bool regime_translation_disabled(CPUARMState *env, 10478 ARMMMUIdx mmu_idx) 10479 { 10480 uint64_t hcr_el2; 10481 10482 if (arm_feature(env, ARM_FEATURE_M)) { 10483 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10484 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10485 case R_V7M_MPU_CTRL_ENABLE_MASK: 10486 /* Enabled, but not for HardFault and NMI */ 10487 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10488 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10489 /* Enabled for all cases */ 10490 return false; 10491 case 0: 10492 default: 10493 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10494 * we warned about that in armv7m_nvic.c when the guest set it. 10495 */ 10496 return true; 10497 } 10498 } 10499 10500 hcr_el2 = arm_hcr_el2_eff(env); 10501 10502 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10503 /* HCR.DC means HCR.VM behaves as 1 */ 10504 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10505 } 10506 10507 if (hcr_el2 & HCR_TGE) { 10508 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10509 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10510 return true; 10511 } 10512 } 10513 10514 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10515 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10516 return true; 10517 } 10518 10519 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10520 } 10521 10522 static inline bool regime_translation_big_endian(CPUARMState *env, 10523 ARMMMUIdx mmu_idx) 10524 { 10525 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10526 } 10527 10528 /* Return the TTBR associated with this translation regime */ 10529 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10530 int ttbrn) 10531 { 10532 if (mmu_idx == ARMMMUIdx_Stage2) { 10533 return env->cp15.vttbr_el2; 10534 } 10535 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10536 return env->cp15.vsttbr_el2; 10537 } 10538 if (ttbrn == 0) { 10539 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10540 } else { 10541 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10542 } 10543 } 10544 10545 #endif /* !CONFIG_USER_ONLY */ 10546 10547 /* Convert a possible stage1+2 MMU index into the appropriate 10548 * stage 1 MMU index 10549 */ 10550 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10551 { 10552 switch (mmu_idx) { 10553 case ARMMMUIdx_SE10_0: 10554 return ARMMMUIdx_Stage1_SE0; 10555 case ARMMMUIdx_SE10_1: 10556 return ARMMMUIdx_Stage1_SE1; 10557 case ARMMMUIdx_SE10_1_PAN: 10558 return ARMMMUIdx_Stage1_SE1_PAN; 10559 case ARMMMUIdx_E10_0: 10560 return ARMMMUIdx_Stage1_E0; 10561 case ARMMMUIdx_E10_1: 10562 return ARMMMUIdx_Stage1_E1; 10563 case ARMMMUIdx_E10_1_PAN: 10564 return ARMMMUIdx_Stage1_E1_PAN; 10565 default: 10566 return mmu_idx; 10567 } 10568 } 10569 10570 /* Return true if the translation regime is using LPAE format page tables */ 10571 static inline bool regime_using_lpae_format(CPUARMState *env, 10572 ARMMMUIdx mmu_idx) 10573 { 10574 int el = regime_el(env, mmu_idx); 10575 if (el == 2 || arm_el_is_aa64(env, el)) { 10576 return true; 10577 } 10578 if (arm_feature(env, ARM_FEATURE_LPAE) 10579 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10580 return true; 10581 } 10582 return false; 10583 } 10584 10585 /* Returns true if the stage 1 translation regime is using LPAE format page 10586 * tables. Used when raising alignment exceptions, whose FSR changes depending 10587 * on whether the long or short descriptor format is in use. */ 10588 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10589 { 10590 mmu_idx = stage_1_mmu_idx(mmu_idx); 10591 10592 return regime_using_lpae_format(env, mmu_idx); 10593 } 10594 10595 #ifndef CONFIG_USER_ONLY 10596 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10597 { 10598 switch (mmu_idx) { 10599 case ARMMMUIdx_SE10_0: 10600 case ARMMMUIdx_E20_0: 10601 case ARMMMUIdx_SE20_0: 10602 case ARMMMUIdx_Stage1_E0: 10603 case ARMMMUIdx_Stage1_SE0: 10604 case ARMMMUIdx_MUser: 10605 case ARMMMUIdx_MSUser: 10606 case ARMMMUIdx_MUserNegPri: 10607 case ARMMMUIdx_MSUserNegPri: 10608 return true; 10609 default: 10610 return false; 10611 case ARMMMUIdx_E10_0: 10612 case ARMMMUIdx_E10_1: 10613 case ARMMMUIdx_E10_1_PAN: 10614 g_assert_not_reached(); 10615 } 10616 } 10617 10618 /* Translate section/page access permissions to page 10619 * R/W protection flags 10620 * 10621 * @env: CPUARMState 10622 * @mmu_idx: MMU index indicating required translation regime 10623 * @ap: The 3-bit access permissions (AP[2:0]) 10624 * @domain_prot: The 2-bit domain access permissions 10625 */ 10626 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10627 int ap, int domain_prot) 10628 { 10629 bool is_user = regime_is_user(env, mmu_idx); 10630 10631 if (domain_prot == 3) { 10632 return PAGE_READ | PAGE_WRITE; 10633 } 10634 10635 switch (ap) { 10636 case 0: 10637 if (arm_feature(env, ARM_FEATURE_V7)) { 10638 return 0; 10639 } 10640 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10641 case SCTLR_S: 10642 return is_user ? 0 : PAGE_READ; 10643 case SCTLR_R: 10644 return PAGE_READ; 10645 default: 10646 return 0; 10647 } 10648 case 1: 10649 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10650 case 2: 10651 if (is_user) { 10652 return PAGE_READ; 10653 } else { 10654 return PAGE_READ | PAGE_WRITE; 10655 } 10656 case 3: 10657 return PAGE_READ | PAGE_WRITE; 10658 case 4: /* Reserved. */ 10659 return 0; 10660 case 5: 10661 return is_user ? 0 : PAGE_READ; 10662 case 6: 10663 return PAGE_READ; 10664 case 7: 10665 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10666 return 0; 10667 } 10668 return PAGE_READ; 10669 default: 10670 g_assert_not_reached(); 10671 } 10672 } 10673 10674 /* Translate section/page access permissions to page 10675 * R/W protection flags. 10676 * 10677 * @ap: The 2-bit simple AP (AP[2:1]) 10678 * @is_user: TRUE if accessing from PL0 10679 */ 10680 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10681 { 10682 switch (ap) { 10683 case 0: 10684 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10685 case 1: 10686 return PAGE_READ | PAGE_WRITE; 10687 case 2: 10688 return is_user ? 0 : PAGE_READ; 10689 case 3: 10690 return PAGE_READ; 10691 default: 10692 g_assert_not_reached(); 10693 } 10694 } 10695 10696 static inline int 10697 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10698 { 10699 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10700 } 10701 10702 /* Translate S2 section/page access permissions to protection flags 10703 * 10704 * @env: CPUARMState 10705 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10706 * @xn: XN (execute-never) bits 10707 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10708 */ 10709 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10710 { 10711 int prot = 0; 10712 10713 if (s2ap & 1) { 10714 prot |= PAGE_READ; 10715 } 10716 if (s2ap & 2) { 10717 prot |= PAGE_WRITE; 10718 } 10719 10720 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10721 switch (xn) { 10722 case 0: 10723 prot |= PAGE_EXEC; 10724 break; 10725 case 1: 10726 if (s1_is_el0) { 10727 prot |= PAGE_EXEC; 10728 } 10729 break; 10730 case 2: 10731 break; 10732 case 3: 10733 if (!s1_is_el0) { 10734 prot |= PAGE_EXEC; 10735 } 10736 break; 10737 default: 10738 g_assert_not_reached(); 10739 } 10740 } else { 10741 if (!extract32(xn, 1, 1)) { 10742 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10743 prot |= PAGE_EXEC; 10744 } 10745 } 10746 } 10747 return prot; 10748 } 10749 10750 /* Translate section/page access permissions to protection flags 10751 * 10752 * @env: CPUARMState 10753 * @mmu_idx: MMU index indicating required translation regime 10754 * @is_aa64: TRUE if AArch64 10755 * @ap: The 2-bit simple AP (AP[2:1]) 10756 * @ns: NS (non-secure) bit 10757 * @xn: XN (execute-never) bit 10758 * @pxn: PXN (privileged execute-never) bit 10759 */ 10760 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10761 int ap, int ns, int xn, int pxn) 10762 { 10763 bool is_user = regime_is_user(env, mmu_idx); 10764 int prot_rw, user_rw; 10765 bool have_wxn; 10766 int wxn = 0; 10767 10768 assert(mmu_idx != ARMMMUIdx_Stage2); 10769 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10770 10771 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10772 if (is_user) { 10773 prot_rw = user_rw; 10774 } else { 10775 if (user_rw && regime_is_pan(env, mmu_idx)) { 10776 /* PAN forbids data accesses but doesn't affect insn fetch */ 10777 prot_rw = 0; 10778 } else { 10779 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10780 } 10781 } 10782 10783 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10784 return prot_rw; 10785 } 10786 10787 /* TODO have_wxn should be replaced with 10788 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10789 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10790 * compatible processors have EL2, which is required for [U]WXN. 10791 */ 10792 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10793 10794 if (have_wxn) { 10795 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10796 } 10797 10798 if (is_aa64) { 10799 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10800 xn = pxn || (user_rw & PAGE_WRITE); 10801 } 10802 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10803 switch (regime_el(env, mmu_idx)) { 10804 case 1: 10805 case 3: 10806 if (is_user) { 10807 xn = xn || !(user_rw & PAGE_READ); 10808 } else { 10809 int uwxn = 0; 10810 if (have_wxn) { 10811 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10812 } 10813 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10814 (uwxn && (user_rw & PAGE_WRITE)); 10815 } 10816 break; 10817 case 2: 10818 break; 10819 } 10820 } else { 10821 xn = wxn = 0; 10822 } 10823 10824 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10825 return prot_rw; 10826 } 10827 return prot_rw | PAGE_EXEC; 10828 } 10829 10830 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10831 uint32_t *table, uint32_t address) 10832 { 10833 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10834 TCR *tcr = regime_tcr(env, mmu_idx); 10835 10836 if (address & tcr->mask) { 10837 if (tcr->raw_tcr & TTBCR_PD1) { 10838 /* Translation table walk disabled for TTBR1 */ 10839 return false; 10840 } 10841 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10842 } else { 10843 if (tcr->raw_tcr & TTBCR_PD0) { 10844 /* Translation table walk disabled for TTBR0 */ 10845 return false; 10846 } 10847 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10848 } 10849 *table |= (address >> 18) & 0x3ffc; 10850 return true; 10851 } 10852 10853 /* Translate a S1 pagetable walk through S2 if needed. */ 10854 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10855 hwaddr addr, bool *is_secure, 10856 ARMMMUFaultInfo *fi) 10857 { 10858 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10859 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10860 target_ulong s2size; 10861 hwaddr s2pa; 10862 int s2prot; 10863 int ret; 10864 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10865 : ARMMMUIdx_Stage2; 10866 ARMCacheAttrs cacheattrs = {}; 10867 MemTxAttrs txattrs = {}; 10868 10869 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10870 &s2pa, &txattrs, &s2prot, &s2size, fi, 10871 &cacheattrs); 10872 if (ret) { 10873 assert(fi->type != ARMFault_None); 10874 fi->s2addr = addr; 10875 fi->stage2 = true; 10876 fi->s1ptw = true; 10877 fi->s1ns = !*is_secure; 10878 return ~0; 10879 } 10880 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10881 (cacheattrs.attrs & 0xf0) == 0) { 10882 /* 10883 * PTW set and S1 walk touched S2 Device memory: 10884 * generate Permission fault. 10885 */ 10886 fi->type = ARMFault_Permission; 10887 fi->s2addr = addr; 10888 fi->stage2 = true; 10889 fi->s1ptw = true; 10890 fi->s1ns = !*is_secure; 10891 return ~0; 10892 } 10893 10894 if (arm_is_secure_below_el3(env)) { 10895 /* Check if page table walk is to secure or non-secure PA space. */ 10896 if (*is_secure) { 10897 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10898 } else { 10899 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10900 } 10901 } else { 10902 assert(!*is_secure); 10903 } 10904 10905 addr = s2pa; 10906 } 10907 return addr; 10908 } 10909 10910 /* All loads done in the course of a page table walk go through here. */ 10911 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10912 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10913 { 10914 ARMCPU *cpu = ARM_CPU(cs); 10915 CPUARMState *env = &cpu->env; 10916 MemTxAttrs attrs = {}; 10917 MemTxResult result = MEMTX_OK; 10918 AddressSpace *as; 10919 uint32_t data; 10920 10921 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10922 attrs.secure = is_secure; 10923 as = arm_addressspace(cs, attrs); 10924 if (fi->s1ptw) { 10925 return 0; 10926 } 10927 if (regime_translation_big_endian(env, mmu_idx)) { 10928 data = address_space_ldl_be(as, addr, attrs, &result); 10929 } else { 10930 data = address_space_ldl_le(as, addr, attrs, &result); 10931 } 10932 if (result == MEMTX_OK) { 10933 return data; 10934 } 10935 fi->type = ARMFault_SyncExternalOnWalk; 10936 fi->ea = arm_extabort_type(result); 10937 return 0; 10938 } 10939 10940 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10941 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10942 { 10943 ARMCPU *cpu = ARM_CPU(cs); 10944 CPUARMState *env = &cpu->env; 10945 MemTxAttrs attrs = {}; 10946 MemTxResult result = MEMTX_OK; 10947 AddressSpace *as; 10948 uint64_t data; 10949 10950 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10951 attrs.secure = is_secure; 10952 as = arm_addressspace(cs, attrs); 10953 if (fi->s1ptw) { 10954 return 0; 10955 } 10956 if (regime_translation_big_endian(env, mmu_idx)) { 10957 data = address_space_ldq_be(as, addr, attrs, &result); 10958 } else { 10959 data = address_space_ldq_le(as, addr, attrs, &result); 10960 } 10961 if (result == MEMTX_OK) { 10962 return data; 10963 } 10964 fi->type = ARMFault_SyncExternalOnWalk; 10965 fi->ea = arm_extabort_type(result); 10966 return 0; 10967 } 10968 10969 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10970 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10971 hwaddr *phys_ptr, int *prot, 10972 target_ulong *page_size, 10973 ARMMMUFaultInfo *fi) 10974 { 10975 CPUState *cs = env_cpu(env); 10976 int level = 1; 10977 uint32_t table; 10978 uint32_t desc; 10979 int type; 10980 int ap; 10981 int domain = 0; 10982 int domain_prot; 10983 hwaddr phys_addr; 10984 uint32_t dacr; 10985 10986 /* Pagetable walk. */ 10987 /* Lookup l1 descriptor. */ 10988 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10989 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10990 fi->type = ARMFault_Translation; 10991 goto do_fault; 10992 } 10993 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10994 mmu_idx, fi); 10995 if (fi->type != ARMFault_None) { 10996 goto do_fault; 10997 } 10998 type = (desc & 3); 10999 domain = (desc >> 5) & 0x0f; 11000 if (regime_el(env, mmu_idx) == 1) { 11001 dacr = env->cp15.dacr_ns; 11002 } else { 11003 dacr = env->cp15.dacr_s; 11004 } 11005 domain_prot = (dacr >> (domain * 2)) & 3; 11006 if (type == 0) { 11007 /* Section translation fault. */ 11008 fi->type = ARMFault_Translation; 11009 goto do_fault; 11010 } 11011 if (type != 2) { 11012 level = 2; 11013 } 11014 if (domain_prot == 0 || domain_prot == 2) { 11015 fi->type = ARMFault_Domain; 11016 goto do_fault; 11017 } 11018 if (type == 2) { 11019 /* 1Mb section. */ 11020 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11021 ap = (desc >> 10) & 3; 11022 *page_size = 1024 * 1024; 11023 } else { 11024 /* Lookup l2 entry. */ 11025 if (type == 1) { 11026 /* Coarse pagetable. */ 11027 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11028 } else { 11029 /* Fine pagetable. */ 11030 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 11031 } 11032 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11033 mmu_idx, fi); 11034 if (fi->type != ARMFault_None) { 11035 goto do_fault; 11036 } 11037 switch (desc & 3) { 11038 case 0: /* Page translation fault. */ 11039 fi->type = ARMFault_Translation; 11040 goto do_fault; 11041 case 1: /* 64k page. */ 11042 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11043 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 11044 *page_size = 0x10000; 11045 break; 11046 case 2: /* 4k page. */ 11047 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11048 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 11049 *page_size = 0x1000; 11050 break; 11051 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 11052 if (type == 1) { 11053 /* ARMv6/XScale extended small page format */ 11054 if (arm_feature(env, ARM_FEATURE_XSCALE) 11055 || arm_feature(env, ARM_FEATURE_V6)) { 11056 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11057 *page_size = 0x1000; 11058 } else { 11059 /* UNPREDICTABLE in ARMv5; we choose to take a 11060 * page translation fault. 11061 */ 11062 fi->type = ARMFault_Translation; 11063 goto do_fault; 11064 } 11065 } else { 11066 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 11067 *page_size = 0x400; 11068 } 11069 ap = (desc >> 4) & 3; 11070 break; 11071 default: 11072 /* Never happens, but compiler isn't smart enough to tell. */ 11073 abort(); 11074 } 11075 } 11076 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11077 *prot |= *prot ? PAGE_EXEC : 0; 11078 if (!(*prot & (1 << access_type))) { 11079 /* Access permission fault. */ 11080 fi->type = ARMFault_Permission; 11081 goto do_fault; 11082 } 11083 *phys_ptr = phys_addr; 11084 return false; 11085 do_fault: 11086 fi->domain = domain; 11087 fi->level = level; 11088 return true; 11089 } 11090 11091 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 11092 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11093 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11094 target_ulong *page_size, ARMMMUFaultInfo *fi) 11095 { 11096 CPUState *cs = env_cpu(env); 11097 ARMCPU *cpu = env_archcpu(env); 11098 int level = 1; 11099 uint32_t table; 11100 uint32_t desc; 11101 uint32_t xn; 11102 uint32_t pxn = 0; 11103 int type; 11104 int ap; 11105 int domain = 0; 11106 int domain_prot; 11107 hwaddr phys_addr; 11108 uint32_t dacr; 11109 bool ns; 11110 11111 /* Pagetable walk. */ 11112 /* Lookup l1 descriptor. */ 11113 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11114 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11115 fi->type = ARMFault_Translation; 11116 goto do_fault; 11117 } 11118 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11119 mmu_idx, fi); 11120 if (fi->type != ARMFault_None) { 11121 goto do_fault; 11122 } 11123 type = (desc & 3); 11124 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 11125 /* Section translation fault, or attempt to use the encoding 11126 * which is Reserved on implementations without PXN. 11127 */ 11128 fi->type = ARMFault_Translation; 11129 goto do_fault; 11130 } 11131 if ((type == 1) || !(desc & (1 << 18))) { 11132 /* Page or Section. */ 11133 domain = (desc >> 5) & 0x0f; 11134 } 11135 if (regime_el(env, mmu_idx) == 1) { 11136 dacr = env->cp15.dacr_ns; 11137 } else { 11138 dacr = env->cp15.dacr_s; 11139 } 11140 if (type == 1) { 11141 level = 2; 11142 } 11143 domain_prot = (dacr >> (domain * 2)) & 3; 11144 if (domain_prot == 0 || domain_prot == 2) { 11145 /* Section or Page domain fault */ 11146 fi->type = ARMFault_Domain; 11147 goto do_fault; 11148 } 11149 if (type != 1) { 11150 if (desc & (1 << 18)) { 11151 /* Supersection. */ 11152 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 11153 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 11154 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 11155 *page_size = 0x1000000; 11156 } else { 11157 /* Section. */ 11158 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11159 *page_size = 0x100000; 11160 } 11161 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 11162 xn = desc & (1 << 4); 11163 pxn = desc & 1; 11164 ns = extract32(desc, 19, 1); 11165 } else { 11166 if (cpu_isar_feature(aa32_pxn, cpu)) { 11167 pxn = (desc >> 2) & 1; 11168 } 11169 ns = extract32(desc, 3, 1); 11170 /* Lookup l2 entry. */ 11171 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11172 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11173 mmu_idx, fi); 11174 if (fi->type != ARMFault_None) { 11175 goto do_fault; 11176 } 11177 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11178 switch (desc & 3) { 11179 case 0: /* Page translation fault. */ 11180 fi->type = ARMFault_Translation; 11181 goto do_fault; 11182 case 1: /* 64k page. */ 11183 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11184 xn = desc & (1 << 15); 11185 *page_size = 0x10000; 11186 break; 11187 case 2: case 3: /* 4k page. */ 11188 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11189 xn = desc & 1; 11190 *page_size = 0x1000; 11191 break; 11192 default: 11193 /* Never happens, but compiler isn't smart enough to tell. */ 11194 abort(); 11195 } 11196 } 11197 if (domain_prot == 3) { 11198 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11199 } else { 11200 if (pxn && !regime_is_user(env, mmu_idx)) { 11201 xn = 1; 11202 } 11203 if (xn && access_type == MMU_INST_FETCH) { 11204 fi->type = ARMFault_Permission; 11205 goto do_fault; 11206 } 11207 11208 if (arm_feature(env, ARM_FEATURE_V6K) && 11209 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11210 /* The simplified model uses AP[0] as an access control bit. */ 11211 if ((ap & 1) == 0) { 11212 /* Access flag fault. */ 11213 fi->type = ARMFault_AccessFlag; 11214 goto do_fault; 11215 } 11216 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11217 } else { 11218 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11219 } 11220 if (*prot && !xn) { 11221 *prot |= PAGE_EXEC; 11222 } 11223 if (!(*prot & (1 << access_type))) { 11224 /* Access permission fault. */ 11225 fi->type = ARMFault_Permission; 11226 goto do_fault; 11227 } 11228 } 11229 if (ns) { 11230 /* The NS bit will (as required by the architecture) have no effect if 11231 * the CPU doesn't support TZ or this is a non-secure translation 11232 * regime, because the attribute will already be non-secure. 11233 */ 11234 attrs->secure = false; 11235 } 11236 *phys_ptr = phys_addr; 11237 return false; 11238 do_fault: 11239 fi->domain = domain; 11240 fi->level = level; 11241 return true; 11242 } 11243 11244 /* 11245 * check_s2_mmu_setup 11246 * @cpu: ARMCPU 11247 * @is_aa64: True if the translation regime is in AArch64 state 11248 * @startlevel: Suggested starting level 11249 * @inputsize: Bitsize of IPAs 11250 * @stride: Page-table stride (See the ARM ARM) 11251 * 11252 * Returns true if the suggested S2 translation parameters are OK and 11253 * false otherwise. 11254 */ 11255 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11256 int inputsize, int stride) 11257 { 11258 const int grainsize = stride + 3; 11259 int startsizecheck; 11260 11261 /* Negative levels are never allowed. */ 11262 if (level < 0) { 11263 return false; 11264 } 11265 11266 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11267 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11268 return false; 11269 } 11270 11271 if (is_aa64) { 11272 CPUARMState *env = &cpu->env; 11273 unsigned int pamax = arm_pamax(cpu); 11274 11275 switch (stride) { 11276 case 13: /* 64KB Pages. */ 11277 if (level == 0 || (level == 1 && pamax <= 42)) { 11278 return false; 11279 } 11280 break; 11281 case 11: /* 16KB Pages. */ 11282 if (level == 0 || (level == 1 && pamax <= 40)) { 11283 return false; 11284 } 11285 break; 11286 case 9: /* 4KB Pages. */ 11287 if (level == 0 && pamax <= 42) { 11288 return false; 11289 } 11290 break; 11291 default: 11292 g_assert_not_reached(); 11293 } 11294 11295 /* Inputsize checks. */ 11296 if (inputsize > pamax && 11297 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 11298 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11299 return false; 11300 } 11301 } else { 11302 /* AArch32 only supports 4KB pages. Assert on that. */ 11303 assert(stride == 9); 11304 11305 if (level == 0) { 11306 return false; 11307 } 11308 } 11309 return true; 11310 } 11311 11312 /* Translate from the 4-bit stage 2 representation of 11313 * memory attributes (without cache-allocation hints) to 11314 * the 8-bit representation of the stage 1 MAIR registers 11315 * (which includes allocation hints). 11316 * 11317 * ref: shared/translation/attrs/S2AttrDecode() 11318 * .../S2ConvertAttrsHints() 11319 */ 11320 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11321 { 11322 uint8_t hiattr = extract32(s2attrs, 2, 2); 11323 uint8_t loattr = extract32(s2attrs, 0, 2); 11324 uint8_t hihint = 0, lohint = 0; 11325 11326 if (hiattr != 0) { /* normal memory */ 11327 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11328 hiattr = loattr = 1; /* non-cacheable */ 11329 } else { 11330 if (hiattr != 1) { /* Write-through or write-back */ 11331 hihint = 3; /* RW allocate */ 11332 } 11333 if (loattr != 1) { /* Write-through or write-back */ 11334 lohint = 3; /* RW allocate */ 11335 } 11336 } 11337 } 11338 11339 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11340 } 11341 #endif /* !CONFIG_USER_ONLY */ 11342 11343 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11344 { 11345 if (regime_has_2_ranges(mmu_idx)) { 11346 return extract64(tcr, 37, 2); 11347 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11348 return 0; /* VTCR_EL2 */ 11349 } else { 11350 /* Replicate the single TBI bit so we always have 2 bits. */ 11351 return extract32(tcr, 20, 1) * 3; 11352 } 11353 } 11354 11355 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11356 { 11357 if (regime_has_2_ranges(mmu_idx)) { 11358 return extract64(tcr, 51, 2); 11359 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11360 return 0; /* VTCR_EL2 */ 11361 } else { 11362 /* Replicate the single TBID bit so we always have 2 bits. */ 11363 return extract32(tcr, 29, 1) * 3; 11364 } 11365 } 11366 11367 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11368 { 11369 if (regime_has_2_ranges(mmu_idx)) { 11370 return extract64(tcr, 57, 2); 11371 } else { 11372 /* Replicate the single TCMA bit so we always have 2 bits. */ 11373 return extract32(tcr, 30, 1) * 3; 11374 } 11375 } 11376 11377 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11378 ARMMMUIdx mmu_idx, bool data) 11379 { 11380 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11381 bool epd, hpd, using16k, using64k; 11382 int select, tsz, tbi, max_tsz; 11383 11384 if (!regime_has_2_ranges(mmu_idx)) { 11385 select = 0; 11386 tsz = extract32(tcr, 0, 6); 11387 using64k = extract32(tcr, 14, 1); 11388 using16k = extract32(tcr, 15, 1); 11389 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11390 /* VTCR_EL2 */ 11391 hpd = false; 11392 } else { 11393 hpd = extract32(tcr, 24, 1); 11394 } 11395 epd = false; 11396 } else { 11397 /* 11398 * Bit 55 is always between the two regions, and is canonical for 11399 * determining if address tagging is enabled. 11400 */ 11401 select = extract64(va, 55, 1); 11402 if (!select) { 11403 tsz = extract32(tcr, 0, 6); 11404 epd = extract32(tcr, 7, 1); 11405 using64k = extract32(tcr, 14, 1); 11406 using16k = extract32(tcr, 15, 1); 11407 hpd = extract64(tcr, 41, 1); 11408 } else { 11409 int tg = extract32(tcr, 30, 2); 11410 using16k = tg == 1; 11411 using64k = tg == 3; 11412 tsz = extract32(tcr, 16, 6); 11413 epd = extract32(tcr, 23, 1); 11414 hpd = extract64(tcr, 42, 1); 11415 } 11416 } 11417 11418 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11419 max_tsz = 48 - using64k; 11420 } else { 11421 max_tsz = 39; 11422 } 11423 11424 tsz = MIN(tsz, max_tsz); 11425 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11426 11427 /* Present TBI as a composite with TBID. */ 11428 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11429 if (!data) { 11430 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11431 } 11432 tbi = (tbi >> select) & 1; 11433 11434 return (ARMVAParameters) { 11435 .tsz = tsz, 11436 .select = select, 11437 .tbi = tbi, 11438 .epd = epd, 11439 .hpd = hpd, 11440 .using16k = using16k, 11441 .using64k = using64k, 11442 }; 11443 } 11444 11445 #ifndef CONFIG_USER_ONLY 11446 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11447 ARMMMUIdx mmu_idx) 11448 { 11449 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11450 uint32_t el = regime_el(env, mmu_idx); 11451 int select, tsz; 11452 bool epd, hpd; 11453 11454 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11455 11456 if (mmu_idx == ARMMMUIdx_Stage2) { 11457 /* VTCR */ 11458 bool sext = extract32(tcr, 4, 1); 11459 bool sign = extract32(tcr, 3, 1); 11460 11461 /* 11462 * If the sign-extend bit is not the same as t0sz[3], the result 11463 * is unpredictable. Flag this as a guest error. 11464 */ 11465 if (sign != sext) { 11466 qemu_log_mask(LOG_GUEST_ERROR, 11467 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11468 } 11469 tsz = sextract32(tcr, 0, 4) + 8; 11470 select = 0; 11471 hpd = false; 11472 epd = false; 11473 } else if (el == 2) { 11474 /* HTCR */ 11475 tsz = extract32(tcr, 0, 3); 11476 select = 0; 11477 hpd = extract64(tcr, 24, 1); 11478 epd = false; 11479 } else { 11480 int t0sz = extract32(tcr, 0, 3); 11481 int t1sz = extract32(tcr, 16, 3); 11482 11483 if (t1sz == 0) { 11484 select = va > (0xffffffffu >> t0sz); 11485 } else { 11486 /* Note that we will detect errors later. */ 11487 select = va >= ~(0xffffffffu >> t1sz); 11488 } 11489 if (!select) { 11490 tsz = t0sz; 11491 epd = extract32(tcr, 7, 1); 11492 hpd = extract64(tcr, 41, 1); 11493 } else { 11494 tsz = t1sz; 11495 epd = extract32(tcr, 23, 1); 11496 hpd = extract64(tcr, 42, 1); 11497 } 11498 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11499 hpd &= extract32(tcr, 6, 1); 11500 } 11501 11502 return (ARMVAParameters) { 11503 .tsz = tsz, 11504 .select = select, 11505 .epd = epd, 11506 .hpd = hpd, 11507 }; 11508 } 11509 11510 /** 11511 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11512 * 11513 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11514 * prot and page_size may not be filled in, and the populated fsr value provides 11515 * information on why the translation aborted, in the format of a long-format 11516 * DFSR/IFSR fault register, with the following caveats: 11517 * * the WnR bit is never set (the caller must do this). 11518 * 11519 * @env: CPUARMState 11520 * @address: virtual address to get physical address for 11521 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11522 * @mmu_idx: MMU index indicating required translation regime 11523 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11524 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11525 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11526 * @phys_ptr: set to the physical address corresponding to the virtual address 11527 * @attrs: set to the memory transaction attributes to use 11528 * @prot: set to the permissions for the page containing phys_ptr 11529 * @page_size_ptr: set to the size of the page containing phys_ptr 11530 * @fi: set to fault info if the translation fails 11531 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11532 */ 11533 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11534 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11535 bool s1_is_el0, 11536 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11537 target_ulong *page_size_ptr, 11538 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11539 { 11540 ARMCPU *cpu = env_archcpu(env); 11541 CPUState *cs = CPU(cpu); 11542 /* Read an LPAE long-descriptor translation table. */ 11543 ARMFaultType fault_type = ARMFault_Translation; 11544 uint32_t level; 11545 ARMVAParameters param; 11546 uint64_t ttbr; 11547 hwaddr descaddr, indexmask, indexmask_grainsize; 11548 uint32_t tableattrs; 11549 target_ulong page_size; 11550 uint32_t attrs; 11551 int32_t stride; 11552 int addrsize, inputsize; 11553 TCR *tcr = regime_tcr(env, mmu_idx); 11554 int ap, ns, xn, pxn; 11555 uint32_t el = regime_el(env, mmu_idx); 11556 uint64_t descaddrmask; 11557 bool aarch64 = arm_el_is_aa64(env, el); 11558 bool guarded = false; 11559 11560 /* TODO: This code does not support shareability levels. */ 11561 if (aarch64) { 11562 param = aa64_va_parameters(env, address, mmu_idx, 11563 access_type != MMU_INST_FETCH); 11564 level = 0; 11565 addrsize = 64 - 8 * param.tbi; 11566 inputsize = 64 - param.tsz; 11567 } else { 11568 param = aa32_va_parameters(env, address, mmu_idx); 11569 level = 1; 11570 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11571 inputsize = addrsize - param.tsz; 11572 } 11573 11574 /* 11575 * We determined the region when collecting the parameters, but we 11576 * have not yet validated that the address is valid for the region. 11577 * Extract the top bits and verify that they all match select. 11578 * 11579 * For aa32, if inputsize == addrsize, then we have selected the 11580 * region by exclusion in aa32_va_parameters and there is no more 11581 * validation to do here. 11582 */ 11583 if (inputsize < addrsize) { 11584 target_ulong top_bits = sextract64(address, inputsize, 11585 addrsize - inputsize); 11586 if (-top_bits != param.select) { 11587 /* The gap between the two regions is a Translation fault */ 11588 fault_type = ARMFault_Translation; 11589 goto do_fault; 11590 } 11591 } 11592 11593 if (param.using64k) { 11594 stride = 13; 11595 } else if (param.using16k) { 11596 stride = 11; 11597 } else { 11598 stride = 9; 11599 } 11600 11601 /* Note that QEMU ignores shareability and cacheability attributes, 11602 * so we don't need to do anything with the SH, ORGN, IRGN fields 11603 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11604 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11605 * implement any ASID-like capability so we can ignore it (instead 11606 * we will always flush the TLB any time the ASID is changed). 11607 */ 11608 ttbr = regime_ttbr(env, mmu_idx, param.select); 11609 11610 /* Here we should have set up all the parameters for the translation: 11611 * inputsize, ttbr, epd, stride, tbi 11612 */ 11613 11614 if (param.epd) { 11615 /* Translation table walk disabled => Translation fault on TLB miss 11616 * Note: This is always 0 on 64-bit EL2 and EL3. 11617 */ 11618 goto do_fault; 11619 } 11620 11621 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11622 /* The starting level depends on the virtual address size (which can 11623 * be up to 48 bits) and the translation granule size. It indicates 11624 * the number of strides (stride bits at a time) needed to 11625 * consume the bits of the input address. In the pseudocode this is: 11626 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11627 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11628 * our 'stride + 3' and 'stride' is our 'stride'. 11629 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11630 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11631 * = 4 - (inputsize - 4) / stride; 11632 */ 11633 level = 4 - (inputsize - 4) / stride; 11634 } else { 11635 /* For stage 2 translations the starting level is specified by the 11636 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11637 */ 11638 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11639 uint32_t startlevel; 11640 bool ok; 11641 11642 if (!aarch64 || stride == 9) { 11643 /* AArch32 or 4KB pages */ 11644 startlevel = 2 - sl0; 11645 11646 if (cpu_isar_feature(aa64_st, cpu)) { 11647 startlevel &= 3; 11648 } 11649 } else { 11650 /* 16KB or 64KB pages */ 11651 startlevel = 3 - sl0; 11652 } 11653 11654 /* Check that the starting level is valid. */ 11655 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11656 inputsize, stride); 11657 if (!ok) { 11658 fault_type = ARMFault_Translation; 11659 goto do_fault; 11660 } 11661 level = startlevel; 11662 } 11663 11664 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11665 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11666 11667 /* Now we can extract the actual base address from the TTBR */ 11668 descaddr = extract64(ttbr, 0, 48); 11669 /* 11670 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11671 * and also to mask out CnP (bit 0) which could validly be non-zero. 11672 */ 11673 descaddr &= ~indexmask; 11674 11675 /* The address field in the descriptor goes up to bit 39 for ARMv7 11676 * but up to bit 47 for ARMv8, but we use the descaddrmask 11677 * up to bit 39 for AArch32, because we don't need other bits in that case 11678 * to construct next descriptor address (anyway they should be all zeroes). 11679 */ 11680 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11681 ~indexmask_grainsize; 11682 11683 /* Secure accesses start with the page table in secure memory and 11684 * can be downgraded to non-secure at any step. Non-secure accesses 11685 * remain non-secure. We implement this by just ORing in the NSTable/NS 11686 * bits at each step. 11687 */ 11688 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11689 for (;;) { 11690 uint64_t descriptor; 11691 bool nstable; 11692 11693 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11694 descaddr &= ~7ULL; 11695 nstable = extract32(tableattrs, 4, 1); 11696 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11697 if (fi->type != ARMFault_None) { 11698 goto do_fault; 11699 } 11700 11701 if (!(descriptor & 1) || 11702 (!(descriptor & 2) && (level == 3))) { 11703 /* Invalid, or the Reserved level 3 encoding */ 11704 goto do_fault; 11705 } 11706 descaddr = descriptor & descaddrmask; 11707 11708 if ((descriptor & 2) && (level < 3)) { 11709 /* Table entry. The top five bits are attributes which may 11710 * propagate down through lower levels of the table (and 11711 * which are all arranged so that 0 means "no effect", so 11712 * we can gather them up by ORing in the bits at each level). 11713 */ 11714 tableattrs |= extract64(descriptor, 59, 5); 11715 level++; 11716 indexmask = indexmask_grainsize; 11717 continue; 11718 } 11719 /* Block entry at level 1 or 2, or page entry at level 3. 11720 * These are basically the same thing, although the number 11721 * of bits we pull in from the vaddr varies. 11722 */ 11723 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11724 descaddr |= (address & (page_size - 1)); 11725 /* Extract attributes from the descriptor */ 11726 attrs = extract64(descriptor, 2, 10) 11727 | (extract64(descriptor, 52, 12) << 10); 11728 11729 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11730 /* Stage 2 table descriptors do not include any attribute fields */ 11731 break; 11732 } 11733 /* Merge in attributes from table descriptors */ 11734 attrs |= nstable << 3; /* NS */ 11735 guarded = extract64(descriptor, 50, 1); /* GP */ 11736 if (param.hpd) { 11737 /* HPD disables all the table attributes except NSTable. */ 11738 break; 11739 } 11740 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11741 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11742 * means "force PL1 access only", which means forcing AP[1] to 0. 11743 */ 11744 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11745 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11746 break; 11747 } 11748 /* Here descaddr is the final physical address, and attributes 11749 * are all in attrs. 11750 */ 11751 fault_type = ARMFault_AccessFlag; 11752 if ((attrs & (1 << 8)) == 0) { 11753 /* Access flag */ 11754 goto do_fault; 11755 } 11756 11757 ap = extract32(attrs, 4, 2); 11758 11759 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11760 ns = mmu_idx == ARMMMUIdx_Stage2; 11761 xn = extract32(attrs, 11, 2); 11762 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11763 } else { 11764 ns = extract32(attrs, 3, 1); 11765 xn = extract32(attrs, 12, 1); 11766 pxn = extract32(attrs, 11, 1); 11767 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11768 } 11769 11770 fault_type = ARMFault_Permission; 11771 if (!(*prot & (1 << access_type))) { 11772 goto do_fault; 11773 } 11774 11775 if (ns) { 11776 /* The NS bit will (as required by the architecture) have no effect if 11777 * the CPU doesn't support TZ or this is a non-secure translation 11778 * regime, because the attribute will already be non-secure. 11779 */ 11780 txattrs->secure = false; 11781 } 11782 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11783 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11784 arm_tlb_bti_gp(txattrs) = true; 11785 } 11786 11787 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11788 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11789 } else { 11790 /* Index into MAIR registers for cache attributes */ 11791 uint8_t attrindx = extract32(attrs, 0, 3); 11792 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11793 assert(attrindx <= 7); 11794 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11795 } 11796 cacheattrs->shareability = extract32(attrs, 6, 2); 11797 11798 *phys_ptr = descaddr; 11799 *page_size_ptr = page_size; 11800 return false; 11801 11802 do_fault: 11803 fi->type = fault_type; 11804 fi->level = level; 11805 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11806 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11807 mmu_idx == ARMMMUIdx_Stage2_S); 11808 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11809 return true; 11810 } 11811 11812 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11813 ARMMMUIdx mmu_idx, 11814 int32_t address, int *prot) 11815 { 11816 if (!arm_feature(env, ARM_FEATURE_M)) { 11817 *prot = PAGE_READ | PAGE_WRITE; 11818 switch (address) { 11819 case 0xF0000000 ... 0xFFFFFFFF: 11820 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11821 /* hivecs execing is ok */ 11822 *prot |= PAGE_EXEC; 11823 } 11824 break; 11825 case 0x00000000 ... 0x7FFFFFFF: 11826 *prot |= PAGE_EXEC; 11827 break; 11828 } 11829 } else { 11830 /* Default system address map for M profile cores. 11831 * The architecture specifies which regions are execute-never; 11832 * at the MPU level no other checks are defined. 11833 */ 11834 switch (address) { 11835 case 0x00000000 ... 0x1fffffff: /* ROM */ 11836 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11837 case 0x60000000 ... 0x7fffffff: /* RAM */ 11838 case 0x80000000 ... 0x9fffffff: /* RAM */ 11839 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11840 break; 11841 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11842 case 0xa0000000 ... 0xbfffffff: /* Device */ 11843 case 0xc0000000 ... 0xdfffffff: /* Device */ 11844 case 0xe0000000 ... 0xffffffff: /* System */ 11845 *prot = PAGE_READ | PAGE_WRITE; 11846 break; 11847 default: 11848 g_assert_not_reached(); 11849 } 11850 } 11851 } 11852 11853 static bool pmsav7_use_background_region(ARMCPU *cpu, 11854 ARMMMUIdx mmu_idx, bool is_user) 11855 { 11856 /* Return true if we should use the default memory map as a 11857 * "background" region if there are no hits against any MPU regions. 11858 */ 11859 CPUARMState *env = &cpu->env; 11860 11861 if (is_user) { 11862 return false; 11863 } 11864 11865 if (arm_feature(env, ARM_FEATURE_M)) { 11866 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11867 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11868 } else { 11869 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11870 } 11871 } 11872 11873 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11874 { 11875 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11876 return arm_feature(env, ARM_FEATURE_M) && 11877 extract32(address, 20, 12) == 0xe00; 11878 } 11879 11880 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11881 { 11882 /* True if address is in the M profile system region 11883 * 0xe0000000 - 0xffffffff 11884 */ 11885 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11886 } 11887 11888 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11889 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11890 hwaddr *phys_ptr, int *prot, 11891 target_ulong *page_size, 11892 ARMMMUFaultInfo *fi) 11893 { 11894 ARMCPU *cpu = env_archcpu(env); 11895 int n; 11896 bool is_user = regime_is_user(env, mmu_idx); 11897 11898 *phys_ptr = address; 11899 *page_size = TARGET_PAGE_SIZE; 11900 *prot = 0; 11901 11902 if (regime_translation_disabled(env, mmu_idx) || 11903 m_is_ppb_region(env, address)) { 11904 /* MPU disabled or M profile PPB access: use default memory map. 11905 * The other case which uses the default memory map in the 11906 * v7M ARM ARM pseudocode is exception vector reads from the vector 11907 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11908 * which always does a direct read using address_space_ldl(), rather 11909 * than going via this function, so we don't need to check that here. 11910 */ 11911 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11912 } else { /* MPU enabled */ 11913 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11914 /* region search */ 11915 uint32_t base = env->pmsav7.drbar[n]; 11916 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11917 uint32_t rmask; 11918 bool srdis = false; 11919 11920 if (!(env->pmsav7.drsr[n] & 0x1)) { 11921 continue; 11922 } 11923 11924 if (!rsize) { 11925 qemu_log_mask(LOG_GUEST_ERROR, 11926 "DRSR[%d]: Rsize field cannot be 0\n", n); 11927 continue; 11928 } 11929 rsize++; 11930 rmask = (1ull << rsize) - 1; 11931 11932 if (base & rmask) { 11933 qemu_log_mask(LOG_GUEST_ERROR, 11934 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11935 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11936 n, base, rmask); 11937 continue; 11938 } 11939 11940 if (address < base || address > base + rmask) { 11941 /* 11942 * Address not in this region. We must check whether the 11943 * region covers addresses in the same page as our address. 11944 * In that case we must not report a size that covers the 11945 * whole page for a subsequent hit against a different MPU 11946 * region or the background region, because it would result in 11947 * incorrect TLB hits for subsequent accesses to addresses that 11948 * are in this MPU region. 11949 */ 11950 if (ranges_overlap(base, rmask, 11951 address & TARGET_PAGE_MASK, 11952 TARGET_PAGE_SIZE)) { 11953 *page_size = 1; 11954 } 11955 continue; 11956 } 11957 11958 /* Region matched */ 11959 11960 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11961 int i, snd; 11962 uint32_t srdis_mask; 11963 11964 rsize -= 3; /* sub region size (power of 2) */ 11965 snd = ((address - base) >> rsize) & 0x7; 11966 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11967 11968 srdis_mask = srdis ? 0x3 : 0x0; 11969 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11970 /* This will check in groups of 2, 4 and then 8, whether 11971 * the subregion bits are consistent. rsize is incremented 11972 * back up to give the region size, considering consistent 11973 * adjacent subregions as one region. Stop testing if rsize 11974 * is already big enough for an entire QEMU page. 11975 */ 11976 int snd_rounded = snd & ~(i - 1); 11977 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11978 snd_rounded + 8, i); 11979 if (srdis_mask ^ srdis_multi) { 11980 break; 11981 } 11982 srdis_mask = (srdis_mask << i) | srdis_mask; 11983 rsize++; 11984 } 11985 } 11986 if (srdis) { 11987 continue; 11988 } 11989 if (rsize < TARGET_PAGE_BITS) { 11990 *page_size = 1 << rsize; 11991 } 11992 break; 11993 } 11994 11995 if (n == -1) { /* no hits */ 11996 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11997 /* background fault */ 11998 fi->type = ARMFault_Background; 11999 return true; 12000 } 12001 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12002 } else { /* a MPU hit! */ 12003 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12004 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12005 12006 if (m_is_system_region(env, address)) { 12007 /* System space is always execute never */ 12008 xn = 1; 12009 } 12010 12011 if (is_user) { /* User mode AP bit decoding */ 12012 switch (ap) { 12013 case 0: 12014 case 1: 12015 case 5: 12016 break; /* no access */ 12017 case 3: 12018 *prot |= PAGE_WRITE; 12019 /* fall through */ 12020 case 2: 12021 case 6: 12022 *prot |= PAGE_READ | PAGE_EXEC; 12023 break; 12024 case 7: 12025 /* for v7M, same as 6; for R profile a reserved value */ 12026 if (arm_feature(env, ARM_FEATURE_M)) { 12027 *prot |= PAGE_READ | PAGE_EXEC; 12028 break; 12029 } 12030 /* fall through */ 12031 default: 12032 qemu_log_mask(LOG_GUEST_ERROR, 12033 "DRACR[%d]: Bad value for AP bits: 0x%" 12034 PRIx32 "\n", n, ap); 12035 } 12036 } else { /* Priv. mode AP bits decoding */ 12037 switch (ap) { 12038 case 0: 12039 break; /* no access */ 12040 case 1: 12041 case 2: 12042 case 3: 12043 *prot |= PAGE_WRITE; 12044 /* fall through */ 12045 case 5: 12046 case 6: 12047 *prot |= PAGE_READ | PAGE_EXEC; 12048 break; 12049 case 7: 12050 /* for v7M, same as 6; for R profile a reserved value */ 12051 if (arm_feature(env, ARM_FEATURE_M)) { 12052 *prot |= PAGE_READ | PAGE_EXEC; 12053 break; 12054 } 12055 /* fall through */ 12056 default: 12057 qemu_log_mask(LOG_GUEST_ERROR, 12058 "DRACR[%d]: Bad value for AP bits: 0x%" 12059 PRIx32 "\n", n, ap); 12060 } 12061 } 12062 12063 /* execute never */ 12064 if (xn) { 12065 *prot &= ~PAGE_EXEC; 12066 } 12067 } 12068 } 12069 12070 fi->type = ARMFault_Permission; 12071 fi->level = 1; 12072 return !(*prot & (1 << access_type)); 12073 } 12074 12075 static bool v8m_is_sau_exempt(CPUARMState *env, 12076 uint32_t address, MMUAccessType access_type) 12077 { 12078 /* The architecture specifies that certain address ranges are 12079 * exempt from v8M SAU/IDAU checks. 12080 */ 12081 return 12082 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12083 (address >= 0xe0000000 && address <= 0xe0002fff) || 12084 (address >= 0xe000e000 && address <= 0xe000efff) || 12085 (address >= 0xe002e000 && address <= 0xe002efff) || 12086 (address >= 0xe0040000 && address <= 0xe0041fff) || 12087 (address >= 0xe00ff000 && address <= 0xe00fffff); 12088 } 12089 12090 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12091 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12092 V8M_SAttributes *sattrs) 12093 { 12094 /* Look up the security attributes for this address. Compare the 12095 * pseudocode SecurityCheck() function. 12096 * We assume the caller has zero-initialized *sattrs. 12097 */ 12098 ARMCPU *cpu = env_archcpu(env); 12099 int r; 12100 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12101 int idau_region = IREGION_NOTVALID; 12102 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12103 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12104 12105 if (cpu->idau) { 12106 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12107 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12108 12109 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12110 &idau_nsc); 12111 } 12112 12113 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12114 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12115 return; 12116 } 12117 12118 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12119 sattrs->ns = !regime_is_secure(env, mmu_idx); 12120 return; 12121 } 12122 12123 if (idau_region != IREGION_NOTVALID) { 12124 sattrs->irvalid = true; 12125 sattrs->iregion = idau_region; 12126 } 12127 12128 switch (env->sau.ctrl & 3) { 12129 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12130 break; 12131 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12132 sattrs->ns = true; 12133 break; 12134 default: /* SAU.ENABLE == 1 */ 12135 for (r = 0; r < cpu->sau_sregion; r++) { 12136 if (env->sau.rlar[r] & 1) { 12137 uint32_t base = env->sau.rbar[r] & ~0x1f; 12138 uint32_t limit = env->sau.rlar[r] | 0x1f; 12139 12140 if (base <= address && limit >= address) { 12141 if (base > addr_page_base || limit < addr_page_limit) { 12142 sattrs->subpage = true; 12143 } 12144 if (sattrs->srvalid) { 12145 /* If we hit in more than one region then we must report 12146 * as Secure, not NS-Callable, with no valid region 12147 * number info. 12148 */ 12149 sattrs->ns = false; 12150 sattrs->nsc = false; 12151 sattrs->sregion = 0; 12152 sattrs->srvalid = false; 12153 break; 12154 } else { 12155 if (env->sau.rlar[r] & 2) { 12156 sattrs->nsc = true; 12157 } else { 12158 sattrs->ns = true; 12159 } 12160 sattrs->srvalid = true; 12161 sattrs->sregion = r; 12162 } 12163 } else { 12164 /* 12165 * Address not in this region. We must check whether the 12166 * region covers addresses in the same page as our address. 12167 * In that case we must not report a size that covers the 12168 * whole page for a subsequent hit against a different MPU 12169 * region or the background region, because it would result 12170 * in incorrect TLB hits for subsequent accesses to 12171 * addresses that are in this MPU region. 12172 */ 12173 if (limit >= base && 12174 ranges_overlap(base, limit - base + 1, 12175 addr_page_base, 12176 TARGET_PAGE_SIZE)) { 12177 sattrs->subpage = true; 12178 } 12179 } 12180 } 12181 } 12182 break; 12183 } 12184 12185 /* 12186 * The IDAU will override the SAU lookup results if it specifies 12187 * higher security than the SAU does. 12188 */ 12189 if (!idau_ns) { 12190 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12191 sattrs->ns = false; 12192 sattrs->nsc = idau_nsc; 12193 } 12194 } 12195 } 12196 12197 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12198 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12199 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12200 int *prot, bool *is_subpage, 12201 ARMMMUFaultInfo *fi, uint32_t *mregion) 12202 { 12203 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12204 * that a full phys-to-virt translation does). 12205 * mregion is (if not NULL) set to the region number which matched, 12206 * or -1 if no region number is returned (MPU off, address did not 12207 * hit a region, address hit in multiple regions). 12208 * We set is_subpage to true if the region hit doesn't cover the 12209 * entire TARGET_PAGE the address is within. 12210 */ 12211 ARMCPU *cpu = env_archcpu(env); 12212 bool is_user = regime_is_user(env, mmu_idx); 12213 uint32_t secure = regime_is_secure(env, mmu_idx); 12214 int n; 12215 int matchregion = -1; 12216 bool hit = false; 12217 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12218 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12219 12220 *is_subpage = false; 12221 *phys_ptr = address; 12222 *prot = 0; 12223 if (mregion) { 12224 *mregion = -1; 12225 } 12226 12227 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12228 * was an exception vector read from the vector table (which is always 12229 * done using the default system address map), because those accesses 12230 * are done in arm_v7m_load_vector(), which always does a direct 12231 * read using address_space_ldl(), rather than going via this function. 12232 */ 12233 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12234 hit = true; 12235 } else if (m_is_ppb_region(env, address)) { 12236 hit = true; 12237 } else { 12238 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12239 hit = true; 12240 } 12241 12242 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12243 /* region search */ 12244 /* Note that the base address is bits [31:5] from the register 12245 * with bits [4:0] all zeroes, but the limit address is bits 12246 * [31:5] from the register with bits [4:0] all ones. 12247 */ 12248 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12249 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12250 12251 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12252 /* Region disabled */ 12253 continue; 12254 } 12255 12256 if (address < base || address > limit) { 12257 /* 12258 * Address not in this region. We must check whether the 12259 * region covers addresses in the same page as our address. 12260 * In that case we must not report a size that covers the 12261 * whole page for a subsequent hit against a different MPU 12262 * region or the background region, because it would result in 12263 * incorrect TLB hits for subsequent accesses to addresses that 12264 * are in this MPU region. 12265 */ 12266 if (limit >= base && 12267 ranges_overlap(base, limit - base + 1, 12268 addr_page_base, 12269 TARGET_PAGE_SIZE)) { 12270 *is_subpage = true; 12271 } 12272 continue; 12273 } 12274 12275 if (base > addr_page_base || limit < addr_page_limit) { 12276 *is_subpage = true; 12277 } 12278 12279 if (matchregion != -1) { 12280 /* Multiple regions match -- always a failure (unlike 12281 * PMSAv7 where highest-numbered-region wins) 12282 */ 12283 fi->type = ARMFault_Permission; 12284 fi->level = 1; 12285 return true; 12286 } 12287 12288 matchregion = n; 12289 hit = true; 12290 } 12291 } 12292 12293 if (!hit) { 12294 /* background fault */ 12295 fi->type = ARMFault_Background; 12296 return true; 12297 } 12298 12299 if (matchregion == -1) { 12300 /* hit using the background region */ 12301 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12302 } else { 12303 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12304 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12305 bool pxn = false; 12306 12307 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12308 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12309 } 12310 12311 if (m_is_system_region(env, address)) { 12312 /* System space is always execute never */ 12313 xn = 1; 12314 } 12315 12316 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12317 if (*prot && !xn && !(pxn && !is_user)) { 12318 *prot |= PAGE_EXEC; 12319 } 12320 /* We don't need to look the attribute up in the MAIR0/MAIR1 12321 * registers because that only tells us about cacheability. 12322 */ 12323 if (mregion) { 12324 *mregion = matchregion; 12325 } 12326 } 12327 12328 fi->type = ARMFault_Permission; 12329 fi->level = 1; 12330 return !(*prot & (1 << access_type)); 12331 } 12332 12333 12334 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12335 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12336 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12337 int *prot, target_ulong *page_size, 12338 ARMMMUFaultInfo *fi) 12339 { 12340 uint32_t secure = regime_is_secure(env, mmu_idx); 12341 V8M_SAttributes sattrs = {}; 12342 bool ret; 12343 bool mpu_is_subpage; 12344 12345 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12346 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12347 if (access_type == MMU_INST_FETCH) { 12348 /* Instruction fetches always use the MMU bank and the 12349 * transaction attribute determined by the fetch address, 12350 * regardless of CPU state. This is painful for QEMU 12351 * to handle, because it would mean we need to encode 12352 * into the mmu_idx not just the (user, negpri) information 12353 * for the current security state but also that for the 12354 * other security state, which would balloon the number 12355 * of mmu_idx values needed alarmingly. 12356 * Fortunately we can avoid this because it's not actually 12357 * possible to arbitrarily execute code from memory with 12358 * the wrong security attribute: it will always generate 12359 * an exception of some kind or another, apart from the 12360 * special case of an NS CPU executing an SG instruction 12361 * in S&NSC memory. So we always just fail the translation 12362 * here and sort things out in the exception handler 12363 * (including possibly emulating an SG instruction). 12364 */ 12365 if (sattrs.ns != !secure) { 12366 if (sattrs.nsc) { 12367 fi->type = ARMFault_QEMU_NSCExec; 12368 } else { 12369 fi->type = ARMFault_QEMU_SFault; 12370 } 12371 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12372 *phys_ptr = address; 12373 *prot = 0; 12374 return true; 12375 } 12376 } else { 12377 /* For data accesses we always use the MMU bank indicated 12378 * by the current CPU state, but the security attributes 12379 * might downgrade a secure access to nonsecure. 12380 */ 12381 if (sattrs.ns) { 12382 txattrs->secure = false; 12383 } else if (!secure) { 12384 /* NS access to S memory must fault. 12385 * Architecturally we should first check whether the 12386 * MPU information for this address indicates that we 12387 * are doing an unaligned access to Device memory, which 12388 * should generate a UsageFault instead. QEMU does not 12389 * currently check for that kind of unaligned access though. 12390 * If we added it we would need to do so as a special case 12391 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12392 */ 12393 fi->type = ARMFault_QEMU_SFault; 12394 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12395 *phys_ptr = address; 12396 *prot = 0; 12397 return true; 12398 } 12399 } 12400 } 12401 12402 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12403 txattrs, prot, &mpu_is_subpage, fi, NULL); 12404 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12405 return ret; 12406 } 12407 12408 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12409 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12410 hwaddr *phys_ptr, int *prot, 12411 ARMMMUFaultInfo *fi) 12412 { 12413 int n; 12414 uint32_t mask; 12415 uint32_t base; 12416 bool is_user = regime_is_user(env, mmu_idx); 12417 12418 if (regime_translation_disabled(env, mmu_idx)) { 12419 /* MPU disabled. */ 12420 *phys_ptr = address; 12421 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12422 return false; 12423 } 12424 12425 *phys_ptr = address; 12426 for (n = 7; n >= 0; n--) { 12427 base = env->cp15.c6_region[n]; 12428 if ((base & 1) == 0) { 12429 continue; 12430 } 12431 mask = 1 << ((base >> 1) & 0x1f); 12432 /* Keep this shift separate from the above to avoid an 12433 (undefined) << 32. */ 12434 mask = (mask << 1) - 1; 12435 if (((base ^ address) & ~mask) == 0) { 12436 break; 12437 } 12438 } 12439 if (n < 0) { 12440 fi->type = ARMFault_Background; 12441 return true; 12442 } 12443 12444 if (access_type == MMU_INST_FETCH) { 12445 mask = env->cp15.pmsav5_insn_ap; 12446 } else { 12447 mask = env->cp15.pmsav5_data_ap; 12448 } 12449 mask = (mask >> (n * 4)) & 0xf; 12450 switch (mask) { 12451 case 0: 12452 fi->type = ARMFault_Permission; 12453 fi->level = 1; 12454 return true; 12455 case 1: 12456 if (is_user) { 12457 fi->type = ARMFault_Permission; 12458 fi->level = 1; 12459 return true; 12460 } 12461 *prot = PAGE_READ | PAGE_WRITE; 12462 break; 12463 case 2: 12464 *prot = PAGE_READ; 12465 if (!is_user) { 12466 *prot |= PAGE_WRITE; 12467 } 12468 break; 12469 case 3: 12470 *prot = PAGE_READ | PAGE_WRITE; 12471 break; 12472 case 5: 12473 if (is_user) { 12474 fi->type = ARMFault_Permission; 12475 fi->level = 1; 12476 return true; 12477 } 12478 *prot = PAGE_READ; 12479 break; 12480 case 6: 12481 *prot = PAGE_READ; 12482 break; 12483 default: 12484 /* Bad permission. */ 12485 fi->type = ARMFault_Permission; 12486 fi->level = 1; 12487 return true; 12488 } 12489 *prot |= PAGE_EXEC; 12490 return false; 12491 } 12492 12493 /* Combine either inner or outer cacheability attributes for normal 12494 * memory, according to table D4-42 and pseudocode procedure 12495 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12496 * 12497 * NB: only stage 1 includes allocation hints (RW bits), leading to 12498 * some asymmetry. 12499 */ 12500 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12501 { 12502 if (s1 == 4 || s2 == 4) { 12503 /* non-cacheable has precedence */ 12504 return 4; 12505 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12506 /* stage 1 write-through takes precedence */ 12507 return s1; 12508 } else if (extract32(s2, 2, 2) == 2) { 12509 /* stage 2 write-through takes precedence, but the allocation hint 12510 * is still taken from stage 1 12511 */ 12512 return (2 << 2) | extract32(s1, 0, 2); 12513 } else { /* write-back */ 12514 return s1; 12515 } 12516 } 12517 12518 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12519 * and CombineS1S2Desc() 12520 * 12521 * @s1: Attributes from stage 1 walk 12522 * @s2: Attributes from stage 2 walk 12523 */ 12524 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12525 { 12526 uint8_t s1lo, s2lo, s1hi, s2hi; 12527 ARMCacheAttrs ret; 12528 bool tagged = false; 12529 12530 if (s1.attrs == 0xf0) { 12531 tagged = true; 12532 s1.attrs = 0xff; 12533 } 12534 12535 s1lo = extract32(s1.attrs, 0, 4); 12536 s2lo = extract32(s2.attrs, 0, 4); 12537 s1hi = extract32(s1.attrs, 4, 4); 12538 s2hi = extract32(s2.attrs, 4, 4); 12539 12540 /* Combine shareability attributes (table D4-43) */ 12541 if (s1.shareability == 2 || s2.shareability == 2) { 12542 /* if either are outer-shareable, the result is outer-shareable */ 12543 ret.shareability = 2; 12544 } else if (s1.shareability == 3 || s2.shareability == 3) { 12545 /* if either are inner-shareable, the result is inner-shareable */ 12546 ret.shareability = 3; 12547 } else { 12548 /* both non-shareable */ 12549 ret.shareability = 0; 12550 } 12551 12552 /* Combine memory type and cacheability attributes */ 12553 if (s1hi == 0 || s2hi == 0) { 12554 /* Device has precedence over normal */ 12555 if (s1lo == 0 || s2lo == 0) { 12556 /* nGnRnE has precedence over anything */ 12557 ret.attrs = 0; 12558 } else if (s1lo == 4 || s2lo == 4) { 12559 /* non-Reordering has precedence over Reordering */ 12560 ret.attrs = 4; /* nGnRE */ 12561 } else if (s1lo == 8 || s2lo == 8) { 12562 /* non-Gathering has precedence over Gathering */ 12563 ret.attrs = 8; /* nGRE */ 12564 } else { 12565 ret.attrs = 0xc; /* GRE */ 12566 } 12567 12568 /* Any location for which the resultant memory type is any 12569 * type of Device memory is always treated as Outer Shareable. 12570 */ 12571 ret.shareability = 2; 12572 } else { /* Normal memory */ 12573 /* Outer/inner cacheability combine independently */ 12574 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12575 | combine_cacheattr_nibble(s1lo, s2lo); 12576 12577 if (ret.attrs == 0x44) { 12578 /* Any location for which the resultant memory type is Normal 12579 * Inner Non-cacheable, Outer Non-cacheable is always treated 12580 * as Outer Shareable. 12581 */ 12582 ret.shareability = 2; 12583 } 12584 } 12585 12586 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12587 if (tagged && ret.attrs == 0xff) { 12588 ret.attrs = 0xf0; 12589 } 12590 12591 return ret; 12592 } 12593 12594 12595 /* get_phys_addr - get the physical address for this virtual address 12596 * 12597 * Find the physical address corresponding to the given virtual address, 12598 * by doing a translation table walk on MMU based systems or using the 12599 * MPU state on MPU based systems. 12600 * 12601 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12602 * prot and page_size may not be filled in, and the populated fsr value provides 12603 * information on why the translation aborted, in the format of a 12604 * DFSR/IFSR fault register, with the following caveats: 12605 * * we honour the short vs long DFSR format differences. 12606 * * the WnR bit is never set (the caller must do this). 12607 * * for PSMAv5 based systems we don't bother to return a full FSR format 12608 * value. 12609 * 12610 * @env: CPUARMState 12611 * @address: virtual address to get physical address for 12612 * @access_type: 0 for read, 1 for write, 2 for execute 12613 * @mmu_idx: MMU index indicating required translation regime 12614 * @phys_ptr: set to the physical address corresponding to the virtual address 12615 * @attrs: set to the memory transaction attributes to use 12616 * @prot: set to the permissions for the page containing phys_ptr 12617 * @page_size: set to the size of the page containing phys_ptr 12618 * @fi: set to fault info if the translation fails 12619 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12620 */ 12621 bool get_phys_addr(CPUARMState *env, target_ulong address, 12622 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12623 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12624 target_ulong *page_size, 12625 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12626 { 12627 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12628 12629 if (mmu_idx != s1_mmu_idx) { 12630 /* Call ourselves recursively to do the stage 1 and then stage 2 12631 * translations if mmu_idx is a two-stage regime. 12632 */ 12633 if (arm_feature(env, ARM_FEATURE_EL2)) { 12634 hwaddr ipa; 12635 int s2_prot; 12636 int ret; 12637 ARMCacheAttrs cacheattrs2 = {}; 12638 ARMMMUIdx s2_mmu_idx; 12639 bool is_el0; 12640 12641 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12642 attrs, prot, page_size, fi, cacheattrs); 12643 12644 /* If S1 fails or S2 is disabled, return early. */ 12645 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12646 *phys_ptr = ipa; 12647 return ret; 12648 } 12649 12650 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12651 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12652 12653 /* S1 is done. Now do S2 translation. */ 12654 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12655 phys_ptr, attrs, &s2_prot, 12656 page_size, fi, &cacheattrs2); 12657 fi->s2addr = ipa; 12658 /* Combine the S1 and S2 perms. */ 12659 *prot &= s2_prot; 12660 12661 /* If S2 fails, return early. */ 12662 if (ret) { 12663 return ret; 12664 } 12665 12666 /* Combine the S1 and S2 cache attributes. */ 12667 if (arm_hcr_el2_eff(env) & HCR_DC) { 12668 /* 12669 * HCR.DC forces the first stage attributes to 12670 * Normal Non-Shareable, 12671 * Inner Write-Back Read-Allocate Write-Allocate, 12672 * Outer Write-Back Read-Allocate Write-Allocate. 12673 * Do not overwrite Tagged within attrs. 12674 */ 12675 if (cacheattrs->attrs != 0xf0) { 12676 cacheattrs->attrs = 0xff; 12677 } 12678 cacheattrs->shareability = 0; 12679 } 12680 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12681 12682 /* Check if IPA translates to secure or non-secure PA space. */ 12683 if (arm_is_secure_below_el3(env)) { 12684 if (attrs->secure) { 12685 attrs->secure = 12686 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12687 } else { 12688 attrs->secure = 12689 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12690 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12691 } 12692 } 12693 return 0; 12694 } else { 12695 /* 12696 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12697 */ 12698 mmu_idx = stage_1_mmu_idx(mmu_idx); 12699 } 12700 } 12701 12702 /* The page table entries may downgrade secure to non-secure, but 12703 * cannot upgrade an non-secure translation regime's attributes 12704 * to secure. 12705 */ 12706 attrs->secure = regime_is_secure(env, mmu_idx); 12707 attrs->user = regime_is_user(env, mmu_idx); 12708 12709 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12710 * In v7 and earlier it affects all stage 1 translations. 12711 */ 12712 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12713 && !arm_feature(env, ARM_FEATURE_V8)) { 12714 if (regime_el(env, mmu_idx) == 3) { 12715 address += env->cp15.fcseidr_s; 12716 } else { 12717 address += env->cp15.fcseidr_ns; 12718 } 12719 } 12720 12721 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12722 bool ret; 12723 *page_size = TARGET_PAGE_SIZE; 12724 12725 if (arm_feature(env, ARM_FEATURE_V8)) { 12726 /* PMSAv8 */ 12727 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12728 phys_ptr, attrs, prot, page_size, fi); 12729 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12730 /* PMSAv7 */ 12731 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12732 phys_ptr, prot, page_size, fi); 12733 } else { 12734 /* Pre-v7 MPU */ 12735 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12736 phys_ptr, prot, fi); 12737 } 12738 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12739 " mmu_idx %u -> %s (prot %c%c%c)\n", 12740 access_type == MMU_DATA_LOAD ? "reading" : 12741 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12742 (uint32_t)address, mmu_idx, 12743 ret ? "Miss" : "Hit", 12744 *prot & PAGE_READ ? 'r' : '-', 12745 *prot & PAGE_WRITE ? 'w' : '-', 12746 *prot & PAGE_EXEC ? 'x' : '-'); 12747 12748 return ret; 12749 } 12750 12751 /* Definitely a real MMU, not an MPU */ 12752 12753 if (regime_translation_disabled(env, mmu_idx)) { 12754 uint64_t hcr; 12755 uint8_t memattr; 12756 12757 /* 12758 * MMU disabled. S1 addresses within aa64 translation regimes are 12759 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12760 */ 12761 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12762 int r_el = regime_el(env, mmu_idx); 12763 if (arm_el_is_aa64(env, r_el)) { 12764 int pamax = arm_pamax(env_archcpu(env)); 12765 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12766 int addrtop, tbi; 12767 12768 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12769 if (access_type == MMU_INST_FETCH) { 12770 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12771 } 12772 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12773 addrtop = (tbi ? 55 : 63); 12774 12775 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12776 fi->type = ARMFault_AddressSize; 12777 fi->level = 0; 12778 fi->stage2 = false; 12779 return 1; 12780 } 12781 12782 /* 12783 * When TBI is disabled, we've just validated that all of the 12784 * bits above PAMax are zero, so logically we only need to 12785 * clear the top byte for TBI. But it's clearer to follow 12786 * the pseudocode set of addrdesc.paddress. 12787 */ 12788 address = extract64(address, 0, 52); 12789 } 12790 } 12791 *phys_ptr = address; 12792 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12793 *page_size = TARGET_PAGE_SIZE; 12794 12795 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12796 hcr = arm_hcr_el2_eff(env); 12797 cacheattrs->shareability = 0; 12798 if (hcr & HCR_DC) { 12799 if (hcr & HCR_DCT) { 12800 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12801 } else { 12802 memattr = 0xff; /* Normal, WB, RWA */ 12803 } 12804 } else if (access_type == MMU_INST_FETCH) { 12805 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12806 memattr = 0xee; /* Normal, WT, RA, NT */ 12807 } else { 12808 memattr = 0x44; /* Normal, NC, No */ 12809 } 12810 cacheattrs->shareability = 2; /* outer sharable */ 12811 } else { 12812 memattr = 0x00; /* Device, nGnRnE */ 12813 } 12814 cacheattrs->attrs = memattr; 12815 return 0; 12816 } 12817 12818 if (regime_using_lpae_format(env, mmu_idx)) { 12819 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12820 phys_ptr, attrs, prot, page_size, 12821 fi, cacheattrs); 12822 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12823 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12824 phys_ptr, attrs, prot, page_size, fi); 12825 } else { 12826 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12827 phys_ptr, prot, page_size, fi); 12828 } 12829 } 12830 12831 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12832 MemTxAttrs *attrs) 12833 { 12834 ARMCPU *cpu = ARM_CPU(cs); 12835 CPUARMState *env = &cpu->env; 12836 hwaddr phys_addr; 12837 target_ulong page_size; 12838 int prot; 12839 bool ret; 12840 ARMMMUFaultInfo fi = {}; 12841 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12842 ARMCacheAttrs cacheattrs = {}; 12843 12844 *attrs = (MemTxAttrs) {}; 12845 12846 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12847 attrs, &prot, &page_size, &fi, &cacheattrs); 12848 12849 if (ret) { 12850 return -1; 12851 } 12852 return phys_addr; 12853 } 12854 12855 #endif 12856 12857 /* Note that signed overflow is undefined in C. The following routines are 12858 careful to use unsigned types where modulo arithmetic is required. 12859 Failure to do so _will_ break on newer gcc. */ 12860 12861 /* Signed saturating arithmetic. */ 12862 12863 /* Perform 16-bit signed saturating addition. */ 12864 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12865 { 12866 uint16_t res; 12867 12868 res = a + b; 12869 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12870 if (a & 0x8000) 12871 res = 0x8000; 12872 else 12873 res = 0x7fff; 12874 } 12875 return res; 12876 } 12877 12878 /* Perform 8-bit signed saturating addition. */ 12879 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12880 { 12881 uint8_t res; 12882 12883 res = a + b; 12884 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12885 if (a & 0x80) 12886 res = 0x80; 12887 else 12888 res = 0x7f; 12889 } 12890 return res; 12891 } 12892 12893 /* Perform 16-bit signed saturating subtraction. */ 12894 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12895 { 12896 uint16_t res; 12897 12898 res = a - b; 12899 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12900 if (a & 0x8000) 12901 res = 0x8000; 12902 else 12903 res = 0x7fff; 12904 } 12905 return res; 12906 } 12907 12908 /* Perform 8-bit signed saturating subtraction. */ 12909 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12910 { 12911 uint8_t res; 12912 12913 res = a - b; 12914 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12915 if (a & 0x80) 12916 res = 0x80; 12917 else 12918 res = 0x7f; 12919 } 12920 return res; 12921 } 12922 12923 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12924 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12925 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12926 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12927 #define PFX q 12928 12929 #include "op_addsub.h" 12930 12931 /* Unsigned saturating arithmetic. */ 12932 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12933 { 12934 uint16_t res; 12935 res = a + b; 12936 if (res < a) 12937 res = 0xffff; 12938 return res; 12939 } 12940 12941 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12942 { 12943 if (a > b) 12944 return a - b; 12945 else 12946 return 0; 12947 } 12948 12949 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12950 { 12951 uint8_t res; 12952 res = a + b; 12953 if (res < a) 12954 res = 0xff; 12955 return res; 12956 } 12957 12958 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12959 { 12960 if (a > b) 12961 return a - b; 12962 else 12963 return 0; 12964 } 12965 12966 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12967 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12968 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12969 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12970 #define PFX uq 12971 12972 #include "op_addsub.h" 12973 12974 /* Signed modulo arithmetic. */ 12975 #define SARITH16(a, b, n, op) do { \ 12976 int32_t sum; \ 12977 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12978 RESULT(sum, n, 16); \ 12979 if (sum >= 0) \ 12980 ge |= 3 << (n * 2); \ 12981 } while(0) 12982 12983 #define SARITH8(a, b, n, op) do { \ 12984 int32_t sum; \ 12985 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12986 RESULT(sum, n, 8); \ 12987 if (sum >= 0) \ 12988 ge |= 1 << n; \ 12989 } while(0) 12990 12991 12992 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12993 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12994 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12995 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12996 #define PFX s 12997 #define ARITH_GE 12998 12999 #include "op_addsub.h" 13000 13001 /* Unsigned modulo arithmetic. */ 13002 #define ADD16(a, b, n) do { \ 13003 uint32_t sum; \ 13004 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13005 RESULT(sum, n, 16); \ 13006 if ((sum >> 16) == 1) \ 13007 ge |= 3 << (n * 2); \ 13008 } while(0) 13009 13010 #define ADD8(a, b, n) do { \ 13011 uint32_t sum; \ 13012 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13013 RESULT(sum, n, 8); \ 13014 if ((sum >> 8) == 1) \ 13015 ge |= 1 << n; \ 13016 } while(0) 13017 13018 #define SUB16(a, b, n) do { \ 13019 uint32_t sum; \ 13020 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13021 RESULT(sum, n, 16); \ 13022 if ((sum >> 16) == 0) \ 13023 ge |= 3 << (n * 2); \ 13024 } while(0) 13025 13026 #define SUB8(a, b, n) do { \ 13027 uint32_t sum; \ 13028 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13029 RESULT(sum, n, 8); \ 13030 if ((sum >> 8) == 0) \ 13031 ge |= 1 << n; \ 13032 } while(0) 13033 13034 #define PFX u 13035 #define ARITH_GE 13036 13037 #include "op_addsub.h" 13038 13039 /* Halved signed arithmetic. */ 13040 #define ADD16(a, b, n) \ 13041 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13042 #define SUB16(a, b, n) \ 13043 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13044 #define ADD8(a, b, n) \ 13045 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13046 #define SUB8(a, b, n) \ 13047 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13048 #define PFX sh 13049 13050 #include "op_addsub.h" 13051 13052 /* Halved unsigned arithmetic. */ 13053 #define ADD16(a, b, n) \ 13054 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13055 #define SUB16(a, b, n) \ 13056 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13057 #define ADD8(a, b, n) \ 13058 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13059 #define SUB8(a, b, n) \ 13060 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13061 #define PFX uh 13062 13063 #include "op_addsub.h" 13064 13065 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13066 { 13067 if (a > b) 13068 return a - b; 13069 else 13070 return b - a; 13071 } 13072 13073 /* Unsigned sum of absolute byte differences. */ 13074 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13075 { 13076 uint32_t sum; 13077 sum = do_usad(a, b); 13078 sum += do_usad(a >> 8, b >> 8); 13079 sum += do_usad(a >> 16, b >> 16); 13080 sum += do_usad(a >> 24, b >> 24); 13081 return sum; 13082 } 13083 13084 /* For ARMv6 SEL instruction. */ 13085 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13086 { 13087 uint32_t mask; 13088 13089 mask = 0; 13090 if (flags & 1) 13091 mask |= 0xff; 13092 if (flags & 2) 13093 mask |= 0xff00; 13094 if (flags & 4) 13095 mask |= 0xff0000; 13096 if (flags & 8) 13097 mask |= 0xff000000; 13098 return (a & mask) | (b & ~mask); 13099 } 13100 13101 /* CRC helpers. 13102 * The upper bytes of val (above the number specified by 'bytes') must have 13103 * been zeroed out by the caller. 13104 */ 13105 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13106 { 13107 uint8_t buf[4]; 13108 13109 stl_le_p(buf, val); 13110 13111 /* zlib crc32 converts the accumulator and output to one's complement. */ 13112 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13113 } 13114 13115 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13116 { 13117 uint8_t buf[4]; 13118 13119 stl_le_p(buf, val); 13120 13121 /* Linux crc32c converts the output to one's complement. */ 13122 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13123 } 13124 13125 /* Return the exception level to which FP-disabled exceptions should 13126 * be taken, or 0 if FP is enabled. 13127 */ 13128 int fp_exception_el(CPUARMState *env, int cur_el) 13129 { 13130 #ifndef CONFIG_USER_ONLY 13131 /* CPACR and the CPTR registers don't exist before v6, so FP is 13132 * always accessible 13133 */ 13134 if (!arm_feature(env, ARM_FEATURE_V6)) { 13135 return 0; 13136 } 13137 13138 if (arm_feature(env, ARM_FEATURE_M)) { 13139 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13140 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13141 return 1; 13142 } 13143 13144 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13145 if (!extract32(env->v7m.nsacr, 10, 1)) { 13146 /* FP insns cause a NOCP UsageFault taken to Secure */ 13147 return 3; 13148 } 13149 } 13150 13151 return 0; 13152 } 13153 13154 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13155 * 0, 2 : trap EL0 and EL1/PL1 accesses 13156 * 1 : trap only EL0 accesses 13157 * 3 : trap no accesses 13158 * This register is ignored if E2H+TGE are both set. 13159 */ 13160 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13161 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13162 13163 switch (fpen) { 13164 case 0: 13165 case 2: 13166 if (cur_el == 0 || cur_el == 1) { 13167 /* Trap to PL1, which might be EL1 or EL3 */ 13168 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13169 return 3; 13170 } 13171 return 1; 13172 } 13173 if (cur_el == 3 && !is_a64(env)) { 13174 /* Secure PL1 running at EL3 */ 13175 return 3; 13176 } 13177 break; 13178 case 1: 13179 if (cur_el == 0) { 13180 return 1; 13181 } 13182 break; 13183 case 3: 13184 break; 13185 } 13186 } 13187 13188 /* 13189 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13190 * to control non-secure access to the FPU. It doesn't have any 13191 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13192 */ 13193 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13194 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13195 if (!extract32(env->cp15.nsacr, 10, 1)) { 13196 /* FP insns act as UNDEF */ 13197 return cur_el == 2 ? 2 : 1; 13198 } 13199 } 13200 13201 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 13202 * check because zero bits in the registers mean "don't trap". 13203 */ 13204 13205 /* CPTR_EL2 : present in v7VE or v8 */ 13206 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 13207 && arm_is_el2_enabled(env)) { 13208 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 13209 return 2; 13210 } 13211 13212 /* CPTR_EL3 : present in v8 */ 13213 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 13214 /* Trap all FP ops to EL3 */ 13215 return 3; 13216 } 13217 #endif 13218 return 0; 13219 } 13220 13221 /* Return the exception level we're running at if this is our mmu_idx */ 13222 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13223 { 13224 if (mmu_idx & ARM_MMU_IDX_M) { 13225 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13226 } 13227 13228 switch (mmu_idx) { 13229 case ARMMMUIdx_E10_0: 13230 case ARMMMUIdx_E20_0: 13231 case ARMMMUIdx_SE10_0: 13232 case ARMMMUIdx_SE20_0: 13233 return 0; 13234 case ARMMMUIdx_E10_1: 13235 case ARMMMUIdx_E10_1_PAN: 13236 case ARMMMUIdx_SE10_1: 13237 case ARMMMUIdx_SE10_1_PAN: 13238 return 1; 13239 case ARMMMUIdx_E2: 13240 case ARMMMUIdx_E20_2: 13241 case ARMMMUIdx_E20_2_PAN: 13242 case ARMMMUIdx_SE2: 13243 case ARMMMUIdx_SE20_2: 13244 case ARMMMUIdx_SE20_2_PAN: 13245 return 2; 13246 case ARMMMUIdx_SE3: 13247 return 3; 13248 default: 13249 g_assert_not_reached(); 13250 } 13251 } 13252 13253 #ifndef CONFIG_TCG 13254 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13255 { 13256 g_assert_not_reached(); 13257 } 13258 #endif 13259 13260 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13261 { 13262 ARMMMUIdx idx; 13263 uint64_t hcr; 13264 13265 if (arm_feature(env, ARM_FEATURE_M)) { 13266 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13267 } 13268 13269 /* See ARM pseudo-function ELIsInHost. */ 13270 switch (el) { 13271 case 0: 13272 hcr = arm_hcr_el2_eff(env); 13273 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13274 idx = ARMMMUIdx_E20_0; 13275 } else { 13276 idx = ARMMMUIdx_E10_0; 13277 } 13278 break; 13279 case 1: 13280 if (env->pstate & PSTATE_PAN) { 13281 idx = ARMMMUIdx_E10_1_PAN; 13282 } else { 13283 idx = ARMMMUIdx_E10_1; 13284 } 13285 break; 13286 case 2: 13287 /* Note that TGE does not apply at EL2. */ 13288 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13289 if (env->pstate & PSTATE_PAN) { 13290 idx = ARMMMUIdx_E20_2_PAN; 13291 } else { 13292 idx = ARMMMUIdx_E20_2; 13293 } 13294 } else { 13295 idx = ARMMMUIdx_E2; 13296 } 13297 break; 13298 case 3: 13299 return ARMMMUIdx_SE3; 13300 default: 13301 g_assert_not_reached(); 13302 } 13303 13304 if (arm_is_secure_below_el3(env)) { 13305 idx &= ~ARM_MMU_IDX_A_NS; 13306 } 13307 13308 return idx; 13309 } 13310 13311 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13312 { 13313 return arm_mmu_idx_el(env, arm_current_el(env)); 13314 } 13315 13316 #ifndef CONFIG_USER_ONLY 13317 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13318 { 13319 return stage_1_mmu_idx(arm_mmu_idx(env)); 13320 } 13321 #endif 13322 13323 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13324 ARMMMUIdx mmu_idx, 13325 CPUARMTBFlags flags) 13326 { 13327 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13328 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13329 13330 if (arm_singlestep_active(env)) { 13331 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13332 } 13333 return flags; 13334 } 13335 13336 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13337 ARMMMUIdx mmu_idx, 13338 CPUARMTBFlags flags) 13339 { 13340 bool sctlr_b = arm_sctlr_b(env); 13341 13342 if (sctlr_b) { 13343 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13344 } 13345 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13346 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13347 } 13348 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13349 13350 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13351 } 13352 13353 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13354 ARMMMUIdx mmu_idx) 13355 { 13356 CPUARMTBFlags flags = {}; 13357 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13358 13359 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13360 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13361 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13362 } 13363 13364 if (arm_v7m_is_handler_mode(env)) { 13365 DP_TBFLAG_M32(flags, HANDLER, 1); 13366 } 13367 13368 /* 13369 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13370 * is suppressing them because the requested execution priority 13371 * is less than 0. 13372 */ 13373 if (arm_feature(env, ARM_FEATURE_V8) && 13374 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13375 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13376 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13377 } 13378 13379 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13380 } 13381 13382 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13383 { 13384 CPUARMTBFlags flags = {}; 13385 13386 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13387 return flags; 13388 } 13389 13390 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13391 ARMMMUIdx mmu_idx) 13392 { 13393 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13394 int el = arm_current_el(env); 13395 13396 if (arm_sctlr(env, el) & SCTLR_A) { 13397 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13398 } 13399 13400 if (arm_el_is_aa64(env, 1)) { 13401 DP_TBFLAG_A32(flags, VFPEN, 1); 13402 } 13403 13404 if (el < 2 && env->cp15.hstr_el2 && 13405 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13406 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13407 } 13408 13409 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13410 } 13411 13412 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13413 ARMMMUIdx mmu_idx) 13414 { 13415 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13416 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13417 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13418 uint64_t sctlr; 13419 int tbii, tbid; 13420 13421 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13422 13423 /* Get control bits for tagged addresses. */ 13424 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13425 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13426 13427 DP_TBFLAG_A64(flags, TBII, tbii); 13428 DP_TBFLAG_A64(flags, TBID, tbid); 13429 13430 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13431 int sve_el = sve_exception_el(env, el); 13432 uint32_t zcr_len; 13433 13434 /* 13435 * If SVE is disabled, but FP is enabled, 13436 * then the effective len is 0. 13437 */ 13438 if (sve_el != 0 && fp_el == 0) { 13439 zcr_len = 0; 13440 } else { 13441 zcr_len = sve_zcr_len_for_el(env, el); 13442 } 13443 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13444 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13445 } 13446 13447 sctlr = regime_sctlr(env, stage1); 13448 13449 if (sctlr & SCTLR_A) { 13450 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13451 } 13452 13453 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13454 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13455 } 13456 13457 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13458 /* 13459 * In order to save space in flags, we record only whether 13460 * pauth is "inactive", meaning all insns are implemented as 13461 * a nop, or "active" when some action must be performed. 13462 * The decision of which action to take is left to a helper. 13463 */ 13464 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13465 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13466 } 13467 } 13468 13469 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13470 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13471 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13472 DP_TBFLAG_A64(flags, BT, 1); 13473 } 13474 } 13475 13476 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13477 if (!(env->pstate & PSTATE_UAO)) { 13478 switch (mmu_idx) { 13479 case ARMMMUIdx_E10_1: 13480 case ARMMMUIdx_E10_1_PAN: 13481 case ARMMMUIdx_SE10_1: 13482 case ARMMMUIdx_SE10_1_PAN: 13483 /* TODO: ARMv8.3-NV */ 13484 DP_TBFLAG_A64(flags, UNPRIV, 1); 13485 break; 13486 case ARMMMUIdx_E20_2: 13487 case ARMMMUIdx_E20_2_PAN: 13488 case ARMMMUIdx_SE20_2: 13489 case ARMMMUIdx_SE20_2_PAN: 13490 /* 13491 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13492 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13493 */ 13494 if (env->cp15.hcr_el2 & HCR_TGE) { 13495 DP_TBFLAG_A64(flags, UNPRIV, 1); 13496 } 13497 break; 13498 default: 13499 break; 13500 } 13501 } 13502 13503 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13504 /* 13505 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13506 * if all accesses must be Unchecked: 13507 * 1) If no TBI, then there are no tags in the address to check, 13508 * 2) If Tag Check Override, then all accesses are Unchecked, 13509 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13510 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13511 */ 13512 if (allocation_tag_access_enabled(env, el, sctlr)) { 13513 DP_TBFLAG_A64(flags, ATA, 1); 13514 if (tbid 13515 && !(env->pstate & PSTATE_TCO) 13516 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13517 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13518 } 13519 } 13520 /* And again for unprivileged accesses, if required. */ 13521 if (EX_TBFLAG_A64(flags, UNPRIV) 13522 && tbid 13523 && !(env->pstate & PSTATE_TCO) 13524 && (sctlr & SCTLR_TCF0) 13525 && allocation_tag_access_enabled(env, 0, sctlr)) { 13526 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13527 } 13528 /* Cache TCMA as well as TBI. */ 13529 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13530 } 13531 13532 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13533 } 13534 13535 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13536 { 13537 int el = arm_current_el(env); 13538 int fp_el = fp_exception_el(env, el); 13539 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13540 13541 if (is_a64(env)) { 13542 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13543 } else if (arm_feature(env, ARM_FEATURE_M)) { 13544 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13545 } else { 13546 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13547 } 13548 } 13549 13550 void arm_rebuild_hflags(CPUARMState *env) 13551 { 13552 env->hflags = rebuild_hflags_internal(env); 13553 } 13554 13555 /* 13556 * If we have triggered a EL state change we can't rely on the 13557 * translator having passed it to us, we need to recompute. 13558 */ 13559 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13560 { 13561 int el = arm_current_el(env); 13562 int fp_el = fp_exception_el(env, el); 13563 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13564 13565 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13566 } 13567 13568 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13569 { 13570 int fp_el = fp_exception_el(env, el); 13571 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13572 13573 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13574 } 13575 13576 /* 13577 * If we have triggered a EL state change we can't rely on the 13578 * translator having passed it to us, we need to recompute. 13579 */ 13580 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13581 { 13582 int el = arm_current_el(env); 13583 int fp_el = fp_exception_el(env, el); 13584 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13585 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13586 } 13587 13588 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13589 { 13590 int fp_el = fp_exception_el(env, el); 13591 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13592 13593 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13594 } 13595 13596 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13597 { 13598 int fp_el = fp_exception_el(env, el); 13599 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13600 13601 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13602 } 13603 13604 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13605 { 13606 #ifdef CONFIG_DEBUG_TCG 13607 CPUARMTBFlags c = env->hflags; 13608 CPUARMTBFlags r = rebuild_hflags_internal(env); 13609 13610 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13611 fprintf(stderr, "TCG hflags mismatch " 13612 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13613 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13614 c.flags, c.flags2, r.flags, r.flags2); 13615 abort(); 13616 } 13617 #endif 13618 } 13619 13620 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13621 target_ulong *cs_base, uint32_t *pflags) 13622 { 13623 CPUARMTBFlags flags; 13624 13625 assert_hflags_rebuild_correctly(env); 13626 flags = env->hflags; 13627 13628 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13629 *pc = env->pc; 13630 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13631 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13632 } 13633 } else { 13634 *pc = env->regs[15]; 13635 13636 if (arm_feature(env, ARM_FEATURE_M)) { 13637 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13638 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13639 != env->v7m.secure) { 13640 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13641 } 13642 13643 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13644 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13645 (env->v7m.secure && 13646 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13647 /* 13648 * ASPEN is set, but FPCA/SFPA indicate that there is no 13649 * active FP context; we must create a new FP context before 13650 * executing any FP insn. 13651 */ 13652 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13653 } 13654 13655 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13656 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13657 DP_TBFLAG_M32(flags, LSPACT, 1); 13658 } 13659 } else { 13660 /* 13661 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13662 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13663 */ 13664 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13665 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13666 } else { 13667 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13668 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13669 } 13670 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13671 DP_TBFLAG_A32(flags, VFPEN, 1); 13672 } 13673 } 13674 13675 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13676 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13677 } 13678 13679 /* 13680 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13681 * states defined in the ARM ARM for software singlestep: 13682 * SS_ACTIVE PSTATE.SS State 13683 * 0 x Inactive (the TB flag for SS is always 0) 13684 * 1 0 Active-pending 13685 * 1 1 Active-not-pending 13686 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13687 */ 13688 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13689 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13690 } 13691 13692 *pflags = flags.flags; 13693 *cs_base = flags.flags2; 13694 } 13695 13696 #ifdef TARGET_AARCH64 13697 /* 13698 * The manual says that when SVE is enabled and VQ is widened the 13699 * implementation is allowed to zero the previously inaccessible 13700 * portion of the registers. The corollary to that is that when 13701 * SVE is enabled and VQ is narrowed we are also allowed to zero 13702 * the now inaccessible portion of the registers. 13703 * 13704 * The intent of this is that no predicate bit beyond VQ is ever set. 13705 * Which means that some operations on predicate registers themselves 13706 * may operate on full uint64_t or even unrolled across the maximum 13707 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13708 * may well be cheaper than conditionals to restrict the operation 13709 * to the relevant portion of a uint16_t[16]. 13710 */ 13711 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13712 { 13713 int i, j; 13714 uint64_t pmask; 13715 13716 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13717 assert(vq <= env_archcpu(env)->sve_max_vq); 13718 13719 /* Zap the high bits of the zregs. */ 13720 for (i = 0; i < 32; i++) { 13721 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13722 } 13723 13724 /* Zap the high bits of the pregs and ffr. */ 13725 pmask = 0; 13726 if (vq & 3) { 13727 pmask = ~(-1ULL << (16 * (vq & 3))); 13728 } 13729 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13730 for (i = 0; i < 17; ++i) { 13731 env->vfp.pregs[i].p[j] &= pmask; 13732 } 13733 pmask = 0; 13734 } 13735 } 13736 13737 /* 13738 * Notice a change in SVE vector size when changing EL. 13739 */ 13740 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13741 int new_el, bool el0_a64) 13742 { 13743 ARMCPU *cpu = env_archcpu(env); 13744 int old_len, new_len; 13745 bool old_a64, new_a64; 13746 13747 /* Nothing to do if no SVE. */ 13748 if (!cpu_isar_feature(aa64_sve, cpu)) { 13749 return; 13750 } 13751 13752 /* Nothing to do if FP is disabled in either EL. */ 13753 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13754 return; 13755 } 13756 13757 /* 13758 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13759 * at ELx, or not available because the EL is in AArch32 state, then 13760 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13761 * has an effective value of 0". 13762 * 13763 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13764 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13765 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13766 * we already have the correct register contents when encountering the 13767 * vq0->vq0 transition between EL0->EL1. 13768 */ 13769 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13770 old_len = (old_a64 && !sve_exception_el(env, old_el) 13771 ? sve_zcr_len_for_el(env, old_el) : 0); 13772 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13773 new_len = (new_a64 && !sve_exception_el(env, new_el) 13774 ? sve_zcr_len_for_el(env, new_el) : 0); 13775 13776 /* When changing vector length, clear inaccessible state. */ 13777 if (new_len < old_len) { 13778 aarch64_sve_narrow_vq(env, new_len + 1); 13779 } 13780 } 13781 #endif 13782