1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "sysemu/tcg.h" 31 #include "qemu/range.h" 32 #include "qapi/qapi-commands-machine-target.h" 33 #include "qapi/error.h" 34 #include "qemu/guest-random.h" 35 #ifdef CONFIG_TCG 36 #include "arm_ldst.h" 37 #include "exec/cpu_ldst.h" 38 #include "semihosting/common-semi.h" 39 #endif 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 43 44 #ifndef CONFIG_USER_ONLY 45 46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 47 MMUAccessType access_type, ARMMMUIdx mmu_idx, 48 bool s1_is_el0, 49 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 50 target_ulong *page_size_ptr, 51 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 52 __attribute__((nonnull)); 53 #endif 54 55 static void switch_mode(CPUARMState *env, int mode); 56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 57 58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 assert(ri->fieldoffset); 61 if (cpreg_field_is_64bit(ri)) { 62 return CPREG_FIELD64(env, ri); 63 } else { 64 return CPREG_FIELD32(env, ri); 65 } 66 } 67 68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 69 uint64_t value) 70 { 71 assert(ri->fieldoffset); 72 if (cpreg_field_is_64bit(ri)) { 73 CPREG_FIELD64(env, ri) = value; 74 } else { 75 CPREG_FIELD32(env, ri) = value; 76 } 77 } 78 79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 80 { 81 return (char *)env + ri->fieldoffset; 82 } 83 84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 85 { 86 /* Raw read of a coprocessor register (as needed for migration, etc). */ 87 if (ri->type & ARM_CP_CONST) { 88 return ri->resetvalue; 89 } else if (ri->raw_readfn) { 90 return ri->raw_readfn(env, ri); 91 } else if (ri->readfn) { 92 return ri->readfn(env, ri); 93 } else { 94 return raw_read(env, ri); 95 } 96 } 97 98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 99 uint64_t v) 100 { 101 /* Raw write of a coprocessor register (as needed for migration, etc). 102 * Note that constant registers are treated as write-ignored; the 103 * caller should check for success by whether a readback gives the 104 * value written. 105 */ 106 if (ri->type & ARM_CP_CONST) { 107 return; 108 } else if (ri->raw_writefn) { 109 ri->raw_writefn(env, ri, v); 110 } else if (ri->writefn) { 111 ri->writefn(env, ri, v); 112 } else { 113 raw_write(env, ri, v); 114 } 115 } 116 117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 118 { 119 /* Return true if the regdef would cause an assertion if you called 120 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 121 * program bug for it not to have the NO_RAW flag). 122 * NB that returning false here doesn't necessarily mean that calling 123 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 124 * read/write access functions which are safe for raw use" from "has 125 * read/write access functions which have side effects but has forgotten 126 * to provide raw access functions". 127 * The tests here line up with the conditions in read/write_raw_cp_reg() 128 * and assertions in raw_read()/raw_write(). 129 */ 130 if ((ri->type & ARM_CP_CONST) || 131 ri->fieldoffset || 132 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 133 return false; 134 } 135 return true; 136 } 137 138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 139 { 140 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 141 int i; 142 bool ok = true; 143 144 for (i = 0; i < cpu->cpreg_array_len; i++) { 145 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 146 const ARMCPRegInfo *ri; 147 uint64_t newval; 148 149 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 150 if (!ri) { 151 ok = false; 152 continue; 153 } 154 if (ri->type & ARM_CP_NO_RAW) { 155 continue; 156 } 157 158 newval = read_raw_cp_reg(&cpu->env, ri); 159 if (kvm_sync) { 160 /* 161 * Only sync if the previous list->cpustate sync succeeded. 162 * Rather than tracking the success/failure state for every 163 * item in the list, we just recheck "does the raw write we must 164 * have made in write_list_to_cpustate() read back OK" here. 165 */ 166 uint64_t oldval = cpu->cpreg_values[i]; 167 168 if (oldval == newval) { 169 continue; 170 } 171 172 write_raw_cp_reg(&cpu->env, ri, oldval); 173 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 174 continue; 175 } 176 177 write_raw_cp_reg(&cpu->env, ri, newval); 178 } 179 cpu->cpreg_values[i] = newval; 180 } 181 return ok; 182 } 183 184 bool write_list_to_cpustate(ARMCPU *cpu) 185 { 186 int i; 187 bool ok = true; 188 189 for (i = 0; i < cpu->cpreg_array_len; i++) { 190 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 191 uint64_t v = cpu->cpreg_values[i]; 192 const ARMCPRegInfo *ri; 193 194 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 195 if (!ri) { 196 ok = false; 197 continue; 198 } 199 if (ri->type & ARM_CP_NO_RAW) { 200 continue; 201 } 202 /* Write value and confirm it reads back as written 203 * (to catch read-only registers and partially read-only 204 * registers where the incoming migration value doesn't match) 205 */ 206 write_raw_cp_reg(&cpu->env, ri, v); 207 if (read_raw_cp_reg(&cpu->env, ri) != v) { 208 ok = false; 209 } 210 } 211 return ok; 212 } 213 214 static void add_cpreg_to_list(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 uint64_t regidx; 218 const ARMCPRegInfo *ri; 219 220 regidx = *(uint32_t *)key; 221 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 222 223 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 224 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 225 /* The value array need not be initialized at this point */ 226 cpu->cpreg_array_len++; 227 } 228 } 229 230 static void count_cpreg(gpointer key, gpointer opaque) 231 { 232 ARMCPU *cpu = opaque; 233 uint64_t regidx; 234 const ARMCPRegInfo *ri; 235 236 regidx = *(uint32_t *)key; 237 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 238 239 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 240 cpu->cpreg_array_len++; 241 } 242 } 243 244 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 245 { 246 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 247 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 248 249 if (aidx > bidx) { 250 return 1; 251 } 252 if (aidx < bidx) { 253 return -1; 254 } 255 return 0; 256 } 257 258 void init_cpreg_list(ARMCPU *cpu) 259 { 260 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 261 * Note that we require cpreg_tuples[] to be sorted by key ID. 262 */ 263 GList *keys; 264 int arraylen; 265 266 keys = g_hash_table_get_keys(cpu->cp_regs); 267 keys = g_list_sort(keys, cpreg_key_compare); 268 269 cpu->cpreg_array_len = 0; 270 271 g_list_foreach(keys, count_cpreg, cpu); 272 273 arraylen = cpu->cpreg_array_len; 274 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 275 cpu->cpreg_values = g_new(uint64_t, arraylen); 276 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 277 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 278 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 279 cpu->cpreg_array_len = 0; 280 281 g_list_foreach(keys, add_cpreg_to_list, cpu); 282 283 assert(cpu->cpreg_array_len == arraylen); 284 285 g_list_free(keys); 286 } 287 288 /* 289 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 290 */ 291 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 292 const ARMCPRegInfo *ri, 293 bool isread) 294 { 295 if (!is_a64(env) && arm_current_el(env) == 3 && 296 arm_is_secure_below_el3(env)) { 297 return CP_ACCESS_TRAP_UNCATEGORIZED; 298 } 299 return CP_ACCESS_OK; 300 } 301 302 /* Some secure-only AArch32 registers trap to EL3 if used from 303 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 304 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 305 * We assume that the .access field is set to PL1_RW. 306 */ 307 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 308 const ARMCPRegInfo *ri, 309 bool isread) 310 { 311 if (arm_current_el(env) == 3) { 312 return CP_ACCESS_OK; 313 } 314 if (arm_is_secure_below_el3(env)) { 315 if (env->cp15.scr_el3 & SCR_EEL2) { 316 return CP_ACCESS_TRAP_EL2; 317 } 318 return CP_ACCESS_TRAP_EL3; 319 } 320 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 321 return CP_ACCESS_TRAP_UNCATEGORIZED; 322 } 323 324 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 325 { 326 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 327 } 328 329 /* Check for traps to "powerdown debug" registers, which are controlled 330 * by MDCR.TDOSA 331 */ 332 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 333 bool isread) 334 { 335 int el = arm_current_el(env); 336 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 337 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 338 (arm_hcr_el2_eff(env) & HCR_TGE); 339 340 if (el < 2 && mdcr_el2_tdosa) { 341 return CP_ACCESS_TRAP_EL2; 342 } 343 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 344 return CP_ACCESS_TRAP_EL3; 345 } 346 return CP_ACCESS_OK; 347 } 348 349 /* Check for traps to "debug ROM" registers, which are controlled 350 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 351 */ 352 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 353 bool isread) 354 { 355 int el = arm_current_el(env); 356 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 357 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 358 (arm_hcr_el2_eff(env) & HCR_TGE); 359 360 if (el < 2 && mdcr_el2_tdra) { 361 return CP_ACCESS_TRAP_EL2; 362 } 363 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 364 return CP_ACCESS_TRAP_EL3; 365 } 366 return CP_ACCESS_OK; 367 } 368 369 /* Check for traps to general debug registers, which are controlled 370 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 371 */ 372 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 373 bool isread) 374 { 375 int el = arm_current_el(env); 376 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 377 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 378 (arm_hcr_el2_eff(env) & HCR_TGE); 379 380 if (el < 2 && mdcr_el2_tda) { 381 return CP_ACCESS_TRAP_EL2; 382 } 383 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 384 return CP_ACCESS_TRAP_EL3; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 /* Check for traps to performance monitor registers, which are controlled 390 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 391 */ 392 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 393 bool isread) 394 { 395 int el = arm_current_el(env); 396 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 397 398 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 399 return CP_ACCESS_TRAP_EL2; 400 } 401 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 402 return CP_ACCESS_TRAP_EL3; 403 } 404 return CP_ACCESS_OK; 405 } 406 407 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 408 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 409 bool isread) 410 { 411 if (arm_current_el(env) == 1) { 412 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 413 if (arm_hcr_el2_eff(env) & trap) { 414 return CP_ACCESS_TRAP_EL2; 415 } 416 } 417 return CP_ACCESS_OK; 418 } 419 420 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 421 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 422 bool isread) 423 { 424 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 425 return CP_ACCESS_TRAP_EL2; 426 } 427 return CP_ACCESS_OK; 428 } 429 430 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 431 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 432 bool isread) 433 { 434 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 435 return CP_ACCESS_TRAP_EL2; 436 } 437 return CP_ACCESS_OK; 438 } 439 440 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 441 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 445 return CP_ACCESS_TRAP_EL2; 446 } 447 return CP_ACCESS_OK; 448 } 449 450 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 451 { 452 ARMCPU *cpu = env_archcpu(env); 453 454 raw_write(env, ri, value); 455 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 456 } 457 458 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 459 { 460 ARMCPU *cpu = env_archcpu(env); 461 462 if (raw_read(env, ri) != value) { 463 /* Unlike real hardware the qemu TLB uses virtual addresses, 464 * not modified virtual addresses, so this causes a TLB flush. 465 */ 466 tlb_flush(CPU(cpu)); 467 raw_write(env, ri, value); 468 } 469 } 470 471 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 472 uint64_t value) 473 { 474 ARMCPU *cpu = env_archcpu(env); 475 476 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 477 && !extended_addresses_enabled(env)) { 478 /* For VMSA (when not using the LPAE long descriptor page table 479 * format) this register includes the ASID, so do a TLB flush. 480 * For PMSA it is purely a process ID and no action is needed. 481 */ 482 tlb_flush(CPU(cpu)); 483 } 484 raw_write(env, ri, value); 485 } 486 487 /* IS variants of TLB operations must affect all cores */ 488 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 489 uint64_t value) 490 { 491 CPUState *cs = env_cpu(env); 492 493 tlb_flush_all_cpus_synced(cs); 494 } 495 496 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 497 uint64_t value) 498 { 499 CPUState *cs = env_cpu(env); 500 501 tlb_flush_all_cpus_synced(cs); 502 } 503 504 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 505 uint64_t value) 506 { 507 CPUState *cs = env_cpu(env); 508 509 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 510 } 511 512 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 CPUState *cs = env_cpu(env); 516 517 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 518 } 519 520 /* 521 * Non-IS variants of TLB operations are upgraded to 522 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 523 * force broadcast of these operations. 524 */ 525 static bool tlb_force_broadcast(CPUARMState *env) 526 { 527 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 528 } 529 530 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 531 uint64_t value) 532 { 533 /* Invalidate all (TLBIALL) */ 534 CPUState *cs = env_cpu(env); 535 536 if (tlb_force_broadcast(env)) { 537 tlb_flush_all_cpus_synced(cs); 538 } else { 539 tlb_flush(cs); 540 } 541 } 542 543 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 544 uint64_t value) 545 { 546 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 547 CPUState *cs = env_cpu(env); 548 549 value &= TARGET_PAGE_MASK; 550 if (tlb_force_broadcast(env)) { 551 tlb_flush_page_all_cpus_synced(cs, value); 552 } else { 553 tlb_flush_page(cs, value); 554 } 555 } 556 557 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 /* Invalidate by ASID (TLBIASID) */ 561 CPUState *cs = env_cpu(env); 562 563 if (tlb_force_broadcast(env)) { 564 tlb_flush_all_cpus_synced(cs); 565 } else { 566 tlb_flush(cs); 567 } 568 } 569 570 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 574 CPUState *cs = env_cpu(env); 575 576 value &= TARGET_PAGE_MASK; 577 if (tlb_force_broadcast(env)) { 578 tlb_flush_page_all_cpus_synced(cs, value); 579 } else { 580 tlb_flush_page(cs, value); 581 } 582 } 583 584 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 585 uint64_t value) 586 { 587 CPUState *cs = env_cpu(env); 588 589 tlb_flush_by_mmuidx(cs, 590 ARMMMUIdxBit_E10_1 | 591 ARMMMUIdxBit_E10_1_PAN | 592 ARMMMUIdxBit_E10_0); 593 } 594 595 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 600 tlb_flush_by_mmuidx_all_cpus_synced(cs, 601 ARMMMUIdxBit_E10_1 | 602 ARMMMUIdxBit_E10_1_PAN | 603 ARMMMUIdxBit_E10_0); 604 } 605 606 607 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 608 uint64_t value) 609 { 610 CPUState *cs = env_cpu(env); 611 612 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 613 } 614 615 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 616 uint64_t value) 617 { 618 CPUState *cs = env_cpu(env); 619 620 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 621 } 622 623 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 624 uint64_t value) 625 { 626 CPUState *cs = env_cpu(env); 627 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 628 629 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 630 } 631 632 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 633 uint64_t value) 634 { 635 CPUState *cs = env_cpu(env); 636 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 637 638 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 639 ARMMMUIdxBit_E2); 640 } 641 642 static const ARMCPRegInfo cp_reginfo[] = { 643 /* Define the secure and non-secure FCSE identifier CP registers 644 * separately because there is no secure bank in V8 (no _EL3). This allows 645 * the secure register to be properly reset and migrated. There is also no 646 * v8 EL1 version of the register so the non-secure instance stands alone. 647 */ 648 { .name = "FCSEIDR", 649 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 650 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 651 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 652 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 653 { .name = "FCSEIDR_S", 654 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 655 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 656 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 657 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 658 /* Define the secure and non-secure context identifier CP registers 659 * separately because there is no secure bank in V8 (no _EL3). This allows 660 * the secure register to be properly reset and migrated. In the 661 * non-secure case, the 32-bit register will have reset and migration 662 * disabled during registration as it is handled by the 64-bit instance. 663 */ 664 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 665 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 666 .access = PL1_RW, .accessfn = access_tvm_trvm, 667 .secure = ARM_CP_SECSTATE_NS, 668 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 669 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 670 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 671 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 672 .access = PL1_RW, .accessfn = access_tvm_trvm, 673 .secure = ARM_CP_SECSTATE_S, 674 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 675 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 676 REGINFO_SENTINEL 677 }; 678 679 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 680 /* NB: Some of these registers exist in v8 but with more precise 681 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 682 */ 683 /* MMU Domain access control / MPU write buffer control */ 684 { .name = "DACR", 685 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 686 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 687 .writefn = dacr_write, .raw_writefn = raw_write, 688 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 689 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 690 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 691 * For v6 and v5, these mappings are overly broad. 692 */ 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 696 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 697 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 698 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 699 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 700 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 701 /* Cache maintenance ops; some of this space may be overridden later. */ 702 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 703 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 704 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 705 REGINFO_SENTINEL 706 }; 707 708 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 709 /* Not all pre-v6 cores implemented this WFI, so this is slightly 710 * over-broad. 711 */ 712 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 713 .access = PL1_W, .type = ARM_CP_WFI }, 714 REGINFO_SENTINEL 715 }; 716 717 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 718 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 719 * is UNPREDICTABLE; we choose to NOP as most implementations do). 720 */ 721 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 722 .access = PL1_W, .type = ARM_CP_WFI }, 723 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 724 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 725 * OMAPCP will override this space. 726 */ 727 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 728 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 729 .resetvalue = 0 }, 730 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 731 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 732 .resetvalue = 0 }, 733 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 734 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 735 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 736 .resetvalue = 0 }, 737 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 738 * implementing it as RAZ means the "debug architecture version" bits 739 * will read as a reserved value, which should cause Linux to not try 740 * to use the debug hardware. 741 */ 742 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 743 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 744 /* MMU TLB control. Note that the wildcarding means we cover not just 745 * the unified TLB ops but also the dside/iside/inner-shareable variants. 746 */ 747 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 748 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 749 .type = ARM_CP_NO_RAW }, 750 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 751 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 752 .type = ARM_CP_NO_RAW }, 753 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 754 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 755 .type = ARM_CP_NO_RAW }, 756 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 757 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 758 .type = ARM_CP_NO_RAW }, 759 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 760 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 761 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 762 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 763 REGINFO_SENTINEL 764 }; 765 766 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 767 uint64_t value) 768 { 769 uint32_t mask = 0; 770 771 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 772 if (!arm_feature(env, ARM_FEATURE_V8)) { 773 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 774 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 775 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 776 */ 777 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 778 /* VFP coprocessor: cp10 & cp11 [23:20] */ 779 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 780 781 if (!arm_feature(env, ARM_FEATURE_NEON)) { 782 /* ASEDIS [31] bit is RAO/WI */ 783 value |= (1 << 31); 784 } 785 786 /* VFPv3 and upwards with NEON implement 32 double precision 787 * registers (D0-D31). 788 */ 789 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 790 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 791 value |= (1 << 30); 792 } 793 } 794 value &= mask; 795 } 796 797 /* 798 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 799 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 800 */ 801 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 802 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 803 value &= ~(0xf << 20); 804 value |= env->cp15.cpacr_el1 & (0xf << 20); 805 } 806 807 env->cp15.cpacr_el1 = value; 808 } 809 810 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 811 { 812 /* 813 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 814 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 815 */ 816 uint64_t value = env->cp15.cpacr_el1; 817 818 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 819 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 820 value &= ~(0xf << 20); 821 } 822 return value; 823 } 824 825 826 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 827 { 828 /* Call cpacr_write() so that we reset with the correct RAO bits set 829 * for our CPU features. 830 */ 831 cpacr_write(env, ri, 0); 832 } 833 834 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 835 bool isread) 836 { 837 if (arm_feature(env, ARM_FEATURE_V8)) { 838 /* Check if CPACR accesses are to be trapped to EL2 */ 839 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 840 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 841 return CP_ACCESS_TRAP_EL2; 842 /* Check if CPACR accesses are to be trapped to EL3 */ 843 } else if (arm_current_el(env) < 3 && 844 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 845 return CP_ACCESS_TRAP_EL3; 846 } 847 } 848 849 return CP_ACCESS_OK; 850 } 851 852 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 853 bool isread) 854 { 855 /* Check if CPTR accesses are set to trap to EL3 */ 856 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 857 return CP_ACCESS_TRAP_EL3; 858 } 859 860 return CP_ACCESS_OK; 861 } 862 863 static const ARMCPRegInfo v6_cp_reginfo[] = { 864 /* prefetch by MVA in v6, NOP in v7 */ 865 { .name = "MVA_prefetch", 866 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 867 .access = PL1_W, .type = ARM_CP_NOP }, 868 /* We need to break the TB after ISB to execute self-modifying code 869 * correctly and also to take any pending interrupts immediately. 870 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 871 */ 872 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 873 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 874 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 875 .access = PL0_W, .type = ARM_CP_NOP }, 876 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 877 .access = PL0_W, .type = ARM_CP_NOP }, 878 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 879 .access = PL1_RW, .accessfn = access_tvm_trvm, 880 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 881 offsetof(CPUARMState, cp15.ifar_ns) }, 882 .resetvalue = 0, }, 883 /* Watchpoint Fault Address Register : should actually only be present 884 * for 1136, 1176, 11MPCore. 885 */ 886 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 887 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 888 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 889 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 890 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 891 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 892 REGINFO_SENTINEL 893 }; 894 895 typedef struct pm_event { 896 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 897 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 898 bool (*supported)(CPUARMState *); 899 /* 900 * Retrieve the current count of the underlying event. The programmed 901 * counters hold a difference from the return value from this function 902 */ 903 uint64_t (*get_count)(CPUARMState *); 904 /* 905 * Return how many nanoseconds it will take (at a minimum) for count events 906 * to occur. A negative value indicates the counter will never overflow, or 907 * that the counter has otherwise arranged for the overflow bit to be set 908 * and the PMU interrupt to be raised on overflow. 909 */ 910 int64_t (*ns_per_count)(uint64_t); 911 } pm_event; 912 913 static bool event_always_supported(CPUARMState *env) 914 { 915 return true; 916 } 917 918 static uint64_t swinc_get_count(CPUARMState *env) 919 { 920 /* 921 * SW_INCR events are written directly to the pmevcntr's by writes to 922 * PMSWINC, so there is no underlying count maintained by the PMU itself 923 */ 924 return 0; 925 } 926 927 static int64_t swinc_ns_per(uint64_t ignored) 928 { 929 return -1; 930 } 931 932 /* 933 * Return the underlying cycle count for the PMU cycle counters. If we're in 934 * usermode, simply return 0. 935 */ 936 static uint64_t cycles_get_count(CPUARMState *env) 937 { 938 #ifndef CONFIG_USER_ONLY 939 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 940 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 941 #else 942 return cpu_get_host_ticks(); 943 #endif 944 } 945 946 #ifndef CONFIG_USER_ONLY 947 static int64_t cycles_ns_per(uint64_t cycles) 948 { 949 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 950 } 951 952 static bool instructions_supported(CPUARMState *env) 953 { 954 return icount_enabled() == 1; /* Precise instruction counting */ 955 } 956 957 static uint64_t instructions_get_count(CPUARMState *env) 958 { 959 return (uint64_t)icount_get_raw(); 960 } 961 962 static int64_t instructions_ns_per(uint64_t icount) 963 { 964 return icount_to_ns((int64_t)icount); 965 } 966 #endif 967 968 static bool pmu_8_1_events_supported(CPUARMState *env) 969 { 970 /* For events which are supported in any v8.1 PMU */ 971 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 972 } 973 974 static bool pmu_8_4_events_supported(CPUARMState *env) 975 { 976 /* For events which are supported in any v8.1 PMU */ 977 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 978 } 979 980 static uint64_t zero_event_get_count(CPUARMState *env) 981 { 982 /* For events which on QEMU never fire, so their count is always zero */ 983 return 0; 984 } 985 986 static int64_t zero_event_ns_per(uint64_t cycles) 987 { 988 /* An event which never fires can never overflow */ 989 return -1; 990 } 991 992 static const pm_event pm_events[] = { 993 { .number = 0x000, /* SW_INCR */ 994 .supported = event_always_supported, 995 .get_count = swinc_get_count, 996 .ns_per_count = swinc_ns_per, 997 }, 998 #ifndef CONFIG_USER_ONLY 999 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1000 .supported = instructions_supported, 1001 .get_count = instructions_get_count, 1002 .ns_per_count = instructions_ns_per, 1003 }, 1004 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1005 .supported = event_always_supported, 1006 .get_count = cycles_get_count, 1007 .ns_per_count = cycles_ns_per, 1008 }, 1009 #endif 1010 { .number = 0x023, /* STALL_FRONTEND */ 1011 .supported = pmu_8_1_events_supported, 1012 .get_count = zero_event_get_count, 1013 .ns_per_count = zero_event_ns_per, 1014 }, 1015 { .number = 0x024, /* STALL_BACKEND */ 1016 .supported = pmu_8_1_events_supported, 1017 .get_count = zero_event_get_count, 1018 .ns_per_count = zero_event_ns_per, 1019 }, 1020 { .number = 0x03c, /* STALL */ 1021 .supported = pmu_8_4_events_supported, 1022 .get_count = zero_event_get_count, 1023 .ns_per_count = zero_event_ns_per, 1024 }, 1025 }; 1026 1027 /* 1028 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1029 * events (i.e. the statistical profiling extension), this implementation 1030 * should first be updated to something sparse instead of the current 1031 * supported_event_map[] array. 1032 */ 1033 #define MAX_EVENT_ID 0x3c 1034 #define UNSUPPORTED_EVENT UINT16_MAX 1035 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1036 1037 /* 1038 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1039 * of ARM event numbers to indices in our pm_events array. 1040 * 1041 * Note: Events in the 0x40XX range are not currently supported. 1042 */ 1043 void pmu_init(ARMCPU *cpu) 1044 { 1045 unsigned int i; 1046 1047 /* 1048 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1049 * events to them 1050 */ 1051 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1052 supported_event_map[i] = UNSUPPORTED_EVENT; 1053 } 1054 cpu->pmceid0 = 0; 1055 cpu->pmceid1 = 0; 1056 1057 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1058 const pm_event *cnt = &pm_events[i]; 1059 assert(cnt->number <= MAX_EVENT_ID); 1060 /* We do not currently support events in the 0x40xx range */ 1061 assert(cnt->number <= 0x3f); 1062 1063 if (cnt->supported(&cpu->env)) { 1064 supported_event_map[cnt->number] = i; 1065 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1066 if (cnt->number & 0x20) { 1067 cpu->pmceid1 |= event_mask; 1068 } else { 1069 cpu->pmceid0 |= event_mask; 1070 } 1071 } 1072 } 1073 } 1074 1075 /* 1076 * Check at runtime whether a PMU event is supported for the current machine 1077 */ 1078 static bool event_supported(uint16_t number) 1079 { 1080 if (number > MAX_EVENT_ID) { 1081 return false; 1082 } 1083 return supported_event_map[number] != UNSUPPORTED_EVENT; 1084 } 1085 1086 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1087 bool isread) 1088 { 1089 /* Performance monitor registers user accessibility is controlled 1090 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1091 * trapping to EL2 or EL3 for other accesses. 1092 */ 1093 int el = arm_current_el(env); 1094 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1095 1096 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1097 return CP_ACCESS_TRAP; 1098 } 1099 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1100 return CP_ACCESS_TRAP_EL2; 1101 } 1102 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1103 return CP_ACCESS_TRAP_EL3; 1104 } 1105 1106 return CP_ACCESS_OK; 1107 } 1108 1109 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1110 const ARMCPRegInfo *ri, 1111 bool isread) 1112 { 1113 /* ER: event counter read trap control */ 1114 if (arm_feature(env, ARM_FEATURE_V8) 1115 && arm_current_el(env) == 0 1116 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1117 && isread) { 1118 return CP_ACCESS_OK; 1119 } 1120 1121 return pmreg_access(env, ri, isread); 1122 } 1123 1124 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1125 const ARMCPRegInfo *ri, 1126 bool isread) 1127 { 1128 /* SW: software increment write trap control */ 1129 if (arm_feature(env, ARM_FEATURE_V8) 1130 && arm_current_el(env) == 0 1131 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1132 && !isread) { 1133 return CP_ACCESS_OK; 1134 } 1135 1136 return pmreg_access(env, ri, isread); 1137 } 1138 1139 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1140 const ARMCPRegInfo *ri, 1141 bool isread) 1142 { 1143 /* ER: event counter read trap control */ 1144 if (arm_feature(env, ARM_FEATURE_V8) 1145 && arm_current_el(env) == 0 1146 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1147 return CP_ACCESS_OK; 1148 } 1149 1150 return pmreg_access(env, ri, isread); 1151 } 1152 1153 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1154 const ARMCPRegInfo *ri, 1155 bool isread) 1156 { 1157 /* CR: cycle counter read trap control */ 1158 if (arm_feature(env, ARM_FEATURE_V8) 1159 && arm_current_el(env) == 0 1160 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1161 && isread) { 1162 return CP_ACCESS_OK; 1163 } 1164 1165 return pmreg_access(env, ri, isread); 1166 } 1167 1168 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1169 * the current EL, security state, and register configuration. 1170 */ 1171 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1172 { 1173 uint64_t filter; 1174 bool e, p, u, nsk, nsu, nsh, m; 1175 bool enabled, prohibited, filtered; 1176 bool secure = arm_is_secure(env); 1177 int el = arm_current_el(env); 1178 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1179 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1180 1181 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1182 return false; 1183 } 1184 1185 if (!arm_feature(env, ARM_FEATURE_EL2) || 1186 (counter < hpmn || counter == 31)) { 1187 e = env->cp15.c9_pmcr & PMCRE; 1188 } else { 1189 e = mdcr_el2 & MDCR_HPME; 1190 } 1191 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1192 1193 if (!secure) { 1194 if (el == 2 && (counter < hpmn || counter == 31)) { 1195 prohibited = mdcr_el2 & MDCR_HPMD; 1196 } else { 1197 prohibited = false; 1198 } 1199 } else { 1200 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1201 !(env->cp15.mdcr_el3 & MDCR_SPME); 1202 } 1203 1204 if (prohibited && counter == 31) { 1205 prohibited = env->cp15.c9_pmcr & PMCRDP; 1206 } 1207 1208 if (counter == 31) { 1209 filter = env->cp15.pmccfiltr_el0; 1210 } else { 1211 filter = env->cp15.c14_pmevtyper[counter]; 1212 } 1213 1214 p = filter & PMXEVTYPER_P; 1215 u = filter & PMXEVTYPER_U; 1216 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1217 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1218 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1219 m = arm_el_is_aa64(env, 1) && 1220 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1221 1222 if (el == 0) { 1223 filtered = secure ? u : u != nsu; 1224 } else if (el == 1) { 1225 filtered = secure ? p : p != nsk; 1226 } else if (el == 2) { 1227 filtered = !nsh; 1228 } else { /* EL3 */ 1229 filtered = m != p; 1230 } 1231 1232 if (counter != 31) { 1233 /* 1234 * If not checking PMCCNTR, ensure the counter is setup to an event we 1235 * support 1236 */ 1237 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1238 if (!event_supported(event)) { 1239 return false; 1240 } 1241 } 1242 1243 return enabled && !prohibited && !filtered; 1244 } 1245 1246 static void pmu_update_irq(CPUARMState *env) 1247 { 1248 ARMCPU *cpu = env_archcpu(env); 1249 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1250 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1251 } 1252 1253 /* 1254 * Ensure c15_ccnt is the guest-visible count so that operations such as 1255 * enabling/disabling the counter or filtering, modifying the count itself, 1256 * etc. can be done logically. This is essentially a no-op if the counter is 1257 * not enabled at the time of the call. 1258 */ 1259 static void pmccntr_op_start(CPUARMState *env) 1260 { 1261 uint64_t cycles = cycles_get_count(env); 1262 1263 if (pmu_counter_enabled(env, 31)) { 1264 uint64_t eff_cycles = cycles; 1265 if (env->cp15.c9_pmcr & PMCRD) { 1266 /* Increment once every 64 processor clock cycles */ 1267 eff_cycles /= 64; 1268 } 1269 1270 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1271 1272 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1273 1ull << 63 : 1ull << 31; 1274 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1275 env->cp15.c9_pmovsr |= (1 << 31); 1276 pmu_update_irq(env); 1277 } 1278 1279 env->cp15.c15_ccnt = new_pmccntr; 1280 } 1281 env->cp15.c15_ccnt_delta = cycles; 1282 } 1283 1284 /* 1285 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1286 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1287 * pmccntr_op_start. 1288 */ 1289 static void pmccntr_op_finish(CPUARMState *env) 1290 { 1291 if (pmu_counter_enabled(env, 31)) { 1292 #ifndef CONFIG_USER_ONLY 1293 /* Calculate when the counter will next overflow */ 1294 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1295 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1296 remaining_cycles = (uint32_t)remaining_cycles; 1297 } 1298 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1299 1300 if (overflow_in > 0) { 1301 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1302 overflow_in; 1303 ARMCPU *cpu = env_archcpu(env); 1304 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1305 } 1306 #endif 1307 1308 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1309 if (env->cp15.c9_pmcr & PMCRD) { 1310 /* Increment once every 64 processor clock cycles */ 1311 prev_cycles /= 64; 1312 } 1313 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1314 } 1315 } 1316 1317 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1318 { 1319 1320 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1321 uint64_t count = 0; 1322 if (event_supported(event)) { 1323 uint16_t event_idx = supported_event_map[event]; 1324 count = pm_events[event_idx].get_count(env); 1325 } 1326 1327 if (pmu_counter_enabled(env, counter)) { 1328 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1329 1330 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1331 env->cp15.c9_pmovsr |= (1 << counter); 1332 pmu_update_irq(env); 1333 } 1334 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1335 } 1336 env->cp15.c14_pmevcntr_delta[counter] = count; 1337 } 1338 1339 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1340 { 1341 if (pmu_counter_enabled(env, counter)) { 1342 #ifndef CONFIG_USER_ONLY 1343 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1344 uint16_t event_idx = supported_event_map[event]; 1345 uint64_t delta = UINT32_MAX - 1346 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1347 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1348 1349 if (overflow_in > 0) { 1350 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1351 overflow_in; 1352 ARMCPU *cpu = env_archcpu(env); 1353 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1354 } 1355 #endif 1356 1357 env->cp15.c14_pmevcntr_delta[counter] -= 1358 env->cp15.c14_pmevcntr[counter]; 1359 } 1360 } 1361 1362 void pmu_op_start(CPUARMState *env) 1363 { 1364 unsigned int i; 1365 pmccntr_op_start(env); 1366 for (i = 0; i < pmu_num_counters(env); i++) { 1367 pmevcntr_op_start(env, i); 1368 } 1369 } 1370 1371 void pmu_op_finish(CPUARMState *env) 1372 { 1373 unsigned int i; 1374 pmccntr_op_finish(env); 1375 for (i = 0; i < pmu_num_counters(env); i++) { 1376 pmevcntr_op_finish(env, i); 1377 } 1378 } 1379 1380 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1381 { 1382 pmu_op_start(&cpu->env); 1383 } 1384 1385 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1386 { 1387 pmu_op_finish(&cpu->env); 1388 } 1389 1390 void arm_pmu_timer_cb(void *opaque) 1391 { 1392 ARMCPU *cpu = opaque; 1393 1394 /* 1395 * Update all the counter values based on the current underlying counts, 1396 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1397 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1398 * counter may expire. 1399 */ 1400 pmu_op_start(&cpu->env); 1401 pmu_op_finish(&cpu->env); 1402 } 1403 1404 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1405 uint64_t value) 1406 { 1407 pmu_op_start(env); 1408 1409 if (value & PMCRC) { 1410 /* The counter has been reset */ 1411 env->cp15.c15_ccnt = 0; 1412 } 1413 1414 if (value & PMCRP) { 1415 unsigned int i; 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 env->cp15.c14_pmevcntr[i] = 0; 1418 } 1419 } 1420 1421 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1422 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1423 1424 pmu_op_finish(env); 1425 } 1426 1427 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1428 uint64_t value) 1429 { 1430 unsigned int i; 1431 for (i = 0; i < pmu_num_counters(env); i++) { 1432 /* Increment a counter's count iff: */ 1433 if ((value & (1 << i)) && /* counter's bit is set */ 1434 /* counter is enabled and not filtered */ 1435 pmu_counter_enabled(env, i) && 1436 /* counter is SW_INCR */ 1437 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1438 pmevcntr_op_start(env, i); 1439 1440 /* 1441 * Detect if this write causes an overflow since we can't predict 1442 * PMSWINC overflows like we can for other events 1443 */ 1444 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1445 1446 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1447 env->cp15.c9_pmovsr |= (1 << i); 1448 pmu_update_irq(env); 1449 } 1450 1451 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1452 1453 pmevcntr_op_finish(env, i); 1454 } 1455 } 1456 } 1457 1458 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1459 { 1460 uint64_t ret; 1461 pmccntr_op_start(env); 1462 ret = env->cp15.c15_ccnt; 1463 pmccntr_op_finish(env); 1464 return ret; 1465 } 1466 1467 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1468 uint64_t value) 1469 { 1470 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1471 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1472 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1473 * accessed. 1474 */ 1475 env->cp15.c9_pmselr = value & 0x1f; 1476 } 1477 1478 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1479 uint64_t value) 1480 { 1481 pmccntr_op_start(env); 1482 env->cp15.c15_ccnt = value; 1483 pmccntr_op_finish(env); 1484 } 1485 1486 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1487 uint64_t value) 1488 { 1489 uint64_t cur_val = pmccntr_read(env, NULL); 1490 1491 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1492 } 1493 1494 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1495 uint64_t value) 1496 { 1497 pmccntr_op_start(env); 1498 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1499 pmccntr_op_finish(env); 1500 } 1501 1502 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1503 uint64_t value) 1504 { 1505 pmccntr_op_start(env); 1506 /* M is not accessible from AArch32 */ 1507 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1508 (value & PMCCFILTR); 1509 pmccntr_op_finish(env); 1510 } 1511 1512 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1513 { 1514 /* M is not visible in AArch32 */ 1515 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1516 } 1517 1518 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1519 uint64_t value) 1520 { 1521 value &= pmu_counter_mask(env); 1522 env->cp15.c9_pmcnten |= value; 1523 } 1524 1525 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1526 uint64_t value) 1527 { 1528 value &= pmu_counter_mask(env); 1529 env->cp15.c9_pmcnten &= ~value; 1530 } 1531 1532 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1533 uint64_t value) 1534 { 1535 value &= pmu_counter_mask(env); 1536 env->cp15.c9_pmovsr &= ~value; 1537 pmu_update_irq(env); 1538 } 1539 1540 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1541 uint64_t value) 1542 { 1543 value &= pmu_counter_mask(env); 1544 env->cp15.c9_pmovsr |= value; 1545 pmu_update_irq(env); 1546 } 1547 1548 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1549 uint64_t value, const uint8_t counter) 1550 { 1551 if (counter == 31) { 1552 pmccfiltr_write(env, ri, value); 1553 } else if (counter < pmu_num_counters(env)) { 1554 pmevcntr_op_start(env, counter); 1555 1556 /* 1557 * If this counter's event type is changing, store the current 1558 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1559 * pmevcntr_op_finish has the correct baseline when it converts back to 1560 * a delta. 1561 */ 1562 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1563 PMXEVTYPER_EVTCOUNT; 1564 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1565 if (old_event != new_event) { 1566 uint64_t count = 0; 1567 if (event_supported(new_event)) { 1568 uint16_t event_idx = supported_event_map[new_event]; 1569 count = pm_events[event_idx].get_count(env); 1570 } 1571 env->cp15.c14_pmevcntr_delta[counter] = count; 1572 } 1573 1574 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1575 pmevcntr_op_finish(env, counter); 1576 } 1577 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1578 * PMSELR value is equal to or greater than the number of implemented 1579 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1580 */ 1581 } 1582 1583 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1584 const uint8_t counter) 1585 { 1586 if (counter == 31) { 1587 return env->cp15.pmccfiltr_el0; 1588 } else if (counter < pmu_num_counters(env)) { 1589 return env->cp15.c14_pmevtyper[counter]; 1590 } else { 1591 /* 1592 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1593 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1594 */ 1595 return 0; 1596 } 1597 } 1598 1599 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1600 uint64_t value) 1601 { 1602 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1603 pmevtyper_write(env, ri, value, counter); 1604 } 1605 1606 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1607 uint64_t value) 1608 { 1609 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1610 env->cp15.c14_pmevtyper[counter] = value; 1611 1612 /* 1613 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1614 * pmu_op_finish calls when loading saved state for a migration. Because 1615 * we're potentially updating the type of event here, the value written to 1616 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1617 * different counter type. Therefore, we need to set this value to the 1618 * current count for the counter type we're writing so that pmu_op_finish 1619 * has the correct count for its calculation. 1620 */ 1621 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1622 if (event_supported(event)) { 1623 uint16_t event_idx = supported_event_map[event]; 1624 env->cp15.c14_pmevcntr_delta[counter] = 1625 pm_events[event_idx].get_count(env); 1626 } 1627 } 1628 1629 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1630 { 1631 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1632 return pmevtyper_read(env, ri, counter); 1633 } 1634 1635 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1639 } 1640 1641 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1642 { 1643 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1644 } 1645 1646 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1647 uint64_t value, uint8_t counter) 1648 { 1649 if (counter < pmu_num_counters(env)) { 1650 pmevcntr_op_start(env, counter); 1651 env->cp15.c14_pmevcntr[counter] = value; 1652 pmevcntr_op_finish(env, counter); 1653 } 1654 /* 1655 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1656 * are CONSTRAINED UNPREDICTABLE. 1657 */ 1658 } 1659 1660 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint8_t counter) 1662 { 1663 if (counter < pmu_num_counters(env)) { 1664 uint64_t ret; 1665 pmevcntr_op_start(env, counter); 1666 ret = env->cp15.c14_pmevcntr[counter]; 1667 pmevcntr_op_finish(env, counter); 1668 return ret; 1669 } else { 1670 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1671 * are CONSTRAINED UNPREDICTABLE. */ 1672 return 0; 1673 } 1674 } 1675 1676 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1677 uint64_t value) 1678 { 1679 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1680 pmevcntr_write(env, ri, value, counter); 1681 } 1682 1683 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1684 { 1685 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1686 return pmevcntr_read(env, ri, counter); 1687 } 1688 1689 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1690 uint64_t value) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 assert(counter < pmu_num_counters(env)); 1694 env->cp15.c14_pmevcntr[counter] = value; 1695 pmevcntr_write(env, ri, value, counter); 1696 } 1697 1698 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1699 { 1700 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1701 assert(counter < pmu_num_counters(env)); 1702 return env->cp15.c14_pmevcntr[counter]; 1703 } 1704 1705 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1706 uint64_t value) 1707 { 1708 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1709 } 1710 1711 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1712 { 1713 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1714 } 1715 1716 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 if (arm_feature(env, ARM_FEATURE_V8)) { 1720 env->cp15.c9_pmuserenr = value & 0xf; 1721 } else { 1722 env->cp15.c9_pmuserenr = value & 1; 1723 } 1724 } 1725 1726 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1727 uint64_t value) 1728 { 1729 /* We have no event counters so only the C bit can be changed */ 1730 value &= pmu_counter_mask(env); 1731 env->cp15.c9_pminten |= value; 1732 pmu_update_irq(env); 1733 } 1734 1735 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1736 uint64_t value) 1737 { 1738 value &= pmu_counter_mask(env); 1739 env->cp15.c9_pminten &= ~value; 1740 pmu_update_irq(env); 1741 } 1742 1743 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1744 uint64_t value) 1745 { 1746 /* Note that even though the AArch64 view of this register has bits 1747 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1748 * architectural requirements for bits which are RES0 only in some 1749 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1750 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1751 */ 1752 raw_write(env, ri, value & ~0x1FULL); 1753 } 1754 1755 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1756 { 1757 /* Begin with base v8.0 state. */ 1758 uint32_t valid_mask = 0x3fff; 1759 ARMCPU *cpu = env_archcpu(env); 1760 1761 if (ri->state == ARM_CP_STATE_AA64) { 1762 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1763 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1764 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1765 } 1766 valid_mask &= ~SCR_NET; 1767 1768 if (cpu_isar_feature(aa64_lor, cpu)) { 1769 valid_mask |= SCR_TLOR; 1770 } 1771 if (cpu_isar_feature(aa64_pauth, cpu)) { 1772 valid_mask |= SCR_API | SCR_APK; 1773 } 1774 if (cpu_isar_feature(aa64_sel2, cpu)) { 1775 valid_mask |= SCR_EEL2; 1776 } 1777 if (cpu_isar_feature(aa64_mte, cpu)) { 1778 valid_mask |= SCR_ATA; 1779 } 1780 } else { 1781 valid_mask &= ~(SCR_RW | SCR_ST); 1782 } 1783 1784 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1785 valid_mask &= ~SCR_HCE; 1786 1787 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1788 * supported if EL2 exists. The bit is UNK/SBZP when 1789 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1790 * when EL2 is unavailable. 1791 * On ARMv8, this bit is always available. 1792 */ 1793 if (arm_feature(env, ARM_FEATURE_V7) && 1794 !arm_feature(env, ARM_FEATURE_V8)) { 1795 valid_mask &= ~SCR_SMD; 1796 } 1797 } 1798 1799 /* Clear all-context RES0 bits. */ 1800 value &= valid_mask; 1801 raw_write(env, ri, value); 1802 } 1803 1804 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1805 { 1806 /* 1807 * scr_write will set the RES1 bits on an AArch64-only CPU. 1808 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1809 */ 1810 scr_write(env, ri, 0); 1811 } 1812 1813 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1814 const ARMCPRegInfo *ri, 1815 bool isread) 1816 { 1817 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1818 return CP_ACCESS_TRAP_EL2; 1819 } 1820 1821 return CP_ACCESS_OK; 1822 } 1823 1824 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1825 { 1826 ARMCPU *cpu = env_archcpu(env); 1827 1828 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1829 * bank 1830 */ 1831 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1832 ri->secure & ARM_CP_SECSTATE_S); 1833 1834 return cpu->ccsidr[index]; 1835 } 1836 1837 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1838 uint64_t value) 1839 { 1840 raw_write(env, ri, value & 0xf); 1841 } 1842 1843 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1844 { 1845 CPUState *cs = env_cpu(env); 1846 bool el1 = arm_current_el(env) == 1; 1847 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1848 uint64_t ret = 0; 1849 1850 if (hcr_el2 & HCR_IMO) { 1851 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1852 ret |= CPSR_I; 1853 } 1854 } else { 1855 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1856 ret |= CPSR_I; 1857 } 1858 } 1859 1860 if (hcr_el2 & HCR_FMO) { 1861 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1862 ret |= CPSR_F; 1863 } 1864 } else { 1865 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1866 ret |= CPSR_F; 1867 } 1868 } 1869 1870 /* External aborts are not possible in QEMU so A bit is always clear */ 1871 return ret; 1872 } 1873 1874 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1875 bool isread) 1876 { 1877 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1878 return CP_ACCESS_TRAP_EL2; 1879 } 1880 1881 return CP_ACCESS_OK; 1882 } 1883 1884 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1885 bool isread) 1886 { 1887 if (arm_feature(env, ARM_FEATURE_V8)) { 1888 return access_aa64_tid1(env, ri, isread); 1889 } 1890 1891 return CP_ACCESS_OK; 1892 } 1893 1894 static const ARMCPRegInfo v7_cp_reginfo[] = { 1895 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1896 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1897 .access = PL1_W, .type = ARM_CP_NOP }, 1898 /* Performance monitors are implementation defined in v7, 1899 * but with an ARM recommended set of registers, which we 1900 * follow. 1901 * 1902 * Performance registers fall into three categories: 1903 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1904 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1905 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1906 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1907 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1908 */ 1909 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1910 .access = PL0_RW, .type = ARM_CP_ALIAS, 1911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1912 .writefn = pmcntenset_write, 1913 .accessfn = pmreg_access, 1914 .raw_writefn = raw_write }, 1915 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1916 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1917 .access = PL0_RW, .accessfn = pmreg_access, 1918 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1919 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1920 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1921 .access = PL0_RW, 1922 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1923 .accessfn = pmreg_access, 1924 .writefn = pmcntenclr_write, 1925 .type = ARM_CP_ALIAS }, 1926 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1927 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1928 .access = PL0_RW, .accessfn = pmreg_access, 1929 .type = ARM_CP_ALIAS, 1930 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1931 .writefn = pmcntenclr_write }, 1932 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1933 .access = PL0_RW, .type = ARM_CP_IO, 1934 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1935 .accessfn = pmreg_access, 1936 .writefn = pmovsr_write, 1937 .raw_writefn = raw_write }, 1938 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1939 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1940 .access = PL0_RW, .accessfn = pmreg_access, 1941 .type = ARM_CP_ALIAS | ARM_CP_IO, 1942 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1943 .writefn = pmovsr_write, 1944 .raw_writefn = raw_write }, 1945 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1946 .access = PL0_W, .accessfn = pmreg_access_swinc, 1947 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1948 .writefn = pmswinc_write }, 1949 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1950 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1951 .access = PL0_W, .accessfn = pmreg_access_swinc, 1952 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1953 .writefn = pmswinc_write }, 1954 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1955 .access = PL0_RW, .type = ARM_CP_ALIAS, 1956 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1957 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1958 .raw_writefn = raw_write}, 1959 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1960 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1961 .access = PL0_RW, .accessfn = pmreg_access_selr, 1962 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1963 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1964 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1965 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1966 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1967 .accessfn = pmreg_access_ccntr }, 1968 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1969 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1970 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1971 .type = ARM_CP_IO, 1972 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1973 .readfn = pmccntr_read, .writefn = pmccntr_write, 1974 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1975 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1976 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1977 .access = PL0_RW, .accessfn = pmreg_access, 1978 .type = ARM_CP_ALIAS | ARM_CP_IO, 1979 .resetvalue = 0, }, 1980 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1981 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1982 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1983 .access = PL0_RW, .accessfn = pmreg_access, 1984 .type = ARM_CP_IO, 1985 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1986 .resetvalue = 0, }, 1987 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1988 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1989 .accessfn = pmreg_access, 1990 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1991 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1992 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1993 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1994 .accessfn = pmreg_access, 1995 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1996 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1997 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1998 .accessfn = pmreg_access_xevcntr, 1999 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2000 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2001 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2002 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2003 .accessfn = pmreg_access_xevcntr, 2004 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2005 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2006 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2007 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2008 .resetvalue = 0, 2009 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2010 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2011 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2012 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2013 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2014 .resetvalue = 0, 2015 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2016 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2017 .access = PL1_RW, .accessfn = access_tpm, 2018 .type = ARM_CP_ALIAS | ARM_CP_IO, 2019 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2020 .resetvalue = 0, 2021 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2022 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2023 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2024 .access = PL1_RW, .accessfn = access_tpm, 2025 .type = ARM_CP_IO, 2026 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2027 .writefn = pmintenset_write, .raw_writefn = raw_write, 2028 .resetvalue = 0x0 }, 2029 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2030 .access = PL1_RW, .accessfn = access_tpm, 2031 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2032 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2033 .writefn = pmintenclr_write, }, 2034 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2035 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2036 .access = PL1_RW, .accessfn = access_tpm, 2037 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2038 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2039 .writefn = pmintenclr_write }, 2040 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2041 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2042 .access = PL1_R, 2043 .accessfn = access_aa64_tid2, 2044 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2045 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2046 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2047 .access = PL1_RW, 2048 .accessfn = access_aa64_tid2, 2049 .writefn = csselr_write, .resetvalue = 0, 2050 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2051 offsetof(CPUARMState, cp15.csselr_ns) } }, 2052 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2053 * just RAZ for all cores: 2054 */ 2055 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2056 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2057 .access = PL1_R, .type = ARM_CP_CONST, 2058 .accessfn = access_aa64_tid1, 2059 .resetvalue = 0 }, 2060 /* Auxiliary fault status registers: these also are IMPDEF, and we 2061 * choose to RAZ/WI for all cores. 2062 */ 2063 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2064 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2065 .access = PL1_RW, .accessfn = access_tvm_trvm, 2066 .type = ARM_CP_CONST, .resetvalue = 0 }, 2067 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2068 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2069 .access = PL1_RW, .accessfn = access_tvm_trvm, 2070 .type = ARM_CP_CONST, .resetvalue = 0 }, 2071 /* MAIR can just read-as-written because we don't implement caches 2072 * and so don't need to care about memory attributes. 2073 */ 2074 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2075 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2076 .access = PL1_RW, .accessfn = access_tvm_trvm, 2077 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2078 .resetvalue = 0 }, 2079 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2080 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2081 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2082 .resetvalue = 0 }, 2083 /* For non-long-descriptor page tables these are PRRR and NMRR; 2084 * regardless they still act as reads-as-written for QEMU. 2085 */ 2086 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2087 * allows them to assign the correct fieldoffset based on the endianness 2088 * handled in the field definitions. 2089 */ 2090 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2091 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2092 .access = PL1_RW, .accessfn = access_tvm_trvm, 2093 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2094 offsetof(CPUARMState, cp15.mair0_ns) }, 2095 .resetfn = arm_cp_reset_ignore }, 2096 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2097 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2098 .access = PL1_RW, .accessfn = access_tvm_trvm, 2099 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2100 offsetof(CPUARMState, cp15.mair1_ns) }, 2101 .resetfn = arm_cp_reset_ignore }, 2102 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2103 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2104 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2105 /* 32 bit ITLB invalidates */ 2106 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2107 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2108 .writefn = tlbiall_write }, 2109 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2110 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2111 .writefn = tlbimva_write }, 2112 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2113 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2114 .writefn = tlbiasid_write }, 2115 /* 32 bit DTLB invalidates */ 2116 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2118 .writefn = tlbiall_write }, 2119 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2120 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2121 .writefn = tlbimva_write }, 2122 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2123 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2124 .writefn = tlbiasid_write }, 2125 /* 32 bit TLB invalidates */ 2126 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbiall_write }, 2129 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2131 .writefn = tlbimva_write }, 2132 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2134 .writefn = tlbiasid_write }, 2135 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2136 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2137 .writefn = tlbimvaa_write }, 2138 REGINFO_SENTINEL 2139 }; 2140 2141 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2142 /* 32 bit TLB invalidates, Inner Shareable */ 2143 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2144 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2145 .writefn = tlbiall_is_write }, 2146 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbimva_is_write }, 2149 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbiasid_is_write }, 2152 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbimvaa_is_write }, 2155 REGINFO_SENTINEL 2156 }; 2157 2158 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2159 /* PMOVSSET is not implemented in v7 before v7ve */ 2160 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2161 .access = PL0_RW, .accessfn = pmreg_access, 2162 .type = ARM_CP_ALIAS | ARM_CP_IO, 2163 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2164 .writefn = pmovsset_write, 2165 .raw_writefn = raw_write }, 2166 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2167 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2168 .access = PL0_RW, .accessfn = pmreg_access, 2169 .type = ARM_CP_ALIAS | ARM_CP_IO, 2170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2171 .writefn = pmovsset_write, 2172 .raw_writefn = raw_write }, 2173 REGINFO_SENTINEL 2174 }; 2175 2176 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2177 uint64_t value) 2178 { 2179 value &= 1; 2180 env->teecr = value; 2181 } 2182 2183 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2184 bool isread) 2185 { 2186 /* 2187 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2188 * at all, so we don't need to check whether we're v8A. 2189 */ 2190 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2191 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2192 return CP_ACCESS_TRAP_EL2; 2193 } 2194 return CP_ACCESS_OK; 2195 } 2196 2197 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2198 bool isread) 2199 { 2200 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2201 return CP_ACCESS_TRAP; 2202 } 2203 return teecr_access(env, ri, isread); 2204 } 2205 2206 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2207 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2208 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2209 .resetvalue = 0, 2210 .writefn = teecr_write, .accessfn = teecr_access }, 2211 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2212 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2213 .accessfn = teehbr_access, .resetvalue = 0 }, 2214 REGINFO_SENTINEL 2215 }; 2216 2217 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2218 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2219 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2220 .access = PL0_RW, 2221 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2222 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2223 .access = PL0_RW, 2224 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2225 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2226 .resetfn = arm_cp_reset_ignore }, 2227 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2228 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2229 .access = PL0_R|PL1_W, 2230 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2231 .resetvalue = 0}, 2232 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2233 .access = PL0_R|PL1_W, 2234 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2235 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2236 .resetfn = arm_cp_reset_ignore }, 2237 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2238 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2239 .access = PL1_RW, 2240 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2241 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2242 .access = PL1_RW, 2243 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2244 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2245 .resetvalue = 0 }, 2246 REGINFO_SENTINEL 2247 }; 2248 2249 #ifndef CONFIG_USER_ONLY 2250 2251 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2252 bool isread) 2253 { 2254 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2255 * Writable only at the highest implemented exception level. 2256 */ 2257 int el = arm_current_el(env); 2258 uint64_t hcr; 2259 uint32_t cntkctl; 2260 2261 switch (el) { 2262 case 0: 2263 hcr = arm_hcr_el2_eff(env); 2264 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2265 cntkctl = env->cp15.cnthctl_el2; 2266 } else { 2267 cntkctl = env->cp15.c14_cntkctl; 2268 } 2269 if (!extract32(cntkctl, 0, 2)) { 2270 return CP_ACCESS_TRAP; 2271 } 2272 break; 2273 case 1: 2274 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2275 arm_is_secure_below_el3(env)) { 2276 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2277 return CP_ACCESS_TRAP_UNCATEGORIZED; 2278 } 2279 break; 2280 case 2: 2281 case 3: 2282 break; 2283 } 2284 2285 if (!isread && el < arm_highest_el(env)) { 2286 return CP_ACCESS_TRAP_UNCATEGORIZED; 2287 } 2288 2289 return CP_ACCESS_OK; 2290 } 2291 2292 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2293 bool isread) 2294 { 2295 unsigned int cur_el = arm_current_el(env); 2296 bool has_el2 = arm_is_el2_enabled(env); 2297 uint64_t hcr = arm_hcr_el2_eff(env); 2298 2299 switch (cur_el) { 2300 case 0: 2301 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2302 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2303 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2304 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2305 } 2306 2307 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2308 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2309 return CP_ACCESS_TRAP; 2310 } 2311 2312 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2313 if (hcr & HCR_E2H) { 2314 if (timeridx == GTIMER_PHYS && 2315 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2316 return CP_ACCESS_TRAP_EL2; 2317 } 2318 } else { 2319 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2320 if (has_el2 && timeridx == GTIMER_PHYS && 2321 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2322 return CP_ACCESS_TRAP_EL2; 2323 } 2324 } 2325 break; 2326 2327 case 1: 2328 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2329 if (has_el2 && timeridx == GTIMER_PHYS && 2330 (hcr & HCR_E2H 2331 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2332 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2333 return CP_ACCESS_TRAP_EL2; 2334 } 2335 break; 2336 } 2337 return CP_ACCESS_OK; 2338 } 2339 2340 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2341 bool isread) 2342 { 2343 unsigned int cur_el = arm_current_el(env); 2344 bool has_el2 = arm_is_el2_enabled(env); 2345 uint64_t hcr = arm_hcr_el2_eff(env); 2346 2347 switch (cur_el) { 2348 case 0: 2349 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2350 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2351 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2352 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2353 } 2354 2355 /* 2356 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2357 * EL0 if EL0[PV]TEN is zero. 2358 */ 2359 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2360 return CP_ACCESS_TRAP; 2361 } 2362 /* fall through */ 2363 2364 case 1: 2365 if (has_el2 && timeridx == GTIMER_PHYS) { 2366 if (hcr & HCR_E2H) { 2367 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2368 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2369 return CP_ACCESS_TRAP_EL2; 2370 } 2371 } else { 2372 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2373 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2374 return CP_ACCESS_TRAP_EL2; 2375 } 2376 } 2377 } 2378 break; 2379 } 2380 return CP_ACCESS_OK; 2381 } 2382 2383 static CPAccessResult gt_pct_access(CPUARMState *env, 2384 const ARMCPRegInfo *ri, 2385 bool isread) 2386 { 2387 return gt_counter_access(env, GTIMER_PHYS, isread); 2388 } 2389 2390 static CPAccessResult gt_vct_access(CPUARMState *env, 2391 const ARMCPRegInfo *ri, 2392 bool isread) 2393 { 2394 return gt_counter_access(env, GTIMER_VIRT, isread); 2395 } 2396 2397 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2398 bool isread) 2399 { 2400 return gt_timer_access(env, GTIMER_PHYS, isread); 2401 } 2402 2403 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2404 bool isread) 2405 { 2406 return gt_timer_access(env, GTIMER_VIRT, isread); 2407 } 2408 2409 static CPAccessResult gt_stimer_access(CPUARMState *env, 2410 const ARMCPRegInfo *ri, 2411 bool isread) 2412 { 2413 /* The AArch64 register view of the secure physical timer is 2414 * always accessible from EL3, and configurably accessible from 2415 * Secure EL1. 2416 */ 2417 switch (arm_current_el(env)) { 2418 case 1: 2419 if (!arm_is_secure(env)) { 2420 return CP_ACCESS_TRAP; 2421 } 2422 if (!(env->cp15.scr_el3 & SCR_ST)) { 2423 return CP_ACCESS_TRAP_EL3; 2424 } 2425 return CP_ACCESS_OK; 2426 case 0: 2427 case 2: 2428 return CP_ACCESS_TRAP; 2429 case 3: 2430 return CP_ACCESS_OK; 2431 default: 2432 g_assert_not_reached(); 2433 } 2434 } 2435 2436 static uint64_t gt_get_countervalue(CPUARMState *env) 2437 { 2438 ARMCPU *cpu = env_archcpu(env); 2439 2440 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2441 } 2442 2443 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2444 { 2445 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2446 2447 if (gt->ctl & 1) { 2448 /* Timer enabled: calculate and set current ISTATUS, irq, and 2449 * reset timer to when ISTATUS next has to change 2450 */ 2451 uint64_t offset = timeridx == GTIMER_VIRT ? 2452 cpu->env.cp15.cntvoff_el2 : 0; 2453 uint64_t count = gt_get_countervalue(&cpu->env); 2454 /* Note that this must be unsigned 64 bit arithmetic: */ 2455 int istatus = count - offset >= gt->cval; 2456 uint64_t nexttick; 2457 int irqstate; 2458 2459 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2460 2461 irqstate = (istatus && !(gt->ctl & 2)); 2462 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2463 2464 if (istatus) { 2465 /* Next transition is when count rolls back over to zero */ 2466 nexttick = UINT64_MAX; 2467 } else { 2468 /* Next transition is when we hit cval */ 2469 nexttick = gt->cval + offset; 2470 } 2471 /* Note that the desired next expiry time might be beyond the 2472 * signed-64-bit range of a QEMUTimer -- in this case we just 2473 * set the timer for as far in the future as possible. When the 2474 * timer expires we will reset the timer for any remaining period. 2475 */ 2476 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2477 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2478 } else { 2479 timer_mod(cpu->gt_timer[timeridx], nexttick); 2480 } 2481 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2482 } else { 2483 /* Timer disabled: ISTATUS and timer output always clear */ 2484 gt->ctl &= ~4; 2485 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2486 timer_del(cpu->gt_timer[timeridx]); 2487 trace_arm_gt_recalc_disabled(timeridx); 2488 } 2489 } 2490 2491 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2492 int timeridx) 2493 { 2494 ARMCPU *cpu = env_archcpu(env); 2495 2496 timer_del(cpu->gt_timer[timeridx]); 2497 } 2498 2499 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2500 { 2501 return gt_get_countervalue(env); 2502 } 2503 2504 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2505 { 2506 uint64_t hcr; 2507 2508 switch (arm_current_el(env)) { 2509 case 2: 2510 hcr = arm_hcr_el2_eff(env); 2511 if (hcr & HCR_E2H) { 2512 return 0; 2513 } 2514 break; 2515 case 0: 2516 hcr = arm_hcr_el2_eff(env); 2517 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2518 return 0; 2519 } 2520 break; 2521 } 2522 2523 return env->cp15.cntvoff_el2; 2524 } 2525 2526 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2527 { 2528 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2529 } 2530 2531 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2532 int timeridx, 2533 uint64_t value) 2534 { 2535 trace_arm_gt_cval_write(timeridx, value); 2536 env->cp15.c14_timer[timeridx].cval = value; 2537 gt_recalc_timer(env_archcpu(env), timeridx); 2538 } 2539 2540 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2541 int timeridx) 2542 { 2543 uint64_t offset = 0; 2544 2545 switch (timeridx) { 2546 case GTIMER_VIRT: 2547 case GTIMER_HYPVIRT: 2548 offset = gt_virt_cnt_offset(env); 2549 break; 2550 } 2551 2552 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2553 (gt_get_countervalue(env) - offset)); 2554 } 2555 2556 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2557 int timeridx, 2558 uint64_t value) 2559 { 2560 uint64_t offset = 0; 2561 2562 switch (timeridx) { 2563 case GTIMER_VIRT: 2564 case GTIMER_HYPVIRT: 2565 offset = gt_virt_cnt_offset(env); 2566 break; 2567 } 2568 2569 trace_arm_gt_tval_write(timeridx, value); 2570 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2571 sextract64(value, 0, 32); 2572 gt_recalc_timer(env_archcpu(env), timeridx); 2573 } 2574 2575 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2576 int timeridx, 2577 uint64_t value) 2578 { 2579 ARMCPU *cpu = env_archcpu(env); 2580 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2581 2582 trace_arm_gt_ctl_write(timeridx, value); 2583 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2584 if ((oldval ^ value) & 1) { 2585 /* Enable toggled */ 2586 gt_recalc_timer(cpu, timeridx); 2587 } else if ((oldval ^ value) & 2) { 2588 /* IMASK toggled: don't need to recalculate, 2589 * just set the interrupt line based on ISTATUS 2590 */ 2591 int irqstate = (oldval & 4) && !(value & 2); 2592 2593 trace_arm_gt_imask_toggle(timeridx, irqstate); 2594 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2595 } 2596 } 2597 2598 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2599 { 2600 gt_timer_reset(env, ri, GTIMER_PHYS); 2601 } 2602 2603 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2604 uint64_t value) 2605 { 2606 gt_cval_write(env, ri, GTIMER_PHYS, value); 2607 } 2608 2609 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2610 { 2611 return gt_tval_read(env, ri, GTIMER_PHYS); 2612 } 2613 2614 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2615 uint64_t value) 2616 { 2617 gt_tval_write(env, ri, GTIMER_PHYS, value); 2618 } 2619 2620 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2621 uint64_t value) 2622 { 2623 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2624 } 2625 2626 static int gt_phys_redir_timeridx(CPUARMState *env) 2627 { 2628 switch (arm_mmu_idx(env)) { 2629 case ARMMMUIdx_E20_0: 2630 case ARMMMUIdx_E20_2: 2631 case ARMMMUIdx_E20_2_PAN: 2632 case ARMMMUIdx_SE20_0: 2633 case ARMMMUIdx_SE20_2: 2634 case ARMMMUIdx_SE20_2_PAN: 2635 return GTIMER_HYP; 2636 default: 2637 return GTIMER_PHYS; 2638 } 2639 } 2640 2641 static int gt_virt_redir_timeridx(CPUARMState *env) 2642 { 2643 switch (arm_mmu_idx(env)) { 2644 case ARMMMUIdx_E20_0: 2645 case ARMMMUIdx_E20_2: 2646 case ARMMMUIdx_E20_2_PAN: 2647 case ARMMMUIdx_SE20_0: 2648 case ARMMMUIdx_SE20_2: 2649 case ARMMMUIdx_SE20_2_PAN: 2650 return GTIMER_HYPVIRT; 2651 default: 2652 return GTIMER_VIRT; 2653 } 2654 } 2655 2656 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2657 const ARMCPRegInfo *ri) 2658 { 2659 int timeridx = gt_phys_redir_timeridx(env); 2660 return env->cp15.c14_timer[timeridx].cval; 2661 } 2662 2663 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2664 uint64_t value) 2665 { 2666 int timeridx = gt_phys_redir_timeridx(env); 2667 gt_cval_write(env, ri, timeridx, value); 2668 } 2669 2670 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2671 const ARMCPRegInfo *ri) 2672 { 2673 int timeridx = gt_phys_redir_timeridx(env); 2674 return gt_tval_read(env, ri, timeridx); 2675 } 2676 2677 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2678 uint64_t value) 2679 { 2680 int timeridx = gt_phys_redir_timeridx(env); 2681 gt_tval_write(env, ri, timeridx, value); 2682 } 2683 2684 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2685 const ARMCPRegInfo *ri) 2686 { 2687 int timeridx = gt_phys_redir_timeridx(env); 2688 return env->cp15.c14_timer[timeridx].ctl; 2689 } 2690 2691 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2692 uint64_t value) 2693 { 2694 int timeridx = gt_phys_redir_timeridx(env); 2695 gt_ctl_write(env, ri, timeridx, value); 2696 } 2697 2698 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2699 { 2700 gt_timer_reset(env, ri, GTIMER_VIRT); 2701 } 2702 2703 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2704 uint64_t value) 2705 { 2706 gt_cval_write(env, ri, GTIMER_VIRT, value); 2707 } 2708 2709 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2710 { 2711 return gt_tval_read(env, ri, GTIMER_VIRT); 2712 } 2713 2714 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2715 uint64_t value) 2716 { 2717 gt_tval_write(env, ri, GTIMER_VIRT, value); 2718 } 2719 2720 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2721 uint64_t value) 2722 { 2723 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2724 } 2725 2726 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2727 uint64_t value) 2728 { 2729 ARMCPU *cpu = env_archcpu(env); 2730 2731 trace_arm_gt_cntvoff_write(value); 2732 raw_write(env, ri, value); 2733 gt_recalc_timer(cpu, GTIMER_VIRT); 2734 } 2735 2736 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2737 const ARMCPRegInfo *ri) 2738 { 2739 int timeridx = gt_virt_redir_timeridx(env); 2740 return env->cp15.c14_timer[timeridx].cval; 2741 } 2742 2743 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2744 uint64_t value) 2745 { 2746 int timeridx = gt_virt_redir_timeridx(env); 2747 gt_cval_write(env, ri, timeridx, value); 2748 } 2749 2750 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2751 const ARMCPRegInfo *ri) 2752 { 2753 int timeridx = gt_virt_redir_timeridx(env); 2754 return gt_tval_read(env, ri, timeridx); 2755 } 2756 2757 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2758 uint64_t value) 2759 { 2760 int timeridx = gt_virt_redir_timeridx(env); 2761 gt_tval_write(env, ri, timeridx, value); 2762 } 2763 2764 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2765 const ARMCPRegInfo *ri) 2766 { 2767 int timeridx = gt_virt_redir_timeridx(env); 2768 return env->cp15.c14_timer[timeridx].ctl; 2769 } 2770 2771 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2772 uint64_t value) 2773 { 2774 int timeridx = gt_virt_redir_timeridx(env); 2775 gt_ctl_write(env, ri, timeridx, value); 2776 } 2777 2778 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 gt_timer_reset(env, ri, GTIMER_HYP); 2781 } 2782 2783 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 uint64_t value) 2785 { 2786 gt_cval_write(env, ri, GTIMER_HYP, value); 2787 } 2788 2789 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2790 { 2791 return gt_tval_read(env, ri, GTIMER_HYP); 2792 } 2793 2794 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2795 uint64_t value) 2796 { 2797 gt_tval_write(env, ri, GTIMER_HYP, value); 2798 } 2799 2800 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2801 uint64_t value) 2802 { 2803 gt_ctl_write(env, ri, GTIMER_HYP, value); 2804 } 2805 2806 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2807 { 2808 gt_timer_reset(env, ri, GTIMER_SEC); 2809 } 2810 2811 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2812 uint64_t value) 2813 { 2814 gt_cval_write(env, ri, GTIMER_SEC, value); 2815 } 2816 2817 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2818 { 2819 return gt_tval_read(env, ri, GTIMER_SEC); 2820 } 2821 2822 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2823 uint64_t value) 2824 { 2825 gt_tval_write(env, ri, GTIMER_SEC, value); 2826 } 2827 2828 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2829 uint64_t value) 2830 { 2831 gt_ctl_write(env, ri, GTIMER_SEC, value); 2832 } 2833 2834 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2835 { 2836 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2837 } 2838 2839 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2840 uint64_t value) 2841 { 2842 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2843 } 2844 2845 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2846 { 2847 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2848 } 2849 2850 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2851 uint64_t value) 2852 { 2853 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2854 } 2855 2856 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2857 uint64_t value) 2858 { 2859 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2860 } 2861 2862 void arm_gt_ptimer_cb(void *opaque) 2863 { 2864 ARMCPU *cpu = opaque; 2865 2866 gt_recalc_timer(cpu, GTIMER_PHYS); 2867 } 2868 2869 void arm_gt_vtimer_cb(void *opaque) 2870 { 2871 ARMCPU *cpu = opaque; 2872 2873 gt_recalc_timer(cpu, GTIMER_VIRT); 2874 } 2875 2876 void arm_gt_htimer_cb(void *opaque) 2877 { 2878 ARMCPU *cpu = opaque; 2879 2880 gt_recalc_timer(cpu, GTIMER_HYP); 2881 } 2882 2883 void arm_gt_stimer_cb(void *opaque) 2884 { 2885 ARMCPU *cpu = opaque; 2886 2887 gt_recalc_timer(cpu, GTIMER_SEC); 2888 } 2889 2890 void arm_gt_hvtimer_cb(void *opaque) 2891 { 2892 ARMCPU *cpu = opaque; 2893 2894 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2895 } 2896 2897 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2898 { 2899 ARMCPU *cpu = env_archcpu(env); 2900 2901 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2902 } 2903 2904 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2905 /* Note that CNTFRQ is purely reads-as-written for the benefit 2906 * of software; writing it doesn't actually change the timer frequency. 2907 * Our reset value matches the fixed frequency we implement the timer at. 2908 */ 2909 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2910 .type = ARM_CP_ALIAS, 2911 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2912 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2913 }, 2914 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2915 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2916 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2917 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2918 .resetfn = arm_gt_cntfrq_reset, 2919 }, 2920 /* overall control: mostly access permissions */ 2921 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2922 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2923 .access = PL1_RW, 2924 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2925 .resetvalue = 0, 2926 }, 2927 /* per-timer control */ 2928 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2929 .secure = ARM_CP_SECSTATE_NS, 2930 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2931 .accessfn = gt_ptimer_access, 2932 .fieldoffset = offsetoflow32(CPUARMState, 2933 cp15.c14_timer[GTIMER_PHYS].ctl), 2934 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2935 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2936 }, 2937 { .name = "CNTP_CTL_S", 2938 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2939 .secure = ARM_CP_SECSTATE_S, 2940 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2941 .accessfn = gt_ptimer_access, 2942 .fieldoffset = offsetoflow32(CPUARMState, 2943 cp15.c14_timer[GTIMER_SEC].ctl), 2944 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2945 }, 2946 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2947 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2948 .type = ARM_CP_IO, .access = PL0_RW, 2949 .accessfn = gt_ptimer_access, 2950 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2951 .resetvalue = 0, 2952 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2953 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2954 }, 2955 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2956 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2957 .accessfn = gt_vtimer_access, 2958 .fieldoffset = offsetoflow32(CPUARMState, 2959 cp15.c14_timer[GTIMER_VIRT].ctl), 2960 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2961 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2962 }, 2963 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2964 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2965 .type = ARM_CP_IO, .access = PL0_RW, 2966 .accessfn = gt_vtimer_access, 2967 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2968 .resetvalue = 0, 2969 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2970 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2971 }, 2972 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2974 .secure = ARM_CP_SECSTATE_NS, 2975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2976 .accessfn = gt_ptimer_access, 2977 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2978 }, 2979 { .name = "CNTP_TVAL_S", 2980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2981 .secure = ARM_CP_SECSTATE_S, 2982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2983 .accessfn = gt_ptimer_access, 2984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2985 }, 2986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2990 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2991 }, 2992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2994 .accessfn = gt_vtimer_access, 2995 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2996 }, 2997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3001 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3002 }, 3003 /* The counter itself */ 3004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3006 .accessfn = gt_pct_access, 3007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3008 }, 3009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3012 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3013 }, 3014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3016 .accessfn = gt_vct_access, 3017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3018 }, 3019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3023 }, 3024 /* Comparison value, indicating when the timer goes off */ 3025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3026 .secure = ARM_CP_SECSTATE_NS, 3027 .access = PL0_RW, 3028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3030 .accessfn = gt_ptimer_access, 3031 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3032 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3033 }, 3034 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3035 .secure = ARM_CP_SECSTATE_S, 3036 .access = PL0_RW, 3037 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3038 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3039 .accessfn = gt_ptimer_access, 3040 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3041 }, 3042 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3043 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3044 .access = PL0_RW, 3045 .type = ARM_CP_IO, 3046 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3047 .resetvalue = 0, .accessfn = gt_ptimer_access, 3048 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3049 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3050 }, 3051 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3052 .access = PL0_RW, 3053 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3054 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3055 .accessfn = gt_vtimer_access, 3056 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3057 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3058 }, 3059 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3060 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3061 .access = PL0_RW, 3062 .type = ARM_CP_IO, 3063 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3064 .resetvalue = 0, .accessfn = gt_vtimer_access, 3065 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3066 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3067 }, 3068 /* Secure timer -- this is actually restricted to only EL3 3069 * and configurably Secure-EL1 via the accessfn. 3070 */ 3071 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3072 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3073 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3074 .accessfn = gt_stimer_access, 3075 .readfn = gt_sec_tval_read, 3076 .writefn = gt_sec_tval_write, 3077 .resetfn = gt_sec_timer_reset, 3078 }, 3079 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3080 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3081 .type = ARM_CP_IO, .access = PL1_RW, 3082 .accessfn = gt_stimer_access, 3083 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3084 .resetvalue = 0, 3085 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3086 }, 3087 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3089 .type = ARM_CP_IO, .access = PL1_RW, 3090 .accessfn = gt_stimer_access, 3091 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3092 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3093 }, 3094 REGINFO_SENTINEL 3095 }; 3096 3097 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3098 bool isread) 3099 { 3100 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3101 return CP_ACCESS_TRAP; 3102 } 3103 return CP_ACCESS_OK; 3104 } 3105 3106 #else 3107 3108 /* In user-mode most of the generic timer registers are inaccessible 3109 * however modern kernels (4.12+) allow access to cntvct_el0 3110 */ 3111 3112 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3113 { 3114 ARMCPU *cpu = env_archcpu(env); 3115 3116 /* Currently we have no support for QEMUTimer in linux-user so we 3117 * can't call gt_get_countervalue(env), instead we directly 3118 * call the lower level functions. 3119 */ 3120 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3121 } 3122 3123 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3124 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3126 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3127 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3128 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3129 }, 3130 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3131 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3132 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3133 .readfn = gt_virt_cnt_read, 3134 }, 3135 REGINFO_SENTINEL 3136 }; 3137 3138 #endif 3139 3140 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3141 { 3142 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3143 raw_write(env, ri, value); 3144 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3145 raw_write(env, ri, value & 0xfffff6ff); 3146 } else { 3147 raw_write(env, ri, value & 0xfffff1ff); 3148 } 3149 } 3150 3151 #ifndef CONFIG_USER_ONLY 3152 /* get_phys_addr() isn't present for user-mode-only targets */ 3153 3154 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3155 bool isread) 3156 { 3157 if (ri->opc2 & 4) { 3158 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3159 * Secure EL1 (which can only happen if EL3 is AArch64). 3160 * They are simply UNDEF if executed from NS EL1. 3161 * They function normally from EL2 or EL3. 3162 */ 3163 if (arm_current_el(env) == 1) { 3164 if (arm_is_secure_below_el3(env)) { 3165 if (env->cp15.scr_el3 & SCR_EEL2) { 3166 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3167 } 3168 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3169 } 3170 return CP_ACCESS_TRAP_UNCATEGORIZED; 3171 } 3172 } 3173 return CP_ACCESS_OK; 3174 } 3175 3176 #ifdef CONFIG_TCG 3177 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3178 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3179 { 3180 hwaddr phys_addr; 3181 target_ulong page_size; 3182 int prot; 3183 bool ret; 3184 uint64_t par64; 3185 bool format64 = false; 3186 MemTxAttrs attrs = {}; 3187 ARMMMUFaultInfo fi = {}; 3188 ARMCacheAttrs cacheattrs = {}; 3189 3190 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3191 &prot, &page_size, &fi, &cacheattrs); 3192 3193 if (ret) { 3194 /* 3195 * Some kinds of translation fault must cause exceptions rather 3196 * than being reported in the PAR. 3197 */ 3198 int current_el = arm_current_el(env); 3199 int target_el; 3200 uint32_t syn, fsr, fsc; 3201 bool take_exc = false; 3202 3203 if (fi.s1ptw && current_el == 1 3204 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3205 /* 3206 * Synchronous stage 2 fault on an access made as part of the 3207 * translation table walk for AT S1E0* or AT S1E1* insn 3208 * executed from NS EL1. If this is a synchronous external abort 3209 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3210 * to EL3. Otherwise the fault is taken as an exception to EL2, 3211 * and HPFAR_EL2 holds the faulting IPA. 3212 */ 3213 if (fi.type == ARMFault_SyncExternalOnWalk && 3214 (env->cp15.scr_el3 & SCR_EA)) { 3215 target_el = 3; 3216 } else { 3217 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3218 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3219 env->cp15.hpfar_el2 |= HPFAR_NS; 3220 } 3221 target_el = 2; 3222 } 3223 take_exc = true; 3224 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3225 /* 3226 * Synchronous external aborts during a translation table walk 3227 * are taken as Data Abort exceptions. 3228 */ 3229 if (fi.stage2) { 3230 if (current_el == 3) { 3231 target_el = 3; 3232 } else { 3233 target_el = 2; 3234 } 3235 } else { 3236 target_el = exception_target_el(env); 3237 } 3238 take_exc = true; 3239 } 3240 3241 if (take_exc) { 3242 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3243 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3244 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3245 fsr = arm_fi_to_lfsc(&fi); 3246 fsc = extract32(fsr, 0, 6); 3247 } else { 3248 fsr = arm_fi_to_sfsc(&fi); 3249 fsc = 0x3f; 3250 } 3251 /* 3252 * Report exception with ESR indicating a fault due to a 3253 * translation table walk for a cache maintenance instruction. 3254 */ 3255 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3256 fi.ea, 1, fi.s1ptw, 1, fsc); 3257 env->exception.vaddress = value; 3258 env->exception.fsr = fsr; 3259 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3260 } 3261 } 3262 3263 if (is_a64(env)) { 3264 format64 = true; 3265 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3266 /* 3267 * ATS1Cxx: 3268 * * TTBCR.EAE determines whether the result is returned using the 3269 * 32-bit or the 64-bit PAR format 3270 * * Instructions executed in Hyp mode always use the 64bit format 3271 * 3272 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3273 * * The Non-secure TTBCR.EAE bit is set to 1 3274 * * The implementation includes EL2, and the value of HCR.VM is 1 3275 * 3276 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3277 * 3278 * ATS1Hx always uses the 64bit format. 3279 */ 3280 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3281 3282 if (arm_feature(env, ARM_FEATURE_EL2)) { 3283 if (mmu_idx == ARMMMUIdx_E10_0 || 3284 mmu_idx == ARMMMUIdx_E10_1 || 3285 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3286 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3287 } else { 3288 format64 |= arm_current_el(env) == 2; 3289 } 3290 } 3291 } 3292 3293 if (format64) { 3294 /* Create a 64-bit PAR */ 3295 par64 = (1 << 11); /* LPAE bit always set */ 3296 if (!ret) { 3297 par64 |= phys_addr & ~0xfffULL; 3298 if (!attrs.secure) { 3299 par64 |= (1 << 9); /* NS */ 3300 } 3301 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3302 par64 |= cacheattrs.shareability << 7; /* SH */ 3303 } else { 3304 uint32_t fsr = arm_fi_to_lfsc(&fi); 3305 3306 par64 |= 1; /* F */ 3307 par64 |= (fsr & 0x3f) << 1; /* FS */ 3308 if (fi.stage2) { 3309 par64 |= (1 << 9); /* S */ 3310 } 3311 if (fi.s1ptw) { 3312 par64 |= (1 << 8); /* PTW */ 3313 } 3314 } 3315 } else { 3316 /* fsr is a DFSR/IFSR value for the short descriptor 3317 * translation table format (with WnR always clear). 3318 * Convert it to a 32-bit PAR. 3319 */ 3320 if (!ret) { 3321 /* We do not set any attribute bits in the PAR */ 3322 if (page_size == (1 << 24) 3323 && arm_feature(env, ARM_FEATURE_V7)) { 3324 par64 = (phys_addr & 0xff000000) | (1 << 1); 3325 } else { 3326 par64 = phys_addr & 0xfffff000; 3327 } 3328 if (!attrs.secure) { 3329 par64 |= (1 << 9); /* NS */ 3330 } 3331 } else { 3332 uint32_t fsr = arm_fi_to_sfsc(&fi); 3333 3334 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3335 ((fsr & 0xf) << 1) | 1; 3336 } 3337 } 3338 return par64; 3339 } 3340 #endif /* CONFIG_TCG */ 3341 3342 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3343 { 3344 #ifdef CONFIG_TCG 3345 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3346 uint64_t par64; 3347 ARMMMUIdx mmu_idx; 3348 int el = arm_current_el(env); 3349 bool secure = arm_is_secure_below_el3(env); 3350 3351 switch (ri->opc2 & 6) { 3352 case 0: 3353 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3354 switch (el) { 3355 case 3: 3356 mmu_idx = ARMMMUIdx_SE3; 3357 break; 3358 case 2: 3359 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3360 /* fall through */ 3361 case 1: 3362 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3363 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3364 : ARMMMUIdx_Stage1_E1_PAN); 3365 } else { 3366 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3367 } 3368 break; 3369 default: 3370 g_assert_not_reached(); 3371 } 3372 break; 3373 case 2: 3374 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3375 switch (el) { 3376 case 3: 3377 mmu_idx = ARMMMUIdx_SE10_0; 3378 break; 3379 case 2: 3380 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3381 mmu_idx = ARMMMUIdx_Stage1_E0; 3382 break; 3383 case 1: 3384 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3385 break; 3386 default: 3387 g_assert_not_reached(); 3388 } 3389 break; 3390 case 4: 3391 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3392 mmu_idx = ARMMMUIdx_E10_1; 3393 break; 3394 case 6: 3395 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3396 mmu_idx = ARMMMUIdx_E10_0; 3397 break; 3398 default: 3399 g_assert_not_reached(); 3400 } 3401 3402 par64 = do_ats_write(env, value, access_type, mmu_idx); 3403 3404 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3405 #else 3406 /* Handled by hardware accelerator. */ 3407 g_assert_not_reached(); 3408 #endif /* CONFIG_TCG */ 3409 } 3410 3411 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3412 uint64_t value) 3413 { 3414 #ifdef CONFIG_TCG 3415 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3416 uint64_t par64; 3417 3418 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3419 3420 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3421 #else 3422 /* Handled by hardware accelerator. */ 3423 g_assert_not_reached(); 3424 #endif /* CONFIG_TCG */ 3425 } 3426 3427 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3428 bool isread) 3429 { 3430 if (arm_current_el(env) == 3 && 3431 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3432 return CP_ACCESS_TRAP; 3433 } 3434 return CP_ACCESS_OK; 3435 } 3436 3437 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3438 uint64_t value) 3439 { 3440 #ifdef CONFIG_TCG 3441 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3442 ARMMMUIdx mmu_idx; 3443 int secure = arm_is_secure_below_el3(env); 3444 3445 switch (ri->opc2 & 6) { 3446 case 0: 3447 switch (ri->opc1) { 3448 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3449 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3450 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3451 : ARMMMUIdx_Stage1_E1_PAN); 3452 } else { 3453 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3454 } 3455 break; 3456 case 4: /* AT S1E2R, AT S1E2W */ 3457 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3458 break; 3459 case 6: /* AT S1E3R, AT S1E3W */ 3460 mmu_idx = ARMMMUIdx_SE3; 3461 break; 3462 default: 3463 g_assert_not_reached(); 3464 } 3465 break; 3466 case 2: /* AT S1E0R, AT S1E0W */ 3467 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3468 break; 3469 case 4: /* AT S12E1R, AT S12E1W */ 3470 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3471 break; 3472 case 6: /* AT S12E0R, AT S12E0W */ 3473 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3474 break; 3475 default: 3476 g_assert_not_reached(); 3477 } 3478 3479 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3480 #else 3481 /* Handled by hardware accelerator. */ 3482 g_assert_not_reached(); 3483 #endif /* CONFIG_TCG */ 3484 } 3485 #endif 3486 3487 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3488 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3489 .access = PL1_RW, .resetvalue = 0, 3490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3491 offsetoflow32(CPUARMState, cp15.par_ns) }, 3492 .writefn = par_write }, 3493 #ifndef CONFIG_USER_ONLY 3494 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3495 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3496 .access = PL1_W, .accessfn = ats_access, 3497 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3498 #endif 3499 REGINFO_SENTINEL 3500 }; 3501 3502 /* Return basic MPU access permission bits. */ 3503 static uint32_t simple_mpu_ap_bits(uint32_t val) 3504 { 3505 uint32_t ret; 3506 uint32_t mask; 3507 int i; 3508 ret = 0; 3509 mask = 3; 3510 for (i = 0; i < 16; i += 2) { 3511 ret |= (val >> i) & mask; 3512 mask <<= 2; 3513 } 3514 return ret; 3515 } 3516 3517 /* Pad basic MPU access permission bits to extended format. */ 3518 static uint32_t extended_mpu_ap_bits(uint32_t val) 3519 { 3520 uint32_t ret; 3521 uint32_t mask; 3522 int i; 3523 ret = 0; 3524 mask = 3; 3525 for (i = 0; i < 16; i += 2) { 3526 ret |= (val & mask) << i; 3527 mask <<= 2; 3528 } 3529 return ret; 3530 } 3531 3532 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3533 uint64_t value) 3534 { 3535 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3536 } 3537 3538 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3539 { 3540 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3541 } 3542 3543 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3544 uint64_t value) 3545 { 3546 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3547 } 3548 3549 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3550 { 3551 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3552 } 3553 3554 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3555 { 3556 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3557 3558 if (!u32p) { 3559 return 0; 3560 } 3561 3562 u32p += env->pmsav7.rnr[M_REG_NS]; 3563 return *u32p; 3564 } 3565 3566 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3567 uint64_t value) 3568 { 3569 ARMCPU *cpu = env_archcpu(env); 3570 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3571 3572 if (!u32p) { 3573 return; 3574 } 3575 3576 u32p += env->pmsav7.rnr[M_REG_NS]; 3577 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3578 *u32p = value; 3579 } 3580 3581 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3582 uint64_t value) 3583 { 3584 ARMCPU *cpu = env_archcpu(env); 3585 uint32_t nrgs = cpu->pmsav7_dregion; 3586 3587 if (value >= nrgs) { 3588 qemu_log_mask(LOG_GUEST_ERROR, 3589 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3590 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3591 return; 3592 } 3593 3594 raw_write(env, ri, value); 3595 } 3596 3597 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3598 /* Reset for all these registers is handled in arm_cpu_reset(), 3599 * because the PMSAv7 is also used by M-profile CPUs, which do 3600 * not register cpregs but still need the state to be reset. 3601 */ 3602 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3603 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3604 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3605 .readfn = pmsav7_read, .writefn = pmsav7_write, 3606 .resetfn = arm_cp_reset_ignore }, 3607 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3608 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3609 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3610 .readfn = pmsav7_read, .writefn = pmsav7_write, 3611 .resetfn = arm_cp_reset_ignore }, 3612 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3613 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3614 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3615 .readfn = pmsav7_read, .writefn = pmsav7_write, 3616 .resetfn = arm_cp_reset_ignore }, 3617 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3618 .access = PL1_RW, 3619 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3620 .writefn = pmsav7_rgnr_write, 3621 .resetfn = arm_cp_reset_ignore }, 3622 REGINFO_SENTINEL 3623 }; 3624 3625 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3626 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3627 .access = PL1_RW, .type = ARM_CP_ALIAS, 3628 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3629 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3630 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3631 .access = PL1_RW, .type = ARM_CP_ALIAS, 3632 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3633 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3634 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3635 .access = PL1_RW, 3636 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3637 .resetvalue = 0, }, 3638 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3639 .access = PL1_RW, 3640 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3641 .resetvalue = 0, }, 3642 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3643 .access = PL1_RW, 3644 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3645 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3646 .access = PL1_RW, 3647 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3648 /* Protection region base and size registers */ 3649 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3650 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3651 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3652 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3653 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3654 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3655 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3656 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3657 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3658 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3659 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3660 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3661 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3662 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3663 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3664 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3665 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3666 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3667 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3668 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3669 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3670 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3671 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3672 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3673 REGINFO_SENTINEL 3674 }; 3675 3676 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3677 uint64_t value) 3678 { 3679 TCR *tcr = raw_ptr(env, ri); 3680 int maskshift = extract32(value, 0, 3); 3681 3682 if (!arm_feature(env, ARM_FEATURE_V8)) { 3683 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3684 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3685 * using Long-desciptor translation table format */ 3686 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3687 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3688 /* In an implementation that includes the Security Extensions 3689 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3690 * Short-descriptor translation table format. 3691 */ 3692 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3693 } else { 3694 value &= TTBCR_N; 3695 } 3696 } 3697 3698 /* Update the masks corresponding to the TCR bank being written 3699 * Note that we always calculate mask and base_mask, but 3700 * they are only used for short-descriptor tables (ie if EAE is 0); 3701 * for long-descriptor tables the TCR fields are used differently 3702 * and the mask and base_mask values are meaningless. 3703 */ 3704 tcr->raw_tcr = value; 3705 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3706 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3707 } 3708 3709 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3710 uint64_t value) 3711 { 3712 ARMCPU *cpu = env_archcpu(env); 3713 TCR *tcr = raw_ptr(env, ri); 3714 3715 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3716 /* With LPAE the TTBCR could result in a change of ASID 3717 * via the TTBCR.A1 bit, so do a TLB flush. 3718 */ 3719 tlb_flush(CPU(cpu)); 3720 } 3721 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3722 value = deposit64(tcr->raw_tcr, 0, 32, value); 3723 vmsa_ttbcr_raw_write(env, ri, value); 3724 } 3725 3726 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3727 { 3728 TCR *tcr = raw_ptr(env, ri); 3729 3730 /* Reset both the TCR as well as the masks corresponding to the bank of 3731 * the TCR being reset. 3732 */ 3733 tcr->raw_tcr = 0; 3734 tcr->mask = 0; 3735 tcr->base_mask = 0xffffc000u; 3736 } 3737 3738 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3739 uint64_t value) 3740 { 3741 ARMCPU *cpu = env_archcpu(env); 3742 TCR *tcr = raw_ptr(env, ri); 3743 3744 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3745 tlb_flush(CPU(cpu)); 3746 tcr->raw_tcr = value; 3747 } 3748 3749 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3750 uint64_t value) 3751 { 3752 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3753 if (cpreg_field_is_64bit(ri) && 3754 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3755 ARMCPU *cpu = env_archcpu(env); 3756 tlb_flush(CPU(cpu)); 3757 } 3758 raw_write(env, ri, value); 3759 } 3760 3761 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3762 uint64_t value) 3763 { 3764 /* 3765 * If we are running with E2&0 regime, then an ASID is active. 3766 * Flush if that might be changing. Note we're not checking 3767 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3768 * holds the active ASID, only checking the field that might. 3769 */ 3770 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3771 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3772 uint16_t mask = ARMMMUIdxBit_E20_2 | 3773 ARMMMUIdxBit_E20_2_PAN | 3774 ARMMMUIdxBit_E20_0; 3775 3776 if (arm_is_secure_below_el3(env)) { 3777 mask >>= ARM_MMU_IDX_A_NS; 3778 } 3779 3780 tlb_flush_by_mmuidx(env_cpu(env), mask); 3781 } 3782 raw_write(env, ri, value); 3783 } 3784 3785 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3786 uint64_t value) 3787 { 3788 ARMCPU *cpu = env_archcpu(env); 3789 CPUState *cs = CPU(cpu); 3790 3791 /* 3792 * A change in VMID to the stage2 page table (Stage2) invalidates 3793 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3794 */ 3795 if (raw_read(env, ri) != value) { 3796 uint16_t mask = ARMMMUIdxBit_E10_1 | 3797 ARMMMUIdxBit_E10_1_PAN | 3798 ARMMMUIdxBit_E10_0; 3799 3800 if (arm_is_secure_below_el3(env)) { 3801 mask >>= ARM_MMU_IDX_A_NS; 3802 } 3803 3804 tlb_flush_by_mmuidx(cs, mask); 3805 raw_write(env, ri, value); 3806 } 3807 } 3808 3809 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3810 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3811 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3812 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3813 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3814 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3815 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3816 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3817 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3818 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3819 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3820 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3821 offsetof(CPUARMState, cp15.dfar_ns) } }, 3822 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3823 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3824 .access = PL1_RW, .accessfn = access_tvm_trvm, 3825 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3826 .resetvalue = 0, }, 3827 REGINFO_SENTINEL 3828 }; 3829 3830 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3831 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3832 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3833 .access = PL1_RW, .accessfn = access_tvm_trvm, 3834 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3835 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3836 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3837 .access = PL1_RW, .accessfn = access_tvm_trvm, 3838 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3839 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3840 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3841 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3842 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3843 .access = PL1_RW, .accessfn = access_tvm_trvm, 3844 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3845 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3846 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3847 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3848 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3849 .access = PL1_RW, .accessfn = access_tvm_trvm, 3850 .writefn = vmsa_tcr_el12_write, 3851 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3852 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3853 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3854 .access = PL1_RW, .accessfn = access_tvm_trvm, 3855 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3856 .raw_writefn = vmsa_ttbcr_raw_write, 3857 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3858 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3859 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3860 REGINFO_SENTINEL 3861 }; 3862 3863 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3864 * qemu tlbs nor adjusting cached masks. 3865 */ 3866 static const ARMCPRegInfo ttbcr2_reginfo = { 3867 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3868 .access = PL1_RW, .accessfn = access_tvm_trvm, 3869 .type = ARM_CP_ALIAS, 3870 .bank_fieldoffsets = { 3871 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3872 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3873 }, 3874 }; 3875 3876 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3877 uint64_t value) 3878 { 3879 env->cp15.c15_ticonfig = value & 0xe7; 3880 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3881 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3882 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3883 } 3884 3885 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3886 uint64_t value) 3887 { 3888 env->cp15.c15_threadid = value & 0xffff; 3889 } 3890 3891 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3892 uint64_t value) 3893 { 3894 /* Wait-for-interrupt (deprecated) */ 3895 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3896 } 3897 3898 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3899 uint64_t value) 3900 { 3901 /* On OMAP there are registers indicating the max/min index of dcache lines 3902 * containing a dirty line; cache flush operations have to reset these. 3903 */ 3904 env->cp15.c15_i_max = 0x000; 3905 env->cp15.c15_i_min = 0xff0; 3906 } 3907 3908 static const ARMCPRegInfo omap_cp_reginfo[] = { 3909 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3910 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3911 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3912 .resetvalue = 0, }, 3913 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3914 .access = PL1_RW, .type = ARM_CP_NOP }, 3915 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3916 .access = PL1_RW, 3917 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3918 .writefn = omap_ticonfig_write }, 3919 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3920 .access = PL1_RW, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3922 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3923 .access = PL1_RW, .resetvalue = 0xff0, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3925 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3926 .access = PL1_RW, 3927 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3928 .writefn = omap_threadid_write }, 3929 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3930 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3931 .type = ARM_CP_NO_RAW, 3932 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3933 /* TODO: Peripheral port remap register: 3934 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3935 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3936 * when MMU is off. 3937 */ 3938 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3939 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3940 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3941 .writefn = omap_cachemaint_write }, 3942 { .name = "C9", .cp = 15, .crn = 9, 3943 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3944 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3945 REGINFO_SENTINEL 3946 }; 3947 3948 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3949 uint64_t value) 3950 { 3951 env->cp15.c15_cpar = value & 0x3fff; 3952 } 3953 3954 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3955 { .name = "XSCALE_CPAR", 3956 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3957 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3958 .writefn = xscale_cpar_write, }, 3959 { .name = "XSCALE_AUXCR", 3960 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3961 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3962 .resetvalue = 0, }, 3963 /* XScale specific cache-lockdown: since we have no cache we NOP these 3964 * and hope the guest does not really rely on cache behaviour. 3965 */ 3966 { .name = "XSCALE_LOCK_ICACHE_LINE", 3967 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3968 .access = PL1_W, .type = ARM_CP_NOP }, 3969 { .name = "XSCALE_UNLOCK_ICACHE", 3970 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3971 .access = PL1_W, .type = ARM_CP_NOP }, 3972 { .name = "XSCALE_DCACHE_LOCK", 3973 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3974 .access = PL1_RW, .type = ARM_CP_NOP }, 3975 { .name = "XSCALE_UNLOCK_DCACHE", 3976 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3977 .access = PL1_W, .type = ARM_CP_NOP }, 3978 REGINFO_SENTINEL 3979 }; 3980 3981 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3982 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3983 * implementation of this implementation-defined space. 3984 * Ideally this should eventually disappear in favour of actually 3985 * implementing the correct behaviour for all cores. 3986 */ 3987 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3988 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3989 .access = PL1_RW, 3990 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3991 .resetvalue = 0 }, 3992 REGINFO_SENTINEL 3993 }; 3994 3995 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3996 /* Cache status: RAZ because we have no cache so it's always clean */ 3997 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3998 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3999 .resetvalue = 0 }, 4000 REGINFO_SENTINEL 4001 }; 4002 4003 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4004 /* We never have a a block transfer operation in progress */ 4005 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4006 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4007 .resetvalue = 0 }, 4008 /* The cache ops themselves: these all NOP for QEMU */ 4009 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4010 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4011 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4012 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4013 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4014 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4015 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4016 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4017 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4018 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4019 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4020 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4021 REGINFO_SENTINEL 4022 }; 4023 4024 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4025 /* The cache test-and-clean instructions always return (1 << 30) 4026 * to indicate that there are no dirty cache lines. 4027 */ 4028 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4029 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4030 .resetvalue = (1 << 30) }, 4031 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4032 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4033 .resetvalue = (1 << 30) }, 4034 REGINFO_SENTINEL 4035 }; 4036 4037 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4038 /* Ignore ReadBuffer accesses */ 4039 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4040 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4041 .access = PL1_RW, .resetvalue = 0, 4042 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4043 REGINFO_SENTINEL 4044 }; 4045 4046 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4047 { 4048 unsigned int cur_el = arm_current_el(env); 4049 4050 if (arm_is_el2_enabled(env) && cur_el == 1) { 4051 return env->cp15.vpidr_el2; 4052 } 4053 return raw_read(env, ri); 4054 } 4055 4056 static uint64_t mpidr_read_val(CPUARMState *env) 4057 { 4058 ARMCPU *cpu = env_archcpu(env); 4059 uint64_t mpidr = cpu->mp_affinity; 4060 4061 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4062 mpidr |= (1U << 31); 4063 /* Cores which are uniprocessor (non-coherent) 4064 * but still implement the MP extensions set 4065 * bit 30. (For instance, Cortex-R5). 4066 */ 4067 if (cpu->mp_is_up) { 4068 mpidr |= (1u << 30); 4069 } 4070 } 4071 return mpidr; 4072 } 4073 4074 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4075 { 4076 unsigned int cur_el = arm_current_el(env); 4077 4078 if (arm_is_el2_enabled(env) && cur_el == 1) { 4079 return env->cp15.vmpidr_el2; 4080 } 4081 return mpidr_read_val(env); 4082 } 4083 4084 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4085 /* NOP AMAIR0/1 */ 4086 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4087 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4088 .access = PL1_RW, .accessfn = access_tvm_trvm, 4089 .type = ARM_CP_CONST, .resetvalue = 0 }, 4090 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4091 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4092 .access = PL1_RW, .accessfn = access_tvm_trvm, 4093 .type = ARM_CP_CONST, .resetvalue = 0 }, 4094 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4095 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4096 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4097 offsetof(CPUARMState, cp15.par_ns)} }, 4098 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4099 .access = PL1_RW, .accessfn = access_tvm_trvm, 4100 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4101 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4102 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4103 .writefn = vmsa_ttbr_write, }, 4104 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4105 .access = PL1_RW, .accessfn = access_tvm_trvm, 4106 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4107 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4108 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4109 .writefn = vmsa_ttbr_write, }, 4110 REGINFO_SENTINEL 4111 }; 4112 4113 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4114 { 4115 return vfp_get_fpcr(env); 4116 } 4117 4118 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4119 uint64_t value) 4120 { 4121 vfp_set_fpcr(env, value); 4122 } 4123 4124 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4125 { 4126 return vfp_get_fpsr(env); 4127 } 4128 4129 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4130 uint64_t value) 4131 { 4132 vfp_set_fpsr(env, value); 4133 } 4134 4135 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4136 bool isread) 4137 { 4138 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4139 return CP_ACCESS_TRAP; 4140 } 4141 return CP_ACCESS_OK; 4142 } 4143 4144 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4145 uint64_t value) 4146 { 4147 env->daif = value & PSTATE_DAIF; 4148 } 4149 4150 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4151 { 4152 return env->pstate & PSTATE_PAN; 4153 } 4154 4155 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4156 uint64_t value) 4157 { 4158 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4159 } 4160 4161 static const ARMCPRegInfo pan_reginfo = { 4162 .name = "PAN", .state = ARM_CP_STATE_AA64, 4163 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4164 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4165 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4166 }; 4167 4168 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4169 { 4170 return env->pstate & PSTATE_UAO; 4171 } 4172 4173 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4174 uint64_t value) 4175 { 4176 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4177 } 4178 4179 static const ARMCPRegInfo uao_reginfo = { 4180 .name = "UAO", .state = ARM_CP_STATE_AA64, 4181 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4182 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4183 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4184 }; 4185 4186 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4187 { 4188 return env->pstate & PSTATE_DIT; 4189 } 4190 4191 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4192 uint64_t value) 4193 { 4194 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4195 } 4196 4197 static const ARMCPRegInfo dit_reginfo = { 4198 .name = "DIT", .state = ARM_CP_STATE_AA64, 4199 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4200 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4201 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4202 }; 4203 4204 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4205 { 4206 return env->pstate & PSTATE_SSBS; 4207 } 4208 4209 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4210 uint64_t value) 4211 { 4212 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4213 } 4214 4215 static const ARMCPRegInfo ssbs_reginfo = { 4216 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4217 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4218 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4219 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4220 }; 4221 4222 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4223 const ARMCPRegInfo *ri, 4224 bool isread) 4225 { 4226 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4227 switch (arm_current_el(env)) { 4228 case 0: 4229 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4230 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4231 return CP_ACCESS_TRAP; 4232 } 4233 /* fall through */ 4234 case 1: 4235 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4236 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4237 return CP_ACCESS_TRAP_EL2; 4238 } 4239 break; 4240 } 4241 return CP_ACCESS_OK; 4242 } 4243 4244 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4245 const ARMCPRegInfo *ri, 4246 bool isread) 4247 { 4248 /* Cache invalidate/clean to Point of Unification... */ 4249 switch (arm_current_el(env)) { 4250 case 0: 4251 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4252 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4253 return CP_ACCESS_TRAP; 4254 } 4255 /* fall through */ 4256 case 1: 4257 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4258 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4259 return CP_ACCESS_TRAP_EL2; 4260 } 4261 break; 4262 } 4263 return CP_ACCESS_OK; 4264 } 4265 4266 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4267 * Page D4-1736 (DDI0487A.b) 4268 */ 4269 4270 static int vae1_tlbmask(CPUARMState *env) 4271 { 4272 uint64_t hcr = arm_hcr_el2_eff(env); 4273 uint16_t mask; 4274 4275 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4276 mask = ARMMMUIdxBit_E20_2 | 4277 ARMMMUIdxBit_E20_2_PAN | 4278 ARMMMUIdxBit_E20_0; 4279 } else { 4280 mask = ARMMMUIdxBit_E10_1 | 4281 ARMMMUIdxBit_E10_1_PAN | 4282 ARMMMUIdxBit_E10_0; 4283 } 4284 4285 if (arm_is_secure_below_el3(env)) { 4286 mask >>= ARM_MMU_IDX_A_NS; 4287 } 4288 4289 return mask; 4290 } 4291 4292 /* Return 56 if TBI is enabled, 64 otherwise. */ 4293 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4294 uint64_t addr) 4295 { 4296 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4297 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4298 int select = extract64(addr, 55, 1); 4299 4300 return (tbi >> select) & 1 ? 56 : 64; 4301 } 4302 4303 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4304 { 4305 uint64_t hcr = arm_hcr_el2_eff(env); 4306 ARMMMUIdx mmu_idx; 4307 4308 /* Only the regime of the mmu_idx below is significant. */ 4309 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4310 mmu_idx = ARMMMUIdx_E20_0; 4311 } else { 4312 mmu_idx = ARMMMUIdx_E10_0; 4313 } 4314 4315 if (arm_is_secure_below_el3(env)) { 4316 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4317 } 4318 4319 return tlbbits_for_regime(env, mmu_idx, addr); 4320 } 4321 4322 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4323 uint64_t value) 4324 { 4325 CPUState *cs = env_cpu(env); 4326 int mask = vae1_tlbmask(env); 4327 4328 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4329 } 4330 4331 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4332 uint64_t value) 4333 { 4334 CPUState *cs = env_cpu(env); 4335 int mask = vae1_tlbmask(env); 4336 4337 if (tlb_force_broadcast(env)) { 4338 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4339 } else { 4340 tlb_flush_by_mmuidx(cs, mask); 4341 } 4342 } 4343 4344 static int alle1_tlbmask(CPUARMState *env) 4345 { 4346 /* 4347 * Note that the 'ALL' scope must invalidate both stage 1 and 4348 * stage 2 translations, whereas most other scopes only invalidate 4349 * stage 1 translations. 4350 */ 4351 if (arm_is_secure_below_el3(env)) { 4352 return ARMMMUIdxBit_SE10_1 | 4353 ARMMMUIdxBit_SE10_1_PAN | 4354 ARMMMUIdxBit_SE10_0; 4355 } else { 4356 return ARMMMUIdxBit_E10_1 | 4357 ARMMMUIdxBit_E10_1_PAN | 4358 ARMMMUIdxBit_E10_0; 4359 } 4360 } 4361 4362 static int e2_tlbmask(CPUARMState *env) 4363 { 4364 if (arm_is_secure_below_el3(env)) { 4365 return ARMMMUIdxBit_SE20_0 | 4366 ARMMMUIdxBit_SE20_2 | 4367 ARMMMUIdxBit_SE20_2_PAN | 4368 ARMMMUIdxBit_SE2; 4369 } else { 4370 return ARMMMUIdxBit_E20_0 | 4371 ARMMMUIdxBit_E20_2 | 4372 ARMMMUIdxBit_E20_2_PAN | 4373 ARMMMUIdxBit_E2; 4374 } 4375 } 4376 4377 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4378 uint64_t value) 4379 { 4380 CPUState *cs = env_cpu(env); 4381 int mask = alle1_tlbmask(env); 4382 4383 tlb_flush_by_mmuidx(cs, mask); 4384 } 4385 4386 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4387 uint64_t value) 4388 { 4389 CPUState *cs = env_cpu(env); 4390 int mask = e2_tlbmask(env); 4391 4392 tlb_flush_by_mmuidx(cs, mask); 4393 } 4394 4395 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4396 uint64_t value) 4397 { 4398 ARMCPU *cpu = env_archcpu(env); 4399 CPUState *cs = CPU(cpu); 4400 4401 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4402 } 4403 4404 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4405 uint64_t value) 4406 { 4407 CPUState *cs = env_cpu(env); 4408 int mask = alle1_tlbmask(env); 4409 4410 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4411 } 4412 4413 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 CPUState *cs = env_cpu(env); 4417 int mask = e2_tlbmask(env); 4418 4419 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4420 } 4421 4422 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4423 uint64_t value) 4424 { 4425 CPUState *cs = env_cpu(env); 4426 4427 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4428 } 4429 4430 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4431 uint64_t value) 4432 { 4433 /* Invalidate by VA, EL2 4434 * Currently handles both VAE2 and VALE2, since we don't support 4435 * flush-last-level-only. 4436 */ 4437 CPUState *cs = env_cpu(env); 4438 int mask = e2_tlbmask(env); 4439 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4440 4441 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4442 } 4443 4444 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4445 uint64_t value) 4446 { 4447 /* Invalidate by VA, EL3 4448 * Currently handles both VAE3 and VALE3, since we don't support 4449 * flush-last-level-only. 4450 */ 4451 ARMCPU *cpu = env_archcpu(env); 4452 CPUState *cs = CPU(cpu); 4453 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4454 4455 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4456 } 4457 4458 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4459 uint64_t value) 4460 { 4461 CPUState *cs = env_cpu(env); 4462 int mask = vae1_tlbmask(env); 4463 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4464 int bits = vae1_tlbbits(env, pageaddr); 4465 4466 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4467 } 4468 4469 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4470 uint64_t value) 4471 { 4472 /* Invalidate by VA, EL1&0 (AArch64 version). 4473 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4474 * since we don't support flush-for-specific-ASID-only or 4475 * flush-last-level-only. 4476 */ 4477 CPUState *cs = env_cpu(env); 4478 int mask = vae1_tlbmask(env); 4479 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4480 int bits = vae1_tlbbits(env, pageaddr); 4481 4482 if (tlb_force_broadcast(env)) { 4483 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4484 } else { 4485 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4486 } 4487 } 4488 4489 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4490 uint64_t value) 4491 { 4492 CPUState *cs = env_cpu(env); 4493 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4494 bool secure = arm_is_secure_below_el3(env); 4495 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4496 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4497 pageaddr); 4498 4499 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4500 } 4501 4502 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4503 uint64_t value) 4504 { 4505 CPUState *cs = env_cpu(env); 4506 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4507 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4508 4509 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4510 ARMMMUIdxBit_SE3, bits); 4511 } 4512 4513 #ifdef TARGET_AARCH64 4514 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env, 4515 uint64_t value) 4516 { 4517 unsigned int page_shift; 4518 unsigned int page_size_granule; 4519 uint64_t num; 4520 uint64_t scale; 4521 uint64_t exponent; 4522 uint64_t length; 4523 4524 num = extract64(value, 39, 5); 4525 scale = extract64(value, 44, 2); 4526 page_size_granule = extract64(value, 46, 2); 4527 4528 if (page_size_granule == 0) { 4529 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n", 4530 page_size_granule); 4531 return 0; 4532 } 4533 4534 page_shift = (page_size_granule - 1) * 2 + 12; 4535 4536 exponent = (5 * scale) + 1; 4537 length = (num + 1) << (exponent + page_shift); 4538 4539 return length; 4540 } 4541 4542 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value, 4543 bool two_ranges) 4544 { 4545 /* TODO: ARMv8.7 FEAT_LPA2 */ 4546 uint64_t pageaddr; 4547 4548 if (two_ranges) { 4549 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS; 4550 } else { 4551 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS; 4552 } 4553 4554 return pageaddr; 4555 } 4556 4557 static void do_rvae_write(CPUARMState *env, uint64_t value, 4558 int idxmap, bool synced) 4559 { 4560 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4561 bool two_ranges = regime_has_2_ranges(one_idx); 4562 uint64_t baseaddr, length; 4563 int bits; 4564 4565 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges); 4566 length = tlbi_aa64_range_get_length(env, value); 4567 bits = tlbbits_for_regime(env, one_idx, baseaddr); 4568 4569 if (synced) { 4570 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4571 baseaddr, 4572 length, 4573 idxmap, 4574 bits); 4575 } else { 4576 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr, 4577 length, idxmap, bits); 4578 } 4579 } 4580 4581 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4582 const ARMCPRegInfo *ri, 4583 uint64_t value) 4584 { 4585 /* 4586 * Invalidate by VA range, EL1&0. 4587 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4588 * since we don't support flush-for-specific-ASID-only or 4589 * flush-last-level-only. 4590 */ 4591 4592 do_rvae_write(env, value, vae1_tlbmask(env), 4593 tlb_force_broadcast(env)); 4594 } 4595 4596 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4597 const ARMCPRegInfo *ri, 4598 uint64_t value) 4599 { 4600 /* 4601 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4602 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4603 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4604 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4605 * shareable specific flushes. 4606 */ 4607 4608 do_rvae_write(env, value, vae1_tlbmask(env), true); 4609 } 4610 4611 static int vae2_tlbmask(CPUARMState *env) 4612 { 4613 return (arm_is_secure_below_el3(env) 4614 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4615 } 4616 4617 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4618 const ARMCPRegInfo *ri, 4619 uint64_t value) 4620 { 4621 /* 4622 * Invalidate by VA range, EL2. 4623 * Currently handles all of RVAE2 and RVALE2, 4624 * since we don't support flush-for-specific-ASID-only or 4625 * flush-last-level-only. 4626 */ 4627 4628 do_rvae_write(env, value, vae2_tlbmask(env), 4629 tlb_force_broadcast(env)); 4630 4631 4632 } 4633 4634 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4635 const ARMCPRegInfo *ri, 4636 uint64_t value) 4637 { 4638 /* 4639 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4640 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4641 * since we don't support flush-for-specific-ASID-only, 4642 * flush-last-level-only or inner/outer shareable specific flushes. 4643 */ 4644 4645 do_rvae_write(env, value, vae2_tlbmask(env), true); 4646 4647 } 4648 4649 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4650 const ARMCPRegInfo *ri, 4651 uint64_t value) 4652 { 4653 /* 4654 * Invalidate by VA range, EL3. 4655 * Currently handles all of RVAE3 and RVALE3, 4656 * since we don't support flush-for-specific-ASID-only or 4657 * flush-last-level-only. 4658 */ 4659 4660 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4661 tlb_force_broadcast(env)); 4662 } 4663 4664 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4665 const ARMCPRegInfo *ri, 4666 uint64_t value) 4667 { 4668 /* 4669 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4670 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4671 * since we don't support flush-for-specific-ASID-only, 4672 * flush-last-level-only or inner/outer specific flushes. 4673 */ 4674 4675 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4676 } 4677 #endif 4678 4679 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4680 bool isread) 4681 { 4682 int cur_el = arm_current_el(env); 4683 4684 if (cur_el < 2) { 4685 uint64_t hcr = arm_hcr_el2_eff(env); 4686 4687 if (cur_el == 0) { 4688 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4689 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4690 return CP_ACCESS_TRAP_EL2; 4691 } 4692 } else { 4693 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4694 return CP_ACCESS_TRAP; 4695 } 4696 if (hcr & HCR_TDZ) { 4697 return CP_ACCESS_TRAP_EL2; 4698 } 4699 } 4700 } else if (hcr & HCR_TDZ) { 4701 return CP_ACCESS_TRAP_EL2; 4702 } 4703 } 4704 return CP_ACCESS_OK; 4705 } 4706 4707 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4708 { 4709 ARMCPU *cpu = env_archcpu(env); 4710 int dzp_bit = 1 << 4; 4711 4712 /* DZP indicates whether DC ZVA access is allowed */ 4713 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4714 dzp_bit = 0; 4715 } 4716 return cpu->dcz_blocksize | dzp_bit; 4717 } 4718 4719 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4720 bool isread) 4721 { 4722 if (!(env->pstate & PSTATE_SP)) { 4723 /* Access to SP_EL0 is undefined if it's being used as 4724 * the stack pointer. 4725 */ 4726 return CP_ACCESS_TRAP_UNCATEGORIZED; 4727 } 4728 return CP_ACCESS_OK; 4729 } 4730 4731 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4732 { 4733 return env->pstate & PSTATE_SP; 4734 } 4735 4736 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4737 { 4738 update_spsel(env, val); 4739 } 4740 4741 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4742 uint64_t value) 4743 { 4744 ARMCPU *cpu = env_archcpu(env); 4745 4746 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4747 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4748 value &= ~SCTLR_M; 4749 } 4750 4751 /* ??? Lots of these bits are not implemented. */ 4752 4753 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4754 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4755 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4756 } else { 4757 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4758 SCTLR_ATA0 | SCTLR_ATA); 4759 } 4760 } 4761 4762 if (raw_read(env, ri) == value) { 4763 /* Skip the TLB flush if nothing actually changed; Linux likes 4764 * to do a lot of pointless SCTLR writes. 4765 */ 4766 return; 4767 } 4768 4769 raw_write(env, ri, value); 4770 4771 /* This may enable/disable the MMU, so do a TLB flush. */ 4772 tlb_flush(CPU(cpu)); 4773 4774 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4775 /* 4776 * Normally we would always end the TB on an SCTLR write; see the 4777 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4778 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4779 * of hflags from the translator, so do it here. 4780 */ 4781 arm_rebuild_hflags(env); 4782 } 4783 } 4784 4785 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4786 bool isread) 4787 { 4788 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4789 return CP_ACCESS_TRAP_FP_EL2; 4790 } 4791 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4792 return CP_ACCESS_TRAP_FP_EL3; 4793 } 4794 return CP_ACCESS_OK; 4795 } 4796 4797 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4798 uint64_t value) 4799 { 4800 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4801 } 4802 4803 static const ARMCPRegInfo v8_cp_reginfo[] = { 4804 /* Minimal set of EL0-visible registers. This will need to be expanded 4805 * significantly for system emulation of AArch64 CPUs. 4806 */ 4807 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4809 .access = PL0_RW, .type = ARM_CP_NZCV }, 4810 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4811 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4812 .type = ARM_CP_NO_RAW, 4813 .access = PL0_RW, .accessfn = aa64_daif_access, 4814 .fieldoffset = offsetof(CPUARMState, daif), 4815 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4816 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4817 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4818 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4819 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4820 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4821 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4822 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4823 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4824 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4825 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4826 .access = PL0_R, .type = ARM_CP_NO_RAW, 4827 .readfn = aa64_dczid_read }, 4828 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4829 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4830 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4831 #ifndef CONFIG_USER_ONLY 4832 /* Avoid overhead of an access check that always passes in user-mode */ 4833 .accessfn = aa64_zva_access, 4834 #endif 4835 }, 4836 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4837 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4838 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4839 /* Cache ops: all NOPs since we don't emulate caches */ 4840 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4841 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4842 .access = PL1_W, .type = ARM_CP_NOP, 4843 .accessfn = aa64_cacheop_pou_access }, 4844 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4845 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4846 .access = PL1_W, .type = ARM_CP_NOP, 4847 .accessfn = aa64_cacheop_pou_access }, 4848 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4849 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4850 .access = PL0_W, .type = ARM_CP_NOP, 4851 .accessfn = aa64_cacheop_pou_access }, 4852 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4853 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4854 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4855 .type = ARM_CP_NOP }, 4856 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4857 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4858 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4859 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4861 .access = PL0_W, .type = ARM_CP_NOP, 4862 .accessfn = aa64_cacheop_poc_access }, 4863 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4864 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4865 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4866 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4867 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4868 .access = PL0_W, .type = ARM_CP_NOP, 4869 .accessfn = aa64_cacheop_pou_access }, 4870 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4871 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4872 .access = PL0_W, .type = ARM_CP_NOP, 4873 .accessfn = aa64_cacheop_poc_access }, 4874 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4875 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4876 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4877 /* TLBI operations */ 4878 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4881 .writefn = tlbi_aa64_vmalle1is_write }, 4882 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4885 .writefn = tlbi_aa64_vae1is_write }, 4886 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4888 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4889 .writefn = tlbi_aa64_vmalle1is_write }, 4890 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4892 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4893 .writefn = tlbi_aa64_vae1is_write }, 4894 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4896 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4897 .writefn = tlbi_aa64_vae1is_write }, 4898 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4900 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4901 .writefn = tlbi_aa64_vae1is_write }, 4902 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4904 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4905 .writefn = tlbi_aa64_vmalle1_write }, 4906 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4908 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4909 .writefn = tlbi_aa64_vae1_write }, 4910 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4912 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4913 .writefn = tlbi_aa64_vmalle1_write }, 4914 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4915 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4916 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4917 .writefn = tlbi_aa64_vae1_write }, 4918 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4919 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4920 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4921 .writefn = tlbi_aa64_vae1_write }, 4922 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4923 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4924 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4925 .writefn = tlbi_aa64_vae1_write }, 4926 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4928 .access = PL2_W, .type = ARM_CP_NOP }, 4929 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4930 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4931 .access = PL2_W, .type = ARM_CP_NOP }, 4932 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4934 .access = PL2_W, .type = ARM_CP_NO_RAW, 4935 .writefn = tlbi_aa64_alle1is_write }, 4936 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4937 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4938 .access = PL2_W, .type = ARM_CP_NO_RAW, 4939 .writefn = tlbi_aa64_alle1is_write }, 4940 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4942 .access = PL2_W, .type = ARM_CP_NOP }, 4943 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4944 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4945 .access = PL2_W, .type = ARM_CP_NOP }, 4946 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4948 .access = PL2_W, .type = ARM_CP_NO_RAW, 4949 .writefn = tlbi_aa64_alle1_write }, 4950 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4952 .access = PL2_W, .type = ARM_CP_NO_RAW, 4953 .writefn = tlbi_aa64_alle1is_write }, 4954 #ifndef CONFIG_USER_ONLY 4955 /* 64 bit address translation operations */ 4956 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4957 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4958 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4959 .writefn = ats_write64 }, 4960 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4961 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4962 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4963 .writefn = ats_write64 }, 4964 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4965 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4966 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4967 .writefn = ats_write64 }, 4968 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4969 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4970 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4971 .writefn = ats_write64 }, 4972 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4973 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4974 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4975 .writefn = ats_write64 }, 4976 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4977 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4978 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4979 .writefn = ats_write64 }, 4980 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4981 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4982 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4983 .writefn = ats_write64 }, 4984 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4985 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4986 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4987 .writefn = ats_write64 }, 4988 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4989 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4990 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4991 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4992 .writefn = ats_write64 }, 4993 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4994 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4995 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4996 .writefn = ats_write64 }, 4997 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4998 .type = ARM_CP_ALIAS, 4999 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5000 .access = PL1_RW, .resetvalue = 0, 5001 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5002 .writefn = par_write }, 5003 #endif 5004 /* TLB invalidate last level of translation table walk */ 5005 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5006 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5007 .writefn = tlbimva_is_write }, 5008 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5009 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5010 .writefn = tlbimvaa_is_write }, 5011 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5012 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5013 .writefn = tlbimva_write }, 5014 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5015 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5016 .writefn = tlbimvaa_write }, 5017 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5018 .type = ARM_CP_NO_RAW, .access = PL2_W, 5019 .writefn = tlbimva_hyp_write }, 5020 { .name = "TLBIMVALHIS", 5021 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5022 .type = ARM_CP_NO_RAW, .access = PL2_W, 5023 .writefn = tlbimva_hyp_is_write }, 5024 { .name = "TLBIIPAS2", 5025 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5026 .type = ARM_CP_NOP, .access = PL2_W }, 5027 { .name = "TLBIIPAS2IS", 5028 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5029 .type = ARM_CP_NOP, .access = PL2_W }, 5030 { .name = "TLBIIPAS2L", 5031 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5032 .type = ARM_CP_NOP, .access = PL2_W }, 5033 { .name = "TLBIIPAS2LIS", 5034 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5035 .type = ARM_CP_NOP, .access = PL2_W }, 5036 /* 32 bit cache operations */ 5037 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5038 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5039 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5040 .type = ARM_CP_NOP, .access = PL1_W }, 5041 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5043 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5044 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5045 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5046 .type = ARM_CP_NOP, .access = PL1_W }, 5047 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5048 .type = ARM_CP_NOP, .access = PL1_W }, 5049 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5050 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5051 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5052 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5053 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5054 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5055 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5056 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5057 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5058 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5059 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5060 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5061 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5062 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5063 /* MMU Domain access control / MPU write buffer control */ 5064 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5065 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5066 .writefn = dacr_write, .raw_writefn = raw_write, 5067 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5068 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5069 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5070 .type = ARM_CP_ALIAS, 5071 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5072 .access = PL1_RW, 5073 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5074 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5075 .type = ARM_CP_ALIAS, 5076 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5077 .access = PL1_RW, 5078 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5079 /* We rely on the access checks not allowing the guest to write to the 5080 * state field when SPSel indicates that it's being used as the stack 5081 * pointer. 5082 */ 5083 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5084 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5085 .access = PL1_RW, .accessfn = sp_el0_access, 5086 .type = ARM_CP_ALIAS, 5087 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5088 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5090 .access = PL2_RW, .type = ARM_CP_ALIAS, 5091 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5092 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5093 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5094 .type = ARM_CP_NO_RAW, 5095 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5096 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5097 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5098 .type = ARM_CP_ALIAS, 5099 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5100 .access = PL2_RW, .accessfn = fpexc32_access }, 5101 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5102 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5103 .access = PL2_RW, .resetvalue = 0, 5104 .writefn = dacr_write, .raw_writefn = raw_write, 5105 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5106 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5107 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5108 .access = PL2_RW, .resetvalue = 0, 5109 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5110 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5111 .type = ARM_CP_ALIAS, 5112 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5113 .access = PL2_RW, 5114 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5115 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5116 .type = ARM_CP_ALIAS, 5117 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5118 .access = PL2_RW, 5119 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5120 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5121 .type = ARM_CP_ALIAS, 5122 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5123 .access = PL2_RW, 5124 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5125 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5126 .type = ARM_CP_ALIAS, 5127 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5128 .access = PL2_RW, 5129 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5130 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5131 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5132 .resetvalue = 0, 5133 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5134 { .name = "SDCR", .type = ARM_CP_ALIAS, 5135 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5136 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5137 .writefn = sdcr_write, 5138 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5139 REGINFO_SENTINEL 5140 }; 5141 5142 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5143 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5144 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5145 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5146 .access = PL2_RW, 5147 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5148 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5149 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5150 .access = PL2_RW, 5151 .type = ARM_CP_CONST, .resetvalue = 0 }, 5152 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5153 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5154 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5155 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5156 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5157 .access = PL2_RW, 5158 .type = ARM_CP_CONST, .resetvalue = 0 }, 5159 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5160 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5161 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5162 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5163 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5164 .access = PL2_RW, .type = ARM_CP_CONST, 5165 .resetvalue = 0 }, 5166 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5167 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5168 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5169 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5170 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5171 .access = PL2_RW, .type = ARM_CP_CONST, 5172 .resetvalue = 0 }, 5173 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5174 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5175 .access = PL2_RW, .type = ARM_CP_CONST, 5176 .resetvalue = 0 }, 5177 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5178 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5179 .access = PL2_RW, .type = ARM_CP_CONST, 5180 .resetvalue = 0 }, 5181 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5182 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5183 .access = PL2_RW, .type = ARM_CP_CONST, 5184 .resetvalue = 0 }, 5185 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5186 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5187 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5188 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5189 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5190 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5191 .type = ARM_CP_CONST, .resetvalue = 0 }, 5192 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5193 .cp = 15, .opc1 = 6, .crm = 2, 5194 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5195 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5196 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5197 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5198 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5199 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5200 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5201 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5202 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5203 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5204 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5205 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5206 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5207 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5208 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5209 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5210 .resetvalue = 0 }, 5211 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5212 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5213 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5214 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5215 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5216 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5217 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5218 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5219 .resetvalue = 0 }, 5220 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5221 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5222 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5223 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5224 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5225 .resetvalue = 0 }, 5226 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5227 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5228 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5229 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5230 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5231 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5232 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5233 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5234 .access = PL2_RW, .accessfn = access_tda, 5235 .type = ARM_CP_CONST, .resetvalue = 0 }, 5236 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5237 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5238 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5239 .type = ARM_CP_CONST, .resetvalue = 0 }, 5240 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5241 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5242 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5243 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5244 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5245 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5246 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5247 .type = ARM_CP_CONST, 5248 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5249 .access = PL2_RW, .resetvalue = 0 }, 5250 REGINFO_SENTINEL 5251 }; 5252 5253 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5254 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5255 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5256 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5257 .access = PL2_RW, 5258 .type = ARM_CP_CONST, .resetvalue = 0 }, 5259 REGINFO_SENTINEL 5260 }; 5261 5262 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5263 { 5264 ARMCPU *cpu = env_archcpu(env); 5265 5266 if (arm_feature(env, ARM_FEATURE_V8)) { 5267 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5268 } else { 5269 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5270 } 5271 5272 if (arm_feature(env, ARM_FEATURE_EL3)) { 5273 valid_mask &= ~HCR_HCD; 5274 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5275 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5276 * However, if we're using the SMC PSCI conduit then QEMU is 5277 * effectively acting like EL3 firmware and so the guest at 5278 * EL2 should retain the ability to prevent EL1 from being 5279 * able to make SMC calls into the ersatz firmware, so in 5280 * that case HCR.TSC should be read/write. 5281 */ 5282 valid_mask &= ~HCR_TSC; 5283 } 5284 5285 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5286 if (cpu_isar_feature(aa64_vh, cpu)) { 5287 valid_mask |= HCR_E2H; 5288 } 5289 if (cpu_isar_feature(aa64_lor, cpu)) { 5290 valid_mask |= HCR_TLOR; 5291 } 5292 if (cpu_isar_feature(aa64_pauth, cpu)) { 5293 valid_mask |= HCR_API | HCR_APK; 5294 } 5295 if (cpu_isar_feature(aa64_mte, cpu)) { 5296 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5297 } 5298 } 5299 5300 /* Clear RES0 bits. */ 5301 value &= valid_mask; 5302 5303 /* 5304 * These bits change the MMU setup: 5305 * HCR_VM enables stage 2 translation 5306 * HCR_PTW forbids certain page-table setups 5307 * HCR_DC disables stage1 and enables stage2 translation 5308 * HCR_DCT enables tagging on (disabled) stage1 translation 5309 */ 5310 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5311 tlb_flush(CPU(cpu)); 5312 } 5313 env->cp15.hcr_el2 = value; 5314 5315 /* 5316 * Updates to VI and VF require us to update the status of 5317 * virtual interrupts, which are the logical OR of these bits 5318 * and the state of the input lines from the GIC. (This requires 5319 * that we have the iothread lock, which is done by marking the 5320 * reginfo structs as ARM_CP_IO.) 5321 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5322 * possible for it to be taken immediately, because VIRQ and 5323 * VFIQ are masked unless running at EL0 or EL1, and HCR 5324 * can only be written at EL2. 5325 */ 5326 g_assert(qemu_mutex_iothread_locked()); 5327 arm_cpu_update_virq(cpu); 5328 arm_cpu_update_vfiq(cpu); 5329 } 5330 5331 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5332 { 5333 do_hcr_write(env, value, 0); 5334 } 5335 5336 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5337 uint64_t value) 5338 { 5339 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5340 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5341 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5342 } 5343 5344 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5345 uint64_t value) 5346 { 5347 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5348 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5349 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5350 } 5351 5352 /* 5353 * Return the effective value of HCR_EL2. 5354 * Bits that are not included here: 5355 * RW (read from SCR_EL3.RW as needed) 5356 */ 5357 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5358 { 5359 uint64_t ret = env->cp15.hcr_el2; 5360 5361 if (!arm_is_el2_enabled(env)) { 5362 /* 5363 * "This register has no effect if EL2 is not enabled in the 5364 * current Security state". This is ARMv8.4-SecEL2 speak for 5365 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5366 * 5367 * Prior to that, the language was "In an implementation that 5368 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5369 * as if this field is 0 for all purposes other than a direct 5370 * read or write access of HCR_EL2". With lots of enumeration 5371 * on a per-field basis. In current QEMU, this is condition 5372 * is arm_is_secure_below_el3. 5373 * 5374 * Since the v8.4 language applies to the entire register, and 5375 * appears to be backward compatible, use that. 5376 */ 5377 return 0; 5378 } 5379 5380 /* 5381 * For a cpu that supports both aarch64 and aarch32, we can set bits 5382 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5383 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5384 */ 5385 if (!arm_el_is_aa64(env, 2)) { 5386 uint64_t aa32_valid; 5387 5388 /* 5389 * These bits are up-to-date as of ARMv8.6. 5390 * For HCR, it's easiest to list just the 2 bits that are invalid. 5391 * For HCR2, list those that are valid. 5392 */ 5393 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5394 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5395 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5396 ret &= aa32_valid; 5397 } 5398 5399 if (ret & HCR_TGE) { 5400 /* These bits are up-to-date as of ARMv8.6. */ 5401 if (ret & HCR_E2H) { 5402 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5403 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5404 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5405 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5406 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5407 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5408 } else { 5409 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5410 } 5411 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5412 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5413 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5414 HCR_TLOR); 5415 } 5416 5417 return ret; 5418 } 5419 5420 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5421 uint64_t value) 5422 { 5423 /* 5424 * For A-profile AArch32 EL3, if NSACR.CP10 5425 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5426 */ 5427 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5428 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5429 value &= ~(0x3 << 10); 5430 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5431 } 5432 env->cp15.cptr_el[2] = value; 5433 } 5434 5435 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5436 { 5437 /* 5438 * For A-profile AArch32 EL3, if NSACR.CP10 5439 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5440 */ 5441 uint64_t value = env->cp15.cptr_el[2]; 5442 5443 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5444 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5445 value |= 0x3 << 10; 5446 } 5447 return value; 5448 } 5449 5450 static const ARMCPRegInfo el2_cp_reginfo[] = { 5451 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5452 .type = ARM_CP_IO, 5453 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5454 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5455 .writefn = hcr_write }, 5456 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5457 .type = ARM_CP_ALIAS | ARM_CP_IO, 5458 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5459 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5460 .writefn = hcr_writelow }, 5461 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5462 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5463 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5464 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5465 .type = ARM_CP_ALIAS, 5466 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5467 .access = PL2_RW, 5468 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5469 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5470 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5471 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5472 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5473 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5474 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5475 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5476 .type = ARM_CP_ALIAS, 5477 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5478 .access = PL2_RW, 5479 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5480 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5481 .type = ARM_CP_ALIAS, 5482 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5483 .access = PL2_RW, 5484 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5485 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5486 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5487 .access = PL2_RW, .writefn = vbar_write, 5488 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5489 .resetvalue = 0 }, 5490 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5491 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5492 .access = PL3_RW, .type = ARM_CP_ALIAS, 5493 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5494 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5495 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5496 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5497 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5498 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5499 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5500 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5501 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5502 .resetvalue = 0 }, 5503 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5504 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5505 .access = PL2_RW, .type = ARM_CP_ALIAS, 5506 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5507 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5508 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5509 .access = PL2_RW, .type = ARM_CP_CONST, 5510 .resetvalue = 0 }, 5511 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5512 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5513 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5514 .access = PL2_RW, .type = ARM_CP_CONST, 5515 .resetvalue = 0 }, 5516 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5517 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5518 .access = PL2_RW, .type = ARM_CP_CONST, 5519 .resetvalue = 0 }, 5520 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5521 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5522 .access = PL2_RW, .type = ARM_CP_CONST, 5523 .resetvalue = 0 }, 5524 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5525 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5526 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5527 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5528 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5529 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5530 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5531 .type = ARM_CP_ALIAS, 5532 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5533 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5534 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5535 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5536 .access = PL2_RW, 5537 /* no .writefn needed as this can't cause an ASID change; 5538 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5539 */ 5540 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5541 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5542 .cp = 15, .opc1 = 6, .crm = 2, 5543 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5544 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5545 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5546 .writefn = vttbr_write }, 5547 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5548 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5549 .access = PL2_RW, .writefn = vttbr_write, 5550 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5551 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5552 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5553 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5554 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5555 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5556 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5557 .access = PL2_RW, .resetvalue = 0, 5558 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5559 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5560 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5561 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5562 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5563 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5564 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5565 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5566 { .name = "TLBIALLNSNH", 5567 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5568 .type = ARM_CP_NO_RAW, .access = PL2_W, 5569 .writefn = tlbiall_nsnh_write }, 5570 { .name = "TLBIALLNSNHIS", 5571 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5572 .type = ARM_CP_NO_RAW, .access = PL2_W, 5573 .writefn = tlbiall_nsnh_is_write }, 5574 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5575 .type = ARM_CP_NO_RAW, .access = PL2_W, 5576 .writefn = tlbiall_hyp_write }, 5577 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5578 .type = ARM_CP_NO_RAW, .access = PL2_W, 5579 .writefn = tlbiall_hyp_is_write }, 5580 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5581 .type = ARM_CP_NO_RAW, .access = PL2_W, 5582 .writefn = tlbimva_hyp_write }, 5583 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5584 .type = ARM_CP_NO_RAW, .access = PL2_W, 5585 .writefn = tlbimva_hyp_is_write }, 5586 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5587 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5588 .type = ARM_CP_NO_RAW, .access = PL2_W, 5589 .writefn = tlbi_aa64_alle2_write }, 5590 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5591 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5592 .type = ARM_CP_NO_RAW, .access = PL2_W, 5593 .writefn = tlbi_aa64_vae2_write }, 5594 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5595 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5596 .access = PL2_W, .type = ARM_CP_NO_RAW, 5597 .writefn = tlbi_aa64_vae2_write }, 5598 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5599 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5600 .access = PL2_W, .type = ARM_CP_NO_RAW, 5601 .writefn = tlbi_aa64_alle2is_write }, 5602 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5603 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5604 .type = ARM_CP_NO_RAW, .access = PL2_W, 5605 .writefn = tlbi_aa64_vae2is_write }, 5606 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5607 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5608 .access = PL2_W, .type = ARM_CP_NO_RAW, 5609 .writefn = tlbi_aa64_vae2is_write }, 5610 #ifndef CONFIG_USER_ONLY 5611 /* Unlike the other EL2-related AT operations, these must 5612 * UNDEF from EL3 if EL2 is not implemented, which is why we 5613 * define them here rather than with the rest of the AT ops. 5614 */ 5615 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5616 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5617 .access = PL2_W, .accessfn = at_s1e2_access, 5618 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5619 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5620 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5621 .access = PL2_W, .accessfn = at_s1e2_access, 5622 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5623 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5624 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5625 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5626 * to behave as if SCR.NS was 1. 5627 */ 5628 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5629 .access = PL2_W, 5630 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5631 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5632 .access = PL2_W, 5633 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5634 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5635 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5636 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5637 * reset values as IMPDEF. We choose to reset to 3 to comply with 5638 * both ARMv7 and ARMv8. 5639 */ 5640 .access = PL2_RW, .resetvalue = 3, 5641 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5642 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5643 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5644 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5645 .writefn = gt_cntvoff_write, 5646 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5647 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5648 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5649 .writefn = gt_cntvoff_write, 5650 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5651 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5652 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5653 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5654 .type = ARM_CP_IO, .access = PL2_RW, 5655 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5656 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5657 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5658 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5659 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5660 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5661 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5662 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5663 .resetfn = gt_hyp_timer_reset, 5664 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5665 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5666 .type = ARM_CP_IO, 5667 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5668 .access = PL2_RW, 5669 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5670 .resetvalue = 0, 5671 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5672 #endif 5673 /* The only field of MDCR_EL2 that has a defined architectural reset value 5674 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5675 */ 5676 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5677 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5678 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5679 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5680 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5681 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5682 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5683 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5684 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5685 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5686 .access = PL2_RW, 5687 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5688 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5689 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5690 .access = PL2_RW, 5691 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5692 REGINFO_SENTINEL 5693 }; 5694 5695 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5696 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5697 .type = ARM_CP_ALIAS | ARM_CP_IO, 5698 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5699 .access = PL2_RW, 5700 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5701 .writefn = hcr_writehigh }, 5702 REGINFO_SENTINEL 5703 }; 5704 5705 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5706 bool isread) 5707 { 5708 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5709 return CP_ACCESS_OK; 5710 } 5711 return CP_ACCESS_TRAP_UNCATEGORIZED; 5712 } 5713 5714 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5715 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5716 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5717 .access = PL2_RW, .accessfn = sel2_access, 5718 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5719 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5720 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5721 .access = PL2_RW, .accessfn = sel2_access, 5722 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5723 REGINFO_SENTINEL 5724 }; 5725 5726 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5727 bool isread) 5728 { 5729 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5730 * At Secure EL1 it traps to EL3 or EL2. 5731 */ 5732 if (arm_current_el(env) == 3) { 5733 return CP_ACCESS_OK; 5734 } 5735 if (arm_is_secure_below_el3(env)) { 5736 if (env->cp15.scr_el3 & SCR_EEL2) { 5737 return CP_ACCESS_TRAP_EL2; 5738 } 5739 return CP_ACCESS_TRAP_EL3; 5740 } 5741 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5742 if (isread) { 5743 return CP_ACCESS_OK; 5744 } 5745 return CP_ACCESS_TRAP_UNCATEGORIZED; 5746 } 5747 5748 static const ARMCPRegInfo el3_cp_reginfo[] = { 5749 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5750 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5751 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5752 .resetfn = scr_reset, .writefn = scr_write }, 5753 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5754 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5755 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5756 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5757 .writefn = scr_write }, 5758 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5759 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5760 .access = PL3_RW, .resetvalue = 0, 5761 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5762 { .name = "SDER", 5763 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5764 .access = PL3_RW, .resetvalue = 0, 5765 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5766 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5767 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5768 .writefn = vbar_write, .resetvalue = 0, 5769 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5770 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5771 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5772 .access = PL3_RW, .resetvalue = 0, 5773 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5774 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5775 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5776 .access = PL3_RW, 5777 /* no .writefn needed as this can't cause an ASID change; 5778 * we must provide a .raw_writefn and .resetfn because we handle 5779 * reset and migration for the AArch32 TTBCR(S), which might be 5780 * using mask and base_mask. 5781 */ 5782 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5783 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5784 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5785 .type = ARM_CP_ALIAS, 5786 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5787 .access = PL3_RW, 5788 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5789 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5790 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5791 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5792 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5793 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5794 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5795 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5796 .type = ARM_CP_ALIAS, 5797 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5798 .access = PL3_RW, 5799 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5800 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5801 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5802 .access = PL3_RW, .writefn = vbar_write, 5803 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5804 .resetvalue = 0 }, 5805 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5806 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5807 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5808 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5809 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5810 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5811 .access = PL3_RW, .resetvalue = 0, 5812 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5813 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5814 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5815 .access = PL3_RW, .type = ARM_CP_CONST, 5816 .resetvalue = 0 }, 5817 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5818 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5819 .access = PL3_RW, .type = ARM_CP_CONST, 5820 .resetvalue = 0 }, 5821 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5822 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5823 .access = PL3_RW, .type = ARM_CP_CONST, 5824 .resetvalue = 0 }, 5825 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5826 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5827 .access = PL3_W, .type = ARM_CP_NO_RAW, 5828 .writefn = tlbi_aa64_alle3is_write }, 5829 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5830 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5831 .access = PL3_W, .type = ARM_CP_NO_RAW, 5832 .writefn = tlbi_aa64_vae3is_write }, 5833 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5834 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5835 .access = PL3_W, .type = ARM_CP_NO_RAW, 5836 .writefn = tlbi_aa64_vae3is_write }, 5837 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5838 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5839 .access = PL3_W, .type = ARM_CP_NO_RAW, 5840 .writefn = tlbi_aa64_alle3_write }, 5841 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5842 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5843 .access = PL3_W, .type = ARM_CP_NO_RAW, 5844 .writefn = tlbi_aa64_vae3_write }, 5845 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5846 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5847 .access = PL3_W, .type = ARM_CP_NO_RAW, 5848 .writefn = tlbi_aa64_vae3_write }, 5849 REGINFO_SENTINEL 5850 }; 5851 5852 #ifndef CONFIG_USER_ONLY 5853 /* Test if system register redirection is to occur in the current state. */ 5854 static bool redirect_for_e2h(CPUARMState *env) 5855 { 5856 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5857 } 5858 5859 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5860 { 5861 CPReadFn *readfn; 5862 5863 if (redirect_for_e2h(env)) { 5864 /* Switch to the saved EL2 version of the register. */ 5865 ri = ri->opaque; 5866 readfn = ri->readfn; 5867 } else { 5868 readfn = ri->orig_readfn; 5869 } 5870 if (readfn == NULL) { 5871 readfn = raw_read; 5872 } 5873 return readfn(env, ri); 5874 } 5875 5876 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5877 uint64_t value) 5878 { 5879 CPWriteFn *writefn; 5880 5881 if (redirect_for_e2h(env)) { 5882 /* Switch to the saved EL2 version of the register. */ 5883 ri = ri->opaque; 5884 writefn = ri->writefn; 5885 } else { 5886 writefn = ri->orig_writefn; 5887 } 5888 if (writefn == NULL) { 5889 writefn = raw_write; 5890 } 5891 writefn(env, ri, value); 5892 } 5893 5894 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5895 { 5896 struct E2HAlias { 5897 uint32_t src_key, dst_key, new_key; 5898 const char *src_name, *dst_name, *new_name; 5899 bool (*feature)(const ARMISARegisters *id); 5900 }; 5901 5902 #define K(op0, op1, crn, crm, op2) \ 5903 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5904 5905 static const struct E2HAlias aliases[] = { 5906 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5907 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5908 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5909 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5910 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5911 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5912 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5913 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5914 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5915 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5916 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5917 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5918 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5919 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5920 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5921 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5922 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5923 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5924 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5925 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5926 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5927 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5928 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5929 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5930 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5931 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5932 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5933 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5934 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5935 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5936 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5937 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5938 5939 /* 5940 * Note that redirection of ZCR is mentioned in the description 5941 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5942 * not in the summary table. 5943 */ 5944 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5945 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5946 5947 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5948 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5949 5950 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5951 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5952 }; 5953 #undef K 5954 5955 size_t i; 5956 5957 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5958 const struct E2HAlias *a = &aliases[i]; 5959 ARMCPRegInfo *src_reg, *dst_reg; 5960 5961 if (a->feature && !a->feature(&cpu->isar)) { 5962 continue; 5963 } 5964 5965 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5966 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5967 g_assert(src_reg != NULL); 5968 g_assert(dst_reg != NULL); 5969 5970 /* Cross-compare names to detect typos in the keys. */ 5971 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5972 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5973 5974 /* None of the core system registers use opaque; we will. */ 5975 g_assert(src_reg->opaque == NULL); 5976 5977 /* Create alias before redirection so we dup the right data. */ 5978 if (a->new_key) { 5979 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5980 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5981 bool ok; 5982 5983 new_reg->name = a->new_name; 5984 new_reg->type |= ARM_CP_ALIAS; 5985 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5986 new_reg->access &= PL2_RW | PL3_RW; 5987 5988 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5989 g_assert(ok); 5990 } 5991 5992 src_reg->opaque = dst_reg; 5993 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5994 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5995 if (!src_reg->raw_readfn) { 5996 src_reg->raw_readfn = raw_read; 5997 } 5998 if (!src_reg->raw_writefn) { 5999 src_reg->raw_writefn = raw_write; 6000 } 6001 src_reg->readfn = el2_e2h_read; 6002 src_reg->writefn = el2_e2h_write; 6003 } 6004 } 6005 #endif 6006 6007 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6008 bool isread) 6009 { 6010 int cur_el = arm_current_el(env); 6011 6012 if (cur_el < 2) { 6013 uint64_t hcr = arm_hcr_el2_eff(env); 6014 6015 if (cur_el == 0) { 6016 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6017 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6018 return CP_ACCESS_TRAP_EL2; 6019 } 6020 } else { 6021 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6022 return CP_ACCESS_TRAP; 6023 } 6024 if (hcr & HCR_TID2) { 6025 return CP_ACCESS_TRAP_EL2; 6026 } 6027 } 6028 } else if (hcr & HCR_TID2) { 6029 return CP_ACCESS_TRAP_EL2; 6030 } 6031 } 6032 6033 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6034 return CP_ACCESS_TRAP_EL2; 6035 } 6036 6037 return CP_ACCESS_OK; 6038 } 6039 6040 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6041 uint64_t value) 6042 { 6043 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6044 * read via a bit in OSLSR_EL1. 6045 */ 6046 int oslock; 6047 6048 if (ri->state == ARM_CP_STATE_AA32) { 6049 oslock = (value == 0xC5ACCE55); 6050 } else { 6051 oslock = value & 1; 6052 } 6053 6054 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6055 } 6056 6057 static const ARMCPRegInfo debug_cp_reginfo[] = { 6058 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6059 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6060 * unlike DBGDRAR it is never accessible from EL0. 6061 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6062 * accessor. 6063 */ 6064 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6065 .access = PL0_R, .accessfn = access_tdra, 6066 .type = ARM_CP_CONST, .resetvalue = 0 }, 6067 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6068 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6069 .access = PL1_R, .accessfn = access_tdra, 6070 .type = ARM_CP_CONST, .resetvalue = 0 }, 6071 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6072 .access = PL0_R, .accessfn = access_tdra, 6073 .type = ARM_CP_CONST, .resetvalue = 0 }, 6074 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6075 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6076 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6077 .access = PL1_RW, .accessfn = access_tda, 6078 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6079 .resetvalue = 0 }, 6080 /* 6081 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6082 * Debug Communication Channel is not implemented. 6083 */ 6084 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6085 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6086 .access = PL0_R, .accessfn = access_tda, 6087 .type = ARM_CP_CONST, .resetvalue = 0 }, 6088 /* 6089 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6090 * it is unlikely a guest will care. 6091 * We don't implement the configurable EL0 access. 6092 */ 6093 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6094 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6095 .type = ARM_CP_ALIAS, 6096 .access = PL1_R, .accessfn = access_tda, 6097 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6098 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6099 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6100 .access = PL1_W, .type = ARM_CP_NO_RAW, 6101 .accessfn = access_tdosa, 6102 .writefn = oslar_write }, 6103 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6104 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6105 .access = PL1_R, .resetvalue = 10, 6106 .accessfn = access_tdosa, 6107 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6108 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6109 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6110 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6111 .access = PL1_RW, .accessfn = access_tdosa, 6112 .type = ARM_CP_NOP }, 6113 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6114 * implement vector catch debug events yet. 6115 */ 6116 { .name = "DBGVCR", 6117 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6118 .access = PL1_RW, .accessfn = access_tda, 6119 .type = ARM_CP_NOP }, 6120 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6121 * to save and restore a 32-bit guest's DBGVCR) 6122 */ 6123 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6124 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6125 .access = PL2_RW, .accessfn = access_tda, 6126 .type = ARM_CP_NOP }, 6127 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6128 * Channel but Linux may try to access this register. The 32-bit 6129 * alias is DBGDCCINT. 6130 */ 6131 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6132 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6133 .access = PL1_RW, .accessfn = access_tda, 6134 .type = ARM_CP_NOP }, 6135 REGINFO_SENTINEL 6136 }; 6137 6138 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6139 /* 64 bit access versions of the (dummy) debug registers */ 6140 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6141 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6142 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6143 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6144 REGINFO_SENTINEL 6145 }; 6146 6147 /* Return the exception level to which exceptions should be taken 6148 * via SVEAccessTrap. If an exception should be routed through 6149 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6150 * take care of raising that exception. 6151 * C.f. the ARM pseudocode function CheckSVEEnabled. 6152 */ 6153 int sve_exception_el(CPUARMState *env, int el) 6154 { 6155 #ifndef CONFIG_USER_ONLY 6156 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6157 6158 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6159 /* Check CPACR.ZEN. */ 6160 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6161 case 1: 6162 if (el != 0) { 6163 break; 6164 } 6165 /* fall through */ 6166 case 0: 6167 case 2: 6168 /* route_to_el2 */ 6169 return hcr_el2 & HCR_TGE ? 2 : 1; 6170 } 6171 6172 /* Check CPACR.FPEN. */ 6173 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6174 case 1: 6175 if (el != 0) { 6176 break; 6177 } 6178 /* fall through */ 6179 case 0: 6180 case 2: 6181 return 0; 6182 } 6183 } 6184 6185 /* 6186 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6187 */ 6188 if (el <= 2) { 6189 if (hcr_el2 & HCR_E2H) { 6190 /* Check CPTR_EL2.ZEN. */ 6191 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6192 case 1: 6193 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6194 break; 6195 } 6196 /* fall through */ 6197 case 0: 6198 case 2: 6199 return 2; 6200 } 6201 6202 /* Check CPTR_EL2.FPEN. */ 6203 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6204 case 1: 6205 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6206 break; 6207 } 6208 /* fall through */ 6209 case 0: 6210 case 2: 6211 return 0; 6212 } 6213 } else if (arm_is_el2_enabled(env)) { 6214 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6215 return 2; 6216 } 6217 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6218 return 0; 6219 } 6220 } 6221 } 6222 6223 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6224 if (arm_feature(env, ARM_FEATURE_EL3) 6225 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6226 return 3; 6227 } 6228 #endif 6229 return 0; 6230 } 6231 6232 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6233 { 6234 uint32_t end_len; 6235 6236 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6237 end_len = start_len; 6238 6239 if (!test_bit(start_len, cpu->sve_vq_map)) { 6240 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6241 assert(end_len < start_len); 6242 } 6243 return end_len; 6244 } 6245 6246 /* 6247 * Given that SVE is enabled, return the vector length for EL. 6248 */ 6249 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6250 { 6251 ARMCPU *cpu = env_archcpu(env); 6252 uint32_t zcr_len = cpu->sve_max_vq - 1; 6253 6254 if (el <= 1 && 6255 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6256 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6257 } 6258 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6259 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6260 } 6261 if (arm_feature(env, ARM_FEATURE_EL3)) { 6262 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6263 } 6264 6265 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6266 } 6267 6268 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6269 uint64_t value) 6270 { 6271 int cur_el = arm_current_el(env); 6272 int old_len = sve_zcr_len_for_el(env, cur_el); 6273 int new_len; 6274 6275 /* Bits other than [3:0] are RAZ/WI. */ 6276 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6277 raw_write(env, ri, value & 0xf); 6278 6279 /* 6280 * Because we arrived here, we know both FP and SVE are enabled; 6281 * otherwise we would have trapped access to the ZCR_ELn register. 6282 */ 6283 new_len = sve_zcr_len_for_el(env, cur_el); 6284 if (new_len < old_len) { 6285 aarch64_sve_narrow_vq(env, new_len + 1); 6286 } 6287 } 6288 6289 static const ARMCPRegInfo zcr_el1_reginfo = { 6290 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6291 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6292 .access = PL1_RW, .type = ARM_CP_SVE, 6293 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6294 .writefn = zcr_write, .raw_writefn = raw_write 6295 }; 6296 6297 static const ARMCPRegInfo zcr_el2_reginfo = { 6298 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6299 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6300 .access = PL2_RW, .type = ARM_CP_SVE, 6301 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6302 .writefn = zcr_write, .raw_writefn = raw_write 6303 }; 6304 6305 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6306 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6307 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6308 .access = PL2_RW, .type = ARM_CP_SVE, 6309 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6310 }; 6311 6312 static const ARMCPRegInfo zcr_el3_reginfo = { 6313 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6314 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6315 .access = PL3_RW, .type = ARM_CP_SVE, 6316 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6317 .writefn = zcr_write, .raw_writefn = raw_write 6318 }; 6319 6320 void hw_watchpoint_update(ARMCPU *cpu, int n) 6321 { 6322 CPUARMState *env = &cpu->env; 6323 vaddr len = 0; 6324 vaddr wvr = env->cp15.dbgwvr[n]; 6325 uint64_t wcr = env->cp15.dbgwcr[n]; 6326 int mask; 6327 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6328 6329 if (env->cpu_watchpoint[n]) { 6330 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6331 env->cpu_watchpoint[n] = NULL; 6332 } 6333 6334 if (!extract64(wcr, 0, 1)) { 6335 /* E bit clear : watchpoint disabled */ 6336 return; 6337 } 6338 6339 switch (extract64(wcr, 3, 2)) { 6340 case 0: 6341 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6342 return; 6343 case 1: 6344 flags |= BP_MEM_READ; 6345 break; 6346 case 2: 6347 flags |= BP_MEM_WRITE; 6348 break; 6349 case 3: 6350 flags |= BP_MEM_ACCESS; 6351 break; 6352 } 6353 6354 /* Attempts to use both MASK and BAS fields simultaneously are 6355 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6356 * thus generating a watchpoint for every byte in the masked region. 6357 */ 6358 mask = extract64(wcr, 24, 4); 6359 if (mask == 1 || mask == 2) { 6360 /* Reserved values of MASK; we must act as if the mask value was 6361 * some non-reserved value, or as if the watchpoint were disabled. 6362 * We choose the latter. 6363 */ 6364 return; 6365 } else if (mask) { 6366 /* Watchpoint covers an aligned area up to 2GB in size */ 6367 len = 1ULL << mask; 6368 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6369 * whether the watchpoint fires when the unmasked bits match; we opt 6370 * to generate the exceptions. 6371 */ 6372 wvr &= ~(len - 1); 6373 } else { 6374 /* Watchpoint covers bytes defined by the byte address select bits */ 6375 int bas = extract64(wcr, 5, 8); 6376 int basstart; 6377 6378 if (extract64(wvr, 2, 1)) { 6379 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6380 * ignored, and BAS[3:0] define which bytes to watch. 6381 */ 6382 bas &= 0xf; 6383 } 6384 6385 if (bas == 0) { 6386 /* This must act as if the watchpoint is disabled */ 6387 return; 6388 } 6389 6390 /* The BAS bits are supposed to be programmed to indicate a contiguous 6391 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6392 * we fire for each byte in the word/doubleword addressed by the WVR. 6393 * We choose to ignore any non-zero bits after the first range of 1s. 6394 */ 6395 basstart = ctz32(bas); 6396 len = cto32(bas >> basstart); 6397 wvr += basstart; 6398 } 6399 6400 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6401 &env->cpu_watchpoint[n]); 6402 } 6403 6404 void hw_watchpoint_update_all(ARMCPU *cpu) 6405 { 6406 int i; 6407 CPUARMState *env = &cpu->env; 6408 6409 /* Completely clear out existing QEMU watchpoints and our array, to 6410 * avoid possible stale entries following migration load. 6411 */ 6412 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6413 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6414 6415 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6416 hw_watchpoint_update(cpu, i); 6417 } 6418 } 6419 6420 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6421 uint64_t value) 6422 { 6423 ARMCPU *cpu = env_archcpu(env); 6424 int i = ri->crm; 6425 6426 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6427 * register reads and behaves as if values written are sign extended. 6428 * Bits [1:0] are RES0. 6429 */ 6430 value = sextract64(value, 0, 49) & ~3ULL; 6431 6432 raw_write(env, ri, value); 6433 hw_watchpoint_update(cpu, i); 6434 } 6435 6436 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6437 uint64_t value) 6438 { 6439 ARMCPU *cpu = env_archcpu(env); 6440 int i = ri->crm; 6441 6442 raw_write(env, ri, value); 6443 hw_watchpoint_update(cpu, i); 6444 } 6445 6446 void hw_breakpoint_update(ARMCPU *cpu, int n) 6447 { 6448 CPUARMState *env = &cpu->env; 6449 uint64_t bvr = env->cp15.dbgbvr[n]; 6450 uint64_t bcr = env->cp15.dbgbcr[n]; 6451 vaddr addr; 6452 int bt; 6453 int flags = BP_CPU; 6454 6455 if (env->cpu_breakpoint[n]) { 6456 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6457 env->cpu_breakpoint[n] = NULL; 6458 } 6459 6460 if (!extract64(bcr, 0, 1)) { 6461 /* E bit clear : watchpoint disabled */ 6462 return; 6463 } 6464 6465 bt = extract64(bcr, 20, 4); 6466 6467 switch (bt) { 6468 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6469 case 5: /* linked address mismatch (reserved if AArch64) */ 6470 qemu_log_mask(LOG_UNIMP, 6471 "arm: address mismatch breakpoint types not implemented\n"); 6472 return; 6473 case 0: /* unlinked address match */ 6474 case 1: /* linked address match */ 6475 { 6476 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6477 * we behave as if the register was sign extended. Bits [1:0] are 6478 * RES0. The BAS field is used to allow setting breakpoints on 16 6479 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6480 * a bp will fire if the addresses covered by the bp and the addresses 6481 * covered by the insn overlap but the insn doesn't start at the 6482 * start of the bp address range. We choose to require the insn and 6483 * the bp to have the same address. The constraints on writing to 6484 * BAS enforced in dbgbcr_write mean we have only four cases: 6485 * 0b0000 => no breakpoint 6486 * 0b0011 => breakpoint on addr 6487 * 0b1100 => breakpoint on addr + 2 6488 * 0b1111 => breakpoint on addr 6489 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6490 */ 6491 int bas = extract64(bcr, 5, 4); 6492 addr = sextract64(bvr, 0, 49) & ~3ULL; 6493 if (bas == 0) { 6494 return; 6495 } 6496 if (bas == 0xc) { 6497 addr += 2; 6498 } 6499 break; 6500 } 6501 case 2: /* unlinked context ID match */ 6502 case 8: /* unlinked VMID match (reserved if no EL2) */ 6503 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6504 qemu_log_mask(LOG_UNIMP, 6505 "arm: unlinked context breakpoint types not implemented\n"); 6506 return; 6507 case 9: /* linked VMID match (reserved if no EL2) */ 6508 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6509 case 3: /* linked context ID match */ 6510 default: 6511 /* We must generate no events for Linked context matches (unless 6512 * they are linked to by some other bp/wp, which is handled in 6513 * updates for the linking bp/wp). We choose to also generate no events 6514 * for reserved values. 6515 */ 6516 return; 6517 } 6518 6519 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6520 } 6521 6522 void hw_breakpoint_update_all(ARMCPU *cpu) 6523 { 6524 int i; 6525 CPUARMState *env = &cpu->env; 6526 6527 /* Completely clear out existing QEMU breakpoints and our array, to 6528 * avoid possible stale entries following migration load. 6529 */ 6530 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6531 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6532 6533 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6534 hw_breakpoint_update(cpu, i); 6535 } 6536 } 6537 6538 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6539 uint64_t value) 6540 { 6541 ARMCPU *cpu = env_archcpu(env); 6542 int i = ri->crm; 6543 6544 raw_write(env, ri, value); 6545 hw_breakpoint_update(cpu, i); 6546 } 6547 6548 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6549 uint64_t value) 6550 { 6551 ARMCPU *cpu = env_archcpu(env); 6552 int i = ri->crm; 6553 6554 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6555 * copy of BAS[0]. 6556 */ 6557 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6558 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6559 6560 raw_write(env, ri, value); 6561 hw_breakpoint_update(cpu, i); 6562 } 6563 6564 static void define_debug_regs(ARMCPU *cpu) 6565 { 6566 /* Define v7 and v8 architectural debug registers. 6567 * These are just dummy implementations for now. 6568 */ 6569 int i; 6570 int wrps, brps, ctx_cmps; 6571 6572 /* 6573 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6574 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6575 * the register must not exist for this cpu. 6576 */ 6577 if (cpu->isar.dbgdidr != 0) { 6578 ARMCPRegInfo dbgdidr = { 6579 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6580 .opc1 = 0, .opc2 = 0, 6581 .access = PL0_R, .accessfn = access_tda, 6582 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6583 }; 6584 define_one_arm_cp_reg(cpu, &dbgdidr); 6585 } 6586 6587 /* Note that all these register fields hold "number of Xs minus 1". */ 6588 brps = arm_num_brps(cpu); 6589 wrps = arm_num_wrps(cpu); 6590 ctx_cmps = arm_num_ctx_cmps(cpu); 6591 6592 assert(ctx_cmps <= brps); 6593 6594 define_arm_cp_regs(cpu, debug_cp_reginfo); 6595 6596 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6597 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6598 } 6599 6600 for (i = 0; i < brps; i++) { 6601 ARMCPRegInfo dbgregs[] = { 6602 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6603 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6604 .access = PL1_RW, .accessfn = access_tda, 6605 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6606 .writefn = dbgbvr_write, .raw_writefn = raw_write 6607 }, 6608 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6609 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6610 .access = PL1_RW, .accessfn = access_tda, 6611 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6612 .writefn = dbgbcr_write, .raw_writefn = raw_write 6613 }, 6614 REGINFO_SENTINEL 6615 }; 6616 define_arm_cp_regs(cpu, dbgregs); 6617 } 6618 6619 for (i = 0; i < wrps; i++) { 6620 ARMCPRegInfo dbgregs[] = { 6621 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6622 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6623 .access = PL1_RW, .accessfn = access_tda, 6624 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6625 .writefn = dbgwvr_write, .raw_writefn = raw_write 6626 }, 6627 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6628 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6629 .access = PL1_RW, .accessfn = access_tda, 6630 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6631 .writefn = dbgwcr_write, .raw_writefn = raw_write 6632 }, 6633 REGINFO_SENTINEL 6634 }; 6635 define_arm_cp_regs(cpu, dbgregs); 6636 } 6637 } 6638 6639 static void define_pmu_regs(ARMCPU *cpu) 6640 { 6641 /* 6642 * v7 performance monitor control register: same implementor 6643 * field as main ID register, and we implement four counters in 6644 * addition to the cycle count register. 6645 */ 6646 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6647 ARMCPRegInfo pmcr = { 6648 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6649 .access = PL0_RW, 6650 .type = ARM_CP_IO | ARM_CP_ALIAS, 6651 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6652 .accessfn = pmreg_access, .writefn = pmcr_write, 6653 .raw_writefn = raw_write, 6654 }; 6655 ARMCPRegInfo pmcr64 = { 6656 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6657 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6658 .access = PL0_RW, .accessfn = pmreg_access, 6659 .type = ARM_CP_IO, 6660 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6661 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6662 PMCRLC, 6663 .writefn = pmcr_write, .raw_writefn = raw_write, 6664 }; 6665 define_one_arm_cp_reg(cpu, &pmcr); 6666 define_one_arm_cp_reg(cpu, &pmcr64); 6667 for (i = 0; i < pmcrn; i++) { 6668 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6669 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6670 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6671 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6672 ARMCPRegInfo pmev_regs[] = { 6673 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6674 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6675 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6676 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6677 .accessfn = pmreg_access }, 6678 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6679 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6680 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6681 .type = ARM_CP_IO, 6682 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6683 .raw_readfn = pmevcntr_rawread, 6684 .raw_writefn = pmevcntr_rawwrite }, 6685 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6686 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6687 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6688 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6689 .accessfn = pmreg_access }, 6690 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6691 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6692 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6693 .type = ARM_CP_IO, 6694 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6695 .raw_writefn = pmevtyper_rawwrite }, 6696 REGINFO_SENTINEL 6697 }; 6698 define_arm_cp_regs(cpu, pmev_regs); 6699 g_free(pmevcntr_name); 6700 g_free(pmevcntr_el0_name); 6701 g_free(pmevtyper_name); 6702 g_free(pmevtyper_el0_name); 6703 } 6704 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6705 ARMCPRegInfo v81_pmu_regs[] = { 6706 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6707 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6708 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6709 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6710 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6711 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6712 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6713 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6714 REGINFO_SENTINEL 6715 }; 6716 define_arm_cp_regs(cpu, v81_pmu_regs); 6717 } 6718 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6719 static const ARMCPRegInfo v84_pmmir = { 6720 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6721 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6722 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6723 .resetvalue = 0 6724 }; 6725 define_one_arm_cp_reg(cpu, &v84_pmmir); 6726 } 6727 } 6728 6729 /* We don't know until after realize whether there's a GICv3 6730 * attached, and that is what registers the gicv3 sysregs. 6731 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6732 * at runtime. 6733 */ 6734 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6735 { 6736 ARMCPU *cpu = env_archcpu(env); 6737 uint64_t pfr1 = cpu->isar.id_pfr1; 6738 6739 if (env->gicv3state) { 6740 pfr1 |= 1 << 28; 6741 } 6742 return pfr1; 6743 } 6744 6745 #ifndef CONFIG_USER_ONLY 6746 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6747 { 6748 ARMCPU *cpu = env_archcpu(env); 6749 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6750 6751 if (env->gicv3state) { 6752 pfr0 |= 1 << 24; 6753 } 6754 return pfr0; 6755 } 6756 #endif 6757 6758 /* Shared logic between LORID and the rest of the LOR* registers. 6759 * Secure state exclusion has already been dealt with. 6760 */ 6761 static CPAccessResult access_lor_ns(CPUARMState *env, 6762 const ARMCPRegInfo *ri, bool isread) 6763 { 6764 int el = arm_current_el(env); 6765 6766 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6767 return CP_ACCESS_TRAP_EL2; 6768 } 6769 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6770 return CP_ACCESS_TRAP_EL3; 6771 } 6772 return CP_ACCESS_OK; 6773 } 6774 6775 static CPAccessResult access_lor_other(CPUARMState *env, 6776 const ARMCPRegInfo *ri, bool isread) 6777 { 6778 if (arm_is_secure_below_el3(env)) { 6779 /* Access denied in secure mode. */ 6780 return CP_ACCESS_TRAP; 6781 } 6782 return access_lor_ns(env, ri, isread); 6783 } 6784 6785 /* 6786 * A trivial implementation of ARMv8.1-LOR leaves all of these 6787 * registers fixed at 0, which indicates that there are zero 6788 * supported Limited Ordering regions. 6789 */ 6790 static const ARMCPRegInfo lor_reginfo[] = { 6791 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6792 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6793 .access = PL1_RW, .accessfn = access_lor_other, 6794 .type = ARM_CP_CONST, .resetvalue = 0 }, 6795 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6796 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6797 .access = PL1_RW, .accessfn = access_lor_other, 6798 .type = ARM_CP_CONST, .resetvalue = 0 }, 6799 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6800 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6801 .access = PL1_RW, .accessfn = access_lor_other, 6802 .type = ARM_CP_CONST, .resetvalue = 0 }, 6803 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6804 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6805 .access = PL1_RW, .accessfn = access_lor_other, 6806 .type = ARM_CP_CONST, .resetvalue = 0 }, 6807 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6808 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6809 .access = PL1_R, .accessfn = access_lor_ns, 6810 .type = ARM_CP_CONST, .resetvalue = 0 }, 6811 REGINFO_SENTINEL 6812 }; 6813 6814 #ifdef TARGET_AARCH64 6815 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6816 bool isread) 6817 { 6818 int el = arm_current_el(env); 6819 6820 if (el < 2 && 6821 arm_feature(env, ARM_FEATURE_EL2) && 6822 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6823 return CP_ACCESS_TRAP_EL2; 6824 } 6825 if (el < 3 && 6826 arm_feature(env, ARM_FEATURE_EL3) && 6827 !(env->cp15.scr_el3 & SCR_APK)) { 6828 return CP_ACCESS_TRAP_EL3; 6829 } 6830 return CP_ACCESS_OK; 6831 } 6832 6833 static const ARMCPRegInfo pauth_reginfo[] = { 6834 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6836 .access = PL1_RW, .accessfn = access_pauth, 6837 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6838 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6839 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6840 .access = PL1_RW, .accessfn = access_pauth, 6841 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6842 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6843 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6844 .access = PL1_RW, .accessfn = access_pauth, 6845 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6846 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6847 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6848 .access = PL1_RW, .accessfn = access_pauth, 6849 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6850 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6851 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6852 .access = PL1_RW, .accessfn = access_pauth, 6853 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6854 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6855 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6856 .access = PL1_RW, .accessfn = access_pauth, 6857 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6858 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6859 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6860 .access = PL1_RW, .accessfn = access_pauth, 6861 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6862 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6863 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6864 .access = PL1_RW, .accessfn = access_pauth, 6865 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6866 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6867 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6868 .access = PL1_RW, .accessfn = access_pauth, 6869 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6870 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6871 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6872 .access = PL1_RW, .accessfn = access_pauth, 6873 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6874 REGINFO_SENTINEL 6875 }; 6876 6877 static const ARMCPRegInfo tlbirange_reginfo[] = { 6878 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6880 .access = PL1_W, .type = ARM_CP_NO_RAW, 6881 .writefn = tlbi_aa64_rvae1is_write }, 6882 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6884 .access = PL1_W, .type = ARM_CP_NO_RAW, 6885 .writefn = tlbi_aa64_rvae1is_write }, 6886 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6888 .access = PL1_W, .type = ARM_CP_NO_RAW, 6889 .writefn = tlbi_aa64_rvae1is_write }, 6890 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6892 .access = PL1_W, .type = ARM_CP_NO_RAW, 6893 .writefn = tlbi_aa64_rvae1is_write }, 6894 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6896 .access = PL1_W, .type = ARM_CP_NO_RAW, 6897 .writefn = tlbi_aa64_rvae1is_write }, 6898 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6900 .access = PL1_W, .type = ARM_CP_NO_RAW, 6901 .writefn = tlbi_aa64_rvae1is_write }, 6902 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6904 .access = PL1_W, .type = ARM_CP_NO_RAW, 6905 .writefn = tlbi_aa64_rvae1is_write }, 6906 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6907 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6908 .access = PL1_W, .type = ARM_CP_NO_RAW, 6909 .writefn = tlbi_aa64_rvae1is_write }, 6910 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6911 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6912 .access = PL1_W, .type = ARM_CP_NO_RAW, 6913 .writefn = tlbi_aa64_rvae1_write }, 6914 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6915 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6916 .access = PL1_W, .type = ARM_CP_NO_RAW, 6917 .writefn = tlbi_aa64_rvae1_write }, 6918 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6919 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6920 .access = PL1_W, .type = ARM_CP_NO_RAW, 6921 .writefn = tlbi_aa64_rvae1_write }, 6922 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6923 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6924 .access = PL1_W, .type = ARM_CP_NO_RAW, 6925 .writefn = tlbi_aa64_rvae1_write }, 6926 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6928 .access = PL2_W, .type = ARM_CP_NOP }, 6929 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6930 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6931 .access = PL2_W, .type = ARM_CP_NOP }, 6932 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6933 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6934 .access = PL2_W, .type = ARM_CP_NO_RAW, 6935 .writefn = tlbi_aa64_rvae2is_write }, 6936 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6937 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6938 .access = PL2_W, .type = ARM_CP_NO_RAW, 6939 .writefn = tlbi_aa64_rvae2is_write }, 6940 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6941 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6942 .access = PL2_W, .type = ARM_CP_NOP }, 6943 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6944 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6945 .access = PL2_W, .type = ARM_CP_NOP }, 6946 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6947 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6948 .access = PL2_W, .type = ARM_CP_NO_RAW, 6949 .writefn = tlbi_aa64_rvae2is_write }, 6950 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6951 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6952 .access = PL2_W, .type = ARM_CP_NO_RAW, 6953 .writefn = tlbi_aa64_rvae2is_write }, 6954 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6955 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6956 .access = PL2_W, .type = ARM_CP_NO_RAW, 6957 .writefn = tlbi_aa64_rvae2_write }, 6958 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6959 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6960 .access = PL2_W, .type = ARM_CP_NO_RAW, 6961 .writefn = tlbi_aa64_rvae2_write }, 6962 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6963 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6964 .access = PL3_W, .type = ARM_CP_NO_RAW, 6965 .writefn = tlbi_aa64_rvae3is_write }, 6966 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6967 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6968 .access = PL3_W, .type = ARM_CP_NO_RAW, 6969 .writefn = tlbi_aa64_rvae3is_write }, 6970 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6971 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6972 .access = PL3_W, .type = ARM_CP_NO_RAW, 6973 .writefn = tlbi_aa64_rvae3is_write }, 6974 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6975 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6976 .access = PL3_W, .type = ARM_CP_NO_RAW, 6977 .writefn = tlbi_aa64_rvae3is_write }, 6978 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6979 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6980 .access = PL3_W, .type = ARM_CP_NO_RAW, 6981 .writefn = tlbi_aa64_rvae3_write }, 6982 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6983 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6984 .access = PL3_W, .type = ARM_CP_NO_RAW, 6985 .writefn = tlbi_aa64_rvae3_write }, 6986 REGINFO_SENTINEL 6987 }; 6988 6989 static const ARMCPRegInfo tlbios_reginfo[] = { 6990 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6991 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6992 .access = PL1_W, .type = ARM_CP_NO_RAW, 6993 .writefn = tlbi_aa64_vmalle1is_write }, 6994 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6995 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6996 .access = PL1_W, .type = ARM_CP_NO_RAW, 6997 .writefn = tlbi_aa64_vae1is_write }, 6998 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6999 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7000 .access = PL1_W, .type = ARM_CP_NO_RAW, 7001 .writefn = tlbi_aa64_vmalle1is_write }, 7002 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7003 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7004 .access = PL1_W, .type = ARM_CP_NO_RAW, 7005 .writefn = tlbi_aa64_vae1is_write }, 7006 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7007 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7008 .access = PL1_W, .type = ARM_CP_NO_RAW, 7009 .writefn = tlbi_aa64_vae1is_write }, 7010 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7011 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7012 .access = PL1_W, .type = ARM_CP_NO_RAW, 7013 .writefn = tlbi_aa64_vae1is_write }, 7014 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7015 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7016 .access = PL2_W, .type = ARM_CP_NO_RAW, 7017 .writefn = tlbi_aa64_alle2is_write }, 7018 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7019 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7020 .access = PL2_W, .type = ARM_CP_NO_RAW, 7021 .writefn = tlbi_aa64_vae2is_write }, 7022 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7023 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7024 .access = PL2_W, .type = ARM_CP_NO_RAW, 7025 .writefn = tlbi_aa64_alle1is_write }, 7026 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7027 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7028 .access = PL2_W, .type = ARM_CP_NO_RAW, 7029 .writefn = tlbi_aa64_vae2is_write }, 7030 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7031 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7032 .access = PL2_W, .type = ARM_CP_NO_RAW, 7033 .writefn = tlbi_aa64_alle1is_write }, 7034 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7035 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7036 .access = PL2_W, .type = ARM_CP_NOP }, 7037 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7038 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7039 .access = PL2_W, .type = ARM_CP_NOP }, 7040 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7041 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7042 .access = PL2_W, .type = ARM_CP_NOP }, 7043 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7045 .access = PL2_W, .type = ARM_CP_NOP }, 7046 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7047 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7048 .access = PL3_W, .type = ARM_CP_NO_RAW, 7049 .writefn = tlbi_aa64_alle3is_write }, 7050 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7051 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7052 .access = PL3_W, .type = ARM_CP_NO_RAW, 7053 .writefn = tlbi_aa64_vae3is_write }, 7054 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7055 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7056 .access = PL3_W, .type = ARM_CP_NO_RAW, 7057 .writefn = tlbi_aa64_vae3is_write }, 7058 REGINFO_SENTINEL 7059 }; 7060 7061 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7062 { 7063 Error *err = NULL; 7064 uint64_t ret; 7065 7066 /* Success sets NZCV = 0000. */ 7067 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7068 7069 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7070 /* 7071 * ??? Failed, for unknown reasons in the crypto subsystem. 7072 * The best we can do is log the reason and return the 7073 * timed-out indication to the guest. There is no reason 7074 * we know to expect this failure to be transitory, so the 7075 * guest may well hang retrying the operation. 7076 */ 7077 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7078 ri->name, error_get_pretty(err)); 7079 error_free(err); 7080 7081 env->ZF = 0; /* NZCF = 0100 */ 7082 return 0; 7083 } 7084 return ret; 7085 } 7086 7087 /* We do not support re-seeding, so the two registers operate the same. */ 7088 static const ARMCPRegInfo rndr_reginfo[] = { 7089 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7090 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7091 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7092 .access = PL0_R, .readfn = rndr_readfn }, 7093 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7094 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7095 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7096 .access = PL0_R, .readfn = rndr_readfn }, 7097 REGINFO_SENTINEL 7098 }; 7099 7100 #ifndef CONFIG_USER_ONLY 7101 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7102 uint64_t value) 7103 { 7104 ARMCPU *cpu = env_archcpu(env); 7105 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7106 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7107 uint64_t vaddr_in = (uint64_t) value; 7108 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7109 void *haddr; 7110 int mem_idx = cpu_mmu_index(env, false); 7111 7112 /* This won't be crossing page boundaries */ 7113 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7114 if (haddr) { 7115 7116 ram_addr_t offset; 7117 MemoryRegion *mr; 7118 7119 /* RCU lock is already being held */ 7120 mr = memory_region_from_host(haddr, &offset); 7121 7122 if (mr) { 7123 memory_region_writeback(mr, offset, dline_size); 7124 } 7125 } 7126 } 7127 7128 static const ARMCPRegInfo dcpop_reg[] = { 7129 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7130 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7131 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7132 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7133 REGINFO_SENTINEL 7134 }; 7135 7136 static const ARMCPRegInfo dcpodp_reg[] = { 7137 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7138 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7139 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7140 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7141 REGINFO_SENTINEL 7142 }; 7143 #endif /*CONFIG_USER_ONLY*/ 7144 7145 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7146 bool isread) 7147 { 7148 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7149 return CP_ACCESS_TRAP_EL2; 7150 } 7151 7152 return CP_ACCESS_OK; 7153 } 7154 7155 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7156 bool isread) 7157 { 7158 int el = arm_current_el(env); 7159 7160 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7161 uint64_t hcr = arm_hcr_el2_eff(env); 7162 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7163 return CP_ACCESS_TRAP_EL2; 7164 } 7165 } 7166 if (el < 3 && 7167 arm_feature(env, ARM_FEATURE_EL3) && 7168 !(env->cp15.scr_el3 & SCR_ATA)) { 7169 return CP_ACCESS_TRAP_EL3; 7170 } 7171 return CP_ACCESS_OK; 7172 } 7173 7174 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7175 { 7176 return env->pstate & PSTATE_TCO; 7177 } 7178 7179 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7180 { 7181 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7182 } 7183 7184 static const ARMCPRegInfo mte_reginfo[] = { 7185 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7186 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7187 .access = PL1_RW, .accessfn = access_mte, 7188 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7189 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7190 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7191 .access = PL1_RW, .accessfn = access_mte, 7192 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7193 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7194 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7195 .access = PL2_RW, .accessfn = access_mte, 7196 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7197 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7198 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7199 .access = PL3_RW, 7200 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7201 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7202 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7203 .access = PL1_RW, .accessfn = access_mte, 7204 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7205 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7206 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7207 .access = PL1_RW, .accessfn = access_mte, 7208 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7209 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7210 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7211 .access = PL1_R, .accessfn = access_aa64_tid5, 7212 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7213 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7214 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7215 .type = ARM_CP_NO_RAW, 7216 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7217 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7219 .type = ARM_CP_NOP, .access = PL1_W, 7220 .accessfn = aa64_cacheop_poc_access }, 7221 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7222 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7223 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7224 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7225 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7226 .type = ARM_CP_NOP, .access = PL1_W, 7227 .accessfn = aa64_cacheop_poc_access }, 7228 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7229 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7230 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7231 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7232 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7233 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7234 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7235 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7236 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7237 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7238 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7239 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7240 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7241 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7242 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7243 REGINFO_SENTINEL 7244 }; 7245 7246 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7247 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7248 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7249 .type = ARM_CP_CONST, .access = PL0_RW, }, 7250 REGINFO_SENTINEL 7251 }; 7252 7253 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7254 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7255 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7256 .type = ARM_CP_NOP, .access = PL0_W, 7257 .accessfn = aa64_cacheop_poc_access }, 7258 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7259 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7260 .type = ARM_CP_NOP, .access = PL0_W, 7261 .accessfn = aa64_cacheop_poc_access }, 7262 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7263 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7264 .type = ARM_CP_NOP, .access = PL0_W, 7265 .accessfn = aa64_cacheop_poc_access }, 7266 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7267 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7268 .type = ARM_CP_NOP, .access = PL0_W, 7269 .accessfn = aa64_cacheop_poc_access }, 7270 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7271 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7272 .type = ARM_CP_NOP, .access = PL0_W, 7273 .accessfn = aa64_cacheop_poc_access }, 7274 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7275 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7276 .type = ARM_CP_NOP, .access = PL0_W, 7277 .accessfn = aa64_cacheop_poc_access }, 7278 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7279 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7280 .type = ARM_CP_NOP, .access = PL0_W, 7281 .accessfn = aa64_cacheop_poc_access }, 7282 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7283 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7284 .type = ARM_CP_NOP, .access = PL0_W, 7285 .accessfn = aa64_cacheop_poc_access }, 7286 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7287 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7288 .access = PL0_W, .type = ARM_CP_DC_GVA, 7289 #ifndef CONFIG_USER_ONLY 7290 /* Avoid overhead of an access check that always passes in user-mode */ 7291 .accessfn = aa64_zva_access, 7292 #endif 7293 }, 7294 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7295 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7296 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7297 #ifndef CONFIG_USER_ONLY 7298 /* Avoid overhead of an access check that always passes in user-mode */ 7299 .accessfn = aa64_zva_access, 7300 #endif 7301 }, 7302 REGINFO_SENTINEL 7303 }; 7304 7305 #endif 7306 7307 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7308 bool isread) 7309 { 7310 int el = arm_current_el(env); 7311 7312 if (el == 0) { 7313 uint64_t sctlr = arm_sctlr(env, el); 7314 if (!(sctlr & SCTLR_EnRCTX)) { 7315 return CP_ACCESS_TRAP; 7316 } 7317 } else if (el == 1) { 7318 uint64_t hcr = arm_hcr_el2_eff(env); 7319 if (hcr & HCR_NV) { 7320 return CP_ACCESS_TRAP_EL2; 7321 } 7322 } 7323 return CP_ACCESS_OK; 7324 } 7325 7326 static const ARMCPRegInfo predinv_reginfo[] = { 7327 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7328 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7329 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7330 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7331 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7332 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7333 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7334 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7335 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7336 /* 7337 * Note the AArch32 opcodes have a different OPC1. 7338 */ 7339 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7340 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7341 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7342 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7343 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7344 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7345 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7346 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7347 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7348 REGINFO_SENTINEL 7349 }; 7350 7351 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7352 { 7353 /* Read the high 32 bits of the current CCSIDR */ 7354 return extract64(ccsidr_read(env, ri), 32, 32); 7355 } 7356 7357 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7358 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7359 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7360 .access = PL1_R, 7361 .accessfn = access_aa64_tid2, 7362 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7363 REGINFO_SENTINEL 7364 }; 7365 7366 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7367 bool isread) 7368 { 7369 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7370 return CP_ACCESS_TRAP_EL2; 7371 } 7372 7373 return CP_ACCESS_OK; 7374 } 7375 7376 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7377 bool isread) 7378 { 7379 if (arm_feature(env, ARM_FEATURE_V8)) { 7380 return access_aa64_tid3(env, ri, isread); 7381 } 7382 7383 return CP_ACCESS_OK; 7384 } 7385 7386 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7387 bool isread) 7388 { 7389 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7390 return CP_ACCESS_TRAP_EL2; 7391 } 7392 7393 return CP_ACCESS_OK; 7394 } 7395 7396 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7397 const ARMCPRegInfo *ri, bool isread) 7398 { 7399 /* 7400 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7401 * in v7A, not in v8A. 7402 */ 7403 if (!arm_feature(env, ARM_FEATURE_V8) && 7404 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7405 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7406 return CP_ACCESS_TRAP_EL2; 7407 } 7408 return CP_ACCESS_OK; 7409 } 7410 7411 static const ARMCPRegInfo jazelle_regs[] = { 7412 { .name = "JIDR", 7413 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7414 .access = PL1_R, .accessfn = access_jazelle, 7415 .type = ARM_CP_CONST, .resetvalue = 0 }, 7416 { .name = "JOSCR", 7417 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7418 .accessfn = access_joscr_jmcr, 7419 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7420 { .name = "JMCR", 7421 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7422 .accessfn = access_joscr_jmcr, 7423 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7424 REGINFO_SENTINEL 7425 }; 7426 7427 static const ARMCPRegInfo vhe_reginfo[] = { 7428 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7429 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7430 .access = PL2_RW, 7431 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7432 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7433 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7434 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7435 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7436 #ifndef CONFIG_USER_ONLY 7437 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7438 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7439 .fieldoffset = 7440 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7441 .type = ARM_CP_IO, .access = PL2_RW, 7442 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7443 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7444 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7445 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7446 .resetfn = gt_hv_timer_reset, 7447 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7448 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7449 .type = ARM_CP_IO, 7450 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7451 .access = PL2_RW, 7452 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7453 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7454 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7455 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7456 .type = ARM_CP_IO | ARM_CP_ALIAS, 7457 .access = PL2_RW, .accessfn = e2h_access, 7458 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7459 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7460 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7461 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7462 .type = ARM_CP_IO | ARM_CP_ALIAS, 7463 .access = PL2_RW, .accessfn = e2h_access, 7464 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7465 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7466 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7467 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7468 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7469 .access = PL2_RW, .accessfn = e2h_access, 7470 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7471 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7472 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7473 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7474 .access = PL2_RW, .accessfn = e2h_access, 7475 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7476 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7477 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7478 .type = ARM_CP_IO | ARM_CP_ALIAS, 7479 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7480 .access = PL2_RW, .accessfn = e2h_access, 7481 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7482 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7483 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7484 .type = ARM_CP_IO | ARM_CP_ALIAS, 7485 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7486 .access = PL2_RW, .accessfn = e2h_access, 7487 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7488 #endif 7489 REGINFO_SENTINEL 7490 }; 7491 7492 #ifndef CONFIG_USER_ONLY 7493 static const ARMCPRegInfo ats1e1_reginfo[] = { 7494 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7495 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7496 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7497 .writefn = ats_write64 }, 7498 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7499 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7500 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7501 .writefn = ats_write64 }, 7502 REGINFO_SENTINEL 7503 }; 7504 7505 static const ARMCPRegInfo ats1cp_reginfo[] = { 7506 { .name = "ATS1CPRP", 7507 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7508 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7509 .writefn = ats_write }, 7510 { .name = "ATS1CPWP", 7511 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7512 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7513 .writefn = ats_write }, 7514 REGINFO_SENTINEL 7515 }; 7516 #endif 7517 7518 /* 7519 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7520 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7521 * is non-zero, which is never for ARMv7, optionally in ARMv8 7522 * and mandatorily for ARMv8.2 and up. 7523 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7524 * implementation is RAZ/WI we can ignore this detail, as we 7525 * do for ACTLR. 7526 */ 7527 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7528 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7529 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7530 .access = PL1_RW, .accessfn = access_tacr, 7531 .type = ARM_CP_CONST, .resetvalue = 0 }, 7532 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7533 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7534 .access = PL2_RW, .type = ARM_CP_CONST, 7535 .resetvalue = 0 }, 7536 REGINFO_SENTINEL 7537 }; 7538 7539 void register_cp_regs_for_features(ARMCPU *cpu) 7540 { 7541 /* Register all the coprocessor registers based on feature bits */ 7542 CPUARMState *env = &cpu->env; 7543 if (arm_feature(env, ARM_FEATURE_M)) { 7544 /* M profile has no coprocessor registers */ 7545 return; 7546 } 7547 7548 define_arm_cp_regs(cpu, cp_reginfo); 7549 if (!arm_feature(env, ARM_FEATURE_V8)) { 7550 /* Must go early as it is full of wildcards that may be 7551 * overridden by later definitions. 7552 */ 7553 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7554 } 7555 7556 if (arm_feature(env, ARM_FEATURE_V6)) { 7557 /* The ID registers all have impdef reset values */ 7558 ARMCPRegInfo v6_idregs[] = { 7559 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7561 .access = PL1_R, .type = ARM_CP_CONST, 7562 .accessfn = access_aa32_tid3, 7563 .resetvalue = cpu->isar.id_pfr0 }, 7564 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7565 * the value of the GIC field until after we define these regs. 7566 */ 7567 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7569 .access = PL1_R, .type = ARM_CP_NO_RAW, 7570 .accessfn = access_aa32_tid3, 7571 .readfn = id_pfr1_read, 7572 .writefn = arm_cp_write_ignore }, 7573 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7575 .access = PL1_R, .type = ARM_CP_CONST, 7576 .accessfn = access_aa32_tid3, 7577 .resetvalue = cpu->isar.id_dfr0 }, 7578 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7580 .access = PL1_R, .type = ARM_CP_CONST, 7581 .accessfn = access_aa32_tid3, 7582 .resetvalue = cpu->id_afr0 }, 7583 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7585 .access = PL1_R, .type = ARM_CP_CONST, 7586 .accessfn = access_aa32_tid3, 7587 .resetvalue = cpu->isar.id_mmfr0 }, 7588 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7590 .access = PL1_R, .type = ARM_CP_CONST, 7591 .accessfn = access_aa32_tid3, 7592 .resetvalue = cpu->isar.id_mmfr1 }, 7593 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7594 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7595 .access = PL1_R, .type = ARM_CP_CONST, 7596 .accessfn = access_aa32_tid3, 7597 .resetvalue = cpu->isar.id_mmfr2 }, 7598 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7600 .access = PL1_R, .type = ARM_CP_CONST, 7601 .accessfn = access_aa32_tid3, 7602 .resetvalue = cpu->isar.id_mmfr3 }, 7603 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7605 .access = PL1_R, .type = ARM_CP_CONST, 7606 .accessfn = access_aa32_tid3, 7607 .resetvalue = cpu->isar.id_isar0 }, 7608 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7610 .access = PL1_R, .type = ARM_CP_CONST, 7611 .accessfn = access_aa32_tid3, 7612 .resetvalue = cpu->isar.id_isar1 }, 7613 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7614 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7615 .access = PL1_R, .type = ARM_CP_CONST, 7616 .accessfn = access_aa32_tid3, 7617 .resetvalue = cpu->isar.id_isar2 }, 7618 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7620 .access = PL1_R, .type = ARM_CP_CONST, 7621 .accessfn = access_aa32_tid3, 7622 .resetvalue = cpu->isar.id_isar3 }, 7623 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7625 .access = PL1_R, .type = ARM_CP_CONST, 7626 .accessfn = access_aa32_tid3, 7627 .resetvalue = cpu->isar.id_isar4 }, 7628 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7629 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7630 .access = PL1_R, .type = ARM_CP_CONST, 7631 .accessfn = access_aa32_tid3, 7632 .resetvalue = cpu->isar.id_isar5 }, 7633 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7634 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7635 .access = PL1_R, .type = ARM_CP_CONST, 7636 .accessfn = access_aa32_tid3, 7637 .resetvalue = cpu->isar.id_mmfr4 }, 7638 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7639 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7640 .access = PL1_R, .type = ARM_CP_CONST, 7641 .accessfn = access_aa32_tid3, 7642 .resetvalue = cpu->isar.id_isar6 }, 7643 REGINFO_SENTINEL 7644 }; 7645 define_arm_cp_regs(cpu, v6_idregs); 7646 define_arm_cp_regs(cpu, v6_cp_reginfo); 7647 } else { 7648 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7649 } 7650 if (arm_feature(env, ARM_FEATURE_V6K)) { 7651 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7652 } 7653 if (arm_feature(env, ARM_FEATURE_V7MP) && 7654 !arm_feature(env, ARM_FEATURE_PMSA)) { 7655 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7656 } 7657 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7658 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7659 } 7660 if (arm_feature(env, ARM_FEATURE_V7)) { 7661 ARMCPRegInfo clidr = { 7662 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7663 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7664 .access = PL1_R, .type = ARM_CP_CONST, 7665 .accessfn = access_aa64_tid2, 7666 .resetvalue = cpu->clidr 7667 }; 7668 define_one_arm_cp_reg(cpu, &clidr); 7669 define_arm_cp_regs(cpu, v7_cp_reginfo); 7670 define_debug_regs(cpu); 7671 define_pmu_regs(cpu); 7672 } else { 7673 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7674 } 7675 if (arm_feature(env, ARM_FEATURE_V8)) { 7676 /* AArch64 ID registers, which all have impdef reset values. 7677 * Note that within the ID register ranges the unused slots 7678 * must all RAZ, not UNDEF; future architecture versions may 7679 * define new registers here. 7680 */ 7681 ARMCPRegInfo v8_idregs[] = { 7682 /* 7683 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7684 * emulation because we don't know the right value for the 7685 * GIC field until after we define these regs. 7686 */ 7687 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7688 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7689 .access = PL1_R, 7690 #ifdef CONFIG_USER_ONLY 7691 .type = ARM_CP_CONST, 7692 .resetvalue = cpu->isar.id_aa64pfr0 7693 #else 7694 .type = ARM_CP_NO_RAW, 7695 .accessfn = access_aa64_tid3, 7696 .readfn = id_aa64pfr0_read, 7697 .writefn = arm_cp_write_ignore 7698 #endif 7699 }, 7700 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7701 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7702 .access = PL1_R, .type = ARM_CP_CONST, 7703 .accessfn = access_aa64_tid3, 7704 .resetvalue = cpu->isar.id_aa64pfr1}, 7705 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7707 .access = PL1_R, .type = ARM_CP_CONST, 7708 .accessfn = access_aa64_tid3, 7709 .resetvalue = 0 }, 7710 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7712 .access = PL1_R, .type = ARM_CP_CONST, 7713 .accessfn = access_aa64_tid3, 7714 .resetvalue = 0 }, 7715 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7717 .access = PL1_R, .type = ARM_CP_CONST, 7718 .accessfn = access_aa64_tid3, 7719 .resetvalue = cpu->isar.id_aa64zfr0 }, 7720 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7722 .access = PL1_R, .type = ARM_CP_CONST, 7723 .accessfn = access_aa64_tid3, 7724 .resetvalue = 0 }, 7725 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7727 .access = PL1_R, .type = ARM_CP_CONST, 7728 .accessfn = access_aa64_tid3, 7729 .resetvalue = 0 }, 7730 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7732 .access = PL1_R, .type = ARM_CP_CONST, 7733 .accessfn = access_aa64_tid3, 7734 .resetvalue = 0 }, 7735 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7737 .access = PL1_R, .type = ARM_CP_CONST, 7738 .accessfn = access_aa64_tid3, 7739 .resetvalue = cpu->isar.id_aa64dfr0 }, 7740 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7741 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7742 .access = PL1_R, .type = ARM_CP_CONST, 7743 .accessfn = access_aa64_tid3, 7744 .resetvalue = cpu->isar.id_aa64dfr1 }, 7745 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7747 .access = PL1_R, .type = ARM_CP_CONST, 7748 .accessfn = access_aa64_tid3, 7749 .resetvalue = 0 }, 7750 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7752 .access = PL1_R, .type = ARM_CP_CONST, 7753 .accessfn = access_aa64_tid3, 7754 .resetvalue = 0 }, 7755 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7757 .access = PL1_R, .type = ARM_CP_CONST, 7758 .accessfn = access_aa64_tid3, 7759 .resetvalue = cpu->id_aa64afr0 }, 7760 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7762 .access = PL1_R, .type = ARM_CP_CONST, 7763 .accessfn = access_aa64_tid3, 7764 .resetvalue = cpu->id_aa64afr1 }, 7765 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7767 .access = PL1_R, .type = ARM_CP_CONST, 7768 .accessfn = access_aa64_tid3, 7769 .resetvalue = 0 }, 7770 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7772 .access = PL1_R, .type = ARM_CP_CONST, 7773 .accessfn = access_aa64_tid3, 7774 .resetvalue = 0 }, 7775 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7777 .access = PL1_R, .type = ARM_CP_CONST, 7778 .accessfn = access_aa64_tid3, 7779 .resetvalue = cpu->isar.id_aa64isar0 }, 7780 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7782 .access = PL1_R, .type = ARM_CP_CONST, 7783 .accessfn = access_aa64_tid3, 7784 .resetvalue = cpu->isar.id_aa64isar1 }, 7785 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7787 .access = PL1_R, .type = ARM_CP_CONST, 7788 .accessfn = access_aa64_tid3, 7789 .resetvalue = 0 }, 7790 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7792 .access = PL1_R, .type = ARM_CP_CONST, 7793 .accessfn = access_aa64_tid3, 7794 .resetvalue = 0 }, 7795 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7797 .access = PL1_R, .type = ARM_CP_CONST, 7798 .accessfn = access_aa64_tid3, 7799 .resetvalue = 0 }, 7800 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7802 .access = PL1_R, .type = ARM_CP_CONST, 7803 .accessfn = access_aa64_tid3, 7804 .resetvalue = 0 }, 7805 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7807 .access = PL1_R, .type = ARM_CP_CONST, 7808 .accessfn = access_aa64_tid3, 7809 .resetvalue = 0 }, 7810 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7812 .access = PL1_R, .type = ARM_CP_CONST, 7813 .accessfn = access_aa64_tid3, 7814 .resetvalue = 0 }, 7815 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7817 .access = PL1_R, .type = ARM_CP_CONST, 7818 .accessfn = access_aa64_tid3, 7819 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7820 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7822 .access = PL1_R, .type = ARM_CP_CONST, 7823 .accessfn = access_aa64_tid3, 7824 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7825 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7827 .access = PL1_R, .type = ARM_CP_CONST, 7828 .accessfn = access_aa64_tid3, 7829 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7830 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7832 .access = PL1_R, .type = ARM_CP_CONST, 7833 .accessfn = access_aa64_tid3, 7834 .resetvalue = 0 }, 7835 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7837 .access = PL1_R, .type = ARM_CP_CONST, 7838 .accessfn = access_aa64_tid3, 7839 .resetvalue = 0 }, 7840 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7842 .access = PL1_R, .type = ARM_CP_CONST, 7843 .accessfn = access_aa64_tid3, 7844 .resetvalue = 0 }, 7845 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7846 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7847 .access = PL1_R, .type = ARM_CP_CONST, 7848 .accessfn = access_aa64_tid3, 7849 .resetvalue = 0 }, 7850 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7852 .access = PL1_R, .type = ARM_CP_CONST, 7853 .accessfn = access_aa64_tid3, 7854 .resetvalue = 0 }, 7855 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7857 .access = PL1_R, .type = ARM_CP_CONST, 7858 .accessfn = access_aa64_tid3, 7859 .resetvalue = cpu->isar.mvfr0 }, 7860 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7861 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7862 .access = PL1_R, .type = ARM_CP_CONST, 7863 .accessfn = access_aa64_tid3, 7864 .resetvalue = cpu->isar.mvfr1 }, 7865 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7866 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7867 .access = PL1_R, .type = ARM_CP_CONST, 7868 .accessfn = access_aa64_tid3, 7869 .resetvalue = cpu->isar.mvfr2 }, 7870 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7871 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7872 .access = PL1_R, .type = ARM_CP_CONST, 7873 .accessfn = access_aa64_tid3, 7874 .resetvalue = 0 }, 7875 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7877 .access = PL1_R, .type = ARM_CP_CONST, 7878 .accessfn = access_aa64_tid3, 7879 .resetvalue = cpu->isar.id_pfr2 }, 7880 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7882 .access = PL1_R, .type = ARM_CP_CONST, 7883 .accessfn = access_aa64_tid3, 7884 .resetvalue = 0 }, 7885 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7887 .access = PL1_R, .type = ARM_CP_CONST, 7888 .accessfn = access_aa64_tid3, 7889 .resetvalue = 0 }, 7890 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7891 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7892 .access = PL1_R, .type = ARM_CP_CONST, 7893 .accessfn = access_aa64_tid3, 7894 .resetvalue = 0 }, 7895 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7896 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7897 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7898 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7899 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7900 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7901 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7902 .resetvalue = cpu->pmceid0 }, 7903 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7904 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7905 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7906 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7907 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7908 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7909 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7910 .resetvalue = cpu->pmceid1 }, 7911 REGINFO_SENTINEL 7912 }; 7913 #ifdef CONFIG_USER_ONLY 7914 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7915 { .name = "ID_AA64PFR0_EL1", 7916 .exported_bits = 0x000f000f00ff0000, 7917 .fixed_bits = 0x0000000000000011 }, 7918 { .name = "ID_AA64PFR1_EL1", 7919 .exported_bits = 0x00000000000000f0 }, 7920 { .name = "ID_AA64PFR*_EL1_RESERVED", 7921 .is_glob = true }, 7922 { .name = "ID_AA64ZFR0_EL1" }, 7923 { .name = "ID_AA64MMFR0_EL1", 7924 .fixed_bits = 0x00000000ff000000 }, 7925 { .name = "ID_AA64MMFR1_EL1" }, 7926 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7927 .is_glob = true }, 7928 { .name = "ID_AA64DFR0_EL1", 7929 .fixed_bits = 0x0000000000000006 }, 7930 { .name = "ID_AA64DFR1_EL1" }, 7931 { .name = "ID_AA64DFR*_EL1_RESERVED", 7932 .is_glob = true }, 7933 { .name = "ID_AA64AFR*", 7934 .is_glob = true }, 7935 { .name = "ID_AA64ISAR0_EL1", 7936 .exported_bits = 0x00fffffff0fffff0 }, 7937 { .name = "ID_AA64ISAR1_EL1", 7938 .exported_bits = 0x000000f0ffffffff }, 7939 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7940 .is_glob = true }, 7941 REGUSERINFO_SENTINEL 7942 }; 7943 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7944 #endif 7945 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7946 if (!arm_feature(env, ARM_FEATURE_EL3) && 7947 !arm_feature(env, ARM_FEATURE_EL2)) { 7948 ARMCPRegInfo rvbar = { 7949 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7950 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7951 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7952 }; 7953 define_one_arm_cp_reg(cpu, &rvbar); 7954 } 7955 define_arm_cp_regs(cpu, v8_idregs); 7956 define_arm_cp_regs(cpu, v8_cp_reginfo); 7957 } 7958 if (arm_feature(env, ARM_FEATURE_EL2)) { 7959 uint64_t vmpidr_def = mpidr_read_val(env); 7960 ARMCPRegInfo vpidr_regs[] = { 7961 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7962 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7963 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7964 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7965 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7966 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7967 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7968 .access = PL2_RW, .resetvalue = cpu->midr, 7969 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7970 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7971 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7972 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7973 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7974 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7975 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7976 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7977 .access = PL2_RW, 7978 .resetvalue = vmpidr_def, 7979 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7980 REGINFO_SENTINEL 7981 }; 7982 define_arm_cp_regs(cpu, vpidr_regs); 7983 define_arm_cp_regs(cpu, el2_cp_reginfo); 7984 if (arm_feature(env, ARM_FEATURE_V8)) { 7985 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7986 } 7987 if (cpu_isar_feature(aa64_sel2, cpu)) { 7988 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7989 } 7990 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7991 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7992 ARMCPRegInfo rvbar = { 7993 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7995 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7996 }; 7997 define_one_arm_cp_reg(cpu, &rvbar); 7998 } 7999 } else { 8000 /* If EL2 is missing but higher ELs are enabled, we need to 8001 * register the no_el2 reginfos. 8002 */ 8003 if (arm_feature(env, ARM_FEATURE_EL3)) { 8004 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8005 * of MIDR_EL1 and MPIDR_EL1. 8006 */ 8007 ARMCPRegInfo vpidr_regs[] = { 8008 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8009 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8010 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8011 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8012 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8013 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8014 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8015 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8016 .type = ARM_CP_NO_RAW, 8017 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8018 REGINFO_SENTINEL 8019 }; 8020 define_arm_cp_regs(cpu, vpidr_regs); 8021 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8022 if (arm_feature(env, ARM_FEATURE_V8)) { 8023 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8024 } 8025 } 8026 } 8027 if (arm_feature(env, ARM_FEATURE_EL3)) { 8028 define_arm_cp_regs(cpu, el3_cp_reginfo); 8029 ARMCPRegInfo el3_regs[] = { 8030 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8031 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8032 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 8033 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8034 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8035 .access = PL3_RW, 8036 .raw_writefn = raw_write, .writefn = sctlr_write, 8037 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8038 .resetvalue = cpu->reset_sctlr }, 8039 REGINFO_SENTINEL 8040 }; 8041 8042 define_arm_cp_regs(cpu, el3_regs); 8043 } 8044 /* The behaviour of NSACR is sufficiently various that we don't 8045 * try to describe it in a single reginfo: 8046 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8047 * reads as constant 0xc00 from NS EL1 and NS EL2 8048 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8049 * if v7 without EL3, register doesn't exist 8050 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8051 */ 8052 if (arm_feature(env, ARM_FEATURE_EL3)) { 8053 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8054 ARMCPRegInfo nsacr = { 8055 .name = "NSACR", .type = ARM_CP_CONST, 8056 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8057 .access = PL1_RW, .accessfn = nsacr_access, 8058 .resetvalue = 0xc00 8059 }; 8060 define_one_arm_cp_reg(cpu, &nsacr); 8061 } else { 8062 ARMCPRegInfo nsacr = { 8063 .name = "NSACR", 8064 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8065 .access = PL3_RW | PL1_R, 8066 .resetvalue = 0, 8067 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8068 }; 8069 define_one_arm_cp_reg(cpu, &nsacr); 8070 } 8071 } else { 8072 if (arm_feature(env, ARM_FEATURE_V8)) { 8073 ARMCPRegInfo nsacr = { 8074 .name = "NSACR", .type = ARM_CP_CONST, 8075 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8076 .access = PL1_R, 8077 .resetvalue = 0xc00 8078 }; 8079 define_one_arm_cp_reg(cpu, &nsacr); 8080 } 8081 } 8082 8083 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8084 if (arm_feature(env, ARM_FEATURE_V6)) { 8085 /* PMSAv6 not implemented */ 8086 assert(arm_feature(env, ARM_FEATURE_V7)); 8087 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8088 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8089 } else { 8090 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8091 } 8092 } else { 8093 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8094 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8095 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8096 if (cpu_isar_feature(aa32_hpd, cpu)) { 8097 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8098 } 8099 } 8100 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8101 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8102 } 8103 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8104 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8105 } 8106 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8107 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8108 } 8109 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8110 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8111 } 8112 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8113 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8114 } 8115 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8116 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8117 } 8118 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8119 define_arm_cp_regs(cpu, omap_cp_reginfo); 8120 } 8121 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8122 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8123 } 8124 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8125 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8126 } 8127 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8128 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8129 } 8130 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8131 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8132 } 8133 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8134 define_arm_cp_regs(cpu, jazelle_regs); 8135 } 8136 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8137 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8138 * be read-only (ie write causes UNDEF exception). 8139 */ 8140 { 8141 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8142 /* Pre-v8 MIDR space. 8143 * Note that the MIDR isn't a simple constant register because 8144 * of the TI925 behaviour where writes to another register can 8145 * cause the MIDR value to change. 8146 * 8147 * Unimplemented registers in the c15 0 0 0 space default to 8148 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8149 * and friends override accordingly. 8150 */ 8151 { .name = "MIDR", 8152 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8153 .access = PL1_R, .resetvalue = cpu->midr, 8154 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8155 .readfn = midr_read, 8156 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8157 .type = ARM_CP_OVERRIDE }, 8158 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8159 { .name = "DUMMY", 8160 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8161 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8162 { .name = "DUMMY", 8163 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8164 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8165 { .name = "DUMMY", 8166 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8167 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8168 { .name = "DUMMY", 8169 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8170 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8171 { .name = "DUMMY", 8172 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8173 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8174 REGINFO_SENTINEL 8175 }; 8176 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8177 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8179 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8180 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8181 .readfn = midr_read }, 8182 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8183 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8184 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8185 .access = PL1_R, .resetvalue = cpu->midr }, 8186 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8187 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8188 .access = PL1_R, .resetvalue = cpu->midr }, 8189 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8191 .access = PL1_R, 8192 .accessfn = access_aa64_tid1, 8193 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8194 REGINFO_SENTINEL 8195 }; 8196 ARMCPRegInfo id_cp_reginfo[] = { 8197 /* These are common to v8 and pre-v8 */ 8198 { .name = "CTR", 8199 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8200 .access = PL1_R, .accessfn = ctr_el0_access, 8201 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8202 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8203 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8204 .access = PL0_R, .accessfn = ctr_el0_access, 8205 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8206 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8207 { .name = "TCMTR", 8208 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8209 .access = PL1_R, 8210 .accessfn = access_aa32_tid1, 8211 .type = ARM_CP_CONST, .resetvalue = 0 }, 8212 REGINFO_SENTINEL 8213 }; 8214 /* TLBTR is specific to VMSA */ 8215 ARMCPRegInfo id_tlbtr_reginfo = { 8216 .name = "TLBTR", 8217 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8218 .access = PL1_R, 8219 .accessfn = access_aa32_tid1, 8220 .type = ARM_CP_CONST, .resetvalue = 0, 8221 }; 8222 /* MPUIR is specific to PMSA V6+ */ 8223 ARMCPRegInfo id_mpuir_reginfo = { 8224 .name = "MPUIR", 8225 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8226 .access = PL1_R, .type = ARM_CP_CONST, 8227 .resetvalue = cpu->pmsav7_dregion << 8 8228 }; 8229 ARMCPRegInfo crn0_wi_reginfo = { 8230 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8231 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8232 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8233 }; 8234 #ifdef CONFIG_USER_ONLY 8235 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8236 { .name = "MIDR_EL1", 8237 .exported_bits = 0x00000000ffffffff }, 8238 { .name = "REVIDR_EL1" }, 8239 REGUSERINFO_SENTINEL 8240 }; 8241 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8242 #endif 8243 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8244 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8245 ARMCPRegInfo *r; 8246 /* Register the blanket "writes ignored" value first to cover the 8247 * whole space. Then update the specific ID registers to allow write 8248 * access, so that they ignore writes rather than causing them to 8249 * UNDEF. 8250 */ 8251 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8252 for (r = id_pre_v8_midr_cp_reginfo; 8253 r->type != ARM_CP_SENTINEL; r++) { 8254 r->access = PL1_RW; 8255 } 8256 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8257 r->access = PL1_RW; 8258 } 8259 id_mpuir_reginfo.access = PL1_RW; 8260 id_tlbtr_reginfo.access = PL1_RW; 8261 } 8262 if (arm_feature(env, ARM_FEATURE_V8)) { 8263 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8264 } else { 8265 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8266 } 8267 define_arm_cp_regs(cpu, id_cp_reginfo); 8268 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8269 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8270 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8271 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8272 } 8273 } 8274 8275 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8276 ARMCPRegInfo mpidr_cp_reginfo[] = { 8277 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8278 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8279 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8280 REGINFO_SENTINEL 8281 }; 8282 #ifdef CONFIG_USER_ONLY 8283 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8284 { .name = "MPIDR_EL1", 8285 .fixed_bits = 0x0000000080000000 }, 8286 REGUSERINFO_SENTINEL 8287 }; 8288 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8289 #endif 8290 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8291 } 8292 8293 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8294 ARMCPRegInfo auxcr_reginfo[] = { 8295 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8296 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8297 .access = PL1_RW, .accessfn = access_tacr, 8298 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8299 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8300 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8301 .access = PL2_RW, .type = ARM_CP_CONST, 8302 .resetvalue = 0 }, 8303 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8304 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8305 .access = PL3_RW, .type = ARM_CP_CONST, 8306 .resetvalue = 0 }, 8307 REGINFO_SENTINEL 8308 }; 8309 define_arm_cp_regs(cpu, auxcr_reginfo); 8310 if (cpu_isar_feature(aa32_ac2, cpu)) { 8311 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8312 } 8313 } 8314 8315 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8316 /* 8317 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8318 * There are two flavours: 8319 * (1) older 32-bit only cores have a simple 32-bit CBAR 8320 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8321 * 32-bit register visible to AArch32 at a different encoding 8322 * to the "flavour 1" register and with the bits rearranged to 8323 * be able to squash a 64-bit address into the 32-bit view. 8324 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8325 * in future if we support AArch32-only configs of some of the 8326 * AArch64 cores we might need to add a specific feature flag 8327 * to indicate cores with "flavour 2" CBAR. 8328 */ 8329 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8330 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8331 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8332 | extract64(cpu->reset_cbar, 32, 12); 8333 ARMCPRegInfo cbar_reginfo[] = { 8334 { .name = "CBAR", 8335 .type = ARM_CP_CONST, 8336 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8337 .access = PL1_R, .resetvalue = cbar32 }, 8338 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8339 .type = ARM_CP_CONST, 8340 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8341 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8342 REGINFO_SENTINEL 8343 }; 8344 /* We don't implement a r/w 64 bit CBAR currently */ 8345 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8346 define_arm_cp_regs(cpu, cbar_reginfo); 8347 } else { 8348 ARMCPRegInfo cbar = { 8349 .name = "CBAR", 8350 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8351 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8352 .fieldoffset = offsetof(CPUARMState, 8353 cp15.c15_config_base_address) 8354 }; 8355 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8356 cbar.access = PL1_R; 8357 cbar.fieldoffset = 0; 8358 cbar.type = ARM_CP_CONST; 8359 } 8360 define_one_arm_cp_reg(cpu, &cbar); 8361 } 8362 } 8363 8364 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8365 ARMCPRegInfo vbar_cp_reginfo[] = { 8366 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8367 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8368 .access = PL1_RW, .writefn = vbar_write, 8369 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8370 offsetof(CPUARMState, cp15.vbar_ns) }, 8371 .resetvalue = 0 }, 8372 REGINFO_SENTINEL 8373 }; 8374 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8375 } 8376 8377 /* Generic registers whose values depend on the implementation */ 8378 { 8379 ARMCPRegInfo sctlr = { 8380 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8381 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8382 .access = PL1_RW, .accessfn = access_tvm_trvm, 8383 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8384 offsetof(CPUARMState, cp15.sctlr_ns) }, 8385 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8386 .raw_writefn = raw_write, 8387 }; 8388 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8389 /* Normally we would always end the TB on an SCTLR write, but Linux 8390 * arch/arm/mach-pxa/sleep.S expects two instructions following 8391 * an MMU enable to execute from cache. Imitate this behaviour. 8392 */ 8393 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8394 } 8395 define_one_arm_cp_reg(cpu, &sctlr); 8396 } 8397 8398 if (cpu_isar_feature(aa64_lor, cpu)) { 8399 define_arm_cp_regs(cpu, lor_reginfo); 8400 } 8401 if (cpu_isar_feature(aa64_pan, cpu)) { 8402 define_one_arm_cp_reg(cpu, &pan_reginfo); 8403 } 8404 #ifndef CONFIG_USER_ONLY 8405 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8406 define_arm_cp_regs(cpu, ats1e1_reginfo); 8407 } 8408 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8409 define_arm_cp_regs(cpu, ats1cp_reginfo); 8410 } 8411 #endif 8412 if (cpu_isar_feature(aa64_uao, cpu)) { 8413 define_one_arm_cp_reg(cpu, &uao_reginfo); 8414 } 8415 8416 if (cpu_isar_feature(aa64_dit, cpu)) { 8417 define_one_arm_cp_reg(cpu, &dit_reginfo); 8418 } 8419 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8420 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8421 } 8422 8423 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8424 define_arm_cp_regs(cpu, vhe_reginfo); 8425 } 8426 8427 if (cpu_isar_feature(aa64_sve, cpu)) { 8428 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8429 if (arm_feature(env, ARM_FEATURE_EL2)) { 8430 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8431 } else { 8432 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8433 } 8434 if (arm_feature(env, ARM_FEATURE_EL3)) { 8435 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8436 } 8437 } 8438 8439 #ifdef TARGET_AARCH64 8440 if (cpu_isar_feature(aa64_pauth, cpu)) { 8441 define_arm_cp_regs(cpu, pauth_reginfo); 8442 } 8443 if (cpu_isar_feature(aa64_rndr, cpu)) { 8444 define_arm_cp_regs(cpu, rndr_reginfo); 8445 } 8446 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8447 define_arm_cp_regs(cpu, tlbirange_reginfo); 8448 } 8449 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8450 define_arm_cp_regs(cpu, tlbios_reginfo); 8451 } 8452 #ifndef CONFIG_USER_ONLY 8453 /* Data Cache clean instructions up to PoP */ 8454 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8455 define_one_arm_cp_reg(cpu, dcpop_reg); 8456 8457 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8458 define_one_arm_cp_reg(cpu, dcpodp_reg); 8459 } 8460 } 8461 #endif /*CONFIG_USER_ONLY*/ 8462 8463 /* 8464 * If full MTE is enabled, add all of the system registers. 8465 * If only "instructions available at EL0" are enabled, 8466 * then define only a RAZ/WI version of PSTATE.TCO. 8467 */ 8468 if (cpu_isar_feature(aa64_mte, cpu)) { 8469 define_arm_cp_regs(cpu, mte_reginfo); 8470 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8471 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8472 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8473 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8474 } 8475 #endif 8476 8477 if (cpu_isar_feature(any_predinv, cpu)) { 8478 define_arm_cp_regs(cpu, predinv_reginfo); 8479 } 8480 8481 if (cpu_isar_feature(any_ccidx, cpu)) { 8482 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8483 } 8484 8485 #ifndef CONFIG_USER_ONLY 8486 /* 8487 * Register redirections and aliases must be done last, 8488 * after the registers from the other extensions have been defined. 8489 */ 8490 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8491 define_arm_vh_e2h_redirects_aliases(cpu); 8492 } 8493 #endif 8494 } 8495 8496 /* Sort alphabetically by type name, except for "any". */ 8497 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8498 { 8499 ObjectClass *class_a = (ObjectClass *)a; 8500 ObjectClass *class_b = (ObjectClass *)b; 8501 const char *name_a, *name_b; 8502 8503 name_a = object_class_get_name(class_a); 8504 name_b = object_class_get_name(class_b); 8505 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8506 return 1; 8507 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8508 return -1; 8509 } else { 8510 return strcmp(name_a, name_b); 8511 } 8512 } 8513 8514 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8515 { 8516 ObjectClass *oc = data; 8517 const char *typename; 8518 char *name; 8519 8520 typename = object_class_get_name(oc); 8521 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8522 qemu_printf(" %s\n", name); 8523 g_free(name); 8524 } 8525 8526 void arm_cpu_list(void) 8527 { 8528 GSList *list; 8529 8530 list = object_class_get_list(TYPE_ARM_CPU, false); 8531 list = g_slist_sort(list, arm_cpu_list_compare); 8532 qemu_printf("Available CPUs:\n"); 8533 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8534 g_slist_free(list); 8535 } 8536 8537 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8538 { 8539 ObjectClass *oc = data; 8540 CpuDefinitionInfoList **cpu_list = user_data; 8541 CpuDefinitionInfo *info; 8542 const char *typename; 8543 8544 typename = object_class_get_name(oc); 8545 info = g_malloc0(sizeof(*info)); 8546 info->name = g_strndup(typename, 8547 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8548 info->q_typename = g_strdup(typename); 8549 8550 QAPI_LIST_PREPEND(*cpu_list, info); 8551 } 8552 8553 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8554 { 8555 CpuDefinitionInfoList *cpu_list = NULL; 8556 GSList *list; 8557 8558 list = object_class_get_list(TYPE_ARM_CPU, false); 8559 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8560 g_slist_free(list); 8561 8562 return cpu_list; 8563 } 8564 8565 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8566 void *opaque, int state, int secstate, 8567 int crm, int opc1, int opc2, 8568 const char *name) 8569 { 8570 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8571 * add a single reginfo struct to the hash table. 8572 */ 8573 uint32_t *key = g_new(uint32_t, 1); 8574 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8575 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8576 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8577 8578 r2->name = g_strdup(name); 8579 /* Reset the secure state to the specific incoming state. This is 8580 * necessary as the register may have been defined with both states. 8581 */ 8582 r2->secure = secstate; 8583 8584 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8585 /* Register is banked (using both entries in array). 8586 * Overwriting fieldoffset as the array is only used to define 8587 * banked registers but later only fieldoffset is used. 8588 */ 8589 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8590 } 8591 8592 if (state == ARM_CP_STATE_AA32) { 8593 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8594 /* If the register is banked then we don't need to migrate or 8595 * reset the 32-bit instance in certain cases: 8596 * 8597 * 1) If the register has both 32-bit and 64-bit instances then we 8598 * can count on the 64-bit instance taking care of the 8599 * non-secure bank. 8600 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8601 * taking care of the secure bank. This requires that separate 8602 * 32 and 64-bit definitions are provided. 8603 */ 8604 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8605 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8606 r2->type |= ARM_CP_ALIAS; 8607 } 8608 } else if ((secstate != r->secure) && !ns) { 8609 /* The register is not banked so we only want to allow migration of 8610 * the non-secure instance. 8611 */ 8612 r2->type |= ARM_CP_ALIAS; 8613 } 8614 8615 if (r->state == ARM_CP_STATE_BOTH) { 8616 /* We assume it is a cp15 register if the .cp field is left unset. 8617 */ 8618 if (r2->cp == 0) { 8619 r2->cp = 15; 8620 } 8621 8622 #ifdef HOST_WORDS_BIGENDIAN 8623 if (r2->fieldoffset) { 8624 r2->fieldoffset += sizeof(uint32_t); 8625 } 8626 #endif 8627 } 8628 } 8629 if (state == ARM_CP_STATE_AA64) { 8630 /* To allow abbreviation of ARMCPRegInfo 8631 * definitions, we treat cp == 0 as equivalent to 8632 * the value for "standard guest-visible sysreg". 8633 * STATE_BOTH definitions are also always "standard 8634 * sysreg" in their AArch64 view (the .cp value may 8635 * be non-zero for the benefit of the AArch32 view). 8636 */ 8637 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8638 r2->cp = CP_REG_ARM64_SYSREG_CP; 8639 } 8640 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8641 r2->opc0, opc1, opc2); 8642 } else { 8643 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8644 } 8645 if (opaque) { 8646 r2->opaque = opaque; 8647 } 8648 /* reginfo passed to helpers is correct for the actual access, 8649 * and is never ARM_CP_STATE_BOTH: 8650 */ 8651 r2->state = state; 8652 /* Make sure reginfo passed to helpers for wildcarded regs 8653 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8654 */ 8655 r2->crm = crm; 8656 r2->opc1 = opc1; 8657 r2->opc2 = opc2; 8658 /* By convention, for wildcarded registers only the first 8659 * entry is used for migration; the others are marked as 8660 * ALIAS so we don't try to transfer the register 8661 * multiple times. Special registers (ie NOP/WFI) are 8662 * never migratable and not even raw-accessible. 8663 */ 8664 if ((r->type & ARM_CP_SPECIAL)) { 8665 r2->type |= ARM_CP_NO_RAW; 8666 } 8667 if (((r->crm == CP_ANY) && crm != 0) || 8668 ((r->opc1 == CP_ANY) && opc1 != 0) || 8669 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8670 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8671 } 8672 8673 /* Check that raw accesses are either forbidden or handled. Note that 8674 * we can't assert this earlier because the setup of fieldoffset for 8675 * banked registers has to be done first. 8676 */ 8677 if (!(r2->type & ARM_CP_NO_RAW)) { 8678 assert(!raw_accessors_invalid(r2)); 8679 } 8680 8681 /* Overriding of an existing definition must be explicitly 8682 * requested. 8683 */ 8684 if (!(r->type & ARM_CP_OVERRIDE)) { 8685 ARMCPRegInfo *oldreg; 8686 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8687 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8688 fprintf(stderr, "Register redefined: cp=%d %d bit " 8689 "crn=%d crm=%d opc1=%d opc2=%d, " 8690 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8691 r2->crn, r2->crm, r2->opc1, r2->opc2, 8692 oldreg->name, r2->name); 8693 g_assert_not_reached(); 8694 } 8695 } 8696 g_hash_table_insert(cpu->cp_regs, key, r2); 8697 } 8698 8699 8700 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8701 const ARMCPRegInfo *r, void *opaque) 8702 { 8703 /* Define implementations of coprocessor registers. 8704 * We store these in a hashtable because typically 8705 * there are less than 150 registers in a space which 8706 * is 16*16*16*8*8 = 262144 in size. 8707 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8708 * If a register is defined twice then the second definition is 8709 * used, so this can be used to define some generic registers and 8710 * then override them with implementation specific variations. 8711 * At least one of the original and the second definition should 8712 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8713 * against accidental use. 8714 * 8715 * The state field defines whether the register is to be 8716 * visible in the AArch32 or AArch64 execution state. If the 8717 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8718 * reginfo structure for the AArch32 view, which sees the lower 8719 * 32 bits of the 64 bit register. 8720 * 8721 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8722 * be wildcarded. AArch64 registers are always considered to be 64 8723 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8724 * the register, if any. 8725 */ 8726 int crm, opc1, opc2, state; 8727 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8728 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8729 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8730 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8731 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8732 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8733 /* 64 bit registers have only CRm and Opc1 fields */ 8734 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8735 /* op0 only exists in the AArch64 encodings */ 8736 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8737 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8738 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8739 /* 8740 * This API is only for Arm's system coprocessors (14 and 15) or 8741 * (M-profile or v7A-and-earlier only) for implementation defined 8742 * coprocessors in the range 0..7. Our decode assumes this, since 8743 * 8..13 can be used for other insns including VFP and Neon. See 8744 * valid_cp() in translate.c. Assert here that we haven't tried 8745 * to use an invalid coprocessor number. 8746 */ 8747 switch (r->state) { 8748 case ARM_CP_STATE_BOTH: 8749 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8750 if (r->cp == 0) { 8751 break; 8752 } 8753 /* fall through */ 8754 case ARM_CP_STATE_AA32: 8755 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8756 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8757 assert(r->cp >= 14 && r->cp <= 15); 8758 } else { 8759 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8760 } 8761 break; 8762 case ARM_CP_STATE_AA64: 8763 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8764 break; 8765 default: 8766 g_assert_not_reached(); 8767 } 8768 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8769 * encodes a minimum access level for the register. We roll this 8770 * runtime check into our general permission check code, so check 8771 * here that the reginfo's specified permissions are strict enough 8772 * to encompass the generic architectural permission check. 8773 */ 8774 if (r->state != ARM_CP_STATE_AA32) { 8775 int mask = 0; 8776 switch (r->opc1) { 8777 case 0: 8778 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8779 mask = PL0U_R | PL1_RW; 8780 break; 8781 case 1: case 2: 8782 /* min_EL EL1 */ 8783 mask = PL1_RW; 8784 break; 8785 case 3: 8786 /* min_EL EL0 */ 8787 mask = PL0_RW; 8788 break; 8789 case 4: 8790 case 5: 8791 /* min_EL EL2 */ 8792 mask = PL2_RW; 8793 break; 8794 case 6: 8795 /* min_EL EL3 */ 8796 mask = PL3_RW; 8797 break; 8798 case 7: 8799 /* min_EL EL1, secure mode only (we don't check the latter) */ 8800 mask = PL1_RW; 8801 break; 8802 default: 8803 /* broken reginfo with out-of-range opc1 */ 8804 assert(false); 8805 break; 8806 } 8807 /* assert our permissions are not too lax (stricter is fine) */ 8808 assert((r->access & ~mask) == 0); 8809 } 8810 8811 /* Check that the register definition has enough info to handle 8812 * reads and writes if they are permitted. 8813 */ 8814 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8815 if (r->access & PL3_R) { 8816 assert((r->fieldoffset || 8817 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8818 r->readfn); 8819 } 8820 if (r->access & PL3_W) { 8821 assert((r->fieldoffset || 8822 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8823 r->writefn); 8824 } 8825 } 8826 /* Bad type field probably means missing sentinel at end of reg list */ 8827 assert(cptype_valid(r->type)); 8828 for (crm = crmmin; crm <= crmmax; crm++) { 8829 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8830 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8831 for (state = ARM_CP_STATE_AA32; 8832 state <= ARM_CP_STATE_AA64; state++) { 8833 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8834 continue; 8835 } 8836 if (state == ARM_CP_STATE_AA32) { 8837 /* Under AArch32 CP registers can be common 8838 * (same for secure and non-secure world) or banked. 8839 */ 8840 char *name; 8841 8842 switch (r->secure) { 8843 case ARM_CP_SECSTATE_S: 8844 case ARM_CP_SECSTATE_NS: 8845 add_cpreg_to_hashtable(cpu, r, opaque, state, 8846 r->secure, crm, opc1, opc2, 8847 r->name); 8848 break; 8849 default: 8850 name = g_strdup_printf("%s_S", r->name); 8851 add_cpreg_to_hashtable(cpu, r, opaque, state, 8852 ARM_CP_SECSTATE_S, 8853 crm, opc1, opc2, name); 8854 g_free(name); 8855 add_cpreg_to_hashtable(cpu, r, opaque, state, 8856 ARM_CP_SECSTATE_NS, 8857 crm, opc1, opc2, r->name); 8858 break; 8859 } 8860 } else { 8861 /* AArch64 registers get mapped to non-secure instance 8862 * of AArch32 */ 8863 add_cpreg_to_hashtable(cpu, r, opaque, state, 8864 ARM_CP_SECSTATE_NS, 8865 crm, opc1, opc2, r->name); 8866 } 8867 } 8868 } 8869 } 8870 } 8871 } 8872 8873 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8874 const ARMCPRegInfo *regs, void *opaque) 8875 { 8876 /* Define a whole list of registers */ 8877 const ARMCPRegInfo *r; 8878 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8879 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8880 } 8881 } 8882 8883 /* 8884 * Modify ARMCPRegInfo for access from userspace. 8885 * 8886 * This is a data driven modification directed by 8887 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8888 * user-space cannot alter any values and dynamic values pertaining to 8889 * execution state are hidden from user space view anyway. 8890 */ 8891 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8892 { 8893 const ARMCPRegUserSpaceInfo *m; 8894 ARMCPRegInfo *r; 8895 8896 for (m = mods; m->name; m++) { 8897 GPatternSpec *pat = NULL; 8898 if (m->is_glob) { 8899 pat = g_pattern_spec_new(m->name); 8900 } 8901 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8902 if (pat && g_pattern_match_string(pat, r->name)) { 8903 r->type = ARM_CP_CONST; 8904 r->access = PL0U_R; 8905 r->resetvalue = 0; 8906 /* continue */ 8907 } else if (strcmp(r->name, m->name) == 0) { 8908 r->type = ARM_CP_CONST; 8909 r->access = PL0U_R; 8910 r->resetvalue &= m->exported_bits; 8911 r->resetvalue |= m->fixed_bits; 8912 break; 8913 } 8914 } 8915 if (pat) { 8916 g_pattern_spec_free(pat); 8917 } 8918 } 8919 } 8920 8921 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8922 { 8923 return g_hash_table_lookup(cpregs, &encoded_cp); 8924 } 8925 8926 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8927 uint64_t value) 8928 { 8929 /* Helper coprocessor write function for write-ignore registers */ 8930 } 8931 8932 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8933 { 8934 /* Helper coprocessor write function for read-as-zero registers */ 8935 return 0; 8936 } 8937 8938 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8939 { 8940 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8941 } 8942 8943 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8944 { 8945 /* Return true if it is not valid for us to switch to 8946 * this CPU mode (ie all the UNPREDICTABLE cases in 8947 * the ARM ARM CPSRWriteByInstr pseudocode). 8948 */ 8949 8950 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8951 if (write_type == CPSRWriteByInstr && 8952 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8953 mode == ARM_CPU_MODE_HYP)) { 8954 return 1; 8955 } 8956 8957 switch (mode) { 8958 case ARM_CPU_MODE_USR: 8959 return 0; 8960 case ARM_CPU_MODE_SYS: 8961 case ARM_CPU_MODE_SVC: 8962 case ARM_CPU_MODE_ABT: 8963 case ARM_CPU_MODE_UND: 8964 case ARM_CPU_MODE_IRQ: 8965 case ARM_CPU_MODE_FIQ: 8966 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8967 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8968 */ 8969 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8970 * and CPS are treated as illegal mode changes. 8971 */ 8972 if (write_type == CPSRWriteByInstr && 8973 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8974 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8975 return 1; 8976 } 8977 return 0; 8978 case ARM_CPU_MODE_HYP: 8979 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8980 case ARM_CPU_MODE_MON: 8981 return arm_current_el(env) < 3; 8982 default: 8983 return 1; 8984 } 8985 } 8986 8987 uint32_t cpsr_read(CPUARMState *env) 8988 { 8989 int ZF; 8990 ZF = (env->ZF == 0); 8991 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8992 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8993 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8994 | ((env->condexec_bits & 0xfc) << 8) 8995 | (env->GE << 16) | (env->daif & CPSR_AIF); 8996 } 8997 8998 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8999 CPSRWriteType write_type) 9000 { 9001 uint32_t changed_daif; 9002 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9003 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9004 9005 if (mask & CPSR_NZCV) { 9006 env->ZF = (~val) & CPSR_Z; 9007 env->NF = val; 9008 env->CF = (val >> 29) & 1; 9009 env->VF = (val << 3) & 0x80000000; 9010 } 9011 if (mask & CPSR_Q) 9012 env->QF = ((val & CPSR_Q) != 0); 9013 if (mask & CPSR_T) 9014 env->thumb = ((val & CPSR_T) != 0); 9015 if (mask & CPSR_IT_0_1) { 9016 env->condexec_bits &= ~3; 9017 env->condexec_bits |= (val >> 25) & 3; 9018 } 9019 if (mask & CPSR_IT_2_7) { 9020 env->condexec_bits &= 3; 9021 env->condexec_bits |= (val >> 8) & 0xfc; 9022 } 9023 if (mask & CPSR_GE) { 9024 env->GE = (val >> 16) & 0xf; 9025 } 9026 9027 /* In a V7 implementation that includes the security extensions but does 9028 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9029 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9030 * bits respectively. 9031 * 9032 * In a V8 implementation, it is permitted for privileged software to 9033 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9034 */ 9035 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9036 arm_feature(env, ARM_FEATURE_EL3) && 9037 !arm_feature(env, ARM_FEATURE_EL2) && 9038 !arm_is_secure(env)) { 9039 9040 changed_daif = (env->daif ^ val) & mask; 9041 9042 if (changed_daif & CPSR_A) { 9043 /* Check to see if we are allowed to change the masking of async 9044 * abort exceptions from a non-secure state. 9045 */ 9046 if (!(env->cp15.scr_el3 & SCR_AW)) { 9047 qemu_log_mask(LOG_GUEST_ERROR, 9048 "Ignoring attempt to switch CPSR_A flag from " 9049 "non-secure world with SCR.AW bit clear\n"); 9050 mask &= ~CPSR_A; 9051 } 9052 } 9053 9054 if (changed_daif & CPSR_F) { 9055 /* Check to see if we are allowed to change the masking of FIQ 9056 * exceptions from a non-secure state. 9057 */ 9058 if (!(env->cp15.scr_el3 & SCR_FW)) { 9059 qemu_log_mask(LOG_GUEST_ERROR, 9060 "Ignoring attempt to switch CPSR_F flag from " 9061 "non-secure world with SCR.FW bit clear\n"); 9062 mask &= ~CPSR_F; 9063 } 9064 9065 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9066 * If this bit is set software is not allowed to mask 9067 * FIQs, but is allowed to set CPSR_F to 0. 9068 */ 9069 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9070 (val & CPSR_F)) { 9071 qemu_log_mask(LOG_GUEST_ERROR, 9072 "Ignoring attempt to enable CPSR_F flag " 9073 "(non-maskable FIQ [NMFI] support enabled)\n"); 9074 mask &= ~CPSR_F; 9075 } 9076 } 9077 } 9078 9079 env->daif &= ~(CPSR_AIF & mask); 9080 env->daif |= val & CPSR_AIF & mask; 9081 9082 if (write_type != CPSRWriteRaw && 9083 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9084 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9085 /* Note that we can only get here in USR mode if this is a 9086 * gdb stub write; for this case we follow the architectural 9087 * behaviour for guest writes in USR mode of ignoring an attempt 9088 * to switch mode. (Those are caught by translate.c for writes 9089 * triggered by guest instructions.) 9090 */ 9091 mask &= ~CPSR_M; 9092 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9093 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9094 * v7, and has defined behaviour in v8: 9095 * + leave CPSR.M untouched 9096 * + allow changes to the other CPSR fields 9097 * + set PSTATE.IL 9098 * For user changes via the GDB stub, we don't set PSTATE.IL, 9099 * as this would be unnecessarily harsh for a user error. 9100 */ 9101 mask &= ~CPSR_M; 9102 if (write_type != CPSRWriteByGDBStub && 9103 arm_feature(env, ARM_FEATURE_V8)) { 9104 mask |= CPSR_IL; 9105 val |= CPSR_IL; 9106 } 9107 qemu_log_mask(LOG_GUEST_ERROR, 9108 "Illegal AArch32 mode switch attempt from %s to %s\n", 9109 aarch32_mode_name(env->uncached_cpsr), 9110 aarch32_mode_name(val)); 9111 } else { 9112 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9113 write_type == CPSRWriteExceptionReturn ? 9114 "Exception return from AArch32" : 9115 "AArch32 mode switch from", 9116 aarch32_mode_name(env->uncached_cpsr), 9117 aarch32_mode_name(val), env->regs[15]); 9118 switch_mode(env, val & CPSR_M); 9119 } 9120 } 9121 mask &= ~CACHED_CPSR_BITS; 9122 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9123 if (rebuild_hflags) { 9124 arm_rebuild_hflags(env); 9125 } 9126 } 9127 9128 /* Sign/zero extend */ 9129 uint32_t HELPER(sxtb16)(uint32_t x) 9130 { 9131 uint32_t res; 9132 res = (uint16_t)(int8_t)x; 9133 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9134 return res; 9135 } 9136 9137 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9138 { 9139 /* 9140 * Take a division-by-zero exception if necessary; otherwise return 9141 * to get the usual non-trapping division behaviour (result of 0) 9142 */ 9143 if (arm_feature(env, ARM_FEATURE_M) 9144 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9145 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9146 } 9147 } 9148 9149 uint32_t HELPER(uxtb16)(uint32_t x) 9150 { 9151 uint32_t res; 9152 res = (uint16_t)(uint8_t)x; 9153 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9154 return res; 9155 } 9156 9157 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9158 { 9159 if (den == 0) { 9160 handle_possible_div0_trap(env, GETPC()); 9161 return 0; 9162 } 9163 if (num == INT_MIN && den == -1) { 9164 return INT_MIN; 9165 } 9166 return num / den; 9167 } 9168 9169 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9170 { 9171 if (den == 0) { 9172 handle_possible_div0_trap(env, GETPC()); 9173 return 0; 9174 } 9175 return num / den; 9176 } 9177 9178 uint32_t HELPER(rbit)(uint32_t x) 9179 { 9180 return revbit32(x); 9181 } 9182 9183 #ifdef CONFIG_USER_ONLY 9184 9185 static void switch_mode(CPUARMState *env, int mode) 9186 { 9187 ARMCPU *cpu = env_archcpu(env); 9188 9189 if (mode != ARM_CPU_MODE_USR) { 9190 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9191 } 9192 } 9193 9194 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9195 uint32_t cur_el, bool secure) 9196 { 9197 return 1; 9198 } 9199 9200 void aarch64_sync_64_to_32(CPUARMState *env) 9201 { 9202 g_assert_not_reached(); 9203 } 9204 9205 #else 9206 9207 static void switch_mode(CPUARMState *env, int mode) 9208 { 9209 int old_mode; 9210 int i; 9211 9212 old_mode = env->uncached_cpsr & CPSR_M; 9213 if (mode == old_mode) 9214 return; 9215 9216 if (old_mode == ARM_CPU_MODE_FIQ) { 9217 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9218 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9219 } else if (mode == ARM_CPU_MODE_FIQ) { 9220 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9221 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9222 } 9223 9224 i = bank_number(old_mode); 9225 env->banked_r13[i] = env->regs[13]; 9226 env->banked_spsr[i] = env->spsr; 9227 9228 i = bank_number(mode); 9229 env->regs[13] = env->banked_r13[i]; 9230 env->spsr = env->banked_spsr[i]; 9231 9232 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9233 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9234 } 9235 9236 /* Physical Interrupt Target EL Lookup Table 9237 * 9238 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9239 * 9240 * The below multi-dimensional table is used for looking up the target 9241 * exception level given numerous condition criteria. Specifically, the 9242 * target EL is based on SCR and HCR routing controls as well as the 9243 * currently executing EL and secure state. 9244 * 9245 * Dimensions: 9246 * target_el_table[2][2][2][2][2][4] 9247 * | | | | | +--- Current EL 9248 * | | | | +------ Non-secure(0)/Secure(1) 9249 * | | | +--------- HCR mask override 9250 * | | +------------ SCR exec state control 9251 * | +--------------- SCR mask override 9252 * +------------------ 32-bit(0)/64-bit(1) EL3 9253 * 9254 * The table values are as such: 9255 * 0-3 = EL0-EL3 9256 * -1 = Cannot occur 9257 * 9258 * The ARM ARM target EL table includes entries indicating that an "exception 9259 * is not taken". The two cases where this is applicable are: 9260 * 1) An exception is taken from EL3 but the SCR does not have the exception 9261 * routed to EL3. 9262 * 2) An exception is taken from EL2 but the HCR does not have the exception 9263 * routed to EL2. 9264 * In these two cases, the below table contain a target of EL1. This value is 9265 * returned as it is expected that the consumer of the table data will check 9266 * for "target EL >= current EL" to ensure the exception is not taken. 9267 * 9268 * SCR HCR 9269 * 64 EA AMO From 9270 * BIT IRQ IMO Non-secure Secure 9271 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9272 */ 9273 static const int8_t target_el_table[2][2][2][2][2][4] = { 9274 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9275 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9276 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9277 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9278 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9279 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9280 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9281 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9282 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9283 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9284 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9285 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9286 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9287 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9288 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9289 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9290 }; 9291 9292 /* 9293 * Determine the target EL for physical exceptions 9294 */ 9295 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9296 uint32_t cur_el, bool secure) 9297 { 9298 CPUARMState *env = cs->env_ptr; 9299 bool rw; 9300 bool scr; 9301 bool hcr; 9302 int target_el; 9303 /* Is the highest EL AArch64? */ 9304 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9305 uint64_t hcr_el2; 9306 9307 if (arm_feature(env, ARM_FEATURE_EL3)) { 9308 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9309 } else { 9310 /* Either EL2 is the highest EL (and so the EL2 register width 9311 * is given by is64); or there is no EL2 or EL3, in which case 9312 * the value of 'rw' does not affect the table lookup anyway. 9313 */ 9314 rw = is64; 9315 } 9316 9317 hcr_el2 = arm_hcr_el2_eff(env); 9318 switch (excp_idx) { 9319 case EXCP_IRQ: 9320 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9321 hcr = hcr_el2 & HCR_IMO; 9322 break; 9323 case EXCP_FIQ: 9324 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9325 hcr = hcr_el2 & HCR_FMO; 9326 break; 9327 default: 9328 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9329 hcr = hcr_el2 & HCR_AMO; 9330 break; 9331 }; 9332 9333 /* 9334 * For these purposes, TGE and AMO/IMO/FMO both force the 9335 * interrupt to EL2. Fold TGE into the bit extracted above. 9336 */ 9337 hcr |= (hcr_el2 & HCR_TGE) != 0; 9338 9339 /* Perform a table-lookup for the target EL given the current state */ 9340 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9341 9342 assert(target_el > 0); 9343 9344 return target_el; 9345 } 9346 9347 void arm_log_exception(CPUState *cs) 9348 { 9349 int idx = cs->exception_index; 9350 9351 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9352 const char *exc = NULL; 9353 static const char * const excnames[] = { 9354 [EXCP_UDEF] = "Undefined Instruction", 9355 [EXCP_SWI] = "SVC", 9356 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9357 [EXCP_DATA_ABORT] = "Data Abort", 9358 [EXCP_IRQ] = "IRQ", 9359 [EXCP_FIQ] = "FIQ", 9360 [EXCP_BKPT] = "Breakpoint", 9361 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9362 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9363 [EXCP_HVC] = "Hypervisor Call", 9364 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9365 [EXCP_SMC] = "Secure Monitor Call", 9366 [EXCP_VIRQ] = "Virtual IRQ", 9367 [EXCP_VFIQ] = "Virtual FIQ", 9368 [EXCP_SEMIHOST] = "Semihosting call", 9369 [EXCP_NOCP] = "v7M NOCP UsageFault", 9370 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9371 [EXCP_STKOF] = "v8M STKOF UsageFault", 9372 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9373 [EXCP_LSERR] = "v8M LSERR UsageFault", 9374 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9375 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9376 }; 9377 9378 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9379 exc = excnames[idx]; 9380 } 9381 if (!exc) { 9382 exc = "unknown"; 9383 } 9384 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9385 idx, exc, cs->cpu_index); 9386 } 9387 } 9388 9389 /* 9390 * Function used to synchronize QEMU's AArch64 register set with AArch32 9391 * register set. This is necessary when switching between AArch32 and AArch64 9392 * execution state. 9393 */ 9394 void aarch64_sync_32_to_64(CPUARMState *env) 9395 { 9396 int i; 9397 uint32_t mode = env->uncached_cpsr & CPSR_M; 9398 9399 /* We can blanket copy R[0:7] to X[0:7] */ 9400 for (i = 0; i < 8; i++) { 9401 env->xregs[i] = env->regs[i]; 9402 } 9403 9404 /* 9405 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9406 * Otherwise, they come from the banked user regs. 9407 */ 9408 if (mode == ARM_CPU_MODE_FIQ) { 9409 for (i = 8; i < 13; i++) { 9410 env->xregs[i] = env->usr_regs[i - 8]; 9411 } 9412 } else { 9413 for (i = 8; i < 13; i++) { 9414 env->xregs[i] = env->regs[i]; 9415 } 9416 } 9417 9418 /* 9419 * Registers x13-x23 are the various mode SP and FP registers. Registers 9420 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9421 * from the mode banked register. 9422 */ 9423 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9424 env->xregs[13] = env->regs[13]; 9425 env->xregs[14] = env->regs[14]; 9426 } else { 9427 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9428 /* HYP is an exception in that it is copied from r14 */ 9429 if (mode == ARM_CPU_MODE_HYP) { 9430 env->xregs[14] = env->regs[14]; 9431 } else { 9432 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9433 } 9434 } 9435 9436 if (mode == ARM_CPU_MODE_HYP) { 9437 env->xregs[15] = env->regs[13]; 9438 } else { 9439 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9440 } 9441 9442 if (mode == ARM_CPU_MODE_IRQ) { 9443 env->xregs[16] = env->regs[14]; 9444 env->xregs[17] = env->regs[13]; 9445 } else { 9446 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9447 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9448 } 9449 9450 if (mode == ARM_CPU_MODE_SVC) { 9451 env->xregs[18] = env->regs[14]; 9452 env->xregs[19] = env->regs[13]; 9453 } else { 9454 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9455 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9456 } 9457 9458 if (mode == ARM_CPU_MODE_ABT) { 9459 env->xregs[20] = env->regs[14]; 9460 env->xregs[21] = env->regs[13]; 9461 } else { 9462 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9463 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9464 } 9465 9466 if (mode == ARM_CPU_MODE_UND) { 9467 env->xregs[22] = env->regs[14]; 9468 env->xregs[23] = env->regs[13]; 9469 } else { 9470 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9471 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9472 } 9473 9474 /* 9475 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9476 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9477 * FIQ bank for r8-r14. 9478 */ 9479 if (mode == ARM_CPU_MODE_FIQ) { 9480 for (i = 24; i < 31; i++) { 9481 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9482 } 9483 } else { 9484 for (i = 24; i < 29; i++) { 9485 env->xregs[i] = env->fiq_regs[i - 24]; 9486 } 9487 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9488 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9489 } 9490 9491 env->pc = env->regs[15]; 9492 } 9493 9494 /* 9495 * Function used to synchronize QEMU's AArch32 register set with AArch64 9496 * register set. This is necessary when switching between AArch32 and AArch64 9497 * execution state. 9498 */ 9499 void aarch64_sync_64_to_32(CPUARMState *env) 9500 { 9501 int i; 9502 uint32_t mode = env->uncached_cpsr & CPSR_M; 9503 9504 /* We can blanket copy X[0:7] to R[0:7] */ 9505 for (i = 0; i < 8; i++) { 9506 env->regs[i] = env->xregs[i]; 9507 } 9508 9509 /* 9510 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9511 * Otherwise, we copy x8-x12 into the banked user regs. 9512 */ 9513 if (mode == ARM_CPU_MODE_FIQ) { 9514 for (i = 8; i < 13; i++) { 9515 env->usr_regs[i - 8] = env->xregs[i]; 9516 } 9517 } else { 9518 for (i = 8; i < 13; i++) { 9519 env->regs[i] = env->xregs[i]; 9520 } 9521 } 9522 9523 /* 9524 * Registers r13 & r14 depend on the current mode. 9525 * If we are in a given mode, we copy the corresponding x registers to r13 9526 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9527 * for the mode. 9528 */ 9529 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9530 env->regs[13] = env->xregs[13]; 9531 env->regs[14] = env->xregs[14]; 9532 } else { 9533 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9534 9535 /* 9536 * HYP is an exception in that it does not have its own banked r14 but 9537 * shares the USR r14 9538 */ 9539 if (mode == ARM_CPU_MODE_HYP) { 9540 env->regs[14] = env->xregs[14]; 9541 } else { 9542 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9543 } 9544 } 9545 9546 if (mode == ARM_CPU_MODE_HYP) { 9547 env->regs[13] = env->xregs[15]; 9548 } else { 9549 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9550 } 9551 9552 if (mode == ARM_CPU_MODE_IRQ) { 9553 env->regs[14] = env->xregs[16]; 9554 env->regs[13] = env->xregs[17]; 9555 } else { 9556 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9557 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9558 } 9559 9560 if (mode == ARM_CPU_MODE_SVC) { 9561 env->regs[14] = env->xregs[18]; 9562 env->regs[13] = env->xregs[19]; 9563 } else { 9564 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9565 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9566 } 9567 9568 if (mode == ARM_CPU_MODE_ABT) { 9569 env->regs[14] = env->xregs[20]; 9570 env->regs[13] = env->xregs[21]; 9571 } else { 9572 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9573 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9574 } 9575 9576 if (mode == ARM_CPU_MODE_UND) { 9577 env->regs[14] = env->xregs[22]; 9578 env->regs[13] = env->xregs[23]; 9579 } else { 9580 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9581 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9582 } 9583 9584 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9585 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9586 * FIQ bank for r8-r14. 9587 */ 9588 if (mode == ARM_CPU_MODE_FIQ) { 9589 for (i = 24; i < 31; i++) { 9590 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9591 } 9592 } else { 9593 for (i = 24; i < 29; i++) { 9594 env->fiq_regs[i - 24] = env->xregs[i]; 9595 } 9596 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9597 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9598 } 9599 9600 env->regs[15] = env->pc; 9601 } 9602 9603 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9604 uint32_t mask, uint32_t offset, 9605 uint32_t newpc) 9606 { 9607 int new_el; 9608 9609 /* Change the CPU state so as to actually take the exception. */ 9610 switch_mode(env, new_mode); 9611 9612 /* 9613 * For exceptions taken to AArch32 we must clear the SS bit in both 9614 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9615 */ 9616 env->pstate &= ~PSTATE_SS; 9617 env->spsr = cpsr_read(env); 9618 /* Clear IT bits. */ 9619 env->condexec_bits = 0; 9620 /* Switch to the new mode, and to the correct instruction set. */ 9621 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9622 9623 /* This must be after mode switching. */ 9624 new_el = arm_current_el(env); 9625 9626 /* Set new mode endianness */ 9627 env->uncached_cpsr &= ~CPSR_E; 9628 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9629 env->uncached_cpsr |= CPSR_E; 9630 } 9631 /* J and IL must always be cleared for exception entry */ 9632 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9633 env->daif |= mask; 9634 9635 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9636 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9637 env->uncached_cpsr |= CPSR_SSBS; 9638 } else { 9639 env->uncached_cpsr &= ~CPSR_SSBS; 9640 } 9641 } 9642 9643 if (new_mode == ARM_CPU_MODE_HYP) { 9644 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9645 env->elr_el[2] = env->regs[15]; 9646 } else { 9647 /* CPSR.PAN is normally preserved preserved unless... */ 9648 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9649 switch (new_el) { 9650 case 3: 9651 if (!arm_is_secure_below_el3(env)) { 9652 /* ... the target is EL3, from non-secure state. */ 9653 env->uncached_cpsr &= ~CPSR_PAN; 9654 break; 9655 } 9656 /* ... the target is EL3, from secure state ... */ 9657 /* fall through */ 9658 case 1: 9659 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9660 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9661 env->uncached_cpsr |= CPSR_PAN; 9662 } 9663 break; 9664 } 9665 } 9666 /* 9667 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9668 * and we should just guard the thumb mode on V4 9669 */ 9670 if (arm_feature(env, ARM_FEATURE_V4T)) { 9671 env->thumb = 9672 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9673 } 9674 env->regs[14] = env->regs[15] + offset; 9675 } 9676 env->regs[15] = newpc; 9677 arm_rebuild_hflags(env); 9678 } 9679 9680 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9681 { 9682 /* 9683 * Handle exception entry to Hyp mode; this is sufficiently 9684 * different to entry to other AArch32 modes that we handle it 9685 * separately here. 9686 * 9687 * The vector table entry used is always the 0x14 Hyp mode entry point, 9688 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9689 * The offset applied to the preferred return address is always zero 9690 * (see DDI0487C.a section G1.12.3). 9691 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9692 */ 9693 uint32_t addr, mask; 9694 ARMCPU *cpu = ARM_CPU(cs); 9695 CPUARMState *env = &cpu->env; 9696 9697 switch (cs->exception_index) { 9698 case EXCP_UDEF: 9699 addr = 0x04; 9700 break; 9701 case EXCP_SWI: 9702 addr = 0x08; 9703 break; 9704 case EXCP_BKPT: 9705 /* Fall through to prefetch abort. */ 9706 case EXCP_PREFETCH_ABORT: 9707 env->cp15.ifar_s = env->exception.vaddress; 9708 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9709 (uint32_t)env->exception.vaddress); 9710 addr = 0x0c; 9711 break; 9712 case EXCP_DATA_ABORT: 9713 env->cp15.dfar_s = env->exception.vaddress; 9714 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9715 (uint32_t)env->exception.vaddress); 9716 addr = 0x10; 9717 break; 9718 case EXCP_IRQ: 9719 addr = 0x18; 9720 break; 9721 case EXCP_FIQ: 9722 addr = 0x1c; 9723 break; 9724 case EXCP_HVC: 9725 addr = 0x08; 9726 break; 9727 case EXCP_HYP_TRAP: 9728 addr = 0x14; 9729 break; 9730 default: 9731 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9732 } 9733 9734 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9735 if (!arm_feature(env, ARM_FEATURE_V8)) { 9736 /* 9737 * QEMU syndrome values are v8-style. v7 has the IL bit 9738 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9739 * If this is a v7 CPU, squash the IL bit in those cases. 9740 */ 9741 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9742 (cs->exception_index == EXCP_DATA_ABORT && 9743 !(env->exception.syndrome & ARM_EL_ISV)) || 9744 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9745 env->exception.syndrome &= ~ARM_EL_IL; 9746 } 9747 } 9748 env->cp15.esr_el[2] = env->exception.syndrome; 9749 } 9750 9751 if (arm_current_el(env) != 2 && addr < 0x14) { 9752 addr = 0x14; 9753 } 9754 9755 mask = 0; 9756 if (!(env->cp15.scr_el3 & SCR_EA)) { 9757 mask |= CPSR_A; 9758 } 9759 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9760 mask |= CPSR_I; 9761 } 9762 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9763 mask |= CPSR_F; 9764 } 9765 9766 addr += env->cp15.hvbar; 9767 9768 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9769 } 9770 9771 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9772 { 9773 ARMCPU *cpu = ARM_CPU(cs); 9774 CPUARMState *env = &cpu->env; 9775 uint32_t addr; 9776 uint32_t mask; 9777 int new_mode; 9778 uint32_t offset; 9779 uint32_t moe; 9780 9781 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9782 switch (syn_get_ec(env->exception.syndrome)) { 9783 case EC_BREAKPOINT: 9784 case EC_BREAKPOINT_SAME_EL: 9785 moe = 1; 9786 break; 9787 case EC_WATCHPOINT: 9788 case EC_WATCHPOINT_SAME_EL: 9789 moe = 10; 9790 break; 9791 case EC_AA32_BKPT: 9792 moe = 3; 9793 break; 9794 case EC_VECTORCATCH: 9795 moe = 5; 9796 break; 9797 default: 9798 moe = 0; 9799 break; 9800 } 9801 9802 if (moe) { 9803 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9804 } 9805 9806 if (env->exception.target_el == 2) { 9807 arm_cpu_do_interrupt_aarch32_hyp(cs); 9808 return; 9809 } 9810 9811 switch (cs->exception_index) { 9812 case EXCP_UDEF: 9813 new_mode = ARM_CPU_MODE_UND; 9814 addr = 0x04; 9815 mask = CPSR_I; 9816 if (env->thumb) 9817 offset = 2; 9818 else 9819 offset = 4; 9820 break; 9821 case EXCP_SWI: 9822 new_mode = ARM_CPU_MODE_SVC; 9823 addr = 0x08; 9824 mask = CPSR_I; 9825 /* The PC already points to the next instruction. */ 9826 offset = 0; 9827 break; 9828 case EXCP_BKPT: 9829 /* Fall through to prefetch abort. */ 9830 case EXCP_PREFETCH_ABORT: 9831 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9832 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9833 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9834 env->exception.fsr, (uint32_t)env->exception.vaddress); 9835 new_mode = ARM_CPU_MODE_ABT; 9836 addr = 0x0c; 9837 mask = CPSR_A | CPSR_I; 9838 offset = 4; 9839 break; 9840 case EXCP_DATA_ABORT: 9841 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9842 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9843 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9844 env->exception.fsr, 9845 (uint32_t)env->exception.vaddress); 9846 new_mode = ARM_CPU_MODE_ABT; 9847 addr = 0x10; 9848 mask = CPSR_A | CPSR_I; 9849 offset = 8; 9850 break; 9851 case EXCP_IRQ: 9852 new_mode = ARM_CPU_MODE_IRQ; 9853 addr = 0x18; 9854 /* Disable IRQ and imprecise data aborts. */ 9855 mask = CPSR_A | CPSR_I; 9856 offset = 4; 9857 if (env->cp15.scr_el3 & SCR_IRQ) { 9858 /* IRQ routed to monitor mode */ 9859 new_mode = ARM_CPU_MODE_MON; 9860 mask |= CPSR_F; 9861 } 9862 break; 9863 case EXCP_FIQ: 9864 new_mode = ARM_CPU_MODE_FIQ; 9865 addr = 0x1c; 9866 /* Disable FIQ, IRQ and imprecise data aborts. */ 9867 mask = CPSR_A | CPSR_I | CPSR_F; 9868 if (env->cp15.scr_el3 & SCR_FIQ) { 9869 /* FIQ routed to monitor mode */ 9870 new_mode = ARM_CPU_MODE_MON; 9871 } 9872 offset = 4; 9873 break; 9874 case EXCP_VIRQ: 9875 new_mode = ARM_CPU_MODE_IRQ; 9876 addr = 0x18; 9877 /* Disable IRQ and imprecise data aborts. */ 9878 mask = CPSR_A | CPSR_I; 9879 offset = 4; 9880 break; 9881 case EXCP_VFIQ: 9882 new_mode = ARM_CPU_MODE_FIQ; 9883 addr = 0x1c; 9884 /* Disable FIQ, IRQ and imprecise data aborts. */ 9885 mask = CPSR_A | CPSR_I | CPSR_F; 9886 offset = 4; 9887 break; 9888 case EXCP_SMC: 9889 new_mode = ARM_CPU_MODE_MON; 9890 addr = 0x08; 9891 mask = CPSR_A | CPSR_I | CPSR_F; 9892 offset = 0; 9893 break; 9894 default: 9895 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9896 return; /* Never happens. Keep compiler happy. */ 9897 } 9898 9899 if (new_mode == ARM_CPU_MODE_MON) { 9900 addr += env->cp15.mvbar; 9901 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9902 /* High vectors. When enabled, base address cannot be remapped. */ 9903 addr += 0xffff0000; 9904 } else { 9905 /* ARM v7 architectures provide a vector base address register to remap 9906 * the interrupt vector table. 9907 * This register is only followed in non-monitor mode, and is banked. 9908 * Note: only bits 31:5 are valid. 9909 */ 9910 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9911 } 9912 9913 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9914 env->cp15.scr_el3 &= ~SCR_NS; 9915 } 9916 9917 take_aarch32_exception(env, new_mode, mask, offset, addr); 9918 } 9919 9920 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9921 { 9922 /* 9923 * Return the register number of the AArch64 view of the AArch32 9924 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9925 * be that of the AArch32 mode the exception came from. 9926 */ 9927 int mode = env->uncached_cpsr & CPSR_M; 9928 9929 switch (aarch32_reg) { 9930 case 0 ... 7: 9931 return aarch32_reg; 9932 case 8 ... 12: 9933 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9934 case 13: 9935 switch (mode) { 9936 case ARM_CPU_MODE_USR: 9937 case ARM_CPU_MODE_SYS: 9938 return 13; 9939 case ARM_CPU_MODE_HYP: 9940 return 15; 9941 case ARM_CPU_MODE_IRQ: 9942 return 17; 9943 case ARM_CPU_MODE_SVC: 9944 return 19; 9945 case ARM_CPU_MODE_ABT: 9946 return 21; 9947 case ARM_CPU_MODE_UND: 9948 return 23; 9949 case ARM_CPU_MODE_FIQ: 9950 return 29; 9951 default: 9952 g_assert_not_reached(); 9953 } 9954 case 14: 9955 switch (mode) { 9956 case ARM_CPU_MODE_USR: 9957 case ARM_CPU_MODE_SYS: 9958 case ARM_CPU_MODE_HYP: 9959 return 14; 9960 case ARM_CPU_MODE_IRQ: 9961 return 16; 9962 case ARM_CPU_MODE_SVC: 9963 return 18; 9964 case ARM_CPU_MODE_ABT: 9965 return 20; 9966 case ARM_CPU_MODE_UND: 9967 return 22; 9968 case ARM_CPU_MODE_FIQ: 9969 return 30; 9970 default: 9971 g_assert_not_reached(); 9972 } 9973 case 15: 9974 return 31; 9975 default: 9976 g_assert_not_reached(); 9977 } 9978 } 9979 9980 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9981 { 9982 uint32_t ret = cpsr_read(env); 9983 9984 /* Move DIT to the correct location for SPSR_ELx */ 9985 if (ret & CPSR_DIT) { 9986 ret &= ~CPSR_DIT; 9987 ret |= PSTATE_DIT; 9988 } 9989 /* Merge PSTATE.SS into SPSR_ELx */ 9990 ret |= env->pstate & PSTATE_SS; 9991 9992 return ret; 9993 } 9994 9995 /* Handle exception entry to a target EL which is using AArch64 */ 9996 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9997 { 9998 ARMCPU *cpu = ARM_CPU(cs); 9999 CPUARMState *env = &cpu->env; 10000 unsigned int new_el = env->exception.target_el; 10001 target_ulong addr = env->cp15.vbar_el[new_el]; 10002 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10003 unsigned int old_mode; 10004 unsigned int cur_el = arm_current_el(env); 10005 int rt; 10006 10007 /* 10008 * Note that new_el can never be 0. If cur_el is 0, then 10009 * el0_a64 is is_a64(), else el0_a64 is ignored. 10010 */ 10011 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10012 10013 if (cur_el < new_el) { 10014 /* Entry vector offset depends on whether the implemented EL 10015 * immediately lower than the target level is using AArch32 or AArch64 10016 */ 10017 bool is_aa64; 10018 uint64_t hcr; 10019 10020 switch (new_el) { 10021 case 3: 10022 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10023 break; 10024 case 2: 10025 hcr = arm_hcr_el2_eff(env); 10026 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10027 is_aa64 = (hcr & HCR_RW) != 0; 10028 break; 10029 } 10030 /* fall through */ 10031 case 1: 10032 is_aa64 = is_a64(env); 10033 break; 10034 default: 10035 g_assert_not_reached(); 10036 } 10037 10038 if (is_aa64) { 10039 addr += 0x400; 10040 } else { 10041 addr += 0x600; 10042 } 10043 } else if (pstate_read(env) & PSTATE_SP) { 10044 addr += 0x200; 10045 } 10046 10047 switch (cs->exception_index) { 10048 case EXCP_PREFETCH_ABORT: 10049 case EXCP_DATA_ABORT: 10050 env->cp15.far_el[new_el] = env->exception.vaddress; 10051 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10052 env->cp15.far_el[new_el]); 10053 /* fall through */ 10054 case EXCP_BKPT: 10055 case EXCP_UDEF: 10056 case EXCP_SWI: 10057 case EXCP_HVC: 10058 case EXCP_HYP_TRAP: 10059 case EXCP_SMC: 10060 switch (syn_get_ec(env->exception.syndrome)) { 10061 case EC_ADVSIMDFPACCESSTRAP: 10062 /* 10063 * QEMU internal FP/SIMD syndromes from AArch32 include the 10064 * TA and coproc fields which are only exposed if the exception 10065 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10066 * AArch64 format syndrome. 10067 */ 10068 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10069 break; 10070 case EC_CP14RTTRAP: 10071 case EC_CP15RTTRAP: 10072 case EC_CP14DTTRAP: 10073 /* 10074 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10075 * the raw register field from the insn; when taking this to 10076 * AArch64 we must convert it to the AArch64 view of the register 10077 * number. Notice that we read a 4-bit AArch32 register number and 10078 * write back a 5-bit AArch64 one. 10079 */ 10080 rt = extract32(env->exception.syndrome, 5, 4); 10081 rt = aarch64_regnum(env, rt); 10082 env->exception.syndrome = deposit32(env->exception.syndrome, 10083 5, 5, rt); 10084 break; 10085 case EC_CP15RRTTRAP: 10086 case EC_CP14RRTTRAP: 10087 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10088 rt = extract32(env->exception.syndrome, 5, 4); 10089 rt = aarch64_regnum(env, rt); 10090 env->exception.syndrome = deposit32(env->exception.syndrome, 10091 5, 5, rt); 10092 rt = extract32(env->exception.syndrome, 10, 4); 10093 rt = aarch64_regnum(env, rt); 10094 env->exception.syndrome = deposit32(env->exception.syndrome, 10095 10, 5, rt); 10096 break; 10097 } 10098 env->cp15.esr_el[new_el] = env->exception.syndrome; 10099 break; 10100 case EXCP_IRQ: 10101 case EXCP_VIRQ: 10102 addr += 0x80; 10103 break; 10104 case EXCP_FIQ: 10105 case EXCP_VFIQ: 10106 addr += 0x100; 10107 break; 10108 default: 10109 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10110 } 10111 10112 if (is_a64(env)) { 10113 old_mode = pstate_read(env); 10114 aarch64_save_sp(env, arm_current_el(env)); 10115 env->elr_el[new_el] = env->pc; 10116 } else { 10117 old_mode = cpsr_read_for_spsr_elx(env); 10118 env->elr_el[new_el] = env->regs[15]; 10119 10120 aarch64_sync_32_to_64(env); 10121 10122 env->condexec_bits = 0; 10123 } 10124 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10125 10126 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10127 env->elr_el[new_el]); 10128 10129 if (cpu_isar_feature(aa64_pan, cpu)) { 10130 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10131 new_mode |= old_mode & PSTATE_PAN; 10132 switch (new_el) { 10133 case 2: 10134 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10135 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10136 != (HCR_E2H | HCR_TGE)) { 10137 break; 10138 } 10139 /* fall through */ 10140 case 1: 10141 /* ... the target is EL1 ... */ 10142 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10143 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10144 new_mode |= PSTATE_PAN; 10145 } 10146 break; 10147 } 10148 } 10149 if (cpu_isar_feature(aa64_mte, cpu)) { 10150 new_mode |= PSTATE_TCO; 10151 } 10152 10153 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10154 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10155 new_mode |= PSTATE_SSBS; 10156 } else { 10157 new_mode &= ~PSTATE_SSBS; 10158 } 10159 } 10160 10161 pstate_write(env, PSTATE_DAIF | new_mode); 10162 env->aarch64 = 1; 10163 aarch64_restore_sp(env, new_el); 10164 helper_rebuild_hflags_a64(env, new_el); 10165 10166 env->pc = addr; 10167 10168 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10169 new_el, env->pc, pstate_read(env)); 10170 } 10171 10172 /* 10173 * Do semihosting call and set the appropriate return value. All the 10174 * permission and validity checks have been done at translate time. 10175 * 10176 * We only see semihosting exceptions in TCG only as they are not 10177 * trapped to the hypervisor in KVM. 10178 */ 10179 #ifdef CONFIG_TCG 10180 static void handle_semihosting(CPUState *cs) 10181 { 10182 ARMCPU *cpu = ARM_CPU(cs); 10183 CPUARMState *env = &cpu->env; 10184 10185 if (is_a64(env)) { 10186 qemu_log_mask(CPU_LOG_INT, 10187 "...handling as semihosting call 0x%" PRIx64 "\n", 10188 env->xregs[0]); 10189 env->xregs[0] = do_common_semihosting(cs); 10190 env->pc += 4; 10191 } else { 10192 qemu_log_mask(CPU_LOG_INT, 10193 "...handling as semihosting call 0x%x\n", 10194 env->regs[0]); 10195 env->regs[0] = do_common_semihosting(cs); 10196 env->regs[15] += env->thumb ? 2 : 4; 10197 } 10198 } 10199 #endif 10200 10201 /* Handle a CPU exception for A and R profile CPUs. 10202 * Do any appropriate logging, handle PSCI calls, and then hand off 10203 * to the AArch64-entry or AArch32-entry function depending on the 10204 * target exception level's register width. 10205 * 10206 * Note: this is used for both TCG (as the do_interrupt tcg op), 10207 * and KVM to re-inject guest debug exceptions, and to 10208 * inject a Synchronous-External-Abort. 10209 */ 10210 void arm_cpu_do_interrupt(CPUState *cs) 10211 { 10212 ARMCPU *cpu = ARM_CPU(cs); 10213 CPUARMState *env = &cpu->env; 10214 unsigned int new_el = env->exception.target_el; 10215 10216 assert(!arm_feature(env, ARM_FEATURE_M)); 10217 10218 arm_log_exception(cs); 10219 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10220 new_el); 10221 if (qemu_loglevel_mask(CPU_LOG_INT) 10222 && !excp_is_internal(cs->exception_index)) { 10223 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10224 syn_get_ec(env->exception.syndrome), 10225 env->exception.syndrome); 10226 } 10227 10228 if (arm_is_psci_call(cpu, cs->exception_index)) { 10229 arm_handle_psci_call(cpu); 10230 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10231 return; 10232 } 10233 10234 /* 10235 * Semihosting semantics depend on the register width of the code 10236 * that caused the exception, not the target exception level, so 10237 * must be handled here. 10238 */ 10239 #ifdef CONFIG_TCG 10240 if (cs->exception_index == EXCP_SEMIHOST) { 10241 handle_semihosting(cs); 10242 return; 10243 } 10244 #endif 10245 10246 /* Hooks may change global state so BQL should be held, also the 10247 * BQL needs to be held for any modification of 10248 * cs->interrupt_request. 10249 */ 10250 g_assert(qemu_mutex_iothread_locked()); 10251 10252 arm_call_pre_el_change_hook(cpu); 10253 10254 assert(!excp_is_internal(cs->exception_index)); 10255 if (arm_el_is_aa64(env, new_el)) { 10256 arm_cpu_do_interrupt_aarch64(cs); 10257 } else { 10258 arm_cpu_do_interrupt_aarch32(cs); 10259 } 10260 10261 arm_call_el_change_hook(cpu); 10262 10263 if (!kvm_enabled()) { 10264 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10265 } 10266 } 10267 #endif /* !CONFIG_USER_ONLY */ 10268 10269 uint64_t arm_sctlr(CPUARMState *env, int el) 10270 { 10271 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10272 if (el == 0) { 10273 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10274 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10275 ? 2 : 1; 10276 } 10277 return env->cp15.sctlr_el[el]; 10278 } 10279 10280 /* Return the SCTLR value which controls this address translation regime */ 10281 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10282 { 10283 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10284 } 10285 10286 #ifndef CONFIG_USER_ONLY 10287 10288 /* Return true if the specified stage of address translation is disabled */ 10289 static inline bool regime_translation_disabled(CPUARMState *env, 10290 ARMMMUIdx mmu_idx) 10291 { 10292 uint64_t hcr_el2; 10293 10294 if (arm_feature(env, ARM_FEATURE_M)) { 10295 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10296 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10297 case R_V7M_MPU_CTRL_ENABLE_MASK: 10298 /* Enabled, but not for HardFault and NMI */ 10299 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10300 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10301 /* Enabled for all cases */ 10302 return false; 10303 case 0: 10304 default: 10305 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10306 * we warned about that in armv7m_nvic.c when the guest set it. 10307 */ 10308 return true; 10309 } 10310 } 10311 10312 hcr_el2 = arm_hcr_el2_eff(env); 10313 10314 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10315 /* HCR.DC means HCR.VM behaves as 1 */ 10316 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10317 } 10318 10319 if (hcr_el2 & HCR_TGE) { 10320 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10321 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10322 return true; 10323 } 10324 } 10325 10326 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10327 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10328 return true; 10329 } 10330 10331 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10332 } 10333 10334 static inline bool regime_translation_big_endian(CPUARMState *env, 10335 ARMMMUIdx mmu_idx) 10336 { 10337 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10338 } 10339 10340 /* Return the TTBR associated with this translation regime */ 10341 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10342 int ttbrn) 10343 { 10344 if (mmu_idx == ARMMMUIdx_Stage2) { 10345 return env->cp15.vttbr_el2; 10346 } 10347 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10348 return env->cp15.vsttbr_el2; 10349 } 10350 if (ttbrn == 0) { 10351 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10352 } else { 10353 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10354 } 10355 } 10356 10357 #endif /* !CONFIG_USER_ONLY */ 10358 10359 /* Convert a possible stage1+2 MMU index into the appropriate 10360 * stage 1 MMU index 10361 */ 10362 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10363 { 10364 switch (mmu_idx) { 10365 case ARMMMUIdx_SE10_0: 10366 return ARMMMUIdx_Stage1_SE0; 10367 case ARMMMUIdx_SE10_1: 10368 return ARMMMUIdx_Stage1_SE1; 10369 case ARMMMUIdx_SE10_1_PAN: 10370 return ARMMMUIdx_Stage1_SE1_PAN; 10371 case ARMMMUIdx_E10_0: 10372 return ARMMMUIdx_Stage1_E0; 10373 case ARMMMUIdx_E10_1: 10374 return ARMMMUIdx_Stage1_E1; 10375 case ARMMMUIdx_E10_1_PAN: 10376 return ARMMMUIdx_Stage1_E1_PAN; 10377 default: 10378 return mmu_idx; 10379 } 10380 } 10381 10382 /* Return true if the translation regime is using LPAE format page tables */ 10383 static inline bool regime_using_lpae_format(CPUARMState *env, 10384 ARMMMUIdx mmu_idx) 10385 { 10386 int el = regime_el(env, mmu_idx); 10387 if (el == 2 || arm_el_is_aa64(env, el)) { 10388 return true; 10389 } 10390 if (arm_feature(env, ARM_FEATURE_LPAE) 10391 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10392 return true; 10393 } 10394 return false; 10395 } 10396 10397 /* Returns true if the stage 1 translation regime is using LPAE format page 10398 * tables. Used when raising alignment exceptions, whose FSR changes depending 10399 * on whether the long or short descriptor format is in use. */ 10400 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10401 { 10402 mmu_idx = stage_1_mmu_idx(mmu_idx); 10403 10404 return regime_using_lpae_format(env, mmu_idx); 10405 } 10406 10407 #ifndef CONFIG_USER_ONLY 10408 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10409 { 10410 switch (mmu_idx) { 10411 case ARMMMUIdx_SE10_0: 10412 case ARMMMUIdx_E20_0: 10413 case ARMMMUIdx_SE20_0: 10414 case ARMMMUIdx_Stage1_E0: 10415 case ARMMMUIdx_Stage1_SE0: 10416 case ARMMMUIdx_MUser: 10417 case ARMMMUIdx_MSUser: 10418 case ARMMMUIdx_MUserNegPri: 10419 case ARMMMUIdx_MSUserNegPri: 10420 return true; 10421 default: 10422 return false; 10423 case ARMMMUIdx_E10_0: 10424 case ARMMMUIdx_E10_1: 10425 case ARMMMUIdx_E10_1_PAN: 10426 g_assert_not_reached(); 10427 } 10428 } 10429 10430 /* Translate section/page access permissions to page 10431 * R/W protection flags 10432 * 10433 * @env: CPUARMState 10434 * @mmu_idx: MMU index indicating required translation regime 10435 * @ap: The 3-bit access permissions (AP[2:0]) 10436 * @domain_prot: The 2-bit domain access permissions 10437 */ 10438 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10439 int ap, int domain_prot) 10440 { 10441 bool is_user = regime_is_user(env, mmu_idx); 10442 10443 if (domain_prot == 3) { 10444 return PAGE_READ | PAGE_WRITE; 10445 } 10446 10447 switch (ap) { 10448 case 0: 10449 if (arm_feature(env, ARM_FEATURE_V7)) { 10450 return 0; 10451 } 10452 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10453 case SCTLR_S: 10454 return is_user ? 0 : PAGE_READ; 10455 case SCTLR_R: 10456 return PAGE_READ; 10457 default: 10458 return 0; 10459 } 10460 case 1: 10461 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10462 case 2: 10463 if (is_user) { 10464 return PAGE_READ; 10465 } else { 10466 return PAGE_READ | PAGE_WRITE; 10467 } 10468 case 3: 10469 return PAGE_READ | PAGE_WRITE; 10470 case 4: /* Reserved. */ 10471 return 0; 10472 case 5: 10473 return is_user ? 0 : PAGE_READ; 10474 case 6: 10475 return PAGE_READ; 10476 case 7: 10477 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10478 return 0; 10479 } 10480 return PAGE_READ; 10481 default: 10482 g_assert_not_reached(); 10483 } 10484 } 10485 10486 /* Translate section/page access permissions to page 10487 * R/W protection flags. 10488 * 10489 * @ap: The 2-bit simple AP (AP[2:1]) 10490 * @is_user: TRUE if accessing from PL0 10491 */ 10492 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10493 { 10494 switch (ap) { 10495 case 0: 10496 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10497 case 1: 10498 return PAGE_READ | PAGE_WRITE; 10499 case 2: 10500 return is_user ? 0 : PAGE_READ; 10501 case 3: 10502 return PAGE_READ; 10503 default: 10504 g_assert_not_reached(); 10505 } 10506 } 10507 10508 static inline int 10509 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10510 { 10511 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10512 } 10513 10514 /* Translate S2 section/page access permissions to protection flags 10515 * 10516 * @env: CPUARMState 10517 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10518 * @xn: XN (execute-never) bits 10519 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10520 */ 10521 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10522 { 10523 int prot = 0; 10524 10525 if (s2ap & 1) { 10526 prot |= PAGE_READ; 10527 } 10528 if (s2ap & 2) { 10529 prot |= PAGE_WRITE; 10530 } 10531 10532 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10533 switch (xn) { 10534 case 0: 10535 prot |= PAGE_EXEC; 10536 break; 10537 case 1: 10538 if (s1_is_el0) { 10539 prot |= PAGE_EXEC; 10540 } 10541 break; 10542 case 2: 10543 break; 10544 case 3: 10545 if (!s1_is_el0) { 10546 prot |= PAGE_EXEC; 10547 } 10548 break; 10549 default: 10550 g_assert_not_reached(); 10551 } 10552 } else { 10553 if (!extract32(xn, 1, 1)) { 10554 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10555 prot |= PAGE_EXEC; 10556 } 10557 } 10558 } 10559 return prot; 10560 } 10561 10562 /* Translate section/page access permissions to protection flags 10563 * 10564 * @env: CPUARMState 10565 * @mmu_idx: MMU index indicating required translation regime 10566 * @is_aa64: TRUE if AArch64 10567 * @ap: The 2-bit simple AP (AP[2:1]) 10568 * @ns: NS (non-secure) bit 10569 * @xn: XN (execute-never) bit 10570 * @pxn: PXN (privileged execute-never) bit 10571 */ 10572 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10573 int ap, int ns, int xn, int pxn) 10574 { 10575 bool is_user = regime_is_user(env, mmu_idx); 10576 int prot_rw, user_rw; 10577 bool have_wxn; 10578 int wxn = 0; 10579 10580 assert(mmu_idx != ARMMMUIdx_Stage2); 10581 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10582 10583 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10584 if (is_user) { 10585 prot_rw = user_rw; 10586 } else { 10587 if (user_rw && regime_is_pan(env, mmu_idx)) { 10588 /* PAN forbids data accesses but doesn't affect insn fetch */ 10589 prot_rw = 0; 10590 } else { 10591 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10592 } 10593 } 10594 10595 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10596 return prot_rw; 10597 } 10598 10599 /* TODO have_wxn should be replaced with 10600 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10601 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10602 * compatible processors have EL2, which is required for [U]WXN. 10603 */ 10604 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10605 10606 if (have_wxn) { 10607 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10608 } 10609 10610 if (is_aa64) { 10611 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10612 xn = pxn || (user_rw & PAGE_WRITE); 10613 } 10614 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10615 switch (regime_el(env, mmu_idx)) { 10616 case 1: 10617 case 3: 10618 if (is_user) { 10619 xn = xn || !(user_rw & PAGE_READ); 10620 } else { 10621 int uwxn = 0; 10622 if (have_wxn) { 10623 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10624 } 10625 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10626 (uwxn && (user_rw & PAGE_WRITE)); 10627 } 10628 break; 10629 case 2: 10630 break; 10631 } 10632 } else { 10633 xn = wxn = 0; 10634 } 10635 10636 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10637 return prot_rw; 10638 } 10639 return prot_rw | PAGE_EXEC; 10640 } 10641 10642 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10643 uint32_t *table, uint32_t address) 10644 { 10645 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10646 TCR *tcr = regime_tcr(env, mmu_idx); 10647 10648 if (address & tcr->mask) { 10649 if (tcr->raw_tcr & TTBCR_PD1) { 10650 /* Translation table walk disabled for TTBR1 */ 10651 return false; 10652 } 10653 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10654 } else { 10655 if (tcr->raw_tcr & TTBCR_PD0) { 10656 /* Translation table walk disabled for TTBR0 */ 10657 return false; 10658 } 10659 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10660 } 10661 *table |= (address >> 18) & 0x3ffc; 10662 return true; 10663 } 10664 10665 /* Translate a S1 pagetable walk through S2 if needed. */ 10666 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10667 hwaddr addr, bool *is_secure, 10668 ARMMMUFaultInfo *fi) 10669 { 10670 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10671 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10672 target_ulong s2size; 10673 hwaddr s2pa; 10674 int s2prot; 10675 int ret; 10676 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10677 : ARMMMUIdx_Stage2; 10678 ARMCacheAttrs cacheattrs = {}; 10679 MemTxAttrs txattrs = {}; 10680 10681 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10682 &s2pa, &txattrs, &s2prot, &s2size, fi, 10683 &cacheattrs); 10684 if (ret) { 10685 assert(fi->type != ARMFault_None); 10686 fi->s2addr = addr; 10687 fi->stage2 = true; 10688 fi->s1ptw = true; 10689 fi->s1ns = !*is_secure; 10690 return ~0; 10691 } 10692 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10693 (cacheattrs.attrs & 0xf0) == 0) { 10694 /* 10695 * PTW set and S1 walk touched S2 Device memory: 10696 * generate Permission fault. 10697 */ 10698 fi->type = ARMFault_Permission; 10699 fi->s2addr = addr; 10700 fi->stage2 = true; 10701 fi->s1ptw = true; 10702 fi->s1ns = !*is_secure; 10703 return ~0; 10704 } 10705 10706 if (arm_is_secure_below_el3(env)) { 10707 /* Check if page table walk is to secure or non-secure PA space. */ 10708 if (*is_secure) { 10709 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10710 } else { 10711 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10712 } 10713 } else { 10714 assert(!*is_secure); 10715 } 10716 10717 addr = s2pa; 10718 } 10719 return addr; 10720 } 10721 10722 /* All loads done in the course of a page table walk go through here. */ 10723 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10724 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10725 { 10726 ARMCPU *cpu = ARM_CPU(cs); 10727 CPUARMState *env = &cpu->env; 10728 MemTxAttrs attrs = {}; 10729 MemTxResult result = MEMTX_OK; 10730 AddressSpace *as; 10731 uint32_t data; 10732 10733 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10734 attrs.secure = is_secure; 10735 as = arm_addressspace(cs, attrs); 10736 if (fi->s1ptw) { 10737 return 0; 10738 } 10739 if (regime_translation_big_endian(env, mmu_idx)) { 10740 data = address_space_ldl_be(as, addr, attrs, &result); 10741 } else { 10742 data = address_space_ldl_le(as, addr, attrs, &result); 10743 } 10744 if (result == MEMTX_OK) { 10745 return data; 10746 } 10747 fi->type = ARMFault_SyncExternalOnWalk; 10748 fi->ea = arm_extabort_type(result); 10749 return 0; 10750 } 10751 10752 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10753 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10754 { 10755 ARMCPU *cpu = ARM_CPU(cs); 10756 CPUARMState *env = &cpu->env; 10757 MemTxAttrs attrs = {}; 10758 MemTxResult result = MEMTX_OK; 10759 AddressSpace *as; 10760 uint64_t data; 10761 10762 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10763 attrs.secure = is_secure; 10764 as = arm_addressspace(cs, attrs); 10765 if (fi->s1ptw) { 10766 return 0; 10767 } 10768 if (regime_translation_big_endian(env, mmu_idx)) { 10769 data = address_space_ldq_be(as, addr, attrs, &result); 10770 } else { 10771 data = address_space_ldq_le(as, addr, attrs, &result); 10772 } 10773 if (result == MEMTX_OK) { 10774 return data; 10775 } 10776 fi->type = ARMFault_SyncExternalOnWalk; 10777 fi->ea = arm_extabort_type(result); 10778 return 0; 10779 } 10780 10781 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10782 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10783 hwaddr *phys_ptr, int *prot, 10784 target_ulong *page_size, 10785 ARMMMUFaultInfo *fi) 10786 { 10787 CPUState *cs = env_cpu(env); 10788 int level = 1; 10789 uint32_t table; 10790 uint32_t desc; 10791 int type; 10792 int ap; 10793 int domain = 0; 10794 int domain_prot; 10795 hwaddr phys_addr; 10796 uint32_t dacr; 10797 10798 /* Pagetable walk. */ 10799 /* Lookup l1 descriptor. */ 10800 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10801 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10802 fi->type = ARMFault_Translation; 10803 goto do_fault; 10804 } 10805 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10806 mmu_idx, fi); 10807 if (fi->type != ARMFault_None) { 10808 goto do_fault; 10809 } 10810 type = (desc & 3); 10811 domain = (desc >> 5) & 0x0f; 10812 if (regime_el(env, mmu_idx) == 1) { 10813 dacr = env->cp15.dacr_ns; 10814 } else { 10815 dacr = env->cp15.dacr_s; 10816 } 10817 domain_prot = (dacr >> (domain * 2)) & 3; 10818 if (type == 0) { 10819 /* Section translation fault. */ 10820 fi->type = ARMFault_Translation; 10821 goto do_fault; 10822 } 10823 if (type != 2) { 10824 level = 2; 10825 } 10826 if (domain_prot == 0 || domain_prot == 2) { 10827 fi->type = ARMFault_Domain; 10828 goto do_fault; 10829 } 10830 if (type == 2) { 10831 /* 1Mb section. */ 10832 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10833 ap = (desc >> 10) & 3; 10834 *page_size = 1024 * 1024; 10835 } else { 10836 /* Lookup l2 entry. */ 10837 if (type == 1) { 10838 /* Coarse pagetable. */ 10839 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10840 } else { 10841 /* Fine pagetable. */ 10842 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10843 } 10844 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10845 mmu_idx, fi); 10846 if (fi->type != ARMFault_None) { 10847 goto do_fault; 10848 } 10849 switch (desc & 3) { 10850 case 0: /* Page translation fault. */ 10851 fi->type = ARMFault_Translation; 10852 goto do_fault; 10853 case 1: /* 64k page. */ 10854 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10855 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10856 *page_size = 0x10000; 10857 break; 10858 case 2: /* 4k page. */ 10859 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10860 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10861 *page_size = 0x1000; 10862 break; 10863 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10864 if (type == 1) { 10865 /* ARMv6/XScale extended small page format */ 10866 if (arm_feature(env, ARM_FEATURE_XSCALE) 10867 || arm_feature(env, ARM_FEATURE_V6)) { 10868 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10869 *page_size = 0x1000; 10870 } else { 10871 /* UNPREDICTABLE in ARMv5; we choose to take a 10872 * page translation fault. 10873 */ 10874 fi->type = ARMFault_Translation; 10875 goto do_fault; 10876 } 10877 } else { 10878 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10879 *page_size = 0x400; 10880 } 10881 ap = (desc >> 4) & 3; 10882 break; 10883 default: 10884 /* Never happens, but compiler isn't smart enough to tell. */ 10885 abort(); 10886 } 10887 } 10888 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10889 *prot |= *prot ? PAGE_EXEC : 0; 10890 if (!(*prot & (1 << access_type))) { 10891 /* Access permission fault. */ 10892 fi->type = ARMFault_Permission; 10893 goto do_fault; 10894 } 10895 *phys_ptr = phys_addr; 10896 return false; 10897 do_fault: 10898 fi->domain = domain; 10899 fi->level = level; 10900 return true; 10901 } 10902 10903 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10904 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10905 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10906 target_ulong *page_size, ARMMMUFaultInfo *fi) 10907 { 10908 CPUState *cs = env_cpu(env); 10909 ARMCPU *cpu = env_archcpu(env); 10910 int level = 1; 10911 uint32_t table; 10912 uint32_t desc; 10913 uint32_t xn; 10914 uint32_t pxn = 0; 10915 int type; 10916 int ap; 10917 int domain = 0; 10918 int domain_prot; 10919 hwaddr phys_addr; 10920 uint32_t dacr; 10921 bool ns; 10922 10923 /* Pagetable walk. */ 10924 /* Lookup l1 descriptor. */ 10925 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10926 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10927 fi->type = ARMFault_Translation; 10928 goto do_fault; 10929 } 10930 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10931 mmu_idx, fi); 10932 if (fi->type != ARMFault_None) { 10933 goto do_fault; 10934 } 10935 type = (desc & 3); 10936 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10937 /* Section translation fault, or attempt to use the encoding 10938 * which is Reserved on implementations without PXN. 10939 */ 10940 fi->type = ARMFault_Translation; 10941 goto do_fault; 10942 } 10943 if ((type == 1) || !(desc & (1 << 18))) { 10944 /* Page or Section. */ 10945 domain = (desc >> 5) & 0x0f; 10946 } 10947 if (regime_el(env, mmu_idx) == 1) { 10948 dacr = env->cp15.dacr_ns; 10949 } else { 10950 dacr = env->cp15.dacr_s; 10951 } 10952 if (type == 1) { 10953 level = 2; 10954 } 10955 domain_prot = (dacr >> (domain * 2)) & 3; 10956 if (domain_prot == 0 || domain_prot == 2) { 10957 /* Section or Page domain fault */ 10958 fi->type = ARMFault_Domain; 10959 goto do_fault; 10960 } 10961 if (type != 1) { 10962 if (desc & (1 << 18)) { 10963 /* Supersection. */ 10964 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10965 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10966 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10967 *page_size = 0x1000000; 10968 } else { 10969 /* Section. */ 10970 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10971 *page_size = 0x100000; 10972 } 10973 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10974 xn = desc & (1 << 4); 10975 pxn = desc & 1; 10976 ns = extract32(desc, 19, 1); 10977 } else { 10978 if (cpu_isar_feature(aa32_pxn, cpu)) { 10979 pxn = (desc >> 2) & 1; 10980 } 10981 ns = extract32(desc, 3, 1); 10982 /* Lookup l2 entry. */ 10983 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10984 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10985 mmu_idx, fi); 10986 if (fi->type != ARMFault_None) { 10987 goto do_fault; 10988 } 10989 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10990 switch (desc & 3) { 10991 case 0: /* Page translation fault. */ 10992 fi->type = ARMFault_Translation; 10993 goto do_fault; 10994 case 1: /* 64k page. */ 10995 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10996 xn = desc & (1 << 15); 10997 *page_size = 0x10000; 10998 break; 10999 case 2: case 3: /* 4k page. */ 11000 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11001 xn = desc & 1; 11002 *page_size = 0x1000; 11003 break; 11004 default: 11005 /* Never happens, but compiler isn't smart enough to tell. */ 11006 abort(); 11007 } 11008 } 11009 if (domain_prot == 3) { 11010 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11011 } else { 11012 if (pxn && !regime_is_user(env, mmu_idx)) { 11013 xn = 1; 11014 } 11015 if (xn && access_type == MMU_INST_FETCH) { 11016 fi->type = ARMFault_Permission; 11017 goto do_fault; 11018 } 11019 11020 if (arm_feature(env, ARM_FEATURE_V6K) && 11021 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11022 /* The simplified model uses AP[0] as an access control bit. */ 11023 if ((ap & 1) == 0) { 11024 /* Access flag fault. */ 11025 fi->type = ARMFault_AccessFlag; 11026 goto do_fault; 11027 } 11028 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11029 } else { 11030 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11031 } 11032 if (*prot && !xn) { 11033 *prot |= PAGE_EXEC; 11034 } 11035 if (!(*prot & (1 << access_type))) { 11036 /* Access permission fault. */ 11037 fi->type = ARMFault_Permission; 11038 goto do_fault; 11039 } 11040 } 11041 if (ns) { 11042 /* The NS bit will (as required by the architecture) have no effect if 11043 * the CPU doesn't support TZ or this is a non-secure translation 11044 * regime, because the attribute will already be non-secure. 11045 */ 11046 attrs->secure = false; 11047 } 11048 *phys_ptr = phys_addr; 11049 return false; 11050 do_fault: 11051 fi->domain = domain; 11052 fi->level = level; 11053 return true; 11054 } 11055 11056 /* 11057 * check_s2_mmu_setup 11058 * @cpu: ARMCPU 11059 * @is_aa64: True if the translation regime is in AArch64 state 11060 * @startlevel: Suggested starting level 11061 * @inputsize: Bitsize of IPAs 11062 * @stride: Page-table stride (See the ARM ARM) 11063 * 11064 * Returns true if the suggested S2 translation parameters are OK and 11065 * false otherwise. 11066 */ 11067 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11068 int inputsize, int stride) 11069 { 11070 const int grainsize = stride + 3; 11071 int startsizecheck; 11072 11073 /* Negative levels are never allowed. */ 11074 if (level < 0) { 11075 return false; 11076 } 11077 11078 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11079 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11080 return false; 11081 } 11082 11083 if (is_aa64) { 11084 CPUARMState *env = &cpu->env; 11085 unsigned int pamax = arm_pamax(cpu); 11086 11087 switch (stride) { 11088 case 13: /* 64KB Pages. */ 11089 if (level == 0 || (level == 1 && pamax <= 42)) { 11090 return false; 11091 } 11092 break; 11093 case 11: /* 16KB Pages. */ 11094 if (level == 0 || (level == 1 && pamax <= 40)) { 11095 return false; 11096 } 11097 break; 11098 case 9: /* 4KB Pages. */ 11099 if (level == 0 && pamax <= 42) { 11100 return false; 11101 } 11102 break; 11103 default: 11104 g_assert_not_reached(); 11105 } 11106 11107 /* Inputsize checks. */ 11108 if (inputsize > pamax && 11109 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 11110 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11111 return false; 11112 } 11113 } else { 11114 /* AArch32 only supports 4KB pages. Assert on that. */ 11115 assert(stride == 9); 11116 11117 if (level == 0) { 11118 return false; 11119 } 11120 } 11121 return true; 11122 } 11123 11124 /* Translate from the 4-bit stage 2 representation of 11125 * memory attributes (without cache-allocation hints) to 11126 * the 8-bit representation of the stage 1 MAIR registers 11127 * (which includes allocation hints). 11128 * 11129 * ref: shared/translation/attrs/S2AttrDecode() 11130 * .../S2ConvertAttrsHints() 11131 */ 11132 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11133 { 11134 uint8_t hiattr = extract32(s2attrs, 2, 2); 11135 uint8_t loattr = extract32(s2attrs, 0, 2); 11136 uint8_t hihint = 0, lohint = 0; 11137 11138 if (hiattr != 0) { /* normal memory */ 11139 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11140 hiattr = loattr = 1; /* non-cacheable */ 11141 } else { 11142 if (hiattr != 1) { /* Write-through or write-back */ 11143 hihint = 3; /* RW allocate */ 11144 } 11145 if (loattr != 1) { /* Write-through or write-back */ 11146 lohint = 3; /* RW allocate */ 11147 } 11148 } 11149 } 11150 11151 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11152 } 11153 #endif /* !CONFIG_USER_ONLY */ 11154 11155 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11156 { 11157 if (regime_has_2_ranges(mmu_idx)) { 11158 return extract64(tcr, 37, 2); 11159 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11160 return 0; /* VTCR_EL2 */ 11161 } else { 11162 /* Replicate the single TBI bit so we always have 2 bits. */ 11163 return extract32(tcr, 20, 1) * 3; 11164 } 11165 } 11166 11167 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11168 { 11169 if (regime_has_2_ranges(mmu_idx)) { 11170 return extract64(tcr, 51, 2); 11171 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11172 return 0; /* VTCR_EL2 */ 11173 } else { 11174 /* Replicate the single TBID bit so we always have 2 bits. */ 11175 return extract32(tcr, 29, 1) * 3; 11176 } 11177 } 11178 11179 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11180 { 11181 if (regime_has_2_ranges(mmu_idx)) { 11182 return extract64(tcr, 57, 2); 11183 } else { 11184 /* Replicate the single TCMA bit so we always have 2 bits. */ 11185 return extract32(tcr, 30, 1) * 3; 11186 } 11187 } 11188 11189 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11190 ARMMMUIdx mmu_idx, bool data) 11191 { 11192 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11193 bool epd, hpd, using16k, using64k; 11194 int select, tsz, tbi, max_tsz; 11195 11196 if (!regime_has_2_ranges(mmu_idx)) { 11197 select = 0; 11198 tsz = extract32(tcr, 0, 6); 11199 using64k = extract32(tcr, 14, 1); 11200 using16k = extract32(tcr, 15, 1); 11201 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11202 /* VTCR_EL2 */ 11203 hpd = false; 11204 } else { 11205 hpd = extract32(tcr, 24, 1); 11206 } 11207 epd = false; 11208 } else { 11209 /* 11210 * Bit 55 is always between the two regions, and is canonical for 11211 * determining if address tagging is enabled. 11212 */ 11213 select = extract64(va, 55, 1); 11214 if (!select) { 11215 tsz = extract32(tcr, 0, 6); 11216 epd = extract32(tcr, 7, 1); 11217 using64k = extract32(tcr, 14, 1); 11218 using16k = extract32(tcr, 15, 1); 11219 hpd = extract64(tcr, 41, 1); 11220 } else { 11221 int tg = extract32(tcr, 30, 2); 11222 using16k = tg == 1; 11223 using64k = tg == 3; 11224 tsz = extract32(tcr, 16, 6); 11225 epd = extract32(tcr, 23, 1); 11226 hpd = extract64(tcr, 42, 1); 11227 } 11228 } 11229 11230 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11231 max_tsz = 48 - using64k; 11232 } else { 11233 max_tsz = 39; 11234 } 11235 11236 tsz = MIN(tsz, max_tsz); 11237 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11238 11239 /* Present TBI as a composite with TBID. */ 11240 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11241 if (!data) { 11242 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11243 } 11244 tbi = (tbi >> select) & 1; 11245 11246 return (ARMVAParameters) { 11247 .tsz = tsz, 11248 .select = select, 11249 .tbi = tbi, 11250 .epd = epd, 11251 .hpd = hpd, 11252 .using16k = using16k, 11253 .using64k = using64k, 11254 }; 11255 } 11256 11257 #ifndef CONFIG_USER_ONLY 11258 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11259 ARMMMUIdx mmu_idx) 11260 { 11261 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11262 uint32_t el = regime_el(env, mmu_idx); 11263 int select, tsz; 11264 bool epd, hpd; 11265 11266 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11267 11268 if (mmu_idx == ARMMMUIdx_Stage2) { 11269 /* VTCR */ 11270 bool sext = extract32(tcr, 4, 1); 11271 bool sign = extract32(tcr, 3, 1); 11272 11273 /* 11274 * If the sign-extend bit is not the same as t0sz[3], the result 11275 * is unpredictable. Flag this as a guest error. 11276 */ 11277 if (sign != sext) { 11278 qemu_log_mask(LOG_GUEST_ERROR, 11279 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11280 } 11281 tsz = sextract32(tcr, 0, 4) + 8; 11282 select = 0; 11283 hpd = false; 11284 epd = false; 11285 } else if (el == 2) { 11286 /* HTCR */ 11287 tsz = extract32(tcr, 0, 3); 11288 select = 0; 11289 hpd = extract64(tcr, 24, 1); 11290 epd = false; 11291 } else { 11292 int t0sz = extract32(tcr, 0, 3); 11293 int t1sz = extract32(tcr, 16, 3); 11294 11295 if (t1sz == 0) { 11296 select = va > (0xffffffffu >> t0sz); 11297 } else { 11298 /* Note that we will detect errors later. */ 11299 select = va >= ~(0xffffffffu >> t1sz); 11300 } 11301 if (!select) { 11302 tsz = t0sz; 11303 epd = extract32(tcr, 7, 1); 11304 hpd = extract64(tcr, 41, 1); 11305 } else { 11306 tsz = t1sz; 11307 epd = extract32(tcr, 23, 1); 11308 hpd = extract64(tcr, 42, 1); 11309 } 11310 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11311 hpd &= extract32(tcr, 6, 1); 11312 } 11313 11314 return (ARMVAParameters) { 11315 .tsz = tsz, 11316 .select = select, 11317 .epd = epd, 11318 .hpd = hpd, 11319 }; 11320 } 11321 11322 /** 11323 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11324 * 11325 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11326 * prot and page_size may not be filled in, and the populated fsr value provides 11327 * information on why the translation aborted, in the format of a long-format 11328 * DFSR/IFSR fault register, with the following caveats: 11329 * * the WnR bit is never set (the caller must do this). 11330 * 11331 * @env: CPUARMState 11332 * @address: virtual address to get physical address for 11333 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11334 * @mmu_idx: MMU index indicating required translation regime 11335 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11336 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11337 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11338 * @phys_ptr: set to the physical address corresponding to the virtual address 11339 * @attrs: set to the memory transaction attributes to use 11340 * @prot: set to the permissions for the page containing phys_ptr 11341 * @page_size_ptr: set to the size of the page containing phys_ptr 11342 * @fi: set to fault info if the translation fails 11343 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11344 */ 11345 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11346 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11347 bool s1_is_el0, 11348 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11349 target_ulong *page_size_ptr, 11350 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11351 { 11352 ARMCPU *cpu = env_archcpu(env); 11353 CPUState *cs = CPU(cpu); 11354 /* Read an LPAE long-descriptor translation table. */ 11355 ARMFaultType fault_type = ARMFault_Translation; 11356 uint32_t level; 11357 ARMVAParameters param; 11358 uint64_t ttbr; 11359 hwaddr descaddr, indexmask, indexmask_grainsize; 11360 uint32_t tableattrs; 11361 target_ulong page_size; 11362 uint32_t attrs; 11363 int32_t stride; 11364 int addrsize, inputsize; 11365 TCR *tcr = regime_tcr(env, mmu_idx); 11366 int ap, ns, xn, pxn; 11367 uint32_t el = regime_el(env, mmu_idx); 11368 uint64_t descaddrmask; 11369 bool aarch64 = arm_el_is_aa64(env, el); 11370 bool guarded = false; 11371 11372 /* TODO: This code does not support shareability levels. */ 11373 if (aarch64) { 11374 param = aa64_va_parameters(env, address, mmu_idx, 11375 access_type != MMU_INST_FETCH); 11376 level = 0; 11377 addrsize = 64 - 8 * param.tbi; 11378 inputsize = 64 - param.tsz; 11379 } else { 11380 param = aa32_va_parameters(env, address, mmu_idx); 11381 level = 1; 11382 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11383 inputsize = addrsize - param.tsz; 11384 } 11385 11386 /* 11387 * We determined the region when collecting the parameters, but we 11388 * have not yet validated that the address is valid for the region. 11389 * Extract the top bits and verify that they all match select. 11390 * 11391 * For aa32, if inputsize == addrsize, then we have selected the 11392 * region by exclusion in aa32_va_parameters and there is no more 11393 * validation to do here. 11394 */ 11395 if (inputsize < addrsize) { 11396 target_ulong top_bits = sextract64(address, inputsize, 11397 addrsize - inputsize); 11398 if (-top_bits != param.select) { 11399 /* The gap between the two regions is a Translation fault */ 11400 fault_type = ARMFault_Translation; 11401 goto do_fault; 11402 } 11403 } 11404 11405 if (param.using64k) { 11406 stride = 13; 11407 } else if (param.using16k) { 11408 stride = 11; 11409 } else { 11410 stride = 9; 11411 } 11412 11413 /* Note that QEMU ignores shareability and cacheability attributes, 11414 * so we don't need to do anything with the SH, ORGN, IRGN fields 11415 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11416 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11417 * implement any ASID-like capability so we can ignore it (instead 11418 * we will always flush the TLB any time the ASID is changed). 11419 */ 11420 ttbr = regime_ttbr(env, mmu_idx, param.select); 11421 11422 /* Here we should have set up all the parameters for the translation: 11423 * inputsize, ttbr, epd, stride, tbi 11424 */ 11425 11426 if (param.epd) { 11427 /* Translation table walk disabled => Translation fault on TLB miss 11428 * Note: This is always 0 on 64-bit EL2 and EL3. 11429 */ 11430 goto do_fault; 11431 } 11432 11433 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11434 /* The starting level depends on the virtual address size (which can 11435 * be up to 48 bits) and the translation granule size. It indicates 11436 * the number of strides (stride bits at a time) needed to 11437 * consume the bits of the input address. In the pseudocode this is: 11438 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11439 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11440 * our 'stride + 3' and 'stride' is our 'stride'. 11441 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11442 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11443 * = 4 - (inputsize - 4) / stride; 11444 */ 11445 level = 4 - (inputsize - 4) / stride; 11446 } else { 11447 /* For stage 2 translations the starting level is specified by the 11448 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11449 */ 11450 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11451 uint32_t startlevel; 11452 bool ok; 11453 11454 if (!aarch64 || stride == 9) { 11455 /* AArch32 or 4KB pages */ 11456 startlevel = 2 - sl0; 11457 11458 if (cpu_isar_feature(aa64_st, cpu)) { 11459 startlevel &= 3; 11460 } 11461 } else { 11462 /* 16KB or 64KB pages */ 11463 startlevel = 3 - sl0; 11464 } 11465 11466 /* Check that the starting level is valid. */ 11467 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11468 inputsize, stride); 11469 if (!ok) { 11470 fault_type = ARMFault_Translation; 11471 goto do_fault; 11472 } 11473 level = startlevel; 11474 } 11475 11476 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11477 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11478 11479 /* Now we can extract the actual base address from the TTBR */ 11480 descaddr = extract64(ttbr, 0, 48); 11481 /* 11482 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11483 * and also to mask out CnP (bit 0) which could validly be non-zero. 11484 */ 11485 descaddr &= ~indexmask; 11486 11487 /* The address field in the descriptor goes up to bit 39 for ARMv7 11488 * but up to bit 47 for ARMv8, but we use the descaddrmask 11489 * up to bit 39 for AArch32, because we don't need other bits in that case 11490 * to construct next descriptor address (anyway they should be all zeroes). 11491 */ 11492 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11493 ~indexmask_grainsize; 11494 11495 /* Secure accesses start with the page table in secure memory and 11496 * can be downgraded to non-secure at any step. Non-secure accesses 11497 * remain non-secure. We implement this by just ORing in the NSTable/NS 11498 * bits at each step. 11499 */ 11500 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11501 for (;;) { 11502 uint64_t descriptor; 11503 bool nstable; 11504 11505 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11506 descaddr &= ~7ULL; 11507 nstable = extract32(tableattrs, 4, 1); 11508 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11509 if (fi->type != ARMFault_None) { 11510 goto do_fault; 11511 } 11512 11513 if (!(descriptor & 1) || 11514 (!(descriptor & 2) && (level == 3))) { 11515 /* Invalid, or the Reserved level 3 encoding */ 11516 goto do_fault; 11517 } 11518 descaddr = descriptor & descaddrmask; 11519 11520 if ((descriptor & 2) && (level < 3)) { 11521 /* Table entry. The top five bits are attributes which may 11522 * propagate down through lower levels of the table (and 11523 * which are all arranged so that 0 means "no effect", so 11524 * we can gather them up by ORing in the bits at each level). 11525 */ 11526 tableattrs |= extract64(descriptor, 59, 5); 11527 level++; 11528 indexmask = indexmask_grainsize; 11529 continue; 11530 } 11531 /* Block entry at level 1 or 2, or page entry at level 3. 11532 * These are basically the same thing, although the number 11533 * of bits we pull in from the vaddr varies. 11534 */ 11535 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11536 descaddr |= (address & (page_size - 1)); 11537 /* Extract attributes from the descriptor */ 11538 attrs = extract64(descriptor, 2, 10) 11539 | (extract64(descriptor, 52, 12) << 10); 11540 11541 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11542 /* Stage 2 table descriptors do not include any attribute fields */ 11543 break; 11544 } 11545 /* Merge in attributes from table descriptors */ 11546 attrs |= nstable << 3; /* NS */ 11547 guarded = extract64(descriptor, 50, 1); /* GP */ 11548 if (param.hpd) { 11549 /* HPD disables all the table attributes except NSTable. */ 11550 break; 11551 } 11552 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11553 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11554 * means "force PL1 access only", which means forcing AP[1] to 0. 11555 */ 11556 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11557 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11558 break; 11559 } 11560 /* Here descaddr is the final physical address, and attributes 11561 * are all in attrs. 11562 */ 11563 fault_type = ARMFault_AccessFlag; 11564 if ((attrs & (1 << 8)) == 0) { 11565 /* Access flag */ 11566 goto do_fault; 11567 } 11568 11569 ap = extract32(attrs, 4, 2); 11570 11571 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11572 ns = mmu_idx == ARMMMUIdx_Stage2; 11573 xn = extract32(attrs, 11, 2); 11574 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11575 } else { 11576 ns = extract32(attrs, 3, 1); 11577 xn = extract32(attrs, 12, 1); 11578 pxn = extract32(attrs, 11, 1); 11579 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11580 } 11581 11582 fault_type = ARMFault_Permission; 11583 if (!(*prot & (1 << access_type))) { 11584 goto do_fault; 11585 } 11586 11587 if (ns) { 11588 /* The NS bit will (as required by the architecture) have no effect if 11589 * the CPU doesn't support TZ or this is a non-secure translation 11590 * regime, because the attribute will already be non-secure. 11591 */ 11592 txattrs->secure = false; 11593 } 11594 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11595 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11596 arm_tlb_bti_gp(txattrs) = true; 11597 } 11598 11599 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11600 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11601 } else { 11602 /* Index into MAIR registers for cache attributes */ 11603 uint8_t attrindx = extract32(attrs, 0, 3); 11604 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11605 assert(attrindx <= 7); 11606 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11607 } 11608 cacheattrs->shareability = extract32(attrs, 6, 2); 11609 11610 *phys_ptr = descaddr; 11611 *page_size_ptr = page_size; 11612 return false; 11613 11614 do_fault: 11615 fi->type = fault_type; 11616 fi->level = level; 11617 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11618 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11619 mmu_idx == ARMMMUIdx_Stage2_S); 11620 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11621 return true; 11622 } 11623 11624 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11625 ARMMMUIdx mmu_idx, 11626 int32_t address, int *prot) 11627 { 11628 if (!arm_feature(env, ARM_FEATURE_M)) { 11629 *prot = PAGE_READ | PAGE_WRITE; 11630 switch (address) { 11631 case 0xF0000000 ... 0xFFFFFFFF: 11632 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11633 /* hivecs execing is ok */ 11634 *prot |= PAGE_EXEC; 11635 } 11636 break; 11637 case 0x00000000 ... 0x7FFFFFFF: 11638 *prot |= PAGE_EXEC; 11639 break; 11640 } 11641 } else { 11642 /* Default system address map for M profile cores. 11643 * The architecture specifies which regions are execute-never; 11644 * at the MPU level no other checks are defined. 11645 */ 11646 switch (address) { 11647 case 0x00000000 ... 0x1fffffff: /* ROM */ 11648 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11649 case 0x60000000 ... 0x7fffffff: /* RAM */ 11650 case 0x80000000 ... 0x9fffffff: /* RAM */ 11651 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11652 break; 11653 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11654 case 0xa0000000 ... 0xbfffffff: /* Device */ 11655 case 0xc0000000 ... 0xdfffffff: /* Device */ 11656 case 0xe0000000 ... 0xffffffff: /* System */ 11657 *prot = PAGE_READ | PAGE_WRITE; 11658 break; 11659 default: 11660 g_assert_not_reached(); 11661 } 11662 } 11663 } 11664 11665 static bool pmsav7_use_background_region(ARMCPU *cpu, 11666 ARMMMUIdx mmu_idx, bool is_user) 11667 { 11668 /* Return true if we should use the default memory map as a 11669 * "background" region if there are no hits against any MPU regions. 11670 */ 11671 CPUARMState *env = &cpu->env; 11672 11673 if (is_user) { 11674 return false; 11675 } 11676 11677 if (arm_feature(env, ARM_FEATURE_M)) { 11678 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11679 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11680 } else { 11681 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11682 } 11683 } 11684 11685 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11686 { 11687 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11688 return arm_feature(env, ARM_FEATURE_M) && 11689 extract32(address, 20, 12) == 0xe00; 11690 } 11691 11692 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11693 { 11694 /* True if address is in the M profile system region 11695 * 0xe0000000 - 0xffffffff 11696 */ 11697 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11698 } 11699 11700 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11701 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11702 hwaddr *phys_ptr, int *prot, 11703 target_ulong *page_size, 11704 ARMMMUFaultInfo *fi) 11705 { 11706 ARMCPU *cpu = env_archcpu(env); 11707 int n; 11708 bool is_user = regime_is_user(env, mmu_idx); 11709 11710 *phys_ptr = address; 11711 *page_size = TARGET_PAGE_SIZE; 11712 *prot = 0; 11713 11714 if (regime_translation_disabled(env, mmu_idx) || 11715 m_is_ppb_region(env, address)) { 11716 /* MPU disabled or M profile PPB access: use default memory map. 11717 * The other case which uses the default memory map in the 11718 * v7M ARM ARM pseudocode is exception vector reads from the vector 11719 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11720 * which always does a direct read using address_space_ldl(), rather 11721 * than going via this function, so we don't need to check that here. 11722 */ 11723 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11724 } else { /* MPU enabled */ 11725 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11726 /* region search */ 11727 uint32_t base = env->pmsav7.drbar[n]; 11728 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11729 uint32_t rmask; 11730 bool srdis = false; 11731 11732 if (!(env->pmsav7.drsr[n] & 0x1)) { 11733 continue; 11734 } 11735 11736 if (!rsize) { 11737 qemu_log_mask(LOG_GUEST_ERROR, 11738 "DRSR[%d]: Rsize field cannot be 0\n", n); 11739 continue; 11740 } 11741 rsize++; 11742 rmask = (1ull << rsize) - 1; 11743 11744 if (base & rmask) { 11745 qemu_log_mask(LOG_GUEST_ERROR, 11746 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11747 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11748 n, base, rmask); 11749 continue; 11750 } 11751 11752 if (address < base || address > base + rmask) { 11753 /* 11754 * Address not in this region. We must check whether the 11755 * region covers addresses in the same page as our address. 11756 * In that case we must not report a size that covers the 11757 * whole page for a subsequent hit against a different MPU 11758 * region or the background region, because it would result in 11759 * incorrect TLB hits for subsequent accesses to addresses that 11760 * are in this MPU region. 11761 */ 11762 if (ranges_overlap(base, rmask, 11763 address & TARGET_PAGE_MASK, 11764 TARGET_PAGE_SIZE)) { 11765 *page_size = 1; 11766 } 11767 continue; 11768 } 11769 11770 /* Region matched */ 11771 11772 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11773 int i, snd; 11774 uint32_t srdis_mask; 11775 11776 rsize -= 3; /* sub region size (power of 2) */ 11777 snd = ((address - base) >> rsize) & 0x7; 11778 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11779 11780 srdis_mask = srdis ? 0x3 : 0x0; 11781 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11782 /* This will check in groups of 2, 4 and then 8, whether 11783 * the subregion bits are consistent. rsize is incremented 11784 * back up to give the region size, considering consistent 11785 * adjacent subregions as one region. Stop testing if rsize 11786 * is already big enough for an entire QEMU page. 11787 */ 11788 int snd_rounded = snd & ~(i - 1); 11789 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11790 snd_rounded + 8, i); 11791 if (srdis_mask ^ srdis_multi) { 11792 break; 11793 } 11794 srdis_mask = (srdis_mask << i) | srdis_mask; 11795 rsize++; 11796 } 11797 } 11798 if (srdis) { 11799 continue; 11800 } 11801 if (rsize < TARGET_PAGE_BITS) { 11802 *page_size = 1 << rsize; 11803 } 11804 break; 11805 } 11806 11807 if (n == -1) { /* no hits */ 11808 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11809 /* background fault */ 11810 fi->type = ARMFault_Background; 11811 return true; 11812 } 11813 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11814 } else { /* a MPU hit! */ 11815 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11816 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11817 11818 if (m_is_system_region(env, address)) { 11819 /* System space is always execute never */ 11820 xn = 1; 11821 } 11822 11823 if (is_user) { /* User mode AP bit decoding */ 11824 switch (ap) { 11825 case 0: 11826 case 1: 11827 case 5: 11828 break; /* no access */ 11829 case 3: 11830 *prot |= PAGE_WRITE; 11831 /* fall through */ 11832 case 2: 11833 case 6: 11834 *prot |= PAGE_READ | PAGE_EXEC; 11835 break; 11836 case 7: 11837 /* for v7M, same as 6; for R profile a reserved value */ 11838 if (arm_feature(env, ARM_FEATURE_M)) { 11839 *prot |= PAGE_READ | PAGE_EXEC; 11840 break; 11841 } 11842 /* fall through */ 11843 default: 11844 qemu_log_mask(LOG_GUEST_ERROR, 11845 "DRACR[%d]: Bad value for AP bits: 0x%" 11846 PRIx32 "\n", n, ap); 11847 } 11848 } else { /* Priv. mode AP bits decoding */ 11849 switch (ap) { 11850 case 0: 11851 break; /* no access */ 11852 case 1: 11853 case 2: 11854 case 3: 11855 *prot |= PAGE_WRITE; 11856 /* fall through */ 11857 case 5: 11858 case 6: 11859 *prot |= PAGE_READ | PAGE_EXEC; 11860 break; 11861 case 7: 11862 /* for v7M, same as 6; for R profile a reserved value */ 11863 if (arm_feature(env, ARM_FEATURE_M)) { 11864 *prot |= PAGE_READ | PAGE_EXEC; 11865 break; 11866 } 11867 /* fall through */ 11868 default: 11869 qemu_log_mask(LOG_GUEST_ERROR, 11870 "DRACR[%d]: Bad value for AP bits: 0x%" 11871 PRIx32 "\n", n, ap); 11872 } 11873 } 11874 11875 /* execute never */ 11876 if (xn) { 11877 *prot &= ~PAGE_EXEC; 11878 } 11879 } 11880 } 11881 11882 fi->type = ARMFault_Permission; 11883 fi->level = 1; 11884 return !(*prot & (1 << access_type)); 11885 } 11886 11887 static bool v8m_is_sau_exempt(CPUARMState *env, 11888 uint32_t address, MMUAccessType access_type) 11889 { 11890 /* The architecture specifies that certain address ranges are 11891 * exempt from v8M SAU/IDAU checks. 11892 */ 11893 return 11894 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11895 (address >= 0xe0000000 && address <= 0xe0002fff) || 11896 (address >= 0xe000e000 && address <= 0xe000efff) || 11897 (address >= 0xe002e000 && address <= 0xe002efff) || 11898 (address >= 0xe0040000 && address <= 0xe0041fff) || 11899 (address >= 0xe00ff000 && address <= 0xe00fffff); 11900 } 11901 11902 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11903 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11904 V8M_SAttributes *sattrs) 11905 { 11906 /* Look up the security attributes for this address. Compare the 11907 * pseudocode SecurityCheck() function. 11908 * We assume the caller has zero-initialized *sattrs. 11909 */ 11910 ARMCPU *cpu = env_archcpu(env); 11911 int r; 11912 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11913 int idau_region = IREGION_NOTVALID; 11914 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11915 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11916 11917 if (cpu->idau) { 11918 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11919 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11920 11921 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11922 &idau_nsc); 11923 } 11924 11925 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11926 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11927 return; 11928 } 11929 11930 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11931 sattrs->ns = !regime_is_secure(env, mmu_idx); 11932 return; 11933 } 11934 11935 if (idau_region != IREGION_NOTVALID) { 11936 sattrs->irvalid = true; 11937 sattrs->iregion = idau_region; 11938 } 11939 11940 switch (env->sau.ctrl & 3) { 11941 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11942 break; 11943 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11944 sattrs->ns = true; 11945 break; 11946 default: /* SAU.ENABLE == 1 */ 11947 for (r = 0; r < cpu->sau_sregion; r++) { 11948 if (env->sau.rlar[r] & 1) { 11949 uint32_t base = env->sau.rbar[r] & ~0x1f; 11950 uint32_t limit = env->sau.rlar[r] | 0x1f; 11951 11952 if (base <= address && limit >= address) { 11953 if (base > addr_page_base || limit < addr_page_limit) { 11954 sattrs->subpage = true; 11955 } 11956 if (sattrs->srvalid) { 11957 /* If we hit in more than one region then we must report 11958 * as Secure, not NS-Callable, with no valid region 11959 * number info. 11960 */ 11961 sattrs->ns = false; 11962 sattrs->nsc = false; 11963 sattrs->sregion = 0; 11964 sattrs->srvalid = false; 11965 break; 11966 } else { 11967 if (env->sau.rlar[r] & 2) { 11968 sattrs->nsc = true; 11969 } else { 11970 sattrs->ns = true; 11971 } 11972 sattrs->srvalid = true; 11973 sattrs->sregion = r; 11974 } 11975 } else { 11976 /* 11977 * Address not in this region. We must check whether the 11978 * region covers addresses in the same page as our address. 11979 * In that case we must not report a size that covers the 11980 * whole page for a subsequent hit against a different MPU 11981 * region or the background region, because it would result 11982 * in incorrect TLB hits for subsequent accesses to 11983 * addresses that are in this MPU region. 11984 */ 11985 if (limit >= base && 11986 ranges_overlap(base, limit - base + 1, 11987 addr_page_base, 11988 TARGET_PAGE_SIZE)) { 11989 sattrs->subpage = true; 11990 } 11991 } 11992 } 11993 } 11994 break; 11995 } 11996 11997 /* 11998 * The IDAU will override the SAU lookup results if it specifies 11999 * higher security than the SAU does. 12000 */ 12001 if (!idau_ns) { 12002 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12003 sattrs->ns = false; 12004 sattrs->nsc = idau_nsc; 12005 } 12006 } 12007 } 12008 12009 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12010 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12011 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12012 int *prot, bool *is_subpage, 12013 ARMMMUFaultInfo *fi, uint32_t *mregion) 12014 { 12015 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12016 * that a full phys-to-virt translation does). 12017 * mregion is (if not NULL) set to the region number which matched, 12018 * or -1 if no region number is returned (MPU off, address did not 12019 * hit a region, address hit in multiple regions). 12020 * We set is_subpage to true if the region hit doesn't cover the 12021 * entire TARGET_PAGE the address is within. 12022 */ 12023 ARMCPU *cpu = env_archcpu(env); 12024 bool is_user = regime_is_user(env, mmu_idx); 12025 uint32_t secure = regime_is_secure(env, mmu_idx); 12026 int n; 12027 int matchregion = -1; 12028 bool hit = false; 12029 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12030 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12031 12032 *is_subpage = false; 12033 *phys_ptr = address; 12034 *prot = 0; 12035 if (mregion) { 12036 *mregion = -1; 12037 } 12038 12039 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12040 * was an exception vector read from the vector table (which is always 12041 * done using the default system address map), because those accesses 12042 * are done in arm_v7m_load_vector(), which always does a direct 12043 * read using address_space_ldl(), rather than going via this function. 12044 */ 12045 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12046 hit = true; 12047 } else if (m_is_ppb_region(env, address)) { 12048 hit = true; 12049 } else { 12050 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12051 hit = true; 12052 } 12053 12054 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12055 /* region search */ 12056 /* Note that the base address is bits [31:5] from the register 12057 * with bits [4:0] all zeroes, but the limit address is bits 12058 * [31:5] from the register with bits [4:0] all ones. 12059 */ 12060 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12061 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12062 12063 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12064 /* Region disabled */ 12065 continue; 12066 } 12067 12068 if (address < base || address > limit) { 12069 /* 12070 * Address not in this region. We must check whether the 12071 * region covers addresses in the same page as our address. 12072 * In that case we must not report a size that covers the 12073 * whole page for a subsequent hit against a different MPU 12074 * region or the background region, because it would result in 12075 * incorrect TLB hits for subsequent accesses to addresses that 12076 * are in this MPU region. 12077 */ 12078 if (limit >= base && 12079 ranges_overlap(base, limit - base + 1, 12080 addr_page_base, 12081 TARGET_PAGE_SIZE)) { 12082 *is_subpage = true; 12083 } 12084 continue; 12085 } 12086 12087 if (base > addr_page_base || limit < addr_page_limit) { 12088 *is_subpage = true; 12089 } 12090 12091 if (matchregion != -1) { 12092 /* Multiple regions match -- always a failure (unlike 12093 * PMSAv7 where highest-numbered-region wins) 12094 */ 12095 fi->type = ARMFault_Permission; 12096 fi->level = 1; 12097 return true; 12098 } 12099 12100 matchregion = n; 12101 hit = true; 12102 } 12103 } 12104 12105 if (!hit) { 12106 /* background fault */ 12107 fi->type = ARMFault_Background; 12108 return true; 12109 } 12110 12111 if (matchregion == -1) { 12112 /* hit using the background region */ 12113 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12114 } else { 12115 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12116 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12117 bool pxn = false; 12118 12119 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12120 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12121 } 12122 12123 if (m_is_system_region(env, address)) { 12124 /* System space is always execute never */ 12125 xn = 1; 12126 } 12127 12128 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12129 if (*prot && !xn && !(pxn && !is_user)) { 12130 *prot |= PAGE_EXEC; 12131 } 12132 /* We don't need to look the attribute up in the MAIR0/MAIR1 12133 * registers because that only tells us about cacheability. 12134 */ 12135 if (mregion) { 12136 *mregion = matchregion; 12137 } 12138 } 12139 12140 fi->type = ARMFault_Permission; 12141 fi->level = 1; 12142 return !(*prot & (1 << access_type)); 12143 } 12144 12145 12146 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12147 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12148 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12149 int *prot, target_ulong *page_size, 12150 ARMMMUFaultInfo *fi) 12151 { 12152 uint32_t secure = regime_is_secure(env, mmu_idx); 12153 V8M_SAttributes sattrs = {}; 12154 bool ret; 12155 bool mpu_is_subpage; 12156 12157 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12158 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12159 if (access_type == MMU_INST_FETCH) { 12160 /* Instruction fetches always use the MMU bank and the 12161 * transaction attribute determined by the fetch address, 12162 * regardless of CPU state. This is painful for QEMU 12163 * to handle, because it would mean we need to encode 12164 * into the mmu_idx not just the (user, negpri) information 12165 * for the current security state but also that for the 12166 * other security state, which would balloon the number 12167 * of mmu_idx values needed alarmingly. 12168 * Fortunately we can avoid this because it's not actually 12169 * possible to arbitrarily execute code from memory with 12170 * the wrong security attribute: it will always generate 12171 * an exception of some kind or another, apart from the 12172 * special case of an NS CPU executing an SG instruction 12173 * in S&NSC memory. So we always just fail the translation 12174 * here and sort things out in the exception handler 12175 * (including possibly emulating an SG instruction). 12176 */ 12177 if (sattrs.ns != !secure) { 12178 if (sattrs.nsc) { 12179 fi->type = ARMFault_QEMU_NSCExec; 12180 } else { 12181 fi->type = ARMFault_QEMU_SFault; 12182 } 12183 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12184 *phys_ptr = address; 12185 *prot = 0; 12186 return true; 12187 } 12188 } else { 12189 /* For data accesses we always use the MMU bank indicated 12190 * by the current CPU state, but the security attributes 12191 * might downgrade a secure access to nonsecure. 12192 */ 12193 if (sattrs.ns) { 12194 txattrs->secure = false; 12195 } else if (!secure) { 12196 /* NS access to S memory must fault. 12197 * Architecturally we should first check whether the 12198 * MPU information for this address indicates that we 12199 * are doing an unaligned access to Device memory, which 12200 * should generate a UsageFault instead. QEMU does not 12201 * currently check for that kind of unaligned access though. 12202 * If we added it we would need to do so as a special case 12203 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12204 */ 12205 fi->type = ARMFault_QEMU_SFault; 12206 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12207 *phys_ptr = address; 12208 *prot = 0; 12209 return true; 12210 } 12211 } 12212 } 12213 12214 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12215 txattrs, prot, &mpu_is_subpage, fi, NULL); 12216 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12217 return ret; 12218 } 12219 12220 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12221 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12222 hwaddr *phys_ptr, int *prot, 12223 ARMMMUFaultInfo *fi) 12224 { 12225 int n; 12226 uint32_t mask; 12227 uint32_t base; 12228 bool is_user = regime_is_user(env, mmu_idx); 12229 12230 if (regime_translation_disabled(env, mmu_idx)) { 12231 /* MPU disabled. */ 12232 *phys_ptr = address; 12233 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12234 return false; 12235 } 12236 12237 *phys_ptr = address; 12238 for (n = 7; n >= 0; n--) { 12239 base = env->cp15.c6_region[n]; 12240 if ((base & 1) == 0) { 12241 continue; 12242 } 12243 mask = 1 << ((base >> 1) & 0x1f); 12244 /* Keep this shift separate from the above to avoid an 12245 (undefined) << 32. */ 12246 mask = (mask << 1) - 1; 12247 if (((base ^ address) & ~mask) == 0) { 12248 break; 12249 } 12250 } 12251 if (n < 0) { 12252 fi->type = ARMFault_Background; 12253 return true; 12254 } 12255 12256 if (access_type == MMU_INST_FETCH) { 12257 mask = env->cp15.pmsav5_insn_ap; 12258 } else { 12259 mask = env->cp15.pmsav5_data_ap; 12260 } 12261 mask = (mask >> (n * 4)) & 0xf; 12262 switch (mask) { 12263 case 0: 12264 fi->type = ARMFault_Permission; 12265 fi->level = 1; 12266 return true; 12267 case 1: 12268 if (is_user) { 12269 fi->type = ARMFault_Permission; 12270 fi->level = 1; 12271 return true; 12272 } 12273 *prot = PAGE_READ | PAGE_WRITE; 12274 break; 12275 case 2: 12276 *prot = PAGE_READ; 12277 if (!is_user) { 12278 *prot |= PAGE_WRITE; 12279 } 12280 break; 12281 case 3: 12282 *prot = PAGE_READ | PAGE_WRITE; 12283 break; 12284 case 5: 12285 if (is_user) { 12286 fi->type = ARMFault_Permission; 12287 fi->level = 1; 12288 return true; 12289 } 12290 *prot = PAGE_READ; 12291 break; 12292 case 6: 12293 *prot = PAGE_READ; 12294 break; 12295 default: 12296 /* Bad permission. */ 12297 fi->type = ARMFault_Permission; 12298 fi->level = 1; 12299 return true; 12300 } 12301 *prot |= PAGE_EXEC; 12302 return false; 12303 } 12304 12305 /* Combine either inner or outer cacheability attributes for normal 12306 * memory, according to table D4-42 and pseudocode procedure 12307 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12308 * 12309 * NB: only stage 1 includes allocation hints (RW bits), leading to 12310 * some asymmetry. 12311 */ 12312 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12313 { 12314 if (s1 == 4 || s2 == 4) { 12315 /* non-cacheable has precedence */ 12316 return 4; 12317 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12318 /* stage 1 write-through takes precedence */ 12319 return s1; 12320 } else if (extract32(s2, 2, 2) == 2) { 12321 /* stage 2 write-through takes precedence, but the allocation hint 12322 * is still taken from stage 1 12323 */ 12324 return (2 << 2) | extract32(s1, 0, 2); 12325 } else { /* write-back */ 12326 return s1; 12327 } 12328 } 12329 12330 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12331 * and CombineS1S2Desc() 12332 * 12333 * @s1: Attributes from stage 1 walk 12334 * @s2: Attributes from stage 2 walk 12335 */ 12336 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12337 { 12338 uint8_t s1lo, s2lo, s1hi, s2hi; 12339 ARMCacheAttrs ret; 12340 bool tagged = false; 12341 12342 if (s1.attrs == 0xf0) { 12343 tagged = true; 12344 s1.attrs = 0xff; 12345 } 12346 12347 s1lo = extract32(s1.attrs, 0, 4); 12348 s2lo = extract32(s2.attrs, 0, 4); 12349 s1hi = extract32(s1.attrs, 4, 4); 12350 s2hi = extract32(s2.attrs, 4, 4); 12351 12352 /* Combine shareability attributes (table D4-43) */ 12353 if (s1.shareability == 2 || s2.shareability == 2) { 12354 /* if either are outer-shareable, the result is outer-shareable */ 12355 ret.shareability = 2; 12356 } else if (s1.shareability == 3 || s2.shareability == 3) { 12357 /* if either are inner-shareable, the result is inner-shareable */ 12358 ret.shareability = 3; 12359 } else { 12360 /* both non-shareable */ 12361 ret.shareability = 0; 12362 } 12363 12364 /* Combine memory type and cacheability attributes */ 12365 if (s1hi == 0 || s2hi == 0) { 12366 /* Device has precedence over normal */ 12367 if (s1lo == 0 || s2lo == 0) { 12368 /* nGnRnE has precedence over anything */ 12369 ret.attrs = 0; 12370 } else if (s1lo == 4 || s2lo == 4) { 12371 /* non-Reordering has precedence over Reordering */ 12372 ret.attrs = 4; /* nGnRE */ 12373 } else if (s1lo == 8 || s2lo == 8) { 12374 /* non-Gathering has precedence over Gathering */ 12375 ret.attrs = 8; /* nGRE */ 12376 } else { 12377 ret.attrs = 0xc; /* GRE */ 12378 } 12379 12380 /* Any location for which the resultant memory type is any 12381 * type of Device memory is always treated as Outer Shareable. 12382 */ 12383 ret.shareability = 2; 12384 } else { /* Normal memory */ 12385 /* Outer/inner cacheability combine independently */ 12386 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12387 | combine_cacheattr_nibble(s1lo, s2lo); 12388 12389 if (ret.attrs == 0x44) { 12390 /* Any location for which the resultant memory type is Normal 12391 * Inner Non-cacheable, Outer Non-cacheable is always treated 12392 * as Outer Shareable. 12393 */ 12394 ret.shareability = 2; 12395 } 12396 } 12397 12398 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12399 if (tagged && ret.attrs == 0xff) { 12400 ret.attrs = 0xf0; 12401 } 12402 12403 return ret; 12404 } 12405 12406 12407 /* get_phys_addr - get the physical address for this virtual address 12408 * 12409 * Find the physical address corresponding to the given virtual address, 12410 * by doing a translation table walk on MMU based systems or using the 12411 * MPU state on MPU based systems. 12412 * 12413 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12414 * prot and page_size may not be filled in, and the populated fsr value provides 12415 * information on why the translation aborted, in the format of a 12416 * DFSR/IFSR fault register, with the following caveats: 12417 * * we honour the short vs long DFSR format differences. 12418 * * the WnR bit is never set (the caller must do this). 12419 * * for PSMAv5 based systems we don't bother to return a full FSR format 12420 * value. 12421 * 12422 * @env: CPUARMState 12423 * @address: virtual address to get physical address for 12424 * @access_type: 0 for read, 1 for write, 2 for execute 12425 * @mmu_idx: MMU index indicating required translation regime 12426 * @phys_ptr: set to the physical address corresponding to the virtual address 12427 * @attrs: set to the memory transaction attributes to use 12428 * @prot: set to the permissions for the page containing phys_ptr 12429 * @page_size: set to the size of the page containing phys_ptr 12430 * @fi: set to fault info if the translation fails 12431 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12432 */ 12433 bool get_phys_addr(CPUARMState *env, target_ulong address, 12434 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12435 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12436 target_ulong *page_size, 12437 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12438 { 12439 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12440 12441 if (mmu_idx != s1_mmu_idx) { 12442 /* Call ourselves recursively to do the stage 1 and then stage 2 12443 * translations if mmu_idx is a two-stage regime. 12444 */ 12445 if (arm_feature(env, ARM_FEATURE_EL2)) { 12446 hwaddr ipa; 12447 int s2_prot; 12448 int ret; 12449 ARMCacheAttrs cacheattrs2 = {}; 12450 ARMMMUIdx s2_mmu_idx; 12451 bool is_el0; 12452 12453 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12454 attrs, prot, page_size, fi, cacheattrs); 12455 12456 /* If S1 fails or S2 is disabled, return early. */ 12457 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12458 *phys_ptr = ipa; 12459 return ret; 12460 } 12461 12462 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12463 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12464 12465 /* S1 is done. Now do S2 translation. */ 12466 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12467 phys_ptr, attrs, &s2_prot, 12468 page_size, fi, &cacheattrs2); 12469 fi->s2addr = ipa; 12470 /* Combine the S1 and S2 perms. */ 12471 *prot &= s2_prot; 12472 12473 /* If S2 fails, return early. */ 12474 if (ret) { 12475 return ret; 12476 } 12477 12478 /* Combine the S1 and S2 cache attributes. */ 12479 if (arm_hcr_el2_eff(env) & HCR_DC) { 12480 /* 12481 * HCR.DC forces the first stage attributes to 12482 * Normal Non-Shareable, 12483 * Inner Write-Back Read-Allocate Write-Allocate, 12484 * Outer Write-Back Read-Allocate Write-Allocate. 12485 * Do not overwrite Tagged within attrs. 12486 */ 12487 if (cacheattrs->attrs != 0xf0) { 12488 cacheattrs->attrs = 0xff; 12489 } 12490 cacheattrs->shareability = 0; 12491 } 12492 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12493 12494 /* Check if IPA translates to secure or non-secure PA space. */ 12495 if (arm_is_secure_below_el3(env)) { 12496 if (attrs->secure) { 12497 attrs->secure = 12498 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12499 } else { 12500 attrs->secure = 12501 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12502 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12503 } 12504 } 12505 return 0; 12506 } else { 12507 /* 12508 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12509 */ 12510 mmu_idx = stage_1_mmu_idx(mmu_idx); 12511 } 12512 } 12513 12514 /* The page table entries may downgrade secure to non-secure, but 12515 * cannot upgrade an non-secure translation regime's attributes 12516 * to secure. 12517 */ 12518 attrs->secure = regime_is_secure(env, mmu_idx); 12519 attrs->user = regime_is_user(env, mmu_idx); 12520 12521 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12522 * In v7 and earlier it affects all stage 1 translations. 12523 */ 12524 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12525 && !arm_feature(env, ARM_FEATURE_V8)) { 12526 if (regime_el(env, mmu_idx) == 3) { 12527 address += env->cp15.fcseidr_s; 12528 } else { 12529 address += env->cp15.fcseidr_ns; 12530 } 12531 } 12532 12533 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12534 bool ret; 12535 *page_size = TARGET_PAGE_SIZE; 12536 12537 if (arm_feature(env, ARM_FEATURE_V8)) { 12538 /* PMSAv8 */ 12539 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12540 phys_ptr, attrs, prot, page_size, fi); 12541 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12542 /* PMSAv7 */ 12543 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12544 phys_ptr, prot, page_size, fi); 12545 } else { 12546 /* Pre-v7 MPU */ 12547 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12548 phys_ptr, prot, fi); 12549 } 12550 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12551 " mmu_idx %u -> %s (prot %c%c%c)\n", 12552 access_type == MMU_DATA_LOAD ? "reading" : 12553 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12554 (uint32_t)address, mmu_idx, 12555 ret ? "Miss" : "Hit", 12556 *prot & PAGE_READ ? 'r' : '-', 12557 *prot & PAGE_WRITE ? 'w' : '-', 12558 *prot & PAGE_EXEC ? 'x' : '-'); 12559 12560 return ret; 12561 } 12562 12563 /* Definitely a real MMU, not an MPU */ 12564 12565 if (regime_translation_disabled(env, mmu_idx)) { 12566 uint64_t hcr; 12567 uint8_t memattr; 12568 12569 /* 12570 * MMU disabled. S1 addresses within aa64 translation regimes are 12571 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12572 */ 12573 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12574 int r_el = regime_el(env, mmu_idx); 12575 if (arm_el_is_aa64(env, r_el)) { 12576 int pamax = arm_pamax(env_archcpu(env)); 12577 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12578 int addrtop, tbi; 12579 12580 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12581 if (access_type == MMU_INST_FETCH) { 12582 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12583 } 12584 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12585 addrtop = (tbi ? 55 : 63); 12586 12587 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12588 fi->type = ARMFault_AddressSize; 12589 fi->level = 0; 12590 fi->stage2 = false; 12591 return 1; 12592 } 12593 12594 /* 12595 * When TBI is disabled, we've just validated that all of the 12596 * bits above PAMax are zero, so logically we only need to 12597 * clear the top byte for TBI. But it's clearer to follow 12598 * the pseudocode set of addrdesc.paddress. 12599 */ 12600 address = extract64(address, 0, 52); 12601 } 12602 } 12603 *phys_ptr = address; 12604 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12605 *page_size = TARGET_PAGE_SIZE; 12606 12607 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12608 hcr = arm_hcr_el2_eff(env); 12609 cacheattrs->shareability = 0; 12610 if (hcr & HCR_DC) { 12611 if (hcr & HCR_DCT) { 12612 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12613 } else { 12614 memattr = 0xff; /* Normal, WB, RWA */ 12615 } 12616 } else if (access_type == MMU_INST_FETCH) { 12617 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12618 memattr = 0xee; /* Normal, WT, RA, NT */ 12619 } else { 12620 memattr = 0x44; /* Normal, NC, No */ 12621 } 12622 cacheattrs->shareability = 2; /* outer sharable */ 12623 } else { 12624 memattr = 0x00; /* Device, nGnRnE */ 12625 } 12626 cacheattrs->attrs = memattr; 12627 return 0; 12628 } 12629 12630 if (regime_using_lpae_format(env, mmu_idx)) { 12631 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12632 phys_ptr, attrs, prot, page_size, 12633 fi, cacheattrs); 12634 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12635 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12636 phys_ptr, attrs, prot, page_size, fi); 12637 } else { 12638 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12639 phys_ptr, prot, page_size, fi); 12640 } 12641 } 12642 12643 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12644 MemTxAttrs *attrs) 12645 { 12646 ARMCPU *cpu = ARM_CPU(cs); 12647 CPUARMState *env = &cpu->env; 12648 hwaddr phys_addr; 12649 target_ulong page_size; 12650 int prot; 12651 bool ret; 12652 ARMMMUFaultInfo fi = {}; 12653 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12654 ARMCacheAttrs cacheattrs = {}; 12655 12656 *attrs = (MemTxAttrs) {}; 12657 12658 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12659 attrs, &prot, &page_size, &fi, &cacheattrs); 12660 12661 if (ret) { 12662 return -1; 12663 } 12664 return phys_addr; 12665 } 12666 12667 #endif 12668 12669 /* Note that signed overflow is undefined in C. The following routines are 12670 careful to use unsigned types where modulo arithmetic is required. 12671 Failure to do so _will_ break on newer gcc. */ 12672 12673 /* Signed saturating arithmetic. */ 12674 12675 /* Perform 16-bit signed saturating addition. */ 12676 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12677 { 12678 uint16_t res; 12679 12680 res = a + b; 12681 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12682 if (a & 0x8000) 12683 res = 0x8000; 12684 else 12685 res = 0x7fff; 12686 } 12687 return res; 12688 } 12689 12690 /* Perform 8-bit signed saturating addition. */ 12691 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12692 { 12693 uint8_t res; 12694 12695 res = a + b; 12696 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12697 if (a & 0x80) 12698 res = 0x80; 12699 else 12700 res = 0x7f; 12701 } 12702 return res; 12703 } 12704 12705 /* Perform 16-bit signed saturating subtraction. */ 12706 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12707 { 12708 uint16_t res; 12709 12710 res = a - b; 12711 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12712 if (a & 0x8000) 12713 res = 0x8000; 12714 else 12715 res = 0x7fff; 12716 } 12717 return res; 12718 } 12719 12720 /* Perform 8-bit signed saturating subtraction. */ 12721 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12722 { 12723 uint8_t res; 12724 12725 res = a - b; 12726 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12727 if (a & 0x80) 12728 res = 0x80; 12729 else 12730 res = 0x7f; 12731 } 12732 return res; 12733 } 12734 12735 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12736 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12737 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12738 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12739 #define PFX q 12740 12741 #include "op_addsub.h" 12742 12743 /* Unsigned saturating arithmetic. */ 12744 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12745 { 12746 uint16_t res; 12747 res = a + b; 12748 if (res < a) 12749 res = 0xffff; 12750 return res; 12751 } 12752 12753 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12754 { 12755 if (a > b) 12756 return a - b; 12757 else 12758 return 0; 12759 } 12760 12761 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12762 { 12763 uint8_t res; 12764 res = a + b; 12765 if (res < a) 12766 res = 0xff; 12767 return res; 12768 } 12769 12770 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12771 { 12772 if (a > b) 12773 return a - b; 12774 else 12775 return 0; 12776 } 12777 12778 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12779 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12780 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12781 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12782 #define PFX uq 12783 12784 #include "op_addsub.h" 12785 12786 /* Signed modulo arithmetic. */ 12787 #define SARITH16(a, b, n, op) do { \ 12788 int32_t sum; \ 12789 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12790 RESULT(sum, n, 16); \ 12791 if (sum >= 0) \ 12792 ge |= 3 << (n * 2); \ 12793 } while(0) 12794 12795 #define SARITH8(a, b, n, op) do { \ 12796 int32_t sum; \ 12797 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12798 RESULT(sum, n, 8); \ 12799 if (sum >= 0) \ 12800 ge |= 1 << n; \ 12801 } while(0) 12802 12803 12804 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12805 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12806 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12807 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12808 #define PFX s 12809 #define ARITH_GE 12810 12811 #include "op_addsub.h" 12812 12813 /* Unsigned modulo arithmetic. */ 12814 #define ADD16(a, b, n) do { \ 12815 uint32_t sum; \ 12816 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12817 RESULT(sum, n, 16); \ 12818 if ((sum >> 16) == 1) \ 12819 ge |= 3 << (n * 2); \ 12820 } while(0) 12821 12822 #define ADD8(a, b, n) do { \ 12823 uint32_t sum; \ 12824 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12825 RESULT(sum, n, 8); \ 12826 if ((sum >> 8) == 1) \ 12827 ge |= 1 << n; \ 12828 } while(0) 12829 12830 #define SUB16(a, b, n) do { \ 12831 uint32_t sum; \ 12832 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12833 RESULT(sum, n, 16); \ 12834 if ((sum >> 16) == 0) \ 12835 ge |= 3 << (n * 2); \ 12836 } while(0) 12837 12838 #define SUB8(a, b, n) do { \ 12839 uint32_t sum; \ 12840 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12841 RESULT(sum, n, 8); \ 12842 if ((sum >> 8) == 0) \ 12843 ge |= 1 << n; \ 12844 } while(0) 12845 12846 #define PFX u 12847 #define ARITH_GE 12848 12849 #include "op_addsub.h" 12850 12851 /* Halved signed arithmetic. */ 12852 #define ADD16(a, b, n) \ 12853 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12854 #define SUB16(a, b, n) \ 12855 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12856 #define ADD8(a, b, n) \ 12857 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12858 #define SUB8(a, b, n) \ 12859 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12860 #define PFX sh 12861 12862 #include "op_addsub.h" 12863 12864 /* Halved unsigned arithmetic. */ 12865 #define ADD16(a, b, n) \ 12866 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12867 #define SUB16(a, b, n) \ 12868 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12869 #define ADD8(a, b, n) \ 12870 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12871 #define SUB8(a, b, n) \ 12872 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12873 #define PFX uh 12874 12875 #include "op_addsub.h" 12876 12877 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12878 { 12879 if (a > b) 12880 return a - b; 12881 else 12882 return b - a; 12883 } 12884 12885 /* Unsigned sum of absolute byte differences. */ 12886 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12887 { 12888 uint32_t sum; 12889 sum = do_usad(a, b); 12890 sum += do_usad(a >> 8, b >> 8); 12891 sum += do_usad(a >> 16, b >> 16); 12892 sum += do_usad(a >> 24, b >> 24); 12893 return sum; 12894 } 12895 12896 /* For ARMv6 SEL instruction. */ 12897 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12898 { 12899 uint32_t mask; 12900 12901 mask = 0; 12902 if (flags & 1) 12903 mask |= 0xff; 12904 if (flags & 2) 12905 mask |= 0xff00; 12906 if (flags & 4) 12907 mask |= 0xff0000; 12908 if (flags & 8) 12909 mask |= 0xff000000; 12910 return (a & mask) | (b & ~mask); 12911 } 12912 12913 /* CRC helpers. 12914 * The upper bytes of val (above the number specified by 'bytes') must have 12915 * been zeroed out by the caller. 12916 */ 12917 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12918 { 12919 uint8_t buf[4]; 12920 12921 stl_le_p(buf, val); 12922 12923 /* zlib crc32 converts the accumulator and output to one's complement. */ 12924 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12925 } 12926 12927 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12928 { 12929 uint8_t buf[4]; 12930 12931 stl_le_p(buf, val); 12932 12933 /* Linux crc32c converts the output to one's complement. */ 12934 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12935 } 12936 12937 /* Return the exception level to which FP-disabled exceptions should 12938 * be taken, or 0 if FP is enabled. 12939 */ 12940 int fp_exception_el(CPUARMState *env, int cur_el) 12941 { 12942 #ifndef CONFIG_USER_ONLY 12943 uint64_t hcr_el2; 12944 12945 /* CPACR and the CPTR registers don't exist before v6, so FP is 12946 * always accessible 12947 */ 12948 if (!arm_feature(env, ARM_FEATURE_V6)) { 12949 return 0; 12950 } 12951 12952 if (arm_feature(env, ARM_FEATURE_M)) { 12953 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12954 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12955 return 1; 12956 } 12957 12958 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12959 if (!extract32(env->v7m.nsacr, 10, 1)) { 12960 /* FP insns cause a NOCP UsageFault taken to Secure */ 12961 return 3; 12962 } 12963 } 12964 12965 return 0; 12966 } 12967 12968 hcr_el2 = arm_hcr_el2_eff(env); 12969 12970 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12971 * 0, 2 : trap EL0 and EL1/PL1 accesses 12972 * 1 : trap only EL0 accesses 12973 * 3 : trap no accesses 12974 * This register is ignored if E2H+TGE are both set. 12975 */ 12976 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12977 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12978 12979 switch (fpen) { 12980 case 0: 12981 case 2: 12982 if (cur_el == 0 || cur_el == 1) { 12983 /* Trap to PL1, which might be EL1 or EL3 */ 12984 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12985 return 3; 12986 } 12987 return 1; 12988 } 12989 if (cur_el == 3 && !is_a64(env)) { 12990 /* Secure PL1 running at EL3 */ 12991 return 3; 12992 } 12993 break; 12994 case 1: 12995 if (cur_el == 0) { 12996 return 1; 12997 } 12998 break; 12999 case 3: 13000 break; 13001 } 13002 } 13003 13004 /* 13005 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13006 * to control non-secure access to the FPU. It doesn't have any 13007 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13008 */ 13009 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13010 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13011 if (!extract32(env->cp15.nsacr, 10, 1)) { 13012 /* FP insns act as UNDEF */ 13013 return cur_el == 2 ? 2 : 1; 13014 } 13015 } 13016 13017 /* 13018 * CPTR_EL2 is present in v7VE or v8, and changes format 13019 * with HCR_EL2.E2H (regardless of TGE). 13020 */ 13021 if (cur_el <= 2) { 13022 if (hcr_el2 & HCR_E2H) { 13023 /* Check CPTR_EL2.FPEN. */ 13024 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13025 case 1: 13026 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13027 break; 13028 } 13029 /* fall through */ 13030 case 0: 13031 case 2: 13032 return 2; 13033 } 13034 } else if (arm_is_el2_enabled(env)) { 13035 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13036 return 2; 13037 } 13038 } 13039 } 13040 13041 /* CPTR_EL3 : present in v8 */ 13042 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13043 /* Trap all FP ops to EL3 */ 13044 return 3; 13045 } 13046 #endif 13047 return 0; 13048 } 13049 13050 /* Return the exception level we're running at if this is our mmu_idx */ 13051 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13052 { 13053 if (mmu_idx & ARM_MMU_IDX_M) { 13054 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13055 } 13056 13057 switch (mmu_idx) { 13058 case ARMMMUIdx_E10_0: 13059 case ARMMMUIdx_E20_0: 13060 case ARMMMUIdx_SE10_0: 13061 case ARMMMUIdx_SE20_0: 13062 return 0; 13063 case ARMMMUIdx_E10_1: 13064 case ARMMMUIdx_E10_1_PAN: 13065 case ARMMMUIdx_SE10_1: 13066 case ARMMMUIdx_SE10_1_PAN: 13067 return 1; 13068 case ARMMMUIdx_E2: 13069 case ARMMMUIdx_E20_2: 13070 case ARMMMUIdx_E20_2_PAN: 13071 case ARMMMUIdx_SE2: 13072 case ARMMMUIdx_SE20_2: 13073 case ARMMMUIdx_SE20_2_PAN: 13074 return 2; 13075 case ARMMMUIdx_SE3: 13076 return 3; 13077 default: 13078 g_assert_not_reached(); 13079 } 13080 } 13081 13082 #ifndef CONFIG_TCG 13083 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13084 { 13085 g_assert_not_reached(); 13086 } 13087 #endif 13088 13089 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13090 { 13091 ARMMMUIdx idx; 13092 uint64_t hcr; 13093 13094 if (arm_feature(env, ARM_FEATURE_M)) { 13095 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13096 } 13097 13098 /* See ARM pseudo-function ELIsInHost. */ 13099 switch (el) { 13100 case 0: 13101 hcr = arm_hcr_el2_eff(env); 13102 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13103 idx = ARMMMUIdx_E20_0; 13104 } else { 13105 idx = ARMMMUIdx_E10_0; 13106 } 13107 break; 13108 case 1: 13109 if (env->pstate & PSTATE_PAN) { 13110 idx = ARMMMUIdx_E10_1_PAN; 13111 } else { 13112 idx = ARMMMUIdx_E10_1; 13113 } 13114 break; 13115 case 2: 13116 /* Note that TGE does not apply at EL2. */ 13117 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13118 if (env->pstate & PSTATE_PAN) { 13119 idx = ARMMMUIdx_E20_2_PAN; 13120 } else { 13121 idx = ARMMMUIdx_E20_2; 13122 } 13123 } else { 13124 idx = ARMMMUIdx_E2; 13125 } 13126 break; 13127 case 3: 13128 return ARMMMUIdx_SE3; 13129 default: 13130 g_assert_not_reached(); 13131 } 13132 13133 if (arm_is_secure_below_el3(env)) { 13134 idx &= ~ARM_MMU_IDX_A_NS; 13135 } 13136 13137 return idx; 13138 } 13139 13140 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13141 { 13142 return arm_mmu_idx_el(env, arm_current_el(env)); 13143 } 13144 13145 #ifndef CONFIG_USER_ONLY 13146 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13147 { 13148 return stage_1_mmu_idx(arm_mmu_idx(env)); 13149 } 13150 #endif 13151 13152 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13153 ARMMMUIdx mmu_idx, 13154 CPUARMTBFlags flags) 13155 { 13156 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13157 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13158 13159 if (arm_singlestep_active(env)) { 13160 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13161 } 13162 return flags; 13163 } 13164 13165 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13166 ARMMMUIdx mmu_idx, 13167 CPUARMTBFlags flags) 13168 { 13169 bool sctlr_b = arm_sctlr_b(env); 13170 13171 if (sctlr_b) { 13172 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13173 } 13174 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13175 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13176 } 13177 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13178 13179 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13180 } 13181 13182 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13183 ARMMMUIdx mmu_idx) 13184 { 13185 CPUARMTBFlags flags = {}; 13186 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13187 13188 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13189 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13190 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13191 } 13192 13193 if (arm_v7m_is_handler_mode(env)) { 13194 DP_TBFLAG_M32(flags, HANDLER, 1); 13195 } 13196 13197 /* 13198 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13199 * is suppressing them because the requested execution priority 13200 * is less than 0. 13201 */ 13202 if (arm_feature(env, ARM_FEATURE_V8) && 13203 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13204 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13205 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13206 } 13207 13208 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13209 } 13210 13211 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13212 { 13213 CPUARMTBFlags flags = {}; 13214 13215 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13216 return flags; 13217 } 13218 13219 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13220 ARMMMUIdx mmu_idx) 13221 { 13222 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13223 int el = arm_current_el(env); 13224 13225 if (arm_sctlr(env, el) & SCTLR_A) { 13226 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13227 } 13228 13229 if (arm_el_is_aa64(env, 1)) { 13230 DP_TBFLAG_A32(flags, VFPEN, 1); 13231 } 13232 13233 if (el < 2 && env->cp15.hstr_el2 && 13234 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13235 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13236 } 13237 13238 if (env->uncached_cpsr & CPSR_IL) { 13239 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13240 } 13241 13242 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13243 } 13244 13245 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13246 ARMMMUIdx mmu_idx) 13247 { 13248 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13249 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13250 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13251 uint64_t sctlr; 13252 int tbii, tbid; 13253 13254 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13255 13256 /* Get control bits for tagged addresses. */ 13257 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13258 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13259 13260 DP_TBFLAG_A64(flags, TBII, tbii); 13261 DP_TBFLAG_A64(flags, TBID, tbid); 13262 13263 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13264 int sve_el = sve_exception_el(env, el); 13265 uint32_t zcr_len; 13266 13267 /* 13268 * If SVE is disabled, but FP is enabled, 13269 * then the effective len is 0. 13270 */ 13271 if (sve_el != 0 && fp_el == 0) { 13272 zcr_len = 0; 13273 } else { 13274 zcr_len = sve_zcr_len_for_el(env, el); 13275 } 13276 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13277 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13278 } 13279 13280 sctlr = regime_sctlr(env, stage1); 13281 13282 if (sctlr & SCTLR_A) { 13283 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13284 } 13285 13286 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13287 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13288 } 13289 13290 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13291 /* 13292 * In order to save space in flags, we record only whether 13293 * pauth is "inactive", meaning all insns are implemented as 13294 * a nop, or "active" when some action must be performed. 13295 * The decision of which action to take is left to a helper. 13296 */ 13297 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13298 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13299 } 13300 } 13301 13302 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13303 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13304 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13305 DP_TBFLAG_A64(flags, BT, 1); 13306 } 13307 } 13308 13309 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13310 if (!(env->pstate & PSTATE_UAO)) { 13311 switch (mmu_idx) { 13312 case ARMMMUIdx_E10_1: 13313 case ARMMMUIdx_E10_1_PAN: 13314 case ARMMMUIdx_SE10_1: 13315 case ARMMMUIdx_SE10_1_PAN: 13316 /* TODO: ARMv8.3-NV */ 13317 DP_TBFLAG_A64(flags, UNPRIV, 1); 13318 break; 13319 case ARMMMUIdx_E20_2: 13320 case ARMMMUIdx_E20_2_PAN: 13321 case ARMMMUIdx_SE20_2: 13322 case ARMMMUIdx_SE20_2_PAN: 13323 /* 13324 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13325 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13326 */ 13327 if (env->cp15.hcr_el2 & HCR_TGE) { 13328 DP_TBFLAG_A64(flags, UNPRIV, 1); 13329 } 13330 break; 13331 default: 13332 break; 13333 } 13334 } 13335 13336 if (env->pstate & PSTATE_IL) { 13337 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13338 } 13339 13340 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13341 /* 13342 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13343 * if all accesses must be Unchecked: 13344 * 1) If no TBI, then there are no tags in the address to check, 13345 * 2) If Tag Check Override, then all accesses are Unchecked, 13346 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13347 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13348 */ 13349 if (allocation_tag_access_enabled(env, el, sctlr)) { 13350 DP_TBFLAG_A64(flags, ATA, 1); 13351 if (tbid 13352 && !(env->pstate & PSTATE_TCO) 13353 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13354 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13355 } 13356 } 13357 /* And again for unprivileged accesses, if required. */ 13358 if (EX_TBFLAG_A64(flags, UNPRIV) 13359 && tbid 13360 && !(env->pstate & PSTATE_TCO) 13361 && (sctlr & SCTLR_TCF0) 13362 && allocation_tag_access_enabled(env, 0, sctlr)) { 13363 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13364 } 13365 /* Cache TCMA as well as TBI. */ 13366 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13367 } 13368 13369 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13370 } 13371 13372 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13373 { 13374 int el = arm_current_el(env); 13375 int fp_el = fp_exception_el(env, el); 13376 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13377 13378 if (is_a64(env)) { 13379 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13380 } else if (arm_feature(env, ARM_FEATURE_M)) { 13381 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13382 } else { 13383 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13384 } 13385 } 13386 13387 void arm_rebuild_hflags(CPUARMState *env) 13388 { 13389 env->hflags = rebuild_hflags_internal(env); 13390 } 13391 13392 /* 13393 * If we have triggered a EL state change we can't rely on the 13394 * translator having passed it to us, we need to recompute. 13395 */ 13396 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13397 { 13398 int el = arm_current_el(env); 13399 int fp_el = fp_exception_el(env, el); 13400 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13401 13402 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13403 } 13404 13405 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13406 { 13407 int fp_el = fp_exception_el(env, el); 13408 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13409 13410 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13411 } 13412 13413 /* 13414 * If we have triggered a EL state change we can't rely on the 13415 * translator having passed it to us, we need to recompute. 13416 */ 13417 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13418 { 13419 int el = arm_current_el(env); 13420 int fp_el = fp_exception_el(env, el); 13421 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13422 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13423 } 13424 13425 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13426 { 13427 int fp_el = fp_exception_el(env, el); 13428 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13429 13430 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13431 } 13432 13433 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13434 { 13435 int fp_el = fp_exception_el(env, el); 13436 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13437 13438 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13439 } 13440 13441 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13442 { 13443 #ifdef CONFIG_DEBUG_TCG 13444 CPUARMTBFlags c = env->hflags; 13445 CPUARMTBFlags r = rebuild_hflags_internal(env); 13446 13447 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13448 fprintf(stderr, "TCG hflags mismatch " 13449 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13450 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13451 c.flags, c.flags2, r.flags, r.flags2); 13452 abort(); 13453 } 13454 #endif 13455 } 13456 13457 static bool mve_no_pred(CPUARMState *env) 13458 { 13459 /* 13460 * Return true if there is definitely no predication of MVE 13461 * instructions by VPR or LTPSIZE. (Returning false even if there 13462 * isn't any predication is OK; generated code will just be 13463 * a little worse.) 13464 * If the CPU does not implement MVE then this TB flag is always 0. 13465 * 13466 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13467 * logic in gen_update_fp_context() needs to be updated to match. 13468 * 13469 * We do not include the effect of the ECI bits here -- they are 13470 * tracked in other TB flags. This simplifies the logic for 13471 * "when did we emit code that changes the MVE_NO_PRED TB flag 13472 * and thus need to end the TB?". 13473 */ 13474 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13475 return false; 13476 } 13477 if (env->v7m.vpr) { 13478 return false; 13479 } 13480 if (env->v7m.ltpsize < 4) { 13481 return false; 13482 } 13483 return true; 13484 } 13485 13486 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13487 target_ulong *cs_base, uint32_t *pflags) 13488 { 13489 CPUARMTBFlags flags; 13490 13491 assert_hflags_rebuild_correctly(env); 13492 flags = env->hflags; 13493 13494 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13495 *pc = env->pc; 13496 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13497 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13498 } 13499 } else { 13500 *pc = env->regs[15]; 13501 13502 if (arm_feature(env, ARM_FEATURE_M)) { 13503 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13504 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13505 != env->v7m.secure) { 13506 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13507 } 13508 13509 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13510 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13511 (env->v7m.secure && 13512 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13513 /* 13514 * ASPEN is set, but FPCA/SFPA indicate that there is no 13515 * active FP context; we must create a new FP context before 13516 * executing any FP insn. 13517 */ 13518 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13519 } 13520 13521 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13522 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13523 DP_TBFLAG_M32(flags, LSPACT, 1); 13524 } 13525 13526 if (mve_no_pred(env)) { 13527 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13528 } 13529 } else { 13530 /* 13531 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13532 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13533 */ 13534 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13535 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13536 } else { 13537 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13538 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13539 } 13540 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13541 DP_TBFLAG_A32(flags, VFPEN, 1); 13542 } 13543 } 13544 13545 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13546 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13547 } 13548 13549 /* 13550 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13551 * states defined in the ARM ARM for software singlestep: 13552 * SS_ACTIVE PSTATE.SS State 13553 * 0 x Inactive (the TB flag for SS is always 0) 13554 * 1 0 Active-pending 13555 * 1 1 Active-not-pending 13556 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13557 */ 13558 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13559 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13560 } 13561 13562 *pflags = flags.flags; 13563 *cs_base = flags.flags2; 13564 } 13565 13566 #ifdef TARGET_AARCH64 13567 /* 13568 * The manual says that when SVE is enabled and VQ is widened the 13569 * implementation is allowed to zero the previously inaccessible 13570 * portion of the registers. The corollary to that is that when 13571 * SVE is enabled and VQ is narrowed we are also allowed to zero 13572 * the now inaccessible portion of the registers. 13573 * 13574 * The intent of this is that no predicate bit beyond VQ is ever set. 13575 * Which means that some operations on predicate registers themselves 13576 * may operate on full uint64_t or even unrolled across the maximum 13577 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13578 * may well be cheaper than conditionals to restrict the operation 13579 * to the relevant portion of a uint16_t[16]. 13580 */ 13581 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13582 { 13583 int i, j; 13584 uint64_t pmask; 13585 13586 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13587 assert(vq <= env_archcpu(env)->sve_max_vq); 13588 13589 /* Zap the high bits of the zregs. */ 13590 for (i = 0; i < 32; i++) { 13591 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13592 } 13593 13594 /* Zap the high bits of the pregs and ffr. */ 13595 pmask = 0; 13596 if (vq & 3) { 13597 pmask = ~(-1ULL << (16 * (vq & 3))); 13598 } 13599 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13600 for (i = 0; i < 17; ++i) { 13601 env->vfp.pregs[i].p[j] &= pmask; 13602 } 13603 pmask = 0; 13604 } 13605 } 13606 13607 /* 13608 * Notice a change in SVE vector size when changing EL. 13609 */ 13610 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13611 int new_el, bool el0_a64) 13612 { 13613 ARMCPU *cpu = env_archcpu(env); 13614 int old_len, new_len; 13615 bool old_a64, new_a64; 13616 13617 /* Nothing to do if no SVE. */ 13618 if (!cpu_isar_feature(aa64_sve, cpu)) { 13619 return; 13620 } 13621 13622 /* Nothing to do if FP is disabled in either EL. */ 13623 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13624 return; 13625 } 13626 13627 /* 13628 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13629 * at ELx, or not available because the EL is in AArch32 state, then 13630 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13631 * has an effective value of 0". 13632 * 13633 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13634 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13635 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13636 * we already have the correct register contents when encountering the 13637 * vq0->vq0 transition between EL0->EL1. 13638 */ 13639 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13640 old_len = (old_a64 && !sve_exception_el(env, old_el) 13641 ? sve_zcr_len_for_el(env, old_el) : 0); 13642 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13643 new_len = (new_a64 && !sve_exception_el(env, new_el) 13644 ? sve_zcr_len_for_el(env, new_el) : 0); 13645 13646 /* When changing vector length, clear inaccessible state. */ 13647 if (new_len < old_len) { 13648 aarch64_sve_narrow_vq(env, new_len + 1); 13649 } 13650 } 13651 #endif 13652