1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "hw/semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 42 #ifndef CONFIG_USER_ONLY 43 44 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 45 MMUAccessType access_type, ARMMMUIdx mmu_idx, 46 bool s1_is_el0, 47 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 48 target_ulong *page_size_ptr, 49 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 50 __attribute__((nonnull)); 51 #endif 52 53 static void switch_mode(CPUARMState *env, int mode); 54 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 55 56 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 57 { 58 ARMCPU *cpu = env_archcpu(env); 59 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 60 61 /* VFP data registers are always little-endian. */ 62 if (reg < nregs) { 63 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 64 } 65 if (arm_feature(env, ARM_FEATURE_NEON)) { 66 /* Aliases for Q regs. */ 67 nregs += 16; 68 if (reg < nregs) { 69 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 70 return gdb_get_reg128(buf, q[0], q[1]); 71 } 72 } 73 switch (reg - nregs) { 74 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 75 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 76 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 77 } 78 return 0; 79 } 80 81 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 82 { 83 ARMCPU *cpu = env_archcpu(env); 84 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 85 86 if (reg < nregs) { 87 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 88 return 8; 89 } 90 if (arm_feature(env, ARM_FEATURE_NEON)) { 91 nregs += 16; 92 if (reg < nregs) { 93 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 94 q[0] = ldq_le_p(buf); 95 q[1] = ldq_le_p(buf + 8); 96 return 16; 97 } 98 } 99 switch (reg - nregs) { 100 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 101 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 102 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 103 } 104 return 0; 105 } 106 107 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 108 { 109 switch (reg) { 110 case 0 ... 31: 111 { 112 /* 128 bit FP register - quads are in LE order */ 113 uint64_t *q = aa64_vfp_qreg(env, reg); 114 return gdb_get_reg128(buf, q[1], q[0]); 115 } 116 case 32: 117 /* FPSR */ 118 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 119 case 33: 120 /* FPCR */ 121 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 122 default: 123 return 0; 124 } 125 } 126 127 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 128 { 129 switch (reg) { 130 case 0 ... 31: 131 /* 128 bit FP register */ 132 { 133 uint64_t *q = aa64_vfp_qreg(env, reg); 134 q[0] = ldq_le_p(buf); 135 q[1] = ldq_le_p(buf + 8); 136 return 16; 137 } 138 case 32: 139 /* FPSR */ 140 vfp_set_fpsr(env, ldl_p(buf)); 141 return 4; 142 case 33: 143 /* FPCR */ 144 vfp_set_fpcr(env, ldl_p(buf)); 145 return 4; 146 default: 147 return 0; 148 } 149 } 150 151 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 152 { 153 assert(ri->fieldoffset); 154 if (cpreg_field_is_64bit(ri)) { 155 return CPREG_FIELD64(env, ri); 156 } else { 157 return CPREG_FIELD32(env, ri); 158 } 159 } 160 161 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 162 uint64_t value) 163 { 164 assert(ri->fieldoffset); 165 if (cpreg_field_is_64bit(ri)) { 166 CPREG_FIELD64(env, ri) = value; 167 } else { 168 CPREG_FIELD32(env, ri) = value; 169 } 170 } 171 172 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 173 { 174 return (char *)env + ri->fieldoffset; 175 } 176 177 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 178 { 179 /* Raw read of a coprocessor register (as needed for migration, etc). */ 180 if (ri->type & ARM_CP_CONST) { 181 return ri->resetvalue; 182 } else if (ri->raw_readfn) { 183 return ri->raw_readfn(env, ri); 184 } else if (ri->readfn) { 185 return ri->readfn(env, ri); 186 } else { 187 return raw_read(env, ri); 188 } 189 } 190 191 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 192 uint64_t v) 193 { 194 /* Raw write of a coprocessor register (as needed for migration, etc). 195 * Note that constant registers are treated as write-ignored; the 196 * caller should check for success by whether a readback gives the 197 * value written. 198 */ 199 if (ri->type & ARM_CP_CONST) { 200 return; 201 } else if (ri->raw_writefn) { 202 ri->raw_writefn(env, ri, v); 203 } else if (ri->writefn) { 204 ri->writefn(env, ri, v); 205 } else { 206 raw_write(env, ri, v); 207 } 208 } 209 210 /** 211 * arm_get/set_gdb_*: get/set a gdb register 212 * @env: the CPU state 213 * @buf: a buffer to copy to/from 214 * @reg: register number (offset from start of group) 215 * 216 * We return the number of bytes copied 217 */ 218 219 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 220 { 221 ARMCPU *cpu = env_archcpu(env); 222 const ARMCPRegInfo *ri; 223 uint32_t key; 224 225 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 226 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 227 if (ri) { 228 if (cpreg_field_is_64bit(ri)) { 229 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 230 } else { 231 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 232 } 233 } 234 return 0; 235 } 236 237 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 238 { 239 return 0; 240 } 241 242 #ifdef TARGET_AARCH64 243 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 244 { 245 ARMCPU *cpu = env_archcpu(env); 246 247 switch (reg) { 248 /* The first 32 registers are the zregs */ 249 case 0 ... 31: 250 { 251 int vq, len = 0; 252 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 253 len += gdb_get_reg128(buf, 254 env->vfp.zregs[reg].d[vq * 2 + 1], 255 env->vfp.zregs[reg].d[vq * 2]); 256 } 257 return len; 258 } 259 case 32: 260 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 261 case 33: 262 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 263 /* then 16 predicates and the ffr */ 264 case 34 ... 50: 265 { 266 int preg = reg - 34; 267 int vq, len = 0; 268 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 269 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 270 } 271 return len; 272 } 273 case 51: 274 { 275 /* 276 * We report in Vector Granules (VG) which is 64bit in a Z reg 277 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 278 */ 279 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 280 return gdb_get_reg64(buf, vq * 2); 281 } 282 default: 283 /* gdbstub asked for something out our range */ 284 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 285 break; 286 } 287 288 return 0; 289 } 290 291 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 292 { 293 ARMCPU *cpu = env_archcpu(env); 294 295 /* The first 32 registers are the zregs */ 296 switch (reg) { 297 /* The first 32 registers are the zregs */ 298 case 0 ... 31: 299 { 300 int vq, len = 0; 301 uint64_t *p = (uint64_t *) buf; 302 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 303 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 304 env->vfp.zregs[reg].d[vq * 2] = *p++; 305 len += 16; 306 } 307 return len; 308 } 309 case 32: 310 vfp_set_fpsr(env, *(uint32_t *)buf); 311 return 4; 312 case 33: 313 vfp_set_fpcr(env, *(uint32_t *)buf); 314 return 4; 315 case 34 ... 50: 316 { 317 int preg = reg - 34; 318 int vq, len = 0; 319 uint64_t *p = (uint64_t *) buf; 320 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 321 env->vfp.pregs[preg].p[vq / 4] = *p++; 322 len += 8; 323 } 324 return len; 325 } 326 case 51: 327 /* cannot set vg via gdbstub */ 328 return 0; 329 default: 330 /* gdbstub asked for something out our range */ 331 break; 332 } 333 334 return 0; 335 } 336 #endif /* TARGET_AARCH64 */ 337 338 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 339 { 340 /* Return true if the regdef would cause an assertion if you called 341 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 342 * program bug for it not to have the NO_RAW flag). 343 * NB that returning false here doesn't necessarily mean that calling 344 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 345 * read/write access functions which are safe for raw use" from "has 346 * read/write access functions which have side effects but has forgotten 347 * to provide raw access functions". 348 * The tests here line up with the conditions in read/write_raw_cp_reg() 349 * and assertions in raw_read()/raw_write(). 350 */ 351 if ((ri->type & ARM_CP_CONST) || 352 ri->fieldoffset || 353 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 354 return false; 355 } 356 return true; 357 } 358 359 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 360 { 361 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 362 int i; 363 bool ok = true; 364 365 for (i = 0; i < cpu->cpreg_array_len; i++) { 366 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 367 const ARMCPRegInfo *ri; 368 uint64_t newval; 369 370 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 371 if (!ri) { 372 ok = false; 373 continue; 374 } 375 if (ri->type & ARM_CP_NO_RAW) { 376 continue; 377 } 378 379 newval = read_raw_cp_reg(&cpu->env, ri); 380 if (kvm_sync) { 381 /* 382 * Only sync if the previous list->cpustate sync succeeded. 383 * Rather than tracking the success/failure state for every 384 * item in the list, we just recheck "does the raw write we must 385 * have made in write_list_to_cpustate() read back OK" here. 386 */ 387 uint64_t oldval = cpu->cpreg_values[i]; 388 389 if (oldval == newval) { 390 continue; 391 } 392 393 write_raw_cp_reg(&cpu->env, ri, oldval); 394 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 395 continue; 396 } 397 398 write_raw_cp_reg(&cpu->env, ri, newval); 399 } 400 cpu->cpreg_values[i] = newval; 401 } 402 return ok; 403 } 404 405 bool write_list_to_cpustate(ARMCPU *cpu) 406 { 407 int i; 408 bool ok = true; 409 410 for (i = 0; i < cpu->cpreg_array_len; i++) { 411 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 412 uint64_t v = cpu->cpreg_values[i]; 413 const ARMCPRegInfo *ri; 414 415 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 416 if (!ri) { 417 ok = false; 418 continue; 419 } 420 if (ri->type & ARM_CP_NO_RAW) { 421 continue; 422 } 423 /* Write value and confirm it reads back as written 424 * (to catch read-only registers and partially read-only 425 * registers where the incoming migration value doesn't match) 426 */ 427 write_raw_cp_reg(&cpu->env, ri, v); 428 if (read_raw_cp_reg(&cpu->env, ri) != v) { 429 ok = false; 430 } 431 } 432 return ok; 433 } 434 435 static void add_cpreg_to_list(gpointer key, gpointer opaque) 436 { 437 ARMCPU *cpu = opaque; 438 uint64_t regidx; 439 const ARMCPRegInfo *ri; 440 441 regidx = *(uint32_t *)key; 442 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 443 444 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 445 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 446 /* The value array need not be initialized at this point */ 447 cpu->cpreg_array_len++; 448 } 449 } 450 451 static void count_cpreg(gpointer key, gpointer opaque) 452 { 453 ARMCPU *cpu = opaque; 454 uint64_t regidx; 455 const ARMCPRegInfo *ri; 456 457 regidx = *(uint32_t *)key; 458 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 459 460 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 461 cpu->cpreg_array_len++; 462 } 463 } 464 465 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 466 { 467 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 468 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 469 470 if (aidx > bidx) { 471 return 1; 472 } 473 if (aidx < bidx) { 474 return -1; 475 } 476 return 0; 477 } 478 479 void init_cpreg_list(ARMCPU *cpu) 480 { 481 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 482 * Note that we require cpreg_tuples[] to be sorted by key ID. 483 */ 484 GList *keys; 485 int arraylen; 486 487 keys = g_hash_table_get_keys(cpu->cp_regs); 488 keys = g_list_sort(keys, cpreg_key_compare); 489 490 cpu->cpreg_array_len = 0; 491 492 g_list_foreach(keys, count_cpreg, cpu); 493 494 arraylen = cpu->cpreg_array_len; 495 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 496 cpu->cpreg_values = g_new(uint64_t, arraylen); 497 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 498 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 499 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 500 cpu->cpreg_array_len = 0; 501 502 g_list_foreach(keys, add_cpreg_to_list, cpu); 503 504 assert(cpu->cpreg_array_len == arraylen); 505 506 g_list_free(keys); 507 } 508 509 /* 510 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 511 */ 512 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 513 const ARMCPRegInfo *ri, 514 bool isread) 515 { 516 if (!is_a64(env) && arm_current_el(env) == 3 && 517 arm_is_secure_below_el3(env)) { 518 return CP_ACCESS_TRAP_UNCATEGORIZED; 519 } 520 return CP_ACCESS_OK; 521 } 522 523 /* Some secure-only AArch32 registers trap to EL3 if used from 524 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 525 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 526 * We assume that the .access field is set to PL1_RW. 527 */ 528 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 529 const ARMCPRegInfo *ri, 530 bool isread) 531 { 532 if (arm_current_el(env) == 3) { 533 return CP_ACCESS_OK; 534 } 535 if (arm_is_secure_below_el3(env)) { 536 if (env->cp15.scr_el3 & SCR_EEL2) { 537 return CP_ACCESS_TRAP_EL2; 538 } 539 return CP_ACCESS_TRAP_EL3; 540 } 541 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 542 return CP_ACCESS_TRAP_UNCATEGORIZED; 543 } 544 545 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 546 { 547 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 548 } 549 550 /* Check for traps to "powerdown debug" registers, which are controlled 551 * by MDCR.TDOSA 552 */ 553 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 554 bool isread) 555 { 556 int el = arm_current_el(env); 557 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 558 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 559 (arm_hcr_el2_eff(env) & HCR_TGE); 560 561 if (el < 2 && mdcr_el2_tdosa) { 562 return CP_ACCESS_TRAP_EL2; 563 } 564 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 565 return CP_ACCESS_TRAP_EL3; 566 } 567 return CP_ACCESS_OK; 568 } 569 570 /* Check for traps to "debug ROM" registers, which are controlled 571 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 572 */ 573 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 574 bool isread) 575 { 576 int el = arm_current_el(env); 577 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 578 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 579 (arm_hcr_el2_eff(env) & HCR_TGE); 580 581 if (el < 2 && mdcr_el2_tdra) { 582 return CP_ACCESS_TRAP_EL2; 583 } 584 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 585 return CP_ACCESS_TRAP_EL3; 586 } 587 return CP_ACCESS_OK; 588 } 589 590 /* Check for traps to general debug registers, which are controlled 591 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 592 */ 593 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 594 bool isread) 595 { 596 int el = arm_current_el(env); 597 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 598 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 599 (arm_hcr_el2_eff(env) & HCR_TGE); 600 601 if (el < 2 && mdcr_el2_tda) { 602 return CP_ACCESS_TRAP_EL2; 603 } 604 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 605 return CP_ACCESS_TRAP_EL3; 606 } 607 return CP_ACCESS_OK; 608 } 609 610 /* Check for traps to performance monitor registers, which are controlled 611 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 612 */ 613 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 614 bool isread) 615 { 616 int el = arm_current_el(env); 617 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 618 619 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 620 return CP_ACCESS_TRAP_EL2; 621 } 622 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 623 return CP_ACCESS_TRAP_EL3; 624 } 625 return CP_ACCESS_OK; 626 } 627 628 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 629 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 630 bool isread) 631 { 632 if (arm_current_el(env) == 1) { 633 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 634 if (arm_hcr_el2_eff(env) & trap) { 635 return CP_ACCESS_TRAP_EL2; 636 } 637 } 638 return CP_ACCESS_OK; 639 } 640 641 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 642 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 643 bool isread) 644 { 645 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 646 return CP_ACCESS_TRAP_EL2; 647 } 648 return CP_ACCESS_OK; 649 } 650 651 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 652 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 653 bool isread) 654 { 655 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 656 return CP_ACCESS_TRAP_EL2; 657 } 658 return CP_ACCESS_OK; 659 } 660 661 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 662 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 663 bool isread) 664 { 665 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 666 return CP_ACCESS_TRAP_EL2; 667 } 668 return CP_ACCESS_OK; 669 } 670 671 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 672 { 673 ARMCPU *cpu = env_archcpu(env); 674 675 raw_write(env, ri, value); 676 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 677 } 678 679 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 680 { 681 ARMCPU *cpu = env_archcpu(env); 682 683 if (raw_read(env, ri) != value) { 684 /* Unlike real hardware the qemu TLB uses virtual addresses, 685 * not modified virtual addresses, so this causes a TLB flush. 686 */ 687 tlb_flush(CPU(cpu)); 688 raw_write(env, ri, value); 689 } 690 } 691 692 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 693 uint64_t value) 694 { 695 ARMCPU *cpu = env_archcpu(env); 696 697 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 698 && !extended_addresses_enabled(env)) { 699 /* For VMSA (when not using the LPAE long descriptor page table 700 * format) this register includes the ASID, so do a TLB flush. 701 * For PMSA it is purely a process ID and no action is needed. 702 */ 703 tlb_flush(CPU(cpu)); 704 } 705 raw_write(env, ri, value); 706 } 707 708 /* IS variants of TLB operations must affect all cores */ 709 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 710 uint64_t value) 711 { 712 CPUState *cs = env_cpu(env); 713 714 tlb_flush_all_cpus_synced(cs); 715 } 716 717 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 718 uint64_t value) 719 { 720 CPUState *cs = env_cpu(env); 721 722 tlb_flush_all_cpus_synced(cs); 723 } 724 725 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 726 uint64_t value) 727 { 728 CPUState *cs = env_cpu(env); 729 730 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 731 } 732 733 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 734 uint64_t value) 735 { 736 CPUState *cs = env_cpu(env); 737 738 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 739 } 740 741 /* 742 * Non-IS variants of TLB operations are upgraded to 743 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 744 * force broadcast of these operations. 745 */ 746 static bool tlb_force_broadcast(CPUARMState *env) 747 { 748 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 749 } 750 751 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 752 uint64_t value) 753 { 754 /* Invalidate all (TLBIALL) */ 755 CPUState *cs = env_cpu(env); 756 757 if (tlb_force_broadcast(env)) { 758 tlb_flush_all_cpus_synced(cs); 759 } else { 760 tlb_flush(cs); 761 } 762 } 763 764 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 765 uint64_t value) 766 { 767 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 768 CPUState *cs = env_cpu(env); 769 770 value &= TARGET_PAGE_MASK; 771 if (tlb_force_broadcast(env)) { 772 tlb_flush_page_all_cpus_synced(cs, value); 773 } else { 774 tlb_flush_page(cs, value); 775 } 776 } 777 778 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 779 uint64_t value) 780 { 781 /* Invalidate by ASID (TLBIASID) */ 782 CPUState *cs = env_cpu(env); 783 784 if (tlb_force_broadcast(env)) { 785 tlb_flush_all_cpus_synced(cs); 786 } else { 787 tlb_flush(cs); 788 } 789 } 790 791 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 792 uint64_t value) 793 { 794 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 795 CPUState *cs = env_cpu(env); 796 797 value &= TARGET_PAGE_MASK; 798 if (tlb_force_broadcast(env)) { 799 tlb_flush_page_all_cpus_synced(cs, value); 800 } else { 801 tlb_flush_page(cs, value); 802 } 803 } 804 805 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 806 uint64_t value) 807 { 808 CPUState *cs = env_cpu(env); 809 810 tlb_flush_by_mmuidx(cs, 811 ARMMMUIdxBit_E10_1 | 812 ARMMMUIdxBit_E10_1_PAN | 813 ARMMMUIdxBit_E10_0); 814 } 815 816 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 817 uint64_t value) 818 { 819 CPUState *cs = env_cpu(env); 820 821 tlb_flush_by_mmuidx_all_cpus_synced(cs, 822 ARMMMUIdxBit_E10_1 | 823 ARMMMUIdxBit_E10_1_PAN | 824 ARMMMUIdxBit_E10_0); 825 } 826 827 828 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 829 uint64_t value) 830 { 831 CPUState *cs = env_cpu(env); 832 833 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 834 } 835 836 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 837 uint64_t value) 838 { 839 CPUState *cs = env_cpu(env); 840 841 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 842 } 843 844 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 845 uint64_t value) 846 { 847 CPUState *cs = env_cpu(env); 848 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 849 850 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 851 } 852 853 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 854 uint64_t value) 855 { 856 CPUState *cs = env_cpu(env); 857 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 858 859 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 860 ARMMMUIdxBit_E2); 861 } 862 863 static const ARMCPRegInfo cp_reginfo[] = { 864 /* Define the secure and non-secure FCSE identifier CP registers 865 * separately because there is no secure bank in V8 (no _EL3). This allows 866 * the secure register to be properly reset and migrated. There is also no 867 * v8 EL1 version of the register so the non-secure instance stands alone. 868 */ 869 { .name = "FCSEIDR", 870 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 871 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 872 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 873 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 874 { .name = "FCSEIDR_S", 875 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 876 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 877 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 878 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 879 /* Define the secure and non-secure context identifier CP registers 880 * separately because there is no secure bank in V8 (no _EL3). This allows 881 * the secure register to be properly reset and migrated. In the 882 * non-secure case, the 32-bit register will have reset and migration 883 * disabled during registration as it is handled by the 64-bit instance. 884 */ 885 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 886 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 887 .access = PL1_RW, .accessfn = access_tvm_trvm, 888 .secure = ARM_CP_SECSTATE_NS, 889 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 890 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 891 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 892 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 893 .access = PL1_RW, .accessfn = access_tvm_trvm, 894 .secure = ARM_CP_SECSTATE_S, 895 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 896 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 897 REGINFO_SENTINEL 898 }; 899 900 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 901 /* NB: Some of these registers exist in v8 but with more precise 902 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 903 */ 904 /* MMU Domain access control / MPU write buffer control */ 905 { .name = "DACR", 906 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 907 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 908 .writefn = dacr_write, .raw_writefn = raw_write, 909 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 910 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 911 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 912 * For v6 and v5, these mappings are overly broad. 913 */ 914 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 915 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 916 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 917 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 918 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 919 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 920 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 921 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 922 /* Cache maintenance ops; some of this space may be overridden later. */ 923 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 924 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 925 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 926 REGINFO_SENTINEL 927 }; 928 929 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 930 /* Not all pre-v6 cores implemented this WFI, so this is slightly 931 * over-broad. 932 */ 933 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 934 .access = PL1_W, .type = ARM_CP_WFI }, 935 REGINFO_SENTINEL 936 }; 937 938 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 939 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 940 * is UNPREDICTABLE; we choose to NOP as most implementations do). 941 */ 942 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 943 .access = PL1_W, .type = ARM_CP_WFI }, 944 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 945 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 946 * OMAPCP will override this space. 947 */ 948 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 949 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 950 .resetvalue = 0 }, 951 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 952 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 953 .resetvalue = 0 }, 954 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 955 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 956 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 957 .resetvalue = 0 }, 958 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 959 * implementing it as RAZ means the "debug architecture version" bits 960 * will read as a reserved value, which should cause Linux to not try 961 * to use the debug hardware. 962 */ 963 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 964 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 965 /* MMU TLB control. Note that the wildcarding means we cover not just 966 * the unified TLB ops but also the dside/iside/inner-shareable variants. 967 */ 968 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 969 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 970 .type = ARM_CP_NO_RAW }, 971 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 972 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 973 .type = ARM_CP_NO_RAW }, 974 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 975 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 976 .type = ARM_CP_NO_RAW }, 977 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 978 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 979 .type = ARM_CP_NO_RAW }, 980 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 981 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 982 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 983 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 984 REGINFO_SENTINEL 985 }; 986 987 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 988 uint64_t value) 989 { 990 uint32_t mask = 0; 991 992 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 993 if (!arm_feature(env, ARM_FEATURE_V8)) { 994 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 995 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 996 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 997 */ 998 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 999 /* VFP coprocessor: cp10 & cp11 [23:20] */ 1000 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 1001 1002 if (!arm_feature(env, ARM_FEATURE_NEON)) { 1003 /* ASEDIS [31] bit is RAO/WI */ 1004 value |= (1 << 31); 1005 } 1006 1007 /* VFPv3 and upwards with NEON implement 32 double precision 1008 * registers (D0-D31). 1009 */ 1010 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1011 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1012 value |= (1 << 30); 1013 } 1014 } 1015 value &= mask; 1016 } 1017 1018 /* 1019 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1020 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1021 */ 1022 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1023 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1024 value &= ~(0xf << 20); 1025 value |= env->cp15.cpacr_el1 & (0xf << 20); 1026 } 1027 1028 env->cp15.cpacr_el1 = value; 1029 } 1030 1031 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1032 { 1033 /* 1034 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1035 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1036 */ 1037 uint64_t value = env->cp15.cpacr_el1; 1038 1039 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1040 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1041 value &= ~(0xf << 20); 1042 } 1043 return value; 1044 } 1045 1046 1047 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1048 { 1049 /* Call cpacr_write() so that we reset with the correct RAO bits set 1050 * for our CPU features. 1051 */ 1052 cpacr_write(env, ri, 0); 1053 } 1054 1055 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1056 bool isread) 1057 { 1058 if (arm_feature(env, ARM_FEATURE_V8)) { 1059 /* Check if CPACR accesses are to be trapped to EL2 */ 1060 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 1061 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 1062 return CP_ACCESS_TRAP_EL2; 1063 /* Check if CPACR accesses are to be trapped to EL3 */ 1064 } else if (arm_current_el(env) < 3 && 1065 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1066 return CP_ACCESS_TRAP_EL3; 1067 } 1068 } 1069 1070 return CP_ACCESS_OK; 1071 } 1072 1073 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1074 bool isread) 1075 { 1076 /* Check if CPTR accesses are set to trap to EL3 */ 1077 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1078 return CP_ACCESS_TRAP_EL3; 1079 } 1080 1081 return CP_ACCESS_OK; 1082 } 1083 1084 static const ARMCPRegInfo v6_cp_reginfo[] = { 1085 /* prefetch by MVA in v6, NOP in v7 */ 1086 { .name = "MVA_prefetch", 1087 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1088 .access = PL1_W, .type = ARM_CP_NOP }, 1089 /* We need to break the TB after ISB to execute self-modifying code 1090 * correctly and also to take any pending interrupts immediately. 1091 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1092 */ 1093 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1094 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1095 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1096 .access = PL0_W, .type = ARM_CP_NOP }, 1097 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1098 .access = PL0_W, .type = ARM_CP_NOP }, 1099 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1100 .access = PL1_RW, .accessfn = access_tvm_trvm, 1101 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1102 offsetof(CPUARMState, cp15.ifar_ns) }, 1103 .resetvalue = 0, }, 1104 /* Watchpoint Fault Address Register : should actually only be present 1105 * for 1136, 1176, 11MPCore. 1106 */ 1107 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1108 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1109 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1110 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1111 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1112 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1113 REGINFO_SENTINEL 1114 }; 1115 1116 /* Definitions for the PMU registers */ 1117 #define PMCRN_MASK 0xf800 1118 #define PMCRN_SHIFT 11 1119 #define PMCRLC 0x40 1120 #define PMCRDP 0x20 1121 #define PMCRX 0x10 1122 #define PMCRD 0x8 1123 #define PMCRC 0x4 1124 #define PMCRP 0x2 1125 #define PMCRE 0x1 1126 /* 1127 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1128 * which can be written as 1 to trigger behaviour but which stay RAZ). 1129 */ 1130 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1131 1132 #define PMXEVTYPER_P 0x80000000 1133 #define PMXEVTYPER_U 0x40000000 1134 #define PMXEVTYPER_NSK 0x20000000 1135 #define PMXEVTYPER_NSU 0x10000000 1136 #define PMXEVTYPER_NSH 0x08000000 1137 #define PMXEVTYPER_M 0x04000000 1138 #define PMXEVTYPER_MT 0x02000000 1139 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1140 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1141 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1142 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1143 PMXEVTYPER_EVTCOUNT) 1144 1145 #define PMCCFILTR 0xf8000000 1146 #define PMCCFILTR_M PMXEVTYPER_M 1147 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1148 1149 static inline uint32_t pmu_num_counters(CPUARMState *env) 1150 { 1151 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1152 } 1153 1154 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1155 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1156 { 1157 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1158 } 1159 1160 typedef struct pm_event { 1161 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1162 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1163 bool (*supported)(CPUARMState *); 1164 /* 1165 * Retrieve the current count of the underlying event. The programmed 1166 * counters hold a difference from the return value from this function 1167 */ 1168 uint64_t (*get_count)(CPUARMState *); 1169 /* 1170 * Return how many nanoseconds it will take (at a minimum) for count events 1171 * to occur. A negative value indicates the counter will never overflow, or 1172 * that the counter has otherwise arranged for the overflow bit to be set 1173 * and the PMU interrupt to be raised on overflow. 1174 */ 1175 int64_t (*ns_per_count)(uint64_t); 1176 } pm_event; 1177 1178 static bool event_always_supported(CPUARMState *env) 1179 { 1180 return true; 1181 } 1182 1183 static uint64_t swinc_get_count(CPUARMState *env) 1184 { 1185 /* 1186 * SW_INCR events are written directly to the pmevcntr's by writes to 1187 * PMSWINC, so there is no underlying count maintained by the PMU itself 1188 */ 1189 return 0; 1190 } 1191 1192 static int64_t swinc_ns_per(uint64_t ignored) 1193 { 1194 return -1; 1195 } 1196 1197 /* 1198 * Return the underlying cycle count for the PMU cycle counters. If we're in 1199 * usermode, simply return 0. 1200 */ 1201 static uint64_t cycles_get_count(CPUARMState *env) 1202 { 1203 #ifndef CONFIG_USER_ONLY 1204 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1205 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1206 #else 1207 return cpu_get_host_ticks(); 1208 #endif 1209 } 1210 1211 #ifndef CONFIG_USER_ONLY 1212 static int64_t cycles_ns_per(uint64_t cycles) 1213 { 1214 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1215 } 1216 1217 static bool instructions_supported(CPUARMState *env) 1218 { 1219 return icount_enabled() == 1; /* Precise instruction counting */ 1220 } 1221 1222 static uint64_t instructions_get_count(CPUARMState *env) 1223 { 1224 return (uint64_t)icount_get_raw(); 1225 } 1226 1227 static int64_t instructions_ns_per(uint64_t icount) 1228 { 1229 return icount_to_ns((int64_t)icount); 1230 } 1231 #endif 1232 1233 static bool pmu_8_1_events_supported(CPUARMState *env) 1234 { 1235 /* For events which are supported in any v8.1 PMU */ 1236 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1237 } 1238 1239 static bool pmu_8_4_events_supported(CPUARMState *env) 1240 { 1241 /* For events which are supported in any v8.1 PMU */ 1242 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1243 } 1244 1245 static uint64_t zero_event_get_count(CPUARMState *env) 1246 { 1247 /* For events which on QEMU never fire, so their count is always zero */ 1248 return 0; 1249 } 1250 1251 static int64_t zero_event_ns_per(uint64_t cycles) 1252 { 1253 /* An event which never fires can never overflow */ 1254 return -1; 1255 } 1256 1257 static const pm_event pm_events[] = { 1258 { .number = 0x000, /* SW_INCR */ 1259 .supported = event_always_supported, 1260 .get_count = swinc_get_count, 1261 .ns_per_count = swinc_ns_per, 1262 }, 1263 #ifndef CONFIG_USER_ONLY 1264 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1265 .supported = instructions_supported, 1266 .get_count = instructions_get_count, 1267 .ns_per_count = instructions_ns_per, 1268 }, 1269 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1270 .supported = event_always_supported, 1271 .get_count = cycles_get_count, 1272 .ns_per_count = cycles_ns_per, 1273 }, 1274 #endif 1275 { .number = 0x023, /* STALL_FRONTEND */ 1276 .supported = pmu_8_1_events_supported, 1277 .get_count = zero_event_get_count, 1278 .ns_per_count = zero_event_ns_per, 1279 }, 1280 { .number = 0x024, /* STALL_BACKEND */ 1281 .supported = pmu_8_1_events_supported, 1282 .get_count = zero_event_get_count, 1283 .ns_per_count = zero_event_ns_per, 1284 }, 1285 { .number = 0x03c, /* STALL */ 1286 .supported = pmu_8_4_events_supported, 1287 .get_count = zero_event_get_count, 1288 .ns_per_count = zero_event_ns_per, 1289 }, 1290 }; 1291 1292 /* 1293 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1294 * events (i.e. the statistical profiling extension), this implementation 1295 * should first be updated to something sparse instead of the current 1296 * supported_event_map[] array. 1297 */ 1298 #define MAX_EVENT_ID 0x3c 1299 #define UNSUPPORTED_EVENT UINT16_MAX 1300 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1301 1302 /* 1303 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1304 * of ARM event numbers to indices in our pm_events array. 1305 * 1306 * Note: Events in the 0x40XX range are not currently supported. 1307 */ 1308 void pmu_init(ARMCPU *cpu) 1309 { 1310 unsigned int i; 1311 1312 /* 1313 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1314 * events to them 1315 */ 1316 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1317 supported_event_map[i] = UNSUPPORTED_EVENT; 1318 } 1319 cpu->pmceid0 = 0; 1320 cpu->pmceid1 = 0; 1321 1322 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1323 const pm_event *cnt = &pm_events[i]; 1324 assert(cnt->number <= MAX_EVENT_ID); 1325 /* We do not currently support events in the 0x40xx range */ 1326 assert(cnt->number <= 0x3f); 1327 1328 if (cnt->supported(&cpu->env)) { 1329 supported_event_map[cnt->number] = i; 1330 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1331 if (cnt->number & 0x20) { 1332 cpu->pmceid1 |= event_mask; 1333 } else { 1334 cpu->pmceid0 |= event_mask; 1335 } 1336 } 1337 } 1338 } 1339 1340 /* 1341 * Check at runtime whether a PMU event is supported for the current machine 1342 */ 1343 static bool event_supported(uint16_t number) 1344 { 1345 if (number > MAX_EVENT_ID) { 1346 return false; 1347 } 1348 return supported_event_map[number] != UNSUPPORTED_EVENT; 1349 } 1350 1351 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1352 bool isread) 1353 { 1354 /* Performance monitor registers user accessibility is controlled 1355 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1356 * trapping to EL2 or EL3 for other accesses. 1357 */ 1358 int el = arm_current_el(env); 1359 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1360 1361 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1362 return CP_ACCESS_TRAP; 1363 } 1364 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1365 return CP_ACCESS_TRAP_EL2; 1366 } 1367 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1368 return CP_ACCESS_TRAP_EL3; 1369 } 1370 1371 return CP_ACCESS_OK; 1372 } 1373 1374 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1375 const ARMCPRegInfo *ri, 1376 bool isread) 1377 { 1378 /* ER: event counter read trap control */ 1379 if (arm_feature(env, ARM_FEATURE_V8) 1380 && arm_current_el(env) == 0 1381 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1382 && isread) { 1383 return CP_ACCESS_OK; 1384 } 1385 1386 return pmreg_access(env, ri, isread); 1387 } 1388 1389 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1390 const ARMCPRegInfo *ri, 1391 bool isread) 1392 { 1393 /* SW: software increment write trap control */ 1394 if (arm_feature(env, ARM_FEATURE_V8) 1395 && arm_current_el(env) == 0 1396 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1397 && !isread) { 1398 return CP_ACCESS_OK; 1399 } 1400 1401 return pmreg_access(env, ri, isread); 1402 } 1403 1404 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1405 const ARMCPRegInfo *ri, 1406 bool isread) 1407 { 1408 /* ER: event counter read trap control */ 1409 if (arm_feature(env, ARM_FEATURE_V8) 1410 && arm_current_el(env) == 0 1411 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1412 return CP_ACCESS_OK; 1413 } 1414 1415 return pmreg_access(env, ri, isread); 1416 } 1417 1418 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1419 const ARMCPRegInfo *ri, 1420 bool isread) 1421 { 1422 /* CR: cycle counter read trap control */ 1423 if (arm_feature(env, ARM_FEATURE_V8) 1424 && arm_current_el(env) == 0 1425 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1426 && isread) { 1427 return CP_ACCESS_OK; 1428 } 1429 1430 return pmreg_access(env, ri, isread); 1431 } 1432 1433 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1434 * the current EL, security state, and register configuration. 1435 */ 1436 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1437 { 1438 uint64_t filter; 1439 bool e, p, u, nsk, nsu, nsh, m; 1440 bool enabled, prohibited, filtered; 1441 bool secure = arm_is_secure(env); 1442 int el = arm_current_el(env); 1443 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1444 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1445 1446 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1447 return false; 1448 } 1449 1450 if (!arm_feature(env, ARM_FEATURE_EL2) || 1451 (counter < hpmn || counter == 31)) { 1452 e = env->cp15.c9_pmcr & PMCRE; 1453 } else { 1454 e = mdcr_el2 & MDCR_HPME; 1455 } 1456 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1457 1458 if (!secure) { 1459 if (el == 2 && (counter < hpmn || counter == 31)) { 1460 prohibited = mdcr_el2 & MDCR_HPMD; 1461 } else { 1462 prohibited = false; 1463 } 1464 } else { 1465 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1466 !(env->cp15.mdcr_el3 & MDCR_SPME); 1467 } 1468 1469 if (prohibited && counter == 31) { 1470 prohibited = env->cp15.c9_pmcr & PMCRDP; 1471 } 1472 1473 if (counter == 31) { 1474 filter = env->cp15.pmccfiltr_el0; 1475 } else { 1476 filter = env->cp15.c14_pmevtyper[counter]; 1477 } 1478 1479 p = filter & PMXEVTYPER_P; 1480 u = filter & PMXEVTYPER_U; 1481 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1482 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1483 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1484 m = arm_el_is_aa64(env, 1) && 1485 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1486 1487 if (el == 0) { 1488 filtered = secure ? u : u != nsu; 1489 } else if (el == 1) { 1490 filtered = secure ? p : p != nsk; 1491 } else if (el == 2) { 1492 filtered = !nsh; 1493 } else { /* EL3 */ 1494 filtered = m != p; 1495 } 1496 1497 if (counter != 31) { 1498 /* 1499 * If not checking PMCCNTR, ensure the counter is setup to an event we 1500 * support 1501 */ 1502 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1503 if (!event_supported(event)) { 1504 return false; 1505 } 1506 } 1507 1508 return enabled && !prohibited && !filtered; 1509 } 1510 1511 static void pmu_update_irq(CPUARMState *env) 1512 { 1513 ARMCPU *cpu = env_archcpu(env); 1514 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1515 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1516 } 1517 1518 /* 1519 * Ensure c15_ccnt is the guest-visible count so that operations such as 1520 * enabling/disabling the counter or filtering, modifying the count itself, 1521 * etc. can be done logically. This is essentially a no-op if the counter is 1522 * not enabled at the time of the call. 1523 */ 1524 static void pmccntr_op_start(CPUARMState *env) 1525 { 1526 uint64_t cycles = cycles_get_count(env); 1527 1528 if (pmu_counter_enabled(env, 31)) { 1529 uint64_t eff_cycles = cycles; 1530 if (env->cp15.c9_pmcr & PMCRD) { 1531 /* Increment once every 64 processor clock cycles */ 1532 eff_cycles /= 64; 1533 } 1534 1535 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1536 1537 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1538 1ull << 63 : 1ull << 31; 1539 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1540 env->cp15.c9_pmovsr |= (1 << 31); 1541 pmu_update_irq(env); 1542 } 1543 1544 env->cp15.c15_ccnt = new_pmccntr; 1545 } 1546 env->cp15.c15_ccnt_delta = cycles; 1547 } 1548 1549 /* 1550 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1551 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1552 * pmccntr_op_start. 1553 */ 1554 static void pmccntr_op_finish(CPUARMState *env) 1555 { 1556 if (pmu_counter_enabled(env, 31)) { 1557 #ifndef CONFIG_USER_ONLY 1558 /* Calculate when the counter will next overflow */ 1559 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1560 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1561 remaining_cycles = (uint32_t)remaining_cycles; 1562 } 1563 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1564 1565 if (overflow_in > 0) { 1566 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1567 overflow_in; 1568 ARMCPU *cpu = env_archcpu(env); 1569 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1570 } 1571 #endif 1572 1573 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1574 if (env->cp15.c9_pmcr & PMCRD) { 1575 /* Increment once every 64 processor clock cycles */ 1576 prev_cycles /= 64; 1577 } 1578 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1579 } 1580 } 1581 1582 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1583 { 1584 1585 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1586 uint64_t count = 0; 1587 if (event_supported(event)) { 1588 uint16_t event_idx = supported_event_map[event]; 1589 count = pm_events[event_idx].get_count(env); 1590 } 1591 1592 if (pmu_counter_enabled(env, counter)) { 1593 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1594 1595 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1596 env->cp15.c9_pmovsr |= (1 << counter); 1597 pmu_update_irq(env); 1598 } 1599 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1600 } 1601 env->cp15.c14_pmevcntr_delta[counter] = count; 1602 } 1603 1604 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1605 { 1606 if (pmu_counter_enabled(env, counter)) { 1607 #ifndef CONFIG_USER_ONLY 1608 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1609 uint16_t event_idx = supported_event_map[event]; 1610 uint64_t delta = UINT32_MAX - 1611 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1612 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1613 1614 if (overflow_in > 0) { 1615 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1616 overflow_in; 1617 ARMCPU *cpu = env_archcpu(env); 1618 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1619 } 1620 #endif 1621 1622 env->cp15.c14_pmevcntr_delta[counter] -= 1623 env->cp15.c14_pmevcntr[counter]; 1624 } 1625 } 1626 1627 void pmu_op_start(CPUARMState *env) 1628 { 1629 unsigned int i; 1630 pmccntr_op_start(env); 1631 for (i = 0; i < pmu_num_counters(env); i++) { 1632 pmevcntr_op_start(env, i); 1633 } 1634 } 1635 1636 void pmu_op_finish(CPUARMState *env) 1637 { 1638 unsigned int i; 1639 pmccntr_op_finish(env); 1640 for (i = 0; i < pmu_num_counters(env); i++) { 1641 pmevcntr_op_finish(env, i); 1642 } 1643 } 1644 1645 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1646 { 1647 pmu_op_start(&cpu->env); 1648 } 1649 1650 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1651 { 1652 pmu_op_finish(&cpu->env); 1653 } 1654 1655 void arm_pmu_timer_cb(void *opaque) 1656 { 1657 ARMCPU *cpu = opaque; 1658 1659 /* 1660 * Update all the counter values based on the current underlying counts, 1661 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1662 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1663 * counter may expire. 1664 */ 1665 pmu_op_start(&cpu->env); 1666 pmu_op_finish(&cpu->env); 1667 } 1668 1669 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1670 uint64_t value) 1671 { 1672 pmu_op_start(env); 1673 1674 if (value & PMCRC) { 1675 /* The counter has been reset */ 1676 env->cp15.c15_ccnt = 0; 1677 } 1678 1679 if (value & PMCRP) { 1680 unsigned int i; 1681 for (i = 0; i < pmu_num_counters(env); i++) { 1682 env->cp15.c14_pmevcntr[i] = 0; 1683 } 1684 } 1685 1686 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1687 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1688 1689 pmu_op_finish(env); 1690 } 1691 1692 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1693 uint64_t value) 1694 { 1695 unsigned int i; 1696 for (i = 0; i < pmu_num_counters(env); i++) { 1697 /* Increment a counter's count iff: */ 1698 if ((value & (1 << i)) && /* counter's bit is set */ 1699 /* counter is enabled and not filtered */ 1700 pmu_counter_enabled(env, i) && 1701 /* counter is SW_INCR */ 1702 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1703 pmevcntr_op_start(env, i); 1704 1705 /* 1706 * Detect if this write causes an overflow since we can't predict 1707 * PMSWINC overflows like we can for other events 1708 */ 1709 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1710 1711 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1712 env->cp15.c9_pmovsr |= (1 << i); 1713 pmu_update_irq(env); 1714 } 1715 1716 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1717 1718 pmevcntr_op_finish(env, i); 1719 } 1720 } 1721 } 1722 1723 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1724 { 1725 uint64_t ret; 1726 pmccntr_op_start(env); 1727 ret = env->cp15.c15_ccnt; 1728 pmccntr_op_finish(env); 1729 return ret; 1730 } 1731 1732 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1733 uint64_t value) 1734 { 1735 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1736 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1737 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1738 * accessed. 1739 */ 1740 env->cp15.c9_pmselr = value & 0x1f; 1741 } 1742 1743 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1744 uint64_t value) 1745 { 1746 pmccntr_op_start(env); 1747 env->cp15.c15_ccnt = value; 1748 pmccntr_op_finish(env); 1749 } 1750 1751 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1752 uint64_t value) 1753 { 1754 uint64_t cur_val = pmccntr_read(env, NULL); 1755 1756 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1757 } 1758 1759 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1760 uint64_t value) 1761 { 1762 pmccntr_op_start(env); 1763 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1764 pmccntr_op_finish(env); 1765 } 1766 1767 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1768 uint64_t value) 1769 { 1770 pmccntr_op_start(env); 1771 /* M is not accessible from AArch32 */ 1772 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1773 (value & PMCCFILTR); 1774 pmccntr_op_finish(env); 1775 } 1776 1777 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1778 { 1779 /* M is not visible in AArch32 */ 1780 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1781 } 1782 1783 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1784 uint64_t value) 1785 { 1786 value &= pmu_counter_mask(env); 1787 env->cp15.c9_pmcnten |= value; 1788 } 1789 1790 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1791 uint64_t value) 1792 { 1793 value &= pmu_counter_mask(env); 1794 env->cp15.c9_pmcnten &= ~value; 1795 } 1796 1797 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1798 uint64_t value) 1799 { 1800 value &= pmu_counter_mask(env); 1801 env->cp15.c9_pmovsr &= ~value; 1802 pmu_update_irq(env); 1803 } 1804 1805 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1806 uint64_t value) 1807 { 1808 value &= pmu_counter_mask(env); 1809 env->cp15.c9_pmovsr |= value; 1810 pmu_update_irq(env); 1811 } 1812 1813 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1814 uint64_t value, const uint8_t counter) 1815 { 1816 if (counter == 31) { 1817 pmccfiltr_write(env, ri, value); 1818 } else if (counter < pmu_num_counters(env)) { 1819 pmevcntr_op_start(env, counter); 1820 1821 /* 1822 * If this counter's event type is changing, store the current 1823 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1824 * pmevcntr_op_finish has the correct baseline when it converts back to 1825 * a delta. 1826 */ 1827 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1828 PMXEVTYPER_EVTCOUNT; 1829 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1830 if (old_event != new_event) { 1831 uint64_t count = 0; 1832 if (event_supported(new_event)) { 1833 uint16_t event_idx = supported_event_map[new_event]; 1834 count = pm_events[event_idx].get_count(env); 1835 } 1836 env->cp15.c14_pmevcntr_delta[counter] = count; 1837 } 1838 1839 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1840 pmevcntr_op_finish(env, counter); 1841 } 1842 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1843 * PMSELR value is equal to or greater than the number of implemented 1844 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1845 */ 1846 } 1847 1848 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1849 const uint8_t counter) 1850 { 1851 if (counter == 31) { 1852 return env->cp15.pmccfiltr_el0; 1853 } else if (counter < pmu_num_counters(env)) { 1854 return env->cp15.c14_pmevtyper[counter]; 1855 } else { 1856 /* 1857 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1858 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1859 */ 1860 return 0; 1861 } 1862 } 1863 1864 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1865 uint64_t value) 1866 { 1867 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1868 pmevtyper_write(env, ri, value, counter); 1869 } 1870 1871 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1872 uint64_t value) 1873 { 1874 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1875 env->cp15.c14_pmevtyper[counter] = value; 1876 1877 /* 1878 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1879 * pmu_op_finish calls when loading saved state for a migration. Because 1880 * we're potentially updating the type of event here, the value written to 1881 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1882 * different counter type. Therefore, we need to set this value to the 1883 * current count for the counter type we're writing so that pmu_op_finish 1884 * has the correct count for its calculation. 1885 */ 1886 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1887 if (event_supported(event)) { 1888 uint16_t event_idx = supported_event_map[event]; 1889 env->cp15.c14_pmevcntr_delta[counter] = 1890 pm_events[event_idx].get_count(env); 1891 } 1892 } 1893 1894 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1895 { 1896 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1897 return pmevtyper_read(env, ri, counter); 1898 } 1899 1900 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1901 uint64_t value) 1902 { 1903 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1904 } 1905 1906 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1907 { 1908 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1909 } 1910 1911 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1912 uint64_t value, uint8_t counter) 1913 { 1914 if (counter < pmu_num_counters(env)) { 1915 pmevcntr_op_start(env, counter); 1916 env->cp15.c14_pmevcntr[counter] = value; 1917 pmevcntr_op_finish(env, counter); 1918 } 1919 /* 1920 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1921 * are CONSTRAINED UNPREDICTABLE. 1922 */ 1923 } 1924 1925 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1926 uint8_t counter) 1927 { 1928 if (counter < pmu_num_counters(env)) { 1929 uint64_t ret; 1930 pmevcntr_op_start(env, counter); 1931 ret = env->cp15.c14_pmevcntr[counter]; 1932 pmevcntr_op_finish(env, counter); 1933 return ret; 1934 } else { 1935 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1936 * are CONSTRAINED UNPREDICTABLE. */ 1937 return 0; 1938 } 1939 } 1940 1941 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1942 uint64_t value) 1943 { 1944 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1945 pmevcntr_write(env, ri, value, counter); 1946 } 1947 1948 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1949 { 1950 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1951 return pmevcntr_read(env, ri, counter); 1952 } 1953 1954 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1955 uint64_t value) 1956 { 1957 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1958 assert(counter < pmu_num_counters(env)); 1959 env->cp15.c14_pmevcntr[counter] = value; 1960 pmevcntr_write(env, ri, value, counter); 1961 } 1962 1963 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1964 { 1965 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1966 assert(counter < pmu_num_counters(env)); 1967 return env->cp15.c14_pmevcntr[counter]; 1968 } 1969 1970 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1971 uint64_t value) 1972 { 1973 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1974 } 1975 1976 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1977 { 1978 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1979 } 1980 1981 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1982 uint64_t value) 1983 { 1984 if (arm_feature(env, ARM_FEATURE_V8)) { 1985 env->cp15.c9_pmuserenr = value & 0xf; 1986 } else { 1987 env->cp15.c9_pmuserenr = value & 1; 1988 } 1989 } 1990 1991 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1992 uint64_t value) 1993 { 1994 /* We have no event counters so only the C bit can be changed */ 1995 value &= pmu_counter_mask(env); 1996 env->cp15.c9_pminten |= value; 1997 pmu_update_irq(env); 1998 } 1999 2000 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2001 uint64_t value) 2002 { 2003 value &= pmu_counter_mask(env); 2004 env->cp15.c9_pminten &= ~value; 2005 pmu_update_irq(env); 2006 } 2007 2008 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2009 uint64_t value) 2010 { 2011 /* Note that even though the AArch64 view of this register has bits 2012 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2013 * architectural requirements for bits which are RES0 only in some 2014 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2015 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2016 */ 2017 raw_write(env, ri, value & ~0x1FULL); 2018 } 2019 2020 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2021 { 2022 /* Begin with base v8.0 state. */ 2023 uint32_t valid_mask = 0x3fff; 2024 ARMCPU *cpu = env_archcpu(env); 2025 2026 if (ri->state == ARM_CP_STATE_AA64) { 2027 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2028 valid_mask &= ~SCR_NET; 2029 2030 if (cpu_isar_feature(aa64_lor, cpu)) { 2031 valid_mask |= SCR_TLOR; 2032 } 2033 if (cpu_isar_feature(aa64_pauth, cpu)) { 2034 valid_mask |= SCR_API | SCR_APK; 2035 } 2036 if (cpu_isar_feature(aa64_sel2, cpu)) { 2037 valid_mask |= SCR_EEL2; 2038 } 2039 if (cpu_isar_feature(aa64_mte, cpu)) { 2040 valid_mask |= SCR_ATA; 2041 } 2042 } else { 2043 valid_mask &= ~(SCR_RW | SCR_ST); 2044 } 2045 2046 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2047 valid_mask &= ~SCR_HCE; 2048 2049 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2050 * supported if EL2 exists. The bit is UNK/SBZP when 2051 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2052 * when EL2 is unavailable. 2053 * On ARMv8, this bit is always available. 2054 */ 2055 if (arm_feature(env, ARM_FEATURE_V7) && 2056 !arm_feature(env, ARM_FEATURE_V8)) { 2057 valid_mask &= ~SCR_SMD; 2058 } 2059 } 2060 2061 /* Clear all-context RES0 bits. */ 2062 value &= valid_mask; 2063 raw_write(env, ri, value); 2064 } 2065 2066 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2067 const ARMCPRegInfo *ri, 2068 bool isread) 2069 { 2070 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2071 return CP_ACCESS_TRAP_EL2; 2072 } 2073 2074 return CP_ACCESS_OK; 2075 } 2076 2077 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2078 { 2079 ARMCPU *cpu = env_archcpu(env); 2080 2081 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2082 * bank 2083 */ 2084 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2085 ri->secure & ARM_CP_SECSTATE_S); 2086 2087 return cpu->ccsidr[index]; 2088 } 2089 2090 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2091 uint64_t value) 2092 { 2093 raw_write(env, ri, value & 0xf); 2094 } 2095 2096 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2097 { 2098 CPUState *cs = env_cpu(env); 2099 bool el1 = arm_current_el(env) == 1; 2100 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2101 uint64_t ret = 0; 2102 2103 if (hcr_el2 & HCR_IMO) { 2104 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2105 ret |= CPSR_I; 2106 } 2107 } else { 2108 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2109 ret |= CPSR_I; 2110 } 2111 } 2112 2113 if (hcr_el2 & HCR_FMO) { 2114 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2115 ret |= CPSR_F; 2116 } 2117 } else { 2118 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2119 ret |= CPSR_F; 2120 } 2121 } 2122 2123 /* External aborts are not possible in QEMU so A bit is always clear */ 2124 return ret; 2125 } 2126 2127 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2128 bool isread) 2129 { 2130 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2131 return CP_ACCESS_TRAP_EL2; 2132 } 2133 2134 return CP_ACCESS_OK; 2135 } 2136 2137 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2138 bool isread) 2139 { 2140 if (arm_feature(env, ARM_FEATURE_V8)) { 2141 return access_aa64_tid1(env, ri, isread); 2142 } 2143 2144 return CP_ACCESS_OK; 2145 } 2146 2147 static const ARMCPRegInfo v7_cp_reginfo[] = { 2148 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2149 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2150 .access = PL1_W, .type = ARM_CP_NOP }, 2151 /* Performance monitors are implementation defined in v7, 2152 * but with an ARM recommended set of registers, which we 2153 * follow. 2154 * 2155 * Performance registers fall into three categories: 2156 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2157 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2158 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2159 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2160 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2161 */ 2162 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2163 .access = PL0_RW, .type = ARM_CP_ALIAS, 2164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2165 .writefn = pmcntenset_write, 2166 .accessfn = pmreg_access, 2167 .raw_writefn = raw_write }, 2168 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2170 .access = PL0_RW, .accessfn = pmreg_access, 2171 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2172 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2173 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2174 .access = PL0_RW, 2175 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2176 .accessfn = pmreg_access, 2177 .writefn = pmcntenclr_write, 2178 .type = ARM_CP_ALIAS }, 2179 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2180 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2181 .access = PL0_RW, .accessfn = pmreg_access, 2182 .type = ARM_CP_ALIAS, 2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2184 .writefn = pmcntenclr_write }, 2185 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2186 .access = PL0_RW, .type = ARM_CP_IO, 2187 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2188 .accessfn = pmreg_access, 2189 .writefn = pmovsr_write, 2190 .raw_writefn = raw_write }, 2191 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2192 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2193 .access = PL0_RW, .accessfn = pmreg_access, 2194 .type = ARM_CP_ALIAS | ARM_CP_IO, 2195 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2196 .writefn = pmovsr_write, 2197 .raw_writefn = raw_write }, 2198 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2199 .access = PL0_W, .accessfn = pmreg_access_swinc, 2200 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2201 .writefn = pmswinc_write }, 2202 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2203 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2204 .access = PL0_W, .accessfn = pmreg_access_swinc, 2205 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2206 .writefn = pmswinc_write }, 2207 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2208 .access = PL0_RW, .type = ARM_CP_ALIAS, 2209 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2210 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2211 .raw_writefn = raw_write}, 2212 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2213 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2214 .access = PL0_RW, .accessfn = pmreg_access_selr, 2215 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2216 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2217 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2218 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2219 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2220 .accessfn = pmreg_access_ccntr }, 2221 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2222 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2223 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2224 .type = ARM_CP_IO, 2225 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2226 .readfn = pmccntr_read, .writefn = pmccntr_write, 2227 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2228 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2229 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2230 .access = PL0_RW, .accessfn = pmreg_access, 2231 .type = ARM_CP_ALIAS | ARM_CP_IO, 2232 .resetvalue = 0, }, 2233 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2234 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2235 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2236 .access = PL0_RW, .accessfn = pmreg_access, 2237 .type = ARM_CP_IO, 2238 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2239 .resetvalue = 0, }, 2240 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2241 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2242 .accessfn = pmreg_access, 2243 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2244 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2245 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2246 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2247 .accessfn = pmreg_access, 2248 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2249 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2250 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2251 .accessfn = pmreg_access_xevcntr, 2252 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2253 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2254 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2255 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2256 .accessfn = pmreg_access_xevcntr, 2257 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2258 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2259 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2260 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2261 .resetvalue = 0, 2262 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2263 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2264 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2265 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2266 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2267 .resetvalue = 0, 2268 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2269 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2270 .access = PL1_RW, .accessfn = access_tpm, 2271 .type = ARM_CP_ALIAS | ARM_CP_IO, 2272 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2273 .resetvalue = 0, 2274 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2275 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2276 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2277 .access = PL1_RW, .accessfn = access_tpm, 2278 .type = ARM_CP_IO, 2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2280 .writefn = pmintenset_write, .raw_writefn = raw_write, 2281 .resetvalue = 0x0 }, 2282 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2283 .access = PL1_RW, .accessfn = access_tpm, 2284 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2285 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2286 .writefn = pmintenclr_write, }, 2287 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2288 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2289 .access = PL1_RW, .accessfn = access_tpm, 2290 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2291 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2292 .writefn = pmintenclr_write }, 2293 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2294 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2295 .access = PL1_R, 2296 .accessfn = access_aa64_tid2, 2297 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2298 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2299 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2300 .access = PL1_RW, 2301 .accessfn = access_aa64_tid2, 2302 .writefn = csselr_write, .resetvalue = 0, 2303 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2304 offsetof(CPUARMState, cp15.csselr_ns) } }, 2305 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2306 * just RAZ for all cores: 2307 */ 2308 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2309 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2310 .access = PL1_R, .type = ARM_CP_CONST, 2311 .accessfn = access_aa64_tid1, 2312 .resetvalue = 0 }, 2313 /* Auxiliary fault status registers: these also are IMPDEF, and we 2314 * choose to RAZ/WI for all cores. 2315 */ 2316 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2317 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2318 .access = PL1_RW, .accessfn = access_tvm_trvm, 2319 .type = ARM_CP_CONST, .resetvalue = 0 }, 2320 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2321 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2322 .access = PL1_RW, .accessfn = access_tvm_trvm, 2323 .type = ARM_CP_CONST, .resetvalue = 0 }, 2324 /* MAIR can just read-as-written because we don't implement caches 2325 * and so don't need to care about memory attributes. 2326 */ 2327 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2328 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2329 .access = PL1_RW, .accessfn = access_tvm_trvm, 2330 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2331 .resetvalue = 0 }, 2332 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2333 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2334 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2335 .resetvalue = 0 }, 2336 /* For non-long-descriptor page tables these are PRRR and NMRR; 2337 * regardless they still act as reads-as-written for QEMU. 2338 */ 2339 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2340 * allows them to assign the correct fieldoffset based on the endianness 2341 * handled in the field definitions. 2342 */ 2343 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2344 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2345 .access = PL1_RW, .accessfn = access_tvm_trvm, 2346 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2347 offsetof(CPUARMState, cp15.mair0_ns) }, 2348 .resetfn = arm_cp_reset_ignore }, 2349 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2350 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2351 .access = PL1_RW, .accessfn = access_tvm_trvm, 2352 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2353 offsetof(CPUARMState, cp15.mair1_ns) }, 2354 .resetfn = arm_cp_reset_ignore }, 2355 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2356 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2357 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2358 /* 32 bit ITLB invalidates */ 2359 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2360 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2361 .writefn = tlbiall_write }, 2362 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2363 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2364 .writefn = tlbimva_write }, 2365 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2366 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2367 .writefn = tlbiasid_write }, 2368 /* 32 bit DTLB invalidates */ 2369 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2370 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2371 .writefn = tlbiall_write }, 2372 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2374 .writefn = tlbimva_write }, 2375 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2377 .writefn = tlbiasid_write }, 2378 /* 32 bit TLB invalidates */ 2379 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2380 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2381 .writefn = tlbiall_write }, 2382 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2384 .writefn = tlbimva_write }, 2385 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2387 .writefn = tlbiasid_write }, 2388 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2390 .writefn = tlbimvaa_write }, 2391 REGINFO_SENTINEL 2392 }; 2393 2394 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2395 /* 32 bit TLB invalidates, Inner Shareable */ 2396 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2397 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2398 .writefn = tlbiall_is_write }, 2399 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2400 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2401 .writefn = tlbimva_is_write }, 2402 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2403 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2404 .writefn = tlbiasid_is_write }, 2405 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2406 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2407 .writefn = tlbimvaa_is_write }, 2408 REGINFO_SENTINEL 2409 }; 2410 2411 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2412 /* PMOVSSET is not implemented in v7 before v7ve */ 2413 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2414 .access = PL0_RW, .accessfn = pmreg_access, 2415 .type = ARM_CP_ALIAS | ARM_CP_IO, 2416 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2417 .writefn = pmovsset_write, 2418 .raw_writefn = raw_write }, 2419 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2420 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2421 .access = PL0_RW, .accessfn = pmreg_access, 2422 .type = ARM_CP_ALIAS | ARM_CP_IO, 2423 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2424 .writefn = pmovsset_write, 2425 .raw_writefn = raw_write }, 2426 REGINFO_SENTINEL 2427 }; 2428 2429 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2430 uint64_t value) 2431 { 2432 value &= 1; 2433 env->teecr = value; 2434 } 2435 2436 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2437 bool isread) 2438 { 2439 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2440 return CP_ACCESS_TRAP; 2441 } 2442 return CP_ACCESS_OK; 2443 } 2444 2445 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2446 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2447 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2448 .resetvalue = 0, 2449 .writefn = teecr_write }, 2450 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2451 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2452 .accessfn = teehbr_access, .resetvalue = 0 }, 2453 REGINFO_SENTINEL 2454 }; 2455 2456 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2457 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2458 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2459 .access = PL0_RW, 2460 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2461 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2462 .access = PL0_RW, 2463 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2464 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2465 .resetfn = arm_cp_reset_ignore }, 2466 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2467 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2468 .access = PL0_R|PL1_W, 2469 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2470 .resetvalue = 0}, 2471 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2472 .access = PL0_R|PL1_W, 2473 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2474 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2475 .resetfn = arm_cp_reset_ignore }, 2476 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2477 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2478 .access = PL1_RW, 2479 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2480 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2481 .access = PL1_RW, 2482 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2483 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2484 .resetvalue = 0 }, 2485 REGINFO_SENTINEL 2486 }; 2487 2488 #ifndef CONFIG_USER_ONLY 2489 2490 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2491 bool isread) 2492 { 2493 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2494 * Writable only at the highest implemented exception level. 2495 */ 2496 int el = arm_current_el(env); 2497 uint64_t hcr; 2498 uint32_t cntkctl; 2499 2500 switch (el) { 2501 case 0: 2502 hcr = arm_hcr_el2_eff(env); 2503 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2504 cntkctl = env->cp15.cnthctl_el2; 2505 } else { 2506 cntkctl = env->cp15.c14_cntkctl; 2507 } 2508 if (!extract32(cntkctl, 0, 2)) { 2509 return CP_ACCESS_TRAP; 2510 } 2511 break; 2512 case 1: 2513 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2514 arm_is_secure_below_el3(env)) { 2515 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2516 return CP_ACCESS_TRAP_UNCATEGORIZED; 2517 } 2518 break; 2519 case 2: 2520 case 3: 2521 break; 2522 } 2523 2524 if (!isread && el < arm_highest_el(env)) { 2525 return CP_ACCESS_TRAP_UNCATEGORIZED; 2526 } 2527 2528 return CP_ACCESS_OK; 2529 } 2530 2531 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2532 bool isread) 2533 { 2534 unsigned int cur_el = arm_current_el(env); 2535 bool has_el2 = arm_is_el2_enabled(env); 2536 uint64_t hcr = arm_hcr_el2_eff(env); 2537 2538 switch (cur_el) { 2539 case 0: 2540 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2541 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2542 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2543 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2544 } 2545 2546 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2547 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2548 return CP_ACCESS_TRAP; 2549 } 2550 2551 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2552 if (hcr & HCR_E2H) { 2553 if (timeridx == GTIMER_PHYS && 2554 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2555 return CP_ACCESS_TRAP_EL2; 2556 } 2557 } else { 2558 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2559 if (has_el2 && timeridx == GTIMER_PHYS && 2560 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2561 return CP_ACCESS_TRAP_EL2; 2562 } 2563 } 2564 break; 2565 2566 case 1: 2567 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2568 if (has_el2 && timeridx == GTIMER_PHYS && 2569 (hcr & HCR_E2H 2570 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2571 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2572 return CP_ACCESS_TRAP_EL2; 2573 } 2574 break; 2575 } 2576 return CP_ACCESS_OK; 2577 } 2578 2579 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2580 bool isread) 2581 { 2582 unsigned int cur_el = arm_current_el(env); 2583 bool has_el2 = arm_is_el2_enabled(env); 2584 uint64_t hcr = arm_hcr_el2_eff(env); 2585 2586 switch (cur_el) { 2587 case 0: 2588 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2589 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2590 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2591 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2592 } 2593 2594 /* 2595 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2596 * EL0 if EL0[PV]TEN is zero. 2597 */ 2598 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2599 return CP_ACCESS_TRAP; 2600 } 2601 /* fall through */ 2602 2603 case 1: 2604 if (has_el2 && timeridx == GTIMER_PHYS) { 2605 if (hcr & HCR_E2H) { 2606 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2607 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2608 return CP_ACCESS_TRAP_EL2; 2609 } 2610 } else { 2611 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2612 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2613 return CP_ACCESS_TRAP_EL2; 2614 } 2615 } 2616 } 2617 break; 2618 } 2619 return CP_ACCESS_OK; 2620 } 2621 2622 static CPAccessResult gt_pct_access(CPUARMState *env, 2623 const ARMCPRegInfo *ri, 2624 bool isread) 2625 { 2626 return gt_counter_access(env, GTIMER_PHYS, isread); 2627 } 2628 2629 static CPAccessResult gt_vct_access(CPUARMState *env, 2630 const ARMCPRegInfo *ri, 2631 bool isread) 2632 { 2633 return gt_counter_access(env, GTIMER_VIRT, isread); 2634 } 2635 2636 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2637 bool isread) 2638 { 2639 return gt_timer_access(env, GTIMER_PHYS, isread); 2640 } 2641 2642 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2643 bool isread) 2644 { 2645 return gt_timer_access(env, GTIMER_VIRT, isread); 2646 } 2647 2648 static CPAccessResult gt_stimer_access(CPUARMState *env, 2649 const ARMCPRegInfo *ri, 2650 bool isread) 2651 { 2652 /* The AArch64 register view of the secure physical timer is 2653 * always accessible from EL3, and configurably accessible from 2654 * Secure EL1. 2655 */ 2656 switch (arm_current_el(env)) { 2657 case 1: 2658 if (!arm_is_secure(env)) { 2659 return CP_ACCESS_TRAP; 2660 } 2661 if (!(env->cp15.scr_el3 & SCR_ST)) { 2662 return CP_ACCESS_TRAP_EL3; 2663 } 2664 return CP_ACCESS_OK; 2665 case 0: 2666 case 2: 2667 return CP_ACCESS_TRAP; 2668 case 3: 2669 return CP_ACCESS_OK; 2670 default: 2671 g_assert_not_reached(); 2672 } 2673 } 2674 2675 static uint64_t gt_get_countervalue(CPUARMState *env) 2676 { 2677 ARMCPU *cpu = env_archcpu(env); 2678 2679 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2680 } 2681 2682 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2683 { 2684 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2685 2686 if (gt->ctl & 1) { 2687 /* Timer enabled: calculate and set current ISTATUS, irq, and 2688 * reset timer to when ISTATUS next has to change 2689 */ 2690 uint64_t offset = timeridx == GTIMER_VIRT ? 2691 cpu->env.cp15.cntvoff_el2 : 0; 2692 uint64_t count = gt_get_countervalue(&cpu->env); 2693 /* Note that this must be unsigned 64 bit arithmetic: */ 2694 int istatus = count - offset >= gt->cval; 2695 uint64_t nexttick; 2696 int irqstate; 2697 2698 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2699 2700 irqstate = (istatus && !(gt->ctl & 2)); 2701 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2702 2703 if (istatus) { 2704 /* Next transition is when count rolls back over to zero */ 2705 nexttick = UINT64_MAX; 2706 } else { 2707 /* Next transition is when we hit cval */ 2708 nexttick = gt->cval + offset; 2709 } 2710 /* Note that the desired next expiry time might be beyond the 2711 * signed-64-bit range of a QEMUTimer -- in this case we just 2712 * set the timer for as far in the future as possible. When the 2713 * timer expires we will reset the timer for any remaining period. 2714 */ 2715 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2716 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2717 } else { 2718 timer_mod(cpu->gt_timer[timeridx], nexttick); 2719 } 2720 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2721 } else { 2722 /* Timer disabled: ISTATUS and timer output always clear */ 2723 gt->ctl &= ~4; 2724 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2725 timer_del(cpu->gt_timer[timeridx]); 2726 trace_arm_gt_recalc_disabled(timeridx); 2727 } 2728 } 2729 2730 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2731 int timeridx) 2732 { 2733 ARMCPU *cpu = env_archcpu(env); 2734 2735 timer_del(cpu->gt_timer[timeridx]); 2736 } 2737 2738 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2739 { 2740 return gt_get_countervalue(env); 2741 } 2742 2743 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2744 { 2745 uint64_t hcr; 2746 2747 switch (arm_current_el(env)) { 2748 case 2: 2749 hcr = arm_hcr_el2_eff(env); 2750 if (hcr & HCR_E2H) { 2751 return 0; 2752 } 2753 break; 2754 case 0: 2755 hcr = arm_hcr_el2_eff(env); 2756 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2757 return 0; 2758 } 2759 break; 2760 } 2761 2762 return env->cp15.cntvoff_el2; 2763 } 2764 2765 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2766 { 2767 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2768 } 2769 2770 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2771 int timeridx, 2772 uint64_t value) 2773 { 2774 trace_arm_gt_cval_write(timeridx, value); 2775 env->cp15.c14_timer[timeridx].cval = value; 2776 gt_recalc_timer(env_archcpu(env), timeridx); 2777 } 2778 2779 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2780 int timeridx) 2781 { 2782 uint64_t offset = 0; 2783 2784 switch (timeridx) { 2785 case GTIMER_VIRT: 2786 case GTIMER_HYPVIRT: 2787 offset = gt_virt_cnt_offset(env); 2788 break; 2789 } 2790 2791 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2792 (gt_get_countervalue(env) - offset)); 2793 } 2794 2795 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2796 int timeridx, 2797 uint64_t value) 2798 { 2799 uint64_t offset = 0; 2800 2801 switch (timeridx) { 2802 case GTIMER_VIRT: 2803 case GTIMER_HYPVIRT: 2804 offset = gt_virt_cnt_offset(env); 2805 break; 2806 } 2807 2808 trace_arm_gt_tval_write(timeridx, value); 2809 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2810 sextract64(value, 0, 32); 2811 gt_recalc_timer(env_archcpu(env), timeridx); 2812 } 2813 2814 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2815 int timeridx, 2816 uint64_t value) 2817 { 2818 ARMCPU *cpu = env_archcpu(env); 2819 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2820 2821 trace_arm_gt_ctl_write(timeridx, value); 2822 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2823 if ((oldval ^ value) & 1) { 2824 /* Enable toggled */ 2825 gt_recalc_timer(cpu, timeridx); 2826 } else if ((oldval ^ value) & 2) { 2827 /* IMASK toggled: don't need to recalculate, 2828 * just set the interrupt line based on ISTATUS 2829 */ 2830 int irqstate = (oldval & 4) && !(value & 2); 2831 2832 trace_arm_gt_imask_toggle(timeridx, irqstate); 2833 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2834 } 2835 } 2836 2837 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2838 { 2839 gt_timer_reset(env, ri, GTIMER_PHYS); 2840 } 2841 2842 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2843 uint64_t value) 2844 { 2845 gt_cval_write(env, ri, GTIMER_PHYS, value); 2846 } 2847 2848 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2849 { 2850 return gt_tval_read(env, ri, GTIMER_PHYS); 2851 } 2852 2853 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2854 uint64_t value) 2855 { 2856 gt_tval_write(env, ri, GTIMER_PHYS, value); 2857 } 2858 2859 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2860 uint64_t value) 2861 { 2862 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2863 } 2864 2865 static int gt_phys_redir_timeridx(CPUARMState *env) 2866 { 2867 switch (arm_mmu_idx(env)) { 2868 case ARMMMUIdx_E20_0: 2869 case ARMMMUIdx_E20_2: 2870 case ARMMMUIdx_E20_2_PAN: 2871 case ARMMMUIdx_SE20_0: 2872 case ARMMMUIdx_SE20_2: 2873 case ARMMMUIdx_SE20_2_PAN: 2874 return GTIMER_HYP; 2875 default: 2876 return GTIMER_PHYS; 2877 } 2878 } 2879 2880 static int gt_virt_redir_timeridx(CPUARMState *env) 2881 { 2882 switch (arm_mmu_idx(env)) { 2883 case ARMMMUIdx_E20_0: 2884 case ARMMMUIdx_E20_2: 2885 case ARMMMUIdx_E20_2_PAN: 2886 case ARMMMUIdx_SE20_0: 2887 case ARMMMUIdx_SE20_2: 2888 case ARMMMUIdx_SE20_2_PAN: 2889 return GTIMER_HYPVIRT; 2890 default: 2891 return GTIMER_VIRT; 2892 } 2893 } 2894 2895 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2896 const ARMCPRegInfo *ri) 2897 { 2898 int timeridx = gt_phys_redir_timeridx(env); 2899 return env->cp15.c14_timer[timeridx].cval; 2900 } 2901 2902 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2903 uint64_t value) 2904 { 2905 int timeridx = gt_phys_redir_timeridx(env); 2906 gt_cval_write(env, ri, timeridx, value); 2907 } 2908 2909 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2910 const ARMCPRegInfo *ri) 2911 { 2912 int timeridx = gt_phys_redir_timeridx(env); 2913 return gt_tval_read(env, ri, timeridx); 2914 } 2915 2916 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2917 uint64_t value) 2918 { 2919 int timeridx = gt_phys_redir_timeridx(env); 2920 gt_tval_write(env, ri, timeridx, value); 2921 } 2922 2923 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2924 const ARMCPRegInfo *ri) 2925 { 2926 int timeridx = gt_phys_redir_timeridx(env); 2927 return env->cp15.c14_timer[timeridx].ctl; 2928 } 2929 2930 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2931 uint64_t value) 2932 { 2933 int timeridx = gt_phys_redir_timeridx(env); 2934 gt_ctl_write(env, ri, timeridx, value); 2935 } 2936 2937 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2938 { 2939 gt_timer_reset(env, ri, GTIMER_VIRT); 2940 } 2941 2942 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2943 uint64_t value) 2944 { 2945 gt_cval_write(env, ri, GTIMER_VIRT, value); 2946 } 2947 2948 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2949 { 2950 return gt_tval_read(env, ri, GTIMER_VIRT); 2951 } 2952 2953 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2954 uint64_t value) 2955 { 2956 gt_tval_write(env, ri, GTIMER_VIRT, value); 2957 } 2958 2959 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2960 uint64_t value) 2961 { 2962 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2963 } 2964 2965 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2966 uint64_t value) 2967 { 2968 ARMCPU *cpu = env_archcpu(env); 2969 2970 trace_arm_gt_cntvoff_write(value); 2971 raw_write(env, ri, value); 2972 gt_recalc_timer(cpu, GTIMER_VIRT); 2973 } 2974 2975 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2976 const ARMCPRegInfo *ri) 2977 { 2978 int timeridx = gt_virt_redir_timeridx(env); 2979 return env->cp15.c14_timer[timeridx].cval; 2980 } 2981 2982 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2983 uint64_t value) 2984 { 2985 int timeridx = gt_virt_redir_timeridx(env); 2986 gt_cval_write(env, ri, timeridx, value); 2987 } 2988 2989 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2990 const ARMCPRegInfo *ri) 2991 { 2992 int timeridx = gt_virt_redir_timeridx(env); 2993 return gt_tval_read(env, ri, timeridx); 2994 } 2995 2996 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2997 uint64_t value) 2998 { 2999 int timeridx = gt_virt_redir_timeridx(env); 3000 gt_tval_write(env, ri, timeridx, value); 3001 } 3002 3003 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3004 const ARMCPRegInfo *ri) 3005 { 3006 int timeridx = gt_virt_redir_timeridx(env); 3007 return env->cp15.c14_timer[timeridx].ctl; 3008 } 3009 3010 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3011 uint64_t value) 3012 { 3013 int timeridx = gt_virt_redir_timeridx(env); 3014 gt_ctl_write(env, ri, timeridx, value); 3015 } 3016 3017 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3018 { 3019 gt_timer_reset(env, ri, GTIMER_HYP); 3020 } 3021 3022 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3023 uint64_t value) 3024 { 3025 gt_cval_write(env, ri, GTIMER_HYP, value); 3026 } 3027 3028 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3029 { 3030 return gt_tval_read(env, ri, GTIMER_HYP); 3031 } 3032 3033 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3034 uint64_t value) 3035 { 3036 gt_tval_write(env, ri, GTIMER_HYP, value); 3037 } 3038 3039 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3040 uint64_t value) 3041 { 3042 gt_ctl_write(env, ri, GTIMER_HYP, value); 3043 } 3044 3045 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3046 { 3047 gt_timer_reset(env, ri, GTIMER_SEC); 3048 } 3049 3050 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3051 uint64_t value) 3052 { 3053 gt_cval_write(env, ri, GTIMER_SEC, value); 3054 } 3055 3056 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3057 { 3058 return gt_tval_read(env, ri, GTIMER_SEC); 3059 } 3060 3061 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3062 uint64_t value) 3063 { 3064 gt_tval_write(env, ri, GTIMER_SEC, value); 3065 } 3066 3067 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3068 uint64_t value) 3069 { 3070 gt_ctl_write(env, ri, GTIMER_SEC, value); 3071 } 3072 3073 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3074 { 3075 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3076 } 3077 3078 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3079 uint64_t value) 3080 { 3081 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3082 } 3083 3084 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3085 { 3086 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3087 } 3088 3089 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3090 uint64_t value) 3091 { 3092 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3093 } 3094 3095 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3096 uint64_t value) 3097 { 3098 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3099 } 3100 3101 void arm_gt_ptimer_cb(void *opaque) 3102 { 3103 ARMCPU *cpu = opaque; 3104 3105 gt_recalc_timer(cpu, GTIMER_PHYS); 3106 } 3107 3108 void arm_gt_vtimer_cb(void *opaque) 3109 { 3110 ARMCPU *cpu = opaque; 3111 3112 gt_recalc_timer(cpu, GTIMER_VIRT); 3113 } 3114 3115 void arm_gt_htimer_cb(void *opaque) 3116 { 3117 ARMCPU *cpu = opaque; 3118 3119 gt_recalc_timer(cpu, GTIMER_HYP); 3120 } 3121 3122 void arm_gt_stimer_cb(void *opaque) 3123 { 3124 ARMCPU *cpu = opaque; 3125 3126 gt_recalc_timer(cpu, GTIMER_SEC); 3127 } 3128 3129 void arm_gt_hvtimer_cb(void *opaque) 3130 { 3131 ARMCPU *cpu = opaque; 3132 3133 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3134 } 3135 3136 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3137 { 3138 ARMCPU *cpu = env_archcpu(env); 3139 3140 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3141 } 3142 3143 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3144 /* Note that CNTFRQ is purely reads-as-written for the benefit 3145 * of software; writing it doesn't actually change the timer frequency. 3146 * Our reset value matches the fixed frequency we implement the timer at. 3147 */ 3148 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3149 .type = ARM_CP_ALIAS, 3150 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3151 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3152 }, 3153 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3154 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3155 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3156 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3157 .resetfn = arm_gt_cntfrq_reset, 3158 }, 3159 /* overall control: mostly access permissions */ 3160 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3161 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3162 .access = PL1_RW, 3163 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3164 .resetvalue = 0, 3165 }, 3166 /* per-timer control */ 3167 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3168 .secure = ARM_CP_SECSTATE_NS, 3169 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3170 .accessfn = gt_ptimer_access, 3171 .fieldoffset = offsetoflow32(CPUARMState, 3172 cp15.c14_timer[GTIMER_PHYS].ctl), 3173 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3174 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3175 }, 3176 { .name = "CNTP_CTL_S", 3177 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3178 .secure = ARM_CP_SECSTATE_S, 3179 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3180 .accessfn = gt_ptimer_access, 3181 .fieldoffset = offsetoflow32(CPUARMState, 3182 cp15.c14_timer[GTIMER_SEC].ctl), 3183 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3184 }, 3185 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3186 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3187 .type = ARM_CP_IO, .access = PL0_RW, 3188 .accessfn = gt_ptimer_access, 3189 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3190 .resetvalue = 0, 3191 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3192 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3193 }, 3194 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3195 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3196 .accessfn = gt_vtimer_access, 3197 .fieldoffset = offsetoflow32(CPUARMState, 3198 cp15.c14_timer[GTIMER_VIRT].ctl), 3199 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3200 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3201 }, 3202 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3203 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3204 .type = ARM_CP_IO, .access = PL0_RW, 3205 .accessfn = gt_vtimer_access, 3206 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3207 .resetvalue = 0, 3208 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3209 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3210 }, 3211 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3212 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3213 .secure = ARM_CP_SECSTATE_NS, 3214 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3215 .accessfn = gt_ptimer_access, 3216 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3217 }, 3218 { .name = "CNTP_TVAL_S", 3219 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3220 .secure = ARM_CP_SECSTATE_S, 3221 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3222 .accessfn = gt_ptimer_access, 3223 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3224 }, 3225 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3226 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3227 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3228 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3229 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3230 }, 3231 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3232 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3233 .accessfn = gt_vtimer_access, 3234 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3235 }, 3236 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3238 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3239 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3240 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3241 }, 3242 /* The counter itself */ 3243 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3244 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3245 .accessfn = gt_pct_access, 3246 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3247 }, 3248 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3249 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3250 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3251 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3252 }, 3253 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3254 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3255 .accessfn = gt_vct_access, 3256 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3257 }, 3258 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3259 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3260 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3261 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3262 }, 3263 /* Comparison value, indicating when the timer goes off */ 3264 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3265 .secure = ARM_CP_SECSTATE_NS, 3266 .access = PL0_RW, 3267 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3268 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3269 .accessfn = gt_ptimer_access, 3270 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3271 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3272 }, 3273 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3274 .secure = ARM_CP_SECSTATE_S, 3275 .access = PL0_RW, 3276 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3277 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3278 .accessfn = gt_ptimer_access, 3279 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3280 }, 3281 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3282 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3283 .access = PL0_RW, 3284 .type = ARM_CP_IO, 3285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3286 .resetvalue = 0, .accessfn = gt_ptimer_access, 3287 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3288 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3289 }, 3290 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3291 .access = PL0_RW, 3292 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3293 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3294 .accessfn = gt_vtimer_access, 3295 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3296 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3297 }, 3298 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3299 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3300 .access = PL0_RW, 3301 .type = ARM_CP_IO, 3302 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3303 .resetvalue = 0, .accessfn = gt_vtimer_access, 3304 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3305 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3306 }, 3307 /* Secure timer -- this is actually restricted to only EL3 3308 * and configurably Secure-EL1 via the accessfn. 3309 */ 3310 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3311 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3312 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3313 .accessfn = gt_stimer_access, 3314 .readfn = gt_sec_tval_read, 3315 .writefn = gt_sec_tval_write, 3316 .resetfn = gt_sec_timer_reset, 3317 }, 3318 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3319 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3320 .type = ARM_CP_IO, .access = PL1_RW, 3321 .accessfn = gt_stimer_access, 3322 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3323 .resetvalue = 0, 3324 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3325 }, 3326 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3327 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3328 .type = ARM_CP_IO, .access = PL1_RW, 3329 .accessfn = gt_stimer_access, 3330 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3331 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3332 }, 3333 REGINFO_SENTINEL 3334 }; 3335 3336 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3337 bool isread) 3338 { 3339 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3340 return CP_ACCESS_TRAP; 3341 } 3342 return CP_ACCESS_OK; 3343 } 3344 3345 #else 3346 3347 /* In user-mode most of the generic timer registers are inaccessible 3348 * however modern kernels (4.12+) allow access to cntvct_el0 3349 */ 3350 3351 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3352 { 3353 ARMCPU *cpu = env_archcpu(env); 3354 3355 /* Currently we have no support for QEMUTimer in linux-user so we 3356 * can't call gt_get_countervalue(env), instead we directly 3357 * call the lower level functions. 3358 */ 3359 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3360 } 3361 3362 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3363 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3364 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3365 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3366 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3367 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3368 }, 3369 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3370 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3371 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3372 .readfn = gt_virt_cnt_read, 3373 }, 3374 REGINFO_SENTINEL 3375 }; 3376 3377 #endif 3378 3379 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3380 { 3381 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3382 raw_write(env, ri, value); 3383 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3384 raw_write(env, ri, value & 0xfffff6ff); 3385 } else { 3386 raw_write(env, ri, value & 0xfffff1ff); 3387 } 3388 } 3389 3390 #ifndef CONFIG_USER_ONLY 3391 /* get_phys_addr() isn't present for user-mode-only targets */ 3392 3393 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3394 bool isread) 3395 { 3396 if (ri->opc2 & 4) { 3397 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3398 * Secure EL1 (which can only happen if EL3 is AArch64). 3399 * They are simply UNDEF if executed from NS EL1. 3400 * They function normally from EL2 or EL3. 3401 */ 3402 if (arm_current_el(env) == 1) { 3403 if (arm_is_secure_below_el3(env)) { 3404 if (env->cp15.scr_el3 & SCR_EEL2) { 3405 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3406 } 3407 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3408 } 3409 return CP_ACCESS_TRAP_UNCATEGORIZED; 3410 } 3411 } 3412 return CP_ACCESS_OK; 3413 } 3414 3415 #ifdef CONFIG_TCG 3416 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3417 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3418 { 3419 hwaddr phys_addr; 3420 target_ulong page_size; 3421 int prot; 3422 bool ret; 3423 uint64_t par64; 3424 bool format64 = false; 3425 MemTxAttrs attrs = {}; 3426 ARMMMUFaultInfo fi = {}; 3427 ARMCacheAttrs cacheattrs = {}; 3428 3429 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3430 &prot, &page_size, &fi, &cacheattrs); 3431 3432 if (ret) { 3433 /* 3434 * Some kinds of translation fault must cause exceptions rather 3435 * than being reported in the PAR. 3436 */ 3437 int current_el = arm_current_el(env); 3438 int target_el; 3439 uint32_t syn, fsr, fsc; 3440 bool take_exc = false; 3441 3442 if (fi.s1ptw && current_el == 1 3443 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3444 /* 3445 * Synchronous stage 2 fault on an access made as part of the 3446 * translation table walk for AT S1E0* or AT S1E1* insn 3447 * executed from NS EL1. If this is a synchronous external abort 3448 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3449 * to EL3. Otherwise the fault is taken as an exception to EL2, 3450 * and HPFAR_EL2 holds the faulting IPA. 3451 */ 3452 if (fi.type == ARMFault_SyncExternalOnWalk && 3453 (env->cp15.scr_el3 & SCR_EA)) { 3454 target_el = 3; 3455 } else { 3456 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3457 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3458 env->cp15.hpfar_el2 |= HPFAR_NS; 3459 } 3460 target_el = 2; 3461 } 3462 take_exc = true; 3463 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3464 /* 3465 * Synchronous external aborts during a translation table walk 3466 * are taken as Data Abort exceptions. 3467 */ 3468 if (fi.stage2) { 3469 if (current_el == 3) { 3470 target_el = 3; 3471 } else { 3472 target_el = 2; 3473 } 3474 } else { 3475 target_el = exception_target_el(env); 3476 } 3477 take_exc = true; 3478 } 3479 3480 if (take_exc) { 3481 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3482 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3483 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3484 fsr = arm_fi_to_lfsc(&fi); 3485 fsc = extract32(fsr, 0, 6); 3486 } else { 3487 fsr = arm_fi_to_sfsc(&fi); 3488 fsc = 0x3f; 3489 } 3490 /* 3491 * Report exception with ESR indicating a fault due to a 3492 * translation table walk for a cache maintenance instruction. 3493 */ 3494 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3495 fi.ea, 1, fi.s1ptw, 1, fsc); 3496 env->exception.vaddress = value; 3497 env->exception.fsr = fsr; 3498 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3499 } 3500 } 3501 3502 if (is_a64(env)) { 3503 format64 = true; 3504 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3505 /* 3506 * ATS1Cxx: 3507 * * TTBCR.EAE determines whether the result is returned using the 3508 * 32-bit or the 64-bit PAR format 3509 * * Instructions executed in Hyp mode always use the 64bit format 3510 * 3511 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3512 * * The Non-secure TTBCR.EAE bit is set to 1 3513 * * The implementation includes EL2, and the value of HCR.VM is 1 3514 * 3515 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3516 * 3517 * ATS1Hx always uses the 64bit format. 3518 */ 3519 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3520 3521 if (arm_feature(env, ARM_FEATURE_EL2)) { 3522 if (mmu_idx == ARMMMUIdx_E10_0 || 3523 mmu_idx == ARMMMUIdx_E10_1 || 3524 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3525 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3526 } else { 3527 format64 |= arm_current_el(env) == 2; 3528 } 3529 } 3530 } 3531 3532 if (format64) { 3533 /* Create a 64-bit PAR */ 3534 par64 = (1 << 11); /* LPAE bit always set */ 3535 if (!ret) { 3536 par64 |= phys_addr & ~0xfffULL; 3537 if (!attrs.secure) { 3538 par64 |= (1 << 9); /* NS */ 3539 } 3540 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3541 par64 |= cacheattrs.shareability << 7; /* SH */ 3542 } else { 3543 uint32_t fsr = arm_fi_to_lfsc(&fi); 3544 3545 par64 |= 1; /* F */ 3546 par64 |= (fsr & 0x3f) << 1; /* FS */ 3547 if (fi.stage2) { 3548 par64 |= (1 << 9); /* S */ 3549 } 3550 if (fi.s1ptw) { 3551 par64 |= (1 << 8); /* PTW */ 3552 } 3553 } 3554 } else { 3555 /* fsr is a DFSR/IFSR value for the short descriptor 3556 * translation table format (with WnR always clear). 3557 * Convert it to a 32-bit PAR. 3558 */ 3559 if (!ret) { 3560 /* We do not set any attribute bits in the PAR */ 3561 if (page_size == (1 << 24) 3562 && arm_feature(env, ARM_FEATURE_V7)) { 3563 par64 = (phys_addr & 0xff000000) | (1 << 1); 3564 } else { 3565 par64 = phys_addr & 0xfffff000; 3566 } 3567 if (!attrs.secure) { 3568 par64 |= (1 << 9); /* NS */ 3569 } 3570 } else { 3571 uint32_t fsr = arm_fi_to_sfsc(&fi); 3572 3573 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3574 ((fsr & 0xf) << 1) | 1; 3575 } 3576 } 3577 return par64; 3578 } 3579 #endif /* CONFIG_TCG */ 3580 3581 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3582 { 3583 #ifdef CONFIG_TCG 3584 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3585 uint64_t par64; 3586 ARMMMUIdx mmu_idx; 3587 int el = arm_current_el(env); 3588 bool secure = arm_is_secure_below_el3(env); 3589 3590 switch (ri->opc2 & 6) { 3591 case 0: 3592 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3593 switch (el) { 3594 case 3: 3595 mmu_idx = ARMMMUIdx_SE3; 3596 break; 3597 case 2: 3598 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3599 /* fall through */ 3600 case 1: 3601 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3602 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3603 : ARMMMUIdx_Stage1_E1_PAN); 3604 } else { 3605 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3606 } 3607 break; 3608 default: 3609 g_assert_not_reached(); 3610 } 3611 break; 3612 case 2: 3613 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3614 switch (el) { 3615 case 3: 3616 mmu_idx = ARMMMUIdx_SE10_0; 3617 break; 3618 case 2: 3619 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3620 mmu_idx = ARMMMUIdx_Stage1_E0; 3621 break; 3622 case 1: 3623 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3624 break; 3625 default: 3626 g_assert_not_reached(); 3627 } 3628 break; 3629 case 4: 3630 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3631 mmu_idx = ARMMMUIdx_E10_1; 3632 break; 3633 case 6: 3634 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3635 mmu_idx = ARMMMUIdx_E10_0; 3636 break; 3637 default: 3638 g_assert_not_reached(); 3639 } 3640 3641 par64 = do_ats_write(env, value, access_type, mmu_idx); 3642 3643 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3644 #else 3645 /* Handled by hardware accelerator. */ 3646 g_assert_not_reached(); 3647 #endif /* CONFIG_TCG */ 3648 } 3649 3650 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3651 uint64_t value) 3652 { 3653 #ifdef CONFIG_TCG 3654 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3655 uint64_t par64; 3656 3657 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3658 3659 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3660 #else 3661 /* Handled by hardware accelerator. */ 3662 g_assert_not_reached(); 3663 #endif /* CONFIG_TCG */ 3664 } 3665 3666 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3667 bool isread) 3668 { 3669 if (arm_current_el(env) == 3 && 3670 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3671 return CP_ACCESS_TRAP; 3672 } 3673 return CP_ACCESS_OK; 3674 } 3675 3676 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3677 uint64_t value) 3678 { 3679 #ifdef CONFIG_TCG 3680 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3681 ARMMMUIdx mmu_idx; 3682 int secure = arm_is_secure_below_el3(env); 3683 3684 switch (ri->opc2 & 6) { 3685 case 0: 3686 switch (ri->opc1) { 3687 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3688 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3689 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3690 : ARMMMUIdx_Stage1_E1_PAN); 3691 } else { 3692 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3693 } 3694 break; 3695 case 4: /* AT S1E2R, AT S1E2W */ 3696 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3697 break; 3698 case 6: /* AT S1E3R, AT S1E3W */ 3699 mmu_idx = ARMMMUIdx_SE3; 3700 break; 3701 default: 3702 g_assert_not_reached(); 3703 } 3704 break; 3705 case 2: /* AT S1E0R, AT S1E0W */ 3706 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3707 break; 3708 case 4: /* AT S12E1R, AT S12E1W */ 3709 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3710 break; 3711 case 6: /* AT S12E0R, AT S12E0W */ 3712 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3713 break; 3714 default: 3715 g_assert_not_reached(); 3716 } 3717 3718 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3719 #else 3720 /* Handled by hardware accelerator. */ 3721 g_assert_not_reached(); 3722 #endif /* CONFIG_TCG */ 3723 } 3724 #endif 3725 3726 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3727 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3728 .access = PL1_RW, .resetvalue = 0, 3729 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3730 offsetoflow32(CPUARMState, cp15.par_ns) }, 3731 .writefn = par_write }, 3732 #ifndef CONFIG_USER_ONLY 3733 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3734 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3735 .access = PL1_W, .accessfn = ats_access, 3736 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3737 #endif 3738 REGINFO_SENTINEL 3739 }; 3740 3741 /* Return basic MPU access permission bits. */ 3742 static uint32_t simple_mpu_ap_bits(uint32_t val) 3743 { 3744 uint32_t ret; 3745 uint32_t mask; 3746 int i; 3747 ret = 0; 3748 mask = 3; 3749 for (i = 0; i < 16; i += 2) { 3750 ret |= (val >> i) & mask; 3751 mask <<= 2; 3752 } 3753 return ret; 3754 } 3755 3756 /* Pad basic MPU access permission bits to extended format. */ 3757 static uint32_t extended_mpu_ap_bits(uint32_t val) 3758 { 3759 uint32_t ret; 3760 uint32_t mask; 3761 int i; 3762 ret = 0; 3763 mask = 3; 3764 for (i = 0; i < 16; i += 2) { 3765 ret |= (val & mask) << i; 3766 mask <<= 2; 3767 } 3768 return ret; 3769 } 3770 3771 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3772 uint64_t value) 3773 { 3774 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3775 } 3776 3777 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3778 { 3779 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3780 } 3781 3782 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3783 uint64_t value) 3784 { 3785 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3786 } 3787 3788 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3789 { 3790 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3791 } 3792 3793 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3794 { 3795 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3796 3797 if (!u32p) { 3798 return 0; 3799 } 3800 3801 u32p += env->pmsav7.rnr[M_REG_NS]; 3802 return *u32p; 3803 } 3804 3805 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3806 uint64_t value) 3807 { 3808 ARMCPU *cpu = env_archcpu(env); 3809 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3810 3811 if (!u32p) { 3812 return; 3813 } 3814 3815 u32p += env->pmsav7.rnr[M_REG_NS]; 3816 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3817 *u32p = value; 3818 } 3819 3820 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3821 uint64_t value) 3822 { 3823 ARMCPU *cpu = env_archcpu(env); 3824 uint32_t nrgs = cpu->pmsav7_dregion; 3825 3826 if (value >= nrgs) { 3827 qemu_log_mask(LOG_GUEST_ERROR, 3828 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3829 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3830 return; 3831 } 3832 3833 raw_write(env, ri, value); 3834 } 3835 3836 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3837 /* Reset for all these registers is handled in arm_cpu_reset(), 3838 * because the PMSAv7 is also used by M-profile CPUs, which do 3839 * not register cpregs but still need the state to be reset. 3840 */ 3841 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3842 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3843 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3844 .readfn = pmsav7_read, .writefn = pmsav7_write, 3845 .resetfn = arm_cp_reset_ignore }, 3846 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3847 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3848 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3849 .readfn = pmsav7_read, .writefn = pmsav7_write, 3850 .resetfn = arm_cp_reset_ignore }, 3851 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3852 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3853 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3854 .readfn = pmsav7_read, .writefn = pmsav7_write, 3855 .resetfn = arm_cp_reset_ignore }, 3856 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3857 .access = PL1_RW, 3858 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3859 .writefn = pmsav7_rgnr_write, 3860 .resetfn = arm_cp_reset_ignore }, 3861 REGINFO_SENTINEL 3862 }; 3863 3864 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3865 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3866 .access = PL1_RW, .type = ARM_CP_ALIAS, 3867 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3868 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3869 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3870 .access = PL1_RW, .type = ARM_CP_ALIAS, 3871 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3872 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3873 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3874 .access = PL1_RW, 3875 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3876 .resetvalue = 0, }, 3877 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3878 .access = PL1_RW, 3879 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3880 .resetvalue = 0, }, 3881 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3882 .access = PL1_RW, 3883 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3884 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3885 .access = PL1_RW, 3886 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3887 /* Protection region base and size registers */ 3888 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3889 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3890 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3891 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3892 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3893 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3894 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3895 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3896 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3897 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3898 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3899 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3900 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3901 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3902 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3903 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3904 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3905 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3906 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3907 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3908 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3909 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3910 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3911 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3912 REGINFO_SENTINEL 3913 }; 3914 3915 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3916 uint64_t value) 3917 { 3918 TCR *tcr = raw_ptr(env, ri); 3919 int maskshift = extract32(value, 0, 3); 3920 3921 if (!arm_feature(env, ARM_FEATURE_V8)) { 3922 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3923 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3924 * using Long-desciptor translation table format */ 3925 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3926 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3927 /* In an implementation that includes the Security Extensions 3928 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3929 * Short-descriptor translation table format. 3930 */ 3931 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3932 } else { 3933 value &= TTBCR_N; 3934 } 3935 } 3936 3937 /* Update the masks corresponding to the TCR bank being written 3938 * Note that we always calculate mask and base_mask, but 3939 * they are only used for short-descriptor tables (ie if EAE is 0); 3940 * for long-descriptor tables the TCR fields are used differently 3941 * and the mask and base_mask values are meaningless. 3942 */ 3943 tcr->raw_tcr = value; 3944 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3945 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3946 } 3947 3948 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3949 uint64_t value) 3950 { 3951 ARMCPU *cpu = env_archcpu(env); 3952 TCR *tcr = raw_ptr(env, ri); 3953 3954 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3955 /* With LPAE the TTBCR could result in a change of ASID 3956 * via the TTBCR.A1 bit, so do a TLB flush. 3957 */ 3958 tlb_flush(CPU(cpu)); 3959 } 3960 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3961 value = deposit64(tcr->raw_tcr, 0, 32, value); 3962 vmsa_ttbcr_raw_write(env, ri, value); 3963 } 3964 3965 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3966 { 3967 TCR *tcr = raw_ptr(env, ri); 3968 3969 /* Reset both the TCR as well as the masks corresponding to the bank of 3970 * the TCR being reset. 3971 */ 3972 tcr->raw_tcr = 0; 3973 tcr->mask = 0; 3974 tcr->base_mask = 0xffffc000u; 3975 } 3976 3977 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3978 uint64_t value) 3979 { 3980 ARMCPU *cpu = env_archcpu(env); 3981 TCR *tcr = raw_ptr(env, ri); 3982 3983 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3984 tlb_flush(CPU(cpu)); 3985 tcr->raw_tcr = value; 3986 } 3987 3988 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3989 uint64_t value) 3990 { 3991 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3992 if (cpreg_field_is_64bit(ri) && 3993 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3994 ARMCPU *cpu = env_archcpu(env); 3995 tlb_flush(CPU(cpu)); 3996 } 3997 raw_write(env, ri, value); 3998 } 3999 4000 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4001 uint64_t value) 4002 { 4003 /* 4004 * If we are running with E2&0 regime, then an ASID is active. 4005 * Flush if that might be changing. Note we're not checking 4006 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4007 * holds the active ASID, only checking the field that might. 4008 */ 4009 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4010 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4011 uint16_t mask = ARMMMUIdxBit_E20_2 | 4012 ARMMMUIdxBit_E20_2_PAN | 4013 ARMMMUIdxBit_E20_0; 4014 4015 if (arm_is_secure_below_el3(env)) { 4016 mask >>= ARM_MMU_IDX_A_NS; 4017 } 4018 4019 tlb_flush_by_mmuidx(env_cpu(env), mask); 4020 } 4021 raw_write(env, ri, value); 4022 } 4023 4024 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4025 uint64_t value) 4026 { 4027 ARMCPU *cpu = env_archcpu(env); 4028 CPUState *cs = CPU(cpu); 4029 4030 /* 4031 * A change in VMID to the stage2 page table (Stage2) invalidates 4032 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4033 */ 4034 if (raw_read(env, ri) != value) { 4035 uint16_t mask = ARMMMUIdxBit_E10_1 | 4036 ARMMMUIdxBit_E10_1_PAN | 4037 ARMMMUIdxBit_E10_0; 4038 4039 if (arm_is_secure_below_el3(env)) { 4040 mask >>= ARM_MMU_IDX_A_NS; 4041 } 4042 4043 tlb_flush_by_mmuidx(cs, mask); 4044 raw_write(env, ri, value); 4045 } 4046 } 4047 4048 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4049 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4050 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4051 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4052 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4053 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4054 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4055 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4056 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4057 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4058 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4059 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4060 offsetof(CPUARMState, cp15.dfar_ns) } }, 4061 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4062 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4063 .access = PL1_RW, .accessfn = access_tvm_trvm, 4064 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4065 .resetvalue = 0, }, 4066 REGINFO_SENTINEL 4067 }; 4068 4069 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4070 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4071 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4072 .access = PL1_RW, .accessfn = access_tvm_trvm, 4073 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4074 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4075 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4076 .access = PL1_RW, .accessfn = access_tvm_trvm, 4077 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4078 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4079 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4080 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4081 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4082 .access = PL1_RW, .accessfn = access_tvm_trvm, 4083 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4084 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4085 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4086 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4087 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4088 .access = PL1_RW, .accessfn = access_tvm_trvm, 4089 .writefn = vmsa_tcr_el12_write, 4090 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4091 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4092 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4093 .access = PL1_RW, .accessfn = access_tvm_trvm, 4094 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4095 .raw_writefn = vmsa_ttbcr_raw_write, 4096 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4097 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4098 REGINFO_SENTINEL 4099 }; 4100 4101 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4102 * qemu tlbs nor adjusting cached masks. 4103 */ 4104 static const ARMCPRegInfo ttbcr2_reginfo = { 4105 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4106 .access = PL1_RW, .accessfn = access_tvm_trvm, 4107 .type = ARM_CP_ALIAS, 4108 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4109 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4110 }; 4111 4112 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4113 uint64_t value) 4114 { 4115 env->cp15.c15_ticonfig = value & 0xe7; 4116 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4117 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4118 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4119 } 4120 4121 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4122 uint64_t value) 4123 { 4124 env->cp15.c15_threadid = value & 0xffff; 4125 } 4126 4127 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4128 uint64_t value) 4129 { 4130 /* Wait-for-interrupt (deprecated) */ 4131 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4132 } 4133 4134 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4135 uint64_t value) 4136 { 4137 /* On OMAP there are registers indicating the max/min index of dcache lines 4138 * containing a dirty line; cache flush operations have to reset these. 4139 */ 4140 env->cp15.c15_i_max = 0x000; 4141 env->cp15.c15_i_min = 0xff0; 4142 } 4143 4144 static const ARMCPRegInfo omap_cp_reginfo[] = { 4145 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4146 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4147 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4148 .resetvalue = 0, }, 4149 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4150 .access = PL1_RW, .type = ARM_CP_NOP }, 4151 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4152 .access = PL1_RW, 4153 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4154 .writefn = omap_ticonfig_write }, 4155 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4156 .access = PL1_RW, 4157 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4158 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4159 .access = PL1_RW, .resetvalue = 0xff0, 4160 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4161 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4162 .access = PL1_RW, 4163 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4164 .writefn = omap_threadid_write }, 4165 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4166 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4167 .type = ARM_CP_NO_RAW, 4168 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4169 /* TODO: Peripheral port remap register: 4170 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4171 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4172 * when MMU is off. 4173 */ 4174 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4175 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4176 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4177 .writefn = omap_cachemaint_write }, 4178 { .name = "C9", .cp = 15, .crn = 9, 4179 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4180 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4181 REGINFO_SENTINEL 4182 }; 4183 4184 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4185 uint64_t value) 4186 { 4187 env->cp15.c15_cpar = value & 0x3fff; 4188 } 4189 4190 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4191 { .name = "XSCALE_CPAR", 4192 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4193 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4194 .writefn = xscale_cpar_write, }, 4195 { .name = "XSCALE_AUXCR", 4196 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4197 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4198 .resetvalue = 0, }, 4199 /* XScale specific cache-lockdown: since we have no cache we NOP these 4200 * and hope the guest does not really rely on cache behaviour. 4201 */ 4202 { .name = "XSCALE_LOCK_ICACHE_LINE", 4203 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4204 .access = PL1_W, .type = ARM_CP_NOP }, 4205 { .name = "XSCALE_UNLOCK_ICACHE", 4206 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4207 .access = PL1_W, .type = ARM_CP_NOP }, 4208 { .name = "XSCALE_DCACHE_LOCK", 4209 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4210 .access = PL1_RW, .type = ARM_CP_NOP }, 4211 { .name = "XSCALE_UNLOCK_DCACHE", 4212 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4213 .access = PL1_W, .type = ARM_CP_NOP }, 4214 REGINFO_SENTINEL 4215 }; 4216 4217 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4218 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4219 * implementation of this implementation-defined space. 4220 * Ideally this should eventually disappear in favour of actually 4221 * implementing the correct behaviour for all cores. 4222 */ 4223 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4224 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4225 .access = PL1_RW, 4226 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4227 .resetvalue = 0 }, 4228 REGINFO_SENTINEL 4229 }; 4230 4231 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4232 /* Cache status: RAZ because we have no cache so it's always clean */ 4233 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4234 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4235 .resetvalue = 0 }, 4236 REGINFO_SENTINEL 4237 }; 4238 4239 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4240 /* We never have a a block transfer operation in progress */ 4241 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4242 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4243 .resetvalue = 0 }, 4244 /* The cache ops themselves: these all NOP for QEMU */ 4245 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4246 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4247 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4248 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4249 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4250 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4251 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4252 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4253 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4254 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4255 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4256 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4257 REGINFO_SENTINEL 4258 }; 4259 4260 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4261 /* The cache test-and-clean instructions always return (1 << 30) 4262 * to indicate that there are no dirty cache lines. 4263 */ 4264 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4265 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4266 .resetvalue = (1 << 30) }, 4267 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4268 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4269 .resetvalue = (1 << 30) }, 4270 REGINFO_SENTINEL 4271 }; 4272 4273 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4274 /* Ignore ReadBuffer accesses */ 4275 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4276 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4277 .access = PL1_RW, .resetvalue = 0, 4278 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4279 REGINFO_SENTINEL 4280 }; 4281 4282 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4283 { 4284 unsigned int cur_el = arm_current_el(env); 4285 4286 if (arm_is_el2_enabled(env) && cur_el == 1) { 4287 return env->cp15.vpidr_el2; 4288 } 4289 return raw_read(env, ri); 4290 } 4291 4292 static uint64_t mpidr_read_val(CPUARMState *env) 4293 { 4294 ARMCPU *cpu = env_archcpu(env); 4295 uint64_t mpidr = cpu->mp_affinity; 4296 4297 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4298 mpidr |= (1U << 31); 4299 /* Cores which are uniprocessor (non-coherent) 4300 * but still implement the MP extensions set 4301 * bit 30. (For instance, Cortex-R5). 4302 */ 4303 if (cpu->mp_is_up) { 4304 mpidr |= (1u << 30); 4305 } 4306 } 4307 return mpidr; 4308 } 4309 4310 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4311 { 4312 unsigned int cur_el = arm_current_el(env); 4313 4314 if (arm_is_el2_enabled(env) && cur_el == 1) { 4315 return env->cp15.vmpidr_el2; 4316 } 4317 return mpidr_read_val(env); 4318 } 4319 4320 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4321 /* NOP AMAIR0/1 */ 4322 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4323 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4324 .access = PL1_RW, .accessfn = access_tvm_trvm, 4325 .type = ARM_CP_CONST, .resetvalue = 0 }, 4326 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4327 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4328 .access = PL1_RW, .accessfn = access_tvm_trvm, 4329 .type = ARM_CP_CONST, .resetvalue = 0 }, 4330 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4331 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4332 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4333 offsetof(CPUARMState, cp15.par_ns)} }, 4334 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4335 .access = PL1_RW, .accessfn = access_tvm_trvm, 4336 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4337 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4338 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4339 .writefn = vmsa_ttbr_write, }, 4340 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4341 .access = PL1_RW, .accessfn = access_tvm_trvm, 4342 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4343 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4344 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4345 .writefn = vmsa_ttbr_write, }, 4346 REGINFO_SENTINEL 4347 }; 4348 4349 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4350 { 4351 return vfp_get_fpcr(env); 4352 } 4353 4354 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4355 uint64_t value) 4356 { 4357 vfp_set_fpcr(env, value); 4358 } 4359 4360 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4361 { 4362 return vfp_get_fpsr(env); 4363 } 4364 4365 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4366 uint64_t value) 4367 { 4368 vfp_set_fpsr(env, value); 4369 } 4370 4371 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4372 bool isread) 4373 { 4374 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4375 return CP_ACCESS_TRAP; 4376 } 4377 return CP_ACCESS_OK; 4378 } 4379 4380 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4381 uint64_t value) 4382 { 4383 env->daif = value & PSTATE_DAIF; 4384 } 4385 4386 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4387 { 4388 return env->pstate & PSTATE_PAN; 4389 } 4390 4391 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4392 uint64_t value) 4393 { 4394 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4395 } 4396 4397 static const ARMCPRegInfo pan_reginfo = { 4398 .name = "PAN", .state = ARM_CP_STATE_AA64, 4399 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4400 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4401 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4402 }; 4403 4404 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4405 { 4406 return env->pstate & PSTATE_UAO; 4407 } 4408 4409 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4410 uint64_t value) 4411 { 4412 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4413 } 4414 4415 static const ARMCPRegInfo uao_reginfo = { 4416 .name = "UAO", .state = ARM_CP_STATE_AA64, 4417 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4418 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4419 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4420 }; 4421 4422 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4423 const ARMCPRegInfo *ri, 4424 bool isread) 4425 { 4426 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4427 switch (arm_current_el(env)) { 4428 case 0: 4429 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4430 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4431 return CP_ACCESS_TRAP; 4432 } 4433 /* fall through */ 4434 case 1: 4435 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4436 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4437 return CP_ACCESS_TRAP_EL2; 4438 } 4439 break; 4440 } 4441 return CP_ACCESS_OK; 4442 } 4443 4444 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4445 const ARMCPRegInfo *ri, 4446 bool isread) 4447 { 4448 /* Cache invalidate/clean to Point of Unification... */ 4449 switch (arm_current_el(env)) { 4450 case 0: 4451 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4452 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4453 return CP_ACCESS_TRAP; 4454 } 4455 /* fall through */ 4456 case 1: 4457 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4458 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4459 return CP_ACCESS_TRAP_EL2; 4460 } 4461 break; 4462 } 4463 return CP_ACCESS_OK; 4464 } 4465 4466 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4467 * Page D4-1736 (DDI0487A.b) 4468 */ 4469 4470 static int vae1_tlbmask(CPUARMState *env) 4471 { 4472 uint64_t hcr = arm_hcr_el2_eff(env); 4473 uint16_t mask; 4474 4475 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4476 mask = ARMMMUIdxBit_E20_2 | 4477 ARMMMUIdxBit_E20_2_PAN | 4478 ARMMMUIdxBit_E20_0; 4479 } else { 4480 mask = ARMMMUIdxBit_E10_1 | 4481 ARMMMUIdxBit_E10_1_PAN | 4482 ARMMMUIdxBit_E10_0; 4483 } 4484 4485 if (arm_is_secure_below_el3(env)) { 4486 mask >>= ARM_MMU_IDX_A_NS; 4487 } 4488 4489 return mask; 4490 } 4491 4492 /* Return 56 if TBI is enabled, 64 otherwise. */ 4493 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4494 uint64_t addr) 4495 { 4496 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4497 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4498 int select = extract64(addr, 55, 1); 4499 4500 return (tbi >> select) & 1 ? 56 : 64; 4501 } 4502 4503 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4504 { 4505 uint64_t hcr = arm_hcr_el2_eff(env); 4506 ARMMMUIdx mmu_idx; 4507 4508 /* Only the regime of the mmu_idx below is significant. */ 4509 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4510 mmu_idx = ARMMMUIdx_E20_0; 4511 } else { 4512 mmu_idx = ARMMMUIdx_E10_0; 4513 } 4514 4515 if (arm_is_secure_below_el3(env)) { 4516 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4517 } 4518 4519 return tlbbits_for_regime(env, mmu_idx, addr); 4520 } 4521 4522 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4523 uint64_t value) 4524 { 4525 CPUState *cs = env_cpu(env); 4526 int mask = vae1_tlbmask(env); 4527 4528 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4529 } 4530 4531 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4532 uint64_t value) 4533 { 4534 CPUState *cs = env_cpu(env); 4535 int mask = vae1_tlbmask(env); 4536 4537 if (tlb_force_broadcast(env)) { 4538 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4539 } else { 4540 tlb_flush_by_mmuidx(cs, mask); 4541 } 4542 } 4543 4544 static int alle1_tlbmask(CPUARMState *env) 4545 { 4546 /* 4547 * Note that the 'ALL' scope must invalidate both stage 1 and 4548 * stage 2 translations, whereas most other scopes only invalidate 4549 * stage 1 translations. 4550 */ 4551 if (arm_is_secure_below_el3(env)) { 4552 return ARMMMUIdxBit_SE10_1 | 4553 ARMMMUIdxBit_SE10_1_PAN | 4554 ARMMMUIdxBit_SE10_0; 4555 } else { 4556 return ARMMMUIdxBit_E10_1 | 4557 ARMMMUIdxBit_E10_1_PAN | 4558 ARMMMUIdxBit_E10_0; 4559 } 4560 } 4561 4562 static int e2_tlbmask(CPUARMState *env) 4563 { 4564 if (arm_is_secure_below_el3(env)) { 4565 return ARMMMUIdxBit_SE20_0 | 4566 ARMMMUIdxBit_SE20_2 | 4567 ARMMMUIdxBit_SE20_2_PAN | 4568 ARMMMUIdxBit_SE2; 4569 } else { 4570 return ARMMMUIdxBit_E20_0 | 4571 ARMMMUIdxBit_E20_2 | 4572 ARMMMUIdxBit_E20_2_PAN | 4573 ARMMMUIdxBit_E2; 4574 } 4575 } 4576 4577 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4578 uint64_t value) 4579 { 4580 CPUState *cs = env_cpu(env); 4581 int mask = alle1_tlbmask(env); 4582 4583 tlb_flush_by_mmuidx(cs, mask); 4584 } 4585 4586 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4587 uint64_t value) 4588 { 4589 CPUState *cs = env_cpu(env); 4590 int mask = e2_tlbmask(env); 4591 4592 tlb_flush_by_mmuidx(cs, mask); 4593 } 4594 4595 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4596 uint64_t value) 4597 { 4598 ARMCPU *cpu = env_archcpu(env); 4599 CPUState *cs = CPU(cpu); 4600 4601 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4602 } 4603 4604 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4605 uint64_t value) 4606 { 4607 CPUState *cs = env_cpu(env); 4608 int mask = alle1_tlbmask(env); 4609 4610 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4611 } 4612 4613 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4614 uint64_t value) 4615 { 4616 CPUState *cs = env_cpu(env); 4617 int mask = e2_tlbmask(env); 4618 4619 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4620 } 4621 4622 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4623 uint64_t value) 4624 { 4625 CPUState *cs = env_cpu(env); 4626 4627 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4628 } 4629 4630 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4631 uint64_t value) 4632 { 4633 /* Invalidate by VA, EL2 4634 * Currently handles both VAE2 and VALE2, since we don't support 4635 * flush-last-level-only. 4636 */ 4637 CPUState *cs = env_cpu(env); 4638 int mask = e2_tlbmask(env); 4639 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4640 4641 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4642 } 4643 4644 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4645 uint64_t value) 4646 { 4647 /* Invalidate by VA, EL3 4648 * Currently handles both VAE3 and VALE3, since we don't support 4649 * flush-last-level-only. 4650 */ 4651 ARMCPU *cpu = env_archcpu(env); 4652 CPUState *cs = CPU(cpu); 4653 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4654 4655 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4656 } 4657 4658 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4659 uint64_t value) 4660 { 4661 CPUState *cs = env_cpu(env); 4662 int mask = vae1_tlbmask(env); 4663 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4664 int bits = vae1_tlbbits(env, pageaddr); 4665 4666 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4667 } 4668 4669 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4670 uint64_t value) 4671 { 4672 /* Invalidate by VA, EL1&0 (AArch64 version). 4673 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4674 * since we don't support flush-for-specific-ASID-only or 4675 * flush-last-level-only. 4676 */ 4677 CPUState *cs = env_cpu(env); 4678 int mask = vae1_tlbmask(env); 4679 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4680 int bits = vae1_tlbbits(env, pageaddr); 4681 4682 if (tlb_force_broadcast(env)) { 4683 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4684 } else { 4685 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4686 } 4687 } 4688 4689 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4690 uint64_t value) 4691 { 4692 CPUState *cs = env_cpu(env); 4693 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4694 bool secure = arm_is_secure_below_el3(env); 4695 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4696 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_E2 : ARMMMUIdx_SE2, 4697 pageaddr); 4698 4699 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4700 } 4701 4702 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4703 uint64_t value) 4704 { 4705 CPUState *cs = env_cpu(env); 4706 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4707 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4708 4709 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4710 ARMMMUIdxBit_SE3, bits); 4711 } 4712 4713 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4714 bool isread) 4715 { 4716 int cur_el = arm_current_el(env); 4717 4718 if (cur_el < 2) { 4719 uint64_t hcr = arm_hcr_el2_eff(env); 4720 4721 if (cur_el == 0) { 4722 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4723 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4724 return CP_ACCESS_TRAP_EL2; 4725 } 4726 } else { 4727 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4728 return CP_ACCESS_TRAP; 4729 } 4730 if (hcr & HCR_TDZ) { 4731 return CP_ACCESS_TRAP_EL2; 4732 } 4733 } 4734 } else if (hcr & HCR_TDZ) { 4735 return CP_ACCESS_TRAP_EL2; 4736 } 4737 } 4738 return CP_ACCESS_OK; 4739 } 4740 4741 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4742 { 4743 ARMCPU *cpu = env_archcpu(env); 4744 int dzp_bit = 1 << 4; 4745 4746 /* DZP indicates whether DC ZVA access is allowed */ 4747 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4748 dzp_bit = 0; 4749 } 4750 return cpu->dcz_blocksize | dzp_bit; 4751 } 4752 4753 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4754 bool isread) 4755 { 4756 if (!(env->pstate & PSTATE_SP)) { 4757 /* Access to SP_EL0 is undefined if it's being used as 4758 * the stack pointer. 4759 */ 4760 return CP_ACCESS_TRAP_UNCATEGORIZED; 4761 } 4762 return CP_ACCESS_OK; 4763 } 4764 4765 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4766 { 4767 return env->pstate & PSTATE_SP; 4768 } 4769 4770 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4771 { 4772 update_spsel(env, val); 4773 } 4774 4775 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4776 uint64_t value) 4777 { 4778 ARMCPU *cpu = env_archcpu(env); 4779 4780 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4781 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4782 value &= ~SCTLR_M; 4783 } 4784 4785 /* ??? Lots of these bits are not implemented. */ 4786 4787 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4788 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4789 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4790 } else { 4791 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4792 SCTLR_ATA0 | SCTLR_ATA); 4793 } 4794 } 4795 4796 if (raw_read(env, ri) == value) { 4797 /* Skip the TLB flush if nothing actually changed; Linux likes 4798 * to do a lot of pointless SCTLR writes. 4799 */ 4800 return; 4801 } 4802 4803 raw_write(env, ri, value); 4804 4805 /* This may enable/disable the MMU, so do a TLB flush. */ 4806 tlb_flush(CPU(cpu)); 4807 4808 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4809 /* 4810 * Normally we would always end the TB on an SCTLR write; see the 4811 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4812 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4813 * of hflags from the translator, so do it here. 4814 */ 4815 arm_rebuild_hflags(env); 4816 } 4817 } 4818 4819 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4820 bool isread) 4821 { 4822 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4823 return CP_ACCESS_TRAP_FP_EL2; 4824 } 4825 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4826 return CP_ACCESS_TRAP_FP_EL3; 4827 } 4828 return CP_ACCESS_OK; 4829 } 4830 4831 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4832 uint64_t value) 4833 { 4834 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4835 } 4836 4837 static const ARMCPRegInfo v8_cp_reginfo[] = { 4838 /* Minimal set of EL0-visible registers. This will need to be expanded 4839 * significantly for system emulation of AArch64 CPUs. 4840 */ 4841 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4842 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4843 .access = PL0_RW, .type = ARM_CP_NZCV }, 4844 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4845 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4846 .type = ARM_CP_NO_RAW, 4847 .access = PL0_RW, .accessfn = aa64_daif_access, 4848 .fieldoffset = offsetof(CPUARMState, daif), 4849 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4850 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4852 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4853 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4854 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4855 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4856 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4857 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4858 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4859 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4860 .access = PL0_R, .type = ARM_CP_NO_RAW, 4861 .readfn = aa64_dczid_read }, 4862 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4864 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4865 #ifndef CONFIG_USER_ONLY 4866 /* Avoid overhead of an access check that always passes in user-mode */ 4867 .accessfn = aa64_zva_access, 4868 #endif 4869 }, 4870 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4871 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4872 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4873 /* Cache ops: all NOPs since we don't emulate caches */ 4874 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4875 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4876 .access = PL1_W, .type = ARM_CP_NOP, 4877 .accessfn = aa64_cacheop_pou_access }, 4878 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4880 .access = PL1_W, .type = ARM_CP_NOP, 4881 .accessfn = aa64_cacheop_pou_access }, 4882 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4883 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4884 .access = PL0_W, .type = ARM_CP_NOP, 4885 .accessfn = aa64_cacheop_pou_access }, 4886 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4887 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4888 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4889 .type = ARM_CP_NOP }, 4890 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4891 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4892 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4893 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4895 .access = PL0_W, .type = ARM_CP_NOP, 4896 .accessfn = aa64_cacheop_poc_access }, 4897 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4899 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4900 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4901 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4902 .access = PL0_W, .type = ARM_CP_NOP, 4903 .accessfn = aa64_cacheop_pou_access }, 4904 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4906 .access = PL0_W, .type = ARM_CP_NOP, 4907 .accessfn = aa64_cacheop_poc_access }, 4908 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4910 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4911 /* TLBI operations */ 4912 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4914 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4915 .writefn = tlbi_aa64_vmalle1is_write }, 4916 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4918 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4919 .writefn = tlbi_aa64_vae1is_write }, 4920 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4922 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4923 .writefn = tlbi_aa64_vmalle1is_write }, 4924 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4926 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4927 .writefn = tlbi_aa64_vae1is_write }, 4928 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4929 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4930 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4931 .writefn = tlbi_aa64_vae1is_write }, 4932 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4934 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4935 .writefn = tlbi_aa64_vae1is_write }, 4936 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4937 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4938 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4939 .writefn = tlbi_aa64_vmalle1_write }, 4940 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4942 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4943 .writefn = tlbi_aa64_vae1_write }, 4944 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4945 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4946 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4947 .writefn = tlbi_aa64_vmalle1_write }, 4948 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4950 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4951 .writefn = tlbi_aa64_vae1_write }, 4952 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4953 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4954 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4955 .writefn = tlbi_aa64_vae1_write }, 4956 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4957 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4958 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4959 .writefn = tlbi_aa64_vae1_write }, 4960 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4961 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4962 .access = PL2_W, .type = ARM_CP_NOP }, 4963 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4965 .access = PL2_W, .type = ARM_CP_NOP }, 4966 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4968 .access = PL2_W, .type = ARM_CP_NO_RAW, 4969 .writefn = tlbi_aa64_alle1is_write }, 4970 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4972 .access = PL2_W, .type = ARM_CP_NO_RAW, 4973 .writefn = tlbi_aa64_alle1is_write }, 4974 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4976 .access = PL2_W, .type = ARM_CP_NOP }, 4977 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4978 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4979 .access = PL2_W, .type = ARM_CP_NOP }, 4980 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4981 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4982 .access = PL2_W, .type = ARM_CP_NO_RAW, 4983 .writefn = tlbi_aa64_alle1_write }, 4984 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4985 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4986 .access = PL2_W, .type = ARM_CP_NO_RAW, 4987 .writefn = tlbi_aa64_alle1is_write }, 4988 #ifndef CONFIG_USER_ONLY 4989 /* 64 bit address translation operations */ 4990 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4991 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4992 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4993 .writefn = ats_write64 }, 4994 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4995 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4996 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4997 .writefn = ats_write64 }, 4998 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4999 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5000 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5001 .writefn = ats_write64 }, 5002 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5003 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5004 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5005 .writefn = ats_write64 }, 5006 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5007 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5008 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5009 .writefn = ats_write64 }, 5010 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5011 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5012 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5013 .writefn = ats_write64 }, 5014 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5015 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5016 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5017 .writefn = ats_write64 }, 5018 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5019 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5020 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5021 .writefn = ats_write64 }, 5022 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5023 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5024 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5025 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5026 .writefn = ats_write64 }, 5027 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5028 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5029 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5030 .writefn = ats_write64 }, 5031 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5032 .type = ARM_CP_ALIAS, 5033 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5034 .access = PL1_RW, .resetvalue = 0, 5035 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5036 .writefn = par_write }, 5037 #endif 5038 /* TLB invalidate last level of translation table walk */ 5039 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5040 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5041 .writefn = tlbimva_is_write }, 5042 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5043 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5044 .writefn = tlbimvaa_is_write }, 5045 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5046 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5047 .writefn = tlbimva_write }, 5048 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5049 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5050 .writefn = tlbimvaa_write }, 5051 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5052 .type = ARM_CP_NO_RAW, .access = PL2_W, 5053 .writefn = tlbimva_hyp_write }, 5054 { .name = "TLBIMVALHIS", 5055 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5056 .type = ARM_CP_NO_RAW, .access = PL2_W, 5057 .writefn = tlbimva_hyp_is_write }, 5058 { .name = "TLBIIPAS2", 5059 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5060 .type = ARM_CP_NOP, .access = PL2_W }, 5061 { .name = "TLBIIPAS2IS", 5062 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5063 .type = ARM_CP_NOP, .access = PL2_W }, 5064 { .name = "TLBIIPAS2L", 5065 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5066 .type = ARM_CP_NOP, .access = PL2_W }, 5067 { .name = "TLBIIPAS2LIS", 5068 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5069 .type = ARM_CP_NOP, .access = PL2_W }, 5070 /* 32 bit cache operations */ 5071 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5072 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5073 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5074 .type = ARM_CP_NOP, .access = PL1_W }, 5075 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5076 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5077 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5078 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5079 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5080 .type = ARM_CP_NOP, .access = PL1_W }, 5081 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5082 .type = ARM_CP_NOP, .access = PL1_W }, 5083 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5084 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5085 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5086 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5087 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5088 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5089 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5090 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5091 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5092 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5093 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5094 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5095 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5096 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5097 /* MMU Domain access control / MPU write buffer control */ 5098 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5099 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5100 .writefn = dacr_write, .raw_writefn = raw_write, 5101 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5102 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5103 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5104 .type = ARM_CP_ALIAS, 5105 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5106 .access = PL1_RW, 5107 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5108 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5109 .type = ARM_CP_ALIAS, 5110 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5111 .access = PL1_RW, 5112 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5113 /* We rely on the access checks not allowing the guest to write to the 5114 * state field when SPSel indicates that it's being used as the stack 5115 * pointer. 5116 */ 5117 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5118 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5119 .access = PL1_RW, .accessfn = sp_el0_access, 5120 .type = ARM_CP_ALIAS, 5121 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5122 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5123 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5124 .access = PL2_RW, .type = ARM_CP_ALIAS, 5125 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5126 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5127 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5128 .type = ARM_CP_NO_RAW, 5129 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5130 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5131 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5132 .type = ARM_CP_ALIAS, 5133 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5134 .access = PL2_RW, .accessfn = fpexc32_access }, 5135 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5136 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5137 .access = PL2_RW, .resetvalue = 0, 5138 .writefn = dacr_write, .raw_writefn = raw_write, 5139 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5140 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5141 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5142 .access = PL2_RW, .resetvalue = 0, 5143 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5144 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5145 .type = ARM_CP_ALIAS, 5146 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5147 .access = PL2_RW, 5148 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5149 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5150 .type = ARM_CP_ALIAS, 5151 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5152 .access = PL2_RW, 5153 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5154 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5155 .type = ARM_CP_ALIAS, 5156 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5157 .access = PL2_RW, 5158 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5159 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5160 .type = ARM_CP_ALIAS, 5161 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5162 .access = PL2_RW, 5163 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5164 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5165 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5166 .resetvalue = 0, 5167 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5168 { .name = "SDCR", .type = ARM_CP_ALIAS, 5169 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5170 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5171 .writefn = sdcr_write, 5172 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5173 REGINFO_SENTINEL 5174 }; 5175 5176 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5177 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5178 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5179 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5180 .access = PL2_RW, 5181 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5182 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5183 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5184 .access = PL2_RW, 5185 .type = ARM_CP_CONST, .resetvalue = 0 }, 5186 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5187 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5188 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5189 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5190 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5191 .access = PL2_RW, 5192 .type = ARM_CP_CONST, .resetvalue = 0 }, 5193 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5194 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5195 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5196 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5197 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5198 .access = PL2_RW, .type = ARM_CP_CONST, 5199 .resetvalue = 0 }, 5200 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5201 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5202 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5203 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5204 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5205 .access = PL2_RW, .type = ARM_CP_CONST, 5206 .resetvalue = 0 }, 5207 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5208 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5209 .access = PL2_RW, .type = ARM_CP_CONST, 5210 .resetvalue = 0 }, 5211 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5212 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5213 .access = PL2_RW, .type = ARM_CP_CONST, 5214 .resetvalue = 0 }, 5215 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5216 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5217 .access = PL2_RW, .type = ARM_CP_CONST, 5218 .resetvalue = 0 }, 5219 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5220 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5221 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5222 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5223 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5224 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5225 .type = ARM_CP_CONST, .resetvalue = 0 }, 5226 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5227 .cp = 15, .opc1 = 6, .crm = 2, 5228 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5229 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5230 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5231 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5232 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5233 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5234 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5235 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5236 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5237 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5238 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5239 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5240 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5241 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5242 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5243 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5244 .resetvalue = 0 }, 5245 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5246 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5247 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5248 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5249 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5250 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5251 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5252 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5253 .resetvalue = 0 }, 5254 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5255 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5256 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5257 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5258 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5259 .resetvalue = 0 }, 5260 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5261 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5262 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5263 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5264 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5265 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5266 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5267 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5268 .access = PL2_RW, .accessfn = access_tda, 5269 .type = ARM_CP_CONST, .resetvalue = 0 }, 5270 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5271 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5272 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5273 .type = ARM_CP_CONST, .resetvalue = 0 }, 5274 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5275 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5276 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5277 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5278 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5279 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5280 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5281 .type = ARM_CP_CONST, 5282 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5283 .access = PL2_RW, .resetvalue = 0 }, 5284 REGINFO_SENTINEL 5285 }; 5286 5287 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5288 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5289 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5290 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5291 .access = PL2_RW, 5292 .type = ARM_CP_CONST, .resetvalue = 0 }, 5293 REGINFO_SENTINEL 5294 }; 5295 5296 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5297 { 5298 ARMCPU *cpu = env_archcpu(env); 5299 5300 if (arm_feature(env, ARM_FEATURE_V8)) { 5301 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5302 } else { 5303 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5304 } 5305 5306 if (arm_feature(env, ARM_FEATURE_EL3)) { 5307 valid_mask &= ~HCR_HCD; 5308 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5309 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5310 * However, if we're using the SMC PSCI conduit then QEMU is 5311 * effectively acting like EL3 firmware and so the guest at 5312 * EL2 should retain the ability to prevent EL1 from being 5313 * able to make SMC calls into the ersatz firmware, so in 5314 * that case HCR.TSC should be read/write. 5315 */ 5316 valid_mask &= ~HCR_TSC; 5317 } 5318 5319 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5320 if (cpu_isar_feature(aa64_vh, cpu)) { 5321 valid_mask |= HCR_E2H; 5322 } 5323 if (cpu_isar_feature(aa64_lor, cpu)) { 5324 valid_mask |= HCR_TLOR; 5325 } 5326 if (cpu_isar_feature(aa64_pauth, cpu)) { 5327 valid_mask |= HCR_API | HCR_APK; 5328 } 5329 if (cpu_isar_feature(aa64_mte, cpu)) { 5330 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5331 } 5332 } 5333 5334 /* Clear RES0 bits. */ 5335 value &= valid_mask; 5336 5337 /* 5338 * These bits change the MMU setup: 5339 * HCR_VM enables stage 2 translation 5340 * HCR_PTW forbids certain page-table setups 5341 * HCR_DC disables stage1 and enables stage2 translation 5342 * HCR_DCT enables tagging on (disabled) stage1 translation 5343 */ 5344 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5345 tlb_flush(CPU(cpu)); 5346 } 5347 env->cp15.hcr_el2 = value; 5348 5349 /* 5350 * Updates to VI and VF require us to update the status of 5351 * virtual interrupts, which are the logical OR of these bits 5352 * and the state of the input lines from the GIC. (This requires 5353 * that we have the iothread lock, which is done by marking the 5354 * reginfo structs as ARM_CP_IO.) 5355 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5356 * possible for it to be taken immediately, because VIRQ and 5357 * VFIQ are masked unless running at EL0 or EL1, and HCR 5358 * can only be written at EL2. 5359 */ 5360 g_assert(qemu_mutex_iothread_locked()); 5361 arm_cpu_update_virq(cpu); 5362 arm_cpu_update_vfiq(cpu); 5363 } 5364 5365 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5366 { 5367 do_hcr_write(env, value, 0); 5368 } 5369 5370 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5371 uint64_t value) 5372 { 5373 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5374 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5375 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5376 } 5377 5378 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5379 uint64_t value) 5380 { 5381 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5382 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5383 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5384 } 5385 5386 /* 5387 * Return the effective value of HCR_EL2. 5388 * Bits that are not included here: 5389 * RW (read from SCR_EL3.RW as needed) 5390 */ 5391 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5392 { 5393 uint64_t ret = env->cp15.hcr_el2; 5394 5395 if (!arm_is_el2_enabled(env)) { 5396 /* 5397 * "This register has no effect if EL2 is not enabled in the 5398 * current Security state". This is ARMv8.4-SecEL2 speak for 5399 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5400 * 5401 * Prior to that, the language was "In an implementation that 5402 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5403 * as if this field is 0 for all purposes other than a direct 5404 * read or write access of HCR_EL2". With lots of enumeration 5405 * on a per-field basis. In current QEMU, this is condition 5406 * is arm_is_secure_below_el3. 5407 * 5408 * Since the v8.4 language applies to the entire register, and 5409 * appears to be backward compatible, use that. 5410 */ 5411 return 0; 5412 } 5413 5414 /* 5415 * For a cpu that supports both aarch64 and aarch32, we can set bits 5416 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5417 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5418 */ 5419 if (!arm_el_is_aa64(env, 2)) { 5420 uint64_t aa32_valid; 5421 5422 /* 5423 * These bits are up-to-date as of ARMv8.6. 5424 * For HCR, it's easiest to list just the 2 bits that are invalid. 5425 * For HCR2, list those that are valid. 5426 */ 5427 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5428 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5429 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5430 ret &= aa32_valid; 5431 } 5432 5433 if (ret & HCR_TGE) { 5434 /* These bits are up-to-date as of ARMv8.6. */ 5435 if (ret & HCR_E2H) { 5436 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5437 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5438 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5439 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5440 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5441 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5442 } else { 5443 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5444 } 5445 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5446 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5447 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5448 HCR_TLOR); 5449 } 5450 5451 return ret; 5452 } 5453 5454 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5455 uint64_t value) 5456 { 5457 /* 5458 * For A-profile AArch32 EL3, if NSACR.CP10 5459 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5460 */ 5461 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5462 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5463 value &= ~(0x3 << 10); 5464 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5465 } 5466 env->cp15.cptr_el[2] = value; 5467 } 5468 5469 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5470 { 5471 /* 5472 * For A-profile AArch32 EL3, if NSACR.CP10 5473 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5474 */ 5475 uint64_t value = env->cp15.cptr_el[2]; 5476 5477 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5478 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5479 value |= 0x3 << 10; 5480 } 5481 return value; 5482 } 5483 5484 static const ARMCPRegInfo el2_cp_reginfo[] = { 5485 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5486 .type = ARM_CP_IO, 5487 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5488 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5489 .writefn = hcr_write }, 5490 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5491 .type = ARM_CP_ALIAS | ARM_CP_IO, 5492 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5493 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5494 .writefn = hcr_writelow }, 5495 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5496 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5497 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5498 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5499 .type = ARM_CP_ALIAS, 5500 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5501 .access = PL2_RW, 5502 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5503 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5504 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5505 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5506 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5507 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5508 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5509 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5510 .type = ARM_CP_ALIAS, 5511 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5512 .access = PL2_RW, 5513 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5514 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5515 .type = ARM_CP_ALIAS, 5516 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5517 .access = PL2_RW, 5518 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5519 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5520 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5521 .access = PL2_RW, .writefn = vbar_write, 5522 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5523 .resetvalue = 0 }, 5524 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5525 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5526 .access = PL3_RW, .type = ARM_CP_ALIAS, 5527 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5528 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5529 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5530 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5531 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5532 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5533 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5534 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5535 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5536 .resetvalue = 0 }, 5537 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5538 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5539 .access = PL2_RW, .type = ARM_CP_ALIAS, 5540 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5541 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5542 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5543 .access = PL2_RW, .type = ARM_CP_CONST, 5544 .resetvalue = 0 }, 5545 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5546 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5547 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5548 .access = PL2_RW, .type = ARM_CP_CONST, 5549 .resetvalue = 0 }, 5550 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5551 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5552 .access = PL2_RW, .type = ARM_CP_CONST, 5553 .resetvalue = 0 }, 5554 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5555 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5556 .access = PL2_RW, .type = ARM_CP_CONST, 5557 .resetvalue = 0 }, 5558 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5559 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5560 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5561 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5562 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5563 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5564 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5565 .type = ARM_CP_ALIAS, 5566 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5567 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5568 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5569 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5570 .access = PL2_RW, 5571 /* no .writefn needed as this can't cause an ASID change; 5572 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5573 */ 5574 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5575 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5576 .cp = 15, .opc1 = 6, .crm = 2, 5577 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5578 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5579 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5580 .writefn = vttbr_write }, 5581 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5582 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5583 .access = PL2_RW, .writefn = vttbr_write, 5584 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5585 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5586 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5587 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5588 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5589 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5590 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5591 .access = PL2_RW, .resetvalue = 0, 5592 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5593 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5594 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5595 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5596 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5597 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5598 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5599 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5600 { .name = "TLBIALLNSNH", 5601 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5602 .type = ARM_CP_NO_RAW, .access = PL2_W, 5603 .writefn = tlbiall_nsnh_write }, 5604 { .name = "TLBIALLNSNHIS", 5605 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5606 .type = ARM_CP_NO_RAW, .access = PL2_W, 5607 .writefn = tlbiall_nsnh_is_write }, 5608 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5609 .type = ARM_CP_NO_RAW, .access = PL2_W, 5610 .writefn = tlbiall_hyp_write }, 5611 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5612 .type = ARM_CP_NO_RAW, .access = PL2_W, 5613 .writefn = tlbiall_hyp_is_write }, 5614 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5615 .type = ARM_CP_NO_RAW, .access = PL2_W, 5616 .writefn = tlbimva_hyp_write }, 5617 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5618 .type = ARM_CP_NO_RAW, .access = PL2_W, 5619 .writefn = tlbimva_hyp_is_write }, 5620 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5621 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5622 .type = ARM_CP_NO_RAW, .access = PL2_W, 5623 .writefn = tlbi_aa64_alle2_write }, 5624 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5625 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5626 .type = ARM_CP_NO_RAW, .access = PL2_W, 5627 .writefn = tlbi_aa64_vae2_write }, 5628 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5629 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5630 .access = PL2_W, .type = ARM_CP_NO_RAW, 5631 .writefn = tlbi_aa64_vae2_write }, 5632 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5633 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5634 .access = PL2_W, .type = ARM_CP_NO_RAW, 5635 .writefn = tlbi_aa64_alle2is_write }, 5636 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5637 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5638 .type = ARM_CP_NO_RAW, .access = PL2_W, 5639 .writefn = tlbi_aa64_vae2is_write }, 5640 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5641 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5642 .access = PL2_W, .type = ARM_CP_NO_RAW, 5643 .writefn = tlbi_aa64_vae2is_write }, 5644 #ifndef CONFIG_USER_ONLY 5645 /* Unlike the other EL2-related AT operations, these must 5646 * UNDEF from EL3 if EL2 is not implemented, which is why we 5647 * define them here rather than with the rest of the AT ops. 5648 */ 5649 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5650 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5651 .access = PL2_W, .accessfn = at_s1e2_access, 5652 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5653 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5654 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5655 .access = PL2_W, .accessfn = at_s1e2_access, 5656 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5657 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5658 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5659 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5660 * to behave as if SCR.NS was 1. 5661 */ 5662 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5663 .access = PL2_W, 5664 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5665 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5666 .access = PL2_W, 5667 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5668 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5669 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5670 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5671 * reset values as IMPDEF. We choose to reset to 3 to comply with 5672 * both ARMv7 and ARMv8. 5673 */ 5674 .access = PL2_RW, .resetvalue = 3, 5675 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5676 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5677 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5678 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5679 .writefn = gt_cntvoff_write, 5680 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5681 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5682 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5683 .writefn = gt_cntvoff_write, 5684 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5685 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5686 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5687 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5688 .type = ARM_CP_IO, .access = PL2_RW, 5689 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5690 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5691 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5692 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5693 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5694 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5695 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5696 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5697 .resetfn = gt_hyp_timer_reset, 5698 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5699 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5700 .type = ARM_CP_IO, 5701 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5702 .access = PL2_RW, 5703 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5704 .resetvalue = 0, 5705 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5706 #endif 5707 /* The only field of MDCR_EL2 that has a defined architectural reset value 5708 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5709 * don't implement any PMU event counters, so using zero as a reset 5710 * value for MDCR_EL2 is okay 5711 */ 5712 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5713 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5714 .access = PL2_RW, .resetvalue = 0, 5715 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5716 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5717 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5718 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5719 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5720 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5721 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5722 .access = PL2_RW, 5723 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5724 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5725 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5726 .access = PL2_RW, 5727 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5728 REGINFO_SENTINEL 5729 }; 5730 5731 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5732 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5733 .type = ARM_CP_ALIAS | ARM_CP_IO, 5734 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5735 .access = PL2_RW, 5736 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5737 .writefn = hcr_writehigh }, 5738 REGINFO_SENTINEL 5739 }; 5740 5741 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5742 bool isread) 5743 { 5744 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5745 return CP_ACCESS_OK; 5746 } 5747 return CP_ACCESS_TRAP_UNCATEGORIZED; 5748 } 5749 5750 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5751 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5752 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5753 .access = PL2_RW, .accessfn = sel2_access, 5754 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5755 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5756 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5757 .access = PL2_RW, .accessfn = sel2_access, 5758 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5759 REGINFO_SENTINEL 5760 }; 5761 5762 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5763 bool isread) 5764 { 5765 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5766 * At Secure EL1 it traps to EL3 or EL2. 5767 */ 5768 if (arm_current_el(env) == 3) { 5769 return CP_ACCESS_OK; 5770 } 5771 if (arm_is_secure_below_el3(env)) { 5772 if (env->cp15.scr_el3 & SCR_EEL2) { 5773 return CP_ACCESS_TRAP_EL2; 5774 } 5775 return CP_ACCESS_TRAP_EL3; 5776 } 5777 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5778 if (isread) { 5779 return CP_ACCESS_OK; 5780 } 5781 return CP_ACCESS_TRAP_UNCATEGORIZED; 5782 } 5783 5784 static const ARMCPRegInfo el3_cp_reginfo[] = { 5785 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5786 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5787 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5788 .resetvalue = 0, .writefn = scr_write }, 5789 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5790 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5791 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5792 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5793 .writefn = scr_write }, 5794 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5795 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5796 .access = PL3_RW, .resetvalue = 0, 5797 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5798 { .name = "SDER", 5799 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5800 .access = PL3_RW, .resetvalue = 0, 5801 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5802 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5803 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5804 .writefn = vbar_write, .resetvalue = 0, 5805 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5806 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5807 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5808 .access = PL3_RW, .resetvalue = 0, 5809 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5810 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5811 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5812 .access = PL3_RW, 5813 /* no .writefn needed as this can't cause an ASID change; 5814 * we must provide a .raw_writefn and .resetfn because we handle 5815 * reset and migration for the AArch32 TTBCR(S), which might be 5816 * using mask and base_mask. 5817 */ 5818 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5819 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5820 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5821 .type = ARM_CP_ALIAS, 5822 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5823 .access = PL3_RW, 5824 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5825 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5826 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5827 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5828 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5829 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5830 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5831 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5832 .type = ARM_CP_ALIAS, 5833 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5834 .access = PL3_RW, 5835 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5836 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5837 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5838 .access = PL3_RW, .writefn = vbar_write, 5839 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5840 .resetvalue = 0 }, 5841 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5842 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5843 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5844 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5845 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5846 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5847 .access = PL3_RW, .resetvalue = 0, 5848 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5849 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5850 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5851 .access = PL3_RW, .type = ARM_CP_CONST, 5852 .resetvalue = 0 }, 5853 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5854 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5855 .access = PL3_RW, .type = ARM_CP_CONST, 5856 .resetvalue = 0 }, 5857 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5858 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5859 .access = PL3_RW, .type = ARM_CP_CONST, 5860 .resetvalue = 0 }, 5861 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5862 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5863 .access = PL3_W, .type = ARM_CP_NO_RAW, 5864 .writefn = tlbi_aa64_alle3is_write }, 5865 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5866 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5867 .access = PL3_W, .type = ARM_CP_NO_RAW, 5868 .writefn = tlbi_aa64_vae3is_write }, 5869 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5870 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5871 .access = PL3_W, .type = ARM_CP_NO_RAW, 5872 .writefn = tlbi_aa64_vae3is_write }, 5873 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5874 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5875 .access = PL3_W, .type = ARM_CP_NO_RAW, 5876 .writefn = tlbi_aa64_alle3_write }, 5877 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5878 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5879 .access = PL3_W, .type = ARM_CP_NO_RAW, 5880 .writefn = tlbi_aa64_vae3_write }, 5881 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5882 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5883 .access = PL3_W, .type = ARM_CP_NO_RAW, 5884 .writefn = tlbi_aa64_vae3_write }, 5885 REGINFO_SENTINEL 5886 }; 5887 5888 #ifndef CONFIG_USER_ONLY 5889 /* Test if system register redirection is to occur in the current state. */ 5890 static bool redirect_for_e2h(CPUARMState *env) 5891 { 5892 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5893 } 5894 5895 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5896 { 5897 CPReadFn *readfn; 5898 5899 if (redirect_for_e2h(env)) { 5900 /* Switch to the saved EL2 version of the register. */ 5901 ri = ri->opaque; 5902 readfn = ri->readfn; 5903 } else { 5904 readfn = ri->orig_readfn; 5905 } 5906 if (readfn == NULL) { 5907 readfn = raw_read; 5908 } 5909 return readfn(env, ri); 5910 } 5911 5912 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5913 uint64_t value) 5914 { 5915 CPWriteFn *writefn; 5916 5917 if (redirect_for_e2h(env)) { 5918 /* Switch to the saved EL2 version of the register. */ 5919 ri = ri->opaque; 5920 writefn = ri->writefn; 5921 } else { 5922 writefn = ri->orig_writefn; 5923 } 5924 if (writefn == NULL) { 5925 writefn = raw_write; 5926 } 5927 writefn(env, ri, value); 5928 } 5929 5930 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5931 { 5932 struct E2HAlias { 5933 uint32_t src_key, dst_key, new_key; 5934 const char *src_name, *dst_name, *new_name; 5935 bool (*feature)(const ARMISARegisters *id); 5936 }; 5937 5938 #define K(op0, op1, crn, crm, op2) \ 5939 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5940 5941 static const struct E2HAlias aliases[] = { 5942 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5943 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5944 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5945 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5946 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5947 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5948 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5949 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5950 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5951 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5952 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5953 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5954 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5955 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5956 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5957 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5958 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5959 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5960 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5961 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5962 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5963 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5964 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5965 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5966 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5967 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5968 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5969 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5970 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5971 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5972 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5973 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5974 5975 /* 5976 * Note that redirection of ZCR is mentioned in the description 5977 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5978 * not in the summary table. 5979 */ 5980 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5981 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5982 5983 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5984 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5985 5986 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5987 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5988 }; 5989 #undef K 5990 5991 size_t i; 5992 5993 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5994 const struct E2HAlias *a = &aliases[i]; 5995 ARMCPRegInfo *src_reg, *dst_reg; 5996 5997 if (a->feature && !a->feature(&cpu->isar)) { 5998 continue; 5999 } 6000 6001 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 6002 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 6003 g_assert(src_reg != NULL); 6004 g_assert(dst_reg != NULL); 6005 6006 /* Cross-compare names to detect typos in the keys. */ 6007 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6008 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6009 6010 /* None of the core system registers use opaque; we will. */ 6011 g_assert(src_reg->opaque == NULL); 6012 6013 /* Create alias before redirection so we dup the right data. */ 6014 if (a->new_key) { 6015 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6016 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 6017 bool ok; 6018 6019 new_reg->name = a->new_name; 6020 new_reg->type |= ARM_CP_ALIAS; 6021 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6022 new_reg->access &= PL2_RW | PL3_RW; 6023 6024 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 6025 g_assert(ok); 6026 } 6027 6028 src_reg->opaque = dst_reg; 6029 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6030 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6031 if (!src_reg->raw_readfn) { 6032 src_reg->raw_readfn = raw_read; 6033 } 6034 if (!src_reg->raw_writefn) { 6035 src_reg->raw_writefn = raw_write; 6036 } 6037 src_reg->readfn = el2_e2h_read; 6038 src_reg->writefn = el2_e2h_write; 6039 } 6040 } 6041 #endif 6042 6043 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6044 bool isread) 6045 { 6046 int cur_el = arm_current_el(env); 6047 6048 if (cur_el < 2) { 6049 uint64_t hcr = arm_hcr_el2_eff(env); 6050 6051 if (cur_el == 0) { 6052 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6053 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6054 return CP_ACCESS_TRAP_EL2; 6055 } 6056 } else { 6057 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6058 return CP_ACCESS_TRAP; 6059 } 6060 if (hcr & HCR_TID2) { 6061 return CP_ACCESS_TRAP_EL2; 6062 } 6063 } 6064 } else if (hcr & HCR_TID2) { 6065 return CP_ACCESS_TRAP_EL2; 6066 } 6067 } 6068 6069 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6070 return CP_ACCESS_TRAP_EL2; 6071 } 6072 6073 return CP_ACCESS_OK; 6074 } 6075 6076 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6077 uint64_t value) 6078 { 6079 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6080 * read via a bit in OSLSR_EL1. 6081 */ 6082 int oslock; 6083 6084 if (ri->state == ARM_CP_STATE_AA32) { 6085 oslock = (value == 0xC5ACCE55); 6086 } else { 6087 oslock = value & 1; 6088 } 6089 6090 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6091 } 6092 6093 static const ARMCPRegInfo debug_cp_reginfo[] = { 6094 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6095 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6096 * unlike DBGDRAR it is never accessible from EL0. 6097 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6098 * accessor. 6099 */ 6100 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6101 .access = PL0_R, .accessfn = access_tdra, 6102 .type = ARM_CP_CONST, .resetvalue = 0 }, 6103 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6104 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6105 .access = PL1_R, .accessfn = access_tdra, 6106 .type = ARM_CP_CONST, .resetvalue = 0 }, 6107 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6108 .access = PL0_R, .accessfn = access_tdra, 6109 .type = ARM_CP_CONST, .resetvalue = 0 }, 6110 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6111 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6112 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6113 .access = PL1_RW, .accessfn = access_tda, 6114 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6115 .resetvalue = 0 }, 6116 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6117 * We don't implement the configurable EL0 access. 6118 */ 6119 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6120 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6121 .type = ARM_CP_ALIAS, 6122 .access = PL1_R, .accessfn = access_tda, 6123 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6124 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6125 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6126 .access = PL1_W, .type = ARM_CP_NO_RAW, 6127 .accessfn = access_tdosa, 6128 .writefn = oslar_write }, 6129 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6130 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6131 .access = PL1_R, .resetvalue = 10, 6132 .accessfn = access_tdosa, 6133 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6134 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6135 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6136 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6137 .access = PL1_RW, .accessfn = access_tdosa, 6138 .type = ARM_CP_NOP }, 6139 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6140 * implement vector catch debug events yet. 6141 */ 6142 { .name = "DBGVCR", 6143 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6144 .access = PL1_RW, .accessfn = access_tda, 6145 .type = ARM_CP_NOP }, 6146 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6147 * to save and restore a 32-bit guest's DBGVCR) 6148 */ 6149 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6150 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6151 .access = PL2_RW, .accessfn = access_tda, 6152 .type = ARM_CP_NOP }, 6153 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6154 * Channel but Linux may try to access this register. The 32-bit 6155 * alias is DBGDCCINT. 6156 */ 6157 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6158 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6159 .access = PL1_RW, .accessfn = access_tda, 6160 .type = ARM_CP_NOP }, 6161 REGINFO_SENTINEL 6162 }; 6163 6164 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6165 /* 64 bit access versions of the (dummy) debug registers */ 6166 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6167 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6168 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6169 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6170 REGINFO_SENTINEL 6171 }; 6172 6173 /* Return the exception level to which exceptions should be taken 6174 * via SVEAccessTrap. If an exception should be routed through 6175 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6176 * take care of raising that exception. 6177 * C.f. the ARM pseudocode function CheckSVEEnabled. 6178 */ 6179 int sve_exception_el(CPUARMState *env, int el) 6180 { 6181 #ifndef CONFIG_USER_ONLY 6182 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6183 6184 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6185 bool disabled = false; 6186 6187 /* The CPACR.ZEN controls traps to EL1: 6188 * 0, 2 : trap EL0 and EL1 accesses 6189 * 1 : trap only EL0 accesses 6190 * 3 : trap no accesses 6191 */ 6192 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6193 disabled = true; 6194 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6195 disabled = el == 0; 6196 } 6197 if (disabled) { 6198 /* route_to_el2 */ 6199 return hcr_el2 & HCR_TGE ? 2 : 1; 6200 } 6201 6202 /* Check CPACR.FPEN. */ 6203 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6204 disabled = true; 6205 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6206 disabled = el == 0; 6207 } 6208 if (disabled) { 6209 return 0; 6210 } 6211 } 6212 6213 /* CPTR_EL2. Since TZ and TFP are positive, 6214 * they will be zero when EL2 is not present. 6215 */ 6216 if (el <= 2 && arm_is_el2_enabled(env)) { 6217 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6218 return 2; 6219 } 6220 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6221 return 0; 6222 } 6223 } 6224 6225 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6226 if (arm_feature(env, ARM_FEATURE_EL3) 6227 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6228 return 3; 6229 } 6230 #endif 6231 return 0; 6232 } 6233 6234 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6235 { 6236 uint32_t end_len; 6237 6238 end_len = start_len &= 0xf; 6239 if (!test_bit(start_len, cpu->sve_vq_map)) { 6240 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6241 assert(end_len < start_len); 6242 } 6243 return end_len; 6244 } 6245 6246 /* 6247 * Given that SVE is enabled, return the vector length for EL. 6248 */ 6249 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6250 { 6251 ARMCPU *cpu = env_archcpu(env); 6252 uint32_t zcr_len = cpu->sve_max_vq - 1; 6253 6254 if (el <= 1) { 6255 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6256 } 6257 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6258 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6259 } 6260 if (arm_feature(env, ARM_FEATURE_EL3)) { 6261 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6262 } 6263 6264 return sve_zcr_get_valid_len(cpu, zcr_len); 6265 } 6266 6267 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6268 uint64_t value) 6269 { 6270 int cur_el = arm_current_el(env); 6271 int old_len = sve_zcr_len_for_el(env, cur_el); 6272 int new_len; 6273 6274 /* Bits other than [3:0] are RAZ/WI. */ 6275 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6276 raw_write(env, ri, value & 0xf); 6277 6278 /* 6279 * Because we arrived here, we know both FP and SVE are enabled; 6280 * otherwise we would have trapped access to the ZCR_ELn register. 6281 */ 6282 new_len = sve_zcr_len_for_el(env, cur_el); 6283 if (new_len < old_len) { 6284 aarch64_sve_narrow_vq(env, new_len + 1); 6285 } 6286 } 6287 6288 static const ARMCPRegInfo zcr_el1_reginfo = { 6289 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6290 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6291 .access = PL1_RW, .type = ARM_CP_SVE, 6292 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6293 .writefn = zcr_write, .raw_writefn = raw_write 6294 }; 6295 6296 static const ARMCPRegInfo zcr_el2_reginfo = { 6297 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6298 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6299 .access = PL2_RW, .type = ARM_CP_SVE, 6300 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6301 .writefn = zcr_write, .raw_writefn = raw_write 6302 }; 6303 6304 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6305 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6306 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6307 .access = PL2_RW, .type = ARM_CP_SVE, 6308 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6309 }; 6310 6311 static const ARMCPRegInfo zcr_el3_reginfo = { 6312 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6313 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6314 .access = PL3_RW, .type = ARM_CP_SVE, 6315 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6316 .writefn = zcr_write, .raw_writefn = raw_write 6317 }; 6318 6319 void hw_watchpoint_update(ARMCPU *cpu, int n) 6320 { 6321 CPUARMState *env = &cpu->env; 6322 vaddr len = 0; 6323 vaddr wvr = env->cp15.dbgwvr[n]; 6324 uint64_t wcr = env->cp15.dbgwcr[n]; 6325 int mask; 6326 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6327 6328 if (env->cpu_watchpoint[n]) { 6329 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6330 env->cpu_watchpoint[n] = NULL; 6331 } 6332 6333 if (!extract64(wcr, 0, 1)) { 6334 /* E bit clear : watchpoint disabled */ 6335 return; 6336 } 6337 6338 switch (extract64(wcr, 3, 2)) { 6339 case 0: 6340 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6341 return; 6342 case 1: 6343 flags |= BP_MEM_READ; 6344 break; 6345 case 2: 6346 flags |= BP_MEM_WRITE; 6347 break; 6348 case 3: 6349 flags |= BP_MEM_ACCESS; 6350 break; 6351 } 6352 6353 /* Attempts to use both MASK and BAS fields simultaneously are 6354 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6355 * thus generating a watchpoint for every byte in the masked region. 6356 */ 6357 mask = extract64(wcr, 24, 4); 6358 if (mask == 1 || mask == 2) { 6359 /* Reserved values of MASK; we must act as if the mask value was 6360 * some non-reserved value, or as if the watchpoint were disabled. 6361 * We choose the latter. 6362 */ 6363 return; 6364 } else if (mask) { 6365 /* Watchpoint covers an aligned area up to 2GB in size */ 6366 len = 1ULL << mask; 6367 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6368 * whether the watchpoint fires when the unmasked bits match; we opt 6369 * to generate the exceptions. 6370 */ 6371 wvr &= ~(len - 1); 6372 } else { 6373 /* Watchpoint covers bytes defined by the byte address select bits */ 6374 int bas = extract64(wcr, 5, 8); 6375 int basstart; 6376 6377 if (extract64(wvr, 2, 1)) { 6378 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6379 * ignored, and BAS[3:0] define which bytes to watch. 6380 */ 6381 bas &= 0xf; 6382 } 6383 6384 if (bas == 0) { 6385 /* This must act as if the watchpoint is disabled */ 6386 return; 6387 } 6388 6389 /* The BAS bits are supposed to be programmed to indicate a contiguous 6390 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6391 * we fire for each byte in the word/doubleword addressed by the WVR. 6392 * We choose to ignore any non-zero bits after the first range of 1s. 6393 */ 6394 basstart = ctz32(bas); 6395 len = cto32(bas >> basstart); 6396 wvr += basstart; 6397 } 6398 6399 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6400 &env->cpu_watchpoint[n]); 6401 } 6402 6403 void hw_watchpoint_update_all(ARMCPU *cpu) 6404 { 6405 int i; 6406 CPUARMState *env = &cpu->env; 6407 6408 /* Completely clear out existing QEMU watchpoints and our array, to 6409 * avoid possible stale entries following migration load. 6410 */ 6411 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6412 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6413 6414 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6415 hw_watchpoint_update(cpu, i); 6416 } 6417 } 6418 6419 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6420 uint64_t value) 6421 { 6422 ARMCPU *cpu = env_archcpu(env); 6423 int i = ri->crm; 6424 6425 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6426 * register reads and behaves as if values written are sign extended. 6427 * Bits [1:0] are RES0. 6428 */ 6429 value = sextract64(value, 0, 49) & ~3ULL; 6430 6431 raw_write(env, ri, value); 6432 hw_watchpoint_update(cpu, i); 6433 } 6434 6435 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6436 uint64_t value) 6437 { 6438 ARMCPU *cpu = env_archcpu(env); 6439 int i = ri->crm; 6440 6441 raw_write(env, ri, value); 6442 hw_watchpoint_update(cpu, i); 6443 } 6444 6445 void hw_breakpoint_update(ARMCPU *cpu, int n) 6446 { 6447 CPUARMState *env = &cpu->env; 6448 uint64_t bvr = env->cp15.dbgbvr[n]; 6449 uint64_t bcr = env->cp15.dbgbcr[n]; 6450 vaddr addr; 6451 int bt; 6452 int flags = BP_CPU; 6453 6454 if (env->cpu_breakpoint[n]) { 6455 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6456 env->cpu_breakpoint[n] = NULL; 6457 } 6458 6459 if (!extract64(bcr, 0, 1)) { 6460 /* E bit clear : watchpoint disabled */ 6461 return; 6462 } 6463 6464 bt = extract64(bcr, 20, 4); 6465 6466 switch (bt) { 6467 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6468 case 5: /* linked address mismatch (reserved if AArch64) */ 6469 qemu_log_mask(LOG_UNIMP, 6470 "arm: address mismatch breakpoint types not implemented\n"); 6471 return; 6472 case 0: /* unlinked address match */ 6473 case 1: /* linked address match */ 6474 { 6475 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6476 * we behave as if the register was sign extended. Bits [1:0] are 6477 * RES0. The BAS field is used to allow setting breakpoints on 16 6478 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6479 * a bp will fire if the addresses covered by the bp and the addresses 6480 * covered by the insn overlap but the insn doesn't start at the 6481 * start of the bp address range. We choose to require the insn and 6482 * the bp to have the same address. The constraints on writing to 6483 * BAS enforced in dbgbcr_write mean we have only four cases: 6484 * 0b0000 => no breakpoint 6485 * 0b0011 => breakpoint on addr 6486 * 0b1100 => breakpoint on addr + 2 6487 * 0b1111 => breakpoint on addr 6488 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6489 */ 6490 int bas = extract64(bcr, 5, 4); 6491 addr = sextract64(bvr, 0, 49) & ~3ULL; 6492 if (bas == 0) { 6493 return; 6494 } 6495 if (bas == 0xc) { 6496 addr += 2; 6497 } 6498 break; 6499 } 6500 case 2: /* unlinked context ID match */ 6501 case 8: /* unlinked VMID match (reserved if no EL2) */ 6502 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6503 qemu_log_mask(LOG_UNIMP, 6504 "arm: unlinked context breakpoint types not implemented\n"); 6505 return; 6506 case 9: /* linked VMID match (reserved if no EL2) */ 6507 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6508 case 3: /* linked context ID match */ 6509 default: 6510 /* We must generate no events for Linked context matches (unless 6511 * they are linked to by some other bp/wp, which is handled in 6512 * updates for the linking bp/wp). We choose to also generate no events 6513 * for reserved values. 6514 */ 6515 return; 6516 } 6517 6518 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6519 } 6520 6521 void hw_breakpoint_update_all(ARMCPU *cpu) 6522 { 6523 int i; 6524 CPUARMState *env = &cpu->env; 6525 6526 /* Completely clear out existing QEMU breakpoints and our array, to 6527 * avoid possible stale entries following migration load. 6528 */ 6529 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6530 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6531 6532 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6533 hw_breakpoint_update(cpu, i); 6534 } 6535 } 6536 6537 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6538 uint64_t value) 6539 { 6540 ARMCPU *cpu = env_archcpu(env); 6541 int i = ri->crm; 6542 6543 raw_write(env, ri, value); 6544 hw_breakpoint_update(cpu, i); 6545 } 6546 6547 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6548 uint64_t value) 6549 { 6550 ARMCPU *cpu = env_archcpu(env); 6551 int i = ri->crm; 6552 6553 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6554 * copy of BAS[0]. 6555 */ 6556 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6557 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6558 6559 raw_write(env, ri, value); 6560 hw_breakpoint_update(cpu, i); 6561 } 6562 6563 static void define_debug_regs(ARMCPU *cpu) 6564 { 6565 /* Define v7 and v8 architectural debug registers. 6566 * These are just dummy implementations for now. 6567 */ 6568 int i; 6569 int wrps, brps, ctx_cmps; 6570 ARMCPRegInfo dbgdidr = { 6571 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 6572 .access = PL0_R, .accessfn = access_tda, 6573 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6574 }; 6575 6576 /* Note that all these register fields hold "number of Xs minus 1". */ 6577 brps = arm_num_brps(cpu); 6578 wrps = arm_num_wrps(cpu); 6579 ctx_cmps = arm_num_ctx_cmps(cpu); 6580 6581 assert(ctx_cmps <= brps); 6582 6583 define_one_arm_cp_reg(cpu, &dbgdidr); 6584 define_arm_cp_regs(cpu, debug_cp_reginfo); 6585 6586 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6587 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6588 } 6589 6590 for (i = 0; i < brps; i++) { 6591 ARMCPRegInfo dbgregs[] = { 6592 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6593 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6594 .access = PL1_RW, .accessfn = access_tda, 6595 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6596 .writefn = dbgbvr_write, .raw_writefn = raw_write 6597 }, 6598 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6599 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6600 .access = PL1_RW, .accessfn = access_tda, 6601 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6602 .writefn = dbgbcr_write, .raw_writefn = raw_write 6603 }, 6604 REGINFO_SENTINEL 6605 }; 6606 define_arm_cp_regs(cpu, dbgregs); 6607 } 6608 6609 for (i = 0; i < wrps; i++) { 6610 ARMCPRegInfo dbgregs[] = { 6611 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6612 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6613 .access = PL1_RW, .accessfn = access_tda, 6614 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6615 .writefn = dbgwvr_write, .raw_writefn = raw_write 6616 }, 6617 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6618 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6619 .access = PL1_RW, .accessfn = access_tda, 6620 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6621 .writefn = dbgwcr_write, .raw_writefn = raw_write 6622 }, 6623 REGINFO_SENTINEL 6624 }; 6625 define_arm_cp_regs(cpu, dbgregs); 6626 } 6627 } 6628 6629 static void define_pmu_regs(ARMCPU *cpu) 6630 { 6631 /* 6632 * v7 performance monitor control register: same implementor 6633 * field as main ID register, and we implement four counters in 6634 * addition to the cycle count register. 6635 */ 6636 unsigned int i, pmcrn = 4; 6637 ARMCPRegInfo pmcr = { 6638 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6639 .access = PL0_RW, 6640 .type = ARM_CP_IO | ARM_CP_ALIAS, 6641 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6642 .accessfn = pmreg_access, .writefn = pmcr_write, 6643 .raw_writefn = raw_write, 6644 }; 6645 ARMCPRegInfo pmcr64 = { 6646 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6647 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6648 .access = PL0_RW, .accessfn = pmreg_access, 6649 .type = ARM_CP_IO, 6650 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6651 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6652 PMCRLC, 6653 .writefn = pmcr_write, .raw_writefn = raw_write, 6654 }; 6655 define_one_arm_cp_reg(cpu, &pmcr); 6656 define_one_arm_cp_reg(cpu, &pmcr64); 6657 for (i = 0; i < pmcrn; i++) { 6658 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6659 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6660 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6661 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6662 ARMCPRegInfo pmev_regs[] = { 6663 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6664 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6665 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6666 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6667 .accessfn = pmreg_access }, 6668 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6669 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6670 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6671 .type = ARM_CP_IO, 6672 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6673 .raw_readfn = pmevcntr_rawread, 6674 .raw_writefn = pmevcntr_rawwrite }, 6675 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6676 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6677 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6678 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6679 .accessfn = pmreg_access }, 6680 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6681 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6682 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6683 .type = ARM_CP_IO, 6684 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6685 .raw_writefn = pmevtyper_rawwrite }, 6686 REGINFO_SENTINEL 6687 }; 6688 define_arm_cp_regs(cpu, pmev_regs); 6689 g_free(pmevcntr_name); 6690 g_free(pmevcntr_el0_name); 6691 g_free(pmevtyper_name); 6692 g_free(pmevtyper_el0_name); 6693 } 6694 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6695 ARMCPRegInfo v81_pmu_regs[] = { 6696 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6697 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6698 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6699 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6700 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6701 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6702 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6703 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6704 REGINFO_SENTINEL 6705 }; 6706 define_arm_cp_regs(cpu, v81_pmu_regs); 6707 } 6708 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6709 static const ARMCPRegInfo v84_pmmir = { 6710 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6711 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6712 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6713 .resetvalue = 0 6714 }; 6715 define_one_arm_cp_reg(cpu, &v84_pmmir); 6716 } 6717 } 6718 6719 /* We don't know until after realize whether there's a GICv3 6720 * attached, and that is what registers the gicv3 sysregs. 6721 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6722 * at runtime. 6723 */ 6724 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6725 { 6726 ARMCPU *cpu = env_archcpu(env); 6727 uint64_t pfr1 = cpu->isar.id_pfr1; 6728 6729 if (env->gicv3state) { 6730 pfr1 |= 1 << 28; 6731 } 6732 return pfr1; 6733 } 6734 6735 #ifndef CONFIG_USER_ONLY 6736 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6737 { 6738 ARMCPU *cpu = env_archcpu(env); 6739 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6740 6741 if (env->gicv3state) { 6742 pfr0 |= 1 << 24; 6743 } 6744 return pfr0; 6745 } 6746 #endif 6747 6748 /* Shared logic between LORID and the rest of the LOR* registers. 6749 * Secure state exclusion has already been dealt with. 6750 */ 6751 static CPAccessResult access_lor_ns(CPUARMState *env, 6752 const ARMCPRegInfo *ri, bool isread) 6753 { 6754 int el = arm_current_el(env); 6755 6756 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6757 return CP_ACCESS_TRAP_EL2; 6758 } 6759 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6760 return CP_ACCESS_TRAP_EL3; 6761 } 6762 return CP_ACCESS_OK; 6763 } 6764 6765 static CPAccessResult access_lor_other(CPUARMState *env, 6766 const ARMCPRegInfo *ri, bool isread) 6767 { 6768 if (arm_is_secure_below_el3(env)) { 6769 /* Access denied in secure mode. */ 6770 return CP_ACCESS_TRAP; 6771 } 6772 return access_lor_ns(env, ri, isread); 6773 } 6774 6775 /* 6776 * A trivial implementation of ARMv8.1-LOR leaves all of these 6777 * registers fixed at 0, which indicates that there are zero 6778 * supported Limited Ordering regions. 6779 */ 6780 static const ARMCPRegInfo lor_reginfo[] = { 6781 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6782 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6783 .access = PL1_RW, .accessfn = access_lor_other, 6784 .type = ARM_CP_CONST, .resetvalue = 0 }, 6785 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6786 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6787 .access = PL1_RW, .accessfn = access_lor_other, 6788 .type = ARM_CP_CONST, .resetvalue = 0 }, 6789 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6790 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6791 .access = PL1_RW, .accessfn = access_lor_other, 6792 .type = ARM_CP_CONST, .resetvalue = 0 }, 6793 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6794 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6795 .access = PL1_RW, .accessfn = access_lor_other, 6796 .type = ARM_CP_CONST, .resetvalue = 0 }, 6797 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6798 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6799 .access = PL1_R, .accessfn = access_lor_ns, 6800 .type = ARM_CP_CONST, .resetvalue = 0 }, 6801 REGINFO_SENTINEL 6802 }; 6803 6804 #ifdef TARGET_AARCH64 6805 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6806 bool isread) 6807 { 6808 int el = arm_current_el(env); 6809 6810 if (el < 2 && 6811 arm_feature(env, ARM_FEATURE_EL2) && 6812 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6813 return CP_ACCESS_TRAP_EL2; 6814 } 6815 if (el < 3 && 6816 arm_feature(env, ARM_FEATURE_EL3) && 6817 !(env->cp15.scr_el3 & SCR_APK)) { 6818 return CP_ACCESS_TRAP_EL3; 6819 } 6820 return CP_ACCESS_OK; 6821 } 6822 6823 static const ARMCPRegInfo pauth_reginfo[] = { 6824 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6825 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6826 .access = PL1_RW, .accessfn = access_pauth, 6827 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6828 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6829 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6830 .access = PL1_RW, .accessfn = access_pauth, 6831 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6832 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6833 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6834 .access = PL1_RW, .accessfn = access_pauth, 6835 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6836 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6837 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6838 .access = PL1_RW, .accessfn = access_pauth, 6839 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6840 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6842 .access = PL1_RW, .accessfn = access_pauth, 6843 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6844 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6845 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6846 .access = PL1_RW, .accessfn = access_pauth, 6847 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6848 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6849 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6850 .access = PL1_RW, .accessfn = access_pauth, 6851 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6852 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6853 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6854 .access = PL1_RW, .accessfn = access_pauth, 6855 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6856 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6857 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6858 .access = PL1_RW, .accessfn = access_pauth, 6859 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6860 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6861 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6862 .access = PL1_RW, .accessfn = access_pauth, 6863 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6864 REGINFO_SENTINEL 6865 }; 6866 6867 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6868 { 6869 Error *err = NULL; 6870 uint64_t ret; 6871 6872 /* Success sets NZCV = 0000. */ 6873 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6874 6875 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6876 /* 6877 * ??? Failed, for unknown reasons in the crypto subsystem. 6878 * The best we can do is log the reason and return the 6879 * timed-out indication to the guest. There is no reason 6880 * we know to expect this failure to be transitory, so the 6881 * guest may well hang retrying the operation. 6882 */ 6883 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6884 ri->name, error_get_pretty(err)); 6885 error_free(err); 6886 6887 env->ZF = 0; /* NZCF = 0100 */ 6888 return 0; 6889 } 6890 return ret; 6891 } 6892 6893 /* We do not support re-seeding, so the two registers operate the same. */ 6894 static const ARMCPRegInfo rndr_reginfo[] = { 6895 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6896 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6897 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6898 .access = PL0_R, .readfn = rndr_readfn }, 6899 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6900 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6901 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6902 .access = PL0_R, .readfn = rndr_readfn }, 6903 REGINFO_SENTINEL 6904 }; 6905 6906 #ifndef CONFIG_USER_ONLY 6907 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6908 uint64_t value) 6909 { 6910 ARMCPU *cpu = env_archcpu(env); 6911 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6912 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6913 uint64_t vaddr_in = (uint64_t) value; 6914 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6915 void *haddr; 6916 int mem_idx = cpu_mmu_index(env, false); 6917 6918 /* This won't be crossing page boundaries */ 6919 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6920 if (haddr) { 6921 6922 ram_addr_t offset; 6923 MemoryRegion *mr; 6924 6925 /* RCU lock is already being held */ 6926 mr = memory_region_from_host(haddr, &offset); 6927 6928 if (mr) { 6929 memory_region_writeback(mr, offset, dline_size); 6930 } 6931 } 6932 } 6933 6934 static const ARMCPRegInfo dcpop_reg[] = { 6935 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6936 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6937 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6938 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6939 REGINFO_SENTINEL 6940 }; 6941 6942 static const ARMCPRegInfo dcpodp_reg[] = { 6943 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6944 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6945 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6946 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6947 REGINFO_SENTINEL 6948 }; 6949 #endif /*CONFIG_USER_ONLY*/ 6950 6951 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6952 bool isread) 6953 { 6954 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6955 return CP_ACCESS_TRAP_EL2; 6956 } 6957 6958 return CP_ACCESS_OK; 6959 } 6960 6961 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6962 bool isread) 6963 { 6964 int el = arm_current_el(env); 6965 6966 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6967 uint64_t hcr = arm_hcr_el2_eff(env); 6968 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 6969 return CP_ACCESS_TRAP_EL2; 6970 } 6971 } 6972 if (el < 3 && 6973 arm_feature(env, ARM_FEATURE_EL3) && 6974 !(env->cp15.scr_el3 & SCR_ATA)) { 6975 return CP_ACCESS_TRAP_EL3; 6976 } 6977 return CP_ACCESS_OK; 6978 } 6979 6980 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 6981 { 6982 return env->pstate & PSTATE_TCO; 6983 } 6984 6985 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6986 { 6987 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 6988 } 6989 6990 static const ARMCPRegInfo mte_reginfo[] = { 6991 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 6992 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 6993 .access = PL1_RW, .accessfn = access_mte, 6994 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 6995 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 6996 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 6997 .access = PL1_RW, .accessfn = access_mte, 6998 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 6999 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7000 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7001 .access = PL2_RW, .accessfn = access_mte, 7002 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7003 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7004 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7005 .access = PL3_RW, 7006 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7007 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7008 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7009 .access = PL1_RW, .accessfn = access_mte, 7010 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7011 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7012 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7013 .access = PL1_RW, .accessfn = access_mte, 7014 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7015 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7016 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7017 .access = PL1_R, .accessfn = access_aa64_tid5, 7018 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7019 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7020 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7021 .type = ARM_CP_NO_RAW, 7022 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7023 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7024 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7025 .type = ARM_CP_NOP, .access = PL1_W, 7026 .accessfn = aa64_cacheop_poc_access }, 7027 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7028 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7029 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7030 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7031 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7032 .type = ARM_CP_NOP, .access = PL1_W, 7033 .accessfn = aa64_cacheop_poc_access }, 7034 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7035 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7037 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7038 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7039 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7040 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7041 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7043 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7045 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7046 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7047 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7048 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7049 REGINFO_SENTINEL 7050 }; 7051 7052 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7053 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7055 .type = ARM_CP_CONST, .access = PL0_RW, }, 7056 REGINFO_SENTINEL 7057 }; 7058 7059 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7060 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7061 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7062 .type = ARM_CP_NOP, .access = PL0_W, 7063 .accessfn = aa64_cacheop_poc_access }, 7064 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7065 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7066 .type = ARM_CP_NOP, .access = PL0_W, 7067 .accessfn = aa64_cacheop_poc_access }, 7068 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7069 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7070 .type = ARM_CP_NOP, .access = PL0_W, 7071 .accessfn = aa64_cacheop_poc_access }, 7072 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7073 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7074 .type = ARM_CP_NOP, .access = PL0_W, 7075 .accessfn = aa64_cacheop_poc_access }, 7076 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7077 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7078 .type = ARM_CP_NOP, .access = PL0_W, 7079 .accessfn = aa64_cacheop_poc_access }, 7080 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7081 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7082 .type = ARM_CP_NOP, .access = PL0_W, 7083 .accessfn = aa64_cacheop_poc_access }, 7084 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7085 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7086 .type = ARM_CP_NOP, .access = PL0_W, 7087 .accessfn = aa64_cacheop_poc_access }, 7088 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7089 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7090 .type = ARM_CP_NOP, .access = PL0_W, 7091 .accessfn = aa64_cacheop_poc_access }, 7092 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7093 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7094 .access = PL0_W, .type = ARM_CP_DC_GVA, 7095 #ifndef CONFIG_USER_ONLY 7096 /* Avoid overhead of an access check that always passes in user-mode */ 7097 .accessfn = aa64_zva_access, 7098 #endif 7099 }, 7100 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7101 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7102 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7103 #ifndef CONFIG_USER_ONLY 7104 /* Avoid overhead of an access check that always passes in user-mode */ 7105 .accessfn = aa64_zva_access, 7106 #endif 7107 }, 7108 REGINFO_SENTINEL 7109 }; 7110 7111 #endif 7112 7113 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7114 bool isread) 7115 { 7116 int el = arm_current_el(env); 7117 7118 if (el == 0) { 7119 uint64_t sctlr = arm_sctlr(env, el); 7120 if (!(sctlr & SCTLR_EnRCTX)) { 7121 return CP_ACCESS_TRAP; 7122 } 7123 } else if (el == 1) { 7124 uint64_t hcr = arm_hcr_el2_eff(env); 7125 if (hcr & HCR_NV) { 7126 return CP_ACCESS_TRAP_EL2; 7127 } 7128 } 7129 return CP_ACCESS_OK; 7130 } 7131 7132 static const ARMCPRegInfo predinv_reginfo[] = { 7133 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7134 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7135 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7136 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7137 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7138 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7139 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7140 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7141 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7142 /* 7143 * Note the AArch32 opcodes have a different OPC1. 7144 */ 7145 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7146 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7147 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7148 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7149 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7150 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7151 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7152 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7153 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7154 REGINFO_SENTINEL 7155 }; 7156 7157 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7158 { 7159 /* Read the high 32 bits of the current CCSIDR */ 7160 return extract64(ccsidr_read(env, ri), 32, 32); 7161 } 7162 7163 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7164 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7165 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7166 .access = PL1_R, 7167 .accessfn = access_aa64_tid2, 7168 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7169 REGINFO_SENTINEL 7170 }; 7171 7172 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7173 bool isread) 7174 { 7175 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7176 return CP_ACCESS_TRAP_EL2; 7177 } 7178 7179 return CP_ACCESS_OK; 7180 } 7181 7182 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7183 bool isread) 7184 { 7185 if (arm_feature(env, ARM_FEATURE_V8)) { 7186 return access_aa64_tid3(env, ri, isread); 7187 } 7188 7189 return CP_ACCESS_OK; 7190 } 7191 7192 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7193 bool isread) 7194 { 7195 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7196 return CP_ACCESS_TRAP_EL2; 7197 } 7198 7199 return CP_ACCESS_OK; 7200 } 7201 7202 static const ARMCPRegInfo jazelle_regs[] = { 7203 { .name = "JIDR", 7204 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7205 .access = PL1_R, .accessfn = access_jazelle, 7206 .type = ARM_CP_CONST, .resetvalue = 0 }, 7207 { .name = "JOSCR", 7208 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7209 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7210 { .name = "JMCR", 7211 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7212 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7213 REGINFO_SENTINEL 7214 }; 7215 7216 static const ARMCPRegInfo vhe_reginfo[] = { 7217 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7219 .access = PL2_RW, 7220 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7221 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7222 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7223 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7224 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7225 #ifndef CONFIG_USER_ONLY 7226 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7227 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7228 .fieldoffset = 7229 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7230 .type = ARM_CP_IO, .access = PL2_RW, 7231 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7232 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7233 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7235 .resetfn = gt_hv_timer_reset, 7236 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7237 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7238 .type = ARM_CP_IO, 7239 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7240 .access = PL2_RW, 7241 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7242 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7243 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7245 .type = ARM_CP_IO | ARM_CP_ALIAS, 7246 .access = PL2_RW, .accessfn = e2h_access, 7247 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7248 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7249 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7250 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7251 .type = ARM_CP_IO | ARM_CP_ALIAS, 7252 .access = PL2_RW, .accessfn = e2h_access, 7253 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7254 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7255 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7256 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7257 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7258 .access = PL2_RW, .accessfn = e2h_access, 7259 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7260 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7261 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7262 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7263 .access = PL2_RW, .accessfn = e2h_access, 7264 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7265 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7266 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7267 .type = ARM_CP_IO | ARM_CP_ALIAS, 7268 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7269 .access = PL2_RW, .accessfn = e2h_access, 7270 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7271 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7272 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7273 .type = ARM_CP_IO | ARM_CP_ALIAS, 7274 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7275 .access = PL2_RW, .accessfn = e2h_access, 7276 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7277 #endif 7278 REGINFO_SENTINEL 7279 }; 7280 7281 #ifndef CONFIG_USER_ONLY 7282 static const ARMCPRegInfo ats1e1_reginfo[] = { 7283 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7285 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7286 .writefn = ats_write64 }, 7287 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7289 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7290 .writefn = ats_write64 }, 7291 REGINFO_SENTINEL 7292 }; 7293 7294 static const ARMCPRegInfo ats1cp_reginfo[] = { 7295 { .name = "ATS1CPRP", 7296 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7297 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7298 .writefn = ats_write }, 7299 { .name = "ATS1CPWP", 7300 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7301 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7302 .writefn = ats_write }, 7303 REGINFO_SENTINEL 7304 }; 7305 #endif 7306 7307 /* 7308 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7309 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7310 * is non-zero, which is never for ARMv7, optionally in ARMv8 7311 * and mandatorily for ARMv8.2 and up. 7312 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7313 * implementation is RAZ/WI we can ignore this detail, as we 7314 * do for ACTLR. 7315 */ 7316 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7317 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7318 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7319 .access = PL1_RW, .accessfn = access_tacr, 7320 .type = ARM_CP_CONST, .resetvalue = 0 }, 7321 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7322 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7323 .access = PL2_RW, .type = ARM_CP_CONST, 7324 .resetvalue = 0 }, 7325 REGINFO_SENTINEL 7326 }; 7327 7328 void register_cp_regs_for_features(ARMCPU *cpu) 7329 { 7330 /* Register all the coprocessor registers based on feature bits */ 7331 CPUARMState *env = &cpu->env; 7332 if (arm_feature(env, ARM_FEATURE_M)) { 7333 /* M profile has no coprocessor registers */ 7334 return; 7335 } 7336 7337 define_arm_cp_regs(cpu, cp_reginfo); 7338 if (!arm_feature(env, ARM_FEATURE_V8)) { 7339 /* Must go early as it is full of wildcards that may be 7340 * overridden by later definitions. 7341 */ 7342 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7343 } 7344 7345 if (arm_feature(env, ARM_FEATURE_V6)) { 7346 /* The ID registers all have impdef reset values */ 7347 ARMCPRegInfo v6_idregs[] = { 7348 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7350 .access = PL1_R, .type = ARM_CP_CONST, 7351 .accessfn = access_aa32_tid3, 7352 .resetvalue = cpu->isar.id_pfr0 }, 7353 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7354 * the value of the GIC field until after we define these regs. 7355 */ 7356 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7358 .access = PL1_R, .type = ARM_CP_NO_RAW, 7359 .accessfn = access_aa32_tid3, 7360 .readfn = id_pfr1_read, 7361 .writefn = arm_cp_write_ignore }, 7362 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7363 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7364 .access = PL1_R, .type = ARM_CP_CONST, 7365 .accessfn = access_aa32_tid3, 7366 .resetvalue = cpu->isar.id_dfr0 }, 7367 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7369 .access = PL1_R, .type = ARM_CP_CONST, 7370 .accessfn = access_aa32_tid3, 7371 .resetvalue = cpu->id_afr0 }, 7372 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7374 .access = PL1_R, .type = ARM_CP_CONST, 7375 .accessfn = access_aa32_tid3, 7376 .resetvalue = cpu->isar.id_mmfr0 }, 7377 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7379 .access = PL1_R, .type = ARM_CP_CONST, 7380 .accessfn = access_aa32_tid3, 7381 .resetvalue = cpu->isar.id_mmfr1 }, 7382 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7384 .access = PL1_R, .type = ARM_CP_CONST, 7385 .accessfn = access_aa32_tid3, 7386 .resetvalue = cpu->isar.id_mmfr2 }, 7387 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7389 .access = PL1_R, .type = ARM_CP_CONST, 7390 .accessfn = access_aa32_tid3, 7391 .resetvalue = cpu->isar.id_mmfr3 }, 7392 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7394 .access = PL1_R, .type = ARM_CP_CONST, 7395 .accessfn = access_aa32_tid3, 7396 .resetvalue = cpu->isar.id_isar0 }, 7397 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7399 .access = PL1_R, .type = ARM_CP_CONST, 7400 .accessfn = access_aa32_tid3, 7401 .resetvalue = cpu->isar.id_isar1 }, 7402 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7404 .access = PL1_R, .type = ARM_CP_CONST, 7405 .accessfn = access_aa32_tid3, 7406 .resetvalue = cpu->isar.id_isar2 }, 7407 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7409 .access = PL1_R, .type = ARM_CP_CONST, 7410 .accessfn = access_aa32_tid3, 7411 .resetvalue = cpu->isar.id_isar3 }, 7412 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7414 .access = PL1_R, .type = ARM_CP_CONST, 7415 .accessfn = access_aa32_tid3, 7416 .resetvalue = cpu->isar.id_isar4 }, 7417 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7418 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7419 .access = PL1_R, .type = ARM_CP_CONST, 7420 .accessfn = access_aa32_tid3, 7421 .resetvalue = cpu->isar.id_isar5 }, 7422 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7424 .access = PL1_R, .type = ARM_CP_CONST, 7425 .accessfn = access_aa32_tid3, 7426 .resetvalue = cpu->isar.id_mmfr4 }, 7427 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7429 .access = PL1_R, .type = ARM_CP_CONST, 7430 .accessfn = access_aa32_tid3, 7431 .resetvalue = cpu->isar.id_isar6 }, 7432 REGINFO_SENTINEL 7433 }; 7434 define_arm_cp_regs(cpu, v6_idregs); 7435 define_arm_cp_regs(cpu, v6_cp_reginfo); 7436 } else { 7437 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7438 } 7439 if (arm_feature(env, ARM_FEATURE_V6K)) { 7440 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7441 } 7442 if (arm_feature(env, ARM_FEATURE_V7MP) && 7443 !arm_feature(env, ARM_FEATURE_PMSA)) { 7444 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7445 } 7446 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7447 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7448 } 7449 if (arm_feature(env, ARM_FEATURE_V7)) { 7450 ARMCPRegInfo clidr = { 7451 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7452 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7453 .access = PL1_R, .type = ARM_CP_CONST, 7454 .accessfn = access_aa64_tid2, 7455 .resetvalue = cpu->clidr 7456 }; 7457 define_one_arm_cp_reg(cpu, &clidr); 7458 define_arm_cp_regs(cpu, v7_cp_reginfo); 7459 define_debug_regs(cpu); 7460 define_pmu_regs(cpu); 7461 } else { 7462 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7463 } 7464 if (arm_feature(env, ARM_FEATURE_V8)) { 7465 /* AArch64 ID registers, which all have impdef reset values. 7466 * Note that within the ID register ranges the unused slots 7467 * must all RAZ, not UNDEF; future architecture versions may 7468 * define new registers here. 7469 */ 7470 ARMCPRegInfo v8_idregs[] = { 7471 /* 7472 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7473 * emulation because we don't know the right value for the 7474 * GIC field until after we define these regs. 7475 */ 7476 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7478 .access = PL1_R, 7479 #ifdef CONFIG_USER_ONLY 7480 .type = ARM_CP_CONST, 7481 .resetvalue = cpu->isar.id_aa64pfr0 7482 #else 7483 .type = ARM_CP_NO_RAW, 7484 .accessfn = access_aa64_tid3, 7485 .readfn = id_aa64pfr0_read, 7486 .writefn = arm_cp_write_ignore 7487 #endif 7488 }, 7489 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7491 .access = PL1_R, .type = ARM_CP_CONST, 7492 .accessfn = access_aa64_tid3, 7493 .resetvalue = cpu->isar.id_aa64pfr1}, 7494 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7496 .access = PL1_R, .type = ARM_CP_CONST, 7497 .accessfn = access_aa64_tid3, 7498 .resetvalue = 0 }, 7499 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7501 .access = PL1_R, .type = ARM_CP_CONST, 7502 .accessfn = access_aa64_tid3, 7503 .resetvalue = 0 }, 7504 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7506 .access = PL1_R, .type = ARM_CP_CONST, 7507 .accessfn = access_aa64_tid3, 7508 /* At present, only SVEver == 0 is defined anyway. */ 7509 .resetvalue = 0 }, 7510 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7512 .access = PL1_R, .type = ARM_CP_CONST, 7513 .accessfn = access_aa64_tid3, 7514 .resetvalue = 0 }, 7515 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7517 .access = PL1_R, .type = ARM_CP_CONST, 7518 .accessfn = access_aa64_tid3, 7519 .resetvalue = 0 }, 7520 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7522 .access = PL1_R, .type = ARM_CP_CONST, 7523 .accessfn = access_aa64_tid3, 7524 .resetvalue = 0 }, 7525 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7526 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7527 .access = PL1_R, .type = ARM_CP_CONST, 7528 .accessfn = access_aa64_tid3, 7529 .resetvalue = cpu->isar.id_aa64dfr0 }, 7530 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7532 .access = PL1_R, .type = ARM_CP_CONST, 7533 .accessfn = access_aa64_tid3, 7534 .resetvalue = cpu->isar.id_aa64dfr1 }, 7535 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7537 .access = PL1_R, .type = ARM_CP_CONST, 7538 .accessfn = access_aa64_tid3, 7539 .resetvalue = 0 }, 7540 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7541 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7542 .access = PL1_R, .type = ARM_CP_CONST, 7543 .accessfn = access_aa64_tid3, 7544 .resetvalue = 0 }, 7545 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7546 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7547 .access = PL1_R, .type = ARM_CP_CONST, 7548 .accessfn = access_aa64_tid3, 7549 .resetvalue = cpu->id_aa64afr0 }, 7550 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7552 .access = PL1_R, .type = ARM_CP_CONST, 7553 .accessfn = access_aa64_tid3, 7554 .resetvalue = cpu->id_aa64afr1 }, 7555 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7557 .access = PL1_R, .type = ARM_CP_CONST, 7558 .accessfn = access_aa64_tid3, 7559 .resetvalue = 0 }, 7560 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7562 .access = PL1_R, .type = ARM_CP_CONST, 7563 .accessfn = access_aa64_tid3, 7564 .resetvalue = 0 }, 7565 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7567 .access = PL1_R, .type = ARM_CP_CONST, 7568 .accessfn = access_aa64_tid3, 7569 .resetvalue = cpu->isar.id_aa64isar0 }, 7570 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7572 .access = PL1_R, .type = ARM_CP_CONST, 7573 .accessfn = access_aa64_tid3, 7574 .resetvalue = cpu->isar.id_aa64isar1 }, 7575 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7577 .access = PL1_R, .type = ARM_CP_CONST, 7578 .accessfn = access_aa64_tid3, 7579 .resetvalue = 0 }, 7580 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7582 .access = PL1_R, .type = ARM_CP_CONST, 7583 .accessfn = access_aa64_tid3, 7584 .resetvalue = 0 }, 7585 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7587 .access = PL1_R, .type = ARM_CP_CONST, 7588 .accessfn = access_aa64_tid3, 7589 .resetvalue = 0 }, 7590 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7592 .access = PL1_R, .type = ARM_CP_CONST, 7593 .accessfn = access_aa64_tid3, 7594 .resetvalue = 0 }, 7595 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7597 .access = PL1_R, .type = ARM_CP_CONST, 7598 .accessfn = access_aa64_tid3, 7599 .resetvalue = 0 }, 7600 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7602 .access = PL1_R, .type = ARM_CP_CONST, 7603 .accessfn = access_aa64_tid3, 7604 .resetvalue = 0 }, 7605 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7606 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7607 .access = PL1_R, .type = ARM_CP_CONST, 7608 .accessfn = access_aa64_tid3, 7609 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7610 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7612 .access = PL1_R, .type = ARM_CP_CONST, 7613 .accessfn = access_aa64_tid3, 7614 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7615 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7617 .access = PL1_R, .type = ARM_CP_CONST, 7618 .accessfn = access_aa64_tid3, 7619 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7620 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7622 .access = PL1_R, .type = ARM_CP_CONST, 7623 .accessfn = access_aa64_tid3, 7624 .resetvalue = 0 }, 7625 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7627 .access = PL1_R, .type = ARM_CP_CONST, 7628 .accessfn = access_aa64_tid3, 7629 .resetvalue = 0 }, 7630 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7632 .access = PL1_R, .type = ARM_CP_CONST, 7633 .accessfn = access_aa64_tid3, 7634 .resetvalue = 0 }, 7635 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7637 .access = PL1_R, .type = ARM_CP_CONST, 7638 .accessfn = access_aa64_tid3, 7639 .resetvalue = 0 }, 7640 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7641 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7642 .access = PL1_R, .type = ARM_CP_CONST, 7643 .accessfn = access_aa64_tid3, 7644 .resetvalue = 0 }, 7645 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7646 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7647 .access = PL1_R, .type = ARM_CP_CONST, 7648 .accessfn = access_aa64_tid3, 7649 .resetvalue = cpu->isar.mvfr0 }, 7650 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7652 .access = PL1_R, .type = ARM_CP_CONST, 7653 .accessfn = access_aa64_tid3, 7654 .resetvalue = cpu->isar.mvfr1 }, 7655 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7657 .access = PL1_R, .type = ARM_CP_CONST, 7658 .accessfn = access_aa64_tid3, 7659 .resetvalue = cpu->isar.mvfr2 }, 7660 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7661 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7662 .access = PL1_R, .type = ARM_CP_CONST, 7663 .accessfn = access_aa64_tid3, 7664 .resetvalue = 0 }, 7665 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7667 .access = PL1_R, .type = ARM_CP_CONST, 7668 .accessfn = access_aa64_tid3, 7669 .resetvalue = 0 }, 7670 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7672 .access = PL1_R, .type = ARM_CP_CONST, 7673 .accessfn = access_aa64_tid3, 7674 .resetvalue = 0 }, 7675 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7677 .access = PL1_R, .type = ARM_CP_CONST, 7678 .accessfn = access_aa64_tid3, 7679 .resetvalue = 0 }, 7680 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7681 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7682 .access = PL1_R, .type = ARM_CP_CONST, 7683 .accessfn = access_aa64_tid3, 7684 .resetvalue = 0 }, 7685 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7686 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7687 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7688 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7689 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7690 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7691 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7692 .resetvalue = cpu->pmceid0 }, 7693 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7694 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7695 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7696 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7697 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7698 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7699 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7700 .resetvalue = cpu->pmceid1 }, 7701 REGINFO_SENTINEL 7702 }; 7703 #ifdef CONFIG_USER_ONLY 7704 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7705 { .name = "ID_AA64PFR0_EL1", 7706 .exported_bits = 0x000f000f00ff0000, 7707 .fixed_bits = 0x0000000000000011 }, 7708 { .name = "ID_AA64PFR1_EL1", 7709 .exported_bits = 0x00000000000000f0 }, 7710 { .name = "ID_AA64PFR*_EL1_RESERVED", 7711 .is_glob = true }, 7712 { .name = "ID_AA64ZFR0_EL1" }, 7713 { .name = "ID_AA64MMFR0_EL1", 7714 .fixed_bits = 0x00000000ff000000 }, 7715 { .name = "ID_AA64MMFR1_EL1" }, 7716 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7717 .is_glob = true }, 7718 { .name = "ID_AA64DFR0_EL1", 7719 .fixed_bits = 0x0000000000000006 }, 7720 { .name = "ID_AA64DFR1_EL1" }, 7721 { .name = "ID_AA64DFR*_EL1_RESERVED", 7722 .is_glob = true }, 7723 { .name = "ID_AA64AFR*", 7724 .is_glob = true }, 7725 { .name = "ID_AA64ISAR0_EL1", 7726 .exported_bits = 0x00fffffff0fffff0 }, 7727 { .name = "ID_AA64ISAR1_EL1", 7728 .exported_bits = 0x000000f0ffffffff }, 7729 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7730 .is_glob = true }, 7731 REGUSERINFO_SENTINEL 7732 }; 7733 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7734 #endif 7735 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7736 if (!arm_feature(env, ARM_FEATURE_EL3) && 7737 !arm_feature(env, ARM_FEATURE_EL2)) { 7738 ARMCPRegInfo rvbar = { 7739 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7740 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7741 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7742 }; 7743 define_one_arm_cp_reg(cpu, &rvbar); 7744 } 7745 define_arm_cp_regs(cpu, v8_idregs); 7746 define_arm_cp_regs(cpu, v8_cp_reginfo); 7747 } 7748 if (arm_feature(env, ARM_FEATURE_EL2)) { 7749 uint64_t vmpidr_def = mpidr_read_val(env); 7750 ARMCPRegInfo vpidr_regs[] = { 7751 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7752 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7753 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7754 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7755 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7756 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7757 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7758 .access = PL2_RW, .resetvalue = cpu->midr, 7759 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7760 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7761 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7762 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7763 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7764 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7765 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7766 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7767 .access = PL2_RW, 7768 .resetvalue = vmpidr_def, 7769 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7770 REGINFO_SENTINEL 7771 }; 7772 define_arm_cp_regs(cpu, vpidr_regs); 7773 define_arm_cp_regs(cpu, el2_cp_reginfo); 7774 if (arm_feature(env, ARM_FEATURE_V8)) { 7775 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7776 } 7777 if (cpu_isar_feature(aa64_sel2, cpu)) { 7778 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7779 } 7780 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7781 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7782 ARMCPRegInfo rvbar = { 7783 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7784 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7785 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7786 }; 7787 define_one_arm_cp_reg(cpu, &rvbar); 7788 } 7789 } else { 7790 /* If EL2 is missing but higher ELs are enabled, we need to 7791 * register the no_el2 reginfos. 7792 */ 7793 if (arm_feature(env, ARM_FEATURE_EL3)) { 7794 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7795 * of MIDR_EL1 and MPIDR_EL1. 7796 */ 7797 ARMCPRegInfo vpidr_regs[] = { 7798 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7799 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7800 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7801 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7802 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7803 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7804 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7805 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7806 .type = ARM_CP_NO_RAW, 7807 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7808 REGINFO_SENTINEL 7809 }; 7810 define_arm_cp_regs(cpu, vpidr_regs); 7811 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7812 if (arm_feature(env, ARM_FEATURE_V8)) { 7813 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7814 } 7815 } 7816 } 7817 if (arm_feature(env, ARM_FEATURE_EL3)) { 7818 define_arm_cp_regs(cpu, el3_cp_reginfo); 7819 ARMCPRegInfo el3_regs[] = { 7820 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7821 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7822 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7823 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7824 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7825 .access = PL3_RW, 7826 .raw_writefn = raw_write, .writefn = sctlr_write, 7827 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7828 .resetvalue = cpu->reset_sctlr }, 7829 REGINFO_SENTINEL 7830 }; 7831 7832 define_arm_cp_regs(cpu, el3_regs); 7833 } 7834 /* The behaviour of NSACR is sufficiently various that we don't 7835 * try to describe it in a single reginfo: 7836 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7837 * reads as constant 0xc00 from NS EL1 and NS EL2 7838 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7839 * if v7 without EL3, register doesn't exist 7840 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7841 */ 7842 if (arm_feature(env, ARM_FEATURE_EL3)) { 7843 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7844 ARMCPRegInfo nsacr = { 7845 .name = "NSACR", .type = ARM_CP_CONST, 7846 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7847 .access = PL1_RW, .accessfn = nsacr_access, 7848 .resetvalue = 0xc00 7849 }; 7850 define_one_arm_cp_reg(cpu, &nsacr); 7851 } else { 7852 ARMCPRegInfo nsacr = { 7853 .name = "NSACR", 7854 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7855 .access = PL3_RW | PL1_R, 7856 .resetvalue = 0, 7857 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7858 }; 7859 define_one_arm_cp_reg(cpu, &nsacr); 7860 } 7861 } else { 7862 if (arm_feature(env, ARM_FEATURE_V8)) { 7863 ARMCPRegInfo nsacr = { 7864 .name = "NSACR", .type = ARM_CP_CONST, 7865 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7866 .access = PL1_R, 7867 .resetvalue = 0xc00 7868 }; 7869 define_one_arm_cp_reg(cpu, &nsacr); 7870 } 7871 } 7872 7873 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7874 if (arm_feature(env, ARM_FEATURE_V6)) { 7875 /* PMSAv6 not implemented */ 7876 assert(arm_feature(env, ARM_FEATURE_V7)); 7877 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7878 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7879 } else { 7880 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7881 } 7882 } else { 7883 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7884 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7885 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7886 if (cpu_isar_feature(aa32_hpd, cpu)) { 7887 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7888 } 7889 } 7890 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7891 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7892 } 7893 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7894 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7895 } 7896 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7897 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7898 } 7899 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7900 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7901 } 7902 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7903 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7904 } 7905 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7906 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7907 } 7908 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7909 define_arm_cp_regs(cpu, omap_cp_reginfo); 7910 } 7911 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7912 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7913 } 7914 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7915 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7916 } 7917 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7918 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7919 } 7920 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7921 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7922 } 7923 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7924 define_arm_cp_regs(cpu, jazelle_regs); 7925 } 7926 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7927 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7928 * be read-only (ie write causes UNDEF exception). 7929 */ 7930 { 7931 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7932 /* Pre-v8 MIDR space. 7933 * Note that the MIDR isn't a simple constant register because 7934 * of the TI925 behaviour where writes to another register can 7935 * cause the MIDR value to change. 7936 * 7937 * Unimplemented registers in the c15 0 0 0 space default to 7938 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7939 * and friends override accordingly. 7940 */ 7941 { .name = "MIDR", 7942 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7943 .access = PL1_R, .resetvalue = cpu->midr, 7944 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7945 .readfn = midr_read, 7946 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7947 .type = ARM_CP_OVERRIDE }, 7948 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7949 { .name = "DUMMY", 7950 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7951 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7952 { .name = "DUMMY", 7953 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7954 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7955 { .name = "DUMMY", 7956 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7957 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7958 { .name = "DUMMY", 7959 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7960 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7961 { .name = "DUMMY", 7962 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7963 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7964 REGINFO_SENTINEL 7965 }; 7966 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7967 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7968 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7969 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7970 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7971 .readfn = midr_read }, 7972 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7973 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7974 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7975 .access = PL1_R, .resetvalue = cpu->midr }, 7976 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7977 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7978 .access = PL1_R, .resetvalue = cpu->midr }, 7979 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7981 .access = PL1_R, 7982 .accessfn = access_aa64_tid1, 7983 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 7984 REGINFO_SENTINEL 7985 }; 7986 ARMCPRegInfo id_cp_reginfo[] = { 7987 /* These are common to v8 and pre-v8 */ 7988 { .name = "CTR", 7989 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 7990 .access = PL1_R, .accessfn = ctr_el0_access, 7991 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7992 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 7993 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 7994 .access = PL0_R, .accessfn = ctr_el0_access, 7995 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7996 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 7997 { .name = "TCMTR", 7998 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 7999 .access = PL1_R, 8000 .accessfn = access_aa32_tid1, 8001 .type = ARM_CP_CONST, .resetvalue = 0 }, 8002 REGINFO_SENTINEL 8003 }; 8004 /* TLBTR is specific to VMSA */ 8005 ARMCPRegInfo id_tlbtr_reginfo = { 8006 .name = "TLBTR", 8007 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8008 .access = PL1_R, 8009 .accessfn = access_aa32_tid1, 8010 .type = ARM_CP_CONST, .resetvalue = 0, 8011 }; 8012 /* MPUIR is specific to PMSA V6+ */ 8013 ARMCPRegInfo id_mpuir_reginfo = { 8014 .name = "MPUIR", 8015 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8016 .access = PL1_R, .type = ARM_CP_CONST, 8017 .resetvalue = cpu->pmsav7_dregion << 8 8018 }; 8019 ARMCPRegInfo crn0_wi_reginfo = { 8020 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8021 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8022 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8023 }; 8024 #ifdef CONFIG_USER_ONLY 8025 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8026 { .name = "MIDR_EL1", 8027 .exported_bits = 0x00000000ffffffff }, 8028 { .name = "REVIDR_EL1" }, 8029 REGUSERINFO_SENTINEL 8030 }; 8031 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8032 #endif 8033 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8034 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8035 ARMCPRegInfo *r; 8036 /* Register the blanket "writes ignored" value first to cover the 8037 * whole space. Then update the specific ID registers to allow write 8038 * access, so that they ignore writes rather than causing them to 8039 * UNDEF. 8040 */ 8041 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8042 for (r = id_pre_v8_midr_cp_reginfo; 8043 r->type != ARM_CP_SENTINEL; r++) { 8044 r->access = PL1_RW; 8045 } 8046 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8047 r->access = PL1_RW; 8048 } 8049 id_mpuir_reginfo.access = PL1_RW; 8050 id_tlbtr_reginfo.access = PL1_RW; 8051 } 8052 if (arm_feature(env, ARM_FEATURE_V8)) { 8053 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8054 } else { 8055 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8056 } 8057 define_arm_cp_regs(cpu, id_cp_reginfo); 8058 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8059 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8060 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8061 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8062 } 8063 } 8064 8065 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8066 ARMCPRegInfo mpidr_cp_reginfo[] = { 8067 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8068 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8069 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8070 REGINFO_SENTINEL 8071 }; 8072 #ifdef CONFIG_USER_ONLY 8073 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8074 { .name = "MPIDR_EL1", 8075 .fixed_bits = 0x0000000080000000 }, 8076 REGUSERINFO_SENTINEL 8077 }; 8078 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8079 #endif 8080 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8081 } 8082 8083 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8084 ARMCPRegInfo auxcr_reginfo[] = { 8085 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8086 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8087 .access = PL1_RW, .accessfn = access_tacr, 8088 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8089 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8090 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8091 .access = PL2_RW, .type = ARM_CP_CONST, 8092 .resetvalue = 0 }, 8093 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8094 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8095 .access = PL3_RW, .type = ARM_CP_CONST, 8096 .resetvalue = 0 }, 8097 REGINFO_SENTINEL 8098 }; 8099 define_arm_cp_regs(cpu, auxcr_reginfo); 8100 if (cpu_isar_feature(aa32_ac2, cpu)) { 8101 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8102 } 8103 } 8104 8105 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8106 /* 8107 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8108 * There are two flavours: 8109 * (1) older 32-bit only cores have a simple 32-bit CBAR 8110 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8111 * 32-bit register visible to AArch32 at a different encoding 8112 * to the "flavour 1" register and with the bits rearranged to 8113 * be able to squash a 64-bit address into the 32-bit view. 8114 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8115 * in future if we support AArch32-only configs of some of the 8116 * AArch64 cores we might need to add a specific feature flag 8117 * to indicate cores with "flavour 2" CBAR. 8118 */ 8119 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8120 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8121 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8122 | extract64(cpu->reset_cbar, 32, 12); 8123 ARMCPRegInfo cbar_reginfo[] = { 8124 { .name = "CBAR", 8125 .type = ARM_CP_CONST, 8126 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8127 .access = PL1_R, .resetvalue = cbar32 }, 8128 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8129 .type = ARM_CP_CONST, 8130 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8131 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8132 REGINFO_SENTINEL 8133 }; 8134 /* We don't implement a r/w 64 bit CBAR currently */ 8135 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8136 define_arm_cp_regs(cpu, cbar_reginfo); 8137 } else { 8138 ARMCPRegInfo cbar = { 8139 .name = "CBAR", 8140 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8141 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8142 .fieldoffset = offsetof(CPUARMState, 8143 cp15.c15_config_base_address) 8144 }; 8145 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8146 cbar.access = PL1_R; 8147 cbar.fieldoffset = 0; 8148 cbar.type = ARM_CP_CONST; 8149 } 8150 define_one_arm_cp_reg(cpu, &cbar); 8151 } 8152 } 8153 8154 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8155 ARMCPRegInfo vbar_cp_reginfo[] = { 8156 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8157 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8158 .access = PL1_RW, .writefn = vbar_write, 8159 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8160 offsetof(CPUARMState, cp15.vbar_ns) }, 8161 .resetvalue = 0 }, 8162 REGINFO_SENTINEL 8163 }; 8164 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8165 } 8166 8167 /* Generic registers whose values depend on the implementation */ 8168 { 8169 ARMCPRegInfo sctlr = { 8170 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8171 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8172 .access = PL1_RW, .accessfn = access_tvm_trvm, 8173 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8174 offsetof(CPUARMState, cp15.sctlr_ns) }, 8175 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8176 .raw_writefn = raw_write, 8177 }; 8178 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8179 /* Normally we would always end the TB on an SCTLR write, but Linux 8180 * arch/arm/mach-pxa/sleep.S expects two instructions following 8181 * an MMU enable to execute from cache. Imitate this behaviour. 8182 */ 8183 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8184 } 8185 define_one_arm_cp_reg(cpu, &sctlr); 8186 } 8187 8188 if (cpu_isar_feature(aa64_lor, cpu)) { 8189 define_arm_cp_regs(cpu, lor_reginfo); 8190 } 8191 if (cpu_isar_feature(aa64_pan, cpu)) { 8192 define_one_arm_cp_reg(cpu, &pan_reginfo); 8193 } 8194 #ifndef CONFIG_USER_ONLY 8195 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8196 define_arm_cp_regs(cpu, ats1e1_reginfo); 8197 } 8198 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8199 define_arm_cp_regs(cpu, ats1cp_reginfo); 8200 } 8201 #endif 8202 if (cpu_isar_feature(aa64_uao, cpu)) { 8203 define_one_arm_cp_reg(cpu, &uao_reginfo); 8204 } 8205 8206 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8207 define_arm_cp_regs(cpu, vhe_reginfo); 8208 } 8209 8210 if (cpu_isar_feature(aa64_sve, cpu)) { 8211 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8212 if (arm_feature(env, ARM_FEATURE_EL2)) { 8213 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8214 } else { 8215 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8216 } 8217 if (arm_feature(env, ARM_FEATURE_EL3)) { 8218 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8219 } 8220 } 8221 8222 #ifdef TARGET_AARCH64 8223 if (cpu_isar_feature(aa64_pauth, cpu)) { 8224 define_arm_cp_regs(cpu, pauth_reginfo); 8225 } 8226 if (cpu_isar_feature(aa64_rndr, cpu)) { 8227 define_arm_cp_regs(cpu, rndr_reginfo); 8228 } 8229 #ifndef CONFIG_USER_ONLY 8230 /* Data Cache clean instructions up to PoP */ 8231 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8232 define_one_arm_cp_reg(cpu, dcpop_reg); 8233 8234 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8235 define_one_arm_cp_reg(cpu, dcpodp_reg); 8236 } 8237 } 8238 #endif /*CONFIG_USER_ONLY*/ 8239 8240 /* 8241 * If full MTE is enabled, add all of the system registers. 8242 * If only "instructions available at EL0" are enabled, 8243 * then define only a RAZ/WI version of PSTATE.TCO. 8244 */ 8245 if (cpu_isar_feature(aa64_mte, cpu)) { 8246 define_arm_cp_regs(cpu, mte_reginfo); 8247 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8248 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8249 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8250 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8251 } 8252 #endif 8253 8254 if (cpu_isar_feature(any_predinv, cpu)) { 8255 define_arm_cp_regs(cpu, predinv_reginfo); 8256 } 8257 8258 if (cpu_isar_feature(any_ccidx, cpu)) { 8259 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8260 } 8261 8262 #ifndef CONFIG_USER_ONLY 8263 /* 8264 * Register redirections and aliases must be done last, 8265 * after the registers from the other extensions have been defined. 8266 */ 8267 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8268 define_arm_vh_e2h_redirects_aliases(cpu); 8269 } 8270 #endif 8271 } 8272 8273 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8274 { 8275 CPUState *cs = CPU(cpu); 8276 CPUARMState *env = &cpu->env; 8277 8278 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8279 /* 8280 * The lower part of each SVE register aliases to the FPU 8281 * registers so we don't need to include both. 8282 */ 8283 #ifdef TARGET_AARCH64 8284 if (isar_feature_aa64_sve(&cpu->isar)) { 8285 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8286 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8287 "sve-registers.xml", 0); 8288 } else 8289 #endif 8290 { 8291 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8292 aarch64_fpu_gdb_set_reg, 8293 34, "aarch64-fpu.xml", 0); 8294 } 8295 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8296 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8297 51, "arm-neon.xml", 0); 8298 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8299 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8300 35, "arm-vfp3.xml", 0); 8301 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8302 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8303 19, "arm-vfp.xml", 0); 8304 } 8305 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8306 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8307 "system-registers.xml", 0); 8308 8309 } 8310 8311 /* Sort alphabetically by type name, except for "any". */ 8312 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8313 { 8314 ObjectClass *class_a = (ObjectClass *)a; 8315 ObjectClass *class_b = (ObjectClass *)b; 8316 const char *name_a, *name_b; 8317 8318 name_a = object_class_get_name(class_a); 8319 name_b = object_class_get_name(class_b); 8320 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8321 return 1; 8322 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8323 return -1; 8324 } else { 8325 return strcmp(name_a, name_b); 8326 } 8327 } 8328 8329 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8330 { 8331 ObjectClass *oc = data; 8332 const char *typename; 8333 char *name; 8334 8335 typename = object_class_get_name(oc); 8336 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8337 qemu_printf(" %s\n", name); 8338 g_free(name); 8339 } 8340 8341 void arm_cpu_list(void) 8342 { 8343 GSList *list; 8344 8345 list = object_class_get_list(TYPE_ARM_CPU, false); 8346 list = g_slist_sort(list, arm_cpu_list_compare); 8347 qemu_printf("Available CPUs:\n"); 8348 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8349 g_slist_free(list); 8350 } 8351 8352 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8353 { 8354 ObjectClass *oc = data; 8355 CpuDefinitionInfoList **cpu_list = user_data; 8356 CpuDefinitionInfo *info; 8357 const char *typename; 8358 8359 typename = object_class_get_name(oc); 8360 info = g_malloc0(sizeof(*info)); 8361 info->name = g_strndup(typename, 8362 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8363 info->q_typename = g_strdup(typename); 8364 8365 QAPI_LIST_PREPEND(*cpu_list, info); 8366 } 8367 8368 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8369 { 8370 CpuDefinitionInfoList *cpu_list = NULL; 8371 GSList *list; 8372 8373 list = object_class_get_list(TYPE_ARM_CPU, false); 8374 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8375 g_slist_free(list); 8376 8377 return cpu_list; 8378 } 8379 8380 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8381 void *opaque, int state, int secstate, 8382 int crm, int opc1, int opc2, 8383 const char *name) 8384 { 8385 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8386 * add a single reginfo struct to the hash table. 8387 */ 8388 uint32_t *key = g_new(uint32_t, 1); 8389 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8390 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8391 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8392 8393 r2->name = g_strdup(name); 8394 /* Reset the secure state to the specific incoming state. This is 8395 * necessary as the register may have been defined with both states. 8396 */ 8397 r2->secure = secstate; 8398 8399 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8400 /* Register is banked (using both entries in array). 8401 * Overwriting fieldoffset as the array is only used to define 8402 * banked registers but later only fieldoffset is used. 8403 */ 8404 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8405 } 8406 8407 if (state == ARM_CP_STATE_AA32) { 8408 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8409 /* If the register is banked then we don't need to migrate or 8410 * reset the 32-bit instance in certain cases: 8411 * 8412 * 1) If the register has both 32-bit and 64-bit instances then we 8413 * can count on the 64-bit instance taking care of the 8414 * non-secure bank. 8415 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8416 * taking care of the secure bank. This requires that separate 8417 * 32 and 64-bit definitions are provided. 8418 */ 8419 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8420 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8421 r2->type |= ARM_CP_ALIAS; 8422 } 8423 } else if ((secstate != r->secure) && !ns) { 8424 /* The register is not banked so we only want to allow migration of 8425 * the non-secure instance. 8426 */ 8427 r2->type |= ARM_CP_ALIAS; 8428 } 8429 8430 if (r->state == ARM_CP_STATE_BOTH) { 8431 /* We assume it is a cp15 register if the .cp field is left unset. 8432 */ 8433 if (r2->cp == 0) { 8434 r2->cp = 15; 8435 } 8436 8437 #ifdef HOST_WORDS_BIGENDIAN 8438 if (r2->fieldoffset) { 8439 r2->fieldoffset += sizeof(uint32_t); 8440 } 8441 #endif 8442 } 8443 } 8444 if (state == ARM_CP_STATE_AA64) { 8445 /* To allow abbreviation of ARMCPRegInfo 8446 * definitions, we treat cp == 0 as equivalent to 8447 * the value for "standard guest-visible sysreg". 8448 * STATE_BOTH definitions are also always "standard 8449 * sysreg" in their AArch64 view (the .cp value may 8450 * be non-zero for the benefit of the AArch32 view). 8451 */ 8452 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8453 r2->cp = CP_REG_ARM64_SYSREG_CP; 8454 } 8455 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8456 r2->opc0, opc1, opc2); 8457 } else { 8458 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8459 } 8460 if (opaque) { 8461 r2->opaque = opaque; 8462 } 8463 /* reginfo passed to helpers is correct for the actual access, 8464 * and is never ARM_CP_STATE_BOTH: 8465 */ 8466 r2->state = state; 8467 /* Make sure reginfo passed to helpers for wildcarded regs 8468 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8469 */ 8470 r2->crm = crm; 8471 r2->opc1 = opc1; 8472 r2->opc2 = opc2; 8473 /* By convention, for wildcarded registers only the first 8474 * entry is used for migration; the others are marked as 8475 * ALIAS so we don't try to transfer the register 8476 * multiple times. Special registers (ie NOP/WFI) are 8477 * never migratable and not even raw-accessible. 8478 */ 8479 if ((r->type & ARM_CP_SPECIAL)) { 8480 r2->type |= ARM_CP_NO_RAW; 8481 } 8482 if (((r->crm == CP_ANY) && crm != 0) || 8483 ((r->opc1 == CP_ANY) && opc1 != 0) || 8484 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8485 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8486 } 8487 8488 /* Check that raw accesses are either forbidden or handled. Note that 8489 * we can't assert this earlier because the setup of fieldoffset for 8490 * banked registers has to be done first. 8491 */ 8492 if (!(r2->type & ARM_CP_NO_RAW)) { 8493 assert(!raw_accessors_invalid(r2)); 8494 } 8495 8496 /* Overriding of an existing definition must be explicitly 8497 * requested. 8498 */ 8499 if (!(r->type & ARM_CP_OVERRIDE)) { 8500 ARMCPRegInfo *oldreg; 8501 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8502 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8503 fprintf(stderr, "Register redefined: cp=%d %d bit " 8504 "crn=%d crm=%d opc1=%d opc2=%d, " 8505 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8506 r2->crn, r2->crm, r2->opc1, r2->opc2, 8507 oldreg->name, r2->name); 8508 g_assert_not_reached(); 8509 } 8510 } 8511 g_hash_table_insert(cpu->cp_regs, key, r2); 8512 } 8513 8514 8515 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8516 const ARMCPRegInfo *r, void *opaque) 8517 { 8518 /* Define implementations of coprocessor registers. 8519 * We store these in a hashtable because typically 8520 * there are less than 150 registers in a space which 8521 * is 16*16*16*8*8 = 262144 in size. 8522 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8523 * If a register is defined twice then the second definition is 8524 * used, so this can be used to define some generic registers and 8525 * then override them with implementation specific variations. 8526 * At least one of the original and the second definition should 8527 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8528 * against accidental use. 8529 * 8530 * The state field defines whether the register is to be 8531 * visible in the AArch32 or AArch64 execution state. If the 8532 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8533 * reginfo structure for the AArch32 view, which sees the lower 8534 * 32 bits of the 64 bit register. 8535 * 8536 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8537 * be wildcarded. AArch64 registers are always considered to be 64 8538 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8539 * the register, if any. 8540 */ 8541 int crm, opc1, opc2, state; 8542 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8543 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8544 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8545 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8546 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8547 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8548 /* 64 bit registers have only CRm and Opc1 fields */ 8549 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8550 /* op0 only exists in the AArch64 encodings */ 8551 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8552 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8553 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8554 /* 8555 * This API is only for Arm's system coprocessors (14 and 15) or 8556 * (M-profile or v7A-and-earlier only) for implementation defined 8557 * coprocessors in the range 0..7. Our decode assumes this, since 8558 * 8..13 can be used for other insns including VFP and Neon. See 8559 * valid_cp() in translate.c. Assert here that we haven't tried 8560 * to use an invalid coprocessor number. 8561 */ 8562 switch (r->state) { 8563 case ARM_CP_STATE_BOTH: 8564 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8565 if (r->cp == 0) { 8566 break; 8567 } 8568 /* fall through */ 8569 case ARM_CP_STATE_AA32: 8570 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8571 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8572 assert(r->cp >= 14 && r->cp <= 15); 8573 } else { 8574 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8575 } 8576 break; 8577 case ARM_CP_STATE_AA64: 8578 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8579 break; 8580 default: 8581 g_assert_not_reached(); 8582 } 8583 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8584 * encodes a minimum access level for the register. We roll this 8585 * runtime check into our general permission check code, so check 8586 * here that the reginfo's specified permissions are strict enough 8587 * to encompass the generic architectural permission check. 8588 */ 8589 if (r->state != ARM_CP_STATE_AA32) { 8590 int mask = 0; 8591 switch (r->opc1) { 8592 case 0: 8593 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8594 mask = PL0U_R | PL1_RW; 8595 break; 8596 case 1: case 2: 8597 /* min_EL EL1 */ 8598 mask = PL1_RW; 8599 break; 8600 case 3: 8601 /* min_EL EL0 */ 8602 mask = PL0_RW; 8603 break; 8604 case 4: 8605 case 5: 8606 /* min_EL EL2 */ 8607 mask = PL2_RW; 8608 break; 8609 case 6: 8610 /* min_EL EL3 */ 8611 mask = PL3_RW; 8612 break; 8613 case 7: 8614 /* min_EL EL1, secure mode only (we don't check the latter) */ 8615 mask = PL1_RW; 8616 break; 8617 default: 8618 /* broken reginfo with out-of-range opc1 */ 8619 assert(false); 8620 break; 8621 } 8622 /* assert our permissions are not too lax (stricter is fine) */ 8623 assert((r->access & ~mask) == 0); 8624 } 8625 8626 /* Check that the register definition has enough info to handle 8627 * reads and writes if they are permitted. 8628 */ 8629 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8630 if (r->access & PL3_R) { 8631 assert((r->fieldoffset || 8632 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8633 r->readfn); 8634 } 8635 if (r->access & PL3_W) { 8636 assert((r->fieldoffset || 8637 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8638 r->writefn); 8639 } 8640 } 8641 /* Bad type field probably means missing sentinel at end of reg list */ 8642 assert(cptype_valid(r->type)); 8643 for (crm = crmmin; crm <= crmmax; crm++) { 8644 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8645 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8646 for (state = ARM_CP_STATE_AA32; 8647 state <= ARM_CP_STATE_AA64; state++) { 8648 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8649 continue; 8650 } 8651 if (state == ARM_CP_STATE_AA32) { 8652 /* Under AArch32 CP registers can be common 8653 * (same for secure and non-secure world) or banked. 8654 */ 8655 char *name; 8656 8657 switch (r->secure) { 8658 case ARM_CP_SECSTATE_S: 8659 case ARM_CP_SECSTATE_NS: 8660 add_cpreg_to_hashtable(cpu, r, opaque, state, 8661 r->secure, crm, opc1, opc2, 8662 r->name); 8663 break; 8664 default: 8665 name = g_strdup_printf("%s_S", r->name); 8666 add_cpreg_to_hashtable(cpu, r, opaque, state, 8667 ARM_CP_SECSTATE_S, 8668 crm, opc1, opc2, name); 8669 g_free(name); 8670 add_cpreg_to_hashtable(cpu, r, opaque, state, 8671 ARM_CP_SECSTATE_NS, 8672 crm, opc1, opc2, r->name); 8673 break; 8674 } 8675 } else { 8676 /* AArch64 registers get mapped to non-secure instance 8677 * of AArch32 */ 8678 add_cpreg_to_hashtable(cpu, r, opaque, state, 8679 ARM_CP_SECSTATE_NS, 8680 crm, opc1, opc2, r->name); 8681 } 8682 } 8683 } 8684 } 8685 } 8686 } 8687 8688 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8689 const ARMCPRegInfo *regs, void *opaque) 8690 { 8691 /* Define a whole list of registers */ 8692 const ARMCPRegInfo *r; 8693 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8694 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8695 } 8696 } 8697 8698 /* 8699 * Modify ARMCPRegInfo for access from userspace. 8700 * 8701 * This is a data driven modification directed by 8702 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8703 * user-space cannot alter any values and dynamic values pertaining to 8704 * execution state are hidden from user space view anyway. 8705 */ 8706 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8707 { 8708 const ARMCPRegUserSpaceInfo *m; 8709 ARMCPRegInfo *r; 8710 8711 for (m = mods; m->name; m++) { 8712 GPatternSpec *pat = NULL; 8713 if (m->is_glob) { 8714 pat = g_pattern_spec_new(m->name); 8715 } 8716 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8717 if (pat && g_pattern_match_string(pat, r->name)) { 8718 r->type = ARM_CP_CONST; 8719 r->access = PL0U_R; 8720 r->resetvalue = 0; 8721 /* continue */ 8722 } else if (strcmp(r->name, m->name) == 0) { 8723 r->type = ARM_CP_CONST; 8724 r->access = PL0U_R; 8725 r->resetvalue &= m->exported_bits; 8726 r->resetvalue |= m->fixed_bits; 8727 break; 8728 } 8729 } 8730 if (pat) { 8731 g_pattern_spec_free(pat); 8732 } 8733 } 8734 } 8735 8736 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8737 { 8738 return g_hash_table_lookup(cpregs, &encoded_cp); 8739 } 8740 8741 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8742 uint64_t value) 8743 { 8744 /* Helper coprocessor write function for write-ignore registers */ 8745 } 8746 8747 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8748 { 8749 /* Helper coprocessor write function for read-as-zero registers */ 8750 return 0; 8751 } 8752 8753 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8754 { 8755 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8756 } 8757 8758 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8759 { 8760 /* Return true if it is not valid for us to switch to 8761 * this CPU mode (ie all the UNPREDICTABLE cases in 8762 * the ARM ARM CPSRWriteByInstr pseudocode). 8763 */ 8764 8765 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8766 if (write_type == CPSRWriteByInstr && 8767 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8768 mode == ARM_CPU_MODE_HYP)) { 8769 return 1; 8770 } 8771 8772 switch (mode) { 8773 case ARM_CPU_MODE_USR: 8774 return 0; 8775 case ARM_CPU_MODE_SYS: 8776 case ARM_CPU_MODE_SVC: 8777 case ARM_CPU_MODE_ABT: 8778 case ARM_CPU_MODE_UND: 8779 case ARM_CPU_MODE_IRQ: 8780 case ARM_CPU_MODE_FIQ: 8781 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8782 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8783 */ 8784 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8785 * and CPS are treated as illegal mode changes. 8786 */ 8787 if (write_type == CPSRWriteByInstr && 8788 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8789 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8790 return 1; 8791 } 8792 return 0; 8793 case ARM_CPU_MODE_HYP: 8794 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8795 case ARM_CPU_MODE_MON: 8796 return arm_current_el(env) < 3; 8797 default: 8798 return 1; 8799 } 8800 } 8801 8802 uint32_t cpsr_read(CPUARMState *env) 8803 { 8804 int ZF; 8805 ZF = (env->ZF == 0); 8806 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8807 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8808 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8809 | ((env->condexec_bits & 0xfc) << 8) 8810 | (env->GE << 16) | (env->daif & CPSR_AIF); 8811 } 8812 8813 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8814 CPSRWriteType write_type) 8815 { 8816 uint32_t changed_daif; 8817 8818 if (mask & CPSR_NZCV) { 8819 env->ZF = (~val) & CPSR_Z; 8820 env->NF = val; 8821 env->CF = (val >> 29) & 1; 8822 env->VF = (val << 3) & 0x80000000; 8823 } 8824 if (mask & CPSR_Q) 8825 env->QF = ((val & CPSR_Q) != 0); 8826 if (mask & CPSR_T) 8827 env->thumb = ((val & CPSR_T) != 0); 8828 if (mask & CPSR_IT_0_1) { 8829 env->condexec_bits &= ~3; 8830 env->condexec_bits |= (val >> 25) & 3; 8831 } 8832 if (mask & CPSR_IT_2_7) { 8833 env->condexec_bits &= 3; 8834 env->condexec_bits |= (val >> 8) & 0xfc; 8835 } 8836 if (mask & CPSR_GE) { 8837 env->GE = (val >> 16) & 0xf; 8838 } 8839 8840 /* In a V7 implementation that includes the security extensions but does 8841 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8842 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8843 * bits respectively. 8844 * 8845 * In a V8 implementation, it is permitted for privileged software to 8846 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8847 */ 8848 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8849 arm_feature(env, ARM_FEATURE_EL3) && 8850 !arm_feature(env, ARM_FEATURE_EL2) && 8851 !arm_is_secure(env)) { 8852 8853 changed_daif = (env->daif ^ val) & mask; 8854 8855 if (changed_daif & CPSR_A) { 8856 /* Check to see if we are allowed to change the masking of async 8857 * abort exceptions from a non-secure state. 8858 */ 8859 if (!(env->cp15.scr_el3 & SCR_AW)) { 8860 qemu_log_mask(LOG_GUEST_ERROR, 8861 "Ignoring attempt to switch CPSR_A flag from " 8862 "non-secure world with SCR.AW bit clear\n"); 8863 mask &= ~CPSR_A; 8864 } 8865 } 8866 8867 if (changed_daif & CPSR_F) { 8868 /* Check to see if we are allowed to change the masking of FIQ 8869 * exceptions from a non-secure state. 8870 */ 8871 if (!(env->cp15.scr_el3 & SCR_FW)) { 8872 qemu_log_mask(LOG_GUEST_ERROR, 8873 "Ignoring attempt to switch CPSR_F flag from " 8874 "non-secure world with SCR.FW bit clear\n"); 8875 mask &= ~CPSR_F; 8876 } 8877 8878 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8879 * If this bit is set software is not allowed to mask 8880 * FIQs, but is allowed to set CPSR_F to 0. 8881 */ 8882 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8883 (val & CPSR_F)) { 8884 qemu_log_mask(LOG_GUEST_ERROR, 8885 "Ignoring attempt to enable CPSR_F flag " 8886 "(non-maskable FIQ [NMFI] support enabled)\n"); 8887 mask &= ~CPSR_F; 8888 } 8889 } 8890 } 8891 8892 env->daif &= ~(CPSR_AIF & mask); 8893 env->daif |= val & CPSR_AIF & mask; 8894 8895 if (write_type != CPSRWriteRaw && 8896 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8897 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8898 /* Note that we can only get here in USR mode if this is a 8899 * gdb stub write; for this case we follow the architectural 8900 * behaviour for guest writes in USR mode of ignoring an attempt 8901 * to switch mode. (Those are caught by translate.c for writes 8902 * triggered by guest instructions.) 8903 */ 8904 mask &= ~CPSR_M; 8905 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8906 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8907 * v7, and has defined behaviour in v8: 8908 * + leave CPSR.M untouched 8909 * + allow changes to the other CPSR fields 8910 * + set PSTATE.IL 8911 * For user changes via the GDB stub, we don't set PSTATE.IL, 8912 * as this would be unnecessarily harsh for a user error. 8913 */ 8914 mask &= ~CPSR_M; 8915 if (write_type != CPSRWriteByGDBStub && 8916 arm_feature(env, ARM_FEATURE_V8)) { 8917 mask |= CPSR_IL; 8918 val |= CPSR_IL; 8919 } 8920 qemu_log_mask(LOG_GUEST_ERROR, 8921 "Illegal AArch32 mode switch attempt from %s to %s\n", 8922 aarch32_mode_name(env->uncached_cpsr), 8923 aarch32_mode_name(val)); 8924 } else { 8925 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8926 write_type == CPSRWriteExceptionReturn ? 8927 "Exception return from AArch32" : 8928 "AArch32 mode switch from", 8929 aarch32_mode_name(env->uncached_cpsr), 8930 aarch32_mode_name(val), env->regs[15]); 8931 switch_mode(env, val & CPSR_M); 8932 } 8933 } 8934 mask &= ~CACHED_CPSR_BITS; 8935 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8936 } 8937 8938 /* Sign/zero extend */ 8939 uint32_t HELPER(sxtb16)(uint32_t x) 8940 { 8941 uint32_t res; 8942 res = (uint16_t)(int8_t)x; 8943 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8944 return res; 8945 } 8946 8947 uint32_t HELPER(uxtb16)(uint32_t x) 8948 { 8949 uint32_t res; 8950 res = (uint16_t)(uint8_t)x; 8951 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8952 return res; 8953 } 8954 8955 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8956 { 8957 if (den == 0) 8958 return 0; 8959 if (num == INT_MIN && den == -1) 8960 return INT_MIN; 8961 return num / den; 8962 } 8963 8964 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 8965 { 8966 if (den == 0) 8967 return 0; 8968 return num / den; 8969 } 8970 8971 uint32_t HELPER(rbit)(uint32_t x) 8972 { 8973 return revbit32(x); 8974 } 8975 8976 #ifdef CONFIG_USER_ONLY 8977 8978 static void switch_mode(CPUARMState *env, int mode) 8979 { 8980 ARMCPU *cpu = env_archcpu(env); 8981 8982 if (mode != ARM_CPU_MODE_USR) { 8983 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 8984 } 8985 } 8986 8987 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8988 uint32_t cur_el, bool secure) 8989 { 8990 return 1; 8991 } 8992 8993 void aarch64_sync_64_to_32(CPUARMState *env) 8994 { 8995 g_assert_not_reached(); 8996 } 8997 8998 #else 8999 9000 static void switch_mode(CPUARMState *env, int mode) 9001 { 9002 int old_mode; 9003 int i; 9004 9005 old_mode = env->uncached_cpsr & CPSR_M; 9006 if (mode == old_mode) 9007 return; 9008 9009 if (old_mode == ARM_CPU_MODE_FIQ) { 9010 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9011 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9012 } else if (mode == ARM_CPU_MODE_FIQ) { 9013 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9014 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9015 } 9016 9017 i = bank_number(old_mode); 9018 env->banked_r13[i] = env->regs[13]; 9019 env->banked_spsr[i] = env->spsr; 9020 9021 i = bank_number(mode); 9022 env->regs[13] = env->banked_r13[i]; 9023 env->spsr = env->banked_spsr[i]; 9024 9025 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9026 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9027 } 9028 9029 /* Physical Interrupt Target EL Lookup Table 9030 * 9031 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9032 * 9033 * The below multi-dimensional table is used for looking up the target 9034 * exception level given numerous condition criteria. Specifically, the 9035 * target EL is based on SCR and HCR routing controls as well as the 9036 * currently executing EL and secure state. 9037 * 9038 * Dimensions: 9039 * target_el_table[2][2][2][2][2][4] 9040 * | | | | | +--- Current EL 9041 * | | | | +------ Non-secure(0)/Secure(1) 9042 * | | | +--------- HCR mask override 9043 * | | +------------ SCR exec state control 9044 * | +--------------- SCR mask override 9045 * +------------------ 32-bit(0)/64-bit(1) EL3 9046 * 9047 * The table values are as such: 9048 * 0-3 = EL0-EL3 9049 * -1 = Cannot occur 9050 * 9051 * The ARM ARM target EL table includes entries indicating that an "exception 9052 * is not taken". The two cases where this is applicable are: 9053 * 1) An exception is taken from EL3 but the SCR does not have the exception 9054 * routed to EL3. 9055 * 2) An exception is taken from EL2 but the HCR does not have the exception 9056 * routed to EL2. 9057 * In these two cases, the below table contain a target of EL1. This value is 9058 * returned as it is expected that the consumer of the table data will check 9059 * for "target EL >= current EL" to ensure the exception is not taken. 9060 * 9061 * SCR HCR 9062 * 64 EA AMO From 9063 * BIT IRQ IMO Non-secure Secure 9064 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9065 */ 9066 static const int8_t target_el_table[2][2][2][2][2][4] = { 9067 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9068 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9069 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9070 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9071 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9072 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9073 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9074 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9075 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9076 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9077 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9078 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9079 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9080 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9081 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9082 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9083 }; 9084 9085 /* 9086 * Determine the target EL for physical exceptions 9087 */ 9088 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9089 uint32_t cur_el, bool secure) 9090 { 9091 CPUARMState *env = cs->env_ptr; 9092 bool rw; 9093 bool scr; 9094 bool hcr; 9095 int target_el; 9096 /* Is the highest EL AArch64? */ 9097 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9098 uint64_t hcr_el2; 9099 9100 if (arm_feature(env, ARM_FEATURE_EL3)) { 9101 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9102 } else { 9103 /* Either EL2 is the highest EL (and so the EL2 register width 9104 * is given by is64); or there is no EL2 or EL3, in which case 9105 * the value of 'rw' does not affect the table lookup anyway. 9106 */ 9107 rw = is64; 9108 } 9109 9110 hcr_el2 = arm_hcr_el2_eff(env); 9111 switch (excp_idx) { 9112 case EXCP_IRQ: 9113 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9114 hcr = hcr_el2 & HCR_IMO; 9115 break; 9116 case EXCP_FIQ: 9117 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9118 hcr = hcr_el2 & HCR_FMO; 9119 break; 9120 default: 9121 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9122 hcr = hcr_el2 & HCR_AMO; 9123 break; 9124 }; 9125 9126 /* 9127 * For these purposes, TGE and AMO/IMO/FMO both force the 9128 * interrupt to EL2. Fold TGE into the bit extracted above. 9129 */ 9130 hcr |= (hcr_el2 & HCR_TGE) != 0; 9131 9132 /* Perform a table-lookup for the target EL given the current state */ 9133 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9134 9135 assert(target_el > 0); 9136 9137 return target_el; 9138 } 9139 9140 void arm_log_exception(int idx) 9141 { 9142 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9143 const char *exc = NULL; 9144 static const char * const excnames[] = { 9145 [EXCP_UDEF] = "Undefined Instruction", 9146 [EXCP_SWI] = "SVC", 9147 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9148 [EXCP_DATA_ABORT] = "Data Abort", 9149 [EXCP_IRQ] = "IRQ", 9150 [EXCP_FIQ] = "FIQ", 9151 [EXCP_BKPT] = "Breakpoint", 9152 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9153 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9154 [EXCP_HVC] = "Hypervisor Call", 9155 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9156 [EXCP_SMC] = "Secure Monitor Call", 9157 [EXCP_VIRQ] = "Virtual IRQ", 9158 [EXCP_VFIQ] = "Virtual FIQ", 9159 [EXCP_SEMIHOST] = "Semihosting call", 9160 [EXCP_NOCP] = "v7M NOCP UsageFault", 9161 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9162 [EXCP_STKOF] = "v8M STKOF UsageFault", 9163 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9164 [EXCP_LSERR] = "v8M LSERR UsageFault", 9165 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9166 }; 9167 9168 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9169 exc = excnames[idx]; 9170 } 9171 if (!exc) { 9172 exc = "unknown"; 9173 } 9174 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9175 } 9176 } 9177 9178 /* 9179 * Function used to synchronize QEMU's AArch64 register set with AArch32 9180 * register set. This is necessary when switching between AArch32 and AArch64 9181 * execution state. 9182 */ 9183 void aarch64_sync_32_to_64(CPUARMState *env) 9184 { 9185 int i; 9186 uint32_t mode = env->uncached_cpsr & CPSR_M; 9187 9188 /* We can blanket copy R[0:7] to X[0:7] */ 9189 for (i = 0; i < 8; i++) { 9190 env->xregs[i] = env->regs[i]; 9191 } 9192 9193 /* 9194 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9195 * Otherwise, they come from the banked user regs. 9196 */ 9197 if (mode == ARM_CPU_MODE_FIQ) { 9198 for (i = 8; i < 13; i++) { 9199 env->xregs[i] = env->usr_regs[i - 8]; 9200 } 9201 } else { 9202 for (i = 8; i < 13; i++) { 9203 env->xregs[i] = env->regs[i]; 9204 } 9205 } 9206 9207 /* 9208 * Registers x13-x23 are the various mode SP and FP registers. Registers 9209 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9210 * from the mode banked register. 9211 */ 9212 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9213 env->xregs[13] = env->regs[13]; 9214 env->xregs[14] = env->regs[14]; 9215 } else { 9216 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9217 /* HYP is an exception in that it is copied from r14 */ 9218 if (mode == ARM_CPU_MODE_HYP) { 9219 env->xregs[14] = env->regs[14]; 9220 } else { 9221 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9222 } 9223 } 9224 9225 if (mode == ARM_CPU_MODE_HYP) { 9226 env->xregs[15] = env->regs[13]; 9227 } else { 9228 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9229 } 9230 9231 if (mode == ARM_CPU_MODE_IRQ) { 9232 env->xregs[16] = env->regs[14]; 9233 env->xregs[17] = env->regs[13]; 9234 } else { 9235 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9236 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9237 } 9238 9239 if (mode == ARM_CPU_MODE_SVC) { 9240 env->xregs[18] = env->regs[14]; 9241 env->xregs[19] = env->regs[13]; 9242 } else { 9243 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9244 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9245 } 9246 9247 if (mode == ARM_CPU_MODE_ABT) { 9248 env->xregs[20] = env->regs[14]; 9249 env->xregs[21] = env->regs[13]; 9250 } else { 9251 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9252 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9253 } 9254 9255 if (mode == ARM_CPU_MODE_UND) { 9256 env->xregs[22] = env->regs[14]; 9257 env->xregs[23] = env->regs[13]; 9258 } else { 9259 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9260 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9261 } 9262 9263 /* 9264 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9265 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9266 * FIQ bank for r8-r14. 9267 */ 9268 if (mode == ARM_CPU_MODE_FIQ) { 9269 for (i = 24; i < 31; i++) { 9270 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9271 } 9272 } else { 9273 for (i = 24; i < 29; i++) { 9274 env->xregs[i] = env->fiq_regs[i - 24]; 9275 } 9276 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9277 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9278 } 9279 9280 env->pc = env->regs[15]; 9281 } 9282 9283 /* 9284 * Function used to synchronize QEMU's AArch32 register set with AArch64 9285 * register set. This is necessary when switching between AArch32 and AArch64 9286 * execution state. 9287 */ 9288 void aarch64_sync_64_to_32(CPUARMState *env) 9289 { 9290 int i; 9291 uint32_t mode = env->uncached_cpsr & CPSR_M; 9292 9293 /* We can blanket copy X[0:7] to R[0:7] */ 9294 for (i = 0; i < 8; i++) { 9295 env->regs[i] = env->xregs[i]; 9296 } 9297 9298 /* 9299 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9300 * Otherwise, we copy x8-x12 into the banked user regs. 9301 */ 9302 if (mode == ARM_CPU_MODE_FIQ) { 9303 for (i = 8; i < 13; i++) { 9304 env->usr_regs[i - 8] = env->xregs[i]; 9305 } 9306 } else { 9307 for (i = 8; i < 13; i++) { 9308 env->regs[i] = env->xregs[i]; 9309 } 9310 } 9311 9312 /* 9313 * Registers r13 & r14 depend on the current mode. 9314 * If we are in a given mode, we copy the corresponding x registers to r13 9315 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9316 * for the mode. 9317 */ 9318 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9319 env->regs[13] = env->xregs[13]; 9320 env->regs[14] = env->xregs[14]; 9321 } else { 9322 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9323 9324 /* 9325 * HYP is an exception in that it does not have its own banked r14 but 9326 * shares the USR r14 9327 */ 9328 if (mode == ARM_CPU_MODE_HYP) { 9329 env->regs[14] = env->xregs[14]; 9330 } else { 9331 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9332 } 9333 } 9334 9335 if (mode == ARM_CPU_MODE_HYP) { 9336 env->regs[13] = env->xregs[15]; 9337 } else { 9338 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9339 } 9340 9341 if (mode == ARM_CPU_MODE_IRQ) { 9342 env->regs[14] = env->xregs[16]; 9343 env->regs[13] = env->xregs[17]; 9344 } else { 9345 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9346 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9347 } 9348 9349 if (mode == ARM_CPU_MODE_SVC) { 9350 env->regs[14] = env->xregs[18]; 9351 env->regs[13] = env->xregs[19]; 9352 } else { 9353 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9354 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9355 } 9356 9357 if (mode == ARM_CPU_MODE_ABT) { 9358 env->regs[14] = env->xregs[20]; 9359 env->regs[13] = env->xregs[21]; 9360 } else { 9361 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9362 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9363 } 9364 9365 if (mode == ARM_CPU_MODE_UND) { 9366 env->regs[14] = env->xregs[22]; 9367 env->regs[13] = env->xregs[23]; 9368 } else { 9369 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9370 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9371 } 9372 9373 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9374 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9375 * FIQ bank for r8-r14. 9376 */ 9377 if (mode == ARM_CPU_MODE_FIQ) { 9378 for (i = 24; i < 31; i++) { 9379 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9380 } 9381 } else { 9382 for (i = 24; i < 29; i++) { 9383 env->fiq_regs[i - 24] = env->xregs[i]; 9384 } 9385 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9386 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9387 } 9388 9389 env->regs[15] = env->pc; 9390 } 9391 9392 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9393 uint32_t mask, uint32_t offset, 9394 uint32_t newpc) 9395 { 9396 int new_el; 9397 9398 /* Change the CPU state so as to actually take the exception. */ 9399 switch_mode(env, new_mode); 9400 9401 /* 9402 * For exceptions taken to AArch32 we must clear the SS bit in both 9403 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9404 */ 9405 env->uncached_cpsr &= ~PSTATE_SS; 9406 env->spsr = cpsr_read(env); 9407 /* Clear IT bits. */ 9408 env->condexec_bits = 0; 9409 /* Switch to the new mode, and to the correct instruction set. */ 9410 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9411 9412 /* This must be after mode switching. */ 9413 new_el = arm_current_el(env); 9414 9415 /* Set new mode endianness */ 9416 env->uncached_cpsr &= ~CPSR_E; 9417 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9418 env->uncached_cpsr |= CPSR_E; 9419 } 9420 /* J and IL must always be cleared for exception entry */ 9421 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9422 env->daif |= mask; 9423 9424 if (new_mode == ARM_CPU_MODE_HYP) { 9425 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9426 env->elr_el[2] = env->regs[15]; 9427 } else { 9428 /* CPSR.PAN is normally preserved preserved unless... */ 9429 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9430 switch (new_el) { 9431 case 3: 9432 if (!arm_is_secure_below_el3(env)) { 9433 /* ... the target is EL3, from non-secure state. */ 9434 env->uncached_cpsr &= ~CPSR_PAN; 9435 break; 9436 } 9437 /* ... the target is EL3, from secure state ... */ 9438 /* fall through */ 9439 case 1: 9440 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9441 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9442 env->uncached_cpsr |= CPSR_PAN; 9443 } 9444 break; 9445 } 9446 } 9447 /* 9448 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9449 * and we should just guard the thumb mode on V4 9450 */ 9451 if (arm_feature(env, ARM_FEATURE_V4T)) { 9452 env->thumb = 9453 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9454 } 9455 env->regs[14] = env->regs[15] + offset; 9456 } 9457 env->regs[15] = newpc; 9458 arm_rebuild_hflags(env); 9459 } 9460 9461 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9462 { 9463 /* 9464 * Handle exception entry to Hyp mode; this is sufficiently 9465 * different to entry to other AArch32 modes that we handle it 9466 * separately here. 9467 * 9468 * The vector table entry used is always the 0x14 Hyp mode entry point, 9469 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9470 * The offset applied to the preferred return address is always zero 9471 * (see DDI0487C.a section G1.12.3). 9472 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9473 */ 9474 uint32_t addr, mask; 9475 ARMCPU *cpu = ARM_CPU(cs); 9476 CPUARMState *env = &cpu->env; 9477 9478 switch (cs->exception_index) { 9479 case EXCP_UDEF: 9480 addr = 0x04; 9481 break; 9482 case EXCP_SWI: 9483 addr = 0x14; 9484 break; 9485 case EXCP_BKPT: 9486 /* Fall through to prefetch abort. */ 9487 case EXCP_PREFETCH_ABORT: 9488 env->cp15.ifar_s = env->exception.vaddress; 9489 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9490 (uint32_t)env->exception.vaddress); 9491 addr = 0x0c; 9492 break; 9493 case EXCP_DATA_ABORT: 9494 env->cp15.dfar_s = env->exception.vaddress; 9495 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9496 (uint32_t)env->exception.vaddress); 9497 addr = 0x10; 9498 break; 9499 case EXCP_IRQ: 9500 addr = 0x18; 9501 break; 9502 case EXCP_FIQ: 9503 addr = 0x1c; 9504 break; 9505 case EXCP_HVC: 9506 addr = 0x08; 9507 break; 9508 case EXCP_HYP_TRAP: 9509 addr = 0x14; 9510 break; 9511 default: 9512 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9513 } 9514 9515 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9516 if (!arm_feature(env, ARM_FEATURE_V8)) { 9517 /* 9518 * QEMU syndrome values are v8-style. v7 has the IL bit 9519 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9520 * If this is a v7 CPU, squash the IL bit in those cases. 9521 */ 9522 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9523 (cs->exception_index == EXCP_DATA_ABORT && 9524 !(env->exception.syndrome & ARM_EL_ISV)) || 9525 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9526 env->exception.syndrome &= ~ARM_EL_IL; 9527 } 9528 } 9529 env->cp15.esr_el[2] = env->exception.syndrome; 9530 } 9531 9532 if (arm_current_el(env) != 2 && addr < 0x14) { 9533 addr = 0x14; 9534 } 9535 9536 mask = 0; 9537 if (!(env->cp15.scr_el3 & SCR_EA)) { 9538 mask |= CPSR_A; 9539 } 9540 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9541 mask |= CPSR_I; 9542 } 9543 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9544 mask |= CPSR_F; 9545 } 9546 9547 addr += env->cp15.hvbar; 9548 9549 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9550 } 9551 9552 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9553 { 9554 ARMCPU *cpu = ARM_CPU(cs); 9555 CPUARMState *env = &cpu->env; 9556 uint32_t addr; 9557 uint32_t mask; 9558 int new_mode; 9559 uint32_t offset; 9560 uint32_t moe; 9561 9562 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9563 switch (syn_get_ec(env->exception.syndrome)) { 9564 case EC_BREAKPOINT: 9565 case EC_BREAKPOINT_SAME_EL: 9566 moe = 1; 9567 break; 9568 case EC_WATCHPOINT: 9569 case EC_WATCHPOINT_SAME_EL: 9570 moe = 10; 9571 break; 9572 case EC_AA32_BKPT: 9573 moe = 3; 9574 break; 9575 case EC_VECTORCATCH: 9576 moe = 5; 9577 break; 9578 default: 9579 moe = 0; 9580 break; 9581 } 9582 9583 if (moe) { 9584 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9585 } 9586 9587 if (env->exception.target_el == 2) { 9588 arm_cpu_do_interrupt_aarch32_hyp(cs); 9589 return; 9590 } 9591 9592 switch (cs->exception_index) { 9593 case EXCP_UDEF: 9594 new_mode = ARM_CPU_MODE_UND; 9595 addr = 0x04; 9596 mask = CPSR_I; 9597 if (env->thumb) 9598 offset = 2; 9599 else 9600 offset = 4; 9601 break; 9602 case EXCP_SWI: 9603 new_mode = ARM_CPU_MODE_SVC; 9604 addr = 0x08; 9605 mask = CPSR_I; 9606 /* The PC already points to the next instruction. */ 9607 offset = 0; 9608 break; 9609 case EXCP_BKPT: 9610 /* Fall through to prefetch abort. */ 9611 case EXCP_PREFETCH_ABORT: 9612 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9613 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9614 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9615 env->exception.fsr, (uint32_t)env->exception.vaddress); 9616 new_mode = ARM_CPU_MODE_ABT; 9617 addr = 0x0c; 9618 mask = CPSR_A | CPSR_I; 9619 offset = 4; 9620 break; 9621 case EXCP_DATA_ABORT: 9622 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9623 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9624 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9625 env->exception.fsr, 9626 (uint32_t)env->exception.vaddress); 9627 new_mode = ARM_CPU_MODE_ABT; 9628 addr = 0x10; 9629 mask = CPSR_A | CPSR_I; 9630 offset = 8; 9631 break; 9632 case EXCP_IRQ: 9633 new_mode = ARM_CPU_MODE_IRQ; 9634 addr = 0x18; 9635 /* Disable IRQ and imprecise data aborts. */ 9636 mask = CPSR_A | CPSR_I; 9637 offset = 4; 9638 if (env->cp15.scr_el3 & SCR_IRQ) { 9639 /* IRQ routed to monitor mode */ 9640 new_mode = ARM_CPU_MODE_MON; 9641 mask |= CPSR_F; 9642 } 9643 break; 9644 case EXCP_FIQ: 9645 new_mode = ARM_CPU_MODE_FIQ; 9646 addr = 0x1c; 9647 /* Disable FIQ, IRQ and imprecise data aborts. */ 9648 mask = CPSR_A | CPSR_I | CPSR_F; 9649 if (env->cp15.scr_el3 & SCR_FIQ) { 9650 /* FIQ routed to monitor mode */ 9651 new_mode = ARM_CPU_MODE_MON; 9652 } 9653 offset = 4; 9654 break; 9655 case EXCP_VIRQ: 9656 new_mode = ARM_CPU_MODE_IRQ; 9657 addr = 0x18; 9658 /* Disable IRQ and imprecise data aborts. */ 9659 mask = CPSR_A | CPSR_I; 9660 offset = 4; 9661 break; 9662 case EXCP_VFIQ: 9663 new_mode = ARM_CPU_MODE_FIQ; 9664 addr = 0x1c; 9665 /* Disable FIQ, IRQ and imprecise data aborts. */ 9666 mask = CPSR_A | CPSR_I | CPSR_F; 9667 offset = 4; 9668 break; 9669 case EXCP_SMC: 9670 new_mode = ARM_CPU_MODE_MON; 9671 addr = 0x08; 9672 mask = CPSR_A | CPSR_I | CPSR_F; 9673 offset = 0; 9674 break; 9675 default: 9676 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9677 return; /* Never happens. Keep compiler happy. */ 9678 } 9679 9680 if (new_mode == ARM_CPU_MODE_MON) { 9681 addr += env->cp15.mvbar; 9682 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9683 /* High vectors. When enabled, base address cannot be remapped. */ 9684 addr += 0xffff0000; 9685 } else { 9686 /* ARM v7 architectures provide a vector base address register to remap 9687 * the interrupt vector table. 9688 * This register is only followed in non-monitor mode, and is banked. 9689 * Note: only bits 31:5 are valid. 9690 */ 9691 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9692 } 9693 9694 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9695 env->cp15.scr_el3 &= ~SCR_NS; 9696 } 9697 9698 take_aarch32_exception(env, new_mode, mask, offset, addr); 9699 } 9700 9701 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9702 { 9703 /* 9704 * Return the register number of the AArch64 view of the AArch32 9705 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9706 * be that of the AArch32 mode the exception came from. 9707 */ 9708 int mode = env->uncached_cpsr & CPSR_M; 9709 9710 switch (aarch32_reg) { 9711 case 0 ... 7: 9712 return aarch32_reg; 9713 case 8 ... 12: 9714 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9715 case 13: 9716 switch (mode) { 9717 case ARM_CPU_MODE_USR: 9718 case ARM_CPU_MODE_SYS: 9719 return 13; 9720 case ARM_CPU_MODE_HYP: 9721 return 15; 9722 case ARM_CPU_MODE_IRQ: 9723 return 17; 9724 case ARM_CPU_MODE_SVC: 9725 return 19; 9726 case ARM_CPU_MODE_ABT: 9727 return 21; 9728 case ARM_CPU_MODE_UND: 9729 return 23; 9730 case ARM_CPU_MODE_FIQ: 9731 return 29; 9732 default: 9733 g_assert_not_reached(); 9734 } 9735 case 14: 9736 switch (mode) { 9737 case ARM_CPU_MODE_USR: 9738 case ARM_CPU_MODE_SYS: 9739 case ARM_CPU_MODE_HYP: 9740 return 14; 9741 case ARM_CPU_MODE_IRQ: 9742 return 16; 9743 case ARM_CPU_MODE_SVC: 9744 return 18; 9745 case ARM_CPU_MODE_ABT: 9746 return 20; 9747 case ARM_CPU_MODE_UND: 9748 return 22; 9749 case ARM_CPU_MODE_FIQ: 9750 return 30; 9751 default: 9752 g_assert_not_reached(); 9753 } 9754 case 15: 9755 return 31; 9756 default: 9757 g_assert_not_reached(); 9758 } 9759 } 9760 9761 /* Handle exception entry to a target EL which is using AArch64 */ 9762 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9763 { 9764 ARMCPU *cpu = ARM_CPU(cs); 9765 CPUARMState *env = &cpu->env; 9766 unsigned int new_el = env->exception.target_el; 9767 target_ulong addr = env->cp15.vbar_el[new_el]; 9768 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9769 unsigned int old_mode; 9770 unsigned int cur_el = arm_current_el(env); 9771 int rt; 9772 9773 /* 9774 * Note that new_el can never be 0. If cur_el is 0, then 9775 * el0_a64 is is_a64(), else el0_a64 is ignored. 9776 */ 9777 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9778 9779 if (cur_el < new_el) { 9780 /* Entry vector offset depends on whether the implemented EL 9781 * immediately lower than the target level is using AArch32 or AArch64 9782 */ 9783 bool is_aa64; 9784 uint64_t hcr; 9785 9786 switch (new_el) { 9787 case 3: 9788 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9789 break; 9790 case 2: 9791 hcr = arm_hcr_el2_eff(env); 9792 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9793 is_aa64 = (hcr & HCR_RW) != 0; 9794 break; 9795 } 9796 /* fall through */ 9797 case 1: 9798 is_aa64 = is_a64(env); 9799 break; 9800 default: 9801 g_assert_not_reached(); 9802 } 9803 9804 if (is_aa64) { 9805 addr += 0x400; 9806 } else { 9807 addr += 0x600; 9808 } 9809 } else if (pstate_read(env) & PSTATE_SP) { 9810 addr += 0x200; 9811 } 9812 9813 switch (cs->exception_index) { 9814 case EXCP_PREFETCH_ABORT: 9815 case EXCP_DATA_ABORT: 9816 env->cp15.far_el[new_el] = env->exception.vaddress; 9817 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9818 env->cp15.far_el[new_el]); 9819 /* fall through */ 9820 case EXCP_BKPT: 9821 case EXCP_UDEF: 9822 case EXCP_SWI: 9823 case EXCP_HVC: 9824 case EXCP_HYP_TRAP: 9825 case EXCP_SMC: 9826 switch (syn_get_ec(env->exception.syndrome)) { 9827 case EC_ADVSIMDFPACCESSTRAP: 9828 /* 9829 * QEMU internal FP/SIMD syndromes from AArch32 include the 9830 * TA and coproc fields which are only exposed if the exception 9831 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9832 * AArch64 format syndrome. 9833 */ 9834 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9835 break; 9836 case EC_CP14RTTRAP: 9837 case EC_CP15RTTRAP: 9838 case EC_CP14DTTRAP: 9839 /* 9840 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 9841 * the raw register field from the insn; when taking this to 9842 * AArch64 we must convert it to the AArch64 view of the register 9843 * number. Notice that we read a 4-bit AArch32 register number and 9844 * write back a 5-bit AArch64 one. 9845 */ 9846 rt = extract32(env->exception.syndrome, 5, 4); 9847 rt = aarch64_regnum(env, rt); 9848 env->exception.syndrome = deposit32(env->exception.syndrome, 9849 5, 5, rt); 9850 break; 9851 case EC_CP15RRTTRAP: 9852 case EC_CP14RRTTRAP: 9853 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 9854 rt = extract32(env->exception.syndrome, 5, 4); 9855 rt = aarch64_regnum(env, rt); 9856 env->exception.syndrome = deposit32(env->exception.syndrome, 9857 5, 5, rt); 9858 rt = extract32(env->exception.syndrome, 10, 4); 9859 rt = aarch64_regnum(env, rt); 9860 env->exception.syndrome = deposit32(env->exception.syndrome, 9861 10, 5, rt); 9862 break; 9863 } 9864 env->cp15.esr_el[new_el] = env->exception.syndrome; 9865 break; 9866 case EXCP_IRQ: 9867 case EXCP_VIRQ: 9868 addr += 0x80; 9869 break; 9870 case EXCP_FIQ: 9871 case EXCP_VFIQ: 9872 addr += 0x100; 9873 break; 9874 default: 9875 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9876 } 9877 9878 if (is_a64(env)) { 9879 old_mode = pstate_read(env); 9880 aarch64_save_sp(env, arm_current_el(env)); 9881 env->elr_el[new_el] = env->pc; 9882 } else { 9883 old_mode = cpsr_read(env); 9884 env->elr_el[new_el] = env->regs[15]; 9885 9886 aarch64_sync_32_to_64(env); 9887 9888 env->condexec_bits = 0; 9889 } 9890 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9891 9892 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9893 env->elr_el[new_el]); 9894 9895 if (cpu_isar_feature(aa64_pan, cpu)) { 9896 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9897 new_mode |= old_mode & PSTATE_PAN; 9898 switch (new_el) { 9899 case 2: 9900 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9901 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9902 != (HCR_E2H | HCR_TGE)) { 9903 break; 9904 } 9905 /* fall through */ 9906 case 1: 9907 /* ... the target is EL1 ... */ 9908 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9909 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9910 new_mode |= PSTATE_PAN; 9911 } 9912 break; 9913 } 9914 } 9915 if (cpu_isar_feature(aa64_mte, cpu)) { 9916 new_mode |= PSTATE_TCO; 9917 } 9918 9919 pstate_write(env, PSTATE_DAIF | new_mode); 9920 env->aarch64 = 1; 9921 aarch64_restore_sp(env, new_el); 9922 helper_rebuild_hflags_a64(env, new_el); 9923 9924 env->pc = addr; 9925 9926 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9927 new_el, env->pc, pstate_read(env)); 9928 } 9929 9930 /* 9931 * Do semihosting call and set the appropriate return value. All the 9932 * permission and validity checks have been done at translate time. 9933 * 9934 * We only see semihosting exceptions in TCG only as they are not 9935 * trapped to the hypervisor in KVM. 9936 */ 9937 #ifdef CONFIG_TCG 9938 static void handle_semihosting(CPUState *cs) 9939 { 9940 ARMCPU *cpu = ARM_CPU(cs); 9941 CPUARMState *env = &cpu->env; 9942 9943 if (is_a64(env)) { 9944 qemu_log_mask(CPU_LOG_INT, 9945 "...handling as semihosting call 0x%" PRIx64 "\n", 9946 env->xregs[0]); 9947 env->xregs[0] = do_common_semihosting(cs); 9948 env->pc += 4; 9949 } else { 9950 qemu_log_mask(CPU_LOG_INT, 9951 "...handling as semihosting call 0x%x\n", 9952 env->regs[0]); 9953 env->regs[0] = do_common_semihosting(cs); 9954 env->regs[15] += env->thumb ? 2 : 4; 9955 } 9956 } 9957 #endif 9958 9959 /* Handle a CPU exception for A and R profile CPUs. 9960 * Do any appropriate logging, handle PSCI calls, and then hand off 9961 * to the AArch64-entry or AArch32-entry function depending on the 9962 * target exception level's register width. 9963 */ 9964 void arm_cpu_do_interrupt(CPUState *cs) 9965 { 9966 ARMCPU *cpu = ARM_CPU(cs); 9967 CPUARMState *env = &cpu->env; 9968 unsigned int new_el = env->exception.target_el; 9969 9970 assert(!arm_feature(env, ARM_FEATURE_M)); 9971 9972 arm_log_exception(cs->exception_index); 9973 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9974 new_el); 9975 if (qemu_loglevel_mask(CPU_LOG_INT) 9976 && !excp_is_internal(cs->exception_index)) { 9977 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9978 syn_get_ec(env->exception.syndrome), 9979 env->exception.syndrome); 9980 } 9981 9982 if (arm_is_psci_call(cpu, cs->exception_index)) { 9983 arm_handle_psci_call(cpu); 9984 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9985 return; 9986 } 9987 9988 /* 9989 * Semihosting semantics depend on the register width of the code 9990 * that caused the exception, not the target exception level, so 9991 * must be handled here. 9992 */ 9993 #ifdef CONFIG_TCG 9994 if (cs->exception_index == EXCP_SEMIHOST) { 9995 handle_semihosting(cs); 9996 return; 9997 } 9998 #endif 9999 10000 /* Hooks may change global state so BQL should be held, also the 10001 * BQL needs to be held for any modification of 10002 * cs->interrupt_request. 10003 */ 10004 g_assert(qemu_mutex_iothread_locked()); 10005 10006 arm_call_pre_el_change_hook(cpu); 10007 10008 assert(!excp_is_internal(cs->exception_index)); 10009 if (arm_el_is_aa64(env, new_el)) { 10010 arm_cpu_do_interrupt_aarch64(cs); 10011 } else { 10012 arm_cpu_do_interrupt_aarch32(cs); 10013 } 10014 10015 arm_call_el_change_hook(cpu); 10016 10017 if (!kvm_enabled()) { 10018 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10019 } 10020 } 10021 #endif /* !CONFIG_USER_ONLY */ 10022 10023 uint64_t arm_sctlr(CPUARMState *env, int el) 10024 { 10025 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10026 if (el == 0) { 10027 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10028 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10029 ? 2 : 1; 10030 } 10031 return env->cp15.sctlr_el[el]; 10032 } 10033 10034 /* Return the SCTLR value which controls this address translation regime */ 10035 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10036 { 10037 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10038 } 10039 10040 #ifndef CONFIG_USER_ONLY 10041 10042 /* Return true if the specified stage of address translation is disabled */ 10043 static inline bool regime_translation_disabled(CPUARMState *env, 10044 ARMMMUIdx mmu_idx) 10045 { 10046 uint64_t hcr_el2; 10047 10048 if (arm_feature(env, ARM_FEATURE_M)) { 10049 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10050 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10051 case R_V7M_MPU_CTRL_ENABLE_MASK: 10052 /* Enabled, but not for HardFault and NMI */ 10053 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10054 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10055 /* Enabled for all cases */ 10056 return false; 10057 case 0: 10058 default: 10059 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10060 * we warned about that in armv7m_nvic.c when the guest set it. 10061 */ 10062 return true; 10063 } 10064 } 10065 10066 hcr_el2 = arm_hcr_el2_eff(env); 10067 10068 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10069 /* HCR.DC means HCR.VM behaves as 1 */ 10070 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10071 } 10072 10073 if (hcr_el2 & HCR_TGE) { 10074 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10075 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10076 return true; 10077 } 10078 } 10079 10080 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10081 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10082 return true; 10083 } 10084 10085 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10086 } 10087 10088 static inline bool regime_translation_big_endian(CPUARMState *env, 10089 ARMMMUIdx mmu_idx) 10090 { 10091 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10092 } 10093 10094 /* Return the TTBR associated with this translation regime */ 10095 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10096 int ttbrn) 10097 { 10098 if (mmu_idx == ARMMMUIdx_Stage2) { 10099 return env->cp15.vttbr_el2; 10100 } 10101 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10102 return env->cp15.vsttbr_el2; 10103 } 10104 if (ttbrn == 0) { 10105 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10106 } else { 10107 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10108 } 10109 } 10110 10111 #endif /* !CONFIG_USER_ONLY */ 10112 10113 /* Convert a possible stage1+2 MMU index into the appropriate 10114 * stage 1 MMU index 10115 */ 10116 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10117 { 10118 switch (mmu_idx) { 10119 case ARMMMUIdx_SE10_0: 10120 return ARMMMUIdx_Stage1_SE0; 10121 case ARMMMUIdx_SE10_1: 10122 return ARMMMUIdx_Stage1_SE1; 10123 case ARMMMUIdx_SE10_1_PAN: 10124 return ARMMMUIdx_Stage1_SE1_PAN; 10125 case ARMMMUIdx_E10_0: 10126 return ARMMMUIdx_Stage1_E0; 10127 case ARMMMUIdx_E10_1: 10128 return ARMMMUIdx_Stage1_E1; 10129 case ARMMMUIdx_E10_1_PAN: 10130 return ARMMMUIdx_Stage1_E1_PAN; 10131 default: 10132 return mmu_idx; 10133 } 10134 } 10135 10136 /* Return true if the translation regime is using LPAE format page tables */ 10137 static inline bool regime_using_lpae_format(CPUARMState *env, 10138 ARMMMUIdx mmu_idx) 10139 { 10140 int el = regime_el(env, mmu_idx); 10141 if (el == 2 || arm_el_is_aa64(env, el)) { 10142 return true; 10143 } 10144 if (arm_feature(env, ARM_FEATURE_LPAE) 10145 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10146 return true; 10147 } 10148 return false; 10149 } 10150 10151 /* Returns true if the stage 1 translation regime is using LPAE format page 10152 * tables. Used when raising alignment exceptions, whose FSR changes depending 10153 * on whether the long or short descriptor format is in use. */ 10154 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10155 { 10156 mmu_idx = stage_1_mmu_idx(mmu_idx); 10157 10158 return regime_using_lpae_format(env, mmu_idx); 10159 } 10160 10161 #ifndef CONFIG_USER_ONLY 10162 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10163 { 10164 switch (mmu_idx) { 10165 case ARMMMUIdx_SE10_0: 10166 case ARMMMUIdx_E20_0: 10167 case ARMMMUIdx_SE20_0: 10168 case ARMMMUIdx_Stage1_E0: 10169 case ARMMMUIdx_Stage1_SE0: 10170 case ARMMMUIdx_MUser: 10171 case ARMMMUIdx_MSUser: 10172 case ARMMMUIdx_MUserNegPri: 10173 case ARMMMUIdx_MSUserNegPri: 10174 return true; 10175 default: 10176 return false; 10177 case ARMMMUIdx_E10_0: 10178 case ARMMMUIdx_E10_1: 10179 case ARMMMUIdx_E10_1_PAN: 10180 g_assert_not_reached(); 10181 } 10182 } 10183 10184 /* Translate section/page access permissions to page 10185 * R/W protection flags 10186 * 10187 * @env: CPUARMState 10188 * @mmu_idx: MMU index indicating required translation regime 10189 * @ap: The 3-bit access permissions (AP[2:0]) 10190 * @domain_prot: The 2-bit domain access permissions 10191 */ 10192 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10193 int ap, int domain_prot) 10194 { 10195 bool is_user = regime_is_user(env, mmu_idx); 10196 10197 if (domain_prot == 3) { 10198 return PAGE_READ | PAGE_WRITE; 10199 } 10200 10201 switch (ap) { 10202 case 0: 10203 if (arm_feature(env, ARM_FEATURE_V7)) { 10204 return 0; 10205 } 10206 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10207 case SCTLR_S: 10208 return is_user ? 0 : PAGE_READ; 10209 case SCTLR_R: 10210 return PAGE_READ; 10211 default: 10212 return 0; 10213 } 10214 case 1: 10215 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10216 case 2: 10217 if (is_user) { 10218 return PAGE_READ; 10219 } else { 10220 return PAGE_READ | PAGE_WRITE; 10221 } 10222 case 3: 10223 return PAGE_READ | PAGE_WRITE; 10224 case 4: /* Reserved. */ 10225 return 0; 10226 case 5: 10227 return is_user ? 0 : PAGE_READ; 10228 case 6: 10229 return PAGE_READ; 10230 case 7: 10231 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10232 return 0; 10233 } 10234 return PAGE_READ; 10235 default: 10236 g_assert_not_reached(); 10237 } 10238 } 10239 10240 /* Translate section/page access permissions to page 10241 * R/W protection flags. 10242 * 10243 * @ap: The 2-bit simple AP (AP[2:1]) 10244 * @is_user: TRUE if accessing from PL0 10245 */ 10246 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10247 { 10248 switch (ap) { 10249 case 0: 10250 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10251 case 1: 10252 return PAGE_READ | PAGE_WRITE; 10253 case 2: 10254 return is_user ? 0 : PAGE_READ; 10255 case 3: 10256 return PAGE_READ; 10257 default: 10258 g_assert_not_reached(); 10259 } 10260 } 10261 10262 static inline int 10263 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10264 { 10265 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10266 } 10267 10268 /* Translate S2 section/page access permissions to protection flags 10269 * 10270 * @env: CPUARMState 10271 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10272 * @xn: XN (execute-never) bits 10273 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10274 */ 10275 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10276 { 10277 int prot = 0; 10278 10279 if (s2ap & 1) { 10280 prot |= PAGE_READ; 10281 } 10282 if (s2ap & 2) { 10283 prot |= PAGE_WRITE; 10284 } 10285 10286 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10287 switch (xn) { 10288 case 0: 10289 prot |= PAGE_EXEC; 10290 break; 10291 case 1: 10292 if (s1_is_el0) { 10293 prot |= PAGE_EXEC; 10294 } 10295 break; 10296 case 2: 10297 break; 10298 case 3: 10299 if (!s1_is_el0) { 10300 prot |= PAGE_EXEC; 10301 } 10302 break; 10303 default: 10304 g_assert_not_reached(); 10305 } 10306 } else { 10307 if (!extract32(xn, 1, 1)) { 10308 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10309 prot |= PAGE_EXEC; 10310 } 10311 } 10312 } 10313 return prot; 10314 } 10315 10316 /* Translate section/page access permissions to protection flags 10317 * 10318 * @env: CPUARMState 10319 * @mmu_idx: MMU index indicating required translation regime 10320 * @is_aa64: TRUE if AArch64 10321 * @ap: The 2-bit simple AP (AP[2:1]) 10322 * @ns: NS (non-secure) bit 10323 * @xn: XN (execute-never) bit 10324 * @pxn: PXN (privileged execute-never) bit 10325 */ 10326 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10327 int ap, int ns, int xn, int pxn) 10328 { 10329 bool is_user = regime_is_user(env, mmu_idx); 10330 int prot_rw, user_rw; 10331 bool have_wxn; 10332 int wxn = 0; 10333 10334 assert(mmu_idx != ARMMMUIdx_Stage2); 10335 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10336 10337 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10338 if (is_user) { 10339 prot_rw = user_rw; 10340 } else { 10341 if (user_rw && regime_is_pan(env, mmu_idx)) { 10342 /* PAN forbids data accesses but doesn't affect insn fetch */ 10343 prot_rw = 0; 10344 } else { 10345 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10346 } 10347 } 10348 10349 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10350 return prot_rw; 10351 } 10352 10353 /* TODO have_wxn should be replaced with 10354 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10355 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10356 * compatible processors have EL2, which is required for [U]WXN. 10357 */ 10358 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10359 10360 if (have_wxn) { 10361 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10362 } 10363 10364 if (is_aa64) { 10365 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10366 xn = pxn || (user_rw & PAGE_WRITE); 10367 } 10368 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10369 switch (regime_el(env, mmu_idx)) { 10370 case 1: 10371 case 3: 10372 if (is_user) { 10373 xn = xn || !(user_rw & PAGE_READ); 10374 } else { 10375 int uwxn = 0; 10376 if (have_wxn) { 10377 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10378 } 10379 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10380 (uwxn && (user_rw & PAGE_WRITE)); 10381 } 10382 break; 10383 case 2: 10384 break; 10385 } 10386 } else { 10387 xn = wxn = 0; 10388 } 10389 10390 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10391 return prot_rw; 10392 } 10393 return prot_rw | PAGE_EXEC; 10394 } 10395 10396 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10397 uint32_t *table, uint32_t address) 10398 { 10399 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10400 TCR *tcr = regime_tcr(env, mmu_idx); 10401 10402 if (address & tcr->mask) { 10403 if (tcr->raw_tcr & TTBCR_PD1) { 10404 /* Translation table walk disabled for TTBR1 */ 10405 return false; 10406 } 10407 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10408 } else { 10409 if (tcr->raw_tcr & TTBCR_PD0) { 10410 /* Translation table walk disabled for TTBR0 */ 10411 return false; 10412 } 10413 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10414 } 10415 *table |= (address >> 18) & 0x3ffc; 10416 return true; 10417 } 10418 10419 /* Translate a S1 pagetable walk through S2 if needed. */ 10420 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10421 hwaddr addr, bool *is_secure, 10422 ARMMMUFaultInfo *fi) 10423 { 10424 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10425 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10426 target_ulong s2size; 10427 hwaddr s2pa; 10428 int s2prot; 10429 int ret; 10430 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10431 : ARMMMUIdx_Stage2; 10432 ARMCacheAttrs cacheattrs = {}; 10433 MemTxAttrs txattrs = {}; 10434 10435 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10436 &s2pa, &txattrs, &s2prot, &s2size, fi, 10437 &cacheattrs); 10438 if (ret) { 10439 assert(fi->type != ARMFault_None); 10440 fi->s2addr = addr; 10441 fi->stage2 = true; 10442 fi->s1ptw = true; 10443 fi->s1ns = !*is_secure; 10444 return ~0; 10445 } 10446 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10447 (cacheattrs.attrs & 0xf0) == 0) { 10448 /* 10449 * PTW set and S1 walk touched S2 Device memory: 10450 * generate Permission fault. 10451 */ 10452 fi->type = ARMFault_Permission; 10453 fi->s2addr = addr; 10454 fi->stage2 = true; 10455 fi->s1ptw = true; 10456 fi->s1ns = !*is_secure; 10457 return ~0; 10458 } 10459 10460 if (arm_is_secure_below_el3(env)) { 10461 /* Check if page table walk is to secure or non-secure PA space. */ 10462 if (*is_secure) { 10463 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10464 } else { 10465 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10466 } 10467 } else { 10468 assert(!*is_secure); 10469 } 10470 10471 addr = s2pa; 10472 } 10473 return addr; 10474 } 10475 10476 /* All loads done in the course of a page table walk go through here. */ 10477 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10478 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10479 { 10480 ARMCPU *cpu = ARM_CPU(cs); 10481 CPUARMState *env = &cpu->env; 10482 MemTxAttrs attrs = {}; 10483 MemTxResult result = MEMTX_OK; 10484 AddressSpace *as; 10485 uint32_t data; 10486 10487 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10488 attrs.secure = is_secure; 10489 as = arm_addressspace(cs, attrs); 10490 if (fi->s1ptw) { 10491 return 0; 10492 } 10493 if (regime_translation_big_endian(env, mmu_idx)) { 10494 data = address_space_ldl_be(as, addr, attrs, &result); 10495 } else { 10496 data = address_space_ldl_le(as, addr, attrs, &result); 10497 } 10498 if (result == MEMTX_OK) { 10499 return data; 10500 } 10501 fi->type = ARMFault_SyncExternalOnWalk; 10502 fi->ea = arm_extabort_type(result); 10503 return 0; 10504 } 10505 10506 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10507 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10508 { 10509 ARMCPU *cpu = ARM_CPU(cs); 10510 CPUARMState *env = &cpu->env; 10511 MemTxAttrs attrs = {}; 10512 MemTxResult result = MEMTX_OK; 10513 AddressSpace *as; 10514 uint64_t data; 10515 10516 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10517 attrs.secure = is_secure; 10518 as = arm_addressspace(cs, attrs); 10519 if (fi->s1ptw) { 10520 return 0; 10521 } 10522 if (regime_translation_big_endian(env, mmu_idx)) { 10523 data = address_space_ldq_be(as, addr, attrs, &result); 10524 } else { 10525 data = address_space_ldq_le(as, addr, attrs, &result); 10526 } 10527 if (result == MEMTX_OK) { 10528 return data; 10529 } 10530 fi->type = ARMFault_SyncExternalOnWalk; 10531 fi->ea = arm_extabort_type(result); 10532 return 0; 10533 } 10534 10535 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10536 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10537 hwaddr *phys_ptr, int *prot, 10538 target_ulong *page_size, 10539 ARMMMUFaultInfo *fi) 10540 { 10541 CPUState *cs = env_cpu(env); 10542 int level = 1; 10543 uint32_t table; 10544 uint32_t desc; 10545 int type; 10546 int ap; 10547 int domain = 0; 10548 int domain_prot; 10549 hwaddr phys_addr; 10550 uint32_t dacr; 10551 10552 /* Pagetable walk. */ 10553 /* Lookup l1 descriptor. */ 10554 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10555 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10556 fi->type = ARMFault_Translation; 10557 goto do_fault; 10558 } 10559 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10560 mmu_idx, fi); 10561 if (fi->type != ARMFault_None) { 10562 goto do_fault; 10563 } 10564 type = (desc & 3); 10565 domain = (desc >> 5) & 0x0f; 10566 if (regime_el(env, mmu_idx) == 1) { 10567 dacr = env->cp15.dacr_ns; 10568 } else { 10569 dacr = env->cp15.dacr_s; 10570 } 10571 domain_prot = (dacr >> (domain * 2)) & 3; 10572 if (type == 0) { 10573 /* Section translation fault. */ 10574 fi->type = ARMFault_Translation; 10575 goto do_fault; 10576 } 10577 if (type != 2) { 10578 level = 2; 10579 } 10580 if (domain_prot == 0 || domain_prot == 2) { 10581 fi->type = ARMFault_Domain; 10582 goto do_fault; 10583 } 10584 if (type == 2) { 10585 /* 1Mb section. */ 10586 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10587 ap = (desc >> 10) & 3; 10588 *page_size = 1024 * 1024; 10589 } else { 10590 /* Lookup l2 entry. */ 10591 if (type == 1) { 10592 /* Coarse pagetable. */ 10593 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10594 } else { 10595 /* Fine pagetable. */ 10596 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10597 } 10598 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10599 mmu_idx, fi); 10600 if (fi->type != ARMFault_None) { 10601 goto do_fault; 10602 } 10603 switch (desc & 3) { 10604 case 0: /* Page translation fault. */ 10605 fi->type = ARMFault_Translation; 10606 goto do_fault; 10607 case 1: /* 64k page. */ 10608 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10609 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10610 *page_size = 0x10000; 10611 break; 10612 case 2: /* 4k page. */ 10613 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10614 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10615 *page_size = 0x1000; 10616 break; 10617 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10618 if (type == 1) { 10619 /* ARMv6/XScale extended small page format */ 10620 if (arm_feature(env, ARM_FEATURE_XSCALE) 10621 || arm_feature(env, ARM_FEATURE_V6)) { 10622 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10623 *page_size = 0x1000; 10624 } else { 10625 /* UNPREDICTABLE in ARMv5; we choose to take a 10626 * page translation fault. 10627 */ 10628 fi->type = ARMFault_Translation; 10629 goto do_fault; 10630 } 10631 } else { 10632 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10633 *page_size = 0x400; 10634 } 10635 ap = (desc >> 4) & 3; 10636 break; 10637 default: 10638 /* Never happens, but compiler isn't smart enough to tell. */ 10639 abort(); 10640 } 10641 } 10642 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10643 *prot |= *prot ? PAGE_EXEC : 0; 10644 if (!(*prot & (1 << access_type))) { 10645 /* Access permission fault. */ 10646 fi->type = ARMFault_Permission; 10647 goto do_fault; 10648 } 10649 *phys_ptr = phys_addr; 10650 return false; 10651 do_fault: 10652 fi->domain = domain; 10653 fi->level = level; 10654 return true; 10655 } 10656 10657 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10658 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10659 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10660 target_ulong *page_size, ARMMMUFaultInfo *fi) 10661 { 10662 CPUState *cs = env_cpu(env); 10663 ARMCPU *cpu = env_archcpu(env); 10664 int level = 1; 10665 uint32_t table; 10666 uint32_t desc; 10667 uint32_t xn; 10668 uint32_t pxn = 0; 10669 int type; 10670 int ap; 10671 int domain = 0; 10672 int domain_prot; 10673 hwaddr phys_addr; 10674 uint32_t dacr; 10675 bool ns; 10676 10677 /* Pagetable walk. */ 10678 /* Lookup l1 descriptor. */ 10679 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10680 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10681 fi->type = ARMFault_Translation; 10682 goto do_fault; 10683 } 10684 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10685 mmu_idx, fi); 10686 if (fi->type != ARMFault_None) { 10687 goto do_fault; 10688 } 10689 type = (desc & 3); 10690 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10691 /* Section translation fault, or attempt to use the encoding 10692 * which is Reserved on implementations without PXN. 10693 */ 10694 fi->type = ARMFault_Translation; 10695 goto do_fault; 10696 } 10697 if ((type == 1) || !(desc & (1 << 18))) { 10698 /* Page or Section. */ 10699 domain = (desc >> 5) & 0x0f; 10700 } 10701 if (regime_el(env, mmu_idx) == 1) { 10702 dacr = env->cp15.dacr_ns; 10703 } else { 10704 dacr = env->cp15.dacr_s; 10705 } 10706 if (type == 1) { 10707 level = 2; 10708 } 10709 domain_prot = (dacr >> (domain * 2)) & 3; 10710 if (domain_prot == 0 || domain_prot == 2) { 10711 /* Section or Page domain fault */ 10712 fi->type = ARMFault_Domain; 10713 goto do_fault; 10714 } 10715 if (type != 1) { 10716 if (desc & (1 << 18)) { 10717 /* Supersection. */ 10718 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10719 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10720 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10721 *page_size = 0x1000000; 10722 } else { 10723 /* Section. */ 10724 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10725 *page_size = 0x100000; 10726 } 10727 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10728 xn = desc & (1 << 4); 10729 pxn = desc & 1; 10730 ns = extract32(desc, 19, 1); 10731 } else { 10732 if (cpu_isar_feature(aa32_pxn, cpu)) { 10733 pxn = (desc >> 2) & 1; 10734 } 10735 ns = extract32(desc, 3, 1); 10736 /* Lookup l2 entry. */ 10737 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10738 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10739 mmu_idx, fi); 10740 if (fi->type != ARMFault_None) { 10741 goto do_fault; 10742 } 10743 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10744 switch (desc & 3) { 10745 case 0: /* Page translation fault. */ 10746 fi->type = ARMFault_Translation; 10747 goto do_fault; 10748 case 1: /* 64k page. */ 10749 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10750 xn = desc & (1 << 15); 10751 *page_size = 0x10000; 10752 break; 10753 case 2: case 3: /* 4k page. */ 10754 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10755 xn = desc & 1; 10756 *page_size = 0x1000; 10757 break; 10758 default: 10759 /* Never happens, but compiler isn't smart enough to tell. */ 10760 abort(); 10761 } 10762 } 10763 if (domain_prot == 3) { 10764 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10765 } else { 10766 if (pxn && !regime_is_user(env, mmu_idx)) { 10767 xn = 1; 10768 } 10769 if (xn && access_type == MMU_INST_FETCH) { 10770 fi->type = ARMFault_Permission; 10771 goto do_fault; 10772 } 10773 10774 if (arm_feature(env, ARM_FEATURE_V6K) && 10775 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10776 /* The simplified model uses AP[0] as an access control bit. */ 10777 if ((ap & 1) == 0) { 10778 /* Access flag fault. */ 10779 fi->type = ARMFault_AccessFlag; 10780 goto do_fault; 10781 } 10782 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10783 } else { 10784 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10785 } 10786 if (*prot && !xn) { 10787 *prot |= PAGE_EXEC; 10788 } 10789 if (!(*prot & (1 << access_type))) { 10790 /* Access permission fault. */ 10791 fi->type = ARMFault_Permission; 10792 goto do_fault; 10793 } 10794 } 10795 if (ns) { 10796 /* The NS bit will (as required by the architecture) have no effect if 10797 * the CPU doesn't support TZ or this is a non-secure translation 10798 * regime, because the attribute will already be non-secure. 10799 */ 10800 attrs->secure = false; 10801 } 10802 *phys_ptr = phys_addr; 10803 return false; 10804 do_fault: 10805 fi->domain = domain; 10806 fi->level = level; 10807 return true; 10808 } 10809 10810 /* 10811 * check_s2_mmu_setup 10812 * @cpu: ARMCPU 10813 * @is_aa64: True if the translation regime is in AArch64 state 10814 * @startlevel: Suggested starting level 10815 * @inputsize: Bitsize of IPAs 10816 * @stride: Page-table stride (See the ARM ARM) 10817 * 10818 * Returns true if the suggested S2 translation parameters are OK and 10819 * false otherwise. 10820 */ 10821 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10822 int inputsize, int stride) 10823 { 10824 const int grainsize = stride + 3; 10825 int startsizecheck; 10826 10827 /* Negative levels are never allowed. */ 10828 if (level < 0) { 10829 return false; 10830 } 10831 10832 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10833 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10834 return false; 10835 } 10836 10837 if (is_aa64) { 10838 CPUARMState *env = &cpu->env; 10839 unsigned int pamax = arm_pamax(cpu); 10840 10841 switch (stride) { 10842 case 13: /* 64KB Pages. */ 10843 if (level == 0 || (level == 1 && pamax <= 42)) { 10844 return false; 10845 } 10846 break; 10847 case 11: /* 16KB Pages. */ 10848 if (level == 0 || (level == 1 && pamax <= 40)) { 10849 return false; 10850 } 10851 break; 10852 case 9: /* 4KB Pages. */ 10853 if (level == 0 && pamax <= 42) { 10854 return false; 10855 } 10856 break; 10857 default: 10858 g_assert_not_reached(); 10859 } 10860 10861 /* Inputsize checks. */ 10862 if (inputsize > pamax && 10863 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10864 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10865 return false; 10866 } 10867 } else { 10868 /* AArch32 only supports 4KB pages. Assert on that. */ 10869 assert(stride == 9); 10870 10871 if (level == 0) { 10872 return false; 10873 } 10874 } 10875 return true; 10876 } 10877 10878 /* Translate from the 4-bit stage 2 representation of 10879 * memory attributes (without cache-allocation hints) to 10880 * the 8-bit representation of the stage 1 MAIR registers 10881 * (which includes allocation hints). 10882 * 10883 * ref: shared/translation/attrs/S2AttrDecode() 10884 * .../S2ConvertAttrsHints() 10885 */ 10886 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10887 { 10888 uint8_t hiattr = extract32(s2attrs, 2, 2); 10889 uint8_t loattr = extract32(s2attrs, 0, 2); 10890 uint8_t hihint = 0, lohint = 0; 10891 10892 if (hiattr != 0) { /* normal memory */ 10893 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 10894 hiattr = loattr = 1; /* non-cacheable */ 10895 } else { 10896 if (hiattr != 1) { /* Write-through or write-back */ 10897 hihint = 3; /* RW allocate */ 10898 } 10899 if (loattr != 1) { /* Write-through or write-back */ 10900 lohint = 3; /* RW allocate */ 10901 } 10902 } 10903 } 10904 10905 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10906 } 10907 #endif /* !CONFIG_USER_ONLY */ 10908 10909 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10910 { 10911 if (regime_has_2_ranges(mmu_idx)) { 10912 return extract64(tcr, 37, 2); 10913 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10914 return 0; /* VTCR_EL2 */ 10915 } else { 10916 /* Replicate the single TBI bit so we always have 2 bits. */ 10917 return extract32(tcr, 20, 1) * 3; 10918 } 10919 } 10920 10921 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10922 { 10923 if (regime_has_2_ranges(mmu_idx)) { 10924 return extract64(tcr, 51, 2); 10925 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10926 return 0; /* VTCR_EL2 */ 10927 } else { 10928 /* Replicate the single TBID bit so we always have 2 bits. */ 10929 return extract32(tcr, 29, 1) * 3; 10930 } 10931 } 10932 10933 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10934 { 10935 if (regime_has_2_ranges(mmu_idx)) { 10936 return extract64(tcr, 57, 2); 10937 } else { 10938 /* Replicate the single TCMA bit so we always have 2 bits. */ 10939 return extract32(tcr, 30, 1) * 3; 10940 } 10941 } 10942 10943 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10944 ARMMMUIdx mmu_idx, bool data) 10945 { 10946 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10947 bool epd, hpd, using16k, using64k; 10948 int select, tsz, tbi, max_tsz; 10949 10950 if (!regime_has_2_ranges(mmu_idx)) { 10951 select = 0; 10952 tsz = extract32(tcr, 0, 6); 10953 using64k = extract32(tcr, 14, 1); 10954 using16k = extract32(tcr, 15, 1); 10955 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10956 /* VTCR_EL2 */ 10957 hpd = false; 10958 } else { 10959 hpd = extract32(tcr, 24, 1); 10960 } 10961 epd = false; 10962 } else { 10963 /* 10964 * Bit 55 is always between the two regions, and is canonical for 10965 * determining if address tagging is enabled. 10966 */ 10967 select = extract64(va, 55, 1); 10968 if (!select) { 10969 tsz = extract32(tcr, 0, 6); 10970 epd = extract32(tcr, 7, 1); 10971 using64k = extract32(tcr, 14, 1); 10972 using16k = extract32(tcr, 15, 1); 10973 hpd = extract64(tcr, 41, 1); 10974 } else { 10975 int tg = extract32(tcr, 30, 2); 10976 using16k = tg == 1; 10977 using64k = tg == 3; 10978 tsz = extract32(tcr, 16, 6); 10979 epd = extract32(tcr, 23, 1); 10980 hpd = extract64(tcr, 42, 1); 10981 } 10982 } 10983 10984 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 10985 max_tsz = 48 - using64k; 10986 } else { 10987 max_tsz = 39; 10988 } 10989 10990 tsz = MIN(tsz, max_tsz); 10991 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10992 10993 /* Present TBI as a composite with TBID. */ 10994 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10995 if (!data) { 10996 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10997 } 10998 tbi = (tbi >> select) & 1; 10999 11000 return (ARMVAParameters) { 11001 .tsz = tsz, 11002 .select = select, 11003 .tbi = tbi, 11004 .epd = epd, 11005 .hpd = hpd, 11006 .using16k = using16k, 11007 .using64k = using64k, 11008 }; 11009 } 11010 11011 #ifndef CONFIG_USER_ONLY 11012 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11013 ARMMMUIdx mmu_idx) 11014 { 11015 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11016 uint32_t el = regime_el(env, mmu_idx); 11017 int select, tsz; 11018 bool epd, hpd; 11019 11020 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11021 11022 if (mmu_idx == ARMMMUIdx_Stage2) { 11023 /* VTCR */ 11024 bool sext = extract32(tcr, 4, 1); 11025 bool sign = extract32(tcr, 3, 1); 11026 11027 /* 11028 * If the sign-extend bit is not the same as t0sz[3], the result 11029 * is unpredictable. Flag this as a guest error. 11030 */ 11031 if (sign != sext) { 11032 qemu_log_mask(LOG_GUEST_ERROR, 11033 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11034 } 11035 tsz = sextract32(tcr, 0, 4) + 8; 11036 select = 0; 11037 hpd = false; 11038 epd = false; 11039 } else if (el == 2) { 11040 /* HTCR */ 11041 tsz = extract32(tcr, 0, 3); 11042 select = 0; 11043 hpd = extract64(tcr, 24, 1); 11044 epd = false; 11045 } else { 11046 int t0sz = extract32(tcr, 0, 3); 11047 int t1sz = extract32(tcr, 16, 3); 11048 11049 if (t1sz == 0) { 11050 select = va > (0xffffffffu >> t0sz); 11051 } else { 11052 /* Note that we will detect errors later. */ 11053 select = va >= ~(0xffffffffu >> t1sz); 11054 } 11055 if (!select) { 11056 tsz = t0sz; 11057 epd = extract32(tcr, 7, 1); 11058 hpd = extract64(tcr, 41, 1); 11059 } else { 11060 tsz = t1sz; 11061 epd = extract32(tcr, 23, 1); 11062 hpd = extract64(tcr, 42, 1); 11063 } 11064 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11065 hpd &= extract32(tcr, 6, 1); 11066 } 11067 11068 return (ARMVAParameters) { 11069 .tsz = tsz, 11070 .select = select, 11071 .epd = epd, 11072 .hpd = hpd, 11073 }; 11074 } 11075 11076 /** 11077 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11078 * 11079 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11080 * prot and page_size may not be filled in, and the populated fsr value provides 11081 * information on why the translation aborted, in the format of a long-format 11082 * DFSR/IFSR fault register, with the following caveats: 11083 * * the WnR bit is never set (the caller must do this). 11084 * 11085 * @env: CPUARMState 11086 * @address: virtual address to get physical address for 11087 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11088 * @mmu_idx: MMU index indicating required translation regime 11089 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11090 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11091 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11092 * @phys_ptr: set to the physical address corresponding to the virtual address 11093 * @attrs: set to the memory transaction attributes to use 11094 * @prot: set to the permissions for the page containing phys_ptr 11095 * @page_size_ptr: set to the size of the page containing phys_ptr 11096 * @fi: set to fault info if the translation fails 11097 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11098 */ 11099 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11100 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11101 bool s1_is_el0, 11102 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11103 target_ulong *page_size_ptr, 11104 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11105 { 11106 ARMCPU *cpu = env_archcpu(env); 11107 CPUState *cs = CPU(cpu); 11108 /* Read an LPAE long-descriptor translation table. */ 11109 ARMFaultType fault_type = ARMFault_Translation; 11110 uint32_t level; 11111 ARMVAParameters param; 11112 uint64_t ttbr; 11113 hwaddr descaddr, indexmask, indexmask_grainsize; 11114 uint32_t tableattrs; 11115 target_ulong page_size; 11116 uint32_t attrs; 11117 int32_t stride; 11118 int addrsize, inputsize; 11119 TCR *tcr = regime_tcr(env, mmu_idx); 11120 int ap, ns, xn, pxn; 11121 uint32_t el = regime_el(env, mmu_idx); 11122 uint64_t descaddrmask; 11123 bool aarch64 = arm_el_is_aa64(env, el); 11124 bool guarded = false; 11125 11126 /* TODO: This code does not support shareability levels. */ 11127 if (aarch64) { 11128 param = aa64_va_parameters(env, address, mmu_idx, 11129 access_type != MMU_INST_FETCH); 11130 level = 0; 11131 addrsize = 64 - 8 * param.tbi; 11132 inputsize = 64 - param.tsz; 11133 } else { 11134 param = aa32_va_parameters(env, address, mmu_idx); 11135 level = 1; 11136 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11137 inputsize = addrsize - param.tsz; 11138 } 11139 11140 /* 11141 * We determined the region when collecting the parameters, but we 11142 * have not yet validated that the address is valid for the region. 11143 * Extract the top bits and verify that they all match select. 11144 * 11145 * For aa32, if inputsize == addrsize, then we have selected the 11146 * region by exclusion in aa32_va_parameters and there is no more 11147 * validation to do here. 11148 */ 11149 if (inputsize < addrsize) { 11150 target_ulong top_bits = sextract64(address, inputsize, 11151 addrsize - inputsize); 11152 if (-top_bits != param.select) { 11153 /* The gap between the two regions is a Translation fault */ 11154 fault_type = ARMFault_Translation; 11155 goto do_fault; 11156 } 11157 } 11158 11159 if (param.using64k) { 11160 stride = 13; 11161 } else if (param.using16k) { 11162 stride = 11; 11163 } else { 11164 stride = 9; 11165 } 11166 11167 /* Note that QEMU ignores shareability and cacheability attributes, 11168 * so we don't need to do anything with the SH, ORGN, IRGN fields 11169 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11170 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11171 * implement any ASID-like capability so we can ignore it (instead 11172 * we will always flush the TLB any time the ASID is changed). 11173 */ 11174 ttbr = regime_ttbr(env, mmu_idx, param.select); 11175 11176 /* Here we should have set up all the parameters for the translation: 11177 * inputsize, ttbr, epd, stride, tbi 11178 */ 11179 11180 if (param.epd) { 11181 /* Translation table walk disabled => Translation fault on TLB miss 11182 * Note: This is always 0 on 64-bit EL2 and EL3. 11183 */ 11184 goto do_fault; 11185 } 11186 11187 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11188 /* The starting level depends on the virtual address size (which can 11189 * be up to 48 bits) and the translation granule size. It indicates 11190 * the number of strides (stride bits at a time) needed to 11191 * consume the bits of the input address. In the pseudocode this is: 11192 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11193 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11194 * our 'stride + 3' and 'stride' is our 'stride'. 11195 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11196 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11197 * = 4 - (inputsize - 4) / stride; 11198 */ 11199 level = 4 - (inputsize - 4) / stride; 11200 } else { 11201 /* For stage 2 translations the starting level is specified by the 11202 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11203 */ 11204 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11205 uint32_t startlevel; 11206 bool ok; 11207 11208 if (!aarch64 || stride == 9) { 11209 /* AArch32 or 4KB pages */ 11210 startlevel = 2 - sl0; 11211 11212 if (cpu_isar_feature(aa64_st, cpu)) { 11213 startlevel &= 3; 11214 } 11215 } else { 11216 /* 16KB or 64KB pages */ 11217 startlevel = 3 - sl0; 11218 } 11219 11220 /* Check that the starting level is valid. */ 11221 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11222 inputsize, stride); 11223 if (!ok) { 11224 fault_type = ARMFault_Translation; 11225 goto do_fault; 11226 } 11227 level = startlevel; 11228 } 11229 11230 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11231 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11232 11233 /* Now we can extract the actual base address from the TTBR */ 11234 descaddr = extract64(ttbr, 0, 48); 11235 /* 11236 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11237 * and also to mask out CnP (bit 0) which could validly be non-zero. 11238 */ 11239 descaddr &= ~indexmask; 11240 11241 /* The address field in the descriptor goes up to bit 39 for ARMv7 11242 * but up to bit 47 for ARMv8, but we use the descaddrmask 11243 * up to bit 39 for AArch32, because we don't need other bits in that case 11244 * to construct next descriptor address (anyway they should be all zeroes). 11245 */ 11246 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11247 ~indexmask_grainsize; 11248 11249 /* Secure accesses start with the page table in secure memory and 11250 * can be downgraded to non-secure at any step. Non-secure accesses 11251 * remain non-secure. We implement this by just ORing in the NSTable/NS 11252 * bits at each step. 11253 */ 11254 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11255 for (;;) { 11256 uint64_t descriptor; 11257 bool nstable; 11258 11259 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11260 descaddr &= ~7ULL; 11261 nstable = extract32(tableattrs, 4, 1); 11262 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11263 if (fi->type != ARMFault_None) { 11264 goto do_fault; 11265 } 11266 11267 if (!(descriptor & 1) || 11268 (!(descriptor & 2) && (level == 3))) { 11269 /* Invalid, or the Reserved level 3 encoding */ 11270 goto do_fault; 11271 } 11272 descaddr = descriptor & descaddrmask; 11273 11274 if ((descriptor & 2) && (level < 3)) { 11275 /* Table entry. The top five bits are attributes which may 11276 * propagate down through lower levels of the table (and 11277 * which are all arranged so that 0 means "no effect", so 11278 * we can gather them up by ORing in the bits at each level). 11279 */ 11280 tableattrs |= extract64(descriptor, 59, 5); 11281 level++; 11282 indexmask = indexmask_grainsize; 11283 continue; 11284 } 11285 /* Block entry at level 1 or 2, or page entry at level 3. 11286 * These are basically the same thing, although the number 11287 * of bits we pull in from the vaddr varies. 11288 */ 11289 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11290 descaddr |= (address & (page_size - 1)); 11291 /* Extract attributes from the descriptor */ 11292 attrs = extract64(descriptor, 2, 10) 11293 | (extract64(descriptor, 52, 12) << 10); 11294 11295 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11296 /* Stage 2 table descriptors do not include any attribute fields */ 11297 break; 11298 } 11299 /* Merge in attributes from table descriptors */ 11300 attrs |= nstable << 3; /* NS */ 11301 guarded = extract64(descriptor, 50, 1); /* GP */ 11302 if (param.hpd) { 11303 /* HPD disables all the table attributes except NSTable. */ 11304 break; 11305 } 11306 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11307 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11308 * means "force PL1 access only", which means forcing AP[1] to 0. 11309 */ 11310 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11311 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11312 break; 11313 } 11314 /* Here descaddr is the final physical address, and attributes 11315 * are all in attrs. 11316 */ 11317 fault_type = ARMFault_AccessFlag; 11318 if ((attrs & (1 << 8)) == 0) { 11319 /* Access flag */ 11320 goto do_fault; 11321 } 11322 11323 ap = extract32(attrs, 4, 2); 11324 11325 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11326 ns = mmu_idx == ARMMMUIdx_Stage2; 11327 xn = extract32(attrs, 11, 2); 11328 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11329 } else { 11330 ns = extract32(attrs, 3, 1); 11331 xn = extract32(attrs, 12, 1); 11332 pxn = extract32(attrs, 11, 1); 11333 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11334 } 11335 11336 fault_type = ARMFault_Permission; 11337 if (!(*prot & (1 << access_type))) { 11338 goto do_fault; 11339 } 11340 11341 if (ns) { 11342 /* The NS bit will (as required by the architecture) have no effect if 11343 * the CPU doesn't support TZ or this is a non-secure translation 11344 * regime, because the attribute will already be non-secure. 11345 */ 11346 txattrs->secure = false; 11347 } 11348 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11349 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11350 arm_tlb_bti_gp(txattrs) = true; 11351 } 11352 11353 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11354 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11355 } else { 11356 /* Index into MAIR registers for cache attributes */ 11357 uint8_t attrindx = extract32(attrs, 0, 3); 11358 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11359 assert(attrindx <= 7); 11360 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11361 } 11362 cacheattrs->shareability = extract32(attrs, 6, 2); 11363 11364 *phys_ptr = descaddr; 11365 *page_size_ptr = page_size; 11366 return false; 11367 11368 do_fault: 11369 fi->type = fault_type; 11370 fi->level = level; 11371 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11372 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11373 mmu_idx == ARMMMUIdx_Stage2_S); 11374 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11375 return true; 11376 } 11377 11378 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11379 ARMMMUIdx mmu_idx, 11380 int32_t address, int *prot) 11381 { 11382 if (!arm_feature(env, ARM_FEATURE_M)) { 11383 *prot = PAGE_READ | PAGE_WRITE; 11384 switch (address) { 11385 case 0xF0000000 ... 0xFFFFFFFF: 11386 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11387 /* hivecs execing is ok */ 11388 *prot |= PAGE_EXEC; 11389 } 11390 break; 11391 case 0x00000000 ... 0x7FFFFFFF: 11392 *prot |= PAGE_EXEC; 11393 break; 11394 } 11395 } else { 11396 /* Default system address map for M profile cores. 11397 * The architecture specifies which regions are execute-never; 11398 * at the MPU level no other checks are defined. 11399 */ 11400 switch (address) { 11401 case 0x00000000 ... 0x1fffffff: /* ROM */ 11402 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11403 case 0x60000000 ... 0x7fffffff: /* RAM */ 11404 case 0x80000000 ... 0x9fffffff: /* RAM */ 11405 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11406 break; 11407 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11408 case 0xa0000000 ... 0xbfffffff: /* Device */ 11409 case 0xc0000000 ... 0xdfffffff: /* Device */ 11410 case 0xe0000000 ... 0xffffffff: /* System */ 11411 *prot = PAGE_READ | PAGE_WRITE; 11412 break; 11413 default: 11414 g_assert_not_reached(); 11415 } 11416 } 11417 } 11418 11419 static bool pmsav7_use_background_region(ARMCPU *cpu, 11420 ARMMMUIdx mmu_idx, bool is_user) 11421 { 11422 /* Return true if we should use the default memory map as a 11423 * "background" region if there are no hits against any MPU regions. 11424 */ 11425 CPUARMState *env = &cpu->env; 11426 11427 if (is_user) { 11428 return false; 11429 } 11430 11431 if (arm_feature(env, ARM_FEATURE_M)) { 11432 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11433 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11434 } else { 11435 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11436 } 11437 } 11438 11439 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11440 { 11441 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11442 return arm_feature(env, ARM_FEATURE_M) && 11443 extract32(address, 20, 12) == 0xe00; 11444 } 11445 11446 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11447 { 11448 /* True if address is in the M profile system region 11449 * 0xe0000000 - 0xffffffff 11450 */ 11451 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11452 } 11453 11454 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11455 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11456 hwaddr *phys_ptr, int *prot, 11457 target_ulong *page_size, 11458 ARMMMUFaultInfo *fi) 11459 { 11460 ARMCPU *cpu = env_archcpu(env); 11461 int n; 11462 bool is_user = regime_is_user(env, mmu_idx); 11463 11464 *phys_ptr = address; 11465 *page_size = TARGET_PAGE_SIZE; 11466 *prot = 0; 11467 11468 if (regime_translation_disabled(env, mmu_idx) || 11469 m_is_ppb_region(env, address)) { 11470 /* MPU disabled or M profile PPB access: use default memory map. 11471 * The other case which uses the default memory map in the 11472 * v7M ARM ARM pseudocode is exception vector reads from the vector 11473 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11474 * which always does a direct read using address_space_ldl(), rather 11475 * than going via this function, so we don't need to check that here. 11476 */ 11477 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11478 } else { /* MPU enabled */ 11479 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11480 /* region search */ 11481 uint32_t base = env->pmsav7.drbar[n]; 11482 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11483 uint32_t rmask; 11484 bool srdis = false; 11485 11486 if (!(env->pmsav7.drsr[n] & 0x1)) { 11487 continue; 11488 } 11489 11490 if (!rsize) { 11491 qemu_log_mask(LOG_GUEST_ERROR, 11492 "DRSR[%d]: Rsize field cannot be 0\n", n); 11493 continue; 11494 } 11495 rsize++; 11496 rmask = (1ull << rsize) - 1; 11497 11498 if (base & rmask) { 11499 qemu_log_mask(LOG_GUEST_ERROR, 11500 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11501 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11502 n, base, rmask); 11503 continue; 11504 } 11505 11506 if (address < base || address > base + rmask) { 11507 /* 11508 * Address not in this region. We must check whether the 11509 * region covers addresses in the same page as our address. 11510 * In that case we must not report a size that covers the 11511 * whole page for a subsequent hit against a different MPU 11512 * region or the background region, because it would result in 11513 * incorrect TLB hits for subsequent accesses to addresses that 11514 * are in this MPU region. 11515 */ 11516 if (ranges_overlap(base, rmask, 11517 address & TARGET_PAGE_MASK, 11518 TARGET_PAGE_SIZE)) { 11519 *page_size = 1; 11520 } 11521 continue; 11522 } 11523 11524 /* Region matched */ 11525 11526 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11527 int i, snd; 11528 uint32_t srdis_mask; 11529 11530 rsize -= 3; /* sub region size (power of 2) */ 11531 snd = ((address - base) >> rsize) & 0x7; 11532 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11533 11534 srdis_mask = srdis ? 0x3 : 0x0; 11535 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11536 /* This will check in groups of 2, 4 and then 8, whether 11537 * the subregion bits are consistent. rsize is incremented 11538 * back up to give the region size, considering consistent 11539 * adjacent subregions as one region. Stop testing if rsize 11540 * is already big enough for an entire QEMU page. 11541 */ 11542 int snd_rounded = snd & ~(i - 1); 11543 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11544 snd_rounded + 8, i); 11545 if (srdis_mask ^ srdis_multi) { 11546 break; 11547 } 11548 srdis_mask = (srdis_mask << i) | srdis_mask; 11549 rsize++; 11550 } 11551 } 11552 if (srdis) { 11553 continue; 11554 } 11555 if (rsize < TARGET_PAGE_BITS) { 11556 *page_size = 1 << rsize; 11557 } 11558 break; 11559 } 11560 11561 if (n == -1) { /* no hits */ 11562 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11563 /* background fault */ 11564 fi->type = ARMFault_Background; 11565 return true; 11566 } 11567 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11568 } else { /* a MPU hit! */ 11569 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11570 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11571 11572 if (m_is_system_region(env, address)) { 11573 /* System space is always execute never */ 11574 xn = 1; 11575 } 11576 11577 if (is_user) { /* User mode AP bit decoding */ 11578 switch (ap) { 11579 case 0: 11580 case 1: 11581 case 5: 11582 break; /* no access */ 11583 case 3: 11584 *prot |= PAGE_WRITE; 11585 /* fall through */ 11586 case 2: 11587 case 6: 11588 *prot |= PAGE_READ | PAGE_EXEC; 11589 break; 11590 case 7: 11591 /* for v7M, same as 6; for R profile a reserved value */ 11592 if (arm_feature(env, ARM_FEATURE_M)) { 11593 *prot |= PAGE_READ | PAGE_EXEC; 11594 break; 11595 } 11596 /* fall through */ 11597 default: 11598 qemu_log_mask(LOG_GUEST_ERROR, 11599 "DRACR[%d]: Bad value for AP bits: 0x%" 11600 PRIx32 "\n", n, ap); 11601 } 11602 } else { /* Priv. mode AP bits decoding */ 11603 switch (ap) { 11604 case 0: 11605 break; /* no access */ 11606 case 1: 11607 case 2: 11608 case 3: 11609 *prot |= PAGE_WRITE; 11610 /* fall through */ 11611 case 5: 11612 case 6: 11613 *prot |= PAGE_READ | PAGE_EXEC; 11614 break; 11615 case 7: 11616 /* for v7M, same as 6; for R profile a reserved value */ 11617 if (arm_feature(env, ARM_FEATURE_M)) { 11618 *prot |= PAGE_READ | PAGE_EXEC; 11619 break; 11620 } 11621 /* fall through */ 11622 default: 11623 qemu_log_mask(LOG_GUEST_ERROR, 11624 "DRACR[%d]: Bad value for AP bits: 0x%" 11625 PRIx32 "\n", n, ap); 11626 } 11627 } 11628 11629 /* execute never */ 11630 if (xn) { 11631 *prot &= ~PAGE_EXEC; 11632 } 11633 } 11634 } 11635 11636 fi->type = ARMFault_Permission; 11637 fi->level = 1; 11638 return !(*prot & (1 << access_type)); 11639 } 11640 11641 static bool v8m_is_sau_exempt(CPUARMState *env, 11642 uint32_t address, MMUAccessType access_type) 11643 { 11644 /* The architecture specifies that certain address ranges are 11645 * exempt from v8M SAU/IDAU checks. 11646 */ 11647 return 11648 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11649 (address >= 0xe0000000 && address <= 0xe0002fff) || 11650 (address >= 0xe000e000 && address <= 0xe000efff) || 11651 (address >= 0xe002e000 && address <= 0xe002efff) || 11652 (address >= 0xe0040000 && address <= 0xe0041fff) || 11653 (address >= 0xe00ff000 && address <= 0xe00fffff); 11654 } 11655 11656 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11657 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11658 V8M_SAttributes *sattrs) 11659 { 11660 /* Look up the security attributes for this address. Compare the 11661 * pseudocode SecurityCheck() function. 11662 * We assume the caller has zero-initialized *sattrs. 11663 */ 11664 ARMCPU *cpu = env_archcpu(env); 11665 int r; 11666 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11667 int idau_region = IREGION_NOTVALID; 11668 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11669 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11670 11671 if (cpu->idau) { 11672 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11673 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11674 11675 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11676 &idau_nsc); 11677 } 11678 11679 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11680 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11681 return; 11682 } 11683 11684 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11685 sattrs->ns = !regime_is_secure(env, mmu_idx); 11686 return; 11687 } 11688 11689 if (idau_region != IREGION_NOTVALID) { 11690 sattrs->irvalid = true; 11691 sattrs->iregion = idau_region; 11692 } 11693 11694 switch (env->sau.ctrl & 3) { 11695 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11696 break; 11697 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11698 sattrs->ns = true; 11699 break; 11700 default: /* SAU.ENABLE == 1 */ 11701 for (r = 0; r < cpu->sau_sregion; r++) { 11702 if (env->sau.rlar[r] & 1) { 11703 uint32_t base = env->sau.rbar[r] & ~0x1f; 11704 uint32_t limit = env->sau.rlar[r] | 0x1f; 11705 11706 if (base <= address && limit >= address) { 11707 if (base > addr_page_base || limit < addr_page_limit) { 11708 sattrs->subpage = true; 11709 } 11710 if (sattrs->srvalid) { 11711 /* If we hit in more than one region then we must report 11712 * as Secure, not NS-Callable, with no valid region 11713 * number info. 11714 */ 11715 sattrs->ns = false; 11716 sattrs->nsc = false; 11717 sattrs->sregion = 0; 11718 sattrs->srvalid = false; 11719 break; 11720 } else { 11721 if (env->sau.rlar[r] & 2) { 11722 sattrs->nsc = true; 11723 } else { 11724 sattrs->ns = true; 11725 } 11726 sattrs->srvalid = true; 11727 sattrs->sregion = r; 11728 } 11729 } else { 11730 /* 11731 * Address not in this region. We must check whether the 11732 * region covers addresses in the same page as our address. 11733 * In that case we must not report a size that covers the 11734 * whole page for a subsequent hit against a different MPU 11735 * region or the background region, because it would result 11736 * in incorrect TLB hits for subsequent accesses to 11737 * addresses that are in this MPU region. 11738 */ 11739 if (limit >= base && 11740 ranges_overlap(base, limit - base + 1, 11741 addr_page_base, 11742 TARGET_PAGE_SIZE)) { 11743 sattrs->subpage = true; 11744 } 11745 } 11746 } 11747 } 11748 break; 11749 } 11750 11751 /* 11752 * The IDAU will override the SAU lookup results if it specifies 11753 * higher security than the SAU does. 11754 */ 11755 if (!idau_ns) { 11756 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11757 sattrs->ns = false; 11758 sattrs->nsc = idau_nsc; 11759 } 11760 } 11761 } 11762 11763 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11764 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11765 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11766 int *prot, bool *is_subpage, 11767 ARMMMUFaultInfo *fi, uint32_t *mregion) 11768 { 11769 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11770 * that a full phys-to-virt translation does). 11771 * mregion is (if not NULL) set to the region number which matched, 11772 * or -1 if no region number is returned (MPU off, address did not 11773 * hit a region, address hit in multiple regions). 11774 * We set is_subpage to true if the region hit doesn't cover the 11775 * entire TARGET_PAGE the address is within. 11776 */ 11777 ARMCPU *cpu = env_archcpu(env); 11778 bool is_user = regime_is_user(env, mmu_idx); 11779 uint32_t secure = regime_is_secure(env, mmu_idx); 11780 int n; 11781 int matchregion = -1; 11782 bool hit = false; 11783 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11784 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11785 11786 *is_subpage = false; 11787 *phys_ptr = address; 11788 *prot = 0; 11789 if (mregion) { 11790 *mregion = -1; 11791 } 11792 11793 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11794 * was an exception vector read from the vector table (which is always 11795 * done using the default system address map), because those accesses 11796 * are done in arm_v7m_load_vector(), which always does a direct 11797 * read using address_space_ldl(), rather than going via this function. 11798 */ 11799 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11800 hit = true; 11801 } else if (m_is_ppb_region(env, address)) { 11802 hit = true; 11803 } else { 11804 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11805 hit = true; 11806 } 11807 11808 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11809 /* region search */ 11810 /* Note that the base address is bits [31:5] from the register 11811 * with bits [4:0] all zeroes, but the limit address is bits 11812 * [31:5] from the register with bits [4:0] all ones. 11813 */ 11814 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11815 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11816 11817 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11818 /* Region disabled */ 11819 continue; 11820 } 11821 11822 if (address < base || address > limit) { 11823 /* 11824 * Address not in this region. We must check whether the 11825 * region covers addresses in the same page as our address. 11826 * In that case we must not report a size that covers the 11827 * whole page for a subsequent hit against a different MPU 11828 * region or the background region, because it would result in 11829 * incorrect TLB hits for subsequent accesses to addresses that 11830 * are in this MPU region. 11831 */ 11832 if (limit >= base && 11833 ranges_overlap(base, limit - base + 1, 11834 addr_page_base, 11835 TARGET_PAGE_SIZE)) { 11836 *is_subpage = true; 11837 } 11838 continue; 11839 } 11840 11841 if (base > addr_page_base || limit < addr_page_limit) { 11842 *is_subpage = true; 11843 } 11844 11845 if (matchregion != -1) { 11846 /* Multiple regions match -- always a failure (unlike 11847 * PMSAv7 where highest-numbered-region wins) 11848 */ 11849 fi->type = ARMFault_Permission; 11850 fi->level = 1; 11851 return true; 11852 } 11853 11854 matchregion = n; 11855 hit = true; 11856 } 11857 } 11858 11859 if (!hit) { 11860 /* background fault */ 11861 fi->type = ARMFault_Background; 11862 return true; 11863 } 11864 11865 if (matchregion == -1) { 11866 /* hit using the background region */ 11867 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11868 } else { 11869 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11870 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11871 bool pxn = false; 11872 11873 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 11874 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 11875 } 11876 11877 if (m_is_system_region(env, address)) { 11878 /* System space is always execute never */ 11879 xn = 1; 11880 } 11881 11882 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11883 if (*prot && !xn && !(pxn && !is_user)) { 11884 *prot |= PAGE_EXEC; 11885 } 11886 /* We don't need to look the attribute up in the MAIR0/MAIR1 11887 * registers because that only tells us about cacheability. 11888 */ 11889 if (mregion) { 11890 *mregion = matchregion; 11891 } 11892 } 11893 11894 fi->type = ARMFault_Permission; 11895 fi->level = 1; 11896 return !(*prot & (1 << access_type)); 11897 } 11898 11899 11900 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11901 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11902 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11903 int *prot, target_ulong *page_size, 11904 ARMMMUFaultInfo *fi) 11905 { 11906 uint32_t secure = regime_is_secure(env, mmu_idx); 11907 V8M_SAttributes sattrs = {}; 11908 bool ret; 11909 bool mpu_is_subpage; 11910 11911 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11912 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11913 if (access_type == MMU_INST_FETCH) { 11914 /* Instruction fetches always use the MMU bank and the 11915 * transaction attribute determined by the fetch address, 11916 * regardless of CPU state. This is painful for QEMU 11917 * to handle, because it would mean we need to encode 11918 * into the mmu_idx not just the (user, negpri) information 11919 * for the current security state but also that for the 11920 * other security state, which would balloon the number 11921 * of mmu_idx values needed alarmingly. 11922 * Fortunately we can avoid this because it's not actually 11923 * possible to arbitrarily execute code from memory with 11924 * the wrong security attribute: it will always generate 11925 * an exception of some kind or another, apart from the 11926 * special case of an NS CPU executing an SG instruction 11927 * in S&NSC memory. So we always just fail the translation 11928 * here and sort things out in the exception handler 11929 * (including possibly emulating an SG instruction). 11930 */ 11931 if (sattrs.ns != !secure) { 11932 if (sattrs.nsc) { 11933 fi->type = ARMFault_QEMU_NSCExec; 11934 } else { 11935 fi->type = ARMFault_QEMU_SFault; 11936 } 11937 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11938 *phys_ptr = address; 11939 *prot = 0; 11940 return true; 11941 } 11942 } else { 11943 /* For data accesses we always use the MMU bank indicated 11944 * by the current CPU state, but the security attributes 11945 * might downgrade a secure access to nonsecure. 11946 */ 11947 if (sattrs.ns) { 11948 txattrs->secure = false; 11949 } else if (!secure) { 11950 /* NS access to S memory must fault. 11951 * Architecturally we should first check whether the 11952 * MPU information for this address indicates that we 11953 * are doing an unaligned access to Device memory, which 11954 * should generate a UsageFault instead. QEMU does not 11955 * currently check for that kind of unaligned access though. 11956 * If we added it we would need to do so as a special case 11957 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11958 */ 11959 fi->type = ARMFault_QEMU_SFault; 11960 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11961 *phys_ptr = address; 11962 *prot = 0; 11963 return true; 11964 } 11965 } 11966 } 11967 11968 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11969 txattrs, prot, &mpu_is_subpage, fi, NULL); 11970 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11971 return ret; 11972 } 11973 11974 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11975 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11976 hwaddr *phys_ptr, int *prot, 11977 ARMMMUFaultInfo *fi) 11978 { 11979 int n; 11980 uint32_t mask; 11981 uint32_t base; 11982 bool is_user = regime_is_user(env, mmu_idx); 11983 11984 if (regime_translation_disabled(env, mmu_idx)) { 11985 /* MPU disabled. */ 11986 *phys_ptr = address; 11987 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11988 return false; 11989 } 11990 11991 *phys_ptr = address; 11992 for (n = 7; n >= 0; n--) { 11993 base = env->cp15.c6_region[n]; 11994 if ((base & 1) == 0) { 11995 continue; 11996 } 11997 mask = 1 << ((base >> 1) & 0x1f); 11998 /* Keep this shift separate from the above to avoid an 11999 (undefined) << 32. */ 12000 mask = (mask << 1) - 1; 12001 if (((base ^ address) & ~mask) == 0) { 12002 break; 12003 } 12004 } 12005 if (n < 0) { 12006 fi->type = ARMFault_Background; 12007 return true; 12008 } 12009 12010 if (access_type == MMU_INST_FETCH) { 12011 mask = env->cp15.pmsav5_insn_ap; 12012 } else { 12013 mask = env->cp15.pmsav5_data_ap; 12014 } 12015 mask = (mask >> (n * 4)) & 0xf; 12016 switch (mask) { 12017 case 0: 12018 fi->type = ARMFault_Permission; 12019 fi->level = 1; 12020 return true; 12021 case 1: 12022 if (is_user) { 12023 fi->type = ARMFault_Permission; 12024 fi->level = 1; 12025 return true; 12026 } 12027 *prot = PAGE_READ | PAGE_WRITE; 12028 break; 12029 case 2: 12030 *prot = PAGE_READ; 12031 if (!is_user) { 12032 *prot |= PAGE_WRITE; 12033 } 12034 break; 12035 case 3: 12036 *prot = PAGE_READ | PAGE_WRITE; 12037 break; 12038 case 5: 12039 if (is_user) { 12040 fi->type = ARMFault_Permission; 12041 fi->level = 1; 12042 return true; 12043 } 12044 *prot = PAGE_READ; 12045 break; 12046 case 6: 12047 *prot = PAGE_READ; 12048 break; 12049 default: 12050 /* Bad permission. */ 12051 fi->type = ARMFault_Permission; 12052 fi->level = 1; 12053 return true; 12054 } 12055 *prot |= PAGE_EXEC; 12056 return false; 12057 } 12058 12059 /* Combine either inner or outer cacheability attributes for normal 12060 * memory, according to table D4-42 and pseudocode procedure 12061 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12062 * 12063 * NB: only stage 1 includes allocation hints (RW bits), leading to 12064 * some asymmetry. 12065 */ 12066 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12067 { 12068 if (s1 == 4 || s2 == 4) { 12069 /* non-cacheable has precedence */ 12070 return 4; 12071 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12072 /* stage 1 write-through takes precedence */ 12073 return s1; 12074 } else if (extract32(s2, 2, 2) == 2) { 12075 /* stage 2 write-through takes precedence, but the allocation hint 12076 * is still taken from stage 1 12077 */ 12078 return (2 << 2) | extract32(s1, 0, 2); 12079 } else { /* write-back */ 12080 return s1; 12081 } 12082 } 12083 12084 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12085 * and CombineS1S2Desc() 12086 * 12087 * @s1: Attributes from stage 1 walk 12088 * @s2: Attributes from stage 2 walk 12089 */ 12090 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12091 { 12092 uint8_t s1lo, s2lo, s1hi, s2hi; 12093 ARMCacheAttrs ret; 12094 bool tagged = false; 12095 12096 if (s1.attrs == 0xf0) { 12097 tagged = true; 12098 s1.attrs = 0xff; 12099 } 12100 12101 s1lo = extract32(s1.attrs, 0, 4); 12102 s2lo = extract32(s2.attrs, 0, 4); 12103 s1hi = extract32(s1.attrs, 4, 4); 12104 s2hi = extract32(s2.attrs, 4, 4); 12105 12106 /* Combine shareability attributes (table D4-43) */ 12107 if (s1.shareability == 2 || s2.shareability == 2) { 12108 /* if either are outer-shareable, the result is outer-shareable */ 12109 ret.shareability = 2; 12110 } else if (s1.shareability == 3 || s2.shareability == 3) { 12111 /* if either are inner-shareable, the result is inner-shareable */ 12112 ret.shareability = 3; 12113 } else { 12114 /* both non-shareable */ 12115 ret.shareability = 0; 12116 } 12117 12118 /* Combine memory type and cacheability attributes */ 12119 if (s1hi == 0 || s2hi == 0) { 12120 /* Device has precedence over normal */ 12121 if (s1lo == 0 || s2lo == 0) { 12122 /* nGnRnE has precedence over anything */ 12123 ret.attrs = 0; 12124 } else if (s1lo == 4 || s2lo == 4) { 12125 /* non-Reordering has precedence over Reordering */ 12126 ret.attrs = 4; /* nGnRE */ 12127 } else if (s1lo == 8 || s2lo == 8) { 12128 /* non-Gathering has precedence over Gathering */ 12129 ret.attrs = 8; /* nGRE */ 12130 } else { 12131 ret.attrs = 0xc; /* GRE */ 12132 } 12133 12134 /* Any location for which the resultant memory type is any 12135 * type of Device memory is always treated as Outer Shareable. 12136 */ 12137 ret.shareability = 2; 12138 } else { /* Normal memory */ 12139 /* Outer/inner cacheability combine independently */ 12140 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12141 | combine_cacheattr_nibble(s1lo, s2lo); 12142 12143 if (ret.attrs == 0x44) { 12144 /* Any location for which the resultant memory type is Normal 12145 * Inner Non-cacheable, Outer Non-cacheable is always treated 12146 * as Outer Shareable. 12147 */ 12148 ret.shareability = 2; 12149 } 12150 } 12151 12152 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12153 if (tagged && ret.attrs == 0xff) { 12154 ret.attrs = 0xf0; 12155 } 12156 12157 return ret; 12158 } 12159 12160 12161 /* get_phys_addr - get the physical address for this virtual address 12162 * 12163 * Find the physical address corresponding to the given virtual address, 12164 * by doing a translation table walk on MMU based systems or using the 12165 * MPU state on MPU based systems. 12166 * 12167 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12168 * prot and page_size may not be filled in, and the populated fsr value provides 12169 * information on why the translation aborted, in the format of a 12170 * DFSR/IFSR fault register, with the following caveats: 12171 * * we honour the short vs long DFSR format differences. 12172 * * the WnR bit is never set (the caller must do this). 12173 * * for PSMAv5 based systems we don't bother to return a full FSR format 12174 * value. 12175 * 12176 * @env: CPUARMState 12177 * @address: virtual address to get physical address for 12178 * @access_type: 0 for read, 1 for write, 2 for execute 12179 * @mmu_idx: MMU index indicating required translation regime 12180 * @phys_ptr: set to the physical address corresponding to the virtual address 12181 * @attrs: set to the memory transaction attributes to use 12182 * @prot: set to the permissions for the page containing phys_ptr 12183 * @page_size: set to the size of the page containing phys_ptr 12184 * @fi: set to fault info if the translation fails 12185 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12186 */ 12187 bool get_phys_addr(CPUARMState *env, target_ulong address, 12188 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12189 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12190 target_ulong *page_size, 12191 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12192 { 12193 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12194 12195 if (mmu_idx != s1_mmu_idx) { 12196 /* Call ourselves recursively to do the stage 1 and then stage 2 12197 * translations if mmu_idx is a two-stage regime. 12198 */ 12199 if (arm_feature(env, ARM_FEATURE_EL2)) { 12200 hwaddr ipa; 12201 int s2_prot; 12202 int ret; 12203 ARMCacheAttrs cacheattrs2 = {}; 12204 ARMMMUIdx s2_mmu_idx; 12205 bool is_el0; 12206 12207 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12208 attrs, prot, page_size, fi, cacheattrs); 12209 12210 /* If S1 fails or S2 is disabled, return early. */ 12211 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12212 *phys_ptr = ipa; 12213 return ret; 12214 } 12215 12216 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12217 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12218 12219 /* S1 is done. Now do S2 translation. */ 12220 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12221 phys_ptr, attrs, &s2_prot, 12222 page_size, fi, &cacheattrs2); 12223 fi->s2addr = ipa; 12224 /* Combine the S1 and S2 perms. */ 12225 *prot &= s2_prot; 12226 12227 /* If S2 fails, return early. */ 12228 if (ret) { 12229 return ret; 12230 } 12231 12232 /* Combine the S1 and S2 cache attributes. */ 12233 if (arm_hcr_el2_eff(env) & HCR_DC) { 12234 /* 12235 * HCR.DC forces the first stage attributes to 12236 * Normal Non-Shareable, 12237 * Inner Write-Back Read-Allocate Write-Allocate, 12238 * Outer Write-Back Read-Allocate Write-Allocate. 12239 * Do not overwrite Tagged within attrs. 12240 */ 12241 if (cacheattrs->attrs != 0xf0) { 12242 cacheattrs->attrs = 0xff; 12243 } 12244 cacheattrs->shareability = 0; 12245 } 12246 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12247 12248 /* Check if IPA translates to secure or non-secure PA space. */ 12249 if (arm_is_secure_below_el3(env)) { 12250 if (attrs->secure) { 12251 attrs->secure = 12252 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12253 } else { 12254 attrs->secure = 12255 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12256 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12257 } 12258 } 12259 return 0; 12260 } else { 12261 /* 12262 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12263 */ 12264 mmu_idx = stage_1_mmu_idx(mmu_idx); 12265 } 12266 } 12267 12268 /* The page table entries may downgrade secure to non-secure, but 12269 * cannot upgrade an non-secure translation regime's attributes 12270 * to secure. 12271 */ 12272 attrs->secure = regime_is_secure(env, mmu_idx); 12273 attrs->user = regime_is_user(env, mmu_idx); 12274 12275 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12276 * In v7 and earlier it affects all stage 1 translations. 12277 */ 12278 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12279 && !arm_feature(env, ARM_FEATURE_V8)) { 12280 if (regime_el(env, mmu_idx) == 3) { 12281 address += env->cp15.fcseidr_s; 12282 } else { 12283 address += env->cp15.fcseidr_ns; 12284 } 12285 } 12286 12287 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12288 bool ret; 12289 *page_size = TARGET_PAGE_SIZE; 12290 12291 if (arm_feature(env, ARM_FEATURE_V8)) { 12292 /* PMSAv8 */ 12293 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12294 phys_ptr, attrs, prot, page_size, fi); 12295 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12296 /* PMSAv7 */ 12297 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12298 phys_ptr, prot, page_size, fi); 12299 } else { 12300 /* Pre-v7 MPU */ 12301 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12302 phys_ptr, prot, fi); 12303 } 12304 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12305 " mmu_idx %u -> %s (prot %c%c%c)\n", 12306 access_type == MMU_DATA_LOAD ? "reading" : 12307 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12308 (uint32_t)address, mmu_idx, 12309 ret ? "Miss" : "Hit", 12310 *prot & PAGE_READ ? 'r' : '-', 12311 *prot & PAGE_WRITE ? 'w' : '-', 12312 *prot & PAGE_EXEC ? 'x' : '-'); 12313 12314 return ret; 12315 } 12316 12317 /* Definitely a real MMU, not an MPU */ 12318 12319 if (regime_translation_disabled(env, mmu_idx)) { 12320 uint64_t hcr; 12321 uint8_t memattr; 12322 12323 /* 12324 * MMU disabled. S1 addresses within aa64 translation regimes are 12325 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12326 */ 12327 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12328 int r_el = regime_el(env, mmu_idx); 12329 if (arm_el_is_aa64(env, r_el)) { 12330 int pamax = arm_pamax(env_archcpu(env)); 12331 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12332 int addrtop, tbi; 12333 12334 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12335 if (access_type == MMU_INST_FETCH) { 12336 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12337 } 12338 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12339 addrtop = (tbi ? 55 : 63); 12340 12341 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12342 fi->type = ARMFault_AddressSize; 12343 fi->level = 0; 12344 fi->stage2 = false; 12345 return 1; 12346 } 12347 12348 /* 12349 * When TBI is disabled, we've just validated that all of the 12350 * bits above PAMax are zero, so logically we only need to 12351 * clear the top byte for TBI. But it's clearer to follow 12352 * the pseudocode set of addrdesc.paddress. 12353 */ 12354 address = extract64(address, 0, 52); 12355 } 12356 } 12357 *phys_ptr = address; 12358 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12359 *page_size = TARGET_PAGE_SIZE; 12360 12361 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12362 hcr = arm_hcr_el2_eff(env); 12363 cacheattrs->shareability = 0; 12364 if (hcr & HCR_DC) { 12365 if (hcr & HCR_DCT) { 12366 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12367 } else { 12368 memattr = 0xff; /* Normal, WB, RWA */ 12369 } 12370 } else if (access_type == MMU_INST_FETCH) { 12371 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12372 memattr = 0xee; /* Normal, WT, RA, NT */ 12373 } else { 12374 memattr = 0x44; /* Normal, NC, No */ 12375 } 12376 cacheattrs->shareability = 2; /* outer sharable */ 12377 } else { 12378 memattr = 0x00; /* Device, nGnRnE */ 12379 } 12380 cacheattrs->attrs = memattr; 12381 return 0; 12382 } 12383 12384 if (regime_using_lpae_format(env, mmu_idx)) { 12385 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12386 phys_ptr, attrs, prot, page_size, 12387 fi, cacheattrs); 12388 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12389 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12390 phys_ptr, attrs, prot, page_size, fi); 12391 } else { 12392 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12393 phys_ptr, prot, page_size, fi); 12394 } 12395 } 12396 12397 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12398 MemTxAttrs *attrs) 12399 { 12400 ARMCPU *cpu = ARM_CPU(cs); 12401 CPUARMState *env = &cpu->env; 12402 hwaddr phys_addr; 12403 target_ulong page_size; 12404 int prot; 12405 bool ret; 12406 ARMMMUFaultInfo fi = {}; 12407 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12408 ARMCacheAttrs cacheattrs = {}; 12409 12410 *attrs = (MemTxAttrs) {}; 12411 12412 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 12413 attrs, &prot, &page_size, &fi, &cacheattrs); 12414 12415 if (ret) { 12416 return -1; 12417 } 12418 return phys_addr; 12419 } 12420 12421 #endif 12422 12423 /* Note that signed overflow is undefined in C. The following routines are 12424 careful to use unsigned types where modulo arithmetic is required. 12425 Failure to do so _will_ break on newer gcc. */ 12426 12427 /* Signed saturating arithmetic. */ 12428 12429 /* Perform 16-bit signed saturating addition. */ 12430 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12431 { 12432 uint16_t res; 12433 12434 res = a + b; 12435 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12436 if (a & 0x8000) 12437 res = 0x8000; 12438 else 12439 res = 0x7fff; 12440 } 12441 return res; 12442 } 12443 12444 /* Perform 8-bit signed saturating addition. */ 12445 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12446 { 12447 uint8_t res; 12448 12449 res = a + b; 12450 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12451 if (a & 0x80) 12452 res = 0x80; 12453 else 12454 res = 0x7f; 12455 } 12456 return res; 12457 } 12458 12459 /* Perform 16-bit signed saturating subtraction. */ 12460 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12461 { 12462 uint16_t res; 12463 12464 res = a - b; 12465 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12466 if (a & 0x8000) 12467 res = 0x8000; 12468 else 12469 res = 0x7fff; 12470 } 12471 return res; 12472 } 12473 12474 /* Perform 8-bit signed saturating subtraction. */ 12475 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12476 { 12477 uint8_t res; 12478 12479 res = a - b; 12480 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12481 if (a & 0x80) 12482 res = 0x80; 12483 else 12484 res = 0x7f; 12485 } 12486 return res; 12487 } 12488 12489 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12490 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12491 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12492 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12493 #define PFX q 12494 12495 #include "op_addsub.h" 12496 12497 /* Unsigned saturating arithmetic. */ 12498 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12499 { 12500 uint16_t res; 12501 res = a + b; 12502 if (res < a) 12503 res = 0xffff; 12504 return res; 12505 } 12506 12507 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12508 { 12509 if (a > b) 12510 return a - b; 12511 else 12512 return 0; 12513 } 12514 12515 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12516 { 12517 uint8_t res; 12518 res = a + b; 12519 if (res < a) 12520 res = 0xff; 12521 return res; 12522 } 12523 12524 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12525 { 12526 if (a > b) 12527 return a - b; 12528 else 12529 return 0; 12530 } 12531 12532 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12533 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12534 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12535 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12536 #define PFX uq 12537 12538 #include "op_addsub.h" 12539 12540 /* Signed modulo arithmetic. */ 12541 #define SARITH16(a, b, n, op) do { \ 12542 int32_t sum; \ 12543 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12544 RESULT(sum, n, 16); \ 12545 if (sum >= 0) \ 12546 ge |= 3 << (n * 2); \ 12547 } while(0) 12548 12549 #define SARITH8(a, b, n, op) do { \ 12550 int32_t sum; \ 12551 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12552 RESULT(sum, n, 8); \ 12553 if (sum >= 0) \ 12554 ge |= 1 << n; \ 12555 } while(0) 12556 12557 12558 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12559 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12560 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12561 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12562 #define PFX s 12563 #define ARITH_GE 12564 12565 #include "op_addsub.h" 12566 12567 /* Unsigned modulo arithmetic. */ 12568 #define ADD16(a, b, n) do { \ 12569 uint32_t sum; \ 12570 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12571 RESULT(sum, n, 16); \ 12572 if ((sum >> 16) == 1) \ 12573 ge |= 3 << (n * 2); \ 12574 } while(0) 12575 12576 #define ADD8(a, b, n) do { \ 12577 uint32_t sum; \ 12578 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12579 RESULT(sum, n, 8); \ 12580 if ((sum >> 8) == 1) \ 12581 ge |= 1 << n; \ 12582 } while(0) 12583 12584 #define SUB16(a, b, n) do { \ 12585 uint32_t sum; \ 12586 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12587 RESULT(sum, n, 16); \ 12588 if ((sum >> 16) == 0) \ 12589 ge |= 3 << (n * 2); \ 12590 } while(0) 12591 12592 #define SUB8(a, b, n) do { \ 12593 uint32_t sum; \ 12594 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12595 RESULT(sum, n, 8); \ 12596 if ((sum >> 8) == 0) \ 12597 ge |= 1 << n; \ 12598 } while(0) 12599 12600 #define PFX u 12601 #define ARITH_GE 12602 12603 #include "op_addsub.h" 12604 12605 /* Halved signed arithmetic. */ 12606 #define ADD16(a, b, n) \ 12607 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12608 #define SUB16(a, b, n) \ 12609 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12610 #define ADD8(a, b, n) \ 12611 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12612 #define SUB8(a, b, n) \ 12613 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12614 #define PFX sh 12615 12616 #include "op_addsub.h" 12617 12618 /* Halved unsigned arithmetic. */ 12619 #define ADD16(a, b, n) \ 12620 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12621 #define SUB16(a, b, n) \ 12622 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12623 #define ADD8(a, b, n) \ 12624 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12625 #define SUB8(a, b, n) \ 12626 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12627 #define PFX uh 12628 12629 #include "op_addsub.h" 12630 12631 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12632 { 12633 if (a > b) 12634 return a - b; 12635 else 12636 return b - a; 12637 } 12638 12639 /* Unsigned sum of absolute byte differences. */ 12640 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12641 { 12642 uint32_t sum; 12643 sum = do_usad(a, b); 12644 sum += do_usad(a >> 8, b >> 8); 12645 sum += do_usad(a >> 16, b >> 16); 12646 sum += do_usad(a >> 24, b >> 24); 12647 return sum; 12648 } 12649 12650 /* For ARMv6 SEL instruction. */ 12651 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12652 { 12653 uint32_t mask; 12654 12655 mask = 0; 12656 if (flags & 1) 12657 mask |= 0xff; 12658 if (flags & 2) 12659 mask |= 0xff00; 12660 if (flags & 4) 12661 mask |= 0xff0000; 12662 if (flags & 8) 12663 mask |= 0xff000000; 12664 return (a & mask) | (b & ~mask); 12665 } 12666 12667 /* CRC helpers. 12668 * The upper bytes of val (above the number specified by 'bytes') must have 12669 * been zeroed out by the caller. 12670 */ 12671 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12672 { 12673 uint8_t buf[4]; 12674 12675 stl_le_p(buf, val); 12676 12677 /* zlib crc32 converts the accumulator and output to one's complement. */ 12678 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12679 } 12680 12681 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12682 { 12683 uint8_t buf[4]; 12684 12685 stl_le_p(buf, val); 12686 12687 /* Linux crc32c converts the output to one's complement. */ 12688 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12689 } 12690 12691 /* Return the exception level to which FP-disabled exceptions should 12692 * be taken, or 0 if FP is enabled. 12693 */ 12694 int fp_exception_el(CPUARMState *env, int cur_el) 12695 { 12696 #ifndef CONFIG_USER_ONLY 12697 /* CPACR and the CPTR registers don't exist before v6, so FP is 12698 * always accessible 12699 */ 12700 if (!arm_feature(env, ARM_FEATURE_V6)) { 12701 return 0; 12702 } 12703 12704 if (arm_feature(env, ARM_FEATURE_M)) { 12705 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12706 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12707 return 1; 12708 } 12709 12710 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12711 if (!extract32(env->v7m.nsacr, 10, 1)) { 12712 /* FP insns cause a NOCP UsageFault taken to Secure */ 12713 return 3; 12714 } 12715 } 12716 12717 return 0; 12718 } 12719 12720 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12721 * 0, 2 : trap EL0 and EL1/PL1 accesses 12722 * 1 : trap only EL0 accesses 12723 * 3 : trap no accesses 12724 * This register is ignored if E2H+TGE are both set. 12725 */ 12726 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12727 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12728 12729 switch (fpen) { 12730 case 0: 12731 case 2: 12732 if (cur_el == 0 || cur_el == 1) { 12733 /* Trap to PL1, which might be EL1 or EL3 */ 12734 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12735 return 3; 12736 } 12737 return 1; 12738 } 12739 if (cur_el == 3 && !is_a64(env)) { 12740 /* Secure PL1 running at EL3 */ 12741 return 3; 12742 } 12743 break; 12744 case 1: 12745 if (cur_el == 0) { 12746 return 1; 12747 } 12748 break; 12749 case 3: 12750 break; 12751 } 12752 } 12753 12754 /* 12755 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12756 * to control non-secure access to the FPU. It doesn't have any 12757 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12758 */ 12759 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12760 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12761 if (!extract32(env->cp15.nsacr, 10, 1)) { 12762 /* FP insns act as UNDEF */ 12763 return cur_el == 2 ? 2 : 1; 12764 } 12765 } 12766 12767 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12768 * check because zero bits in the registers mean "don't trap". 12769 */ 12770 12771 /* CPTR_EL2 : present in v7VE or v8 */ 12772 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12773 && arm_is_el2_enabled(env)) { 12774 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12775 return 2; 12776 } 12777 12778 /* CPTR_EL3 : present in v8 */ 12779 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12780 /* Trap all FP ops to EL3 */ 12781 return 3; 12782 } 12783 #endif 12784 return 0; 12785 } 12786 12787 /* Return the exception level we're running at if this is our mmu_idx */ 12788 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12789 { 12790 if (mmu_idx & ARM_MMU_IDX_M) { 12791 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12792 } 12793 12794 switch (mmu_idx) { 12795 case ARMMMUIdx_E10_0: 12796 case ARMMMUIdx_E20_0: 12797 case ARMMMUIdx_SE10_0: 12798 case ARMMMUIdx_SE20_0: 12799 return 0; 12800 case ARMMMUIdx_E10_1: 12801 case ARMMMUIdx_E10_1_PAN: 12802 case ARMMMUIdx_SE10_1: 12803 case ARMMMUIdx_SE10_1_PAN: 12804 return 1; 12805 case ARMMMUIdx_E2: 12806 case ARMMMUIdx_E20_2: 12807 case ARMMMUIdx_E20_2_PAN: 12808 case ARMMMUIdx_SE2: 12809 case ARMMMUIdx_SE20_2: 12810 case ARMMMUIdx_SE20_2_PAN: 12811 return 2; 12812 case ARMMMUIdx_SE3: 12813 return 3; 12814 default: 12815 g_assert_not_reached(); 12816 } 12817 } 12818 12819 #ifndef CONFIG_TCG 12820 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12821 { 12822 g_assert_not_reached(); 12823 } 12824 #endif 12825 12826 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12827 { 12828 ARMMMUIdx idx; 12829 uint64_t hcr; 12830 12831 if (arm_feature(env, ARM_FEATURE_M)) { 12832 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12833 } 12834 12835 /* See ARM pseudo-function ELIsInHost. */ 12836 switch (el) { 12837 case 0: 12838 hcr = arm_hcr_el2_eff(env); 12839 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12840 idx = ARMMMUIdx_E20_0; 12841 } else { 12842 idx = ARMMMUIdx_E10_0; 12843 } 12844 break; 12845 case 1: 12846 if (env->pstate & PSTATE_PAN) { 12847 idx = ARMMMUIdx_E10_1_PAN; 12848 } else { 12849 idx = ARMMMUIdx_E10_1; 12850 } 12851 break; 12852 case 2: 12853 /* Note that TGE does not apply at EL2. */ 12854 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12855 if (env->pstate & PSTATE_PAN) { 12856 idx = ARMMMUIdx_E20_2_PAN; 12857 } else { 12858 idx = ARMMMUIdx_E20_2; 12859 } 12860 } else { 12861 idx = ARMMMUIdx_E2; 12862 } 12863 break; 12864 case 3: 12865 return ARMMMUIdx_SE3; 12866 default: 12867 g_assert_not_reached(); 12868 } 12869 12870 if (arm_is_secure_below_el3(env)) { 12871 idx &= ~ARM_MMU_IDX_A_NS; 12872 } 12873 12874 return idx; 12875 } 12876 12877 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12878 { 12879 return arm_mmu_idx_el(env, arm_current_el(env)); 12880 } 12881 12882 #ifndef CONFIG_USER_ONLY 12883 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12884 { 12885 return stage_1_mmu_idx(arm_mmu_idx(env)); 12886 } 12887 #endif 12888 12889 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12890 ARMMMUIdx mmu_idx, uint32_t flags) 12891 { 12892 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12893 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12894 arm_to_core_mmu_idx(mmu_idx)); 12895 12896 if (arm_singlestep_active(env)) { 12897 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12898 } 12899 return flags; 12900 } 12901 12902 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12903 ARMMMUIdx mmu_idx, uint32_t flags) 12904 { 12905 bool sctlr_b = arm_sctlr_b(env); 12906 12907 if (sctlr_b) { 12908 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12909 } 12910 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12911 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12912 } 12913 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12914 12915 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12916 } 12917 12918 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12919 ARMMMUIdx mmu_idx) 12920 { 12921 uint32_t flags = 0; 12922 12923 if (arm_v7m_is_handler_mode(env)) { 12924 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12925 } 12926 12927 /* 12928 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12929 * is suppressing them because the requested execution priority 12930 * is less than 0. 12931 */ 12932 if (arm_feature(env, ARM_FEATURE_V8) && 12933 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12934 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12935 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12936 } 12937 12938 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12939 } 12940 12941 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 12942 { 12943 int flags = 0; 12944 12945 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 12946 arm_debug_target_el(env)); 12947 return flags; 12948 } 12949 12950 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 12951 ARMMMUIdx mmu_idx) 12952 { 12953 uint32_t flags = rebuild_hflags_aprofile(env); 12954 12955 if (arm_el_is_aa64(env, 1)) { 12956 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12957 } 12958 12959 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 12960 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12961 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 12962 } 12963 12964 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12965 } 12966 12967 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 12968 ARMMMUIdx mmu_idx) 12969 { 12970 uint32_t flags = rebuild_hflags_aprofile(env); 12971 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12972 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 12973 uint64_t sctlr; 12974 int tbii, tbid; 12975 12976 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12977 12978 /* Get control bits for tagged addresses. */ 12979 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12980 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12981 12982 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12983 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12984 12985 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12986 int sve_el = sve_exception_el(env, el); 12987 uint32_t zcr_len; 12988 12989 /* 12990 * If SVE is disabled, but FP is enabled, 12991 * then the effective len is 0. 12992 */ 12993 if (sve_el != 0 && fp_el == 0) { 12994 zcr_len = 0; 12995 } else { 12996 zcr_len = sve_zcr_len_for_el(env, el); 12997 } 12998 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12999 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 13000 } 13001 13002 sctlr = regime_sctlr(env, stage1); 13003 13004 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13005 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 13006 } 13007 13008 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13009 /* 13010 * In order to save space in flags, we record only whether 13011 * pauth is "inactive", meaning all insns are implemented as 13012 * a nop, or "active" when some action must be performed. 13013 * The decision of which action to take is left to a helper. 13014 */ 13015 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13016 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 13017 } 13018 } 13019 13020 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13021 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13022 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13023 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 13024 } 13025 } 13026 13027 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13028 if (!(env->pstate & PSTATE_UAO)) { 13029 switch (mmu_idx) { 13030 case ARMMMUIdx_E10_1: 13031 case ARMMMUIdx_E10_1_PAN: 13032 case ARMMMUIdx_SE10_1: 13033 case ARMMMUIdx_SE10_1_PAN: 13034 /* TODO: ARMv8.3-NV */ 13035 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 13036 break; 13037 case ARMMMUIdx_E20_2: 13038 case ARMMMUIdx_E20_2_PAN: 13039 case ARMMMUIdx_SE20_2: 13040 case ARMMMUIdx_SE20_2_PAN: 13041 /* 13042 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13043 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13044 */ 13045 if (env->cp15.hcr_el2 & HCR_TGE) { 13046 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 13047 } 13048 break; 13049 default: 13050 break; 13051 } 13052 } 13053 13054 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13055 /* 13056 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13057 * if all accesses must be Unchecked: 13058 * 1) If no TBI, then there are no tags in the address to check, 13059 * 2) If Tag Check Override, then all accesses are Unchecked, 13060 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13061 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13062 */ 13063 if (allocation_tag_access_enabled(env, el, sctlr)) { 13064 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1); 13065 if (tbid 13066 && !(env->pstate & PSTATE_TCO) 13067 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13068 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1); 13069 } 13070 } 13071 /* And again for unprivileged accesses, if required. */ 13072 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV) 13073 && tbid 13074 && !(env->pstate & PSTATE_TCO) 13075 && (sctlr & SCTLR_TCF) 13076 && allocation_tag_access_enabled(env, 0, sctlr)) { 13077 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1); 13078 } 13079 /* Cache TCMA as well as TBI. */ 13080 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA, 13081 aa64_va_parameter_tcma(tcr, mmu_idx)); 13082 } 13083 13084 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13085 } 13086 13087 static uint32_t rebuild_hflags_internal(CPUARMState *env) 13088 { 13089 int el = arm_current_el(env); 13090 int fp_el = fp_exception_el(env, el); 13091 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13092 13093 if (is_a64(env)) { 13094 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13095 } else if (arm_feature(env, ARM_FEATURE_M)) { 13096 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13097 } else { 13098 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13099 } 13100 } 13101 13102 void arm_rebuild_hflags(CPUARMState *env) 13103 { 13104 env->hflags = rebuild_hflags_internal(env); 13105 } 13106 13107 /* 13108 * If we have triggered a EL state change we can't rely on the 13109 * translator having passed it to us, we need to recompute. 13110 */ 13111 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13112 { 13113 int el = arm_current_el(env); 13114 int fp_el = fp_exception_el(env, el); 13115 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13116 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13117 } 13118 13119 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13120 { 13121 int fp_el = fp_exception_el(env, el); 13122 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13123 13124 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13125 } 13126 13127 /* 13128 * If we have triggered a EL state change we can't rely on the 13129 * translator having passed it to us, we need to recompute. 13130 */ 13131 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13132 { 13133 int el = arm_current_el(env); 13134 int fp_el = fp_exception_el(env, el); 13135 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13136 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13137 } 13138 13139 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13140 { 13141 int fp_el = fp_exception_el(env, el); 13142 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13143 13144 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13145 } 13146 13147 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13148 { 13149 int fp_el = fp_exception_el(env, el); 13150 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13151 13152 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13153 } 13154 13155 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13156 { 13157 #ifdef CONFIG_DEBUG_TCG 13158 uint32_t env_flags_current = env->hflags; 13159 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 13160 13161 if (unlikely(env_flags_current != env_flags_rebuilt)) { 13162 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 13163 env_flags_current, env_flags_rebuilt); 13164 abort(); 13165 } 13166 #endif 13167 } 13168 13169 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13170 target_ulong *cs_base, uint32_t *pflags) 13171 { 13172 uint32_t flags = env->hflags; 13173 uint32_t pstate_for_ss; 13174 13175 *cs_base = 0; 13176 assert_hflags_rebuild_correctly(env); 13177 13178 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 13179 *pc = env->pc; 13180 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13181 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13182 } 13183 pstate_for_ss = env->pstate; 13184 } else { 13185 *pc = env->regs[15]; 13186 13187 if (arm_feature(env, ARM_FEATURE_M)) { 13188 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13189 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13190 != env->v7m.secure) { 13191 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 13192 } 13193 13194 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13195 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13196 (env->v7m.secure && 13197 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13198 /* 13199 * ASPEN is set, but FPCA/SFPA indicate that there is no 13200 * active FP context; we must create a new FP context before 13201 * executing any FP insn. 13202 */ 13203 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 13204 } 13205 13206 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13207 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13208 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 13209 } 13210 } else { 13211 /* 13212 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13213 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13214 */ 13215 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13216 flags = FIELD_DP32(flags, TBFLAG_A32, 13217 XSCALE_CPAR, env->cp15.c15_cpar); 13218 } else { 13219 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 13220 env->vfp.vec_len); 13221 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 13222 env->vfp.vec_stride); 13223 } 13224 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13225 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13226 } 13227 } 13228 13229 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 13230 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 13231 pstate_for_ss = env->uncached_cpsr; 13232 } 13233 13234 /* 13235 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13236 * states defined in the ARM ARM for software singlestep: 13237 * SS_ACTIVE PSTATE.SS State 13238 * 0 x Inactive (the TB flag for SS is always 0) 13239 * 1 0 Active-pending 13240 * 1 1 Active-not-pending 13241 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 13242 */ 13243 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 13244 (pstate_for_ss & PSTATE_SS)) { 13245 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13246 } 13247 13248 *pflags = flags; 13249 } 13250 13251 #ifdef TARGET_AARCH64 13252 /* 13253 * The manual says that when SVE is enabled and VQ is widened the 13254 * implementation is allowed to zero the previously inaccessible 13255 * portion of the registers. The corollary to that is that when 13256 * SVE is enabled and VQ is narrowed we are also allowed to zero 13257 * the now inaccessible portion of the registers. 13258 * 13259 * The intent of this is that no predicate bit beyond VQ is ever set. 13260 * Which means that some operations on predicate registers themselves 13261 * may operate on full uint64_t or even unrolled across the maximum 13262 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13263 * may well be cheaper than conditionals to restrict the operation 13264 * to the relevant portion of a uint16_t[16]. 13265 */ 13266 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13267 { 13268 int i, j; 13269 uint64_t pmask; 13270 13271 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13272 assert(vq <= env_archcpu(env)->sve_max_vq); 13273 13274 /* Zap the high bits of the zregs. */ 13275 for (i = 0; i < 32; i++) { 13276 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13277 } 13278 13279 /* Zap the high bits of the pregs and ffr. */ 13280 pmask = 0; 13281 if (vq & 3) { 13282 pmask = ~(-1ULL << (16 * (vq & 3))); 13283 } 13284 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13285 for (i = 0; i < 17; ++i) { 13286 env->vfp.pregs[i].p[j] &= pmask; 13287 } 13288 pmask = 0; 13289 } 13290 } 13291 13292 /* 13293 * Notice a change in SVE vector size when changing EL. 13294 */ 13295 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13296 int new_el, bool el0_a64) 13297 { 13298 ARMCPU *cpu = env_archcpu(env); 13299 int old_len, new_len; 13300 bool old_a64, new_a64; 13301 13302 /* Nothing to do if no SVE. */ 13303 if (!cpu_isar_feature(aa64_sve, cpu)) { 13304 return; 13305 } 13306 13307 /* Nothing to do if FP is disabled in either EL. */ 13308 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13309 return; 13310 } 13311 13312 /* 13313 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13314 * at ELx, or not available because the EL is in AArch32 state, then 13315 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13316 * has an effective value of 0". 13317 * 13318 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13319 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13320 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13321 * we already have the correct register contents when encountering the 13322 * vq0->vq0 transition between EL0->EL1. 13323 */ 13324 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13325 old_len = (old_a64 && !sve_exception_el(env, old_el) 13326 ? sve_zcr_len_for_el(env, old_el) : 0); 13327 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13328 new_len = (new_a64 && !sve_exception_el(env, new_el) 13329 ? sve_zcr_len_for_el(env, new_el) : 0); 13330 13331 /* When changing vector length, clear inaccessible state. */ 13332 if (new_len < old_len) { 13333 aarch64_sve_narrow_vq(env, new_len + 1); 13334 } 13335 } 13336 #endif 13337