1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #endif 38 39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 40 41 #ifndef CONFIG_USER_ONLY 42 43 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 44 MMUAccessType access_type, ARMMMUIdx mmu_idx, 45 bool s1_is_el0, 46 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 47 target_ulong *page_size_ptr, 48 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 49 __attribute__((nonnull)); 50 #endif 51 52 static void switch_mode(CPUARMState *env, int mode); 53 54 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 55 { 56 ARMCPU *cpu = env_archcpu(env); 57 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 58 59 /* VFP data registers are always little-endian. */ 60 if (reg < nregs) { 61 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 62 } 63 if (arm_feature(env, ARM_FEATURE_NEON)) { 64 /* Aliases for Q regs. */ 65 nregs += 16; 66 if (reg < nregs) { 67 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 68 return gdb_get_reg128(buf, q[0], q[1]); 69 } 70 } 71 switch (reg - nregs) { 72 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 73 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 74 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 75 } 76 return 0; 77 } 78 79 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 80 { 81 ARMCPU *cpu = env_archcpu(env); 82 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 83 84 if (reg < nregs) { 85 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 86 return 8; 87 } 88 if (arm_feature(env, ARM_FEATURE_NEON)) { 89 nregs += 16; 90 if (reg < nregs) { 91 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 92 q[0] = ldq_le_p(buf); 93 q[1] = ldq_le_p(buf + 8); 94 return 16; 95 } 96 } 97 switch (reg - nregs) { 98 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 99 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 100 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 101 } 102 return 0; 103 } 104 105 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 106 { 107 switch (reg) { 108 case 0 ... 31: 109 { 110 /* 128 bit FP register - quads are in LE order */ 111 uint64_t *q = aa64_vfp_qreg(env, reg); 112 return gdb_get_reg128(buf, q[1], q[0]); 113 } 114 case 32: 115 /* FPSR */ 116 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 117 case 33: 118 /* FPCR */ 119 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 120 default: 121 return 0; 122 } 123 } 124 125 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 126 { 127 switch (reg) { 128 case 0 ... 31: 129 /* 128 bit FP register */ 130 { 131 uint64_t *q = aa64_vfp_qreg(env, reg); 132 q[0] = ldq_le_p(buf); 133 q[1] = ldq_le_p(buf + 8); 134 return 16; 135 } 136 case 32: 137 /* FPSR */ 138 vfp_set_fpsr(env, ldl_p(buf)); 139 return 4; 140 case 33: 141 /* FPCR */ 142 vfp_set_fpcr(env, ldl_p(buf)); 143 return 4; 144 default: 145 return 0; 146 } 147 } 148 149 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 150 { 151 assert(ri->fieldoffset); 152 if (cpreg_field_is_64bit(ri)) { 153 return CPREG_FIELD64(env, ri); 154 } else { 155 return CPREG_FIELD32(env, ri); 156 } 157 } 158 159 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 160 uint64_t value) 161 { 162 assert(ri->fieldoffset); 163 if (cpreg_field_is_64bit(ri)) { 164 CPREG_FIELD64(env, ri) = value; 165 } else { 166 CPREG_FIELD32(env, ri) = value; 167 } 168 } 169 170 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 171 { 172 return (char *)env + ri->fieldoffset; 173 } 174 175 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 176 { 177 /* Raw read of a coprocessor register (as needed for migration, etc). */ 178 if (ri->type & ARM_CP_CONST) { 179 return ri->resetvalue; 180 } else if (ri->raw_readfn) { 181 return ri->raw_readfn(env, ri); 182 } else if (ri->readfn) { 183 return ri->readfn(env, ri); 184 } else { 185 return raw_read(env, ri); 186 } 187 } 188 189 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 190 uint64_t v) 191 { 192 /* Raw write of a coprocessor register (as needed for migration, etc). 193 * Note that constant registers are treated as write-ignored; the 194 * caller should check for success by whether a readback gives the 195 * value written. 196 */ 197 if (ri->type & ARM_CP_CONST) { 198 return; 199 } else if (ri->raw_writefn) { 200 ri->raw_writefn(env, ri, v); 201 } else if (ri->writefn) { 202 ri->writefn(env, ri, v); 203 } else { 204 raw_write(env, ri, v); 205 } 206 } 207 208 /** 209 * arm_get/set_gdb_*: get/set a gdb register 210 * @env: the CPU state 211 * @buf: a buffer to copy to/from 212 * @reg: register number (offset from start of group) 213 * 214 * We return the number of bytes copied 215 */ 216 217 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 218 { 219 ARMCPU *cpu = env_archcpu(env); 220 const ARMCPRegInfo *ri; 221 uint32_t key; 222 223 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 224 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 225 if (ri) { 226 if (cpreg_field_is_64bit(ri)) { 227 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 228 } else { 229 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 230 } 231 } 232 return 0; 233 } 234 235 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 236 { 237 return 0; 238 } 239 240 #ifdef TARGET_AARCH64 241 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 242 { 243 ARMCPU *cpu = env_archcpu(env); 244 245 switch (reg) { 246 /* The first 32 registers are the zregs */ 247 case 0 ... 31: 248 { 249 int vq, len = 0; 250 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 251 len += gdb_get_reg128(buf, 252 env->vfp.zregs[reg].d[vq * 2 + 1], 253 env->vfp.zregs[reg].d[vq * 2]); 254 } 255 return len; 256 } 257 case 32: 258 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 259 case 33: 260 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 261 /* then 16 predicates and the ffr */ 262 case 34 ... 50: 263 { 264 int preg = reg - 34; 265 int vq, len = 0; 266 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 267 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 268 } 269 return len; 270 } 271 case 51: 272 { 273 /* 274 * We report in Vector Granules (VG) which is 64bit in a Z reg 275 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 276 */ 277 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 278 return gdb_get_reg32(buf, vq * 2); 279 } 280 default: 281 /* gdbstub asked for something out our range */ 282 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 283 break; 284 } 285 286 return 0; 287 } 288 289 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 290 { 291 ARMCPU *cpu = env_archcpu(env); 292 293 /* The first 32 registers are the zregs */ 294 switch (reg) { 295 /* The first 32 registers are the zregs */ 296 case 0 ... 31: 297 { 298 int vq, len = 0; 299 uint64_t *p = (uint64_t *) buf; 300 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 301 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 302 env->vfp.zregs[reg].d[vq * 2] = *p++; 303 len += 16; 304 } 305 return len; 306 } 307 case 32: 308 vfp_set_fpsr(env, *(uint32_t *)buf); 309 return 4; 310 case 33: 311 vfp_set_fpcr(env, *(uint32_t *)buf); 312 return 4; 313 case 34 ... 50: 314 { 315 int preg = reg - 34; 316 int vq, len = 0; 317 uint64_t *p = (uint64_t *) buf; 318 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 319 env->vfp.pregs[preg].p[vq / 4] = *p++; 320 len += 8; 321 } 322 return len; 323 } 324 case 51: 325 /* cannot set vg via gdbstub */ 326 return 0; 327 default: 328 /* gdbstub asked for something out our range */ 329 break; 330 } 331 332 return 0; 333 } 334 #endif /* TARGET_AARCH64 */ 335 336 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 337 { 338 /* Return true if the regdef would cause an assertion if you called 339 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 340 * program bug for it not to have the NO_RAW flag). 341 * NB that returning false here doesn't necessarily mean that calling 342 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 343 * read/write access functions which are safe for raw use" from "has 344 * read/write access functions which have side effects but has forgotten 345 * to provide raw access functions". 346 * The tests here line up with the conditions in read/write_raw_cp_reg() 347 * and assertions in raw_read()/raw_write(). 348 */ 349 if ((ri->type & ARM_CP_CONST) || 350 ri->fieldoffset || 351 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 352 return false; 353 } 354 return true; 355 } 356 357 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 358 { 359 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 360 int i; 361 bool ok = true; 362 363 for (i = 0; i < cpu->cpreg_array_len; i++) { 364 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 365 const ARMCPRegInfo *ri; 366 uint64_t newval; 367 368 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 369 if (!ri) { 370 ok = false; 371 continue; 372 } 373 if (ri->type & ARM_CP_NO_RAW) { 374 continue; 375 } 376 377 newval = read_raw_cp_reg(&cpu->env, ri); 378 if (kvm_sync) { 379 /* 380 * Only sync if the previous list->cpustate sync succeeded. 381 * Rather than tracking the success/failure state for every 382 * item in the list, we just recheck "does the raw write we must 383 * have made in write_list_to_cpustate() read back OK" here. 384 */ 385 uint64_t oldval = cpu->cpreg_values[i]; 386 387 if (oldval == newval) { 388 continue; 389 } 390 391 write_raw_cp_reg(&cpu->env, ri, oldval); 392 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 393 continue; 394 } 395 396 write_raw_cp_reg(&cpu->env, ri, newval); 397 } 398 cpu->cpreg_values[i] = newval; 399 } 400 return ok; 401 } 402 403 bool write_list_to_cpustate(ARMCPU *cpu) 404 { 405 int i; 406 bool ok = true; 407 408 for (i = 0; i < cpu->cpreg_array_len; i++) { 409 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 410 uint64_t v = cpu->cpreg_values[i]; 411 const ARMCPRegInfo *ri; 412 413 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 414 if (!ri) { 415 ok = false; 416 continue; 417 } 418 if (ri->type & ARM_CP_NO_RAW) { 419 continue; 420 } 421 /* Write value and confirm it reads back as written 422 * (to catch read-only registers and partially read-only 423 * registers where the incoming migration value doesn't match) 424 */ 425 write_raw_cp_reg(&cpu->env, ri, v); 426 if (read_raw_cp_reg(&cpu->env, ri) != v) { 427 ok = false; 428 } 429 } 430 return ok; 431 } 432 433 static void add_cpreg_to_list(gpointer key, gpointer opaque) 434 { 435 ARMCPU *cpu = opaque; 436 uint64_t regidx; 437 const ARMCPRegInfo *ri; 438 439 regidx = *(uint32_t *)key; 440 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 441 442 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 443 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 444 /* The value array need not be initialized at this point */ 445 cpu->cpreg_array_len++; 446 } 447 } 448 449 static void count_cpreg(gpointer key, gpointer opaque) 450 { 451 ARMCPU *cpu = opaque; 452 uint64_t regidx; 453 const ARMCPRegInfo *ri; 454 455 regidx = *(uint32_t *)key; 456 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 457 458 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 459 cpu->cpreg_array_len++; 460 } 461 } 462 463 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 464 { 465 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 466 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 467 468 if (aidx > bidx) { 469 return 1; 470 } 471 if (aidx < bidx) { 472 return -1; 473 } 474 return 0; 475 } 476 477 void init_cpreg_list(ARMCPU *cpu) 478 { 479 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 480 * Note that we require cpreg_tuples[] to be sorted by key ID. 481 */ 482 GList *keys; 483 int arraylen; 484 485 keys = g_hash_table_get_keys(cpu->cp_regs); 486 keys = g_list_sort(keys, cpreg_key_compare); 487 488 cpu->cpreg_array_len = 0; 489 490 g_list_foreach(keys, count_cpreg, cpu); 491 492 arraylen = cpu->cpreg_array_len; 493 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 494 cpu->cpreg_values = g_new(uint64_t, arraylen); 495 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 496 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 497 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 498 cpu->cpreg_array_len = 0; 499 500 g_list_foreach(keys, add_cpreg_to_list, cpu); 501 502 assert(cpu->cpreg_array_len == arraylen); 503 504 g_list_free(keys); 505 } 506 507 /* 508 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 509 */ 510 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 511 const ARMCPRegInfo *ri, 512 bool isread) 513 { 514 if (!is_a64(env) && arm_current_el(env) == 3 && 515 arm_is_secure_below_el3(env)) { 516 return CP_ACCESS_TRAP_UNCATEGORIZED; 517 } 518 return CP_ACCESS_OK; 519 } 520 521 /* Some secure-only AArch32 registers trap to EL3 if used from 522 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 523 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 524 * We assume that the .access field is set to PL1_RW. 525 */ 526 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 527 const ARMCPRegInfo *ri, 528 bool isread) 529 { 530 if (arm_current_el(env) == 3) { 531 return CP_ACCESS_OK; 532 } 533 if (arm_is_secure_below_el3(env)) { 534 return CP_ACCESS_TRAP_EL3; 535 } 536 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 537 return CP_ACCESS_TRAP_UNCATEGORIZED; 538 } 539 540 /* Check for traps to "powerdown debug" registers, which are controlled 541 * by MDCR.TDOSA 542 */ 543 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 544 bool isread) 545 { 546 int el = arm_current_el(env); 547 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 548 (env->cp15.mdcr_el2 & MDCR_TDE) || 549 (arm_hcr_el2_eff(env) & HCR_TGE); 550 551 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 552 return CP_ACCESS_TRAP_EL2; 553 } 554 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 555 return CP_ACCESS_TRAP_EL3; 556 } 557 return CP_ACCESS_OK; 558 } 559 560 /* Check for traps to "debug ROM" registers, which are controlled 561 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 562 */ 563 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 564 bool isread) 565 { 566 int el = arm_current_el(env); 567 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 568 (env->cp15.mdcr_el2 & MDCR_TDE) || 569 (arm_hcr_el2_eff(env) & HCR_TGE); 570 571 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 572 return CP_ACCESS_TRAP_EL2; 573 } 574 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 575 return CP_ACCESS_TRAP_EL3; 576 } 577 return CP_ACCESS_OK; 578 } 579 580 /* Check for traps to general debug registers, which are controlled 581 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 582 */ 583 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 584 bool isread) 585 { 586 int el = arm_current_el(env); 587 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 588 (env->cp15.mdcr_el2 & MDCR_TDE) || 589 (arm_hcr_el2_eff(env) & HCR_TGE); 590 591 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 592 return CP_ACCESS_TRAP_EL2; 593 } 594 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 595 return CP_ACCESS_TRAP_EL3; 596 } 597 return CP_ACCESS_OK; 598 } 599 600 /* Check for traps to performance monitor registers, which are controlled 601 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 602 */ 603 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 604 bool isread) 605 { 606 int el = arm_current_el(env); 607 608 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 609 && !arm_is_secure_below_el3(env)) { 610 return CP_ACCESS_TRAP_EL2; 611 } 612 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 613 return CP_ACCESS_TRAP_EL3; 614 } 615 return CP_ACCESS_OK; 616 } 617 618 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 619 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 620 bool isread) 621 { 622 if (arm_current_el(env) == 1) { 623 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 624 if (arm_hcr_el2_eff(env) & trap) { 625 return CP_ACCESS_TRAP_EL2; 626 } 627 } 628 return CP_ACCESS_OK; 629 } 630 631 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 632 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 633 bool isread) 634 { 635 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 636 return CP_ACCESS_TRAP_EL2; 637 } 638 return CP_ACCESS_OK; 639 } 640 641 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 642 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 643 bool isread) 644 { 645 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 646 return CP_ACCESS_TRAP_EL2; 647 } 648 return CP_ACCESS_OK; 649 } 650 651 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 652 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 653 bool isread) 654 { 655 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 656 return CP_ACCESS_TRAP_EL2; 657 } 658 return CP_ACCESS_OK; 659 } 660 661 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 662 { 663 ARMCPU *cpu = env_archcpu(env); 664 665 raw_write(env, ri, value); 666 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 667 } 668 669 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 670 { 671 ARMCPU *cpu = env_archcpu(env); 672 673 if (raw_read(env, ri) != value) { 674 /* Unlike real hardware the qemu TLB uses virtual addresses, 675 * not modified virtual addresses, so this causes a TLB flush. 676 */ 677 tlb_flush(CPU(cpu)); 678 raw_write(env, ri, value); 679 } 680 } 681 682 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 683 uint64_t value) 684 { 685 ARMCPU *cpu = env_archcpu(env); 686 687 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 688 && !extended_addresses_enabled(env)) { 689 /* For VMSA (when not using the LPAE long descriptor page table 690 * format) this register includes the ASID, so do a TLB flush. 691 * For PMSA it is purely a process ID and no action is needed. 692 */ 693 tlb_flush(CPU(cpu)); 694 } 695 raw_write(env, ri, value); 696 } 697 698 /* IS variants of TLB operations must affect all cores */ 699 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 700 uint64_t value) 701 { 702 CPUState *cs = env_cpu(env); 703 704 tlb_flush_all_cpus_synced(cs); 705 } 706 707 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 708 uint64_t value) 709 { 710 CPUState *cs = env_cpu(env); 711 712 tlb_flush_all_cpus_synced(cs); 713 } 714 715 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 716 uint64_t value) 717 { 718 CPUState *cs = env_cpu(env); 719 720 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 721 } 722 723 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 724 uint64_t value) 725 { 726 CPUState *cs = env_cpu(env); 727 728 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 729 } 730 731 /* 732 * Non-IS variants of TLB operations are upgraded to 733 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 734 * force broadcast of these operations. 735 */ 736 static bool tlb_force_broadcast(CPUARMState *env) 737 { 738 return (env->cp15.hcr_el2 & HCR_FB) && 739 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 740 } 741 742 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 743 uint64_t value) 744 { 745 /* Invalidate all (TLBIALL) */ 746 CPUState *cs = env_cpu(env); 747 748 if (tlb_force_broadcast(env)) { 749 tlb_flush_all_cpus_synced(cs); 750 } else { 751 tlb_flush(cs); 752 } 753 } 754 755 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 756 uint64_t value) 757 { 758 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 759 CPUState *cs = env_cpu(env); 760 761 value &= TARGET_PAGE_MASK; 762 if (tlb_force_broadcast(env)) { 763 tlb_flush_page_all_cpus_synced(cs, value); 764 } else { 765 tlb_flush_page(cs, value); 766 } 767 } 768 769 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 770 uint64_t value) 771 { 772 /* Invalidate by ASID (TLBIASID) */ 773 CPUState *cs = env_cpu(env); 774 775 if (tlb_force_broadcast(env)) { 776 tlb_flush_all_cpus_synced(cs); 777 } else { 778 tlb_flush(cs); 779 } 780 } 781 782 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 783 uint64_t value) 784 { 785 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 786 CPUState *cs = env_cpu(env); 787 788 value &= TARGET_PAGE_MASK; 789 if (tlb_force_broadcast(env)) { 790 tlb_flush_page_all_cpus_synced(cs, value); 791 } else { 792 tlb_flush_page(cs, value); 793 } 794 } 795 796 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 797 uint64_t value) 798 { 799 CPUState *cs = env_cpu(env); 800 801 tlb_flush_by_mmuidx(cs, 802 ARMMMUIdxBit_E10_1 | 803 ARMMMUIdxBit_E10_1_PAN | 804 ARMMMUIdxBit_E10_0); 805 } 806 807 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 808 uint64_t value) 809 { 810 CPUState *cs = env_cpu(env); 811 812 tlb_flush_by_mmuidx_all_cpus_synced(cs, 813 ARMMMUIdxBit_E10_1 | 814 ARMMMUIdxBit_E10_1_PAN | 815 ARMMMUIdxBit_E10_0); 816 } 817 818 819 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 820 uint64_t value) 821 { 822 CPUState *cs = env_cpu(env); 823 824 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 825 } 826 827 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 828 uint64_t value) 829 { 830 CPUState *cs = env_cpu(env); 831 832 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 833 } 834 835 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 836 uint64_t value) 837 { 838 CPUState *cs = env_cpu(env); 839 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 840 841 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 842 } 843 844 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 845 uint64_t value) 846 { 847 CPUState *cs = env_cpu(env); 848 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 849 850 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 851 ARMMMUIdxBit_E2); 852 } 853 854 static const ARMCPRegInfo cp_reginfo[] = { 855 /* Define the secure and non-secure FCSE identifier CP registers 856 * separately because there is no secure bank in V8 (no _EL3). This allows 857 * the secure register to be properly reset and migrated. There is also no 858 * v8 EL1 version of the register so the non-secure instance stands alone. 859 */ 860 { .name = "FCSEIDR", 861 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 862 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 863 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 864 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 865 { .name = "FCSEIDR_S", 866 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 867 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 868 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 869 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 870 /* Define the secure and non-secure context identifier CP registers 871 * separately because there is no secure bank in V8 (no _EL3). This allows 872 * the secure register to be properly reset and migrated. In the 873 * non-secure case, the 32-bit register will have reset and migration 874 * disabled during registration as it is handled by the 64-bit instance. 875 */ 876 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 877 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 878 .access = PL1_RW, .accessfn = access_tvm_trvm, 879 .secure = ARM_CP_SECSTATE_NS, 880 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 881 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 882 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 883 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 884 .access = PL1_RW, .accessfn = access_tvm_trvm, 885 .secure = ARM_CP_SECSTATE_S, 886 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 887 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 888 REGINFO_SENTINEL 889 }; 890 891 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 892 /* NB: Some of these registers exist in v8 but with more precise 893 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 894 */ 895 /* MMU Domain access control / MPU write buffer control */ 896 { .name = "DACR", 897 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 898 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 899 .writefn = dacr_write, .raw_writefn = raw_write, 900 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 901 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 902 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 903 * For v6 and v5, these mappings are overly broad. 904 */ 905 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 906 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 907 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 908 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 909 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 910 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 911 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 912 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 913 /* Cache maintenance ops; some of this space may be overridden later. */ 914 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 915 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 916 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 917 REGINFO_SENTINEL 918 }; 919 920 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 921 /* Not all pre-v6 cores implemented this WFI, so this is slightly 922 * over-broad. 923 */ 924 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 925 .access = PL1_W, .type = ARM_CP_WFI }, 926 REGINFO_SENTINEL 927 }; 928 929 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 930 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 931 * is UNPREDICTABLE; we choose to NOP as most implementations do). 932 */ 933 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 934 .access = PL1_W, .type = ARM_CP_WFI }, 935 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 936 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 937 * OMAPCP will override this space. 938 */ 939 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 940 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 941 .resetvalue = 0 }, 942 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 943 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 944 .resetvalue = 0 }, 945 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 946 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 947 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 948 .resetvalue = 0 }, 949 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 950 * implementing it as RAZ means the "debug architecture version" bits 951 * will read as a reserved value, which should cause Linux to not try 952 * to use the debug hardware. 953 */ 954 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 955 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 956 /* MMU TLB control. Note that the wildcarding means we cover not just 957 * the unified TLB ops but also the dside/iside/inner-shareable variants. 958 */ 959 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 960 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 961 .type = ARM_CP_NO_RAW }, 962 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 963 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 964 .type = ARM_CP_NO_RAW }, 965 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 966 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 967 .type = ARM_CP_NO_RAW }, 968 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 969 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 970 .type = ARM_CP_NO_RAW }, 971 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 972 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 973 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 974 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 975 REGINFO_SENTINEL 976 }; 977 978 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 979 uint64_t value) 980 { 981 uint32_t mask = 0; 982 983 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 984 if (!arm_feature(env, ARM_FEATURE_V8)) { 985 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 986 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 987 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 988 */ 989 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 990 /* VFP coprocessor: cp10 & cp11 [23:20] */ 991 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 992 993 if (!arm_feature(env, ARM_FEATURE_NEON)) { 994 /* ASEDIS [31] bit is RAO/WI */ 995 value |= (1 << 31); 996 } 997 998 /* VFPv3 and upwards with NEON implement 32 double precision 999 * registers (D0-D31). 1000 */ 1001 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1002 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1003 value |= (1 << 30); 1004 } 1005 } 1006 value &= mask; 1007 } 1008 1009 /* 1010 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1011 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1012 */ 1013 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1014 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1015 value &= ~(0xf << 20); 1016 value |= env->cp15.cpacr_el1 & (0xf << 20); 1017 } 1018 1019 env->cp15.cpacr_el1 = value; 1020 } 1021 1022 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1023 { 1024 /* 1025 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1026 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1027 */ 1028 uint64_t value = env->cp15.cpacr_el1; 1029 1030 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1031 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1032 value &= ~(0xf << 20); 1033 } 1034 return value; 1035 } 1036 1037 1038 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1039 { 1040 /* Call cpacr_write() so that we reset with the correct RAO bits set 1041 * for our CPU features. 1042 */ 1043 cpacr_write(env, ri, 0); 1044 } 1045 1046 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1047 bool isread) 1048 { 1049 if (arm_feature(env, ARM_FEATURE_V8)) { 1050 /* Check if CPACR accesses are to be trapped to EL2 */ 1051 if (arm_current_el(env) == 1 && 1052 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 1053 return CP_ACCESS_TRAP_EL2; 1054 /* Check if CPACR accesses are to be trapped to EL3 */ 1055 } else if (arm_current_el(env) < 3 && 1056 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1057 return CP_ACCESS_TRAP_EL3; 1058 } 1059 } 1060 1061 return CP_ACCESS_OK; 1062 } 1063 1064 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1065 bool isread) 1066 { 1067 /* Check if CPTR accesses are set to trap to EL3 */ 1068 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1069 return CP_ACCESS_TRAP_EL3; 1070 } 1071 1072 return CP_ACCESS_OK; 1073 } 1074 1075 static const ARMCPRegInfo v6_cp_reginfo[] = { 1076 /* prefetch by MVA in v6, NOP in v7 */ 1077 { .name = "MVA_prefetch", 1078 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1079 .access = PL1_W, .type = ARM_CP_NOP }, 1080 /* We need to break the TB after ISB to execute self-modifying code 1081 * correctly and also to take any pending interrupts immediately. 1082 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1083 */ 1084 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1085 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1086 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1087 .access = PL0_W, .type = ARM_CP_NOP }, 1088 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1089 .access = PL0_W, .type = ARM_CP_NOP }, 1090 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1091 .access = PL1_RW, .accessfn = access_tvm_trvm, 1092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1093 offsetof(CPUARMState, cp15.ifar_ns) }, 1094 .resetvalue = 0, }, 1095 /* Watchpoint Fault Address Register : should actually only be present 1096 * for 1136, 1176, 11MPCore. 1097 */ 1098 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1099 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1100 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1101 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1102 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1103 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1104 REGINFO_SENTINEL 1105 }; 1106 1107 /* Definitions for the PMU registers */ 1108 #define PMCRN_MASK 0xf800 1109 #define PMCRN_SHIFT 11 1110 #define PMCRLC 0x40 1111 #define PMCRDP 0x20 1112 #define PMCRX 0x10 1113 #define PMCRD 0x8 1114 #define PMCRC 0x4 1115 #define PMCRP 0x2 1116 #define PMCRE 0x1 1117 /* 1118 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1119 * which can be written as 1 to trigger behaviour but which stay RAZ). 1120 */ 1121 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1122 1123 #define PMXEVTYPER_P 0x80000000 1124 #define PMXEVTYPER_U 0x40000000 1125 #define PMXEVTYPER_NSK 0x20000000 1126 #define PMXEVTYPER_NSU 0x10000000 1127 #define PMXEVTYPER_NSH 0x08000000 1128 #define PMXEVTYPER_M 0x04000000 1129 #define PMXEVTYPER_MT 0x02000000 1130 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1131 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1132 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1133 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1134 PMXEVTYPER_EVTCOUNT) 1135 1136 #define PMCCFILTR 0xf8000000 1137 #define PMCCFILTR_M PMXEVTYPER_M 1138 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1139 1140 static inline uint32_t pmu_num_counters(CPUARMState *env) 1141 { 1142 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1143 } 1144 1145 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1146 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1147 { 1148 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1149 } 1150 1151 typedef struct pm_event { 1152 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1153 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1154 bool (*supported)(CPUARMState *); 1155 /* 1156 * Retrieve the current count of the underlying event. The programmed 1157 * counters hold a difference from the return value from this function 1158 */ 1159 uint64_t (*get_count)(CPUARMState *); 1160 /* 1161 * Return how many nanoseconds it will take (at a minimum) for count events 1162 * to occur. A negative value indicates the counter will never overflow, or 1163 * that the counter has otherwise arranged for the overflow bit to be set 1164 * and the PMU interrupt to be raised on overflow. 1165 */ 1166 int64_t (*ns_per_count)(uint64_t); 1167 } pm_event; 1168 1169 static bool event_always_supported(CPUARMState *env) 1170 { 1171 return true; 1172 } 1173 1174 static uint64_t swinc_get_count(CPUARMState *env) 1175 { 1176 /* 1177 * SW_INCR events are written directly to the pmevcntr's by writes to 1178 * PMSWINC, so there is no underlying count maintained by the PMU itself 1179 */ 1180 return 0; 1181 } 1182 1183 static int64_t swinc_ns_per(uint64_t ignored) 1184 { 1185 return -1; 1186 } 1187 1188 /* 1189 * Return the underlying cycle count for the PMU cycle counters. If we're in 1190 * usermode, simply return 0. 1191 */ 1192 static uint64_t cycles_get_count(CPUARMState *env) 1193 { 1194 #ifndef CONFIG_USER_ONLY 1195 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1196 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1197 #else 1198 return cpu_get_host_ticks(); 1199 #endif 1200 } 1201 1202 #ifndef CONFIG_USER_ONLY 1203 static int64_t cycles_ns_per(uint64_t cycles) 1204 { 1205 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1206 } 1207 1208 static bool instructions_supported(CPUARMState *env) 1209 { 1210 return icount_enabled() == 1; /* Precise instruction counting */ 1211 } 1212 1213 static uint64_t instructions_get_count(CPUARMState *env) 1214 { 1215 return (uint64_t)cpu_get_icount_raw(); 1216 } 1217 1218 static int64_t instructions_ns_per(uint64_t icount) 1219 { 1220 return cpu_icount_to_ns((int64_t)icount); 1221 } 1222 #endif 1223 1224 static bool pmu_8_1_events_supported(CPUARMState *env) 1225 { 1226 /* For events which are supported in any v8.1 PMU */ 1227 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1228 } 1229 1230 static bool pmu_8_4_events_supported(CPUARMState *env) 1231 { 1232 /* For events which are supported in any v8.1 PMU */ 1233 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1234 } 1235 1236 static uint64_t zero_event_get_count(CPUARMState *env) 1237 { 1238 /* For events which on QEMU never fire, so their count is always zero */ 1239 return 0; 1240 } 1241 1242 static int64_t zero_event_ns_per(uint64_t cycles) 1243 { 1244 /* An event which never fires can never overflow */ 1245 return -1; 1246 } 1247 1248 static const pm_event pm_events[] = { 1249 { .number = 0x000, /* SW_INCR */ 1250 .supported = event_always_supported, 1251 .get_count = swinc_get_count, 1252 .ns_per_count = swinc_ns_per, 1253 }, 1254 #ifndef CONFIG_USER_ONLY 1255 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1256 .supported = instructions_supported, 1257 .get_count = instructions_get_count, 1258 .ns_per_count = instructions_ns_per, 1259 }, 1260 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1261 .supported = event_always_supported, 1262 .get_count = cycles_get_count, 1263 .ns_per_count = cycles_ns_per, 1264 }, 1265 #endif 1266 { .number = 0x023, /* STALL_FRONTEND */ 1267 .supported = pmu_8_1_events_supported, 1268 .get_count = zero_event_get_count, 1269 .ns_per_count = zero_event_ns_per, 1270 }, 1271 { .number = 0x024, /* STALL_BACKEND */ 1272 .supported = pmu_8_1_events_supported, 1273 .get_count = zero_event_get_count, 1274 .ns_per_count = zero_event_ns_per, 1275 }, 1276 { .number = 0x03c, /* STALL */ 1277 .supported = pmu_8_4_events_supported, 1278 .get_count = zero_event_get_count, 1279 .ns_per_count = zero_event_ns_per, 1280 }, 1281 }; 1282 1283 /* 1284 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1285 * events (i.e. the statistical profiling extension), this implementation 1286 * should first be updated to something sparse instead of the current 1287 * supported_event_map[] array. 1288 */ 1289 #define MAX_EVENT_ID 0x3c 1290 #define UNSUPPORTED_EVENT UINT16_MAX 1291 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1292 1293 /* 1294 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1295 * of ARM event numbers to indices in our pm_events array. 1296 * 1297 * Note: Events in the 0x40XX range are not currently supported. 1298 */ 1299 void pmu_init(ARMCPU *cpu) 1300 { 1301 unsigned int i; 1302 1303 /* 1304 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1305 * events to them 1306 */ 1307 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1308 supported_event_map[i] = UNSUPPORTED_EVENT; 1309 } 1310 cpu->pmceid0 = 0; 1311 cpu->pmceid1 = 0; 1312 1313 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1314 const pm_event *cnt = &pm_events[i]; 1315 assert(cnt->number <= MAX_EVENT_ID); 1316 /* We do not currently support events in the 0x40xx range */ 1317 assert(cnt->number <= 0x3f); 1318 1319 if (cnt->supported(&cpu->env)) { 1320 supported_event_map[cnt->number] = i; 1321 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1322 if (cnt->number & 0x20) { 1323 cpu->pmceid1 |= event_mask; 1324 } else { 1325 cpu->pmceid0 |= event_mask; 1326 } 1327 } 1328 } 1329 } 1330 1331 /* 1332 * Check at runtime whether a PMU event is supported for the current machine 1333 */ 1334 static bool event_supported(uint16_t number) 1335 { 1336 if (number > MAX_EVENT_ID) { 1337 return false; 1338 } 1339 return supported_event_map[number] != UNSUPPORTED_EVENT; 1340 } 1341 1342 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1343 bool isread) 1344 { 1345 /* Performance monitor registers user accessibility is controlled 1346 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1347 * trapping to EL2 or EL3 for other accesses. 1348 */ 1349 int el = arm_current_el(env); 1350 1351 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1352 return CP_ACCESS_TRAP; 1353 } 1354 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1355 && !arm_is_secure_below_el3(env)) { 1356 return CP_ACCESS_TRAP_EL2; 1357 } 1358 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1359 return CP_ACCESS_TRAP_EL3; 1360 } 1361 1362 return CP_ACCESS_OK; 1363 } 1364 1365 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1366 const ARMCPRegInfo *ri, 1367 bool isread) 1368 { 1369 /* ER: event counter read trap control */ 1370 if (arm_feature(env, ARM_FEATURE_V8) 1371 && arm_current_el(env) == 0 1372 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1373 && isread) { 1374 return CP_ACCESS_OK; 1375 } 1376 1377 return pmreg_access(env, ri, isread); 1378 } 1379 1380 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1381 const ARMCPRegInfo *ri, 1382 bool isread) 1383 { 1384 /* SW: software increment write trap control */ 1385 if (arm_feature(env, ARM_FEATURE_V8) 1386 && arm_current_el(env) == 0 1387 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1388 && !isread) { 1389 return CP_ACCESS_OK; 1390 } 1391 1392 return pmreg_access(env, ri, isread); 1393 } 1394 1395 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1396 const ARMCPRegInfo *ri, 1397 bool isread) 1398 { 1399 /* ER: event counter read trap control */ 1400 if (arm_feature(env, ARM_FEATURE_V8) 1401 && arm_current_el(env) == 0 1402 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1403 return CP_ACCESS_OK; 1404 } 1405 1406 return pmreg_access(env, ri, isread); 1407 } 1408 1409 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1410 const ARMCPRegInfo *ri, 1411 bool isread) 1412 { 1413 /* CR: cycle counter read trap control */ 1414 if (arm_feature(env, ARM_FEATURE_V8) 1415 && arm_current_el(env) == 0 1416 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1417 && isread) { 1418 return CP_ACCESS_OK; 1419 } 1420 1421 return pmreg_access(env, ri, isread); 1422 } 1423 1424 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1425 * the current EL, security state, and register configuration. 1426 */ 1427 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1428 { 1429 uint64_t filter; 1430 bool e, p, u, nsk, nsu, nsh, m; 1431 bool enabled, prohibited, filtered; 1432 bool secure = arm_is_secure(env); 1433 int el = arm_current_el(env); 1434 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1435 1436 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1437 return false; 1438 } 1439 1440 if (!arm_feature(env, ARM_FEATURE_EL2) || 1441 (counter < hpmn || counter == 31)) { 1442 e = env->cp15.c9_pmcr & PMCRE; 1443 } else { 1444 e = env->cp15.mdcr_el2 & MDCR_HPME; 1445 } 1446 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1447 1448 if (!secure) { 1449 if (el == 2 && (counter < hpmn || counter == 31)) { 1450 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1451 } else { 1452 prohibited = false; 1453 } 1454 } else { 1455 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1456 !(env->cp15.mdcr_el3 & MDCR_SPME); 1457 } 1458 1459 if (prohibited && counter == 31) { 1460 prohibited = env->cp15.c9_pmcr & PMCRDP; 1461 } 1462 1463 if (counter == 31) { 1464 filter = env->cp15.pmccfiltr_el0; 1465 } else { 1466 filter = env->cp15.c14_pmevtyper[counter]; 1467 } 1468 1469 p = filter & PMXEVTYPER_P; 1470 u = filter & PMXEVTYPER_U; 1471 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1472 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1473 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1474 m = arm_el_is_aa64(env, 1) && 1475 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1476 1477 if (el == 0) { 1478 filtered = secure ? u : u != nsu; 1479 } else if (el == 1) { 1480 filtered = secure ? p : p != nsk; 1481 } else if (el == 2) { 1482 filtered = !nsh; 1483 } else { /* EL3 */ 1484 filtered = m != p; 1485 } 1486 1487 if (counter != 31) { 1488 /* 1489 * If not checking PMCCNTR, ensure the counter is setup to an event we 1490 * support 1491 */ 1492 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1493 if (!event_supported(event)) { 1494 return false; 1495 } 1496 } 1497 1498 return enabled && !prohibited && !filtered; 1499 } 1500 1501 static void pmu_update_irq(CPUARMState *env) 1502 { 1503 ARMCPU *cpu = env_archcpu(env); 1504 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1505 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1506 } 1507 1508 /* 1509 * Ensure c15_ccnt is the guest-visible count so that operations such as 1510 * enabling/disabling the counter or filtering, modifying the count itself, 1511 * etc. can be done logically. This is essentially a no-op if the counter is 1512 * not enabled at the time of the call. 1513 */ 1514 static void pmccntr_op_start(CPUARMState *env) 1515 { 1516 uint64_t cycles = cycles_get_count(env); 1517 1518 if (pmu_counter_enabled(env, 31)) { 1519 uint64_t eff_cycles = cycles; 1520 if (env->cp15.c9_pmcr & PMCRD) { 1521 /* Increment once every 64 processor clock cycles */ 1522 eff_cycles /= 64; 1523 } 1524 1525 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1526 1527 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1528 1ull << 63 : 1ull << 31; 1529 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1530 env->cp15.c9_pmovsr |= (1 << 31); 1531 pmu_update_irq(env); 1532 } 1533 1534 env->cp15.c15_ccnt = new_pmccntr; 1535 } 1536 env->cp15.c15_ccnt_delta = cycles; 1537 } 1538 1539 /* 1540 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1541 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1542 * pmccntr_op_start. 1543 */ 1544 static void pmccntr_op_finish(CPUARMState *env) 1545 { 1546 if (pmu_counter_enabled(env, 31)) { 1547 #ifndef CONFIG_USER_ONLY 1548 /* Calculate when the counter will next overflow */ 1549 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1550 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1551 remaining_cycles = (uint32_t)remaining_cycles; 1552 } 1553 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1554 1555 if (overflow_in > 0) { 1556 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1557 overflow_in; 1558 ARMCPU *cpu = env_archcpu(env); 1559 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1560 } 1561 #endif 1562 1563 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1564 if (env->cp15.c9_pmcr & PMCRD) { 1565 /* Increment once every 64 processor clock cycles */ 1566 prev_cycles /= 64; 1567 } 1568 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1569 } 1570 } 1571 1572 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1573 { 1574 1575 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1576 uint64_t count = 0; 1577 if (event_supported(event)) { 1578 uint16_t event_idx = supported_event_map[event]; 1579 count = pm_events[event_idx].get_count(env); 1580 } 1581 1582 if (pmu_counter_enabled(env, counter)) { 1583 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1584 1585 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1586 env->cp15.c9_pmovsr |= (1 << counter); 1587 pmu_update_irq(env); 1588 } 1589 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1590 } 1591 env->cp15.c14_pmevcntr_delta[counter] = count; 1592 } 1593 1594 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1595 { 1596 if (pmu_counter_enabled(env, counter)) { 1597 #ifndef CONFIG_USER_ONLY 1598 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1599 uint16_t event_idx = supported_event_map[event]; 1600 uint64_t delta = UINT32_MAX - 1601 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1602 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1603 1604 if (overflow_in > 0) { 1605 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1606 overflow_in; 1607 ARMCPU *cpu = env_archcpu(env); 1608 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1609 } 1610 #endif 1611 1612 env->cp15.c14_pmevcntr_delta[counter] -= 1613 env->cp15.c14_pmevcntr[counter]; 1614 } 1615 } 1616 1617 void pmu_op_start(CPUARMState *env) 1618 { 1619 unsigned int i; 1620 pmccntr_op_start(env); 1621 for (i = 0; i < pmu_num_counters(env); i++) { 1622 pmevcntr_op_start(env, i); 1623 } 1624 } 1625 1626 void pmu_op_finish(CPUARMState *env) 1627 { 1628 unsigned int i; 1629 pmccntr_op_finish(env); 1630 for (i = 0; i < pmu_num_counters(env); i++) { 1631 pmevcntr_op_finish(env, i); 1632 } 1633 } 1634 1635 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1636 { 1637 pmu_op_start(&cpu->env); 1638 } 1639 1640 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1641 { 1642 pmu_op_finish(&cpu->env); 1643 } 1644 1645 void arm_pmu_timer_cb(void *opaque) 1646 { 1647 ARMCPU *cpu = opaque; 1648 1649 /* 1650 * Update all the counter values based on the current underlying counts, 1651 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1652 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1653 * counter may expire. 1654 */ 1655 pmu_op_start(&cpu->env); 1656 pmu_op_finish(&cpu->env); 1657 } 1658 1659 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1660 uint64_t value) 1661 { 1662 pmu_op_start(env); 1663 1664 if (value & PMCRC) { 1665 /* The counter has been reset */ 1666 env->cp15.c15_ccnt = 0; 1667 } 1668 1669 if (value & PMCRP) { 1670 unsigned int i; 1671 for (i = 0; i < pmu_num_counters(env); i++) { 1672 env->cp15.c14_pmevcntr[i] = 0; 1673 } 1674 } 1675 1676 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1677 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1678 1679 pmu_op_finish(env); 1680 } 1681 1682 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1683 uint64_t value) 1684 { 1685 unsigned int i; 1686 for (i = 0; i < pmu_num_counters(env); i++) { 1687 /* Increment a counter's count iff: */ 1688 if ((value & (1 << i)) && /* counter's bit is set */ 1689 /* counter is enabled and not filtered */ 1690 pmu_counter_enabled(env, i) && 1691 /* counter is SW_INCR */ 1692 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1693 pmevcntr_op_start(env, i); 1694 1695 /* 1696 * Detect if this write causes an overflow since we can't predict 1697 * PMSWINC overflows like we can for other events 1698 */ 1699 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1700 1701 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1702 env->cp15.c9_pmovsr |= (1 << i); 1703 pmu_update_irq(env); 1704 } 1705 1706 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1707 1708 pmevcntr_op_finish(env, i); 1709 } 1710 } 1711 } 1712 1713 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1714 { 1715 uint64_t ret; 1716 pmccntr_op_start(env); 1717 ret = env->cp15.c15_ccnt; 1718 pmccntr_op_finish(env); 1719 return ret; 1720 } 1721 1722 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1723 uint64_t value) 1724 { 1725 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1726 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1727 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1728 * accessed. 1729 */ 1730 env->cp15.c9_pmselr = value & 0x1f; 1731 } 1732 1733 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 pmccntr_op_start(env); 1737 env->cp15.c15_ccnt = value; 1738 pmccntr_op_finish(env); 1739 } 1740 1741 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1742 uint64_t value) 1743 { 1744 uint64_t cur_val = pmccntr_read(env, NULL); 1745 1746 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1747 } 1748 1749 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1750 uint64_t value) 1751 { 1752 pmccntr_op_start(env); 1753 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1754 pmccntr_op_finish(env); 1755 } 1756 1757 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1758 uint64_t value) 1759 { 1760 pmccntr_op_start(env); 1761 /* M is not accessible from AArch32 */ 1762 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1763 (value & PMCCFILTR); 1764 pmccntr_op_finish(env); 1765 } 1766 1767 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1768 { 1769 /* M is not visible in AArch32 */ 1770 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1771 } 1772 1773 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1774 uint64_t value) 1775 { 1776 value &= pmu_counter_mask(env); 1777 env->cp15.c9_pmcnten |= value; 1778 } 1779 1780 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1781 uint64_t value) 1782 { 1783 value &= pmu_counter_mask(env); 1784 env->cp15.c9_pmcnten &= ~value; 1785 } 1786 1787 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 value &= pmu_counter_mask(env); 1791 env->cp15.c9_pmovsr &= ~value; 1792 pmu_update_irq(env); 1793 } 1794 1795 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1796 uint64_t value) 1797 { 1798 value &= pmu_counter_mask(env); 1799 env->cp15.c9_pmovsr |= value; 1800 pmu_update_irq(env); 1801 } 1802 1803 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1804 uint64_t value, const uint8_t counter) 1805 { 1806 if (counter == 31) { 1807 pmccfiltr_write(env, ri, value); 1808 } else if (counter < pmu_num_counters(env)) { 1809 pmevcntr_op_start(env, counter); 1810 1811 /* 1812 * If this counter's event type is changing, store the current 1813 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1814 * pmevcntr_op_finish has the correct baseline when it converts back to 1815 * a delta. 1816 */ 1817 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1818 PMXEVTYPER_EVTCOUNT; 1819 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1820 if (old_event != new_event) { 1821 uint64_t count = 0; 1822 if (event_supported(new_event)) { 1823 uint16_t event_idx = supported_event_map[new_event]; 1824 count = pm_events[event_idx].get_count(env); 1825 } 1826 env->cp15.c14_pmevcntr_delta[counter] = count; 1827 } 1828 1829 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1830 pmevcntr_op_finish(env, counter); 1831 } 1832 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1833 * PMSELR value is equal to or greater than the number of implemented 1834 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1835 */ 1836 } 1837 1838 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1839 const uint8_t counter) 1840 { 1841 if (counter == 31) { 1842 return env->cp15.pmccfiltr_el0; 1843 } else if (counter < pmu_num_counters(env)) { 1844 return env->cp15.c14_pmevtyper[counter]; 1845 } else { 1846 /* 1847 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1848 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1849 */ 1850 return 0; 1851 } 1852 } 1853 1854 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value) 1856 { 1857 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1858 pmevtyper_write(env, ri, value, counter); 1859 } 1860 1861 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1862 uint64_t value) 1863 { 1864 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1865 env->cp15.c14_pmevtyper[counter] = value; 1866 1867 /* 1868 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1869 * pmu_op_finish calls when loading saved state for a migration. Because 1870 * we're potentially updating the type of event here, the value written to 1871 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1872 * different counter type. Therefore, we need to set this value to the 1873 * current count for the counter type we're writing so that pmu_op_finish 1874 * has the correct count for its calculation. 1875 */ 1876 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1877 if (event_supported(event)) { 1878 uint16_t event_idx = supported_event_map[event]; 1879 env->cp15.c14_pmevcntr_delta[counter] = 1880 pm_events[event_idx].get_count(env); 1881 } 1882 } 1883 1884 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1885 { 1886 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1887 return pmevtyper_read(env, ri, counter); 1888 } 1889 1890 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1891 uint64_t value) 1892 { 1893 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1894 } 1895 1896 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1897 { 1898 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1899 } 1900 1901 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1902 uint64_t value, uint8_t counter) 1903 { 1904 if (counter < pmu_num_counters(env)) { 1905 pmevcntr_op_start(env, counter); 1906 env->cp15.c14_pmevcntr[counter] = value; 1907 pmevcntr_op_finish(env, counter); 1908 } 1909 /* 1910 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1911 * are CONSTRAINED UNPREDICTABLE. 1912 */ 1913 } 1914 1915 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1916 uint8_t counter) 1917 { 1918 if (counter < pmu_num_counters(env)) { 1919 uint64_t ret; 1920 pmevcntr_op_start(env, counter); 1921 ret = env->cp15.c14_pmevcntr[counter]; 1922 pmevcntr_op_finish(env, counter); 1923 return ret; 1924 } else { 1925 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1926 * are CONSTRAINED UNPREDICTABLE. */ 1927 return 0; 1928 } 1929 } 1930 1931 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1932 uint64_t value) 1933 { 1934 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1935 pmevcntr_write(env, ri, value, counter); 1936 } 1937 1938 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1939 { 1940 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1941 return pmevcntr_read(env, ri, counter); 1942 } 1943 1944 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1945 uint64_t value) 1946 { 1947 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1948 assert(counter < pmu_num_counters(env)); 1949 env->cp15.c14_pmevcntr[counter] = value; 1950 pmevcntr_write(env, ri, value, counter); 1951 } 1952 1953 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1954 { 1955 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1956 assert(counter < pmu_num_counters(env)); 1957 return env->cp15.c14_pmevcntr[counter]; 1958 } 1959 1960 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1961 uint64_t value) 1962 { 1963 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1964 } 1965 1966 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1967 { 1968 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1969 } 1970 1971 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1972 uint64_t value) 1973 { 1974 if (arm_feature(env, ARM_FEATURE_V8)) { 1975 env->cp15.c9_pmuserenr = value & 0xf; 1976 } else { 1977 env->cp15.c9_pmuserenr = value & 1; 1978 } 1979 } 1980 1981 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1982 uint64_t value) 1983 { 1984 /* We have no event counters so only the C bit can be changed */ 1985 value &= pmu_counter_mask(env); 1986 env->cp15.c9_pminten |= value; 1987 pmu_update_irq(env); 1988 } 1989 1990 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1991 uint64_t value) 1992 { 1993 value &= pmu_counter_mask(env); 1994 env->cp15.c9_pminten &= ~value; 1995 pmu_update_irq(env); 1996 } 1997 1998 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1999 uint64_t value) 2000 { 2001 /* Note that even though the AArch64 view of this register has bits 2002 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2003 * architectural requirements for bits which are RES0 only in some 2004 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2005 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2006 */ 2007 raw_write(env, ri, value & ~0x1FULL); 2008 } 2009 2010 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2011 { 2012 /* Begin with base v8.0 state. */ 2013 uint32_t valid_mask = 0x3fff; 2014 ARMCPU *cpu = env_archcpu(env); 2015 2016 if (ri->state == ARM_CP_STATE_AA64) { 2017 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2018 valid_mask &= ~SCR_NET; 2019 2020 if (cpu_isar_feature(aa64_lor, cpu)) { 2021 valid_mask |= SCR_TLOR; 2022 } 2023 if (cpu_isar_feature(aa64_pauth, cpu)) { 2024 valid_mask |= SCR_API | SCR_APK; 2025 } 2026 if (cpu_isar_feature(aa64_mte, cpu)) { 2027 valid_mask |= SCR_ATA; 2028 } 2029 } else { 2030 valid_mask &= ~(SCR_RW | SCR_ST); 2031 } 2032 2033 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2034 valid_mask &= ~SCR_HCE; 2035 2036 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2037 * supported if EL2 exists. The bit is UNK/SBZP when 2038 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2039 * when EL2 is unavailable. 2040 * On ARMv8, this bit is always available. 2041 */ 2042 if (arm_feature(env, ARM_FEATURE_V7) && 2043 !arm_feature(env, ARM_FEATURE_V8)) { 2044 valid_mask &= ~SCR_SMD; 2045 } 2046 } 2047 2048 /* Clear all-context RES0 bits. */ 2049 value &= valid_mask; 2050 raw_write(env, ri, value); 2051 } 2052 2053 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2054 const ARMCPRegInfo *ri, 2055 bool isread) 2056 { 2057 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2058 return CP_ACCESS_TRAP_EL2; 2059 } 2060 2061 return CP_ACCESS_OK; 2062 } 2063 2064 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2065 { 2066 ARMCPU *cpu = env_archcpu(env); 2067 2068 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2069 * bank 2070 */ 2071 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2072 ri->secure & ARM_CP_SECSTATE_S); 2073 2074 return cpu->ccsidr[index]; 2075 } 2076 2077 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2078 uint64_t value) 2079 { 2080 raw_write(env, ri, value & 0xf); 2081 } 2082 2083 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2084 { 2085 CPUState *cs = env_cpu(env); 2086 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 2087 uint64_t ret = 0; 2088 bool allow_virt = (arm_current_el(env) == 1 && 2089 (!arm_is_secure_below_el3(env) || 2090 (env->cp15.scr_el3 & SCR_EEL2))); 2091 2092 if (allow_virt && (hcr_el2 & HCR_IMO)) { 2093 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2094 ret |= CPSR_I; 2095 } 2096 } else { 2097 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2098 ret |= CPSR_I; 2099 } 2100 } 2101 2102 if (allow_virt && (hcr_el2 & HCR_FMO)) { 2103 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2104 ret |= CPSR_F; 2105 } 2106 } else { 2107 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2108 ret |= CPSR_F; 2109 } 2110 } 2111 2112 /* External aborts are not possible in QEMU so A bit is always clear */ 2113 return ret; 2114 } 2115 2116 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2117 bool isread) 2118 { 2119 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2120 return CP_ACCESS_TRAP_EL2; 2121 } 2122 2123 return CP_ACCESS_OK; 2124 } 2125 2126 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2127 bool isread) 2128 { 2129 if (arm_feature(env, ARM_FEATURE_V8)) { 2130 return access_aa64_tid1(env, ri, isread); 2131 } 2132 2133 return CP_ACCESS_OK; 2134 } 2135 2136 static const ARMCPRegInfo v7_cp_reginfo[] = { 2137 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2138 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2139 .access = PL1_W, .type = ARM_CP_NOP }, 2140 /* Performance monitors are implementation defined in v7, 2141 * but with an ARM recommended set of registers, which we 2142 * follow. 2143 * 2144 * Performance registers fall into three categories: 2145 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2146 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2147 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2148 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2149 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2150 */ 2151 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2152 .access = PL0_RW, .type = ARM_CP_ALIAS, 2153 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2154 .writefn = pmcntenset_write, 2155 .accessfn = pmreg_access, 2156 .raw_writefn = raw_write }, 2157 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2158 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2159 .access = PL0_RW, .accessfn = pmreg_access, 2160 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2161 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2162 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2163 .access = PL0_RW, 2164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2165 .accessfn = pmreg_access, 2166 .writefn = pmcntenclr_write, 2167 .type = ARM_CP_ALIAS }, 2168 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2170 .access = PL0_RW, .accessfn = pmreg_access, 2171 .type = ARM_CP_ALIAS, 2172 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2173 .writefn = pmcntenclr_write }, 2174 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2175 .access = PL0_RW, .type = ARM_CP_IO, 2176 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2177 .accessfn = pmreg_access, 2178 .writefn = pmovsr_write, 2179 .raw_writefn = raw_write }, 2180 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2181 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2182 .access = PL0_RW, .accessfn = pmreg_access, 2183 .type = ARM_CP_ALIAS | ARM_CP_IO, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2185 .writefn = pmovsr_write, 2186 .raw_writefn = raw_write }, 2187 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2188 .access = PL0_W, .accessfn = pmreg_access_swinc, 2189 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2190 .writefn = pmswinc_write }, 2191 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2192 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2193 .access = PL0_W, .accessfn = pmreg_access_swinc, 2194 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2195 .writefn = pmswinc_write }, 2196 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2197 .access = PL0_RW, .type = ARM_CP_ALIAS, 2198 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2199 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2200 .raw_writefn = raw_write}, 2201 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2202 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2203 .access = PL0_RW, .accessfn = pmreg_access_selr, 2204 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2205 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2206 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2207 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2208 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2209 .accessfn = pmreg_access_ccntr }, 2210 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2211 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2212 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2213 .type = ARM_CP_IO, 2214 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2215 .readfn = pmccntr_read, .writefn = pmccntr_write, 2216 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2217 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2218 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2219 .access = PL0_RW, .accessfn = pmreg_access, 2220 .type = ARM_CP_ALIAS | ARM_CP_IO, 2221 .resetvalue = 0, }, 2222 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2223 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2224 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2225 .access = PL0_RW, .accessfn = pmreg_access, 2226 .type = ARM_CP_IO, 2227 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2228 .resetvalue = 0, }, 2229 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2230 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2231 .accessfn = pmreg_access, 2232 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2233 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2234 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2235 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2236 .accessfn = pmreg_access, 2237 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2238 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2239 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2240 .accessfn = pmreg_access_xevcntr, 2241 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2242 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2243 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2244 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2245 .accessfn = pmreg_access_xevcntr, 2246 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2247 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2248 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2249 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2250 .resetvalue = 0, 2251 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2252 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2253 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2254 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2255 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2256 .resetvalue = 0, 2257 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2258 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2259 .access = PL1_RW, .accessfn = access_tpm, 2260 .type = ARM_CP_ALIAS | ARM_CP_IO, 2261 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2262 .resetvalue = 0, 2263 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2264 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2265 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2266 .access = PL1_RW, .accessfn = access_tpm, 2267 .type = ARM_CP_IO, 2268 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2269 .writefn = pmintenset_write, .raw_writefn = raw_write, 2270 .resetvalue = 0x0 }, 2271 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2272 .access = PL1_RW, .accessfn = access_tpm, 2273 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2274 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2275 .writefn = pmintenclr_write, }, 2276 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2277 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2278 .access = PL1_RW, .accessfn = access_tpm, 2279 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2280 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2281 .writefn = pmintenclr_write }, 2282 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2283 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2284 .access = PL1_R, 2285 .accessfn = access_aa64_tid2, 2286 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2287 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2288 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2289 .access = PL1_RW, 2290 .accessfn = access_aa64_tid2, 2291 .writefn = csselr_write, .resetvalue = 0, 2292 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2293 offsetof(CPUARMState, cp15.csselr_ns) } }, 2294 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2295 * just RAZ for all cores: 2296 */ 2297 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2298 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2299 .access = PL1_R, .type = ARM_CP_CONST, 2300 .accessfn = access_aa64_tid1, 2301 .resetvalue = 0 }, 2302 /* Auxiliary fault status registers: these also are IMPDEF, and we 2303 * choose to RAZ/WI for all cores. 2304 */ 2305 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2306 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2307 .access = PL1_RW, .accessfn = access_tvm_trvm, 2308 .type = ARM_CP_CONST, .resetvalue = 0 }, 2309 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2310 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2311 .access = PL1_RW, .accessfn = access_tvm_trvm, 2312 .type = ARM_CP_CONST, .resetvalue = 0 }, 2313 /* MAIR can just read-as-written because we don't implement caches 2314 * and so don't need to care about memory attributes. 2315 */ 2316 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2317 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2318 .access = PL1_RW, .accessfn = access_tvm_trvm, 2319 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2320 .resetvalue = 0 }, 2321 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2322 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2323 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2324 .resetvalue = 0 }, 2325 /* For non-long-descriptor page tables these are PRRR and NMRR; 2326 * regardless they still act as reads-as-written for QEMU. 2327 */ 2328 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2329 * allows them to assign the correct fieldoffset based on the endianness 2330 * handled in the field definitions. 2331 */ 2332 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2333 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2334 .access = PL1_RW, .accessfn = access_tvm_trvm, 2335 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2336 offsetof(CPUARMState, cp15.mair0_ns) }, 2337 .resetfn = arm_cp_reset_ignore }, 2338 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2339 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2340 .access = PL1_RW, .accessfn = access_tvm_trvm, 2341 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2342 offsetof(CPUARMState, cp15.mair1_ns) }, 2343 .resetfn = arm_cp_reset_ignore }, 2344 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2345 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2346 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2347 /* 32 bit ITLB invalidates */ 2348 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2350 .writefn = tlbiall_write }, 2351 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2352 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2353 .writefn = tlbimva_write }, 2354 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2355 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2356 .writefn = tlbiasid_write }, 2357 /* 32 bit DTLB invalidates */ 2358 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2360 .writefn = tlbiall_write }, 2361 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2363 .writefn = tlbimva_write }, 2364 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2365 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2366 .writefn = tlbiasid_write }, 2367 /* 32 bit TLB invalidates */ 2368 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2369 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2370 .writefn = tlbiall_write }, 2371 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2373 .writefn = tlbimva_write }, 2374 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2376 .writefn = tlbiasid_write }, 2377 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2378 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2379 .writefn = tlbimvaa_write }, 2380 REGINFO_SENTINEL 2381 }; 2382 2383 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2384 /* 32 bit TLB invalidates, Inner Shareable */ 2385 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2387 .writefn = tlbiall_is_write }, 2388 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2390 .writefn = tlbimva_is_write }, 2391 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2392 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2393 .writefn = tlbiasid_is_write }, 2394 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2395 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2396 .writefn = tlbimvaa_is_write }, 2397 REGINFO_SENTINEL 2398 }; 2399 2400 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2401 /* PMOVSSET is not implemented in v7 before v7ve */ 2402 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2403 .access = PL0_RW, .accessfn = pmreg_access, 2404 .type = ARM_CP_ALIAS | ARM_CP_IO, 2405 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2406 .writefn = pmovsset_write, 2407 .raw_writefn = raw_write }, 2408 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2409 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2410 .access = PL0_RW, .accessfn = pmreg_access, 2411 .type = ARM_CP_ALIAS | ARM_CP_IO, 2412 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2413 .writefn = pmovsset_write, 2414 .raw_writefn = raw_write }, 2415 REGINFO_SENTINEL 2416 }; 2417 2418 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2419 uint64_t value) 2420 { 2421 value &= 1; 2422 env->teecr = value; 2423 } 2424 2425 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2426 bool isread) 2427 { 2428 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2429 return CP_ACCESS_TRAP; 2430 } 2431 return CP_ACCESS_OK; 2432 } 2433 2434 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2435 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2436 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2437 .resetvalue = 0, 2438 .writefn = teecr_write }, 2439 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2440 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2441 .accessfn = teehbr_access, .resetvalue = 0 }, 2442 REGINFO_SENTINEL 2443 }; 2444 2445 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2446 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2447 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2448 .access = PL0_RW, 2449 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2450 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2451 .access = PL0_RW, 2452 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2453 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2454 .resetfn = arm_cp_reset_ignore }, 2455 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2456 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2457 .access = PL0_R|PL1_W, 2458 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2459 .resetvalue = 0}, 2460 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2461 .access = PL0_R|PL1_W, 2462 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2463 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2464 .resetfn = arm_cp_reset_ignore }, 2465 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2466 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2467 .access = PL1_RW, 2468 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2469 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2470 .access = PL1_RW, 2471 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2472 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2473 .resetvalue = 0 }, 2474 REGINFO_SENTINEL 2475 }; 2476 2477 #ifndef CONFIG_USER_ONLY 2478 2479 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2480 bool isread) 2481 { 2482 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2483 * Writable only at the highest implemented exception level. 2484 */ 2485 int el = arm_current_el(env); 2486 uint64_t hcr; 2487 uint32_t cntkctl; 2488 2489 switch (el) { 2490 case 0: 2491 hcr = arm_hcr_el2_eff(env); 2492 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2493 cntkctl = env->cp15.cnthctl_el2; 2494 } else { 2495 cntkctl = env->cp15.c14_cntkctl; 2496 } 2497 if (!extract32(cntkctl, 0, 2)) { 2498 return CP_ACCESS_TRAP; 2499 } 2500 break; 2501 case 1: 2502 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2503 arm_is_secure_below_el3(env)) { 2504 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2505 return CP_ACCESS_TRAP_UNCATEGORIZED; 2506 } 2507 break; 2508 case 2: 2509 case 3: 2510 break; 2511 } 2512 2513 if (!isread && el < arm_highest_el(env)) { 2514 return CP_ACCESS_TRAP_UNCATEGORIZED; 2515 } 2516 2517 return CP_ACCESS_OK; 2518 } 2519 2520 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2521 bool isread) 2522 { 2523 unsigned int cur_el = arm_current_el(env); 2524 bool secure = arm_is_secure(env); 2525 uint64_t hcr = arm_hcr_el2_eff(env); 2526 2527 switch (cur_el) { 2528 case 0: 2529 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2530 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2531 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2532 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2533 } 2534 2535 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2536 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2537 return CP_ACCESS_TRAP; 2538 } 2539 2540 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2541 if (hcr & HCR_E2H) { 2542 if (timeridx == GTIMER_PHYS && 2543 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2544 return CP_ACCESS_TRAP_EL2; 2545 } 2546 } else { 2547 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2548 if (arm_feature(env, ARM_FEATURE_EL2) && 2549 timeridx == GTIMER_PHYS && !secure && 2550 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2551 return CP_ACCESS_TRAP_EL2; 2552 } 2553 } 2554 break; 2555 2556 case 1: 2557 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2558 if (arm_feature(env, ARM_FEATURE_EL2) && 2559 timeridx == GTIMER_PHYS && !secure && 2560 (hcr & HCR_E2H 2561 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2562 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2563 return CP_ACCESS_TRAP_EL2; 2564 } 2565 break; 2566 } 2567 return CP_ACCESS_OK; 2568 } 2569 2570 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2571 bool isread) 2572 { 2573 unsigned int cur_el = arm_current_el(env); 2574 bool secure = arm_is_secure(env); 2575 uint64_t hcr = arm_hcr_el2_eff(env); 2576 2577 switch (cur_el) { 2578 case 0: 2579 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2580 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2581 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2582 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2583 } 2584 2585 /* 2586 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2587 * EL0 if EL0[PV]TEN is zero. 2588 */ 2589 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2590 return CP_ACCESS_TRAP; 2591 } 2592 /* fall through */ 2593 2594 case 1: 2595 if (arm_feature(env, ARM_FEATURE_EL2) && 2596 timeridx == GTIMER_PHYS && !secure) { 2597 if (hcr & HCR_E2H) { 2598 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2599 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2600 return CP_ACCESS_TRAP_EL2; 2601 } 2602 } else { 2603 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2604 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2605 return CP_ACCESS_TRAP_EL2; 2606 } 2607 } 2608 } 2609 break; 2610 } 2611 return CP_ACCESS_OK; 2612 } 2613 2614 static CPAccessResult gt_pct_access(CPUARMState *env, 2615 const ARMCPRegInfo *ri, 2616 bool isread) 2617 { 2618 return gt_counter_access(env, GTIMER_PHYS, isread); 2619 } 2620 2621 static CPAccessResult gt_vct_access(CPUARMState *env, 2622 const ARMCPRegInfo *ri, 2623 bool isread) 2624 { 2625 return gt_counter_access(env, GTIMER_VIRT, isread); 2626 } 2627 2628 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2629 bool isread) 2630 { 2631 return gt_timer_access(env, GTIMER_PHYS, isread); 2632 } 2633 2634 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2635 bool isread) 2636 { 2637 return gt_timer_access(env, GTIMER_VIRT, isread); 2638 } 2639 2640 static CPAccessResult gt_stimer_access(CPUARMState *env, 2641 const ARMCPRegInfo *ri, 2642 bool isread) 2643 { 2644 /* The AArch64 register view of the secure physical timer is 2645 * always accessible from EL3, and configurably accessible from 2646 * Secure EL1. 2647 */ 2648 switch (arm_current_el(env)) { 2649 case 1: 2650 if (!arm_is_secure(env)) { 2651 return CP_ACCESS_TRAP; 2652 } 2653 if (!(env->cp15.scr_el3 & SCR_ST)) { 2654 return CP_ACCESS_TRAP_EL3; 2655 } 2656 return CP_ACCESS_OK; 2657 case 0: 2658 case 2: 2659 return CP_ACCESS_TRAP; 2660 case 3: 2661 return CP_ACCESS_OK; 2662 default: 2663 g_assert_not_reached(); 2664 } 2665 } 2666 2667 static uint64_t gt_get_countervalue(CPUARMState *env) 2668 { 2669 ARMCPU *cpu = env_archcpu(env); 2670 2671 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2672 } 2673 2674 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2675 { 2676 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2677 2678 if (gt->ctl & 1) { 2679 /* Timer enabled: calculate and set current ISTATUS, irq, and 2680 * reset timer to when ISTATUS next has to change 2681 */ 2682 uint64_t offset = timeridx == GTIMER_VIRT ? 2683 cpu->env.cp15.cntvoff_el2 : 0; 2684 uint64_t count = gt_get_countervalue(&cpu->env); 2685 /* Note that this must be unsigned 64 bit arithmetic: */ 2686 int istatus = count - offset >= gt->cval; 2687 uint64_t nexttick; 2688 int irqstate; 2689 2690 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2691 2692 irqstate = (istatus && !(gt->ctl & 2)); 2693 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2694 2695 if (istatus) { 2696 /* Next transition is when count rolls back over to zero */ 2697 nexttick = UINT64_MAX; 2698 } else { 2699 /* Next transition is when we hit cval */ 2700 nexttick = gt->cval + offset; 2701 } 2702 /* Note that the desired next expiry time might be beyond the 2703 * signed-64-bit range of a QEMUTimer -- in this case we just 2704 * set the timer for as far in the future as possible. When the 2705 * timer expires we will reset the timer for any remaining period. 2706 */ 2707 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2708 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2709 } else { 2710 timer_mod(cpu->gt_timer[timeridx], nexttick); 2711 } 2712 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2713 } else { 2714 /* Timer disabled: ISTATUS and timer output always clear */ 2715 gt->ctl &= ~4; 2716 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2717 timer_del(cpu->gt_timer[timeridx]); 2718 trace_arm_gt_recalc_disabled(timeridx); 2719 } 2720 } 2721 2722 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2723 int timeridx) 2724 { 2725 ARMCPU *cpu = env_archcpu(env); 2726 2727 timer_del(cpu->gt_timer[timeridx]); 2728 } 2729 2730 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2731 { 2732 return gt_get_countervalue(env); 2733 } 2734 2735 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2736 { 2737 uint64_t hcr; 2738 2739 switch (arm_current_el(env)) { 2740 case 2: 2741 hcr = arm_hcr_el2_eff(env); 2742 if (hcr & HCR_E2H) { 2743 return 0; 2744 } 2745 break; 2746 case 0: 2747 hcr = arm_hcr_el2_eff(env); 2748 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2749 return 0; 2750 } 2751 break; 2752 } 2753 2754 return env->cp15.cntvoff_el2; 2755 } 2756 2757 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2758 { 2759 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2760 } 2761 2762 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2763 int timeridx, 2764 uint64_t value) 2765 { 2766 trace_arm_gt_cval_write(timeridx, value); 2767 env->cp15.c14_timer[timeridx].cval = value; 2768 gt_recalc_timer(env_archcpu(env), timeridx); 2769 } 2770 2771 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2772 int timeridx) 2773 { 2774 uint64_t offset = 0; 2775 2776 switch (timeridx) { 2777 case GTIMER_VIRT: 2778 case GTIMER_HYPVIRT: 2779 offset = gt_virt_cnt_offset(env); 2780 break; 2781 } 2782 2783 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2784 (gt_get_countervalue(env) - offset)); 2785 } 2786 2787 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2788 int timeridx, 2789 uint64_t value) 2790 { 2791 uint64_t offset = 0; 2792 2793 switch (timeridx) { 2794 case GTIMER_VIRT: 2795 case GTIMER_HYPVIRT: 2796 offset = gt_virt_cnt_offset(env); 2797 break; 2798 } 2799 2800 trace_arm_gt_tval_write(timeridx, value); 2801 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2802 sextract64(value, 0, 32); 2803 gt_recalc_timer(env_archcpu(env), timeridx); 2804 } 2805 2806 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2807 int timeridx, 2808 uint64_t value) 2809 { 2810 ARMCPU *cpu = env_archcpu(env); 2811 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2812 2813 trace_arm_gt_ctl_write(timeridx, value); 2814 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2815 if ((oldval ^ value) & 1) { 2816 /* Enable toggled */ 2817 gt_recalc_timer(cpu, timeridx); 2818 } else if ((oldval ^ value) & 2) { 2819 /* IMASK toggled: don't need to recalculate, 2820 * just set the interrupt line based on ISTATUS 2821 */ 2822 int irqstate = (oldval & 4) && !(value & 2); 2823 2824 trace_arm_gt_imask_toggle(timeridx, irqstate); 2825 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2826 } 2827 } 2828 2829 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2830 { 2831 gt_timer_reset(env, ri, GTIMER_PHYS); 2832 } 2833 2834 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2835 uint64_t value) 2836 { 2837 gt_cval_write(env, ri, GTIMER_PHYS, value); 2838 } 2839 2840 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2841 { 2842 return gt_tval_read(env, ri, GTIMER_PHYS); 2843 } 2844 2845 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2846 uint64_t value) 2847 { 2848 gt_tval_write(env, ri, GTIMER_PHYS, value); 2849 } 2850 2851 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2852 uint64_t value) 2853 { 2854 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2855 } 2856 2857 static int gt_phys_redir_timeridx(CPUARMState *env) 2858 { 2859 switch (arm_mmu_idx(env)) { 2860 case ARMMMUIdx_E20_0: 2861 case ARMMMUIdx_E20_2: 2862 case ARMMMUIdx_E20_2_PAN: 2863 return GTIMER_HYP; 2864 default: 2865 return GTIMER_PHYS; 2866 } 2867 } 2868 2869 static int gt_virt_redir_timeridx(CPUARMState *env) 2870 { 2871 switch (arm_mmu_idx(env)) { 2872 case ARMMMUIdx_E20_0: 2873 case ARMMMUIdx_E20_2: 2874 case ARMMMUIdx_E20_2_PAN: 2875 return GTIMER_HYPVIRT; 2876 default: 2877 return GTIMER_VIRT; 2878 } 2879 } 2880 2881 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2882 const ARMCPRegInfo *ri) 2883 { 2884 int timeridx = gt_phys_redir_timeridx(env); 2885 return env->cp15.c14_timer[timeridx].cval; 2886 } 2887 2888 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2889 uint64_t value) 2890 { 2891 int timeridx = gt_phys_redir_timeridx(env); 2892 gt_cval_write(env, ri, timeridx, value); 2893 } 2894 2895 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2896 const ARMCPRegInfo *ri) 2897 { 2898 int timeridx = gt_phys_redir_timeridx(env); 2899 return gt_tval_read(env, ri, timeridx); 2900 } 2901 2902 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2903 uint64_t value) 2904 { 2905 int timeridx = gt_phys_redir_timeridx(env); 2906 gt_tval_write(env, ri, timeridx, value); 2907 } 2908 2909 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2910 const ARMCPRegInfo *ri) 2911 { 2912 int timeridx = gt_phys_redir_timeridx(env); 2913 return env->cp15.c14_timer[timeridx].ctl; 2914 } 2915 2916 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2917 uint64_t value) 2918 { 2919 int timeridx = gt_phys_redir_timeridx(env); 2920 gt_ctl_write(env, ri, timeridx, value); 2921 } 2922 2923 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2924 { 2925 gt_timer_reset(env, ri, GTIMER_VIRT); 2926 } 2927 2928 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2929 uint64_t value) 2930 { 2931 gt_cval_write(env, ri, GTIMER_VIRT, value); 2932 } 2933 2934 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2935 { 2936 return gt_tval_read(env, ri, GTIMER_VIRT); 2937 } 2938 2939 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2940 uint64_t value) 2941 { 2942 gt_tval_write(env, ri, GTIMER_VIRT, value); 2943 } 2944 2945 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2946 uint64_t value) 2947 { 2948 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2949 } 2950 2951 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2952 uint64_t value) 2953 { 2954 ARMCPU *cpu = env_archcpu(env); 2955 2956 trace_arm_gt_cntvoff_write(value); 2957 raw_write(env, ri, value); 2958 gt_recalc_timer(cpu, GTIMER_VIRT); 2959 } 2960 2961 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2962 const ARMCPRegInfo *ri) 2963 { 2964 int timeridx = gt_virt_redir_timeridx(env); 2965 return env->cp15.c14_timer[timeridx].cval; 2966 } 2967 2968 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2969 uint64_t value) 2970 { 2971 int timeridx = gt_virt_redir_timeridx(env); 2972 gt_cval_write(env, ri, timeridx, value); 2973 } 2974 2975 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2976 const ARMCPRegInfo *ri) 2977 { 2978 int timeridx = gt_virt_redir_timeridx(env); 2979 return gt_tval_read(env, ri, timeridx); 2980 } 2981 2982 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2983 uint64_t value) 2984 { 2985 int timeridx = gt_virt_redir_timeridx(env); 2986 gt_tval_write(env, ri, timeridx, value); 2987 } 2988 2989 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2990 const ARMCPRegInfo *ri) 2991 { 2992 int timeridx = gt_virt_redir_timeridx(env); 2993 return env->cp15.c14_timer[timeridx].ctl; 2994 } 2995 2996 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2997 uint64_t value) 2998 { 2999 int timeridx = gt_virt_redir_timeridx(env); 3000 gt_ctl_write(env, ri, timeridx, value); 3001 } 3002 3003 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3004 { 3005 gt_timer_reset(env, ri, GTIMER_HYP); 3006 } 3007 3008 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3009 uint64_t value) 3010 { 3011 gt_cval_write(env, ri, GTIMER_HYP, value); 3012 } 3013 3014 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3015 { 3016 return gt_tval_read(env, ri, GTIMER_HYP); 3017 } 3018 3019 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3020 uint64_t value) 3021 { 3022 gt_tval_write(env, ri, GTIMER_HYP, value); 3023 } 3024 3025 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3026 uint64_t value) 3027 { 3028 gt_ctl_write(env, ri, GTIMER_HYP, value); 3029 } 3030 3031 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3032 { 3033 gt_timer_reset(env, ri, GTIMER_SEC); 3034 } 3035 3036 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3037 uint64_t value) 3038 { 3039 gt_cval_write(env, ri, GTIMER_SEC, value); 3040 } 3041 3042 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3043 { 3044 return gt_tval_read(env, ri, GTIMER_SEC); 3045 } 3046 3047 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3048 uint64_t value) 3049 { 3050 gt_tval_write(env, ri, GTIMER_SEC, value); 3051 } 3052 3053 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3054 uint64_t value) 3055 { 3056 gt_ctl_write(env, ri, GTIMER_SEC, value); 3057 } 3058 3059 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3060 { 3061 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3062 } 3063 3064 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3065 uint64_t value) 3066 { 3067 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3068 } 3069 3070 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3071 { 3072 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3073 } 3074 3075 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3076 uint64_t value) 3077 { 3078 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3079 } 3080 3081 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3082 uint64_t value) 3083 { 3084 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3085 } 3086 3087 void arm_gt_ptimer_cb(void *opaque) 3088 { 3089 ARMCPU *cpu = opaque; 3090 3091 gt_recalc_timer(cpu, GTIMER_PHYS); 3092 } 3093 3094 void arm_gt_vtimer_cb(void *opaque) 3095 { 3096 ARMCPU *cpu = opaque; 3097 3098 gt_recalc_timer(cpu, GTIMER_VIRT); 3099 } 3100 3101 void arm_gt_htimer_cb(void *opaque) 3102 { 3103 ARMCPU *cpu = opaque; 3104 3105 gt_recalc_timer(cpu, GTIMER_HYP); 3106 } 3107 3108 void arm_gt_stimer_cb(void *opaque) 3109 { 3110 ARMCPU *cpu = opaque; 3111 3112 gt_recalc_timer(cpu, GTIMER_SEC); 3113 } 3114 3115 void arm_gt_hvtimer_cb(void *opaque) 3116 { 3117 ARMCPU *cpu = opaque; 3118 3119 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3120 } 3121 3122 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3123 { 3124 ARMCPU *cpu = env_archcpu(env); 3125 3126 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3127 } 3128 3129 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3130 /* Note that CNTFRQ is purely reads-as-written for the benefit 3131 * of software; writing it doesn't actually change the timer frequency. 3132 * Our reset value matches the fixed frequency we implement the timer at. 3133 */ 3134 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3135 .type = ARM_CP_ALIAS, 3136 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3137 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3138 }, 3139 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3141 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3142 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3143 .resetfn = arm_gt_cntfrq_reset, 3144 }, 3145 /* overall control: mostly access permissions */ 3146 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3147 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3148 .access = PL1_RW, 3149 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3150 .resetvalue = 0, 3151 }, 3152 /* per-timer control */ 3153 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3154 .secure = ARM_CP_SECSTATE_NS, 3155 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3156 .accessfn = gt_ptimer_access, 3157 .fieldoffset = offsetoflow32(CPUARMState, 3158 cp15.c14_timer[GTIMER_PHYS].ctl), 3159 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3160 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3161 }, 3162 { .name = "CNTP_CTL_S", 3163 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3164 .secure = ARM_CP_SECSTATE_S, 3165 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3166 .accessfn = gt_ptimer_access, 3167 .fieldoffset = offsetoflow32(CPUARMState, 3168 cp15.c14_timer[GTIMER_SEC].ctl), 3169 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3170 }, 3171 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3172 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3173 .type = ARM_CP_IO, .access = PL0_RW, 3174 .accessfn = gt_ptimer_access, 3175 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3176 .resetvalue = 0, 3177 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3178 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3179 }, 3180 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3181 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3182 .accessfn = gt_vtimer_access, 3183 .fieldoffset = offsetoflow32(CPUARMState, 3184 cp15.c14_timer[GTIMER_VIRT].ctl), 3185 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3186 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3187 }, 3188 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3189 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3190 .type = ARM_CP_IO, .access = PL0_RW, 3191 .accessfn = gt_vtimer_access, 3192 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3193 .resetvalue = 0, 3194 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3195 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3196 }, 3197 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3198 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3199 .secure = ARM_CP_SECSTATE_NS, 3200 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3201 .accessfn = gt_ptimer_access, 3202 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3203 }, 3204 { .name = "CNTP_TVAL_S", 3205 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3206 .secure = ARM_CP_SECSTATE_S, 3207 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3208 .accessfn = gt_ptimer_access, 3209 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3210 }, 3211 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3212 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3213 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3214 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3215 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3216 }, 3217 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3218 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3219 .accessfn = gt_vtimer_access, 3220 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3221 }, 3222 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3223 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3224 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3225 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3226 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3227 }, 3228 /* The counter itself */ 3229 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3230 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3231 .accessfn = gt_pct_access, 3232 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3233 }, 3234 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3235 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3236 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3237 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3238 }, 3239 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3240 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3241 .accessfn = gt_vct_access, 3242 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3243 }, 3244 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3245 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3246 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3247 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3248 }, 3249 /* Comparison value, indicating when the timer goes off */ 3250 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3251 .secure = ARM_CP_SECSTATE_NS, 3252 .access = PL0_RW, 3253 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3254 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3255 .accessfn = gt_ptimer_access, 3256 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3257 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3258 }, 3259 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3260 .secure = ARM_CP_SECSTATE_S, 3261 .access = PL0_RW, 3262 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3263 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3264 .accessfn = gt_ptimer_access, 3265 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3266 }, 3267 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3268 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3269 .access = PL0_RW, 3270 .type = ARM_CP_IO, 3271 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3272 .resetvalue = 0, .accessfn = gt_ptimer_access, 3273 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3274 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3275 }, 3276 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3277 .access = PL0_RW, 3278 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3279 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3280 .accessfn = gt_vtimer_access, 3281 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3282 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3283 }, 3284 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3285 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3286 .access = PL0_RW, 3287 .type = ARM_CP_IO, 3288 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3289 .resetvalue = 0, .accessfn = gt_vtimer_access, 3290 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3291 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3292 }, 3293 /* Secure timer -- this is actually restricted to only EL3 3294 * and configurably Secure-EL1 via the accessfn. 3295 */ 3296 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3297 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3298 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3299 .accessfn = gt_stimer_access, 3300 .readfn = gt_sec_tval_read, 3301 .writefn = gt_sec_tval_write, 3302 .resetfn = gt_sec_timer_reset, 3303 }, 3304 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3305 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3306 .type = ARM_CP_IO, .access = PL1_RW, 3307 .accessfn = gt_stimer_access, 3308 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3309 .resetvalue = 0, 3310 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3311 }, 3312 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3313 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3314 .type = ARM_CP_IO, .access = PL1_RW, 3315 .accessfn = gt_stimer_access, 3316 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3317 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3318 }, 3319 REGINFO_SENTINEL 3320 }; 3321 3322 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3323 bool isread) 3324 { 3325 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3326 return CP_ACCESS_TRAP; 3327 } 3328 return CP_ACCESS_OK; 3329 } 3330 3331 #else 3332 3333 /* In user-mode most of the generic timer registers are inaccessible 3334 * however modern kernels (4.12+) allow access to cntvct_el0 3335 */ 3336 3337 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3338 { 3339 ARMCPU *cpu = env_archcpu(env); 3340 3341 /* Currently we have no support for QEMUTimer in linux-user so we 3342 * can't call gt_get_countervalue(env), instead we directly 3343 * call the lower level functions. 3344 */ 3345 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3346 } 3347 3348 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3349 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3350 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3351 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3352 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3353 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3354 }, 3355 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3356 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3357 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3358 .readfn = gt_virt_cnt_read, 3359 }, 3360 REGINFO_SENTINEL 3361 }; 3362 3363 #endif 3364 3365 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3366 { 3367 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3368 raw_write(env, ri, value); 3369 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3370 raw_write(env, ri, value & 0xfffff6ff); 3371 } else { 3372 raw_write(env, ri, value & 0xfffff1ff); 3373 } 3374 } 3375 3376 #ifndef CONFIG_USER_ONLY 3377 /* get_phys_addr() isn't present for user-mode-only targets */ 3378 3379 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3380 bool isread) 3381 { 3382 if (ri->opc2 & 4) { 3383 /* The ATS12NSO* operations must trap to EL3 if executed in 3384 * Secure EL1 (which can only happen if EL3 is AArch64). 3385 * They are simply UNDEF if executed from NS EL1. 3386 * They function normally from EL2 or EL3. 3387 */ 3388 if (arm_current_el(env) == 1) { 3389 if (arm_is_secure_below_el3(env)) { 3390 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3391 } 3392 return CP_ACCESS_TRAP_UNCATEGORIZED; 3393 } 3394 } 3395 return CP_ACCESS_OK; 3396 } 3397 3398 #ifdef CONFIG_TCG 3399 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3400 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3401 { 3402 hwaddr phys_addr; 3403 target_ulong page_size; 3404 int prot; 3405 bool ret; 3406 uint64_t par64; 3407 bool format64 = false; 3408 MemTxAttrs attrs = {}; 3409 ARMMMUFaultInfo fi = {}; 3410 ARMCacheAttrs cacheattrs = {}; 3411 3412 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3413 &prot, &page_size, &fi, &cacheattrs); 3414 3415 if (ret) { 3416 /* 3417 * Some kinds of translation fault must cause exceptions rather 3418 * than being reported in the PAR. 3419 */ 3420 int current_el = arm_current_el(env); 3421 int target_el; 3422 uint32_t syn, fsr, fsc; 3423 bool take_exc = false; 3424 3425 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3426 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3427 /* 3428 * Synchronous stage 2 fault on an access made as part of the 3429 * translation table walk for AT S1E0* or AT S1E1* insn 3430 * executed from NS EL1. If this is a synchronous external abort 3431 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3432 * to EL3. Otherwise the fault is taken as an exception to EL2, 3433 * and HPFAR_EL2 holds the faulting IPA. 3434 */ 3435 if (fi.type == ARMFault_SyncExternalOnWalk && 3436 (env->cp15.scr_el3 & SCR_EA)) { 3437 target_el = 3; 3438 } else { 3439 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3440 target_el = 2; 3441 } 3442 take_exc = true; 3443 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3444 /* 3445 * Synchronous external aborts during a translation table walk 3446 * are taken as Data Abort exceptions. 3447 */ 3448 if (fi.stage2) { 3449 if (current_el == 3) { 3450 target_el = 3; 3451 } else { 3452 target_el = 2; 3453 } 3454 } else { 3455 target_el = exception_target_el(env); 3456 } 3457 take_exc = true; 3458 } 3459 3460 if (take_exc) { 3461 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3462 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3463 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3464 fsr = arm_fi_to_lfsc(&fi); 3465 fsc = extract32(fsr, 0, 6); 3466 } else { 3467 fsr = arm_fi_to_sfsc(&fi); 3468 fsc = 0x3f; 3469 } 3470 /* 3471 * Report exception with ESR indicating a fault due to a 3472 * translation table walk for a cache maintenance instruction. 3473 */ 3474 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3475 fi.ea, 1, fi.s1ptw, 1, fsc); 3476 env->exception.vaddress = value; 3477 env->exception.fsr = fsr; 3478 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3479 } 3480 } 3481 3482 if (is_a64(env)) { 3483 format64 = true; 3484 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3485 /* 3486 * ATS1Cxx: 3487 * * TTBCR.EAE determines whether the result is returned using the 3488 * 32-bit or the 64-bit PAR format 3489 * * Instructions executed in Hyp mode always use the 64bit format 3490 * 3491 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3492 * * The Non-secure TTBCR.EAE bit is set to 1 3493 * * The implementation includes EL2, and the value of HCR.VM is 1 3494 * 3495 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3496 * 3497 * ATS1Hx always uses the 64bit format. 3498 */ 3499 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3500 3501 if (arm_feature(env, ARM_FEATURE_EL2)) { 3502 if (mmu_idx == ARMMMUIdx_E10_0 || 3503 mmu_idx == ARMMMUIdx_E10_1 || 3504 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3505 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3506 } else { 3507 format64 |= arm_current_el(env) == 2; 3508 } 3509 } 3510 } 3511 3512 if (format64) { 3513 /* Create a 64-bit PAR */ 3514 par64 = (1 << 11); /* LPAE bit always set */ 3515 if (!ret) { 3516 par64 |= phys_addr & ~0xfffULL; 3517 if (!attrs.secure) { 3518 par64 |= (1 << 9); /* NS */ 3519 } 3520 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3521 par64 |= cacheattrs.shareability << 7; /* SH */ 3522 } else { 3523 uint32_t fsr = arm_fi_to_lfsc(&fi); 3524 3525 par64 |= 1; /* F */ 3526 par64 |= (fsr & 0x3f) << 1; /* FS */ 3527 if (fi.stage2) { 3528 par64 |= (1 << 9); /* S */ 3529 } 3530 if (fi.s1ptw) { 3531 par64 |= (1 << 8); /* PTW */ 3532 } 3533 } 3534 } else { 3535 /* fsr is a DFSR/IFSR value for the short descriptor 3536 * translation table format (with WnR always clear). 3537 * Convert it to a 32-bit PAR. 3538 */ 3539 if (!ret) { 3540 /* We do not set any attribute bits in the PAR */ 3541 if (page_size == (1 << 24) 3542 && arm_feature(env, ARM_FEATURE_V7)) { 3543 par64 = (phys_addr & 0xff000000) | (1 << 1); 3544 } else { 3545 par64 = phys_addr & 0xfffff000; 3546 } 3547 if (!attrs.secure) { 3548 par64 |= (1 << 9); /* NS */ 3549 } 3550 } else { 3551 uint32_t fsr = arm_fi_to_sfsc(&fi); 3552 3553 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3554 ((fsr & 0xf) << 1) | 1; 3555 } 3556 } 3557 return par64; 3558 } 3559 #endif /* CONFIG_TCG */ 3560 3561 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3562 { 3563 #ifdef CONFIG_TCG 3564 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3565 uint64_t par64; 3566 ARMMMUIdx mmu_idx; 3567 int el = arm_current_el(env); 3568 bool secure = arm_is_secure_below_el3(env); 3569 3570 switch (ri->opc2 & 6) { 3571 case 0: 3572 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3573 switch (el) { 3574 case 3: 3575 mmu_idx = ARMMMUIdx_SE3; 3576 break; 3577 case 2: 3578 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */ 3579 /* fall through */ 3580 case 1: 3581 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3582 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3583 : ARMMMUIdx_Stage1_E1_PAN); 3584 } else { 3585 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3586 } 3587 break; 3588 default: 3589 g_assert_not_reached(); 3590 } 3591 break; 3592 case 2: 3593 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3594 switch (el) { 3595 case 3: 3596 mmu_idx = ARMMMUIdx_SE10_0; 3597 break; 3598 case 2: 3599 mmu_idx = ARMMMUIdx_Stage1_E0; 3600 break; 3601 case 1: 3602 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3603 break; 3604 default: 3605 g_assert_not_reached(); 3606 } 3607 break; 3608 case 4: 3609 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3610 mmu_idx = ARMMMUIdx_E10_1; 3611 break; 3612 case 6: 3613 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3614 mmu_idx = ARMMMUIdx_E10_0; 3615 break; 3616 default: 3617 g_assert_not_reached(); 3618 } 3619 3620 par64 = do_ats_write(env, value, access_type, mmu_idx); 3621 3622 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3623 #else 3624 /* Handled by hardware accelerator. */ 3625 g_assert_not_reached(); 3626 #endif /* CONFIG_TCG */ 3627 } 3628 3629 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3630 uint64_t value) 3631 { 3632 #ifdef CONFIG_TCG 3633 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3634 uint64_t par64; 3635 3636 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3637 3638 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3639 #else 3640 /* Handled by hardware accelerator. */ 3641 g_assert_not_reached(); 3642 #endif /* CONFIG_TCG */ 3643 } 3644 3645 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3646 bool isread) 3647 { 3648 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3649 return CP_ACCESS_TRAP; 3650 } 3651 return CP_ACCESS_OK; 3652 } 3653 3654 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3655 uint64_t value) 3656 { 3657 #ifdef CONFIG_TCG 3658 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3659 ARMMMUIdx mmu_idx; 3660 int secure = arm_is_secure_below_el3(env); 3661 3662 switch (ri->opc2 & 6) { 3663 case 0: 3664 switch (ri->opc1) { 3665 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3666 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3667 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3668 : ARMMMUIdx_Stage1_E1_PAN); 3669 } else { 3670 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3671 } 3672 break; 3673 case 4: /* AT S1E2R, AT S1E2W */ 3674 mmu_idx = ARMMMUIdx_E2; 3675 break; 3676 case 6: /* AT S1E3R, AT S1E3W */ 3677 mmu_idx = ARMMMUIdx_SE3; 3678 break; 3679 default: 3680 g_assert_not_reached(); 3681 } 3682 break; 3683 case 2: /* AT S1E0R, AT S1E0W */ 3684 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3685 break; 3686 case 4: /* AT S12E1R, AT S12E1W */ 3687 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3688 break; 3689 case 6: /* AT S12E0R, AT S12E0W */ 3690 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3691 break; 3692 default: 3693 g_assert_not_reached(); 3694 } 3695 3696 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3697 #else 3698 /* Handled by hardware accelerator. */ 3699 g_assert_not_reached(); 3700 #endif /* CONFIG_TCG */ 3701 } 3702 #endif 3703 3704 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3705 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3706 .access = PL1_RW, .resetvalue = 0, 3707 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3708 offsetoflow32(CPUARMState, cp15.par_ns) }, 3709 .writefn = par_write }, 3710 #ifndef CONFIG_USER_ONLY 3711 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3712 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3713 .access = PL1_W, .accessfn = ats_access, 3714 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3715 #endif 3716 REGINFO_SENTINEL 3717 }; 3718 3719 /* Return basic MPU access permission bits. */ 3720 static uint32_t simple_mpu_ap_bits(uint32_t val) 3721 { 3722 uint32_t ret; 3723 uint32_t mask; 3724 int i; 3725 ret = 0; 3726 mask = 3; 3727 for (i = 0; i < 16; i += 2) { 3728 ret |= (val >> i) & mask; 3729 mask <<= 2; 3730 } 3731 return ret; 3732 } 3733 3734 /* Pad basic MPU access permission bits to extended format. */ 3735 static uint32_t extended_mpu_ap_bits(uint32_t val) 3736 { 3737 uint32_t ret; 3738 uint32_t mask; 3739 int i; 3740 ret = 0; 3741 mask = 3; 3742 for (i = 0; i < 16; i += 2) { 3743 ret |= (val & mask) << i; 3744 mask <<= 2; 3745 } 3746 return ret; 3747 } 3748 3749 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3750 uint64_t value) 3751 { 3752 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3753 } 3754 3755 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3756 { 3757 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3758 } 3759 3760 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3761 uint64_t value) 3762 { 3763 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3764 } 3765 3766 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3767 { 3768 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3769 } 3770 3771 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3772 { 3773 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3774 3775 if (!u32p) { 3776 return 0; 3777 } 3778 3779 u32p += env->pmsav7.rnr[M_REG_NS]; 3780 return *u32p; 3781 } 3782 3783 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3784 uint64_t value) 3785 { 3786 ARMCPU *cpu = env_archcpu(env); 3787 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3788 3789 if (!u32p) { 3790 return; 3791 } 3792 3793 u32p += env->pmsav7.rnr[M_REG_NS]; 3794 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3795 *u32p = value; 3796 } 3797 3798 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3799 uint64_t value) 3800 { 3801 ARMCPU *cpu = env_archcpu(env); 3802 uint32_t nrgs = cpu->pmsav7_dregion; 3803 3804 if (value >= nrgs) { 3805 qemu_log_mask(LOG_GUEST_ERROR, 3806 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3807 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3808 return; 3809 } 3810 3811 raw_write(env, ri, value); 3812 } 3813 3814 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3815 /* Reset for all these registers is handled in arm_cpu_reset(), 3816 * because the PMSAv7 is also used by M-profile CPUs, which do 3817 * not register cpregs but still need the state to be reset. 3818 */ 3819 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3820 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3821 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3822 .readfn = pmsav7_read, .writefn = pmsav7_write, 3823 .resetfn = arm_cp_reset_ignore }, 3824 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3825 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3826 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3827 .readfn = pmsav7_read, .writefn = pmsav7_write, 3828 .resetfn = arm_cp_reset_ignore }, 3829 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3830 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3831 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3832 .readfn = pmsav7_read, .writefn = pmsav7_write, 3833 .resetfn = arm_cp_reset_ignore }, 3834 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3835 .access = PL1_RW, 3836 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3837 .writefn = pmsav7_rgnr_write, 3838 .resetfn = arm_cp_reset_ignore }, 3839 REGINFO_SENTINEL 3840 }; 3841 3842 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3843 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3844 .access = PL1_RW, .type = ARM_CP_ALIAS, 3845 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3846 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3847 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3848 .access = PL1_RW, .type = ARM_CP_ALIAS, 3849 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3850 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3851 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3852 .access = PL1_RW, 3853 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3854 .resetvalue = 0, }, 3855 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3856 .access = PL1_RW, 3857 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3858 .resetvalue = 0, }, 3859 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3860 .access = PL1_RW, 3861 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3862 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3863 .access = PL1_RW, 3864 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3865 /* Protection region base and size registers */ 3866 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3867 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3868 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3869 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3870 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3871 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3872 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3873 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3874 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3875 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3876 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3877 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3878 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3879 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3880 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3881 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3882 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3883 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3884 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3885 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3886 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3887 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3888 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3889 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3890 REGINFO_SENTINEL 3891 }; 3892 3893 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3894 uint64_t value) 3895 { 3896 TCR *tcr = raw_ptr(env, ri); 3897 int maskshift = extract32(value, 0, 3); 3898 3899 if (!arm_feature(env, ARM_FEATURE_V8)) { 3900 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3901 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3902 * using Long-desciptor translation table format */ 3903 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3904 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3905 /* In an implementation that includes the Security Extensions 3906 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3907 * Short-descriptor translation table format. 3908 */ 3909 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3910 } else { 3911 value &= TTBCR_N; 3912 } 3913 } 3914 3915 /* Update the masks corresponding to the TCR bank being written 3916 * Note that we always calculate mask and base_mask, but 3917 * they are only used for short-descriptor tables (ie if EAE is 0); 3918 * for long-descriptor tables the TCR fields are used differently 3919 * and the mask and base_mask values are meaningless. 3920 */ 3921 tcr->raw_tcr = value; 3922 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3923 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3924 } 3925 3926 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3927 uint64_t value) 3928 { 3929 ARMCPU *cpu = env_archcpu(env); 3930 TCR *tcr = raw_ptr(env, ri); 3931 3932 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3933 /* With LPAE the TTBCR could result in a change of ASID 3934 * via the TTBCR.A1 bit, so do a TLB flush. 3935 */ 3936 tlb_flush(CPU(cpu)); 3937 } 3938 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3939 value = deposit64(tcr->raw_tcr, 0, 32, value); 3940 vmsa_ttbcr_raw_write(env, ri, value); 3941 } 3942 3943 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3944 { 3945 TCR *tcr = raw_ptr(env, ri); 3946 3947 /* Reset both the TCR as well as the masks corresponding to the bank of 3948 * the TCR being reset. 3949 */ 3950 tcr->raw_tcr = 0; 3951 tcr->mask = 0; 3952 tcr->base_mask = 0xffffc000u; 3953 } 3954 3955 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3956 uint64_t value) 3957 { 3958 ARMCPU *cpu = env_archcpu(env); 3959 TCR *tcr = raw_ptr(env, ri); 3960 3961 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3962 tlb_flush(CPU(cpu)); 3963 tcr->raw_tcr = value; 3964 } 3965 3966 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3967 uint64_t value) 3968 { 3969 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3970 if (cpreg_field_is_64bit(ri) && 3971 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3972 ARMCPU *cpu = env_archcpu(env); 3973 tlb_flush(CPU(cpu)); 3974 } 3975 raw_write(env, ri, value); 3976 } 3977 3978 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3979 uint64_t value) 3980 { 3981 /* 3982 * If we are running with E2&0 regime, then an ASID is active. 3983 * Flush if that might be changing. Note we're not checking 3984 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3985 * holds the active ASID, only checking the field that might. 3986 */ 3987 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3988 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3989 tlb_flush_by_mmuidx(env_cpu(env), 3990 ARMMMUIdxBit_E20_2 | 3991 ARMMMUIdxBit_E20_2_PAN | 3992 ARMMMUIdxBit_E20_0); 3993 } 3994 raw_write(env, ri, value); 3995 } 3996 3997 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3998 uint64_t value) 3999 { 4000 ARMCPU *cpu = env_archcpu(env); 4001 CPUState *cs = CPU(cpu); 4002 4003 /* 4004 * A change in VMID to the stage2 page table (Stage2) invalidates 4005 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4006 */ 4007 if (raw_read(env, ri) != value) { 4008 tlb_flush_by_mmuidx(cs, 4009 ARMMMUIdxBit_E10_1 | 4010 ARMMMUIdxBit_E10_1_PAN | 4011 ARMMMUIdxBit_E10_0); 4012 raw_write(env, ri, value); 4013 } 4014 } 4015 4016 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4017 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4018 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4019 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4020 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4021 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4022 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4023 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4024 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4025 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4026 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4027 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4028 offsetof(CPUARMState, cp15.dfar_ns) } }, 4029 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4030 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4031 .access = PL1_RW, .accessfn = access_tvm_trvm, 4032 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4033 .resetvalue = 0, }, 4034 REGINFO_SENTINEL 4035 }; 4036 4037 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4038 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4039 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4040 .access = PL1_RW, .accessfn = access_tvm_trvm, 4041 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4042 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4043 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4044 .access = PL1_RW, .accessfn = access_tvm_trvm, 4045 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4046 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4047 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4048 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4049 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4050 .access = PL1_RW, .accessfn = access_tvm_trvm, 4051 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4052 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4053 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4054 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4055 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4056 .access = PL1_RW, .accessfn = access_tvm_trvm, 4057 .writefn = vmsa_tcr_el12_write, 4058 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4059 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4060 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4061 .access = PL1_RW, .accessfn = access_tvm_trvm, 4062 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4063 .raw_writefn = vmsa_ttbcr_raw_write, 4064 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4065 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4066 REGINFO_SENTINEL 4067 }; 4068 4069 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4070 * qemu tlbs nor adjusting cached masks. 4071 */ 4072 static const ARMCPRegInfo ttbcr2_reginfo = { 4073 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4074 .access = PL1_RW, .accessfn = access_tvm_trvm, 4075 .type = ARM_CP_ALIAS, 4076 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4077 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4078 }; 4079 4080 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4081 uint64_t value) 4082 { 4083 env->cp15.c15_ticonfig = value & 0xe7; 4084 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4085 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4086 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4087 } 4088 4089 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4090 uint64_t value) 4091 { 4092 env->cp15.c15_threadid = value & 0xffff; 4093 } 4094 4095 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4096 uint64_t value) 4097 { 4098 /* Wait-for-interrupt (deprecated) */ 4099 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4100 } 4101 4102 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4103 uint64_t value) 4104 { 4105 /* On OMAP there are registers indicating the max/min index of dcache lines 4106 * containing a dirty line; cache flush operations have to reset these. 4107 */ 4108 env->cp15.c15_i_max = 0x000; 4109 env->cp15.c15_i_min = 0xff0; 4110 } 4111 4112 static const ARMCPRegInfo omap_cp_reginfo[] = { 4113 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4114 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4115 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4116 .resetvalue = 0, }, 4117 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4118 .access = PL1_RW, .type = ARM_CP_NOP }, 4119 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4120 .access = PL1_RW, 4121 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4122 .writefn = omap_ticonfig_write }, 4123 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4124 .access = PL1_RW, 4125 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4126 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4127 .access = PL1_RW, .resetvalue = 0xff0, 4128 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4129 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4130 .access = PL1_RW, 4131 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4132 .writefn = omap_threadid_write }, 4133 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4134 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4135 .type = ARM_CP_NO_RAW, 4136 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4137 /* TODO: Peripheral port remap register: 4138 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4139 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4140 * when MMU is off. 4141 */ 4142 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4143 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4144 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4145 .writefn = omap_cachemaint_write }, 4146 { .name = "C9", .cp = 15, .crn = 9, 4147 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4148 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4149 REGINFO_SENTINEL 4150 }; 4151 4152 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4153 uint64_t value) 4154 { 4155 env->cp15.c15_cpar = value & 0x3fff; 4156 } 4157 4158 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4159 { .name = "XSCALE_CPAR", 4160 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4161 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4162 .writefn = xscale_cpar_write, }, 4163 { .name = "XSCALE_AUXCR", 4164 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4165 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4166 .resetvalue = 0, }, 4167 /* XScale specific cache-lockdown: since we have no cache we NOP these 4168 * and hope the guest does not really rely on cache behaviour. 4169 */ 4170 { .name = "XSCALE_LOCK_ICACHE_LINE", 4171 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4172 .access = PL1_W, .type = ARM_CP_NOP }, 4173 { .name = "XSCALE_UNLOCK_ICACHE", 4174 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4175 .access = PL1_W, .type = ARM_CP_NOP }, 4176 { .name = "XSCALE_DCACHE_LOCK", 4177 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4178 .access = PL1_RW, .type = ARM_CP_NOP }, 4179 { .name = "XSCALE_UNLOCK_DCACHE", 4180 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4181 .access = PL1_W, .type = ARM_CP_NOP }, 4182 REGINFO_SENTINEL 4183 }; 4184 4185 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4186 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4187 * implementation of this implementation-defined space. 4188 * Ideally this should eventually disappear in favour of actually 4189 * implementing the correct behaviour for all cores. 4190 */ 4191 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4192 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4193 .access = PL1_RW, 4194 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4195 .resetvalue = 0 }, 4196 REGINFO_SENTINEL 4197 }; 4198 4199 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4200 /* Cache status: RAZ because we have no cache so it's always clean */ 4201 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4202 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4203 .resetvalue = 0 }, 4204 REGINFO_SENTINEL 4205 }; 4206 4207 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4208 /* We never have a a block transfer operation in progress */ 4209 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4210 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4211 .resetvalue = 0 }, 4212 /* The cache ops themselves: these all NOP for QEMU */ 4213 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4214 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4215 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4216 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4217 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4218 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4219 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4220 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4221 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4222 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4223 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4224 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4225 REGINFO_SENTINEL 4226 }; 4227 4228 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4229 /* The cache test-and-clean instructions always return (1 << 30) 4230 * to indicate that there are no dirty cache lines. 4231 */ 4232 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4233 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4234 .resetvalue = (1 << 30) }, 4235 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4236 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4237 .resetvalue = (1 << 30) }, 4238 REGINFO_SENTINEL 4239 }; 4240 4241 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4242 /* Ignore ReadBuffer accesses */ 4243 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4244 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4245 .access = PL1_RW, .resetvalue = 0, 4246 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4247 REGINFO_SENTINEL 4248 }; 4249 4250 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4251 { 4252 ARMCPU *cpu = env_archcpu(env); 4253 unsigned int cur_el = arm_current_el(env); 4254 bool secure = arm_is_secure(env); 4255 4256 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4257 return env->cp15.vpidr_el2; 4258 } 4259 return raw_read(env, ri); 4260 } 4261 4262 static uint64_t mpidr_read_val(CPUARMState *env) 4263 { 4264 ARMCPU *cpu = env_archcpu(env); 4265 uint64_t mpidr = cpu->mp_affinity; 4266 4267 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4268 mpidr |= (1U << 31); 4269 /* Cores which are uniprocessor (non-coherent) 4270 * but still implement the MP extensions set 4271 * bit 30. (For instance, Cortex-R5). 4272 */ 4273 if (cpu->mp_is_up) { 4274 mpidr |= (1u << 30); 4275 } 4276 } 4277 return mpidr; 4278 } 4279 4280 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4281 { 4282 unsigned int cur_el = arm_current_el(env); 4283 bool secure = arm_is_secure(env); 4284 4285 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4286 return env->cp15.vmpidr_el2; 4287 } 4288 return mpidr_read_val(env); 4289 } 4290 4291 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4292 /* NOP AMAIR0/1 */ 4293 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4294 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4295 .access = PL1_RW, .accessfn = access_tvm_trvm, 4296 .type = ARM_CP_CONST, .resetvalue = 0 }, 4297 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4298 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4299 .access = PL1_RW, .accessfn = access_tvm_trvm, 4300 .type = ARM_CP_CONST, .resetvalue = 0 }, 4301 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4302 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4303 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4304 offsetof(CPUARMState, cp15.par_ns)} }, 4305 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4306 .access = PL1_RW, .accessfn = access_tvm_trvm, 4307 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4308 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4309 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4310 .writefn = vmsa_ttbr_write, }, 4311 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4312 .access = PL1_RW, .accessfn = access_tvm_trvm, 4313 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4314 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4315 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4316 .writefn = vmsa_ttbr_write, }, 4317 REGINFO_SENTINEL 4318 }; 4319 4320 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4321 { 4322 return vfp_get_fpcr(env); 4323 } 4324 4325 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4326 uint64_t value) 4327 { 4328 vfp_set_fpcr(env, value); 4329 } 4330 4331 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4332 { 4333 return vfp_get_fpsr(env); 4334 } 4335 4336 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4337 uint64_t value) 4338 { 4339 vfp_set_fpsr(env, value); 4340 } 4341 4342 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4343 bool isread) 4344 { 4345 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4346 return CP_ACCESS_TRAP; 4347 } 4348 return CP_ACCESS_OK; 4349 } 4350 4351 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4352 uint64_t value) 4353 { 4354 env->daif = value & PSTATE_DAIF; 4355 } 4356 4357 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4358 { 4359 return env->pstate & PSTATE_PAN; 4360 } 4361 4362 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4363 uint64_t value) 4364 { 4365 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4366 } 4367 4368 static const ARMCPRegInfo pan_reginfo = { 4369 .name = "PAN", .state = ARM_CP_STATE_AA64, 4370 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4371 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4372 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4373 }; 4374 4375 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4376 { 4377 return env->pstate & PSTATE_UAO; 4378 } 4379 4380 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4381 uint64_t value) 4382 { 4383 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4384 } 4385 4386 static const ARMCPRegInfo uao_reginfo = { 4387 .name = "UAO", .state = ARM_CP_STATE_AA64, 4388 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4389 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4390 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4391 }; 4392 4393 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4394 const ARMCPRegInfo *ri, 4395 bool isread) 4396 { 4397 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4398 switch (arm_current_el(env)) { 4399 case 0: 4400 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4401 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4402 return CP_ACCESS_TRAP; 4403 } 4404 /* fall through */ 4405 case 1: 4406 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4407 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4408 return CP_ACCESS_TRAP_EL2; 4409 } 4410 break; 4411 } 4412 return CP_ACCESS_OK; 4413 } 4414 4415 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4416 const ARMCPRegInfo *ri, 4417 bool isread) 4418 { 4419 /* Cache invalidate/clean to Point of Unification... */ 4420 switch (arm_current_el(env)) { 4421 case 0: 4422 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4423 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4424 return CP_ACCESS_TRAP; 4425 } 4426 /* fall through */ 4427 case 1: 4428 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4429 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4430 return CP_ACCESS_TRAP_EL2; 4431 } 4432 break; 4433 } 4434 return CP_ACCESS_OK; 4435 } 4436 4437 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4438 * Page D4-1736 (DDI0487A.b) 4439 */ 4440 4441 static int vae1_tlbmask(CPUARMState *env) 4442 { 4443 /* Since we exclude secure first, we may read HCR_EL2 directly. */ 4444 if (arm_is_secure_below_el3(env)) { 4445 return ARMMMUIdxBit_SE10_1 | 4446 ARMMMUIdxBit_SE10_1_PAN | 4447 ARMMMUIdxBit_SE10_0; 4448 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4449 == (HCR_E2H | HCR_TGE)) { 4450 return ARMMMUIdxBit_E20_2 | 4451 ARMMMUIdxBit_E20_2_PAN | 4452 ARMMMUIdxBit_E20_0; 4453 } else { 4454 return ARMMMUIdxBit_E10_1 | 4455 ARMMMUIdxBit_E10_1_PAN | 4456 ARMMMUIdxBit_E10_0; 4457 } 4458 } 4459 4460 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4461 uint64_t value) 4462 { 4463 CPUState *cs = env_cpu(env); 4464 int mask = vae1_tlbmask(env); 4465 4466 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4467 } 4468 4469 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4470 uint64_t value) 4471 { 4472 CPUState *cs = env_cpu(env); 4473 int mask = vae1_tlbmask(env); 4474 4475 if (tlb_force_broadcast(env)) { 4476 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4477 } else { 4478 tlb_flush_by_mmuidx(cs, mask); 4479 } 4480 } 4481 4482 static int alle1_tlbmask(CPUARMState *env) 4483 { 4484 /* 4485 * Note that the 'ALL' scope must invalidate both stage 1 and 4486 * stage 2 translations, whereas most other scopes only invalidate 4487 * stage 1 translations. 4488 */ 4489 if (arm_is_secure_below_el3(env)) { 4490 return ARMMMUIdxBit_SE10_1 | 4491 ARMMMUIdxBit_SE10_1_PAN | 4492 ARMMMUIdxBit_SE10_0; 4493 } else { 4494 return ARMMMUIdxBit_E10_1 | 4495 ARMMMUIdxBit_E10_1_PAN | 4496 ARMMMUIdxBit_E10_0; 4497 } 4498 } 4499 4500 static int e2_tlbmask(CPUARMState *env) 4501 { 4502 /* TODO: ARMv8.4-SecEL2 */ 4503 return ARMMMUIdxBit_E20_0 | 4504 ARMMMUIdxBit_E20_2 | 4505 ARMMMUIdxBit_E20_2_PAN | 4506 ARMMMUIdxBit_E2; 4507 } 4508 4509 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4510 uint64_t value) 4511 { 4512 CPUState *cs = env_cpu(env); 4513 int mask = alle1_tlbmask(env); 4514 4515 tlb_flush_by_mmuidx(cs, mask); 4516 } 4517 4518 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4519 uint64_t value) 4520 { 4521 CPUState *cs = env_cpu(env); 4522 int mask = e2_tlbmask(env); 4523 4524 tlb_flush_by_mmuidx(cs, mask); 4525 } 4526 4527 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4528 uint64_t value) 4529 { 4530 ARMCPU *cpu = env_archcpu(env); 4531 CPUState *cs = CPU(cpu); 4532 4533 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4534 } 4535 4536 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4537 uint64_t value) 4538 { 4539 CPUState *cs = env_cpu(env); 4540 int mask = alle1_tlbmask(env); 4541 4542 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4543 } 4544 4545 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4546 uint64_t value) 4547 { 4548 CPUState *cs = env_cpu(env); 4549 int mask = e2_tlbmask(env); 4550 4551 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4552 } 4553 4554 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4555 uint64_t value) 4556 { 4557 CPUState *cs = env_cpu(env); 4558 4559 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4560 } 4561 4562 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4563 uint64_t value) 4564 { 4565 /* Invalidate by VA, EL2 4566 * Currently handles both VAE2 and VALE2, since we don't support 4567 * flush-last-level-only. 4568 */ 4569 CPUState *cs = env_cpu(env); 4570 int mask = e2_tlbmask(env); 4571 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4572 4573 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4574 } 4575 4576 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4577 uint64_t value) 4578 { 4579 /* Invalidate by VA, EL3 4580 * Currently handles both VAE3 and VALE3, since we don't support 4581 * flush-last-level-only. 4582 */ 4583 ARMCPU *cpu = env_archcpu(env); 4584 CPUState *cs = CPU(cpu); 4585 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4586 4587 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4588 } 4589 4590 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4591 uint64_t value) 4592 { 4593 CPUState *cs = env_cpu(env); 4594 int mask = vae1_tlbmask(env); 4595 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4596 4597 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4598 } 4599 4600 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4601 uint64_t value) 4602 { 4603 /* Invalidate by VA, EL1&0 (AArch64 version). 4604 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4605 * since we don't support flush-for-specific-ASID-only or 4606 * flush-last-level-only. 4607 */ 4608 CPUState *cs = env_cpu(env); 4609 int mask = vae1_tlbmask(env); 4610 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4611 4612 if (tlb_force_broadcast(env)) { 4613 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4614 } else { 4615 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4616 } 4617 } 4618 4619 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4620 uint64_t value) 4621 { 4622 CPUState *cs = env_cpu(env); 4623 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4624 4625 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4626 ARMMMUIdxBit_E2); 4627 } 4628 4629 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4630 uint64_t value) 4631 { 4632 CPUState *cs = env_cpu(env); 4633 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4634 4635 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4636 ARMMMUIdxBit_SE3); 4637 } 4638 4639 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4640 bool isread) 4641 { 4642 int cur_el = arm_current_el(env); 4643 4644 if (cur_el < 2) { 4645 uint64_t hcr = arm_hcr_el2_eff(env); 4646 4647 if (cur_el == 0) { 4648 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4649 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4650 return CP_ACCESS_TRAP_EL2; 4651 } 4652 } else { 4653 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4654 return CP_ACCESS_TRAP; 4655 } 4656 if (hcr & HCR_TDZ) { 4657 return CP_ACCESS_TRAP_EL2; 4658 } 4659 } 4660 } else if (hcr & HCR_TDZ) { 4661 return CP_ACCESS_TRAP_EL2; 4662 } 4663 } 4664 return CP_ACCESS_OK; 4665 } 4666 4667 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4668 { 4669 ARMCPU *cpu = env_archcpu(env); 4670 int dzp_bit = 1 << 4; 4671 4672 /* DZP indicates whether DC ZVA access is allowed */ 4673 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4674 dzp_bit = 0; 4675 } 4676 return cpu->dcz_blocksize | dzp_bit; 4677 } 4678 4679 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4680 bool isread) 4681 { 4682 if (!(env->pstate & PSTATE_SP)) { 4683 /* Access to SP_EL0 is undefined if it's being used as 4684 * the stack pointer. 4685 */ 4686 return CP_ACCESS_TRAP_UNCATEGORIZED; 4687 } 4688 return CP_ACCESS_OK; 4689 } 4690 4691 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4692 { 4693 return env->pstate & PSTATE_SP; 4694 } 4695 4696 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4697 { 4698 update_spsel(env, val); 4699 } 4700 4701 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4702 uint64_t value) 4703 { 4704 ARMCPU *cpu = env_archcpu(env); 4705 4706 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4707 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4708 value &= ~SCTLR_M; 4709 } 4710 4711 /* ??? Lots of these bits are not implemented. */ 4712 4713 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4714 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4715 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4716 } else { 4717 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4718 SCTLR_ATA0 | SCTLR_ATA); 4719 } 4720 } 4721 4722 if (raw_read(env, ri) == value) { 4723 /* Skip the TLB flush if nothing actually changed; Linux likes 4724 * to do a lot of pointless SCTLR writes. 4725 */ 4726 return; 4727 } 4728 4729 raw_write(env, ri, value); 4730 4731 /* This may enable/disable the MMU, so do a TLB flush. */ 4732 tlb_flush(CPU(cpu)); 4733 4734 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4735 /* 4736 * Normally we would always end the TB on an SCTLR write; see the 4737 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4738 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4739 * of hflags from the translator, so do it here. 4740 */ 4741 arm_rebuild_hflags(env); 4742 } 4743 } 4744 4745 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4746 bool isread) 4747 { 4748 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4749 return CP_ACCESS_TRAP_FP_EL2; 4750 } 4751 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4752 return CP_ACCESS_TRAP_FP_EL3; 4753 } 4754 return CP_ACCESS_OK; 4755 } 4756 4757 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4758 uint64_t value) 4759 { 4760 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4761 } 4762 4763 static const ARMCPRegInfo v8_cp_reginfo[] = { 4764 /* Minimal set of EL0-visible registers. This will need to be expanded 4765 * significantly for system emulation of AArch64 CPUs. 4766 */ 4767 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4768 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4769 .access = PL0_RW, .type = ARM_CP_NZCV }, 4770 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4771 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4772 .type = ARM_CP_NO_RAW, 4773 .access = PL0_RW, .accessfn = aa64_daif_access, 4774 .fieldoffset = offsetof(CPUARMState, daif), 4775 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4776 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4777 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4778 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4779 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4780 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4781 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4782 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4783 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4784 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4785 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4786 .access = PL0_R, .type = ARM_CP_NO_RAW, 4787 .readfn = aa64_dczid_read }, 4788 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4789 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4790 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4791 #ifndef CONFIG_USER_ONLY 4792 /* Avoid overhead of an access check that always passes in user-mode */ 4793 .accessfn = aa64_zva_access, 4794 #endif 4795 }, 4796 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4797 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4798 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4799 /* Cache ops: all NOPs since we don't emulate caches */ 4800 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4801 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4802 .access = PL1_W, .type = ARM_CP_NOP, 4803 .accessfn = aa64_cacheop_pou_access }, 4804 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4805 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4806 .access = PL1_W, .type = ARM_CP_NOP, 4807 .accessfn = aa64_cacheop_pou_access }, 4808 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4809 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4810 .access = PL0_W, .type = ARM_CP_NOP, 4811 .accessfn = aa64_cacheop_pou_access }, 4812 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4813 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4814 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4815 .type = ARM_CP_NOP }, 4816 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4817 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4818 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4819 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4821 .access = PL0_W, .type = ARM_CP_NOP, 4822 .accessfn = aa64_cacheop_poc_access }, 4823 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4825 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4826 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4827 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4828 .access = PL0_W, .type = ARM_CP_NOP, 4829 .accessfn = aa64_cacheop_pou_access }, 4830 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4831 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4832 .access = PL0_W, .type = ARM_CP_NOP, 4833 .accessfn = aa64_cacheop_poc_access }, 4834 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4835 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4836 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4837 /* TLBI operations */ 4838 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4839 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4840 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4841 .writefn = tlbi_aa64_vmalle1is_write }, 4842 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4843 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4844 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4845 .writefn = tlbi_aa64_vae1is_write }, 4846 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4847 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4848 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4849 .writefn = tlbi_aa64_vmalle1is_write }, 4850 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4852 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4853 .writefn = tlbi_aa64_vae1is_write }, 4854 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4855 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4856 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4857 .writefn = tlbi_aa64_vae1is_write }, 4858 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4859 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4860 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4861 .writefn = tlbi_aa64_vae1is_write }, 4862 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4864 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4865 .writefn = tlbi_aa64_vmalle1_write }, 4866 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4867 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4868 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4869 .writefn = tlbi_aa64_vae1_write }, 4870 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4871 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4872 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4873 .writefn = tlbi_aa64_vmalle1_write }, 4874 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4875 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4876 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4877 .writefn = tlbi_aa64_vae1_write }, 4878 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4881 .writefn = tlbi_aa64_vae1_write }, 4882 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4885 .writefn = tlbi_aa64_vae1_write }, 4886 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4887 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4888 .access = PL2_W, .type = ARM_CP_NOP }, 4889 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4891 .access = PL2_W, .type = ARM_CP_NOP }, 4892 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4894 .access = PL2_W, .type = ARM_CP_NO_RAW, 4895 .writefn = tlbi_aa64_alle1is_write }, 4896 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4898 .access = PL2_W, .type = ARM_CP_NO_RAW, 4899 .writefn = tlbi_aa64_alle1is_write }, 4900 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4901 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4902 .access = PL2_W, .type = ARM_CP_NOP }, 4903 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4905 .access = PL2_W, .type = ARM_CP_NOP }, 4906 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4908 .access = PL2_W, .type = ARM_CP_NO_RAW, 4909 .writefn = tlbi_aa64_alle1_write }, 4910 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4912 .access = PL2_W, .type = ARM_CP_NO_RAW, 4913 .writefn = tlbi_aa64_alle1is_write }, 4914 #ifndef CONFIG_USER_ONLY 4915 /* 64 bit address translation operations */ 4916 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4918 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4919 .writefn = ats_write64 }, 4920 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4922 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4923 .writefn = ats_write64 }, 4924 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4926 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4927 .writefn = ats_write64 }, 4928 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4929 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4930 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4931 .writefn = ats_write64 }, 4932 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4934 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4935 .writefn = ats_write64 }, 4936 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4937 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4938 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4939 .writefn = ats_write64 }, 4940 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4942 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4943 .writefn = ats_write64 }, 4944 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4945 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4946 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4947 .writefn = ats_write64 }, 4948 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4949 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4951 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4952 .writefn = ats_write64 }, 4953 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4955 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4956 .writefn = ats_write64 }, 4957 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4958 .type = ARM_CP_ALIAS, 4959 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4960 .access = PL1_RW, .resetvalue = 0, 4961 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4962 .writefn = par_write }, 4963 #endif 4964 /* TLB invalidate last level of translation table walk */ 4965 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4966 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4967 .writefn = tlbimva_is_write }, 4968 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4969 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4970 .writefn = tlbimvaa_is_write }, 4971 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4972 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4973 .writefn = tlbimva_write }, 4974 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4975 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4976 .writefn = tlbimvaa_write }, 4977 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4978 .type = ARM_CP_NO_RAW, .access = PL2_W, 4979 .writefn = tlbimva_hyp_write }, 4980 { .name = "TLBIMVALHIS", 4981 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4982 .type = ARM_CP_NO_RAW, .access = PL2_W, 4983 .writefn = tlbimva_hyp_is_write }, 4984 { .name = "TLBIIPAS2", 4985 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4986 .type = ARM_CP_NOP, .access = PL2_W }, 4987 { .name = "TLBIIPAS2IS", 4988 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4989 .type = ARM_CP_NOP, .access = PL2_W }, 4990 { .name = "TLBIIPAS2L", 4991 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4992 .type = ARM_CP_NOP, .access = PL2_W }, 4993 { .name = "TLBIIPAS2LIS", 4994 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4995 .type = ARM_CP_NOP, .access = PL2_W }, 4996 /* 32 bit cache operations */ 4997 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4998 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 4999 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5000 .type = ARM_CP_NOP, .access = PL1_W }, 5001 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5002 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5003 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5004 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5005 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5006 .type = ARM_CP_NOP, .access = PL1_W }, 5007 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5008 .type = ARM_CP_NOP, .access = PL1_W }, 5009 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5010 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5011 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5012 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5013 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5014 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5015 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5016 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5017 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5018 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5019 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5020 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5021 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5022 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5023 /* MMU Domain access control / MPU write buffer control */ 5024 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5025 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5026 .writefn = dacr_write, .raw_writefn = raw_write, 5027 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5028 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5029 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5030 .type = ARM_CP_ALIAS, 5031 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5032 .access = PL1_RW, 5033 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5034 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5035 .type = ARM_CP_ALIAS, 5036 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5037 .access = PL1_RW, 5038 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5039 /* We rely on the access checks not allowing the guest to write to the 5040 * state field when SPSel indicates that it's being used as the stack 5041 * pointer. 5042 */ 5043 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5044 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5045 .access = PL1_RW, .accessfn = sp_el0_access, 5046 .type = ARM_CP_ALIAS, 5047 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5048 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5049 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5050 .access = PL2_RW, .type = ARM_CP_ALIAS, 5051 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5052 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5053 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5054 .type = ARM_CP_NO_RAW, 5055 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5056 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5057 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5058 .type = ARM_CP_ALIAS, 5059 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5060 .access = PL2_RW, .accessfn = fpexc32_access }, 5061 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5062 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5063 .access = PL2_RW, .resetvalue = 0, 5064 .writefn = dacr_write, .raw_writefn = raw_write, 5065 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5066 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5067 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5068 .access = PL2_RW, .resetvalue = 0, 5069 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5070 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5071 .type = ARM_CP_ALIAS, 5072 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5073 .access = PL2_RW, 5074 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5075 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5076 .type = ARM_CP_ALIAS, 5077 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5078 .access = PL2_RW, 5079 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5080 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5081 .type = ARM_CP_ALIAS, 5082 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5083 .access = PL2_RW, 5084 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5085 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5086 .type = ARM_CP_ALIAS, 5087 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5088 .access = PL2_RW, 5089 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5090 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5091 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5092 .resetvalue = 0, 5093 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5094 { .name = "SDCR", .type = ARM_CP_ALIAS, 5095 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5096 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5097 .writefn = sdcr_write, 5098 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5099 REGINFO_SENTINEL 5100 }; 5101 5102 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5103 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5104 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5105 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5106 .access = PL2_RW, 5107 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5108 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5109 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5110 .access = PL2_RW, 5111 .type = ARM_CP_CONST, .resetvalue = 0 }, 5112 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5113 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5114 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5115 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5116 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5117 .access = PL2_RW, 5118 .type = ARM_CP_CONST, .resetvalue = 0 }, 5119 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5120 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5121 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5122 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5123 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5124 .access = PL2_RW, .type = ARM_CP_CONST, 5125 .resetvalue = 0 }, 5126 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5127 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5128 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5129 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5130 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5131 .access = PL2_RW, .type = ARM_CP_CONST, 5132 .resetvalue = 0 }, 5133 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5134 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5135 .access = PL2_RW, .type = ARM_CP_CONST, 5136 .resetvalue = 0 }, 5137 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5138 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5139 .access = PL2_RW, .type = ARM_CP_CONST, 5140 .resetvalue = 0 }, 5141 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5142 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5143 .access = PL2_RW, .type = ARM_CP_CONST, 5144 .resetvalue = 0 }, 5145 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5146 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5147 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5148 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5149 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5150 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5151 .type = ARM_CP_CONST, .resetvalue = 0 }, 5152 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5153 .cp = 15, .opc1 = 6, .crm = 2, 5154 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5155 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5156 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5157 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5158 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5159 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5160 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5161 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5162 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5163 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5164 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5165 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5166 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5167 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5168 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5169 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5170 .resetvalue = 0 }, 5171 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5172 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5173 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5174 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5175 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5176 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5177 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5178 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5179 .resetvalue = 0 }, 5180 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5181 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5182 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5183 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5184 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5185 .resetvalue = 0 }, 5186 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5187 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5188 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5189 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5190 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5191 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5192 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5193 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5194 .access = PL2_RW, .accessfn = access_tda, 5195 .type = ARM_CP_CONST, .resetvalue = 0 }, 5196 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5197 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5198 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5199 .type = ARM_CP_CONST, .resetvalue = 0 }, 5200 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5201 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5202 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5203 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5204 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5205 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5206 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5207 .type = ARM_CP_CONST, 5208 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5209 .access = PL2_RW, .resetvalue = 0 }, 5210 REGINFO_SENTINEL 5211 }; 5212 5213 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5214 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5215 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5216 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5217 .access = PL2_RW, 5218 .type = ARM_CP_CONST, .resetvalue = 0 }, 5219 REGINFO_SENTINEL 5220 }; 5221 5222 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5223 { 5224 ARMCPU *cpu = env_archcpu(env); 5225 5226 if (arm_feature(env, ARM_FEATURE_V8)) { 5227 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5228 } else { 5229 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5230 } 5231 5232 if (arm_feature(env, ARM_FEATURE_EL3)) { 5233 valid_mask &= ~HCR_HCD; 5234 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5235 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5236 * However, if we're using the SMC PSCI conduit then QEMU is 5237 * effectively acting like EL3 firmware and so the guest at 5238 * EL2 should retain the ability to prevent EL1 from being 5239 * able to make SMC calls into the ersatz firmware, so in 5240 * that case HCR.TSC should be read/write. 5241 */ 5242 valid_mask &= ~HCR_TSC; 5243 } 5244 5245 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5246 if (cpu_isar_feature(aa64_vh, cpu)) { 5247 valid_mask |= HCR_E2H; 5248 } 5249 if (cpu_isar_feature(aa64_lor, cpu)) { 5250 valid_mask |= HCR_TLOR; 5251 } 5252 if (cpu_isar_feature(aa64_pauth, cpu)) { 5253 valid_mask |= HCR_API | HCR_APK; 5254 } 5255 if (cpu_isar_feature(aa64_mte, cpu)) { 5256 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5257 } 5258 } 5259 5260 /* Clear RES0 bits. */ 5261 value &= valid_mask; 5262 5263 /* 5264 * These bits change the MMU setup: 5265 * HCR_VM enables stage 2 translation 5266 * HCR_PTW forbids certain page-table setups 5267 * HCR_DC disables stage1 and enables stage2 translation 5268 * HCR_DCT enables tagging on (disabled) stage1 translation 5269 */ 5270 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5271 tlb_flush(CPU(cpu)); 5272 } 5273 env->cp15.hcr_el2 = value; 5274 5275 /* 5276 * Updates to VI and VF require us to update the status of 5277 * virtual interrupts, which are the logical OR of these bits 5278 * and the state of the input lines from the GIC. (This requires 5279 * that we have the iothread lock, which is done by marking the 5280 * reginfo structs as ARM_CP_IO.) 5281 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5282 * possible for it to be taken immediately, because VIRQ and 5283 * VFIQ are masked unless running at EL0 or EL1, and HCR 5284 * can only be written at EL2. 5285 */ 5286 g_assert(qemu_mutex_iothread_locked()); 5287 arm_cpu_update_virq(cpu); 5288 arm_cpu_update_vfiq(cpu); 5289 } 5290 5291 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5292 { 5293 do_hcr_write(env, value, 0); 5294 } 5295 5296 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5297 uint64_t value) 5298 { 5299 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5300 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5301 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5302 } 5303 5304 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5305 uint64_t value) 5306 { 5307 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5308 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5309 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5310 } 5311 5312 /* 5313 * Return the effective value of HCR_EL2. 5314 * Bits that are not included here: 5315 * RW (read from SCR_EL3.RW as needed) 5316 */ 5317 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5318 { 5319 uint64_t ret = env->cp15.hcr_el2; 5320 5321 if (arm_is_secure_below_el3(env)) { 5322 /* 5323 * "This register has no effect if EL2 is not enabled in the 5324 * current Security state". This is ARMv8.4-SecEL2 speak for 5325 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5326 * 5327 * Prior to that, the language was "In an implementation that 5328 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5329 * as if this field is 0 for all purposes other than a direct 5330 * read or write access of HCR_EL2". With lots of enumeration 5331 * on a per-field basis. In current QEMU, this is condition 5332 * is arm_is_secure_below_el3. 5333 * 5334 * Since the v8.4 language applies to the entire register, and 5335 * appears to be backward compatible, use that. 5336 */ 5337 return 0; 5338 } 5339 5340 /* 5341 * For a cpu that supports both aarch64 and aarch32, we can set bits 5342 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5343 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5344 */ 5345 if (!arm_el_is_aa64(env, 2)) { 5346 uint64_t aa32_valid; 5347 5348 /* 5349 * These bits are up-to-date as of ARMv8.6. 5350 * For HCR, it's easiest to list just the 2 bits that are invalid. 5351 * For HCR2, list those that are valid. 5352 */ 5353 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5354 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5355 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5356 ret &= aa32_valid; 5357 } 5358 5359 if (ret & HCR_TGE) { 5360 /* These bits are up-to-date as of ARMv8.6. */ 5361 if (ret & HCR_E2H) { 5362 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5363 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5364 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5365 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5366 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5367 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5368 } else { 5369 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5370 } 5371 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5372 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5373 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5374 HCR_TLOR); 5375 } 5376 5377 return ret; 5378 } 5379 5380 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5381 uint64_t value) 5382 { 5383 /* 5384 * For A-profile AArch32 EL3, if NSACR.CP10 5385 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5386 */ 5387 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5388 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5389 value &= ~(0x3 << 10); 5390 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5391 } 5392 env->cp15.cptr_el[2] = value; 5393 } 5394 5395 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5396 { 5397 /* 5398 * For A-profile AArch32 EL3, if NSACR.CP10 5399 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5400 */ 5401 uint64_t value = env->cp15.cptr_el[2]; 5402 5403 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5404 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5405 value |= 0x3 << 10; 5406 } 5407 return value; 5408 } 5409 5410 static const ARMCPRegInfo el2_cp_reginfo[] = { 5411 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5412 .type = ARM_CP_IO, 5413 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5414 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5415 .writefn = hcr_write }, 5416 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5417 .type = ARM_CP_ALIAS | ARM_CP_IO, 5418 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5419 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5420 .writefn = hcr_writelow }, 5421 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5422 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5423 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5424 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5425 .type = ARM_CP_ALIAS, 5426 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5427 .access = PL2_RW, 5428 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5429 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5430 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5431 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5432 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5433 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5434 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5435 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5436 .type = ARM_CP_ALIAS, 5437 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5438 .access = PL2_RW, 5439 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5440 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5441 .type = ARM_CP_ALIAS, 5442 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5443 .access = PL2_RW, 5444 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5445 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5446 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5447 .access = PL2_RW, .writefn = vbar_write, 5448 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5449 .resetvalue = 0 }, 5450 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5451 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5452 .access = PL3_RW, .type = ARM_CP_ALIAS, 5453 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5454 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5455 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5456 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5457 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5458 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5459 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5460 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5461 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5462 .resetvalue = 0 }, 5463 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5464 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5465 .access = PL2_RW, .type = ARM_CP_ALIAS, 5466 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5467 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5468 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5469 .access = PL2_RW, .type = ARM_CP_CONST, 5470 .resetvalue = 0 }, 5471 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5472 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5473 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5474 .access = PL2_RW, .type = ARM_CP_CONST, 5475 .resetvalue = 0 }, 5476 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5477 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5478 .access = PL2_RW, .type = ARM_CP_CONST, 5479 .resetvalue = 0 }, 5480 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5481 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5482 .access = PL2_RW, .type = ARM_CP_CONST, 5483 .resetvalue = 0 }, 5484 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5485 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5486 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5487 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5488 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5489 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5490 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5491 .type = ARM_CP_ALIAS, 5492 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5493 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5494 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5495 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5496 .access = PL2_RW, 5497 /* no .writefn needed as this can't cause an ASID change; 5498 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5499 */ 5500 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5501 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5502 .cp = 15, .opc1 = 6, .crm = 2, 5503 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5504 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5505 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5506 .writefn = vttbr_write }, 5507 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5508 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5509 .access = PL2_RW, .writefn = vttbr_write, 5510 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5511 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5512 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5513 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5514 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5515 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5516 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5517 .access = PL2_RW, .resetvalue = 0, 5518 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5519 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5520 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5521 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5522 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5523 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5524 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5525 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5526 { .name = "TLBIALLNSNH", 5527 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5528 .type = ARM_CP_NO_RAW, .access = PL2_W, 5529 .writefn = tlbiall_nsnh_write }, 5530 { .name = "TLBIALLNSNHIS", 5531 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5532 .type = ARM_CP_NO_RAW, .access = PL2_W, 5533 .writefn = tlbiall_nsnh_is_write }, 5534 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5535 .type = ARM_CP_NO_RAW, .access = PL2_W, 5536 .writefn = tlbiall_hyp_write }, 5537 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5538 .type = ARM_CP_NO_RAW, .access = PL2_W, 5539 .writefn = tlbiall_hyp_is_write }, 5540 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5541 .type = ARM_CP_NO_RAW, .access = PL2_W, 5542 .writefn = tlbimva_hyp_write }, 5543 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5544 .type = ARM_CP_NO_RAW, .access = PL2_W, 5545 .writefn = tlbimva_hyp_is_write }, 5546 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5547 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5548 .type = ARM_CP_NO_RAW, .access = PL2_W, 5549 .writefn = tlbi_aa64_alle2_write }, 5550 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5551 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5552 .type = ARM_CP_NO_RAW, .access = PL2_W, 5553 .writefn = tlbi_aa64_vae2_write }, 5554 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5555 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5556 .access = PL2_W, .type = ARM_CP_NO_RAW, 5557 .writefn = tlbi_aa64_vae2_write }, 5558 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5560 .access = PL2_W, .type = ARM_CP_NO_RAW, 5561 .writefn = tlbi_aa64_alle2is_write }, 5562 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5564 .type = ARM_CP_NO_RAW, .access = PL2_W, 5565 .writefn = tlbi_aa64_vae2is_write }, 5566 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5567 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5568 .access = PL2_W, .type = ARM_CP_NO_RAW, 5569 .writefn = tlbi_aa64_vae2is_write }, 5570 #ifndef CONFIG_USER_ONLY 5571 /* Unlike the other EL2-related AT operations, these must 5572 * UNDEF from EL3 if EL2 is not implemented, which is why we 5573 * define them here rather than with the rest of the AT ops. 5574 */ 5575 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5576 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5577 .access = PL2_W, .accessfn = at_s1e2_access, 5578 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5579 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5580 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5581 .access = PL2_W, .accessfn = at_s1e2_access, 5582 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5583 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5584 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5585 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5586 * to behave as if SCR.NS was 1. 5587 */ 5588 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5589 .access = PL2_W, 5590 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5591 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5592 .access = PL2_W, 5593 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5594 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5595 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5596 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5597 * reset values as IMPDEF. We choose to reset to 3 to comply with 5598 * both ARMv7 and ARMv8. 5599 */ 5600 .access = PL2_RW, .resetvalue = 3, 5601 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5602 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5603 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5604 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5605 .writefn = gt_cntvoff_write, 5606 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5607 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5608 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5609 .writefn = gt_cntvoff_write, 5610 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5611 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5612 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5613 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5614 .type = ARM_CP_IO, .access = PL2_RW, 5615 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5616 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5617 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5618 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5619 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5620 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5621 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5622 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5623 .resetfn = gt_hyp_timer_reset, 5624 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5625 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5626 .type = ARM_CP_IO, 5627 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5628 .access = PL2_RW, 5629 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5630 .resetvalue = 0, 5631 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5632 #endif 5633 /* The only field of MDCR_EL2 that has a defined architectural reset value 5634 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5635 * don't implement any PMU event counters, so using zero as a reset 5636 * value for MDCR_EL2 is okay 5637 */ 5638 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5639 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5640 .access = PL2_RW, .resetvalue = 0, 5641 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5642 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5643 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5644 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5645 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5646 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5647 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5648 .access = PL2_RW, 5649 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5650 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5651 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5652 .access = PL2_RW, 5653 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5654 REGINFO_SENTINEL 5655 }; 5656 5657 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5658 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5659 .type = ARM_CP_ALIAS | ARM_CP_IO, 5660 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5661 .access = PL2_RW, 5662 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5663 .writefn = hcr_writehigh }, 5664 REGINFO_SENTINEL 5665 }; 5666 5667 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5668 bool isread) 5669 { 5670 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5671 * At Secure EL1 it traps to EL3. 5672 */ 5673 if (arm_current_el(env) == 3) { 5674 return CP_ACCESS_OK; 5675 } 5676 if (arm_is_secure_below_el3(env)) { 5677 return CP_ACCESS_TRAP_EL3; 5678 } 5679 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5680 if (isread) { 5681 return CP_ACCESS_OK; 5682 } 5683 return CP_ACCESS_TRAP_UNCATEGORIZED; 5684 } 5685 5686 static const ARMCPRegInfo el3_cp_reginfo[] = { 5687 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5688 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5689 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5690 .resetvalue = 0, .writefn = scr_write }, 5691 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5692 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5693 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5694 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5695 .writefn = scr_write }, 5696 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5697 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5698 .access = PL3_RW, .resetvalue = 0, 5699 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5700 { .name = "SDER", 5701 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5702 .access = PL3_RW, .resetvalue = 0, 5703 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5704 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5705 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5706 .writefn = vbar_write, .resetvalue = 0, 5707 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5708 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5709 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5710 .access = PL3_RW, .resetvalue = 0, 5711 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5712 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5713 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5714 .access = PL3_RW, 5715 /* no .writefn needed as this can't cause an ASID change; 5716 * we must provide a .raw_writefn and .resetfn because we handle 5717 * reset and migration for the AArch32 TTBCR(S), which might be 5718 * using mask and base_mask. 5719 */ 5720 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5721 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5722 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5723 .type = ARM_CP_ALIAS, 5724 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5725 .access = PL3_RW, 5726 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5727 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5728 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5729 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5730 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5731 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5732 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5733 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5734 .type = ARM_CP_ALIAS, 5735 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5736 .access = PL3_RW, 5737 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5738 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5739 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5740 .access = PL3_RW, .writefn = vbar_write, 5741 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5742 .resetvalue = 0 }, 5743 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5744 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5745 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5746 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5747 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5748 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5749 .access = PL3_RW, .resetvalue = 0, 5750 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5751 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5752 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5753 .access = PL3_RW, .type = ARM_CP_CONST, 5754 .resetvalue = 0 }, 5755 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5756 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5757 .access = PL3_RW, .type = ARM_CP_CONST, 5758 .resetvalue = 0 }, 5759 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5760 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5761 .access = PL3_RW, .type = ARM_CP_CONST, 5762 .resetvalue = 0 }, 5763 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5764 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5765 .access = PL3_W, .type = ARM_CP_NO_RAW, 5766 .writefn = tlbi_aa64_alle3is_write }, 5767 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5768 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5769 .access = PL3_W, .type = ARM_CP_NO_RAW, 5770 .writefn = tlbi_aa64_vae3is_write }, 5771 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5772 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5773 .access = PL3_W, .type = ARM_CP_NO_RAW, 5774 .writefn = tlbi_aa64_vae3is_write }, 5775 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5776 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5777 .access = PL3_W, .type = ARM_CP_NO_RAW, 5778 .writefn = tlbi_aa64_alle3_write }, 5779 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5780 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5781 .access = PL3_W, .type = ARM_CP_NO_RAW, 5782 .writefn = tlbi_aa64_vae3_write }, 5783 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5784 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5785 .access = PL3_W, .type = ARM_CP_NO_RAW, 5786 .writefn = tlbi_aa64_vae3_write }, 5787 REGINFO_SENTINEL 5788 }; 5789 5790 #ifndef CONFIG_USER_ONLY 5791 /* Test if system register redirection is to occur in the current state. */ 5792 static bool redirect_for_e2h(CPUARMState *env) 5793 { 5794 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5795 } 5796 5797 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5798 { 5799 CPReadFn *readfn; 5800 5801 if (redirect_for_e2h(env)) { 5802 /* Switch to the saved EL2 version of the register. */ 5803 ri = ri->opaque; 5804 readfn = ri->readfn; 5805 } else { 5806 readfn = ri->orig_readfn; 5807 } 5808 if (readfn == NULL) { 5809 readfn = raw_read; 5810 } 5811 return readfn(env, ri); 5812 } 5813 5814 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5815 uint64_t value) 5816 { 5817 CPWriteFn *writefn; 5818 5819 if (redirect_for_e2h(env)) { 5820 /* Switch to the saved EL2 version of the register. */ 5821 ri = ri->opaque; 5822 writefn = ri->writefn; 5823 } else { 5824 writefn = ri->orig_writefn; 5825 } 5826 if (writefn == NULL) { 5827 writefn = raw_write; 5828 } 5829 writefn(env, ri, value); 5830 } 5831 5832 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5833 { 5834 struct E2HAlias { 5835 uint32_t src_key, dst_key, new_key; 5836 const char *src_name, *dst_name, *new_name; 5837 bool (*feature)(const ARMISARegisters *id); 5838 }; 5839 5840 #define K(op0, op1, crn, crm, op2) \ 5841 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5842 5843 static const struct E2HAlias aliases[] = { 5844 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5845 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5846 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5847 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5848 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5849 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5850 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5851 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5852 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5853 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5854 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5855 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5856 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5857 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5858 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5859 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5860 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5861 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5862 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5863 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5864 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5865 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5866 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5867 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5868 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5869 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5870 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5871 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5872 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5873 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5874 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5875 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5876 5877 /* 5878 * Note that redirection of ZCR is mentioned in the description 5879 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5880 * not in the summary table. 5881 */ 5882 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5883 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5884 5885 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5886 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5887 5888 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5889 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5890 }; 5891 #undef K 5892 5893 size_t i; 5894 5895 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5896 const struct E2HAlias *a = &aliases[i]; 5897 ARMCPRegInfo *src_reg, *dst_reg; 5898 5899 if (a->feature && !a->feature(&cpu->isar)) { 5900 continue; 5901 } 5902 5903 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5904 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5905 g_assert(src_reg != NULL); 5906 g_assert(dst_reg != NULL); 5907 5908 /* Cross-compare names to detect typos in the keys. */ 5909 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5910 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5911 5912 /* None of the core system registers use opaque; we will. */ 5913 g_assert(src_reg->opaque == NULL); 5914 5915 /* Create alias before redirection so we dup the right data. */ 5916 if (a->new_key) { 5917 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5918 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5919 bool ok; 5920 5921 new_reg->name = a->new_name; 5922 new_reg->type |= ARM_CP_ALIAS; 5923 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5924 new_reg->access &= PL2_RW | PL3_RW; 5925 5926 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5927 g_assert(ok); 5928 } 5929 5930 src_reg->opaque = dst_reg; 5931 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5932 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5933 if (!src_reg->raw_readfn) { 5934 src_reg->raw_readfn = raw_read; 5935 } 5936 if (!src_reg->raw_writefn) { 5937 src_reg->raw_writefn = raw_write; 5938 } 5939 src_reg->readfn = el2_e2h_read; 5940 src_reg->writefn = el2_e2h_write; 5941 } 5942 } 5943 #endif 5944 5945 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5946 bool isread) 5947 { 5948 int cur_el = arm_current_el(env); 5949 5950 if (cur_el < 2) { 5951 uint64_t hcr = arm_hcr_el2_eff(env); 5952 5953 if (cur_el == 0) { 5954 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5955 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5956 return CP_ACCESS_TRAP_EL2; 5957 } 5958 } else { 5959 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5960 return CP_ACCESS_TRAP; 5961 } 5962 if (hcr & HCR_TID2) { 5963 return CP_ACCESS_TRAP_EL2; 5964 } 5965 } 5966 } else if (hcr & HCR_TID2) { 5967 return CP_ACCESS_TRAP_EL2; 5968 } 5969 } 5970 5971 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5972 return CP_ACCESS_TRAP_EL2; 5973 } 5974 5975 return CP_ACCESS_OK; 5976 } 5977 5978 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5979 uint64_t value) 5980 { 5981 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5982 * read via a bit in OSLSR_EL1. 5983 */ 5984 int oslock; 5985 5986 if (ri->state == ARM_CP_STATE_AA32) { 5987 oslock = (value == 0xC5ACCE55); 5988 } else { 5989 oslock = value & 1; 5990 } 5991 5992 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5993 } 5994 5995 static const ARMCPRegInfo debug_cp_reginfo[] = { 5996 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5997 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5998 * unlike DBGDRAR it is never accessible from EL0. 5999 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6000 * accessor. 6001 */ 6002 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6003 .access = PL0_R, .accessfn = access_tdra, 6004 .type = ARM_CP_CONST, .resetvalue = 0 }, 6005 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6006 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6007 .access = PL1_R, .accessfn = access_tdra, 6008 .type = ARM_CP_CONST, .resetvalue = 0 }, 6009 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6010 .access = PL0_R, .accessfn = access_tdra, 6011 .type = ARM_CP_CONST, .resetvalue = 0 }, 6012 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6013 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6014 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6015 .access = PL1_RW, .accessfn = access_tda, 6016 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6017 .resetvalue = 0 }, 6018 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6019 * We don't implement the configurable EL0 access. 6020 */ 6021 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6022 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6023 .type = ARM_CP_ALIAS, 6024 .access = PL1_R, .accessfn = access_tda, 6025 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6026 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6027 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6028 .access = PL1_W, .type = ARM_CP_NO_RAW, 6029 .accessfn = access_tdosa, 6030 .writefn = oslar_write }, 6031 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6032 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6033 .access = PL1_R, .resetvalue = 10, 6034 .accessfn = access_tdosa, 6035 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6036 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6037 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6038 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6039 .access = PL1_RW, .accessfn = access_tdosa, 6040 .type = ARM_CP_NOP }, 6041 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6042 * implement vector catch debug events yet. 6043 */ 6044 { .name = "DBGVCR", 6045 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6046 .access = PL1_RW, .accessfn = access_tda, 6047 .type = ARM_CP_NOP }, 6048 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6049 * to save and restore a 32-bit guest's DBGVCR) 6050 */ 6051 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6052 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6053 .access = PL2_RW, .accessfn = access_tda, 6054 .type = ARM_CP_NOP }, 6055 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6056 * Channel but Linux may try to access this register. The 32-bit 6057 * alias is DBGDCCINT. 6058 */ 6059 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6060 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6061 .access = PL1_RW, .accessfn = access_tda, 6062 .type = ARM_CP_NOP }, 6063 REGINFO_SENTINEL 6064 }; 6065 6066 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6067 /* 64 bit access versions of the (dummy) debug registers */ 6068 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6069 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6070 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6071 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6072 REGINFO_SENTINEL 6073 }; 6074 6075 /* Return the exception level to which exceptions should be taken 6076 * via SVEAccessTrap. If an exception should be routed through 6077 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6078 * take care of raising that exception. 6079 * C.f. the ARM pseudocode function CheckSVEEnabled. 6080 */ 6081 int sve_exception_el(CPUARMState *env, int el) 6082 { 6083 #ifndef CONFIG_USER_ONLY 6084 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6085 6086 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6087 bool disabled = false; 6088 6089 /* The CPACR.ZEN controls traps to EL1: 6090 * 0, 2 : trap EL0 and EL1 accesses 6091 * 1 : trap only EL0 accesses 6092 * 3 : trap no accesses 6093 */ 6094 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6095 disabled = true; 6096 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6097 disabled = el == 0; 6098 } 6099 if (disabled) { 6100 /* route_to_el2 */ 6101 return hcr_el2 & HCR_TGE ? 2 : 1; 6102 } 6103 6104 /* Check CPACR.FPEN. */ 6105 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6106 disabled = true; 6107 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6108 disabled = el == 0; 6109 } 6110 if (disabled) { 6111 return 0; 6112 } 6113 } 6114 6115 /* CPTR_EL2. Since TZ and TFP are positive, 6116 * they will be zero when EL2 is not present. 6117 */ 6118 if (el <= 2 && !arm_is_secure_below_el3(env)) { 6119 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6120 return 2; 6121 } 6122 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6123 return 0; 6124 } 6125 } 6126 6127 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6128 if (arm_feature(env, ARM_FEATURE_EL3) 6129 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6130 return 3; 6131 } 6132 #endif 6133 return 0; 6134 } 6135 6136 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6137 { 6138 uint32_t end_len; 6139 6140 end_len = start_len &= 0xf; 6141 if (!test_bit(start_len, cpu->sve_vq_map)) { 6142 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6143 assert(end_len < start_len); 6144 } 6145 return end_len; 6146 } 6147 6148 /* 6149 * Given that SVE is enabled, return the vector length for EL. 6150 */ 6151 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6152 { 6153 ARMCPU *cpu = env_archcpu(env); 6154 uint32_t zcr_len = cpu->sve_max_vq - 1; 6155 6156 if (el <= 1) { 6157 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6158 } 6159 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6160 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6161 } 6162 if (arm_feature(env, ARM_FEATURE_EL3)) { 6163 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6164 } 6165 6166 return sve_zcr_get_valid_len(cpu, zcr_len); 6167 } 6168 6169 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6170 uint64_t value) 6171 { 6172 int cur_el = arm_current_el(env); 6173 int old_len = sve_zcr_len_for_el(env, cur_el); 6174 int new_len; 6175 6176 /* Bits other than [3:0] are RAZ/WI. */ 6177 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6178 raw_write(env, ri, value & 0xf); 6179 6180 /* 6181 * Because we arrived here, we know both FP and SVE are enabled; 6182 * otherwise we would have trapped access to the ZCR_ELn register. 6183 */ 6184 new_len = sve_zcr_len_for_el(env, cur_el); 6185 if (new_len < old_len) { 6186 aarch64_sve_narrow_vq(env, new_len + 1); 6187 } 6188 } 6189 6190 static const ARMCPRegInfo zcr_el1_reginfo = { 6191 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6192 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6193 .access = PL1_RW, .type = ARM_CP_SVE, 6194 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6195 .writefn = zcr_write, .raw_writefn = raw_write 6196 }; 6197 6198 static const ARMCPRegInfo zcr_el2_reginfo = { 6199 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6200 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6201 .access = PL2_RW, .type = ARM_CP_SVE, 6202 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6203 .writefn = zcr_write, .raw_writefn = raw_write 6204 }; 6205 6206 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6207 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6208 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6209 .access = PL2_RW, .type = ARM_CP_SVE, 6210 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6211 }; 6212 6213 static const ARMCPRegInfo zcr_el3_reginfo = { 6214 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6215 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6216 .access = PL3_RW, .type = ARM_CP_SVE, 6217 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6218 .writefn = zcr_write, .raw_writefn = raw_write 6219 }; 6220 6221 void hw_watchpoint_update(ARMCPU *cpu, int n) 6222 { 6223 CPUARMState *env = &cpu->env; 6224 vaddr len = 0; 6225 vaddr wvr = env->cp15.dbgwvr[n]; 6226 uint64_t wcr = env->cp15.dbgwcr[n]; 6227 int mask; 6228 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6229 6230 if (env->cpu_watchpoint[n]) { 6231 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6232 env->cpu_watchpoint[n] = NULL; 6233 } 6234 6235 if (!extract64(wcr, 0, 1)) { 6236 /* E bit clear : watchpoint disabled */ 6237 return; 6238 } 6239 6240 switch (extract64(wcr, 3, 2)) { 6241 case 0: 6242 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6243 return; 6244 case 1: 6245 flags |= BP_MEM_READ; 6246 break; 6247 case 2: 6248 flags |= BP_MEM_WRITE; 6249 break; 6250 case 3: 6251 flags |= BP_MEM_ACCESS; 6252 break; 6253 } 6254 6255 /* Attempts to use both MASK and BAS fields simultaneously are 6256 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6257 * thus generating a watchpoint for every byte in the masked region. 6258 */ 6259 mask = extract64(wcr, 24, 4); 6260 if (mask == 1 || mask == 2) { 6261 /* Reserved values of MASK; we must act as if the mask value was 6262 * some non-reserved value, or as if the watchpoint were disabled. 6263 * We choose the latter. 6264 */ 6265 return; 6266 } else if (mask) { 6267 /* Watchpoint covers an aligned area up to 2GB in size */ 6268 len = 1ULL << mask; 6269 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6270 * whether the watchpoint fires when the unmasked bits match; we opt 6271 * to generate the exceptions. 6272 */ 6273 wvr &= ~(len - 1); 6274 } else { 6275 /* Watchpoint covers bytes defined by the byte address select bits */ 6276 int bas = extract64(wcr, 5, 8); 6277 int basstart; 6278 6279 if (extract64(wvr, 2, 1)) { 6280 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6281 * ignored, and BAS[3:0] define which bytes to watch. 6282 */ 6283 bas &= 0xf; 6284 } 6285 6286 if (bas == 0) { 6287 /* This must act as if the watchpoint is disabled */ 6288 return; 6289 } 6290 6291 /* The BAS bits are supposed to be programmed to indicate a contiguous 6292 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6293 * we fire for each byte in the word/doubleword addressed by the WVR. 6294 * We choose to ignore any non-zero bits after the first range of 1s. 6295 */ 6296 basstart = ctz32(bas); 6297 len = cto32(bas >> basstart); 6298 wvr += basstart; 6299 } 6300 6301 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6302 &env->cpu_watchpoint[n]); 6303 } 6304 6305 void hw_watchpoint_update_all(ARMCPU *cpu) 6306 { 6307 int i; 6308 CPUARMState *env = &cpu->env; 6309 6310 /* Completely clear out existing QEMU watchpoints and our array, to 6311 * avoid possible stale entries following migration load. 6312 */ 6313 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6314 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6315 6316 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6317 hw_watchpoint_update(cpu, i); 6318 } 6319 } 6320 6321 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6322 uint64_t value) 6323 { 6324 ARMCPU *cpu = env_archcpu(env); 6325 int i = ri->crm; 6326 6327 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6328 * register reads and behaves as if values written are sign extended. 6329 * Bits [1:0] are RES0. 6330 */ 6331 value = sextract64(value, 0, 49) & ~3ULL; 6332 6333 raw_write(env, ri, value); 6334 hw_watchpoint_update(cpu, i); 6335 } 6336 6337 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6338 uint64_t value) 6339 { 6340 ARMCPU *cpu = env_archcpu(env); 6341 int i = ri->crm; 6342 6343 raw_write(env, ri, value); 6344 hw_watchpoint_update(cpu, i); 6345 } 6346 6347 void hw_breakpoint_update(ARMCPU *cpu, int n) 6348 { 6349 CPUARMState *env = &cpu->env; 6350 uint64_t bvr = env->cp15.dbgbvr[n]; 6351 uint64_t bcr = env->cp15.dbgbcr[n]; 6352 vaddr addr; 6353 int bt; 6354 int flags = BP_CPU; 6355 6356 if (env->cpu_breakpoint[n]) { 6357 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6358 env->cpu_breakpoint[n] = NULL; 6359 } 6360 6361 if (!extract64(bcr, 0, 1)) { 6362 /* E bit clear : watchpoint disabled */ 6363 return; 6364 } 6365 6366 bt = extract64(bcr, 20, 4); 6367 6368 switch (bt) { 6369 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6370 case 5: /* linked address mismatch (reserved if AArch64) */ 6371 qemu_log_mask(LOG_UNIMP, 6372 "arm: address mismatch breakpoint types not implemented\n"); 6373 return; 6374 case 0: /* unlinked address match */ 6375 case 1: /* linked address match */ 6376 { 6377 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6378 * we behave as if the register was sign extended. Bits [1:0] are 6379 * RES0. The BAS field is used to allow setting breakpoints on 16 6380 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6381 * a bp will fire if the addresses covered by the bp and the addresses 6382 * covered by the insn overlap but the insn doesn't start at the 6383 * start of the bp address range. We choose to require the insn and 6384 * the bp to have the same address. The constraints on writing to 6385 * BAS enforced in dbgbcr_write mean we have only four cases: 6386 * 0b0000 => no breakpoint 6387 * 0b0011 => breakpoint on addr 6388 * 0b1100 => breakpoint on addr + 2 6389 * 0b1111 => breakpoint on addr 6390 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6391 */ 6392 int bas = extract64(bcr, 5, 4); 6393 addr = sextract64(bvr, 0, 49) & ~3ULL; 6394 if (bas == 0) { 6395 return; 6396 } 6397 if (bas == 0xc) { 6398 addr += 2; 6399 } 6400 break; 6401 } 6402 case 2: /* unlinked context ID match */ 6403 case 8: /* unlinked VMID match (reserved if no EL2) */ 6404 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6405 qemu_log_mask(LOG_UNIMP, 6406 "arm: unlinked context breakpoint types not implemented\n"); 6407 return; 6408 case 9: /* linked VMID match (reserved if no EL2) */ 6409 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6410 case 3: /* linked context ID match */ 6411 default: 6412 /* We must generate no events for Linked context matches (unless 6413 * they are linked to by some other bp/wp, which is handled in 6414 * updates for the linking bp/wp). We choose to also generate no events 6415 * for reserved values. 6416 */ 6417 return; 6418 } 6419 6420 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6421 } 6422 6423 void hw_breakpoint_update_all(ARMCPU *cpu) 6424 { 6425 int i; 6426 CPUARMState *env = &cpu->env; 6427 6428 /* Completely clear out existing QEMU breakpoints and our array, to 6429 * avoid possible stale entries following migration load. 6430 */ 6431 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6432 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6433 6434 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6435 hw_breakpoint_update(cpu, i); 6436 } 6437 } 6438 6439 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6440 uint64_t value) 6441 { 6442 ARMCPU *cpu = env_archcpu(env); 6443 int i = ri->crm; 6444 6445 raw_write(env, ri, value); 6446 hw_breakpoint_update(cpu, i); 6447 } 6448 6449 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6450 uint64_t value) 6451 { 6452 ARMCPU *cpu = env_archcpu(env); 6453 int i = ri->crm; 6454 6455 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6456 * copy of BAS[0]. 6457 */ 6458 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6459 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6460 6461 raw_write(env, ri, value); 6462 hw_breakpoint_update(cpu, i); 6463 } 6464 6465 static void define_debug_regs(ARMCPU *cpu) 6466 { 6467 /* Define v7 and v8 architectural debug registers. 6468 * These are just dummy implementations for now. 6469 */ 6470 int i; 6471 int wrps, brps, ctx_cmps; 6472 ARMCPRegInfo dbgdidr = { 6473 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 6474 .access = PL0_R, .accessfn = access_tda, 6475 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6476 }; 6477 6478 /* Note that all these register fields hold "number of Xs minus 1". */ 6479 brps = arm_num_brps(cpu); 6480 wrps = arm_num_wrps(cpu); 6481 ctx_cmps = arm_num_ctx_cmps(cpu); 6482 6483 assert(ctx_cmps <= brps); 6484 6485 define_one_arm_cp_reg(cpu, &dbgdidr); 6486 define_arm_cp_regs(cpu, debug_cp_reginfo); 6487 6488 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6489 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6490 } 6491 6492 for (i = 0; i < brps; i++) { 6493 ARMCPRegInfo dbgregs[] = { 6494 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6495 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6496 .access = PL1_RW, .accessfn = access_tda, 6497 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6498 .writefn = dbgbvr_write, .raw_writefn = raw_write 6499 }, 6500 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6501 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6502 .access = PL1_RW, .accessfn = access_tda, 6503 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6504 .writefn = dbgbcr_write, .raw_writefn = raw_write 6505 }, 6506 REGINFO_SENTINEL 6507 }; 6508 define_arm_cp_regs(cpu, dbgregs); 6509 } 6510 6511 for (i = 0; i < wrps; i++) { 6512 ARMCPRegInfo dbgregs[] = { 6513 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6514 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6515 .access = PL1_RW, .accessfn = access_tda, 6516 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6517 .writefn = dbgwvr_write, .raw_writefn = raw_write 6518 }, 6519 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6520 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6521 .access = PL1_RW, .accessfn = access_tda, 6522 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6523 .writefn = dbgwcr_write, .raw_writefn = raw_write 6524 }, 6525 REGINFO_SENTINEL 6526 }; 6527 define_arm_cp_regs(cpu, dbgregs); 6528 } 6529 } 6530 6531 static void define_pmu_regs(ARMCPU *cpu) 6532 { 6533 /* 6534 * v7 performance monitor control register: same implementor 6535 * field as main ID register, and we implement four counters in 6536 * addition to the cycle count register. 6537 */ 6538 unsigned int i, pmcrn = 4; 6539 ARMCPRegInfo pmcr = { 6540 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6541 .access = PL0_RW, 6542 .type = ARM_CP_IO | ARM_CP_ALIAS, 6543 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6544 .accessfn = pmreg_access, .writefn = pmcr_write, 6545 .raw_writefn = raw_write, 6546 }; 6547 ARMCPRegInfo pmcr64 = { 6548 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6549 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6550 .access = PL0_RW, .accessfn = pmreg_access, 6551 .type = ARM_CP_IO, 6552 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6553 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6554 PMCRLC, 6555 .writefn = pmcr_write, .raw_writefn = raw_write, 6556 }; 6557 define_one_arm_cp_reg(cpu, &pmcr); 6558 define_one_arm_cp_reg(cpu, &pmcr64); 6559 for (i = 0; i < pmcrn; i++) { 6560 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6561 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6562 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6563 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6564 ARMCPRegInfo pmev_regs[] = { 6565 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6566 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6567 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6568 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6569 .accessfn = pmreg_access }, 6570 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6571 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6572 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6573 .type = ARM_CP_IO, 6574 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6575 .raw_readfn = pmevcntr_rawread, 6576 .raw_writefn = pmevcntr_rawwrite }, 6577 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6578 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6579 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6580 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6581 .accessfn = pmreg_access }, 6582 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6583 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6584 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6585 .type = ARM_CP_IO, 6586 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6587 .raw_writefn = pmevtyper_rawwrite }, 6588 REGINFO_SENTINEL 6589 }; 6590 define_arm_cp_regs(cpu, pmev_regs); 6591 g_free(pmevcntr_name); 6592 g_free(pmevcntr_el0_name); 6593 g_free(pmevtyper_name); 6594 g_free(pmevtyper_el0_name); 6595 } 6596 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6597 ARMCPRegInfo v81_pmu_regs[] = { 6598 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6599 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6600 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6601 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6602 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6603 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6604 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6605 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6606 REGINFO_SENTINEL 6607 }; 6608 define_arm_cp_regs(cpu, v81_pmu_regs); 6609 } 6610 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6611 static const ARMCPRegInfo v84_pmmir = { 6612 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6613 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6614 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6615 .resetvalue = 0 6616 }; 6617 define_one_arm_cp_reg(cpu, &v84_pmmir); 6618 } 6619 } 6620 6621 /* We don't know until after realize whether there's a GICv3 6622 * attached, and that is what registers the gicv3 sysregs. 6623 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6624 * at runtime. 6625 */ 6626 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6627 { 6628 ARMCPU *cpu = env_archcpu(env); 6629 uint64_t pfr1 = cpu->isar.id_pfr1; 6630 6631 if (env->gicv3state) { 6632 pfr1 |= 1 << 28; 6633 } 6634 return pfr1; 6635 } 6636 6637 #ifndef CONFIG_USER_ONLY 6638 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6639 { 6640 ARMCPU *cpu = env_archcpu(env); 6641 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6642 6643 if (env->gicv3state) { 6644 pfr0 |= 1 << 24; 6645 } 6646 return pfr0; 6647 } 6648 #endif 6649 6650 /* Shared logic between LORID and the rest of the LOR* registers. 6651 * Secure state has already been delt with. 6652 */ 6653 static CPAccessResult access_lor_ns(CPUARMState *env) 6654 { 6655 int el = arm_current_el(env); 6656 6657 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6658 return CP_ACCESS_TRAP_EL2; 6659 } 6660 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6661 return CP_ACCESS_TRAP_EL3; 6662 } 6663 return CP_ACCESS_OK; 6664 } 6665 6666 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 6667 bool isread) 6668 { 6669 if (arm_is_secure_below_el3(env)) { 6670 /* Access ok in secure mode. */ 6671 return CP_ACCESS_OK; 6672 } 6673 return access_lor_ns(env); 6674 } 6675 6676 static CPAccessResult access_lor_other(CPUARMState *env, 6677 const ARMCPRegInfo *ri, bool isread) 6678 { 6679 if (arm_is_secure_below_el3(env)) { 6680 /* Access denied in secure mode. */ 6681 return CP_ACCESS_TRAP; 6682 } 6683 return access_lor_ns(env); 6684 } 6685 6686 /* 6687 * A trivial implementation of ARMv8.1-LOR leaves all of these 6688 * registers fixed at 0, which indicates that there are zero 6689 * supported Limited Ordering regions. 6690 */ 6691 static const ARMCPRegInfo lor_reginfo[] = { 6692 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6693 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6694 .access = PL1_RW, .accessfn = access_lor_other, 6695 .type = ARM_CP_CONST, .resetvalue = 0 }, 6696 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6697 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6698 .access = PL1_RW, .accessfn = access_lor_other, 6699 .type = ARM_CP_CONST, .resetvalue = 0 }, 6700 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6701 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6702 .access = PL1_RW, .accessfn = access_lor_other, 6703 .type = ARM_CP_CONST, .resetvalue = 0 }, 6704 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6705 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6706 .access = PL1_RW, .accessfn = access_lor_other, 6707 .type = ARM_CP_CONST, .resetvalue = 0 }, 6708 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6709 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6710 .access = PL1_R, .accessfn = access_lorid, 6711 .type = ARM_CP_CONST, .resetvalue = 0 }, 6712 REGINFO_SENTINEL 6713 }; 6714 6715 #ifdef TARGET_AARCH64 6716 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6717 bool isread) 6718 { 6719 int el = arm_current_el(env); 6720 6721 if (el < 2 && 6722 arm_feature(env, ARM_FEATURE_EL2) && 6723 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6724 return CP_ACCESS_TRAP_EL2; 6725 } 6726 if (el < 3 && 6727 arm_feature(env, ARM_FEATURE_EL3) && 6728 !(env->cp15.scr_el3 & SCR_APK)) { 6729 return CP_ACCESS_TRAP_EL3; 6730 } 6731 return CP_ACCESS_OK; 6732 } 6733 6734 static const ARMCPRegInfo pauth_reginfo[] = { 6735 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6736 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6737 .access = PL1_RW, .accessfn = access_pauth, 6738 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6739 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6740 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6741 .access = PL1_RW, .accessfn = access_pauth, 6742 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6743 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6744 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6745 .access = PL1_RW, .accessfn = access_pauth, 6746 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6747 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6748 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6749 .access = PL1_RW, .accessfn = access_pauth, 6750 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6751 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6752 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6753 .access = PL1_RW, .accessfn = access_pauth, 6754 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6755 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6756 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6757 .access = PL1_RW, .accessfn = access_pauth, 6758 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6759 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6760 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6761 .access = PL1_RW, .accessfn = access_pauth, 6762 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6763 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6764 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6765 .access = PL1_RW, .accessfn = access_pauth, 6766 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6767 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6768 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6769 .access = PL1_RW, .accessfn = access_pauth, 6770 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6771 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6772 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6773 .access = PL1_RW, .accessfn = access_pauth, 6774 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6775 REGINFO_SENTINEL 6776 }; 6777 6778 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6779 { 6780 Error *err = NULL; 6781 uint64_t ret; 6782 6783 /* Success sets NZCV = 0000. */ 6784 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6785 6786 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6787 /* 6788 * ??? Failed, for unknown reasons in the crypto subsystem. 6789 * The best we can do is log the reason and return the 6790 * timed-out indication to the guest. There is no reason 6791 * we know to expect this failure to be transitory, so the 6792 * guest may well hang retrying the operation. 6793 */ 6794 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6795 ri->name, error_get_pretty(err)); 6796 error_free(err); 6797 6798 env->ZF = 0; /* NZCF = 0100 */ 6799 return 0; 6800 } 6801 return ret; 6802 } 6803 6804 /* We do not support re-seeding, so the two registers operate the same. */ 6805 static const ARMCPRegInfo rndr_reginfo[] = { 6806 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6807 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6808 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6809 .access = PL0_R, .readfn = rndr_readfn }, 6810 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6811 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6812 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6813 .access = PL0_R, .readfn = rndr_readfn }, 6814 REGINFO_SENTINEL 6815 }; 6816 6817 #ifndef CONFIG_USER_ONLY 6818 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6819 uint64_t value) 6820 { 6821 ARMCPU *cpu = env_archcpu(env); 6822 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6823 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6824 uint64_t vaddr_in = (uint64_t) value; 6825 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6826 void *haddr; 6827 int mem_idx = cpu_mmu_index(env, false); 6828 6829 /* This won't be crossing page boundaries */ 6830 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6831 if (haddr) { 6832 6833 ram_addr_t offset; 6834 MemoryRegion *mr; 6835 6836 /* RCU lock is already being held */ 6837 mr = memory_region_from_host(haddr, &offset); 6838 6839 if (mr) { 6840 memory_region_writeback(mr, offset, dline_size); 6841 } 6842 } 6843 } 6844 6845 static const ARMCPRegInfo dcpop_reg[] = { 6846 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6847 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6848 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6849 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6850 REGINFO_SENTINEL 6851 }; 6852 6853 static const ARMCPRegInfo dcpodp_reg[] = { 6854 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6855 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6856 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6857 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6858 REGINFO_SENTINEL 6859 }; 6860 #endif /*CONFIG_USER_ONLY*/ 6861 6862 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6863 bool isread) 6864 { 6865 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6866 return CP_ACCESS_TRAP_EL2; 6867 } 6868 6869 return CP_ACCESS_OK; 6870 } 6871 6872 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6873 bool isread) 6874 { 6875 int el = arm_current_el(env); 6876 6877 if (el < 2 && 6878 arm_feature(env, ARM_FEATURE_EL2) && 6879 !(arm_hcr_el2_eff(env) & HCR_ATA)) { 6880 return CP_ACCESS_TRAP_EL2; 6881 } 6882 if (el < 3 && 6883 arm_feature(env, ARM_FEATURE_EL3) && 6884 !(env->cp15.scr_el3 & SCR_ATA)) { 6885 return CP_ACCESS_TRAP_EL3; 6886 } 6887 return CP_ACCESS_OK; 6888 } 6889 6890 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 6891 { 6892 return env->pstate & PSTATE_TCO; 6893 } 6894 6895 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6896 { 6897 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 6898 } 6899 6900 static const ARMCPRegInfo mte_reginfo[] = { 6901 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 6902 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 6903 .access = PL1_RW, .accessfn = access_mte, 6904 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 6905 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 6906 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 6907 .access = PL1_RW, .accessfn = access_mte, 6908 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 6909 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 6910 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 6911 .access = PL2_RW, .accessfn = access_mte, 6912 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 6913 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 6914 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 6915 .access = PL3_RW, 6916 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 6917 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 6918 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 6919 .access = PL1_RW, .accessfn = access_mte, 6920 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 6921 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 6922 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 6923 .access = PL1_RW, .accessfn = access_mte, 6924 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 6925 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 6926 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 6927 .access = PL1_R, .accessfn = access_aa64_tid5, 6928 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 6929 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6930 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6931 .type = ARM_CP_NO_RAW, 6932 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 6933 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 6934 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 6935 .type = ARM_CP_NOP, .access = PL1_W, 6936 .accessfn = aa64_cacheop_poc_access }, 6937 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 6938 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 6939 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6940 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 6941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 6942 .type = ARM_CP_NOP, .access = PL1_W, 6943 .accessfn = aa64_cacheop_poc_access }, 6944 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 6945 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 6946 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6947 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 6948 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 6949 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6950 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 6951 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 6952 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6953 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 6954 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 6955 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6956 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 6957 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 6958 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6959 REGINFO_SENTINEL 6960 }; 6961 6962 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 6963 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6964 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6965 .type = ARM_CP_CONST, .access = PL0_RW, }, 6966 REGINFO_SENTINEL 6967 }; 6968 6969 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 6970 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 6971 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 6972 .type = ARM_CP_NOP, .access = PL0_W, 6973 .accessfn = aa64_cacheop_poc_access }, 6974 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 6975 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 6976 .type = ARM_CP_NOP, .access = PL0_W, 6977 .accessfn = aa64_cacheop_poc_access }, 6978 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 6979 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 6980 .type = ARM_CP_NOP, .access = PL0_W, 6981 .accessfn = aa64_cacheop_poc_access }, 6982 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 6983 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 6984 .type = ARM_CP_NOP, .access = PL0_W, 6985 .accessfn = aa64_cacheop_poc_access }, 6986 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 6987 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 6988 .type = ARM_CP_NOP, .access = PL0_W, 6989 .accessfn = aa64_cacheop_poc_access }, 6990 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 6991 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 6992 .type = ARM_CP_NOP, .access = PL0_W, 6993 .accessfn = aa64_cacheop_poc_access }, 6994 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 6995 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 6996 .type = ARM_CP_NOP, .access = PL0_W, 6997 .accessfn = aa64_cacheop_poc_access }, 6998 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 6999 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7000 .type = ARM_CP_NOP, .access = PL0_W, 7001 .accessfn = aa64_cacheop_poc_access }, 7002 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7003 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7004 .access = PL0_W, .type = ARM_CP_DC_GVA, 7005 #ifndef CONFIG_USER_ONLY 7006 /* Avoid overhead of an access check that always passes in user-mode */ 7007 .accessfn = aa64_zva_access, 7008 #endif 7009 }, 7010 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7011 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7012 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7013 #ifndef CONFIG_USER_ONLY 7014 /* Avoid overhead of an access check that always passes in user-mode */ 7015 .accessfn = aa64_zva_access, 7016 #endif 7017 }, 7018 REGINFO_SENTINEL 7019 }; 7020 7021 #endif 7022 7023 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7024 bool isread) 7025 { 7026 int el = arm_current_el(env); 7027 7028 if (el == 0) { 7029 uint64_t sctlr = arm_sctlr(env, el); 7030 if (!(sctlr & SCTLR_EnRCTX)) { 7031 return CP_ACCESS_TRAP; 7032 } 7033 } else if (el == 1) { 7034 uint64_t hcr = arm_hcr_el2_eff(env); 7035 if (hcr & HCR_NV) { 7036 return CP_ACCESS_TRAP_EL2; 7037 } 7038 } 7039 return CP_ACCESS_OK; 7040 } 7041 7042 static const ARMCPRegInfo predinv_reginfo[] = { 7043 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7045 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7046 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7047 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7048 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7049 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7051 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7052 /* 7053 * Note the AArch32 opcodes have a different OPC1. 7054 */ 7055 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7056 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7057 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7058 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7059 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7060 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7061 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7062 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7063 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7064 REGINFO_SENTINEL 7065 }; 7066 7067 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7068 { 7069 /* Read the high 32 bits of the current CCSIDR */ 7070 return extract64(ccsidr_read(env, ri), 32, 32); 7071 } 7072 7073 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7074 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7075 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7076 .access = PL1_R, 7077 .accessfn = access_aa64_tid2, 7078 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7079 REGINFO_SENTINEL 7080 }; 7081 7082 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7083 bool isread) 7084 { 7085 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7086 return CP_ACCESS_TRAP_EL2; 7087 } 7088 7089 return CP_ACCESS_OK; 7090 } 7091 7092 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7093 bool isread) 7094 { 7095 if (arm_feature(env, ARM_FEATURE_V8)) { 7096 return access_aa64_tid3(env, ri, isread); 7097 } 7098 7099 return CP_ACCESS_OK; 7100 } 7101 7102 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7103 bool isread) 7104 { 7105 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7106 return CP_ACCESS_TRAP_EL2; 7107 } 7108 7109 return CP_ACCESS_OK; 7110 } 7111 7112 static const ARMCPRegInfo jazelle_regs[] = { 7113 { .name = "JIDR", 7114 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7115 .access = PL1_R, .accessfn = access_jazelle, 7116 .type = ARM_CP_CONST, .resetvalue = 0 }, 7117 { .name = "JOSCR", 7118 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7119 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7120 { .name = "JMCR", 7121 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7122 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7123 REGINFO_SENTINEL 7124 }; 7125 7126 static const ARMCPRegInfo vhe_reginfo[] = { 7127 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7128 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7129 .access = PL2_RW, 7130 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7131 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7132 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7133 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7134 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7135 #ifndef CONFIG_USER_ONLY 7136 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7137 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7138 .fieldoffset = 7139 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7140 .type = ARM_CP_IO, .access = PL2_RW, 7141 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7142 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7143 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7144 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7145 .resetfn = gt_hv_timer_reset, 7146 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7147 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7148 .type = ARM_CP_IO, 7149 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7150 .access = PL2_RW, 7151 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7152 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7153 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7154 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7155 .type = ARM_CP_IO | ARM_CP_ALIAS, 7156 .access = PL2_RW, .accessfn = e2h_access, 7157 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7158 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7159 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7160 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7161 .type = ARM_CP_IO | ARM_CP_ALIAS, 7162 .access = PL2_RW, .accessfn = e2h_access, 7163 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7164 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7165 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7166 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7167 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7168 .access = PL2_RW, .accessfn = e2h_access, 7169 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7170 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7171 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7172 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7173 .access = PL2_RW, .accessfn = e2h_access, 7174 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7175 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7176 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7177 .type = ARM_CP_IO | ARM_CP_ALIAS, 7178 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7179 .access = PL2_RW, .accessfn = e2h_access, 7180 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7181 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7182 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7183 .type = ARM_CP_IO | ARM_CP_ALIAS, 7184 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7185 .access = PL2_RW, .accessfn = e2h_access, 7186 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7187 #endif 7188 REGINFO_SENTINEL 7189 }; 7190 7191 #ifndef CONFIG_USER_ONLY 7192 static const ARMCPRegInfo ats1e1_reginfo[] = { 7193 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7194 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7195 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7196 .writefn = ats_write64 }, 7197 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7198 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7199 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7200 .writefn = ats_write64 }, 7201 REGINFO_SENTINEL 7202 }; 7203 7204 static const ARMCPRegInfo ats1cp_reginfo[] = { 7205 { .name = "ATS1CPRP", 7206 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7207 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7208 .writefn = ats_write }, 7209 { .name = "ATS1CPWP", 7210 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7211 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7212 .writefn = ats_write }, 7213 REGINFO_SENTINEL 7214 }; 7215 #endif 7216 7217 /* 7218 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7219 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7220 * is non-zero, which is never for ARMv7, optionally in ARMv8 7221 * and mandatorily for ARMv8.2 and up. 7222 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7223 * implementation is RAZ/WI we can ignore this detail, as we 7224 * do for ACTLR. 7225 */ 7226 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7227 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7228 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7229 .access = PL1_RW, .accessfn = access_tacr, 7230 .type = ARM_CP_CONST, .resetvalue = 0 }, 7231 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7232 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7233 .access = PL2_RW, .type = ARM_CP_CONST, 7234 .resetvalue = 0 }, 7235 REGINFO_SENTINEL 7236 }; 7237 7238 void register_cp_regs_for_features(ARMCPU *cpu) 7239 { 7240 /* Register all the coprocessor registers based on feature bits */ 7241 CPUARMState *env = &cpu->env; 7242 if (arm_feature(env, ARM_FEATURE_M)) { 7243 /* M profile has no coprocessor registers */ 7244 return; 7245 } 7246 7247 define_arm_cp_regs(cpu, cp_reginfo); 7248 if (!arm_feature(env, ARM_FEATURE_V8)) { 7249 /* Must go early as it is full of wildcards that may be 7250 * overridden by later definitions. 7251 */ 7252 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7253 } 7254 7255 if (arm_feature(env, ARM_FEATURE_V6)) { 7256 /* The ID registers all have impdef reset values */ 7257 ARMCPRegInfo v6_idregs[] = { 7258 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7260 .access = PL1_R, .type = ARM_CP_CONST, 7261 .accessfn = access_aa32_tid3, 7262 .resetvalue = cpu->isar.id_pfr0 }, 7263 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7264 * the value of the GIC field until after we define these regs. 7265 */ 7266 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7267 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7268 .access = PL1_R, .type = ARM_CP_NO_RAW, 7269 .accessfn = access_aa32_tid3, 7270 .readfn = id_pfr1_read, 7271 .writefn = arm_cp_write_ignore }, 7272 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7274 .access = PL1_R, .type = ARM_CP_CONST, 7275 .accessfn = access_aa32_tid3, 7276 .resetvalue = cpu->isar.id_dfr0 }, 7277 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7278 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7279 .access = PL1_R, .type = ARM_CP_CONST, 7280 .accessfn = access_aa32_tid3, 7281 .resetvalue = cpu->id_afr0 }, 7282 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7284 .access = PL1_R, .type = ARM_CP_CONST, 7285 .accessfn = access_aa32_tid3, 7286 .resetvalue = cpu->isar.id_mmfr0 }, 7287 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7289 .access = PL1_R, .type = ARM_CP_CONST, 7290 .accessfn = access_aa32_tid3, 7291 .resetvalue = cpu->isar.id_mmfr1 }, 7292 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7294 .access = PL1_R, .type = ARM_CP_CONST, 7295 .accessfn = access_aa32_tid3, 7296 .resetvalue = cpu->isar.id_mmfr2 }, 7297 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7298 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7299 .access = PL1_R, .type = ARM_CP_CONST, 7300 .accessfn = access_aa32_tid3, 7301 .resetvalue = cpu->isar.id_mmfr3 }, 7302 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7303 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7304 .access = PL1_R, .type = ARM_CP_CONST, 7305 .accessfn = access_aa32_tid3, 7306 .resetvalue = cpu->isar.id_isar0 }, 7307 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7309 .access = PL1_R, .type = ARM_CP_CONST, 7310 .accessfn = access_aa32_tid3, 7311 .resetvalue = cpu->isar.id_isar1 }, 7312 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7313 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7314 .access = PL1_R, .type = ARM_CP_CONST, 7315 .accessfn = access_aa32_tid3, 7316 .resetvalue = cpu->isar.id_isar2 }, 7317 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7318 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7319 .access = PL1_R, .type = ARM_CP_CONST, 7320 .accessfn = access_aa32_tid3, 7321 .resetvalue = cpu->isar.id_isar3 }, 7322 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7323 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7324 .access = PL1_R, .type = ARM_CP_CONST, 7325 .accessfn = access_aa32_tid3, 7326 .resetvalue = cpu->isar.id_isar4 }, 7327 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7329 .access = PL1_R, .type = ARM_CP_CONST, 7330 .accessfn = access_aa32_tid3, 7331 .resetvalue = cpu->isar.id_isar5 }, 7332 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7334 .access = PL1_R, .type = ARM_CP_CONST, 7335 .accessfn = access_aa32_tid3, 7336 .resetvalue = cpu->isar.id_mmfr4 }, 7337 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7338 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7339 .access = PL1_R, .type = ARM_CP_CONST, 7340 .accessfn = access_aa32_tid3, 7341 .resetvalue = cpu->isar.id_isar6 }, 7342 REGINFO_SENTINEL 7343 }; 7344 define_arm_cp_regs(cpu, v6_idregs); 7345 define_arm_cp_regs(cpu, v6_cp_reginfo); 7346 } else { 7347 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7348 } 7349 if (arm_feature(env, ARM_FEATURE_V6K)) { 7350 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7351 } 7352 if (arm_feature(env, ARM_FEATURE_V7MP) && 7353 !arm_feature(env, ARM_FEATURE_PMSA)) { 7354 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7355 } 7356 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7357 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7358 } 7359 if (arm_feature(env, ARM_FEATURE_V7)) { 7360 ARMCPRegInfo clidr = { 7361 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7362 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7363 .access = PL1_R, .type = ARM_CP_CONST, 7364 .accessfn = access_aa64_tid2, 7365 .resetvalue = cpu->clidr 7366 }; 7367 define_one_arm_cp_reg(cpu, &clidr); 7368 define_arm_cp_regs(cpu, v7_cp_reginfo); 7369 define_debug_regs(cpu); 7370 define_pmu_regs(cpu); 7371 } else { 7372 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7373 } 7374 if (arm_feature(env, ARM_FEATURE_V8)) { 7375 /* AArch64 ID registers, which all have impdef reset values. 7376 * Note that within the ID register ranges the unused slots 7377 * must all RAZ, not UNDEF; future architecture versions may 7378 * define new registers here. 7379 */ 7380 ARMCPRegInfo v8_idregs[] = { 7381 /* 7382 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7383 * emulation because we don't know the right value for the 7384 * GIC field until after we define these regs. 7385 */ 7386 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7388 .access = PL1_R, 7389 #ifdef CONFIG_USER_ONLY 7390 .type = ARM_CP_CONST, 7391 .resetvalue = cpu->isar.id_aa64pfr0 7392 #else 7393 .type = ARM_CP_NO_RAW, 7394 .accessfn = access_aa64_tid3, 7395 .readfn = id_aa64pfr0_read, 7396 .writefn = arm_cp_write_ignore 7397 #endif 7398 }, 7399 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7401 .access = PL1_R, .type = ARM_CP_CONST, 7402 .accessfn = access_aa64_tid3, 7403 .resetvalue = cpu->isar.id_aa64pfr1}, 7404 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7405 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7406 .access = PL1_R, .type = ARM_CP_CONST, 7407 .accessfn = access_aa64_tid3, 7408 .resetvalue = 0 }, 7409 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7411 .access = PL1_R, .type = ARM_CP_CONST, 7412 .accessfn = access_aa64_tid3, 7413 .resetvalue = 0 }, 7414 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7416 .access = PL1_R, .type = ARM_CP_CONST, 7417 .accessfn = access_aa64_tid3, 7418 /* At present, only SVEver == 0 is defined anyway. */ 7419 .resetvalue = 0 }, 7420 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7422 .access = PL1_R, .type = ARM_CP_CONST, 7423 .accessfn = access_aa64_tid3, 7424 .resetvalue = 0 }, 7425 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7427 .access = PL1_R, .type = ARM_CP_CONST, 7428 .accessfn = access_aa64_tid3, 7429 .resetvalue = 0 }, 7430 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7432 .access = PL1_R, .type = ARM_CP_CONST, 7433 .accessfn = access_aa64_tid3, 7434 .resetvalue = 0 }, 7435 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7437 .access = PL1_R, .type = ARM_CP_CONST, 7438 .accessfn = access_aa64_tid3, 7439 .resetvalue = cpu->isar.id_aa64dfr0 }, 7440 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7441 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7442 .access = PL1_R, .type = ARM_CP_CONST, 7443 .accessfn = access_aa64_tid3, 7444 .resetvalue = cpu->isar.id_aa64dfr1 }, 7445 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7446 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7447 .access = PL1_R, .type = ARM_CP_CONST, 7448 .accessfn = access_aa64_tid3, 7449 .resetvalue = 0 }, 7450 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7452 .access = PL1_R, .type = ARM_CP_CONST, 7453 .accessfn = access_aa64_tid3, 7454 .resetvalue = 0 }, 7455 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7457 .access = PL1_R, .type = ARM_CP_CONST, 7458 .accessfn = access_aa64_tid3, 7459 .resetvalue = cpu->id_aa64afr0 }, 7460 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7461 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7462 .access = PL1_R, .type = ARM_CP_CONST, 7463 .accessfn = access_aa64_tid3, 7464 .resetvalue = cpu->id_aa64afr1 }, 7465 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7467 .access = PL1_R, .type = ARM_CP_CONST, 7468 .accessfn = access_aa64_tid3, 7469 .resetvalue = 0 }, 7470 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7471 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7472 .access = PL1_R, .type = ARM_CP_CONST, 7473 .accessfn = access_aa64_tid3, 7474 .resetvalue = 0 }, 7475 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7477 .access = PL1_R, .type = ARM_CP_CONST, 7478 .accessfn = access_aa64_tid3, 7479 .resetvalue = cpu->isar.id_aa64isar0 }, 7480 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7481 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7482 .access = PL1_R, .type = ARM_CP_CONST, 7483 .accessfn = access_aa64_tid3, 7484 .resetvalue = cpu->isar.id_aa64isar1 }, 7485 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7486 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7487 .access = PL1_R, .type = ARM_CP_CONST, 7488 .accessfn = access_aa64_tid3, 7489 .resetvalue = 0 }, 7490 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7492 .access = PL1_R, .type = ARM_CP_CONST, 7493 .accessfn = access_aa64_tid3, 7494 .resetvalue = 0 }, 7495 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7497 .access = PL1_R, .type = ARM_CP_CONST, 7498 .accessfn = access_aa64_tid3, 7499 .resetvalue = 0 }, 7500 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7501 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7502 .access = PL1_R, .type = ARM_CP_CONST, 7503 .accessfn = access_aa64_tid3, 7504 .resetvalue = 0 }, 7505 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7506 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7507 .access = PL1_R, .type = ARM_CP_CONST, 7508 .accessfn = access_aa64_tid3, 7509 .resetvalue = 0 }, 7510 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7512 .access = PL1_R, .type = ARM_CP_CONST, 7513 .accessfn = access_aa64_tid3, 7514 .resetvalue = 0 }, 7515 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7517 .access = PL1_R, .type = ARM_CP_CONST, 7518 .accessfn = access_aa64_tid3, 7519 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7520 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7522 .access = PL1_R, .type = ARM_CP_CONST, 7523 .accessfn = access_aa64_tid3, 7524 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7525 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7526 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7527 .access = PL1_R, .type = ARM_CP_CONST, 7528 .accessfn = access_aa64_tid3, 7529 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7530 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7532 .access = PL1_R, .type = ARM_CP_CONST, 7533 .accessfn = access_aa64_tid3, 7534 .resetvalue = 0 }, 7535 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7537 .access = PL1_R, .type = ARM_CP_CONST, 7538 .accessfn = access_aa64_tid3, 7539 .resetvalue = 0 }, 7540 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7541 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7542 .access = PL1_R, .type = ARM_CP_CONST, 7543 .accessfn = access_aa64_tid3, 7544 .resetvalue = 0 }, 7545 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7546 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7547 .access = PL1_R, .type = ARM_CP_CONST, 7548 .accessfn = access_aa64_tid3, 7549 .resetvalue = 0 }, 7550 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7552 .access = PL1_R, .type = ARM_CP_CONST, 7553 .accessfn = access_aa64_tid3, 7554 .resetvalue = 0 }, 7555 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7557 .access = PL1_R, .type = ARM_CP_CONST, 7558 .accessfn = access_aa64_tid3, 7559 .resetvalue = cpu->isar.mvfr0 }, 7560 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7562 .access = PL1_R, .type = ARM_CP_CONST, 7563 .accessfn = access_aa64_tid3, 7564 .resetvalue = cpu->isar.mvfr1 }, 7565 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7567 .access = PL1_R, .type = ARM_CP_CONST, 7568 .accessfn = access_aa64_tid3, 7569 .resetvalue = cpu->isar.mvfr2 }, 7570 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7572 .access = PL1_R, .type = ARM_CP_CONST, 7573 .accessfn = access_aa64_tid3, 7574 .resetvalue = 0 }, 7575 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7577 .access = PL1_R, .type = ARM_CP_CONST, 7578 .accessfn = access_aa64_tid3, 7579 .resetvalue = 0 }, 7580 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7582 .access = PL1_R, .type = ARM_CP_CONST, 7583 .accessfn = access_aa64_tid3, 7584 .resetvalue = 0 }, 7585 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7587 .access = PL1_R, .type = ARM_CP_CONST, 7588 .accessfn = access_aa64_tid3, 7589 .resetvalue = 0 }, 7590 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7592 .access = PL1_R, .type = ARM_CP_CONST, 7593 .accessfn = access_aa64_tid3, 7594 .resetvalue = 0 }, 7595 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7596 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7597 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7598 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7599 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7600 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7601 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7602 .resetvalue = cpu->pmceid0 }, 7603 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7604 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7605 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7606 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7607 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7608 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7609 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7610 .resetvalue = cpu->pmceid1 }, 7611 REGINFO_SENTINEL 7612 }; 7613 #ifdef CONFIG_USER_ONLY 7614 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7615 { .name = "ID_AA64PFR0_EL1", 7616 .exported_bits = 0x000f000f00ff0000, 7617 .fixed_bits = 0x0000000000000011 }, 7618 { .name = "ID_AA64PFR1_EL1", 7619 .exported_bits = 0x00000000000000f0 }, 7620 { .name = "ID_AA64PFR*_EL1_RESERVED", 7621 .is_glob = true }, 7622 { .name = "ID_AA64ZFR0_EL1" }, 7623 { .name = "ID_AA64MMFR0_EL1", 7624 .fixed_bits = 0x00000000ff000000 }, 7625 { .name = "ID_AA64MMFR1_EL1" }, 7626 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7627 .is_glob = true }, 7628 { .name = "ID_AA64DFR0_EL1", 7629 .fixed_bits = 0x0000000000000006 }, 7630 { .name = "ID_AA64DFR1_EL1" }, 7631 { .name = "ID_AA64DFR*_EL1_RESERVED", 7632 .is_glob = true }, 7633 { .name = "ID_AA64AFR*", 7634 .is_glob = true }, 7635 { .name = "ID_AA64ISAR0_EL1", 7636 .exported_bits = 0x00fffffff0fffff0 }, 7637 { .name = "ID_AA64ISAR1_EL1", 7638 .exported_bits = 0x000000f0ffffffff }, 7639 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7640 .is_glob = true }, 7641 REGUSERINFO_SENTINEL 7642 }; 7643 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7644 #endif 7645 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7646 if (!arm_feature(env, ARM_FEATURE_EL3) && 7647 !arm_feature(env, ARM_FEATURE_EL2)) { 7648 ARMCPRegInfo rvbar = { 7649 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7650 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7651 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7652 }; 7653 define_one_arm_cp_reg(cpu, &rvbar); 7654 } 7655 define_arm_cp_regs(cpu, v8_idregs); 7656 define_arm_cp_regs(cpu, v8_cp_reginfo); 7657 } 7658 if (arm_feature(env, ARM_FEATURE_EL2)) { 7659 uint64_t vmpidr_def = mpidr_read_val(env); 7660 ARMCPRegInfo vpidr_regs[] = { 7661 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7662 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7663 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7664 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7665 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7666 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7667 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7668 .access = PL2_RW, .resetvalue = cpu->midr, 7669 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7670 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7671 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7672 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7673 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7674 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7675 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7676 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7677 .access = PL2_RW, 7678 .resetvalue = vmpidr_def, 7679 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7680 REGINFO_SENTINEL 7681 }; 7682 define_arm_cp_regs(cpu, vpidr_regs); 7683 define_arm_cp_regs(cpu, el2_cp_reginfo); 7684 if (arm_feature(env, ARM_FEATURE_V8)) { 7685 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7686 } 7687 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7688 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7689 ARMCPRegInfo rvbar = { 7690 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7691 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7692 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7693 }; 7694 define_one_arm_cp_reg(cpu, &rvbar); 7695 } 7696 } else { 7697 /* If EL2 is missing but higher ELs are enabled, we need to 7698 * register the no_el2 reginfos. 7699 */ 7700 if (arm_feature(env, ARM_FEATURE_EL3)) { 7701 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7702 * of MIDR_EL1 and MPIDR_EL1. 7703 */ 7704 ARMCPRegInfo vpidr_regs[] = { 7705 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7706 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7707 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7708 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7709 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7710 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7711 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7712 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7713 .type = ARM_CP_NO_RAW, 7714 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7715 REGINFO_SENTINEL 7716 }; 7717 define_arm_cp_regs(cpu, vpidr_regs); 7718 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7719 if (arm_feature(env, ARM_FEATURE_V8)) { 7720 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7721 } 7722 } 7723 } 7724 if (arm_feature(env, ARM_FEATURE_EL3)) { 7725 define_arm_cp_regs(cpu, el3_cp_reginfo); 7726 ARMCPRegInfo el3_regs[] = { 7727 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7728 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7729 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7730 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7732 .access = PL3_RW, 7733 .raw_writefn = raw_write, .writefn = sctlr_write, 7734 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7735 .resetvalue = cpu->reset_sctlr }, 7736 REGINFO_SENTINEL 7737 }; 7738 7739 define_arm_cp_regs(cpu, el3_regs); 7740 } 7741 /* The behaviour of NSACR is sufficiently various that we don't 7742 * try to describe it in a single reginfo: 7743 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7744 * reads as constant 0xc00 from NS EL1 and NS EL2 7745 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7746 * if v7 without EL3, register doesn't exist 7747 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7748 */ 7749 if (arm_feature(env, ARM_FEATURE_EL3)) { 7750 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7751 ARMCPRegInfo nsacr = { 7752 .name = "NSACR", .type = ARM_CP_CONST, 7753 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7754 .access = PL1_RW, .accessfn = nsacr_access, 7755 .resetvalue = 0xc00 7756 }; 7757 define_one_arm_cp_reg(cpu, &nsacr); 7758 } else { 7759 ARMCPRegInfo nsacr = { 7760 .name = "NSACR", 7761 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7762 .access = PL3_RW | PL1_R, 7763 .resetvalue = 0, 7764 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7765 }; 7766 define_one_arm_cp_reg(cpu, &nsacr); 7767 } 7768 } else { 7769 if (arm_feature(env, ARM_FEATURE_V8)) { 7770 ARMCPRegInfo nsacr = { 7771 .name = "NSACR", .type = ARM_CP_CONST, 7772 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7773 .access = PL1_R, 7774 .resetvalue = 0xc00 7775 }; 7776 define_one_arm_cp_reg(cpu, &nsacr); 7777 } 7778 } 7779 7780 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7781 if (arm_feature(env, ARM_FEATURE_V6)) { 7782 /* PMSAv6 not implemented */ 7783 assert(arm_feature(env, ARM_FEATURE_V7)); 7784 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7785 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7786 } else { 7787 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7788 } 7789 } else { 7790 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7791 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7792 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7793 if (cpu_isar_feature(aa32_hpd, cpu)) { 7794 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7795 } 7796 } 7797 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7798 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7799 } 7800 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7801 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7802 } 7803 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7804 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7805 } 7806 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7807 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7808 } 7809 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7810 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7811 } 7812 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7813 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7814 } 7815 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7816 define_arm_cp_regs(cpu, omap_cp_reginfo); 7817 } 7818 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7819 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7820 } 7821 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7822 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7823 } 7824 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7825 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7826 } 7827 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7828 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7829 } 7830 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7831 define_arm_cp_regs(cpu, jazelle_regs); 7832 } 7833 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7834 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7835 * be read-only (ie write causes UNDEF exception). 7836 */ 7837 { 7838 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7839 /* Pre-v8 MIDR space. 7840 * Note that the MIDR isn't a simple constant register because 7841 * of the TI925 behaviour where writes to another register can 7842 * cause the MIDR value to change. 7843 * 7844 * Unimplemented registers in the c15 0 0 0 space default to 7845 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7846 * and friends override accordingly. 7847 */ 7848 { .name = "MIDR", 7849 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7850 .access = PL1_R, .resetvalue = cpu->midr, 7851 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7852 .readfn = midr_read, 7853 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7854 .type = ARM_CP_OVERRIDE }, 7855 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7856 { .name = "DUMMY", 7857 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7858 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7859 { .name = "DUMMY", 7860 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7861 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7862 { .name = "DUMMY", 7863 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7864 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7865 { .name = "DUMMY", 7866 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7867 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7868 { .name = "DUMMY", 7869 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7870 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7871 REGINFO_SENTINEL 7872 }; 7873 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7874 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7875 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7876 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7877 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7878 .readfn = midr_read }, 7879 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7880 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7881 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7882 .access = PL1_R, .resetvalue = cpu->midr }, 7883 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7884 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7885 .access = PL1_R, .resetvalue = cpu->midr }, 7886 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7888 .access = PL1_R, 7889 .accessfn = access_aa64_tid1, 7890 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 7891 REGINFO_SENTINEL 7892 }; 7893 ARMCPRegInfo id_cp_reginfo[] = { 7894 /* These are common to v8 and pre-v8 */ 7895 { .name = "CTR", 7896 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 7897 .access = PL1_R, .accessfn = ctr_el0_access, 7898 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7899 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 7900 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 7901 .access = PL0_R, .accessfn = ctr_el0_access, 7902 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7903 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 7904 { .name = "TCMTR", 7905 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 7906 .access = PL1_R, 7907 .accessfn = access_aa32_tid1, 7908 .type = ARM_CP_CONST, .resetvalue = 0 }, 7909 REGINFO_SENTINEL 7910 }; 7911 /* TLBTR is specific to VMSA */ 7912 ARMCPRegInfo id_tlbtr_reginfo = { 7913 .name = "TLBTR", 7914 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 7915 .access = PL1_R, 7916 .accessfn = access_aa32_tid1, 7917 .type = ARM_CP_CONST, .resetvalue = 0, 7918 }; 7919 /* MPUIR is specific to PMSA V6+ */ 7920 ARMCPRegInfo id_mpuir_reginfo = { 7921 .name = "MPUIR", 7922 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7923 .access = PL1_R, .type = ARM_CP_CONST, 7924 .resetvalue = cpu->pmsav7_dregion << 8 7925 }; 7926 ARMCPRegInfo crn0_wi_reginfo = { 7927 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 7928 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 7929 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 7930 }; 7931 #ifdef CONFIG_USER_ONLY 7932 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 7933 { .name = "MIDR_EL1", 7934 .exported_bits = 0x00000000ffffffff }, 7935 { .name = "REVIDR_EL1" }, 7936 REGUSERINFO_SENTINEL 7937 }; 7938 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 7939 #endif 7940 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 7941 arm_feature(env, ARM_FEATURE_STRONGARM)) { 7942 ARMCPRegInfo *r; 7943 /* Register the blanket "writes ignored" value first to cover the 7944 * whole space. Then update the specific ID registers to allow write 7945 * access, so that they ignore writes rather than causing them to 7946 * UNDEF. 7947 */ 7948 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 7949 for (r = id_pre_v8_midr_cp_reginfo; 7950 r->type != ARM_CP_SENTINEL; r++) { 7951 r->access = PL1_RW; 7952 } 7953 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 7954 r->access = PL1_RW; 7955 } 7956 id_mpuir_reginfo.access = PL1_RW; 7957 id_tlbtr_reginfo.access = PL1_RW; 7958 } 7959 if (arm_feature(env, ARM_FEATURE_V8)) { 7960 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 7961 } else { 7962 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 7963 } 7964 define_arm_cp_regs(cpu, id_cp_reginfo); 7965 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 7966 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 7967 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7968 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 7969 } 7970 } 7971 7972 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 7973 ARMCPRegInfo mpidr_cp_reginfo[] = { 7974 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 7975 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 7976 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 7977 REGINFO_SENTINEL 7978 }; 7979 #ifdef CONFIG_USER_ONLY 7980 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 7981 { .name = "MPIDR_EL1", 7982 .fixed_bits = 0x0000000080000000 }, 7983 REGUSERINFO_SENTINEL 7984 }; 7985 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 7986 #endif 7987 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 7988 } 7989 7990 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 7991 ARMCPRegInfo auxcr_reginfo[] = { 7992 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 7993 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 7994 .access = PL1_RW, .accessfn = access_tacr, 7995 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 7996 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 7997 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 7998 .access = PL2_RW, .type = ARM_CP_CONST, 7999 .resetvalue = 0 }, 8000 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8001 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8002 .access = PL3_RW, .type = ARM_CP_CONST, 8003 .resetvalue = 0 }, 8004 REGINFO_SENTINEL 8005 }; 8006 define_arm_cp_regs(cpu, auxcr_reginfo); 8007 if (cpu_isar_feature(aa32_ac2, cpu)) { 8008 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8009 } 8010 } 8011 8012 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8013 /* 8014 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8015 * There are two flavours: 8016 * (1) older 32-bit only cores have a simple 32-bit CBAR 8017 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8018 * 32-bit register visible to AArch32 at a different encoding 8019 * to the "flavour 1" register and with the bits rearranged to 8020 * be able to squash a 64-bit address into the 32-bit view. 8021 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8022 * in future if we support AArch32-only configs of some of the 8023 * AArch64 cores we might need to add a specific feature flag 8024 * to indicate cores with "flavour 2" CBAR. 8025 */ 8026 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8027 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8028 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8029 | extract64(cpu->reset_cbar, 32, 12); 8030 ARMCPRegInfo cbar_reginfo[] = { 8031 { .name = "CBAR", 8032 .type = ARM_CP_CONST, 8033 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8034 .access = PL1_R, .resetvalue = cbar32 }, 8035 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8036 .type = ARM_CP_CONST, 8037 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8038 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8039 REGINFO_SENTINEL 8040 }; 8041 /* We don't implement a r/w 64 bit CBAR currently */ 8042 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8043 define_arm_cp_regs(cpu, cbar_reginfo); 8044 } else { 8045 ARMCPRegInfo cbar = { 8046 .name = "CBAR", 8047 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8048 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8049 .fieldoffset = offsetof(CPUARMState, 8050 cp15.c15_config_base_address) 8051 }; 8052 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8053 cbar.access = PL1_R; 8054 cbar.fieldoffset = 0; 8055 cbar.type = ARM_CP_CONST; 8056 } 8057 define_one_arm_cp_reg(cpu, &cbar); 8058 } 8059 } 8060 8061 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8062 ARMCPRegInfo vbar_cp_reginfo[] = { 8063 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8064 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8065 .access = PL1_RW, .writefn = vbar_write, 8066 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8067 offsetof(CPUARMState, cp15.vbar_ns) }, 8068 .resetvalue = 0 }, 8069 REGINFO_SENTINEL 8070 }; 8071 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8072 } 8073 8074 /* Generic registers whose values depend on the implementation */ 8075 { 8076 ARMCPRegInfo sctlr = { 8077 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8078 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8079 .access = PL1_RW, .accessfn = access_tvm_trvm, 8080 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8081 offsetof(CPUARMState, cp15.sctlr_ns) }, 8082 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8083 .raw_writefn = raw_write, 8084 }; 8085 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8086 /* Normally we would always end the TB on an SCTLR write, but Linux 8087 * arch/arm/mach-pxa/sleep.S expects two instructions following 8088 * an MMU enable to execute from cache. Imitate this behaviour. 8089 */ 8090 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8091 } 8092 define_one_arm_cp_reg(cpu, &sctlr); 8093 } 8094 8095 if (cpu_isar_feature(aa64_lor, cpu)) { 8096 define_arm_cp_regs(cpu, lor_reginfo); 8097 } 8098 if (cpu_isar_feature(aa64_pan, cpu)) { 8099 define_one_arm_cp_reg(cpu, &pan_reginfo); 8100 } 8101 #ifndef CONFIG_USER_ONLY 8102 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8103 define_arm_cp_regs(cpu, ats1e1_reginfo); 8104 } 8105 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8106 define_arm_cp_regs(cpu, ats1cp_reginfo); 8107 } 8108 #endif 8109 if (cpu_isar_feature(aa64_uao, cpu)) { 8110 define_one_arm_cp_reg(cpu, &uao_reginfo); 8111 } 8112 8113 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8114 define_arm_cp_regs(cpu, vhe_reginfo); 8115 } 8116 8117 if (cpu_isar_feature(aa64_sve, cpu)) { 8118 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8119 if (arm_feature(env, ARM_FEATURE_EL2)) { 8120 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8121 } else { 8122 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8123 } 8124 if (arm_feature(env, ARM_FEATURE_EL3)) { 8125 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8126 } 8127 } 8128 8129 #ifdef TARGET_AARCH64 8130 if (cpu_isar_feature(aa64_pauth, cpu)) { 8131 define_arm_cp_regs(cpu, pauth_reginfo); 8132 } 8133 if (cpu_isar_feature(aa64_rndr, cpu)) { 8134 define_arm_cp_regs(cpu, rndr_reginfo); 8135 } 8136 #ifndef CONFIG_USER_ONLY 8137 /* Data Cache clean instructions up to PoP */ 8138 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8139 define_one_arm_cp_reg(cpu, dcpop_reg); 8140 8141 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8142 define_one_arm_cp_reg(cpu, dcpodp_reg); 8143 } 8144 } 8145 #endif /*CONFIG_USER_ONLY*/ 8146 8147 /* 8148 * If full MTE is enabled, add all of the system registers. 8149 * If only "instructions available at EL0" are enabled, 8150 * then define only a RAZ/WI version of PSTATE.TCO. 8151 */ 8152 if (cpu_isar_feature(aa64_mte, cpu)) { 8153 define_arm_cp_regs(cpu, mte_reginfo); 8154 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8155 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8156 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8157 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8158 } 8159 #endif 8160 8161 if (cpu_isar_feature(any_predinv, cpu)) { 8162 define_arm_cp_regs(cpu, predinv_reginfo); 8163 } 8164 8165 if (cpu_isar_feature(any_ccidx, cpu)) { 8166 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8167 } 8168 8169 #ifndef CONFIG_USER_ONLY 8170 /* 8171 * Register redirections and aliases must be done last, 8172 * after the registers from the other extensions have been defined. 8173 */ 8174 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8175 define_arm_vh_e2h_redirects_aliases(cpu); 8176 } 8177 #endif 8178 } 8179 8180 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8181 { 8182 CPUState *cs = CPU(cpu); 8183 CPUARMState *env = &cpu->env; 8184 8185 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8186 /* 8187 * The lower part of each SVE register aliases to the FPU 8188 * registers so we don't need to include both. 8189 */ 8190 #ifdef TARGET_AARCH64 8191 if (isar_feature_aa64_sve(&cpu->isar)) { 8192 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8193 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8194 "sve-registers.xml", 0); 8195 } else 8196 #endif 8197 { 8198 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8199 aarch64_fpu_gdb_set_reg, 8200 34, "aarch64-fpu.xml", 0); 8201 } 8202 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8203 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8204 51, "arm-neon.xml", 0); 8205 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8206 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8207 35, "arm-vfp3.xml", 0); 8208 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8209 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8210 19, "arm-vfp.xml", 0); 8211 } 8212 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8213 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8214 "system-registers.xml", 0); 8215 8216 } 8217 8218 /* Sort alphabetically by type name, except for "any". */ 8219 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8220 { 8221 ObjectClass *class_a = (ObjectClass *)a; 8222 ObjectClass *class_b = (ObjectClass *)b; 8223 const char *name_a, *name_b; 8224 8225 name_a = object_class_get_name(class_a); 8226 name_b = object_class_get_name(class_b); 8227 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8228 return 1; 8229 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8230 return -1; 8231 } else { 8232 return strcmp(name_a, name_b); 8233 } 8234 } 8235 8236 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8237 { 8238 ObjectClass *oc = data; 8239 const char *typename; 8240 char *name; 8241 8242 typename = object_class_get_name(oc); 8243 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8244 qemu_printf(" %s\n", name); 8245 g_free(name); 8246 } 8247 8248 void arm_cpu_list(void) 8249 { 8250 GSList *list; 8251 8252 list = object_class_get_list(TYPE_ARM_CPU, false); 8253 list = g_slist_sort(list, arm_cpu_list_compare); 8254 qemu_printf("Available CPUs:\n"); 8255 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8256 g_slist_free(list); 8257 } 8258 8259 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8260 { 8261 ObjectClass *oc = data; 8262 CpuDefinitionInfoList **cpu_list = user_data; 8263 CpuDefinitionInfoList *entry; 8264 CpuDefinitionInfo *info; 8265 const char *typename; 8266 8267 typename = object_class_get_name(oc); 8268 info = g_malloc0(sizeof(*info)); 8269 info->name = g_strndup(typename, 8270 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8271 info->q_typename = g_strdup(typename); 8272 8273 entry = g_malloc0(sizeof(*entry)); 8274 entry->value = info; 8275 entry->next = *cpu_list; 8276 *cpu_list = entry; 8277 } 8278 8279 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8280 { 8281 CpuDefinitionInfoList *cpu_list = NULL; 8282 GSList *list; 8283 8284 list = object_class_get_list(TYPE_ARM_CPU, false); 8285 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8286 g_slist_free(list); 8287 8288 return cpu_list; 8289 } 8290 8291 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8292 void *opaque, int state, int secstate, 8293 int crm, int opc1, int opc2, 8294 const char *name) 8295 { 8296 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8297 * add a single reginfo struct to the hash table. 8298 */ 8299 uint32_t *key = g_new(uint32_t, 1); 8300 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8301 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8302 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8303 8304 r2->name = g_strdup(name); 8305 /* Reset the secure state to the specific incoming state. This is 8306 * necessary as the register may have been defined with both states. 8307 */ 8308 r2->secure = secstate; 8309 8310 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8311 /* Register is banked (using both entries in array). 8312 * Overwriting fieldoffset as the array is only used to define 8313 * banked registers but later only fieldoffset is used. 8314 */ 8315 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8316 } 8317 8318 if (state == ARM_CP_STATE_AA32) { 8319 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8320 /* If the register is banked then we don't need to migrate or 8321 * reset the 32-bit instance in certain cases: 8322 * 8323 * 1) If the register has both 32-bit and 64-bit instances then we 8324 * can count on the 64-bit instance taking care of the 8325 * non-secure bank. 8326 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8327 * taking care of the secure bank. This requires that separate 8328 * 32 and 64-bit definitions are provided. 8329 */ 8330 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8331 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8332 r2->type |= ARM_CP_ALIAS; 8333 } 8334 } else if ((secstate != r->secure) && !ns) { 8335 /* The register is not banked so we only want to allow migration of 8336 * the non-secure instance. 8337 */ 8338 r2->type |= ARM_CP_ALIAS; 8339 } 8340 8341 if (r->state == ARM_CP_STATE_BOTH) { 8342 /* We assume it is a cp15 register if the .cp field is left unset. 8343 */ 8344 if (r2->cp == 0) { 8345 r2->cp = 15; 8346 } 8347 8348 #ifdef HOST_WORDS_BIGENDIAN 8349 if (r2->fieldoffset) { 8350 r2->fieldoffset += sizeof(uint32_t); 8351 } 8352 #endif 8353 } 8354 } 8355 if (state == ARM_CP_STATE_AA64) { 8356 /* To allow abbreviation of ARMCPRegInfo 8357 * definitions, we treat cp == 0 as equivalent to 8358 * the value for "standard guest-visible sysreg". 8359 * STATE_BOTH definitions are also always "standard 8360 * sysreg" in their AArch64 view (the .cp value may 8361 * be non-zero for the benefit of the AArch32 view). 8362 */ 8363 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8364 r2->cp = CP_REG_ARM64_SYSREG_CP; 8365 } 8366 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8367 r2->opc0, opc1, opc2); 8368 } else { 8369 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8370 } 8371 if (opaque) { 8372 r2->opaque = opaque; 8373 } 8374 /* reginfo passed to helpers is correct for the actual access, 8375 * and is never ARM_CP_STATE_BOTH: 8376 */ 8377 r2->state = state; 8378 /* Make sure reginfo passed to helpers for wildcarded regs 8379 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8380 */ 8381 r2->crm = crm; 8382 r2->opc1 = opc1; 8383 r2->opc2 = opc2; 8384 /* By convention, for wildcarded registers only the first 8385 * entry is used for migration; the others are marked as 8386 * ALIAS so we don't try to transfer the register 8387 * multiple times. Special registers (ie NOP/WFI) are 8388 * never migratable and not even raw-accessible. 8389 */ 8390 if ((r->type & ARM_CP_SPECIAL)) { 8391 r2->type |= ARM_CP_NO_RAW; 8392 } 8393 if (((r->crm == CP_ANY) && crm != 0) || 8394 ((r->opc1 == CP_ANY) && opc1 != 0) || 8395 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8396 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8397 } 8398 8399 /* Check that raw accesses are either forbidden or handled. Note that 8400 * we can't assert this earlier because the setup of fieldoffset for 8401 * banked registers has to be done first. 8402 */ 8403 if (!(r2->type & ARM_CP_NO_RAW)) { 8404 assert(!raw_accessors_invalid(r2)); 8405 } 8406 8407 /* Overriding of an existing definition must be explicitly 8408 * requested. 8409 */ 8410 if (!(r->type & ARM_CP_OVERRIDE)) { 8411 ARMCPRegInfo *oldreg; 8412 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8413 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8414 fprintf(stderr, "Register redefined: cp=%d %d bit " 8415 "crn=%d crm=%d opc1=%d opc2=%d, " 8416 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8417 r2->crn, r2->crm, r2->opc1, r2->opc2, 8418 oldreg->name, r2->name); 8419 g_assert_not_reached(); 8420 } 8421 } 8422 g_hash_table_insert(cpu->cp_regs, key, r2); 8423 } 8424 8425 8426 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8427 const ARMCPRegInfo *r, void *opaque) 8428 { 8429 /* Define implementations of coprocessor registers. 8430 * We store these in a hashtable because typically 8431 * there are less than 150 registers in a space which 8432 * is 16*16*16*8*8 = 262144 in size. 8433 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8434 * If a register is defined twice then the second definition is 8435 * used, so this can be used to define some generic registers and 8436 * then override them with implementation specific variations. 8437 * At least one of the original and the second definition should 8438 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8439 * against accidental use. 8440 * 8441 * The state field defines whether the register is to be 8442 * visible in the AArch32 or AArch64 execution state. If the 8443 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8444 * reginfo structure for the AArch32 view, which sees the lower 8445 * 32 bits of the 64 bit register. 8446 * 8447 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8448 * be wildcarded. AArch64 registers are always considered to be 64 8449 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8450 * the register, if any. 8451 */ 8452 int crm, opc1, opc2, state; 8453 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8454 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8455 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8456 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8457 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8458 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8459 /* 64 bit registers have only CRm and Opc1 fields */ 8460 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8461 /* op0 only exists in the AArch64 encodings */ 8462 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8463 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8464 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8465 /* 8466 * This API is only for Arm's system coprocessors (14 and 15) or 8467 * (M-profile or v7A-and-earlier only) for implementation defined 8468 * coprocessors in the range 0..7. Our decode assumes this, since 8469 * 8..13 can be used for other insns including VFP and Neon. See 8470 * valid_cp() in translate.c. Assert here that we haven't tried 8471 * to use an invalid coprocessor number. 8472 */ 8473 switch (r->state) { 8474 case ARM_CP_STATE_BOTH: 8475 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8476 if (r->cp == 0) { 8477 break; 8478 } 8479 /* fall through */ 8480 case ARM_CP_STATE_AA32: 8481 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8482 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8483 assert(r->cp >= 14 && r->cp <= 15); 8484 } else { 8485 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8486 } 8487 break; 8488 case ARM_CP_STATE_AA64: 8489 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8490 break; 8491 default: 8492 g_assert_not_reached(); 8493 } 8494 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8495 * encodes a minimum access level for the register. We roll this 8496 * runtime check into our general permission check code, so check 8497 * here that the reginfo's specified permissions are strict enough 8498 * to encompass the generic architectural permission check. 8499 */ 8500 if (r->state != ARM_CP_STATE_AA32) { 8501 int mask = 0; 8502 switch (r->opc1) { 8503 case 0: 8504 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8505 mask = PL0U_R | PL1_RW; 8506 break; 8507 case 1: case 2: 8508 /* min_EL EL1 */ 8509 mask = PL1_RW; 8510 break; 8511 case 3: 8512 /* min_EL EL0 */ 8513 mask = PL0_RW; 8514 break; 8515 case 4: 8516 case 5: 8517 /* min_EL EL2 */ 8518 mask = PL2_RW; 8519 break; 8520 case 6: 8521 /* min_EL EL3 */ 8522 mask = PL3_RW; 8523 break; 8524 case 7: 8525 /* min_EL EL1, secure mode only (we don't check the latter) */ 8526 mask = PL1_RW; 8527 break; 8528 default: 8529 /* broken reginfo with out-of-range opc1 */ 8530 assert(false); 8531 break; 8532 } 8533 /* assert our permissions are not too lax (stricter is fine) */ 8534 assert((r->access & ~mask) == 0); 8535 } 8536 8537 /* Check that the register definition has enough info to handle 8538 * reads and writes if they are permitted. 8539 */ 8540 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8541 if (r->access & PL3_R) { 8542 assert((r->fieldoffset || 8543 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8544 r->readfn); 8545 } 8546 if (r->access & PL3_W) { 8547 assert((r->fieldoffset || 8548 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8549 r->writefn); 8550 } 8551 } 8552 /* Bad type field probably means missing sentinel at end of reg list */ 8553 assert(cptype_valid(r->type)); 8554 for (crm = crmmin; crm <= crmmax; crm++) { 8555 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8556 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8557 for (state = ARM_CP_STATE_AA32; 8558 state <= ARM_CP_STATE_AA64; state++) { 8559 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8560 continue; 8561 } 8562 if (state == ARM_CP_STATE_AA32) { 8563 /* Under AArch32 CP registers can be common 8564 * (same for secure and non-secure world) or banked. 8565 */ 8566 char *name; 8567 8568 switch (r->secure) { 8569 case ARM_CP_SECSTATE_S: 8570 case ARM_CP_SECSTATE_NS: 8571 add_cpreg_to_hashtable(cpu, r, opaque, state, 8572 r->secure, crm, opc1, opc2, 8573 r->name); 8574 break; 8575 default: 8576 name = g_strdup_printf("%s_S", r->name); 8577 add_cpreg_to_hashtable(cpu, r, opaque, state, 8578 ARM_CP_SECSTATE_S, 8579 crm, opc1, opc2, name); 8580 g_free(name); 8581 add_cpreg_to_hashtable(cpu, r, opaque, state, 8582 ARM_CP_SECSTATE_NS, 8583 crm, opc1, opc2, r->name); 8584 break; 8585 } 8586 } else { 8587 /* AArch64 registers get mapped to non-secure instance 8588 * of AArch32 */ 8589 add_cpreg_to_hashtable(cpu, r, opaque, state, 8590 ARM_CP_SECSTATE_NS, 8591 crm, opc1, opc2, r->name); 8592 } 8593 } 8594 } 8595 } 8596 } 8597 } 8598 8599 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8600 const ARMCPRegInfo *regs, void *opaque) 8601 { 8602 /* Define a whole list of registers */ 8603 const ARMCPRegInfo *r; 8604 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8605 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8606 } 8607 } 8608 8609 /* 8610 * Modify ARMCPRegInfo for access from userspace. 8611 * 8612 * This is a data driven modification directed by 8613 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8614 * user-space cannot alter any values and dynamic values pertaining to 8615 * execution state are hidden from user space view anyway. 8616 */ 8617 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8618 { 8619 const ARMCPRegUserSpaceInfo *m; 8620 ARMCPRegInfo *r; 8621 8622 for (m = mods; m->name; m++) { 8623 GPatternSpec *pat = NULL; 8624 if (m->is_glob) { 8625 pat = g_pattern_spec_new(m->name); 8626 } 8627 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8628 if (pat && g_pattern_match_string(pat, r->name)) { 8629 r->type = ARM_CP_CONST; 8630 r->access = PL0U_R; 8631 r->resetvalue = 0; 8632 /* continue */ 8633 } else if (strcmp(r->name, m->name) == 0) { 8634 r->type = ARM_CP_CONST; 8635 r->access = PL0U_R; 8636 r->resetvalue &= m->exported_bits; 8637 r->resetvalue |= m->fixed_bits; 8638 break; 8639 } 8640 } 8641 if (pat) { 8642 g_pattern_spec_free(pat); 8643 } 8644 } 8645 } 8646 8647 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8648 { 8649 return g_hash_table_lookup(cpregs, &encoded_cp); 8650 } 8651 8652 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8653 uint64_t value) 8654 { 8655 /* Helper coprocessor write function for write-ignore registers */ 8656 } 8657 8658 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8659 { 8660 /* Helper coprocessor write function for read-as-zero registers */ 8661 return 0; 8662 } 8663 8664 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8665 { 8666 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8667 } 8668 8669 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8670 { 8671 /* Return true if it is not valid for us to switch to 8672 * this CPU mode (ie all the UNPREDICTABLE cases in 8673 * the ARM ARM CPSRWriteByInstr pseudocode). 8674 */ 8675 8676 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8677 if (write_type == CPSRWriteByInstr && 8678 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8679 mode == ARM_CPU_MODE_HYP)) { 8680 return 1; 8681 } 8682 8683 switch (mode) { 8684 case ARM_CPU_MODE_USR: 8685 return 0; 8686 case ARM_CPU_MODE_SYS: 8687 case ARM_CPU_MODE_SVC: 8688 case ARM_CPU_MODE_ABT: 8689 case ARM_CPU_MODE_UND: 8690 case ARM_CPU_MODE_IRQ: 8691 case ARM_CPU_MODE_FIQ: 8692 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8693 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8694 */ 8695 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8696 * and CPS are treated as illegal mode changes. 8697 */ 8698 if (write_type == CPSRWriteByInstr && 8699 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8700 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8701 return 1; 8702 } 8703 return 0; 8704 case ARM_CPU_MODE_HYP: 8705 return !arm_feature(env, ARM_FEATURE_EL2) 8706 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 8707 case ARM_CPU_MODE_MON: 8708 return arm_current_el(env) < 3; 8709 default: 8710 return 1; 8711 } 8712 } 8713 8714 uint32_t cpsr_read(CPUARMState *env) 8715 { 8716 int ZF; 8717 ZF = (env->ZF == 0); 8718 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8719 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8720 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8721 | ((env->condexec_bits & 0xfc) << 8) 8722 | (env->GE << 16) | (env->daif & CPSR_AIF); 8723 } 8724 8725 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8726 CPSRWriteType write_type) 8727 { 8728 uint32_t changed_daif; 8729 8730 if (mask & CPSR_NZCV) { 8731 env->ZF = (~val) & CPSR_Z; 8732 env->NF = val; 8733 env->CF = (val >> 29) & 1; 8734 env->VF = (val << 3) & 0x80000000; 8735 } 8736 if (mask & CPSR_Q) 8737 env->QF = ((val & CPSR_Q) != 0); 8738 if (mask & CPSR_T) 8739 env->thumb = ((val & CPSR_T) != 0); 8740 if (mask & CPSR_IT_0_1) { 8741 env->condexec_bits &= ~3; 8742 env->condexec_bits |= (val >> 25) & 3; 8743 } 8744 if (mask & CPSR_IT_2_7) { 8745 env->condexec_bits &= 3; 8746 env->condexec_bits |= (val >> 8) & 0xfc; 8747 } 8748 if (mask & CPSR_GE) { 8749 env->GE = (val >> 16) & 0xf; 8750 } 8751 8752 /* In a V7 implementation that includes the security extensions but does 8753 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8754 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8755 * bits respectively. 8756 * 8757 * In a V8 implementation, it is permitted for privileged software to 8758 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8759 */ 8760 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8761 arm_feature(env, ARM_FEATURE_EL3) && 8762 !arm_feature(env, ARM_FEATURE_EL2) && 8763 !arm_is_secure(env)) { 8764 8765 changed_daif = (env->daif ^ val) & mask; 8766 8767 if (changed_daif & CPSR_A) { 8768 /* Check to see if we are allowed to change the masking of async 8769 * abort exceptions from a non-secure state. 8770 */ 8771 if (!(env->cp15.scr_el3 & SCR_AW)) { 8772 qemu_log_mask(LOG_GUEST_ERROR, 8773 "Ignoring attempt to switch CPSR_A flag from " 8774 "non-secure world with SCR.AW bit clear\n"); 8775 mask &= ~CPSR_A; 8776 } 8777 } 8778 8779 if (changed_daif & CPSR_F) { 8780 /* Check to see if we are allowed to change the masking of FIQ 8781 * exceptions from a non-secure state. 8782 */ 8783 if (!(env->cp15.scr_el3 & SCR_FW)) { 8784 qemu_log_mask(LOG_GUEST_ERROR, 8785 "Ignoring attempt to switch CPSR_F flag from " 8786 "non-secure world with SCR.FW bit clear\n"); 8787 mask &= ~CPSR_F; 8788 } 8789 8790 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8791 * If this bit is set software is not allowed to mask 8792 * FIQs, but is allowed to set CPSR_F to 0. 8793 */ 8794 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8795 (val & CPSR_F)) { 8796 qemu_log_mask(LOG_GUEST_ERROR, 8797 "Ignoring attempt to enable CPSR_F flag " 8798 "(non-maskable FIQ [NMFI] support enabled)\n"); 8799 mask &= ~CPSR_F; 8800 } 8801 } 8802 } 8803 8804 env->daif &= ~(CPSR_AIF & mask); 8805 env->daif |= val & CPSR_AIF & mask; 8806 8807 if (write_type != CPSRWriteRaw && 8808 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8809 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8810 /* Note that we can only get here in USR mode if this is a 8811 * gdb stub write; for this case we follow the architectural 8812 * behaviour for guest writes in USR mode of ignoring an attempt 8813 * to switch mode. (Those are caught by translate.c for writes 8814 * triggered by guest instructions.) 8815 */ 8816 mask &= ~CPSR_M; 8817 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8818 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8819 * v7, and has defined behaviour in v8: 8820 * + leave CPSR.M untouched 8821 * + allow changes to the other CPSR fields 8822 * + set PSTATE.IL 8823 * For user changes via the GDB stub, we don't set PSTATE.IL, 8824 * as this would be unnecessarily harsh for a user error. 8825 */ 8826 mask &= ~CPSR_M; 8827 if (write_type != CPSRWriteByGDBStub && 8828 arm_feature(env, ARM_FEATURE_V8)) { 8829 mask |= CPSR_IL; 8830 val |= CPSR_IL; 8831 } 8832 qemu_log_mask(LOG_GUEST_ERROR, 8833 "Illegal AArch32 mode switch attempt from %s to %s\n", 8834 aarch32_mode_name(env->uncached_cpsr), 8835 aarch32_mode_name(val)); 8836 } else { 8837 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8838 write_type == CPSRWriteExceptionReturn ? 8839 "Exception return from AArch32" : 8840 "AArch32 mode switch from", 8841 aarch32_mode_name(env->uncached_cpsr), 8842 aarch32_mode_name(val), env->regs[15]); 8843 switch_mode(env, val & CPSR_M); 8844 } 8845 } 8846 mask &= ~CACHED_CPSR_BITS; 8847 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8848 } 8849 8850 /* Sign/zero extend */ 8851 uint32_t HELPER(sxtb16)(uint32_t x) 8852 { 8853 uint32_t res; 8854 res = (uint16_t)(int8_t)x; 8855 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8856 return res; 8857 } 8858 8859 uint32_t HELPER(uxtb16)(uint32_t x) 8860 { 8861 uint32_t res; 8862 res = (uint16_t)(uint8_t)x; 8863 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8864 return res; 8865 } 8866 8867 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8868 { 8869 if (den == 0) 8870 return 0; 8871 if (num == INT_MIN && den == -1) 8872 return INT_MIN; 8873 return num / den; 8874 } 8875 8876 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 8877 { 8878 if (den == 0) 8879 return 0; 8880 return num / den; 8881 } 8882 8883 uint32_t HELPER(rbit)(uint32_t x) 8884 { 8885 return revbit32(x); 8886 } 8887 8888 #ifdef CONFIG_USER_ONLY 8889 8890 static void switch_mode(CPUARMState *env, int mode) 8891 { 8892 ARMCPU *cpu = env_archcpu(env); 8893 8894 if (mode != ARM_CPU_MODE_USR) { 8895 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 8896 } 8897 } 8898 8899 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8900 uint32_t cur_el, bool secure) 8901 { 8902 return 1; 8903 } 8904 8905 void aarch64_sync_64_to_32(CPUARMState *env) 8906 { 8907 g_assert_not_reached(); 8908 } 8909 8910 #else 8911 8912 static void switch_mode(CPUARMState *env, int mode) 8913 { 8914 int old_mode; 8915 int i; 8916 8917 old_mode = env->uncached_cpsr & CPSR_M; 8918 if (mode == old_mode) 8919 return; 8920 8921 if (old_mode == ARM_CPU_MODE_FIQ) { 8922 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8923 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 8924 } else if (mode == ARM_CPU_MODE_FIQ) { 8925 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8926 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 8927 } 8928 8929 i = bank_number(old_mode); 8930 env->banked_r13[i] = env->regs[13]; 8931 env->banked_spsr[i] = env->spsr; 8932 8933 i = bank_number(mode); 8934 env->regs[13] = env->banked_r13[i]; 8935 env->spsr = env->banked_spsr[i]; 8936 8937 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 8938 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 8939 } 8940 8941 /* Physical Interrupt Target EL Lookup Table 8942 * 8943 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 8944 * 8945 * The below multi-dimensional table is used for looking up the target 8946 * exception level given numerous condition criteria. Specifically, the 8947 * target EL is based on SCR and HCR routing controls as well as the 8948 * currently executing EL and secure state. 8949 * 8950 * Dimensions: 8951 * target_el_table[2][2][2][2][2][4] 8952 * | | | | | +--- Current EL 8953 * | | | | +------ Non-secure(0)/Secure(1) 8954 * | | | +--------- HCR mask override 8955 * | | +------------ SCR exec state control 8956 * | +--------------- SCR mask override 8957 * +------------------ 32-bit(0)/64-bit(1) EL3 8958 * 8959 * The table values are as such: 8960 * 0-3 = EL0-EL3 8961 * -1 = Cannot occur 8962 * 8963 * The ARM ARM target EL table includes entries indicating that an "exception 8964 * is not taken". The two cases where this is applicable are: 8965 * 1) An exception is taken from EL3 but the SCR does not have the exception 8966 * routed to EL3. 8967 * 2) An exception is taken from EL2 but the HCR does not have the exception 8968 * routed to EL2. 8969 * In these two cases, the below table contain a target of EL1. This value is 8970 * returned as it is expected that the consumer of the table data will check 8971 * for "target EL >= current EL" to ensure the exception is not taken. 8972 * 8973 * SCR HCR 8974 * 64 EA AMO From 8975 * BIT IRQ IMO Non-secure Secure 8976 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 8977 */ 8978 static const int8_t target_el_table[2][2][2][2][2][4] = { 8979 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8980 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 8981 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8982 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 8983 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8984 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 8985 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8986 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 8987 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 8988 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 8989 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 8990 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 8991 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8992 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 8993 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8994 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 8995 }; 8996 8997 /* 8998 * Determine the target EL for physical exceptions 8999 */ 9000 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9001 uint32_t cur_el, bool secure) 9002 { 9003 CPUARMState *env = cs->env_ptr; 9004 bool rw; 9005 bool scr; 9006 bool hcr; 9007 int target_el; 9008 /* Is the highest EL AArch64? */ 9009 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9010 uint64_t hcr_el2; 9011 9012 if (arm_feature(env, ARM_FEATURE_EL3)) { 9013 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9014 } else { 9015 /* Either EL2 is the highest EL (and so the EL2 register width 9016 * is given by is64); or there is no EL2 or EL3, in which case 9017 * the value of 'rw' does not affect the table lookup anyway. 9018 */ 9019 rw = is64; 9020 } 9021 9022 hcr_el2 = arm_hcr_el2_eff(env); 9023 switch (excp_idx) { 9024 case EXCP_IRQ: 9025 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9026 hcr = hcr_el2 & HCR_IMO; 9027 break; 9028 case EXCP_FIQ: 9029 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9030 hcr = hcr_el2 & HCR_FMO; 9031 break; 9032 default: 9033 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9034 hcr = hcr_el2 & HCR_AMO; 9035 break; 9036 }; 9037 9038 /* 9039 * For these purposes, TGE and AMO/IMO/FMO both force the 9040 * interrupt to EL2. Fold TGE into the bit extracted above. 9041 */ 9042 hcr |= (hcr_el2 & HCR_TGE) != 0; 9043 9044 /* Perform a table-lookup for the target EL given the current state */ 9045 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9046 9047 assert(target_el > 0); 9048 9049 return target_el; 9050 } 9051 9052 void arm_log_exception(int idx) 9053 { 9054 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9055 const char *exc = NULL; 9056 static const char * const excnames[] = { 9057 [EXCP_UDEF] = "Undefined Instruction", 9058 [EXCP_SWI] = "SVC", 9059 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9060 [EXCP_DATA_ABORT] = "Data Abort", 9061 [EXCP_IRQ] = "IRQ", 9062 [EXCP_FIQ] = "FIQ", 9063 [EXCP_BKPT] = "Breakpoint", 9064 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9065 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9066 [EXCP_HVC] = "Hypervisor Call", 9067 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9068 [EXCP_SMC] = "Secure Monitor Call", 9069 [EXCP_VIRQ] = "Virtual IRQ", 9070 [EXCP_VFIQ] = "Virtual FIQ", 9071 [EXCP_SEMIHOST] = "Semihosting call", 9072 [EXCP_NOCP] = "v7M NOCP UsageFault", 9073 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9074 [EXCP_STKOF] = "v8M STKOF UsageFault", 9075 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9076 [EXCP_LSERR] = "v8M LSERR UsageFault", 9077 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9078 }; 9079 9080 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9081 exc = excnames[idx]; 9082 } 9083 if (!exc) { 9084 exc = "unknown"; 9085 } 9086 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9087 } 9088 } 9089 9090 /* 9091 * Function used to synchronize QEMU's AArch64 register set with AArch32 9092 * register set. This is necessary when switching between AArch32 and AArch64 9093 * execution state. 9094 */ 9095 void aarch64_sync_32_to_64(CPUARMState *env) 9096 { 9097 int i; 9098 uint32_t mode = env->uncached_cpsr & CPSR_M; 9099 9100 /* We can blanket copy R[0:7] to X[0:7] */ 9101 for (i = 0; i < 8; i++) { 9102 env->xregs[i] = env->regs[i]; 9103 } 9104 9105 /* 9106 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9107 * Otherwise, they come from the banked user regs. 9108 */ 9109 if (mode == ARM_CPU_MODE_FIQ) { 9110 for (i = 8; i < 13; i++) { 9111 env->xregs[i] = env->usr_regs[i - 8]; 9112 } 9113 } else { 9114 for (i = 8; i < 13; i++) { 9115 env->xregs[i] = env->regs[i]; 9116 } 9117 } 9118 9119 /* 9120 * Registers x13-x23 are the various mode SP and FP registers. Registers 9121 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9122 * from the mode banked register. 9123 */ 9124 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9125 env->xregs[13] = env->regs[13]; 9126 env->xregs[14] = env->regs[14]; 9127 } else { 9128 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9129 /* HYP is an exception in that it is copied from r14 */ 9130 if (mode == ARM_CPU_MODE_HYP) { 9131 env->xregs[14] = env->regs[14]; 9132 } else { 9133 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9134 } 9135 } 9136 9137 if (mode == ARM_CPU_MODE_HYP) { 9138 env->xregs[15] = env->regs[13]; 9139 } else { 9140 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9141 } 9142 9143 if (mode == ARM_CPU_MODE_IRQ) { 9144 env->xregs[16] = env->regs[14]; 9145 env->xregs[17] = env->regs[13]; 9146 } else { 9147 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9148 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9149 } 9150 9151 if (mode == ARM_CPU_MODE_SVC) { 9152 env->xregs[18] = env->regs[14]; 9153 env->xregs[19] = env->regs[13]; 9154 } else { 9155 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9156 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9157 } 9158 9159 if (mode == ARM_CPU_MODE_ABT) { 9160 env->xregs[20] = env->regs[14]; 9161 env->xregs[21] = env->regs[13]; 9162 } else { 9163 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9164 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9165 } 9166 9167 if (mode == ARM_CPU_MODE_UND) { 9168 env->xregs[22] = env->regs[14]; 9169 env->xregs[23] = env->regs[13]; 9170 } else { 9171 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9172 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9173 } 9174 9175 /* 9176 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9177 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9178 * FIQ bank for r8-r14. 9179 */ 9180 if (mode == ARM_CPU_MODE_FIQ) { 9181 for (i = 24; i < 31; i++) { 9182 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9183 } 9184 } else { 9185 for (i = 24; i < 29; i++) { 9186 env->xregs[i] = env->fiq_regs[i - 24]; 9187 } 9188 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9189 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9190 } 9191 9192 env->pc = env->regs[15]; 9193 } 9194 9195 /* 9196 * Function used to synchronize QEMU's AArch32 register set with AArch64 9197 * register set. This is necessary when switching between AArch32 and AArch64 9198 * execution state. 9199 */ 9200 void aarch64_sync_64_to_32(CPUARMState *env) 9201 { 9202 int i; 9203 uint32_t mode = env->uncached_cpsr & CPSR_M; 9204 9205 /* We can blanket copy X[0:7] to R[0:7] */ 9206 for (i = 0; i < 8; i++) { 9207 env->regs[i] = env->xregs[i]; 9208 } 9209 9210 /* 9211 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9212 * Otherwise, we copy x8-x12 into the banked user regs. 9213 */ 9214 if (mode == ARM_CPU_MODE_FIQ) { 9215 for (i = 8; i < 13; i++) { 9216 env->usr_regs[i - 8] = env->xregs[i]; 9217 } 9218 } else { 9219 for (i = 8; i < 13; i++) { 9220 env->regs[i] = env->xregs[i]; 9221 } 9222 } 9223 9224 /* 9225 * Registers r13 & r14 depend on the current mode. 9226 * If we are in a given mode, we copy the corresponding x registers to r13 9227 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9228 * for the mode. 9229 */ 9230 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9231 env->regs[13] = env->xregs[13]; 9232 env->regs[14] = env->xregs[14]; 9233 } else { 9234 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9235 9236 /* 9237 * HYP is an exception in that it does not have its own banked r14 but 9238 * shares the USR r14 9239 */ 9240 if (mode == ARM_CPU_MODE_HYP) { 9241 env->regs[14] = env->xregs[14]; 9242 } else { 9243 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9244 } 9245 } 9246 9247 if (mode == ARM_CPU_MODE_HYP) { 9248 env->regs[13] = env->xregs[15]; 9249 } else { 9250 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9251 } 9252 9253 if (mode == ARM_CPU_MODE_IRQ) { 9254 env->regs[14] = env->xregs[16]; 9255 env->regs[13] = env->xregs[17]; 9256 } else { 9257 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9258 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9259 } 9260 9261 if (mode == ARM_CPU_MODE_SVC) { 9262 env->regs[14] = env->xregs[18]; 9263 env->regs[13] = env->xregs[19]; 9264 } else { 9265 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9266 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9267 } 9268 9269 if (mode == ARM_CPU_MODE_ABT) { 9270 env->regs[14] = env->xregs[20]; 9271 env->regs[13] = env->xregs[21]; 9272 } else { 9273 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9274 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9275 } 9276 9277 if (mode == ARM_CPU_MODE_UND) { 9278 env->regs[14] = env->xregs[22]; 9279 env->regs[13] = env->xregs[23]; 9280 } else { 9281 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9282 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9283 } 9284 9285 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9286 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9287 * FIQ bank for r8-r14. 9288 */ 9289 if (mode == ARM_CPU_MODE_FIQ) { 9290 for (i = 24; i < 31; i++) { 9291 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9292 } 9293 } else { 9294 for (i = 24; i < 29; i++) { 9295 env->fiq_regs[i - 24] = env->xregs[i]; 9296 } 9297 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9298 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9299 } 9300 9301 env->regs[15] = env->pc; 9302 } 9303 9304 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9305 uint32_t mask, uint32_t offset, 9306 uint32_t newpc) 9307 { 9308 int new_el; 9309 9310 /* Change the CPU state so as to actually take the exception. */ 9311 switch_mode(env, new_mode); 9312 9313 /* 9314 * For exceptions taken to AArch32 we must clear the SS bit in both 9315 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9316 */ 9317 env->uncached_cpsr &= ~PSTATE_SS; 9318 env->spsr = cpsr_read(env); 9319 /* Clear IT bits. */ 9320 env->condexec_bits = 0; 9321 /* Switch to the new mode, and to the correct instruction set. */ 9322 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9323 9324 /* This must be after mode switching. */ 9325 new_el = arm_current_el(env); 9326 9327 /* Set new mode endianness */ 9328 env->uncached_cpsr &= ~CPSR_E; 9329 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9330 env->uncached_cpsr |= CPSR_E; 9331 } 9332 /* J and IL must always be cleared for exception entry */ 9333 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9334 env->daif |= mask; 9335 9336 if (new_mode == ARM_CPU_MODE_HYP) { 9337 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9338 env->elr_el[2] = env->regs[15]; 9339 } else { 9340 /* CPSR.PAN is normally preserved preserved unless... */ 9341 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9342 switch (new_el) { 9343 case 3: 9344 if (!arm_is_secure_below_el3(env)) { 9345 /* ... the target is EL3, from non-secure state. */ 9346 env->uncached_cpsr &= ~CPSR_PAN; 9347 break; 9348 } 9349 /* ... the target is EL3, from secure state ... */ 9350 /* fall through */ 9351 case 1: 9352 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9353 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9354 env->uncached_cpsr |= CPSR_PAN; 9355 } 9356 break; 9357 } 9358 } 9359 /* 9360 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9361 * and we should just guard the thumb mode on V4 9362 */ 9363 if (arm_feature(env, ARM_FEATURE_V4T)) { 9364 env->thumb = 9365 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9366 } 9367 env->regs[14] = env->regs[15] + offset; 9368 } 9369 env->regs[15] = newpc; 9370 arm_rebuild_hflags(env); 9371 } 9372 9373 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9374 { 9375 /* 9376 * Handle exception entry to Hyp mode; this is sufficiently 9377 * different to entry to other AArch32 modes that we handle it 9378 * separately here. 9379 * 9380 * The vector table entry used is always the 0x14 Hyp mode entry point, 9381 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9382 * The offset applied to the preferred return address is always zero 9383 * (see DDI0487C.a section G1.12.3). 9384 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9385 */ 9386 uint32_t addr, mask; 9387 ARMCPU *cpu = ARM_CPU(cs); 9388 CPUARMState *env = &cpu->env; 9389 9390 switch (cs->exception_index) { 9391 case EXCP_UDEF: 9392 addr = 0x04; 9393 break; 9394 case EXCP_SWI: 9395 addr = 0x14; 9396 break; 9397 case EXCP_BKPT: 9398 /* Fall through to prefetch abort. */ 9399 case EXCP_PREFETCH_ABORT: 9400 env->cp15.ifar_s = env->exception.vaddress; 9401 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9402 (uint32_t)env->exception.vaddress); 9403 addr = 0x0c; 9404 break; 9405 case EXCP_DATA_ABORT: 9406 env->cp15.dfar_s = env->exception.vaddress; 9407 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9408 (uint32_t)env->exception.vaddress); 9409 addr = 0x10; 9410 break; 9411 case EXCP_IRQ: 9412 addr = 0x18; 9413 break; 9414 case EXCP_FIQ: 9415 addr = 0x1c; 9416 break; 9417 case EXCP_HVC: 9418 addr = 0x08; 9419 break; 9420 case EXCP_HYP_TRAP: 9421 addr = 0x14; 9422 break; 9423 default: 9424 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9425 } 9426 9427 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9428 if (!arm_feature(env, ARM_FEATURE_V8)) { 9429 /* 9430 * QEMU syndrome values are v8-style. v7 has the IL bit 9431 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9432 * If this is a v7 CPU, squash the IL bit in those cases. 9433 */ 9434 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9435 (cs->exception_index == EXCP_DATA_ABORT && 9436 !(env->exception.syndrome & ARM_EL_ISV)) || 9437 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9438 env->exception.syndrome &= ~ARM_EL_IL; 9439 } 9440 } 9441 env->cp15.esr_el[2] = env->exception.syndrome; 9442 } 9443 9444 if (arm_current_el(env) != 2 && addr < 0x14) { 9445 addr = 0x14; 9446 } 9447 9448 mask = 0; 9449 if (!(env->cp15.scr_el3 & SCR_EA)) { 9450 mask |= CPSR_A; 9451 } 9452 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9453 mask |= CPSR_I; 9454 } 9455 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9456 mask |= CPSR_F; 9457 } 9458 9459 addr += env->cp15.hvbar; 9460 9461 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9462 } 9463 9464 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9465 { 9466 ARMCPU *cpu = ARM_CPU(cs); 9467 CPUARMState *env = &cpu->env; 9468 uint32_t addr; 9469 uint32_t mask; 9470 int new_mode; 9471 uint32_t offset; 9472 uint32_t moe; 9473 9474 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9475 switch (syn_get_ec(env->exception.syndrome)) { 9476 case EC_BREAKPOINT: 9477 case EC_BREAKPOINT_SAME_EL: 9478 moe = 1; 9479 break; 9480 case EC_WATCHPOINT: 9481 case EC_WATCHPOINT_SAME_EL: 9482 moe = 10; 9483 break; 9484 case EC_AA32_BKPT: 9485 moe = 3; 9486 break; 9487 case EC_VECTORCATCH: 9488 moe = 5; 9489 break; 9490 default: 9491 moe = 0; 9492 break; 9493 } 9494 9495 if (moe) { 9496 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9497 } 9498 9499 if (env->exception.target_el == 2) { 9500 arm_cpu_do_interrupt_aarch32_hyp(cs); 9501 return; 9502 } 9503 9504 switch (cs->exception_index) { 9505 case EXCP_UDEF: 9506 new_mode = ARM_CPU_MODE_UND; 9507 addr = 0x04; 9508 mask = CPSR_I; 9509 if (env->thumb) 9510 offset = 2; 9511 else 9512 offset = 4; 9513 break; 9514 case EXCP_SWI: 9515 new_mode = ARM_CPU_MODE_SVC; 9516 addr = 0x08; 9517 mask = CPSR_I; 9518 /* The PC already points to the next instruction. */ 9519 offset = 0; 9520 break; 9521 case EXCP_BKPT: 9522 /* Fall through to prefetch abort. */ 9523 case EXCP_PREFETCH_ABORT: 9524 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9525 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9526 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9527 env->exception.fsr, (uint32_t)env->exception.vaddress); 9528 new_mode = ARM_CPU_MODE_ABT; 9529 addr = 0x0c; 9530 mask = CPSR_A | CPSR_I; 9531 offset = 4; 9532 break; 9533 case EXCP_DATA_ABORT: 9534 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9535 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9536 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9537 env->exception.fsr, 9538 (uint32_t)env->exception.vaddress); 9539 new_mode = ARM_CPU_MODE_ABT; 9540 addr = 0x10; 9541 mask = CPSR_A | CPSR_I; 9542 offset = 8; 9543 break; 9544 case EXCP_IRQ: 9545 new_mode = ARM_CPU_MODE_IRQ; 9546 addr = 0x18; 9547 /* Disable IRQ and imprecise data aborts. */ 9548 mask = CPSR_A | CPSR_I; 9549 offset = 4; 9550 if (env->cp15.scr_el3 & SCR_IRQ) { 9551 /* IRQ routed to monitor mode */ 9552 new_mode = ARM_CPU_MODE_MON; 9553 mask |= CPSR_F; 9554 } 9555 break; 9556 case EXCP_FIQ: 9557 new_mode = ARM_CPU_MODE_FIQ; 9558 addr = 0x1c; 9559 /* Disable FIQ, IRQ and imprecise data aborts. */ 9560 mask = CPSR_A | CPSR_I | CPSR_F; 9561 if (env->cp15.scr_el3 & SCR_FIQ) { 9562 /* FIQ routed to monitor mode */ 9563 new_mode = ARM_CPU_MODE_MON; 9564 } 9565 offset = 4; 9566 break; 9567 case EXCP_VIRQ: 9568 new_mode = ARM_CPU_MODE_IRQ; 9569 addr = 0x18; 9570 /* Disable IRQ and imprecise data aborts. */ 9571 mask = CPSR_A | CPSR_I; 9572 offset = 4; 9573 break; 9574 case EXCP_VFIQ: 9575 new_mode = ARM_CPU_MODE_FIQ; 9576 addr = 0x1c; 9577 /* Disable FIQ, IRQ and imprecise data aborts. */ 9578 mask = CPSR_A | CPSR_I | CPSR_F; 9579 offset = 4; 9580 break; 9581 case EXCP_SMC: 9582 new_mode = ARM_CPU_MODE_MON; 9583 addr = 0x08; 9584 mask = CPSR_A | CPSR_I | CPSR_F; 9585 offset = 0; 9586 break; 9587 default: 9588 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9589 return; /* Never happens. Keep compiler happy. */ 9590 } 9591 9592 if (new_mode == ARM_CPU_MODE_MON) { 9593 addr += env->cp15.mvbar; 9594 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9595 /* High vectors. When enabled, base address cannot be remapped. */ 9596 addr += 0xffff0000; 9597 } else { 9598 /* ARM v7 architectures provide a vector base address register to remap 9599 * the interrupt vector table. 9600 * This register is only followed in non-monitor mode, and is banked. 9601 * Note: only bits 31:5 are valid. 9602 */ 9603 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9604 } 9605 9606 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9607 env->cp15.scr_el3 &= ~SCR_NS; 9608 } 9609 9610 take_aarch32_exception(env, new_mode, mask, offset, addr); 9611 } 9612 9613 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9614 { 9615 /* 9616 * Return the register number of the AArch64 view of the AArch32 9617 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9618 * be that of the AArch32 mode the exception came from. 9619 */ 9620 int mode = env->uncached_cpsr & CPSR_M; 9621 9622 switch (aarch32_reg) { 9623 case 0 ... 7: 9624 return aarch32_reg; 9625 case 8 ... 12: 9626 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9627 case 13: 9628 switch (mode) { 9629 case ARM_CPU_MODE_USR: 9630 case ARM_CPU_MODE_SYS: 9631 return 13; 9632 case ARM_CPU_MODE_HYP: 9633 return 15; 9634 case ARM_CPU_MODE_IRQ: 9635 return 17; 9636 case ARM_CPU_MODE_SVC: 9637 return 19; 9638 case ARM_CPU_MODE_ABT: 9639 return 21; 9640 case ARM_CPU_MODE_UND: 9641 return 23; 9642 case ARM_CPU_MODE_FIQ: 9643 return 29; 9644 default: 9645 g_assert_not_reached(); 9646 } 9647 case 14: 9648 switch (mode) { 9649 case ARM_CPU_MODE_USR: 9650 case ARM_CPU_MODE_SYS: 9651 case ARM_CPU_MODE_HYP: 9652 return 14; 9653 case ARM_CPU_MODE_IRQ: 9654 return 16; 9655 case ARM_CPU_MODE_SVC: 9656 return 18; 9657 case ARM_CPU_MODE_ABT: 9658 return 20; 9659 case ARM_CPU_MODE_UND: 9660 return 22; 9661 case ARM_CPU_MODE_FIQ: 9662 return 30; 9663 default: 9664 g_assert_not_reached(); 9665 } 9666 case 15: 9667 return 31; 9668 default: 9669 g_assert_not_reached(); 9670 } 9671 } 9672 9673 /* Handle exception entry to a target EL which is using AArch64 */ 9674 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9675 { 9676 ARMCPU *cpu = ARM_CPU(cs); 9677 CPUARMState *env = &cpu->env; 9678 unsigned int new_el = env->exception.target_el; 9679 target_ulong addr = env->cp15.vbar_el[new_el]; 9680 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9681 unsigned int old_mode; 9682 unsigned int cur_el = arm_current_el(env); 9683 int rt; 9684 9685 /* 9686 * Note that new_el can never be 0. If cur_el is 0, then 9687 * el0_a64 is is_a64(), else el0_a64 is ignored. 9688 */ 9689 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9690 9691 if (cur_el < new_el) { 9692 /* Entry vector offset depends on whether the implemented EL 9693 * immediately lower than the target level is using AArch32 or AArch64 9694 */ 9695 bool is_aa64; 9696 uint64_t hcr; 9697 9698 switch (new_el) { 9699 case 3: 9700 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9701 break; 9702 case 2: 9703 hcr = arm_hcr_el2_eff(env); 9704 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9705 is_aa64 = (hcr & HCR_RW) != 0; 9706 break; 9707 } 9708 /* fall through */ 9709 case 1: 9710 is_aa64 = is_a64(env); 9711 break; 9712 default: 9713 g_assert_not_reached(); 9714 } 9715 9716 if (is_aa64) { 9717 addr += 0x400; 9718 } else { 9719 addr += 0x600; 9720 } 9721 } else if (pstate_read(env) & PSTATE_SP) { 9722 addr += 0x200; 9723 } 9724 9725 switch (cs->exception_index) { 9726 case EXCP_PREFETCH_ABORT: 9727 case EXCP_DATA_ABORT: 9728 env->cp15.far_el[new_el] = env->exception.vaddress; 9729 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9730 env->cp15.far_el[new_el]); 9731 /* fall through */ 9732 case EXCP_BKPT: 9733 case EXCP_UDEF: 9734 case EXCP_SWI: 9735 case EXCP_HVC: 9736 case EXCP_HYP_TRAP: 9737 case EXCP_SMC: 9738 switch (syn_get_ec(env->exception.syndrome)) { 9739 case EC_ADVSIMDFPACCESSTRAP: 9740 /* 9741 * QEMU internal FP/SIMD syndromes from AArch32 include the 9742 * TA and coproc fields which are only exposed if the exception 9743 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9744 * AArch64 format syndrome. 9745 */ 9746 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9747 break; 9748 case EC_CP14RTTRAP: 9749 case EC_CP15RTTRAP: 9750 case EC_CP14DTTRAP: 9751 /* 9752 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 9753 * the raw register field from the insn; when taking this to 9754 * AArch64 we must convert it to the AArch64 view of the register 9755 * number. Notice that we read a 4-bit AArch32 register number and 9756 * write back a 5-bit AArch64 one. 9757 */ 9758 rt = extract32(env->exception.syndrome, 5, 4); 9759 rt = aarch64_regnum(env, rt); 9760 env->exception.syndrome = deposit32(env->exception.syndrome, 9761 5, 5, rt); 9762 break; 9763 case EC_CP15RRTTRAP: 9764 case EC_CP14RRTTRAP: 9765 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 9766 rt = extract32(env->exception.syndrome, 5, 4); 9767 rt = aarch64_regnum(env, rt); 9768 env->exception.syndrome = deposit32(env->exception.syndrome, 9769 5, 5, rt); 9770 rt = extract32(env->exception.syndrome, 10, 4); 9771 rt = aarch64_regnum(env, rt); 9772 env->exception.syndrome = deposit32(env->exception.syndrome, 9773 10, 5, rt); 9774 break; 9775 } 9776 env->cp15.esr_el[new_el] = env->exception.syndrome; 9777 break; 9778 case EXCP_IRQ: 9779 case EXCP_VIRQ: 9780 addr += 0x80; 9781 break; 9782 case EXCP_FIQ: 9783 case EXCP_VFIQ: 9784 addr += 0x100; 9785 break; 9786 default: 9787 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9788 } 9789 9790 if (is_a64(env)) { 9791 old_mode = pstate_read(env); 9792 aarch64_save_sp(env, arm_current_el(env)); 9793 env->elr_el[new_el] = env->pc; 9794 } else { 9795 old_mode = cpsr_read(env); 9796 env->elr_el[new_el] = env->regs[15]; 9797 9798 aarch64_sync_32_to_64(env); 9799 9800 env->condexec_bits = 0; 9801 } 9802 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9803 9804 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9805 env->elr_el[new_el]); 9806 9807 if (cpu_isar_feature(aa64_pan, cpu)) { 9808 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9809 new_mode |= old_mode & PSTATE_PAN; 9810 switch (new_el) { 9811 case 2: 9812 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9813 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9814 != (HCR_E2H | HCR_TGE)) { 9815 break; 9816 } 9817 /* fall through */ 9818 case 1: 9819 /* ... the target is EL1 ... */ 9820 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9821 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9822 new_mode |= PSTATE_PAN; 9823 } 9824 break; 9825 } 9826 } 9827 if (cpu_isar_feature(aa64_mte, cpu)) { 9828 new_mode |= PSTATE_TCO; 9829 } 9830 9831 pstate_write(env, PSTATE_DAIF | new_mode); 9832 env->aarch64 = 1; 9833 aarch64_restore_sp(env, new_el); 9834 helper_rebuild_hflags_a64(env, new_el); 9835 9836 env->pc = addr; 9837 9838 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9839 new_el, env->pc, pstate_read(env)); 9840 } 9841 9842 /* 9843 * Do semihosting call and set the appropriate return value. All the 9844 * permission and validity checks have been done at translate time. 9845 * 9846 * We only see semihosting exceptions in TCG only as they are not 9847 * trapped to the hypervisor in KVM. 9848 */ 9849 #ifdef CONFIG_TCG 9850 static void handle_semihosting(CPUState *cs) 9851 { 9852 ARMCPU *cpu = ARM_CPU(cs); 9853 CPUARMState *env = &cpu->env; 9854 9855 if (is_a64(env)) { 9856 qemu_log_mask(CPU_LOG_INT, 9857 "...handling as semihosting call 0x%" PRIx64 "\n", 9858 env->xregs[0]); 9859 env->xregs[0] = do_arm_semihosting(env); 9860 env->pc += 4; 9861 } else { 9862 qemu_log_mask(CPU_LOG_INT, 9863 "...handling as semihosting call 0x%x\n", 9864 env->regs[0]); 9865 env->regs[0] = do_arm_semihosting(env); 9866 env->regs[15] += env->thumb ? 2 : 4; 9867 } 9868 } 9869 #endif 9870 9871 /* Handle a CPU exception for A and R profile CPUs. 9872 * Do any appropriate logging, handle PSCI calls, and then hand off 9873 * to the AArch64-entry or AArch32-entry function depending on the 9874 * target exception level's register width. 9875 */ 9876 void arm_cpu_do_interrupt(CPUState *cs) 9877 { 9878 ARMCPU *cpu = ARM_CPU(cs); 9879 CPUARMState *env = &cpu->env; 9880 unsigned int new_el = env->exception.target_el; 9881 9882 assert(!arm_feature(env, ARM_FEATURE_M)); 9883 9884 arm_log_exception(cs->exception_index); 9885 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9886 new_el); 9887 if (qemu_loglevel_mask(CPU_LOG_INT) 9888 && !excp_is_internal(cs->exception_index)) { 9889 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9890 syn_get_ec(env->exception.syndrome), 9891 env->exception.syndrome); 9892 } 9893 9894 if (arm_is_psci_call(cpu, cs->exception_index)) { 9895 arm_handle_psci_call(cpu); 9896 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9897 return; 9898 } 9899 9900 /* 9901 * Semihosting semantics depend on the register width of the code 9902 * that caused the exception, not the target exception level, so 9903 * must be handled here. 9904 */ 9905 #ifdef CONFIG_TCG 9906 if (cs->exception_index == EXCP_SEMIHOST) { 9907 handle_semihosting(cs); 9908 return; 9909 } 9910 #endif 9911 9912 /* Hooks may change global state so BQL should be held, also the 9913 * BQL needs to be held for any modification of 9914 * cs->interrupt_request. 9915 */ 9916 g_assert(qemu_mutex_iothread_locked()); 9917 9918 arm_call_pre_el_change_hook(cpu); 9919 9920 assert(!excp_is_internal(cs->exception_index)); 9921 if (arm_el_is_aa64(env, new_el)) { 9922 arm_cpu_do_interrupt_aarch64(cs); 9923 } else { 9924 arm_cpu_do_interrupt_aarch32(cs); 9925 } 9926 9927 arm_call_el_change_hook(cpu); 9928 9929 if (!kvm_enabled()) { 9930 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9931 } 9932 } 9933 #endif /* !CONFIG_USER_ONLY */ 9934 9935 uint64_t arm_sctlr(CPUARMState *env, int el) 9936 { 9937 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 9938 if (el == 0) { 9939 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 9940 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1); 9941 } 9942 return env->cp15.sctlr_el[el]; 9943 } 9944 9945 /* Return the SCTLR value which controls this address translation regime */ 9946 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9947 { 9948 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9949 } 9950 9951 #ifndef CONFIG_USER_ONLY 9952 9953 /* Return true if the specified stage of address translation is disabled */ 9954 static inline bool regime_translation_disabled(CPUARMState *env, 9955 ARMMMUIdx mmu_idx) 9956 { 9957 if (arm_feature(env, ARM_FEATURE_M)) { 9958 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9959 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9960 case R_V7M_MPU_CTRL_ENABLE_MASK: 9961 /* Enabled, but not for HardFault and NMI */ 9962 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9963 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9964 /* Enabled for all cases */ 9965 return false; 9966 case 0: 9967 default: 9968 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 9969 * we warned about that in armv7m_nvic.c when the guest set it. 9970 */ 9971 return true; 9972 } 9973 } 9974 9975 if (mmu_idx == ARMMMUIdx_Stage2) { 9976 /* HCR.DC means HCR.VM behaves as 1 */ 9977 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 9978 } 9979 9980 if (env->cp15.hcr_el2 & HCR_TGE) { 9981 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 9982 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 9983 return true; 9984 } 9985 } 9986 9987 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 9988 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 9989 return true; 9990 } 9991 9992 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 9993 } 9994 9995 static inline bool regime_translation_big_endian(CPUARMState *env, 9996 ARMMMUIdx mmu_idx) 9997 { 9998 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 9999 } 10000 10001 /* Return the TTBR associated with this translation regime */ 10002 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10003 int ttbrn) 10004 { 10005 if (mmu_idx == ARMMMUIdx_Stage2) { 10006 return env->cp15.vttbr_el2; 10007 } 10008 if (ttbrn == 0) { 10009 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10010 } else { 10011 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10012 } 10013 } 10014 10015 #endif /* !CONFIG_USER_ONLY */ 10016 10017 /* Convert a possible stage1+2 MMU index into the appropriate 10018 * stage 1 MMU index 10019 */ 10020 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10021 { 10022 switch (mmu_idx) { 10023 case ARMMMUIdx_E10_0: 10024 return ARMMMUIdx_Stage1_E0; 10025 case ARMMMUIdx_E10_1: 10026 return ARMMMUIdx_Stage1_E1; 10027 case ARMMMUIdx_E10_1_PAN: 10028 return ARMMMUIdx_Stage1_E1_PAN; 10029 default: 10030 return mmu_idx; 10031 } 10032 } 10033 10034 /* Return true if the translation regime is using LPAE format page tables */ 10035 static inline bool regime_using_lpae_format(CPUARMState *env, 10036 ARMMMUIdx mmu_idx) 10037 { 10038 int el = regime_el(env, mmu_idx); 10039 if (el == 2 || arm_el_is_aa64(env, el)) { 10040 return true; 10041 } 10042 if (arm_feature(env, ARM_FEATURE_LPAE) 10043 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10044 return true; 10045 } 10046 return false; 10047 } 10048 10049 /* Returns true if the stage 1 translation regime is using LPAE format page 10050 * tables. Used when raising alignment exceptions, whose FSR changes depending 10051 * on whether the long or short descriptor format is in use. */ 10052 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10053 { 10054 mmu_idx = stage_1_mmu_idx(mmu_idx); 10055 10056 return regime_using_lpae_format(env, mmu_idx); 10057 } 10058 10059 #ifndef CONFIG_USER_ONLY 10060 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10061 { 10062 switch (mmu_idx) { 10063 case ARMMMUIdx_SE10_0: 10064 case ARMMMUIdx_E20_0: 10065 case ARMMMUIdx_Stage1_E0: 10066 case ARMMMUIdx_MUser: 10067 case ARMMMUIdx_MSUser: 10068 case ARMMMUIdx_MUserNegPri: 10069 case ARMMMUIdx_MSUserNegPri: 10070 return true; 10071 default: 10072 return false; 10073 case ARMMMUIdx_E10_0: 10074 case ARMMMUIdx_E10_1: 10075 case ARMMMUIdx_E10_1_PAN: 10076 g_assert_not_reached(); 10077 } 10078 } 10079 10080 /* Translate section/page access permissions to page 10081 * R/W protection flags 10082 * 10083 * @env: CPUARMState 10084 * @mmu_idx: MMU index indicating required translation regime 10085 * @ap: The 3-bit access permissions (AP[2:0]) 10086 * @domain_prot: The 2-bit domain access permissions 10087 */ 10088 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10089 int ap, int domain_prot) 10090 { 10091 bool is_user = regime_is_user(env, mmu_idx); 10092 10093 if (domain_prot == 3) { 10094 return PAGE_READ | PAGE_WRITE; 10095 } 10096 10097 switch (ap) { 10098 case 0: 10099 if (arm_feature(env, ARM_FEATURE_V7)) { 10100 return 0; 10101 } 10102 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10103 case SCTLR_S: 10104 return is_user ? 0 : PAGE_READ; 10105 case SCTLR_R: 10106 return PAGE_READ; 10107 default: 10108 return 0; 10109 } 10110 case 1: 10111 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10112 case 2: 10113 if (is_user) { 10114 return PAGE_READ; 10115 } else { 10116 return PAGE_READ | PAGE_WRITE; 10117 } 10118 case 3: 10119 return PAGE_READ | PAGE_WRITE; 10120 case 4: /* Reserved. */ 10121 return 0; 10122 case 5: 10123 return is_user ? 0 : PAGE_READ; 10124 case 6: 10125 return PAGE_READ; 10126 case 7: 10127 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10128 return 0; 10129 } 10130 return PAGE_READ; 10131 default: 10132 g_assert_not_reached(); 10133 } 10134 } 10135 10136 /* Translate section/page access permissions to page 10137 * R/W protection flags. 10138 * 10139 * @ap: The 2-bit simple AP (AP[2:1]) 10140 * @is_user: TRUE if accessing from PL0 10141 */ 10142 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10143 { 10144 switch (ap) { 10145 case 0: 10146 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10147 case 1: 10148 return PAGE_READ | PAGE_WRITE; 10149 case 2: 10150 return is_user ? 0 : PAGE_READ; 10151 case 3: 10152 return PAGE_READ; 10153 default: 10154 g_assert_not_reached(); 10155 } 10156 } 10157 10158 static inline int 10159 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10160 { 10161 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10162 } 10163 10164 /* Translate S2 section/page access permissions to protection flags 10165 * 10166 * @env: CPUARMState 10167 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10168 * @xn: XN (execute-never) bits 10169 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10170 */ 10171 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10172 { 10173 int prot = 0; 10174 10175 if (s2ap & 1) { 10176 prot |= PAGE_READ; 10177 } 10178 if (s2ap & 2) { 10179 prot |= PAGE_WRITE; 10180 } 10181 10182 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10183 switch (xn) { 10184 case 0: 10185 prot |= PAGE_EXEC; 10186 break; 10187 case 1: 10188 if (s1_is_el0) { 10189 prot |= PAGE_EXEC; 10190 } 10191 break; 10192 case 2: 10193 break; 10194 case 3: 10195 if (!s1_is_el0) { 10196 prot |= PAGE_EXEC; 10197 } 10198 break; 10199 default: 10200 g_assert_not_reached(); 10201 } 10202 } else { 10203 if (!extract32(xn, 1, 1)) { 10204 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10205 prot |= PAGE_EXEC; 10206 } 10207 } 10208 } 10209 return prot; 10210 } 10211 10212 /* Translate section/page access permissions to protection flags 10213 * 10214 * @env: CPUARMState 10215 * @mmu_idx: MMU index indicating required translation regime 10216 * @is_aa64: TRUE if AArch64 10217 * @ap: The 2-bit simple AP (AP[2:1]) 10218 * @ns: NS (non-secure) bit 10219 * @xn: XN (execute-never) bit 10220 * @pxn: PXN (privileged execute-never) bit 10221 */ 10222 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10223 int ap, int ns, int xn, int pxn) 10224 { 10225 bool is_user = regime_is_user(env, mmu_idx); 10226 int prot_rw, user_rw; 10227 bool have_wxn; 10228 int wxn = 0; 10229 10230 assert(mmu_idx != ARMMMUIdx_Stage2); 10231 10232 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10233 if (is_user) { 10234 prot_rw = user_rw; 10235 } else { 10236 if (user_rw && regime_is_pan(env, mmu_idx)) { 10237 /* PAN forbids data accesses but doesn't affect insn fetch */ 10238 prot_rw = 0; 10239 } else { 10240 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10241 } 10242 } 10243 10244 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10245 return prot_rw; 10246 } 10247 10248 /* TODO have_wxn should be replaced with 10249 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10250 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10251 * compatible processors have EL2, which is required for [U]WXN. 10252 */ 10253 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10254 10255 if (have_wxn) { 10256 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10257 } 10258 10259 if (is_aa64) { 10260 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10261 xn = pxn || (user_rw & PAGE_WRITE); 10262 } 10263 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10264 switch (regime_el(env, mmu_idx)) { 10265 case 1: 10266 case 3: 10267 if (is_user) { 10268 xn = xn || !(user_rw & PAGE_READ); 10269 } else { 10270 int uwxn = 0; 10271 if (have_wxn) { 10272 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10273 } 10274 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10275 (uwxn && (user_rw & PAGE_WRITE)); 10276 } 10277 break; 10278 case 2: 10279 break; 10280 } 10281 } else { 10282 xn = wxn = 0; 10283 } 10284 10285 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10286 return prot_rw; 10287 } 10288 return prot_rw | PAGE_EXEC; 10289 } 10290 10291 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10292 uint32_t *table, uint32_t address) 10293 { 10294 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10295 TCR *tcr = regime_tcr(env, mmu_idx); 10296 10297 if (address & tcr->mask) { 10298 if (tcr->raw_tcr & TTBCR_PD1) { 10299 /* Translation table walk disabled for TTBR1 */ 10300 return false; 10301 } 10302 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10303 } else { 10304 if (tcr->raw_tcr & TTBCR_PD0) { 10305 /* Translation table walk disabled for TTBR0 */ 10306 return false; 10307 } 10308 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10309 } 10310 *table |= (address >> 18) & 0x3ffc; 10311 return true; 10312 } 10313 10314 /* Translate a S1 pagetable walk through S2 if needed. */ 10315 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10316 hwaddr addr, MemTxAttrs txattrs, 10317 ARMMMUFaultInfo *fi) 10318 { 10319 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10320 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10321 target_ulong s2size; 10322 hwaddr s2pa; 10323 int s2prot; 10324 int ret; 10325 ARMCacheAttrs cacheattrs = {}; 10326 10327 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2, 10328 false, 10329 &s2pa, &txattrs, &s2prot, &s2size, fi, 10330 &cacheattrs); 10331 if (ret) { 10332 assert(fi->type != ARMFault_None); 10333 fi->s2addr = addr; 10334 fi->stage2 = true; 10335 fi->s1ptw = true; 10336 return ~0; 10337 } 10338 if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) { 10339 /* 10340 * PTW set and S1 walk touched S2 Device memory: 10341 * generate Permission fault. 10342 */ 10343 fi->type = ARMFault_Permission; 10344 fi->s2addr = addr; 10345 fi->stage2 = true; 10346 fi->s1ptw = true; 10347 return ~0; 10348 } 10349 addr = s2pa; 10350 } 10351 return addr; 10352 } 10353 10354 /* All loads done in the course of a page table walk go through here. */ 10355 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10356 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10357 { 10358 ARMCPU *cpu = ARM_CPU(cs); 10359 CPUARMState *env = &cpu->env; 10360 MemTxAttrs attrs = {}; 10361 MemTxResult result = MEMTX_OK; 10362 AddressSpace *as; 10363 uint32_t data; 10364 10365 attrs.secure = is_secure; 10366 as = arm_addressspace(cs, attrs); 10367 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10368 if (fi->s1ptw) { 10369 return 0; 10370 } 10371 if (regime_translation_big_endian(env, mmu_idx)) { 10372 data = address_space_ldl_be(as, addr, attrs, &result); 10373 } else { 10374 data = address_space_ldl_le(as, addr, attrs, &result); 10375 } 10376 if (result == MEMTX_OK) { 10377 return data; 10378 } 10379 fi->type = ARMFault_SyncExternalOnWalk; 10380 fi->ea = arm_extabort_type(result); 10381 return 0; 10382 } 10383 10384 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10385 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10386 { 10387 ARMCPU *cpu = ARM_CPU(cs); 10388 CPUARMState *env = &cpu->env; 10389 MemTxAttrs attrs = {}; 10390 MemTxResult result = MEMTX_OK; 10391 AddressSpace *as; 10392 uint64_t data; 10393 10394 attrs.secure = is_secure; 10395 as = arm_addressspace(cs, attrs); 10396 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10397 if (fi->s1ptw) { 10398 return 0; 10399 } 10400 if (regime_translation_big_endian(env, mmu_idx)) { 10401 data = address_space_ldq_be(as, addr, attrs, &result); 10402 } else { 10403 data = address_space_ldq_le(as, addr, attrs, &result); 10404 } 10405 if (result == MEMTX_OK) { 10406 return data; 10407 } 10408 fi->type = ARMFault_SyncExternalOnWalk; 10409 fi->ea = arm_extabort_type(result); 10410 return 0; 10411 } 10412 10413 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10414 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10415 hwaddr *phys_ptr, int *prot, 10416 target_ulong *page_size, 10417 ARMMMUFaultInfo *fi) 10418 { 10419 CPUState *cs = env_cpu(env); 10420 int level = 1; 10421 uint32_t table; 10422 uint32_t desc; 10423 int type; 10424 int ap; 10425 int domain = 0; 10426 int domain_prot; 10427 hwaddr phys_addr; 10428 uint32_t dacr; 10429 10430 /* Pagetable walk. */ 10431 /* Lookup l1 descriptor. */ 10432 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10433 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10434 fi->type = ARMFault_Translation; 10435 goto do_fault; 10436 } 10437 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10438 mmu_idx, fi); 10439 if (fi->type != ARMFault_None) { 10440 goto do_fault; 10441 } 10442 type = (desc & 3); 10443 domain = (desc >> 5) & 0x0f; 10444 if (regime_el(env, mmu_idx) == 1) { 10445 dacr = env->cp15.dacr_ns; 10446 } else { 10447 dacr = env->cp15.dacr_s; 10448 } 10449 domain_prot = (dacr >> (domain * 2)) & 3; 10450 if (type == 0) { 10451 /* Section translation fault. */ 10452 fi->type = ARMFault_Translation; 10453 goto do_fault; 10454 } 10455 if (type != 2) { 10456 level = 2; 10457 } 10458 if (domain_prot == 0 || domain_prot == 2) { 10459 fi->type = ARMFault_Domain; 10460 goto do_fault; 10461 } 10462 if (type == 2) { 10463 /* 1Mb section. */ 10464 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10465 ap = (desc >> 10) & 3; 10466 *page_size = 1024 * 1024; 10467 } else { 10468 /* Lookup l2 entry. */ 10469 if (type == 1) { 10470 /* Coarse pagetable. */ 10471 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10472 } else { 10473 /* Fine pagetable. */ 10474 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10475 } 10476 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10477 mmu_idx, fi); 10478 if (fi->type != ARMFault_None) { 10479 goto do_fault; 10480 } 10481 switch (desc & 3) { 10482 case 0: /* Page translation fault. */ 10483 fi->type = ARMFault_Translation; 10484 goto do_fault; 10485 case 1: /* 64k page. */ 10486 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10487 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10488 *page_size = 0x10000; 10489 break; 10490 case 2: /* 4k page. */ 10491 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10492 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10493 *page_size = 0x1000; 10494 break; 10495 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10496 if (type == 1) { 10497 /* ARMv6/XScale extended small page format */ 10498 if (arm_feature(env, ARM_FEATURE_XSCALE) 10499 || arm_feature(env, ARM_FEATURE_V6)) { 10500 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10501 *page_size = 0x1000; 10502 } else { 10503 /* UNPREDICTABLE in ARMv5; we choose to take a 10504 * page translation fault. 10505 */ 10506 fi->type = ARMFault_Translation; 10507 goto do_fault; 10508 } 10509 } else { 10510 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10511 *page_size = 0x400; 10512 } 10513 ap = (desc >> 4) & 3; 10514 break; 10515 default: 10516 /* Never happens, but compiler isn't smart enough to tell. */ 10517 abort(); 10518 } 10519 } 10520 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10521 *prot |= *prot ? PAGE_EXEC : 0; 10522 if (!(*prot & (1 << access_type))) { 10523 /* Access permission fault. */ 10524 fi->type = ARMFault_Permission; 10525 goto do_fault; 10526 } 10527 *phys_ptr = phys_addr; 10528 return false; 10529 do_fault: 10530 fi->domain = domain; 10531 fi->level = level; 10532 return true; 10533 } 10534 10535 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10536 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10537 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10538 target_ulong *page_size, ARMMMUFaultInfo *fi) 10539 { 10540 CPUState *cs = env_cpu(env); 10541 ARMCPU *cpu = env_archcpu(env); 10542 int level = 1; 10543 uint32_t table; 10544 uint32_t desc; 10545 uint32_t xn; 10546 uint32_t pxn = 0; 10547 int type; 10548 int ap; 10549 int domain = 0; 10550 int domain_prot; 10551 hwaddr phys_addr; 10552 uint32_t dacr; 10553 bool ns; 10554 10555 /* Pagetable walk. */ 10556 /* Lookup l1 descriptor. */ 10557 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10558 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10559 fi->type = ARMFault_Translation; 10560 goto do_fault; 10561 } 10562 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10563 mmu_idx, fi); 10564 if (fi->type != ARMFault_None) { 10565 goto do_fault; 10566 } 10567 type = (desc & 3); 10568 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10569 /* Section translation fault, or attempt to use the encoding 10570 * which is Reserved on implementations without PXN. 10571 */ 10572 fi->type = ARMFault_Translation; 10573 goto do_fault; 10574 } 10575 if ((type == 1) || !(desc & (1 << 18))) { 10576 /* Page or Section. */ 10577 domain = (desc >> 5) & 0x0f; 10578 } 10579 if (regime_el(env, mmu_idx) == 1) { 10580 dacr = env->cp15.dacr_ns; 10581 } else { 10582 dacr = env->cp15.dacr_s; 10583 } 10584 if (type == 1) { 10585 level = 2; 10586 } 10587 domain_prot = (dacr >> (domain * 2)) & 3; 10588 if (domain_prot == 0 || domain_prot == 2) { 10589 /* Section or Page domain fault */ 10590 fi->type = ARMFault_Domain; 10591 goto do_fault; 10592 } 10593 if (type != 1) { 10594 if (desc & (1 << 18)) { 10595 /* Supersection. */ 10596 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10597 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10598 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10599 *page_size = 0x1000000; 10600 } else { 10601 /* Section. */ 10602 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10603 *page_size = 0x100000; 10604 } 10605 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10606 xn = desc & (1 << 4); 10607 pxn = desc & 1; 10608 ns = extract32(desc, 19, 1); 10609 } else { 10610 if (cpu_isar_feature(aa32_pxn, cpu)) { 10611 pxn = (desc >> 2) & 1; 10612 } 10613 ns = extract32(desc, 3, 1); 10614 /* Lookup l2 entry. */ 10615 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10616 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10617 mmu_idx, fi); 10618 if (fi->type != ARMFault_None) { 10619 goto do_fault; 10620 } 10621 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10622 switch (desc & 3) { 10623 case 0: /* Page translation fault. */ 10624 fi->type = ARMFault_Translation; 10625 goto do_fault; 10626 case 1: /* 64k page. */ 10627 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10628 xn = desc & (1 << 15); 10629 *page_size = 0x10000; 10630 break; 10631 case 2: case 3: /* 4k page. */ 10632 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10633 xn = desc & 1; 10634 *page_size = 0x1000; 10635 break; 10636 default: 10637 /* Never happens, but compiler isn't smart enough to tell. */ 10638 abort(); 10639 } 10640 } 10641 if (domain_prot == 3) { 10642 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10643 } else { 10644 if (pxn && !regime_is_user(env, mmu_idx)) { 10645 xn = 1; 10646 } 10647 if (xn && access_type == MMU_INST_FETCH) { 10648 fi->type = ARMFault_Permission; 10649 goto do_fault; 10650 } 10651 10652 if (arm_feature(env, ARM_FEATURE_V6K) && 10653 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10654 /* The simplified model uses AP[0] as an access control bit. */ 10655 if ((ap & 1) == 0) { 10656 /* Access flag fault. */ 10657 fi->type = ARMFault_AccessFlag; 10658 goto do_fault; 10659 } 10660 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10661 } else { 10662 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10663 } 10664 if (*prot && !xn) { 10665 *prot |= PAGE_EXEC; 10666 } 10667 if (!(*prot & (1 << access_type))) { 10668 /* Access permission fault. */ 10669 fi->type = ARMFault_Permission; 10670 goto do_fault; 10671 } 10672 } 10673 if (ns) { 10674 /* The NS bit will (as required by the architecture) have no effect if 10675 * the CPU doesn't support TZ or this is a non-secure translation 10676 * regime, because the attribute will already be non-secure. 10677 */ 10678 attrs->secure = false; 10679 } 10680 *phys_ptr = phys_addr; 10681 return false; 10682 do_fault: 10683 fi->domain = domain; 10684 fi->level = level; 10685 return true; 10686 } 10687 10688 /* 10689 * check_s2_mmu_setup 10690 * @cpu: ARMCPU 10691 * @is_aa64: True if the translation regime is in AArch64 state 10692 * @startlevel: Suggested starting level 10693 * @inputsize: Bitsize of IPAs 10694 * @stride: Page-table stride (See the ARM ARM) 10695 * 10696 * Returns true if the suggested S2 translation parameters are OK and 10697 * false otherwise. 10698 */ 10699 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10700 int inputsize, int stride) 10701 { 10702 const int grainsize = stride + 3; 10703 int startsizecheck; 10704 10705 /* Negative levels are never allowed. */ 10706 if (level < 0) { 10707 return false; 10708 } 10709 10710 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10711 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10712 return false; 10713 } 10714 10715 if (is_aa64) { 10716 CPUARMState *env = &cpu->env; 10717 unsigned int pamax = arm_pamax(cpu); 10718 10719 switch (stride) { 10720 case 13: /* 64KB Pages. */ 10721 if (level == 0 || (level == 1 && pamax <= 42)) { 10722 return false; 10723 } 10724 break; 10725 case 11: /* 16KB Pages. */ 10726 if (level == 0 || (level == 1 && pamax <= 40)) { 10727 return false; 10728 } 10729 break; 10730 case 9: /* 4KB Pages. */ 10731 if (level == 0 && pamax <= 42) { 10732 return false; 10733 } 10734 break; 10735 default: 10736 g_assert_not_reached(); 10737 } 10738 10739 /* Inputsize checks. */ 10740 if (inputsize > pamax && 10741 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10742 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10743 return false; 10744 } 10745 } else { 10746 /* AArch32 only supports 4KB pages. Assert on that. */ 10747 assert(stride == 9); 10748 10749 if (level == 0) { 10750 return false; 10751 } 10752 } 10753 return true; 10754 } 10755 10756 /* Translate from the 4-bit stage 2 representation of 10757 * memory attributes (without cache-allocation hints) to 10758 * the 8-bit representation of the stage 1 MAIR registers 10759 * (which includes allocation hints). 10760 * 10761 * ref: shared/translation/attrs/S2AttrDecode() 10762 * .../S2ConvertAttrsHints() 10763 */ 10764 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10765 { 10766 uint8_t hiattr = extract32(s2attrs, 2, 2); 10767 uint8_t loattr = extract32(s2attrs, 0, 2); 10768 uint8_t hihint = 0, lohint = 0; 10769 10770 if (hiattr != 0) { /* normal memory */ 10771 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10772 hiattr = loattr = 1; /* non-cacheable */ 10773 } else { 10774 if (hiattr != 1) { /* Write-through or write-back */ 10775 hihint = 3; /* RW allocate */ 10776 } 10777 if (loattr != 1) { /* Write-through or write-back */ 10778 lohint = 3; /* RW allocate */ 10779 } 10780 } 10781 } 10782 10783 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10784 } 10785 #endif /* !CONFIG_USER_ONLY */ 10786 10787 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10788 { 10789 if (regime_has_2_ranges(mmu_idx)) { 10790 return extract64(tcr, 37, 2); 10791 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10792 return 0; /* VTCR_EL2 */ 10793 } else { 10794 /* Replicate the single TBI bit so we always have 2 bits. */ 10795 return extract32(tcr, 20, 1) * 3; 10796 } 10797 } 10798 10799 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10800 { 10801 if (regime_has_2_ranges(mmu_idx)) { 10802 return extract64(tcr, 51, 2); 10803 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10804 return 0; /* VTCR_EL2 */ 10805 } else { 10806 /* Replicate the single TBID bit so we always have 2 bits. */ 10807 return extract32(tcr, 29, 1) * 3; 10808 } 10809 } 10810 10811 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10812 { 10813 if (regime_has_2_ranges(mmu_idx)) { 10814 return extract64(tcr, 57, 2); 10815 } else { 10816 /* Replicate the single TCMA bit so we always have 2 bits. */ 10817 return extract32(tcr, 30, 1) * 3; 10818 } 10819 } 10820 10821 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10822 ARMMMUIdx mmu_idx, bool data) 10823 { 10824 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10825 bool epd, hpd, using16k, using64k; 10826 int select, tsz, tbi; 10827 10828 if (!regime_has_2_ranges(mmu_idx)) { 10829 select = 0; 10830 tsz = extract32(tcr, 0, 6); 10831 using64k = extract32(tcr, 14, 1); 10832 using16k = extract32(tcr, 15, 1); 10833 if (mmu_idx == ARMMMUIdx_Stage2) { 10834 /* VTCR_EL2 */ 10835 hpd = false; 10836 } else { 10837 hpd = extract32(tcr, 24, 1); 10838 } 10839 epd = false; 10840 } else { 10841 /* 10842 * Bit 55 is always between the two regions, and is canonical for 10843 * determining if address tagging is enabled. 10844 */ 10845 select = extract64(va, 55, 1); 10846 if (!select) { 10847 tsz = extract32(tcr, 0, 6); 10848 epd = extract32(tcr, 7, 1); 10849 using64k = extract32(tcr, 14, 1); 10850 using16k = extract32(tcr, 15, 1); 10851 hpd = extract64(tcr, 41, 1); 10852 } else { 10853 int tg = extract32(tcr, 30, 2); 10854 using16k = tg == 1; 10855 using64k = tg == 3; 10856 tsz = extract32(tcr, 16, 6); 10857 epd = extract32(tcr, 23, 1); 10858 hpd = extract64(tcr, 42, 1); 10859 } 10860 } 10861 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 10862 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10863 10864 /* Present TBI as a composite with TBID. */ 10865 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10866 if (!data) { 10867 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10868 } 10869 tbi = (tbi >> select) & 1; 10870 10871 return (ARMVAParameters) { 10872 .tsz = tsz, 10873 .select = select, 10874 .tbi = tbi, 10875 .epd = epd, 10876 .hpd = hpd, 10877 .using16k = using16k, 10878 .using64k = using64k, 10879 }; 10880 } 10881 10882 #ifndef CONFIG_USER_ONLY 10883 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10884 ARMMMUIdx mmu_idx) 10885 { 10886 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10887 uint32_t el = regime_el(env, mmu_idx); 10888 int select, tsz; 10889 bool epd, hpd; 10890 10891 if (mmu_idx == ARMMMUIdx_Stage2) { 10892 /* VTCR */ 10893 bool sext = extract32(tcr, 4, 1); 10894 bool sign = extract32(tcr, 3, 1); 10895 10896 /* 10897 * If the sign-extend bit is not the same as t0sz[3], the result 10898 * is unpredictable. Flag this as a guest error. 10899 */ 10900 if (sign != sext) { 10901 qemu_log_mask(LOG_GUEST_ERROR, 10902 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10903 } 10904 tsz = sextract32(tcr, 0, 4) + 8; 10905 select = 0; 10906 hpd = false; 10907 epd = false; 10908 } else if (el == 2) { 10909 /* HTCR */ 10910 tsz = extract32(tcr, 0, 3); 10911 select = 0; 10912 hpd = extract64(tcr, 24, 1); 10913 epd = false; 10914 } else { 10915 int t0sz = extract32(tcr, 0, 3); 10916 int t1sz = extract32(tcr, 16, 3); 10917 10918 if (t1sz == 0) { 10919 select = va > (0xffffffffu >> t0sz); 10920 } else { 10921 /* Note that we will detect errors later. */ 10922 select = va >= ~(0xffffffffu >> t1sz); 10923 } 10924 if (!select) { 10925 tsz = t0sz; 10926 epd = extract32(tcr, 7, 1); 10927 hpd = extract64(tcr, 41, 1); 10928 } else { 10929 tsz = t1sz; 10930 epd = extract32(tcr, 23, 1); 10931 hpd = extract64(tcr, 42, 1); 10932 } 10933 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10934 hpd &= extract32(tcr, 6, 1); 10935 } 10936 10937 return (ARMVAParameters) { 10938 .tsz = tsz, 10939 .select = select, 10940 .epd = epd, 10941 .hpd = hpd, 10942 }; 10943 } 10944 10945 /** 10946 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 10947 * 10948 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10949 * prot and page_size may not be filled in, and the populated fsr value provides 10950 * information on why the translation aborted, in the format of a long-format 10951 * DFSR/IFSR fault register, with the following caveats: 10952 * * the WnR bit is never set (the caller must do this). 10953 * 10954 * @env: CPUARMState 10955 * @address: virtual address to get physical address for 10956 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 10957 * @mmu_idx: MMU index indicating required translation regime 10958 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 10959 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 10960 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 10961 * @phys_ptr: set to the physical address corresponding to the virtual address 10962 * @attrs: set to the memory transaction attributes to use 10963 * @prot: set to the permissions for the page containing phys_ptr 10964 * @page_size_ptr: set to the size of the page containing phys_ptr 10965 * @fi: set to fault info if the translation fails 10966 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10967 */ 10968 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 10969 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10970 bool s1_is_el0, 10971 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 10972 target_ulong *page_size_ptr, 10973 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10974 { 10975 ARMCPU *cpu = env_archcpu(env); 10976 CPUState *cs = CPU(cpu); 10977 /* Read an LPAE long-descriptor translation table. */ 10978 ARMFaultType fault_type = ARMFault_Translation; 10979 uint32_t level; 10980 ARMVAParameters param; 10981 uint64_t ttbr; 10982 hwaddr descaddr, indexmask, indexmask_grainsize; 10983 uint32_t tableattrs; 10984 target_ulong page_size; 10985 uint32_t attrs; 10986 int32_t stride; 10987 int addrsize, inputsize; 10988 TCR *tcr = regime_tcr(env, mmu_idx); 10989 int ap, ns, xn, pxn; 10990 uint32_t el = regime_el(env, mmu_idx); 10991 uint64_t descaddrmask; 10992 bool aarch64 = arm_el_is_aa64(env, el); 10993 bool guarded = false; 10994 10995 /* TODO: This code does not support shareability levels. */ 10996 if (aarch64) { 10997 param = aa64_va_parameters(env, address, mmu_idx, 10998 access_type != MMU_INST_FETCH); 10999 level = 0; 11000 addrsize = 64 - 8 * param.tbi; 11001 inputsize = 64 - param.tsz; 11002 } else { 11003 param = aa32_va_parameters(env, address, mmu_idx); 11004 level = 1; 11005 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11006 inputsize = addrsize - param.tsz; 11007 } 11008 11009 /* 11010 * We determined the region when collecting the parameters, but we 11011 * have not yet validated that the address is valid for the region. 11012 * Extract the top bits and verify that they all match select. 11013 * 11014 * For aa32, if inputsize == addrsize, then we have selected the 11015 * region by exclusion in aa32_va_parameters and there is no more 11016 * validation to do here. 11017 */ 11018 if (inputsize < addrsize) { 11019 target_ulong top_bits = sextract64(address, inputsize, 11020 addrsize - inputsize); 11021 if (-top_bits != param.select) { 11022 /* The gap between the two regions is a Translation fault */ 11023 fault_type = ARMFault_Translation; 11024 goto do_fault; 11025 } 11026 } 11027 11028 if (param.using64k) { 11029 stride = 13; 11030 } else if (param.using16k) { 11031 stride = 11; 11032 } else { 11033 stride = 9; 11034 } 11035 11036 /* Note that QEMU ignores shareability and cacheability attributes, 11037 * so we don't need to do anything with the SH, ORGN, IRGN fields 11038 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11039 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11040 * implement any ASID-like capability so we can ignore it (instead 11041 * we will always flush the TLB any time the ASID is changed). 11042 */ 11043 ttbr = regime_ttbr(env, mmu_idx, param.select); 11044 11045 /* Here we should have set up all the parameters for the translation: 11046 * inputsize, ttbr, epd, stride, tbi 11047 */ 11048 11049 if (param.epd) { 11050 /* Translation table walk disabled => Translation fault on TLB miss 11051 * Note: This is always 0 on 64-bit EL2 and EL3. 11052 */ 11053 goto do_fault; 11054 } 11055 11056 if (mmu_idx != ARMMMUIdx_Stage2) { 11057 /* The starting level depends on the virtual address size (which can 11058 * be up to 48 bits) and the translation granule size. It indicates 11059 * the number of strides (stride bits at a time) needed to 11060 * consume the bits of the input address. In the pseudocode this is: 11061 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11062 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11063 * our 'stride + 3' and 'stride' is our 'stride'. 11064 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11065 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11066 * = 4 - (inputsize - 4) / stride; 11067 */ 11068 level = 4 - (inputsize - 4) / stride; 11069 } else { 11070 /* For stage 2 translations the starting level is specified by the 11071 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11072 */ 11073 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11074 uint32_t startlevel; 11075 bool ok; 11076 11077 if (!aarch64 || stride == 9) { 11078 /* AArch32 or 4KB pages */ 11079 startlevel = 2 - sl0; 11080 } else { 11081 /* 16KB or 64KB pages */ 11082 startlevel = 3 - sl0; 11083 } 11084 11085 /* Check that the starting level is valid. */ 11086 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11087 inputsize, stride); 11088 if (!ok) { 11089 fault_type = ARMFault_Translation; 11090 goto do_fault; 11091 } 11092 level = startlevel; 11093 } 11094 11095 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11096 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11097 11098 /* Now we can extract the actual base address from the TTBR */ 11099 descaddr = extract64(ttbr, 0, 48); 11100 /* 11101 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11102 * and also to mask out CnP (bit 0) which could validly be non-zero. 11103 */ 11104 descaddr &= ~indexmask; 11105 11106 /* The address field in the descriptor goes up to bit 39 for ARMv7 11107 * but up to bit 47 for ARMv8, but we use the descaddrmask 11108 * up to bit 39 for AArch32, because we don't need other bits in that case 11109 * to construct next descriptor address (anyway they should be all zeroes). 11110 */ 11111 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11112 ~indexmask_grainsize; 11113 11114 /* Secure accesses start with the page table in secure memory and 11115 * can be downgraded to non-secure at any step. Non-secure accesses 11116 * remain non-secure. We implement this by just ORing in the NSTable/NS 11117 * bits at each step. 11118 */ 11119 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11120 for (;;) { 11121 uint64_t descriptor; 11122 bool nstable; 11123 11124 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11125 descaddr &= ~7ULL; 11126 nstable = extract32(tableattrs, 4, 1); 11127 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11128 if (fi->type != ARMFault_None) { 11129 goto do_fault; 11130 } 11131 11132 if (!(descriptor & 1) || 11133 (!(descriptor & 2) && (level == 3))) { 11134 /* Invalid, or the Reserved level 3 encoding */ 11135 goto do_fault; 11136 } 11137 descaddr = descriptor & descaddrmask; 11138 11139 if ((descriptor & 2) && (level < 3)) { 11140 /* Table entry. The top five bits are attributes which may 11141 * propagate down through lower levels of the table (and 11142 * which are all arranged so that 0 means "no effect", so 11143 * we can gather them up by ORing in the bits at each level). 11144 */ 11145 tableattrs |= extract64(descriptor, 59, 5); 11146 level++; 11147 indexmask = indexmask_grainsize; 11148 continue; 11149 } 11150 /* Block entry at level 1 or 2, or page entry at level 3. 11151 * These are basically the same thing, although the number 11152 * of bits we pull in from the vaddr varies. 11153 */ 11154 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11155 descaddr |= (address & (page_size - 1)); 11156 /* Extract attributes from the descriptor */ 11157 attrs = extract64(descriptor, 2, 10) 11158 | (extract64(descriptor, 52, 12) << 10); 11159 11160 if (mmu_idx == ARMMMUIdx_Stage2) { 11161 /* Stage 2 table descriptors do not include any attribute fields */ 11162 break; 11163 } 11164 /* Merge in attributes from table descriptors */ 11165 attrs |= nstable << 3; /* NS */ 11166 guarded = extract64(descriptor, 50, 1); /* GP */ 11167 if (param.hpd) { 11168 /* HPD disables all the table attributes except NSTable. */ 11169 break; 11170 } 11171 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11172 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11173 * means "force PL1 access only", which means forcing AP[1] to 0. 11174 */ 11175 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11176 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11177 break; 11178 } 11179 /* Here descaddr is the final physical address, and attributes 11180 * are all in attrs. 11181 */ 11182 fault_type = ARMFault_AccessFlag; 11183 if ((attrs & (1 << 8)) == 0) { 11184 /* Access flag */ 11185 goto do_fault; 11186 } 11187 11188 ap = extract32(attrs, 4, 2); 11189 11190 if (mmu_idx == ARMMMUIdx_Stage2) { 11191 ns = true; 11192 xn = extract32(attrs, 11, 2); 11193 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11194 } else { 11195 ns = extract32(attrs, 3, 1); 11196 xn = extract32(attrs, 12, 1); 11197 pxn = extract32(attrs, 11, 1); 11198 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11199 } 11200 11201 fault_type = ARMFault_Permission; 11202 if (!(*prot & (1 << access_type))) { 11203 goto do_fault; 11204 } 11205 11206 if (ns) { 11207 /* The NS bit will (as required by the architecture) have no effect if 11208 * the CPU doesn't support TZ or this is a non-secure translation 11209 * regime, because the attribute will already be non-secure. 11210 */ 11211 txattrs->secure = false; 11212 } 11213 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11214 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11215 arm_tlb_bti_gp(txattrs) = true; 11216 } 11217 11218 if (mmu_idx == ARMMMUIdx_Stage2) { 11219 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11220 } else { 11221 /* Index into MAIR registers for cache attributes */ 11222 uint8_t attrindx = extract32(attrs, 0, 3); 11223 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11224 assert(attrindx <= 7); 11225 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11226 } 11227 cacheattrs->shareability = extract32(attrs, 6, 2); 11228 11229 *phys_ptr = descaddr; 11230 *page_size_ptr = page_size; 11231 return false; 11232 11233 do_fault: 11234 fi->type = fault_type; 11235 fi->level = level; 11236 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11237 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); 11238 return true; 11239 } 11240 11241 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11242 ARMMMUIdx mmu_idx, 11243 int32_t address, int *prot) 11244 { 11245 if (!arm_feature(env, ARM_FEATURE_M)) { 11246 *prot = PAGE_READ | PAGE_WRITE; 11247 switch (address) { 11248 case 0xF0000000 ... 0xFFFFFFFF: 11249 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11250 /* hivecs execing is ok */ 11251 *prot |= PAGE_EXEC; 11252 } 11253 break; 11254 case 0x00000000 ... 0x7FFFFFFF: 11255 *prot |= PAGE_EXEC; 11256 break; 11257 } 11258 } else { 11259 /* Default system address map for M profile cores. 11260 * The architecture specifies which regions are execute-never; 11261 * at the MPU level no other checks are defined. 11262 */ 11263 switch (address) { 11264 case 0x00000000 ... 0x1fffffff: /* ROM */ 11265 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11266 case 0x60000000 ... 0x7fffffff: /* RAM */ 11267 case 0x80000000 ... 0x9fffffff: /* RAM */ 11268 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11269 break; 11270 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11271 case 0xa0000000 ... 0xbfffffff: /* Device */ 11272 case 0xc0000000 ... 0xdfffffff: /* Device */ 11273 case 0xe0000000 ... 0xffffffff: /* System */ 11274 *prot = PAGE_READ | PAGE_WRITE; 11275 break; 11276 default: 11277 g_assert_not_reached(); 11278 } 11279 } 11280 } 11281 11282 static bool pmsav7_use_background_region(ARMCPU *cpu, 11283 ARMMMUIdx mmu_idx, bool is_user) 11284 { 11285 /* Return true if we should use the default memory map as a 11286 * "background" region if there are no hits against any MPU regions. 11287 */ 11288 CPUARMState *env = &cpu->env; 11289 11290 if (is_user) { 11291 return false; 11292 } 11293 11294 if (arm_feature(env, ARM_FEATURE_M)) { 11295 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11296 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11297 } else { 11298 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11299 } 11300 } 11301 11302 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11303 { 11304 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11305 return arm_feature(env, ARM_FEATURE_M) && 11306 extract32(address, 20, 12) == 0xe00; 11307 } 11308 11309 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11310 { 11311 /* True if address is in the M profile system region 11312 * 0xe0000000 - 0xffffffff 11313 */ 11314 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11315 } 11316 11317 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11318 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11319 hwaddr *phys_ptr, int *prot, 11320 target_ulong *page_size, 11321 ARMMMUFaultInfo *fi) 11322 { 11323 ARMCPU *cpu = env_archcpu(env); 11324 int n; 11325 bool is_user = regime_is_user(env, mmu_idx); 11326 11327 *phys_ptr = address; 11328 *page_size = TARGET_PAGE_SIZE; 11329 *prot = 0; 11330 11331 if (regime_translation_disabled(env, mmu_idx) || 11332 m_is_ppb_region(env, address)) { 11333 /* MPU disabled or M profile PPB access: use default memory map. 11334 * The other case which uses the default memory map in the 11335 * v7M ARM ARM pseudocode is exception vector reads from the vector 11336 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11337 * which always does a direct read using address_space_ldl(), rather 11338 * than going via this function, so we don't need to check that here. 11339 */ 11340 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11341 } else { /* MPU enabled */ 11342 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11343 /* region search */ 11344 uint32_t base = env->pmsav7.drbar[n]; 11345 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11346 uint32_t rmask; 11347 bool srdis = false; 11348 11349 if (!(env->pmsav7.drsr[n] & 0x1)) { 11350 continue; 11351 } 11352 11353 if (!rsize) { 11354 qemu_log_mask(LOG_GUEST_ERROR, 11355 "DRSR[%d]: Rsize field cannot be 0\n", n); 11356 continue; 11357 } 11358 rsize++; 11359 rmask = (1ull << rsize) - 1; 11360 11361 if (base & rmask) { 11362 qemu_log_mask(LOG_GUEST_ERROR, 11363 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11364 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11365 n, base, rmask); 11366 continue; 11367 } 11368 11369 if (address < base || address > base + rmask) { 11370 /* 11371 * Address not in this region. We must check whether the 11372 * region covers addresses in the same page as our address. 11373 * In that case we must not report a size that covers the 11374 * whole page for a subsequent hit against a different MPU 11375 * region or the background region, because it would result in 11376 * incorrect TLB hits for subsequent accesses to addresses that 11377 * are in this MPU region. 11378 */ 11379 if (ranges_overlap(base, rmask, 11380 address & TARGET_PAGE_MASK, 11381 TARGET_PAGE_SIZE)) { 11382 *page_size = 1; 11383 } 11384 continue; 11385 } 11386 11387 /* Region matched */ 11388 11389 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11390 int i, snd; 11391 uint32_t srdis_mask; 11392 11393 rsize -= 3; /* sub region size (power of 2) */ 11394 snd = ((address - base) >> rsize) & 0x7; 11395 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11396 11397 srdis_mask = srdis ? 0x3 : 0x0; 11398 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11399 /* This will check in groups of 2, 4 and then 8, whether 11400 * the subregion bits are consistent. rsize is incremented 11401 * back up to give the region size, considering consistent 11402 * adjacent subregions as one region. Stop testing if rsize 11403 * is already big enough for an entire QEMU page. 11404 */ 11405 int snd_rounded = snd & ~(i - 1); 11406 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11407 snd_rounded + 8, i); 11408 if (srdis_mask ^ srdis_multi) { 11409 break; 11410 } 11411 srdis_mask = (srdis_mask << i) | srdis_mask; 11412 rsize++; 11413 } 11414 } 11415 if (srdis) { 11416 continue; 11417 } 11418 if (rsize < TARGET_PAGE_BITS) { 11419 *page_size = 1 << rsize; 11420 } 11421 break; 11422 } 11423 11424 if (n == -1) { /* no hits */ 11425 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11426 /* background fault */ 11427 fi->type = ARMFault_Background; 11428 return true; 11429 } 11430 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11431 } else { /* a MPU hit! */ 11432 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11433 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11434 11435 if (m_is_system_region(env, address)) { 11436 /* System space is always execute never */ 11437 xn = 1; 11438 } 11439 11440 if (is_user) { /* User mode AP bit decoding */ 11441 switch (ap) { 11442 case 0: 11443 case 1: 11444 case 5: 11445 break; /* no access */ 11446 case 3: 11447 *prot |= PAGE_WRITE; 11448 /* fall through */ 11449 case 2: 11450 case 6: 11451 *prot |= PAGE_READ | PAGE_EXEC; 11452 break; 11453 case 7: 11454 /* for v7M, same as 6; for R profile a reserved value */ 11455 if (arm_feature(env, ARM_FEATURE_M)) { 11456 *prot |= PAGE_READ | PAGE_EXEC; 11457 break; 11458 } 11459 /* fall through */ 11460 default: 11461 qemu_log_mask(LOG_GUEST_ERROR, 11462 "DRACR[%d]: Bad value for AP bits: 0x%" 11463 PRIx32 "\n", n, ap); 11464 } 11465 } else { /* Priv. mode AP bits decoding */ 11466 switch (ap) { 11467 case 0: 11468 break; /* no access */ 11469 case 1: 11470 case 2: 11471 case 3: 11472 *prot |= PAGE_WRITE; 11473 /* fall through */ 11474 case 5: 11475 case 6: 11476 *prot |= PAGE_READ | PAGE_EXEC; 11477 break; 11478 case 7: 11479 /* for v7M, same as 6; for R profile a reserved value */ 11480 if (arm_feature(env, ARM_FEATURE_M)) { 11481 *prot |= PAGE_READ | PAGE_EXEC; 11482 break; 11483 } 11484 /* fall through */ 11485 default: 11486 qemu_log_mask(LOG_GUEST_ERROR, 11487 "DRACR[%d]: Bad value for AP bits: 0x%" 11488 PRIx32 "\n", n, ap); 11489 } 11490 } 11491 11492 /* execute never */ 11493 if (xn) { 11494 *prot &= ~PAGE_EXEC; 11495 } 11496 } 11497 } 11498 11499 fi->type = ARMFault_Permission; 11500 fi->level = 1; 11501 return !(*prot & (1 << access_type)); 11502 } 11503 11504 static bool v8m_is_sau_exempt(CPUARMState *env, 11505 uint32_t address, MMUAccessType access_type) 11506 { 11507 /* The architecture specifies that certain address ranges are 11508 * exempt from v8M SAU/IDAU checks. 11509 */ 11510 return 11511 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11512 (address >= 0xe0000000 && address <= 0xe0002fff) || 11513 (address >= 0xe000e000 && address <= 0xe000efff) || 11514 (address >= 0xe002e000 && address <= 0xe002efff) || 11515 (address >= 0xe0040000 && address <= 0xe0041fff) || 11516 (address >= 0xe00ff000 && address <= 0xe00fffff); 11517 } 11518 11519 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11520 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11521 V8M_SAttributes *sattrs) 11522 { 11523 /* Look up the security attributes for this address. Compare the 11524 * pseudocode SecurityCheck() function. 11525 * We assume the caller has zero-initialized *sattrs. 11526 */ 11527 ARMCPU *cpu = env_archcpu(env); 11528 int r; 11529 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11530 int idau_region = IREGION_NOTVALID; 11531 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11532 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11533 11534 if (cpu->idau) { 11535 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11536 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11537 11538 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11539 &idau_nsc); 11540 } 11541 11542 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11543 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11544 return; 11545 } 11546 11547 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11548 sattrs->ns = !regime_is_secure(env, mmu_idx); 11549 return; 11550 } 11551 11552 if (idau_region != IREGION_NOTVALID) { 11553 sattrs->irvalid = true; 11554 sattrs->iregion = idau_region; 11555 } 11556 11557 switch (env->sau.ctrl & 3) { 11558 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11559 break; 11560 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11561 sattrs->ns = true; 11562 break; 11563 default: /* SAU.ENABLE == 1 */ 11564 for (r = 0; r < cpu->sau_sregion; r++) { 11565 if (env->sau.rlar[r] & 1) { 11566 uint32_t base = env->sau.rbar[r] & ~0x1f; 11567 uint32_t limit = env->sau.rlar[r] | 0x1f; 11568 11569 if (base <= address && limit >= address) { 11570 if (base > addr_page_base || limit < addr_page_limit) { 11571 sattrs->subpage = true; 11572 } 11573 if (sattrs->srvalid) { 11574 /* If we hit in more than one region then we must report 11575 * as Secure, not NS-Callable, with no valid region 11576 * number info. 11577 */ 11578 sattrs->ns = false; 11579 sattrs->nsc = false; 11580 sattrs->sregion = 0; 11581 sattrs->srvalid = false; 11582 break; 11583 } else { 11584 if (env->sau.rlar[r] & 2) { 11585 sattrs->nsc = true; 11586 } else { 11587 sattrs->ns = true; 11588 } 11589 sattrs->srvalid = true; 11590 sattrs->sregion = r; 11591 } 11592 } else { 11593 /* 11594 * Address not in this region. We must check whether the 11595 * region covers addresses in the same page as our address. 11596 * In that case we must not report a size that covers the 11597 * whole page for a subsequent hit against a different MPU 11598 * region or the background region, because it would result 11599 * in incorrect TLB hits for subsequent accesses to 11600 * addresses that are in this MPU region. 11601 */ 11602 if (limit >= base && 11603 ranges_overlap(base, limit - base + 1, 11604 addr_page_base, 11605 TARGET_PAGE_SIZE)) { 11606 sattrs->subpage = true; 11607 } 11608 } 11609 } 11610 } 11611 break; 11612 } 11613 11614 /* 11615 * The IDAU will override the SAU lookup results if it specifies 11616 * higher security than the SAU does. 11617 */ 11618 if (!idau_ns) { 11619 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11620 sattrs->ns = false; 11621 sattrs->nsc = idau_nsc; 11622 } 11623 } 11624 } 11625 11626 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11627 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11628 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11629 int *prot, bool *is_subpage, 11630 ARMMMUFaultInfo *fi, uint32_t *mregion) 11631 { 11632 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11633 * that a full phys-to-virt translation does). 11634 * mregion is (if not NULL) set to the region number which matched, 11635 * or -1 if no region number is returned (MPU off, address did not 11636 * hit a region, address hit in multiple regions). 11637 * We set is_subpage to true if the region hit doesn't cover the 11638 * entire TARGET_PAGE the address is within. 11639 */ 11640 ARMCPU *cpu = env_archcpu(env); 11641 bool is_user = regime_is_user(env, mmu_idx); 11642 uint32_t secure = regime_is_secure(env, mmu_idx); 11643 int n; 11644 int matchregion = -1; 11645 bool hit = false; 11646 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11647 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11648 11649 *is_subpage = false; 11650 *phys_ptr = address; 11651 *prot = 0; 11652 if (mregion) { 11653 *mregion = -1; 11654 } 11655 11656 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11657 * was an exception vector read from the vector table (which is always 11658 * done using the default system address map), because those accesses 11659 * are done in arm_v7m_load_vector(), which always does a direct 11660 * read using address_space_ldl(), rather than going via this function. 11661 */ 11662 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11663 hit = true; 11664 } else if (m_is_ppb_region(env, address)) { 11665 hit = true; 11666 } else { 11667 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11668 hit = true; 11669 } 11670 11671 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11672 /* region search */ 11673 /* Note that the base address is bits [31:5] from the register 11674 * with bits [4:0] all zeroes, but the limit address is bits 11675 * [31:5] from the register with bits [4:0] all ones. 11676 */ 11677 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11678 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11679 11680 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11681 /* Region disabled */ 11682 continue; 11683 } 11684 11685 if (address < base || address > limit) { 11686 /* 11687 * Address not in this region. We must check whether the 11688 * region covers addresses in the same page as our address. 11689 * In that case we must not report a size that covers the 11690 * whole page for a subsequent hit against a different MPU 11691 * region or the background region, because it would result in 11692 * incorrect TLB hits for subsequent accesses to addresses that 11693 * are in this MPU region. 11694 */ 11695 if (limit >= base && 11696 ranges_overlap(base, limit - base + 1, 11697 addr_page_base, 11698 TARGET_PAGE_SIZE)) { 11699 *is_subpage = true; 11700 } 11701 continue; 11702 } 11703 11704 if (base > addr_page_base || limit < addr_page_limit) { 11705 *is_subpage = true; 11706 } 11707 11708 if (matchregion != -1) { 11709 /* Multiple regions match -- always a failure (unlike 11710 * PMSAv7 where highest-numbered-region wins) 11711 */ 11712 fi->type = ARMFault_Permission; 11713 fi->level = 1; 11714 return true; 11715 } 11716 11717 matchregion = n; 11718 hit = true; 11719 } 11720 } 11721 11722 if (!hit) { 11723 /* background fault */ 11724 fi->type = ARMFault_Background; 11725 return true; 11726 } 11727 11728 if (matchregion == -1) { 11729 /* hit using the background region */ 11730 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11731 } else { 11732 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11733 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11734 11735 if (m_is_system_region(env, address)) { 11736 /* System space is always execute never */ 11737 xn = 1; 11738 } 11739 11740 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11741 if (*prot && !xn) { 11742 *prot |= PAGE_EXEC; 11743 } 11744 /* We don't need to look the attribute up in the MAIR0/MAIR1 11745 * registers because that only tells us about cacheability. 11746 */ 11747 if (mregion) { 11748 *mregion = matchregion; 11749 } 11750 } 11751 11752 fi->type = ARMFault_Permission; 11753 fi->level = 1; 11754 return !(*prot & (1 << access_type)); 11755 } 11756 11757 11758 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11759 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11760 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11761 int *prot, target_ulong *page_size, 11762 ARMMMUFaultInfo *fi) 11763 { 11764 uint32_t secure = regime_is_secure(env, mmu_idx); 11765 V8M_SAttributes sattrs = {}; 11766 bool ret; 11767 bool mpu_is_subpage; 11768 11769 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11770 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11771 if (access_type == MMU_INST_FETCH) { 11772 /* Instruction fetches always use the MMU bank and the 11773 * transaction attribute determined by the fetch address, 11774 * regardless of CPU state. This is painful for QEMU 11775 * to handle, because it would mean we need to encode 11776 * into the mmu_idx not just the (user, negpri) information 11777 * for the current security state but also that for the 11778 * other security state, which would balloon the number 11779 * of mmu_idx values needed alarmingly. 11780 * Fortunately we can avoid this because it's not actually 11781 * possible to arbitrarily execute code from memory with 11782 * the wrong security attribute: it will always generate 11783 * an exception of some kind or another, apart from the 11784 * special case of an NS CPU executing an SG instruction 11785 * in S&NSC memory. So we always just fail the translation 11786 * here and sort things out in the exception handler 11787 * (including possibly emulating an SG instruction). 11788 */ 11789 if (sattrs.ns != !secure) { 11790 if (sattrs.nsc) { 11791 fi->type = ARMFault_QEMU_NSCExec; 11792 } else { 11793 fi->type = ARMFault_QEMU_SFault; 11794 } 11795 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11796 *phys_ptr = address; 11797 *prot = 0; 11798 return true; 11799 } 11800 } else { 11801 /* For data accesses we always use the MMU bank indicated 11802 * by the current CPU state, but the security attributes 11803 * might downgrade a secure access to nonsecure. 11804 */ 11805 if (sattrs.ns) { 11806 txattrs->secure = false; 11807 } else if (!secure) { 11808 /* NS access to S memory must fault. 11809 * Architecturally we should first check whether the 11810 * MPU information for this address indicates that we 11811 * are doing an unaligned access to Device memory, which 11812 * should generate a UsageFault instead. QEMU does not 11813 * currently check for that kind of unaligned access though. 11814 * If we added it we would need to do so as a special case 11815 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11816 */ 11817 fi->type = ARMFault_QEMU_SFault; 11818 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11819 *phys_ptr = address; 11820 *prot = 0; 11821 return true; 11822 } 11823 } 11824 } 11825 11826 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11827 txattrs, prot, &mpu_is_subpage, fi, NULL); 11828 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11829 return ret; 11830 } 11831 11832 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11833 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11834 hwaddr *phys_ptr, int *prot, 11835 ARMMMUFaultInfo *fi) 11836 { 11837 int n; 11838 uint32_t mask; 11839 uint32_t base; 11840 bool is_user = regime_is_user(env, mmu_idx); 11841 11842 if (regime_translation_disabled(env, mmu_idx)) { 11843 /* MPU disabled. */ 11844 *phys_ptr = address; 11845 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11846 return false; 11847 } 11848 11849 *phys_ptr = address; 11850 for (n = 7; n >= 0; n--) { 11851 base = env->cp15.c6_region[n]; 11852 if ((base & 1) == 0) { 11853 continue; 11854 } 11855 mask = 1 << ((base >> 1) & 0x1f); 11856 /* Keep this shift separate from the above to avoid an 11857 (undefined) << 32. */ 11858 mask = (mask << 1) - 1; 11859 if (((base ^ address) & ~mask) == 0) { 11860 break; 11861 } 11862 } 11863 if (n < 0) { 11864 fi->type = ARMFault_Background; 11865 return true; 11866 } 11867 11868 if (access_type == MMU_INST_FETCH) { 11869 mask = env->cp15.pmsav5_insn_ap; 11870 } else { 11871 mask = env->cp15.pmsav5_data_ap; 11872 } 11873 mask = (mask >> (n * 4)) & 0xf; 11874 switch (mask) { 11875 case 0: 11876 fi->type = ARMFault_Permission; 11877 fi->level = 1; 11878 return true; 11879 case 1: 11880 if (is_user) { 11881 fi->type = ARMFault_Permission; 11882 fi->level = 1; 11883 return true; 11884 } 11885 *prot = PAGE_READ | PAGE_WRITE; 11886 break; 11887 case 2: 11888 *prot = PAGE_READ; 11889 if (!is_user) { 11890 *prot |= PAGE_WRITE; 11891 } 11892 break; 11893 case 3: 11894 *prot = PAGE_READ | PAGE_WRITE; 11895 break; 11896 case 5: 11897 if (is_user) { 11898 fi->type = ARMFault_Permission; 11899 fi->level = 1; 11900 return true; 11901 } 11902 *prot = PAGE_READ; 11903 break; 11904 case 6: 11905 *prot = PAGE_READ; 11906 break; 11907 default: 11908 /* Bad permission. */ 11909 fi->type = ARMFault_Permission; 11910 fi->level = 1; 11911 return true; 11912 } 11913 *prot |= PAGE_EXEC; 11914 return false; 11915 } 11916 11917 /* Combine either inner or outer cacheability attributes for normal 11918 * memory, according to table D4-42 and pseudocode procedure 11919 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11920 * 11921 * NB: only stage 1 includes allocation hints (RW bits), leading to 11922 * some asymmetry. 11923 */ 11924 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11925 { 11926 if (s1 == 4 || s2 == 4) { 11927 /* non-cacheable has precedence */ 11928 return 4; 11929 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11930 /* stage 1 write-through takes precedence */ 11931 return s1; 11932 } else if (extract32(s2, 2, 2) == 2) { 11933 /* stage 2 write-through takes precedence, but the allocation hint 11934 * is still taken from stage 1 11935 */ 11936 return (2 << 2) | extract32(s1, 0, 2); 11937 } else { /* write-back */ 11938 return s1; 11939 } 11940 } 11941 11942 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11943 * and CombineS1S2Desc() 11944 * 11945 * @s1: Attributes from stage 1 walk 11946 * @s2: Attributes from stage 2 walk 11947 */ 11948 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11949 { 11950 uint8_t s1lo, s2lo, s1hi, s2hi; 11951 ARMCacheAttrs ret; 11952 bool tagged = false; 11953 11954 if (s1.attrs == 0xf0) { 11955 tagged = true; 11956 s1.attrs = 0xff; 11957 } 11958 11959 s1lo = extract32(s1.attrs, 0, 4); 11960 s2lo = extract32(s2.attrs, 0, 4); 11961 s1hi = extract32(s1.attrs, 4, 4); 11962 s2hi = extract32(s2.attrs, 4, 4); 11963 11964 /* Combine shareability attributes (table D4-43) */ 11965 if (s1.shareability == 2 || s2.shareability == 2) { 11966 /* if either are outer-shareable, the result is outer-shareable */ 11967 ret.shareability = 2; 11968 } else if (s1.shareability == 3 || s2.shareability == 3) { 11969 /* if either are inner-shareable, the result is inner-shareable */ 11970 ret.shareability = 3; 11971 } else { 11972 /* both non-shareable */ 11973 ret.shareability = 0; 11974 } 11975 11976 /* Combine memory type and cacheability attributes */ 11977 if (s1hi == 0 || s2hi == 0) { 11978 /* Device has precedence over normal */ 11979 if (s1lo == 0 || s2lo == 0) { 11980 /* nGnRnE has precedence over anything */ 11981 ret.attrs = 0; 11982 } else if (s1lo == 4 || s2lo == 4) { 11983 /* non-Reordering has precedence over Reordering */ 11984 ret.attrs = 4; /* nGnRE */ 11985 } else if (s1lo == 8 || s2lo == 8) { 11986 /* non-Gathering has precedence over Gathering */ 11987 ret.attrs = 8; /* nGRE */ 11988 } else { 11989 ret.attrs = 0xc; /* GRE */ 11990 } 11991 11992 /* Any location for which the resultant memory type is any 11993 * type of Device memory is always treated as Outer Shareable. 11994 */ 11995 ret.shareability = 2; 11996 } else { /* Normal memory */ 11997 /* Outer/inner cacheability combine independently */ 11998 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 11999 | combine_cacheattr_nibble(s1lo, s2lo); 12000 12001 if (ret.attrs == 0x44) { 12002 /* Any location for which the resultant memory type is Normal 12003 * Inner Non-cacheable, Outer Non-cacheable is always treated 12004 * as Outer Shareable. 12005 */ 12006 ret.shareability = 2; 12007 } 12008 } 12009 12010 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12011 if (tagged && ret.attrs == 0xff) { 12012 ret.attrs = 0xf0; 12013 } 12014 12015 return ret; 12016 } 12017 12018 12019 /* get_phys_addr - get the physical address for this virtual address 12020 * 12021 * Find the physical address corresponding to the given virtual address, 12022 * by doing a translation table walk on MMU based systems or using the 12023 * MPU state on MPU based systems. 12024 * 12025 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12026 * prot and page_size may not be filled in, and the populated fsr value provides 12027 * information on why the translation aborted, in the format of a 12028 * DFSR/IFSR fault register, with the following caveats: 12029 * * we honour the short vs long DFSR format differences. 12030 * * the WnR bit is never set (the caller must do this). 12031 * * for PSMAv5 based systems we don't bother to return a full FSR format 12032 * value. 12033 * 12034 * @env: CPUARMState 12035 * @address: virtual address to get physical address for 12036 * @access_type: 0 for read, 1 for write, 2 for execute 12037 * @mmu_idx: MMU index indicating required translation regime 12038 * @phys_ptr: set to the physical address corresponding to the virtual address 12039 * @attrs: set to the memory transaction attributes to use 12040 * @prot: set to the permissions for the page containing phys_ptr 12041 * @page_size: set to the size of the page containing phys_ptr 12042 * @fi: set to fault info if the translation fails 12043 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12044 */ 12045 bool get_phys_addr(CPUARMState *env, target_ulong address, 12046 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12047 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12048 target_ulong *page_size, 12049 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12050 { 12051 if (mmu_idx == ARMMMUIdx_E10_0 || 12052 mmu_idx == ARMMMUIdx_E10_1 || 12053 mmu_idx == ARMMMUIdx_E10_1_PAN) { 12054 /* Call ourselves recursively to do the stage 1 and then stage 2 12055 * translations. 12056 */ 12057 if (arm_feature(env, ARM_FEATURE_EL2)) { 12058 hwaddr ipa; 12059 int s2_prot; 12060 int ret; 12061 ARMCacheAttrs cacheattrs2 = {}; 12062 12063 ret = get_phys_addr(env, address, access_type, 12064 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 12065 prot, page_size, fi, cacheattrs); 12066 12067 /* If S1 fails or S2 is disabled, return early. */ 12068 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12069 *phys_ptr = ipa; 12070 return ret; 12071 } 12072 12073 /* S1 is done. Now do S2 translation. */ 12074 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, 12075 mmu_idx == ARMMMUIdx_E10_0, 12076 phys_ptr, attrs, &s2_prot, 12077 page_size, fi, &cacheattrs2); 12078 fi->s2addr = ipa; 12079 /* Combine the S1 and S2 perms. */ 12080 *prot &= s2_prot; 12081 12082 /* If S2 fails, return early. */ 12083 if (ret) { 12084 return ret; 12085 } 12086 12087 /* Combine the S1 and S2 cache attributes. */ 12088 if (env->cp15.hcr_el2 & HCR_DC) { 12089 /* 12090 * HCR.DC forces the first stage attributes to 12091 * Normal Non-Shareable, 12092 * Inner Write-Back Read-Allocate Write-Allocate, 12093 * Outer Write-Back Read-Allocate Write-Allocate. 12094 * Do not overwrite Tagged within attrs. 12095 */ 12096 if (cacheattrs->attrs != 0xf0) { 12097 cacheattrs->attrs = 0xff; 12098 } 12099 cacheattrs->shareability = 0; 12100 } 12101 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12102 return 0; 12103 } else { 12104 /* 12105 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12106 */ 12107 mmu_idx = stage_1_mmu_idx(mmu_idx); 12108 } 12109 } 12110 12111 /* The page table entries may downgrade secure to non-secure, but 12112 * cannot upgrade an non-secure translation regime's attributes 12113 * to secure. 12114 */ 12115 attrs->secure = regime_is_secure(env, mmu_idx); 12116 attrs->user = regime_is_user(env, mmu_idx); 12117 12118 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12119 * In v7 and earlier it affects all stage 1 translations. 12120 */ 12121 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12122 && !arm_feature(env, ARM_FEATURE_V8)) { 12123 if (regime_el(env, mmu_idx) == 3) { 12124 address += env->cp15.fcseidr_s; 12125 } else { 12126 address += env->cp15.fcseidr_ns; 12127 } 12128 } 12129 12130 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12131 bool ret; 12132 *page_size = TARGET_PAGE_SIZE; 12133 12134 if (arm_feature(env, ARM_FEATURE_V8)) { 12135 /* PMSAv8 */ 12136 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12137 phys_ptr, attrs, prot, page_size, fi); 12138 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12139 /* PMSAv7 */ 12140 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12141 phys_ptr, prot, page_size, fi); 12142 } else { 12143 /* Pre-v7 MPU */ 12144 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12145 phys_ptr, prot, fi); 12146 } 12147 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12148 " mmu_idx %u -> %s (prot %c%c%c)\n", 12149 access_type == MMU_DATA_LOAD ? "reading" : 12150 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12151 (uint32_t)address, mmu_idx, 12152 ret ? "Miss" : "Hit", 12153 *prot & PAGE_READ ? 'r' : '-', 12154 *prot & PAGE_WRITE ? 'w' : '-', 12155 *prot & PAGE_EXEC ? 'x' : '-'); 12156 12157 return ret; 12158 } 12159 12160 /* Definitely a real MMU, not an MPU */ 12161 12162 if (regime_translation_disabled(env, mmu_idx)) { 12163 uint64_t hcr; 12164 uint8_t memattr; 12165 12166 /* 12167 * MMU disabled. S1 addresses within aa64 translation regimes are 12168 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12169 */ 12170 if (mmu_idx != ARMMMUIdx_Stage2) { 12171 int r_el = regime_el(env, mmu_idx); 12172 if (arm_el_is_aa64(env, r_el)) { 12173 int pamax = arm_pamax(env_archcpu(env)); 12174 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12175 int addrtop, tbi; 12176 12177 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12178 if (access_type == MMU_INST_FETCH) { 12179 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12180 } 12181 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12182 addrtop = (tbi ? 55 : 63); 12183 12184 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12185 fi->type = ARMFault_AddressSize; 12186 fi->level = 0; 12187 fi->stage2 = false; 12188 return 1; 12189 } 12190 12191 /* 12192 * When TBI is disabled, we've just validated that all of the 12193 * bits above PAMax are zero, so logically we only need to 12194 * clear the top byte for TBI. But it's clearer to follow 12195 * the pseudocode set of addrdesc.paddress. 12196 */ 12197 address = extract64(address, 0, 52); 12198 } 12199 } 12200 *phys_ptr = address; 12201 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12202 *page_size = TARGET_PAGE_SIZE; 12203 12204 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12205 hcr = arm_hcr_el2_eff(env); 12206 cacheattrs->shareability = 0; 12207 if (hcr & HCR_DC) { 12208 if (hcr & HCR_DCT) { 12209 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12210 } else { 12211 memattr = 0xff; /* Normal, WB, RWA */ 12212 } 12213 } else if (access_type == MMU_INST_FETCH) { 12214 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12215 memattr = 0xee; /* Normal, WT, RA, NT */ 12216 } else { 12217 memattr = 0x44; /* Normal, NC, No */ 12218 } 12219 cacheattrs->shareability = 2; /* outer sharable */ 12220 } else { 12221 memattr = 0x00; /* Device, nGnRnE */ 12222 } 12223 cacheattrs->attrs = memattr; 12224 return 0; 12225 } 12226 12227 if (regime_using_lpae_format(env, mmu_idx)) { 12228 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12229 phys_ptr, attrs, prot, page_size, 12230 fi, cacheattrs); 12231 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12232 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12233 phys_ptr, attrs, prot, page_size, fi); 12234 } else { 12235 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12236 phys_ptr, prot, page_size, fi); 12237 } 12238 } 12239 12240 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12241 MemTxAttrs *attrs) 12242 { 12243 ARMCPU *cpu = ARM_CPU(cs); 12244 CPUARMState *env = &cpu->env; 12245 hwaddr phys_addr; 12246 target_ulong page_size; 12247 int prot; 12248 bool ret; 12249 ARMMMUFaultInfo fi = {}; 12250 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12251 ARMCacheAttrs cacheattrs = {}; 12252 12253 *attrs = (MemTxAttrs) {}; 12254 12255 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 12256 attrs, &prot, &page_size, &fi, &cacheattrs); 12257 12258 if (ret) { 12259 return -1; 12260 } 12261 return phys_addr; 12262 } 12263 12264 #endif 12265 12266 /* Note that signed overflow is undefined in C. The following routines are 12267 careful to use unsigned types where modulo arithmetic is required. 12268 Failure to do so _will_ break on newer gcc. */ 12269 12270 /* Signed saturating arithmetic. */ 12271 12272 /* Perform 16-bit signed saturating addition. */ 12273 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12274 { 12275 uint16_t res; 12276 12277 res = a + b; 12278 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12279 if (a & 0x8000) 12280 res = 0x8000; 12281 else 12282 res = 0x7fff; 12283 } 12284 return res; 12285 } 12286 12287 /* Perform 8-bit signed saturating addition. */ 12288 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12289 { 12290 uint8_t res; 12291 12292 res = a + b; 12293 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12294 if (a & 0x80) 12295 res = 0x80; 12296 else 12297 res = 0x7f; 12298 } 12299 return res; 12300 } 12301 12302 /* Perform 16-bit signed saturating subtraction. */ 12303 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12304 { 12305 uint16_t res; 12306 12307 res = a - b; 12308 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12309 if (a & 0x8000) 12310 res = 0x8000; 12311 else 12312 res = 0x7fff; 12313 } 12314 return res; 12315 } 12316 12317 /* Perform 8-bit signed saturating subtraction. */ 12318 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12319 { 12320 uint8_t res; 12321 12322 res = a - b; 12323 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12324 if (a & 0x80) 12325 res = 0x80; 12326 else 12327 res = 0x7f; 12328 } 12329 return res; 12330 } 12331 12332 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12333 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12334 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12335 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12336 #define PFX q 12337 12338 #include "op_addsub.h" 12339 12340 /* Unsigned saturating arithmetic. */ 12341 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12342 { 12343 uint16_t res; 12344 res = a + b; 12345 if (res < a) 12346 res = 0xffff; 12347 return res; 12348 } 12349 12350 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12351 { 12352 if (a > b) 12353 return a - b; 12354 else 12355 return 0; 12356 } 12357 12358 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12359 { 12360 uint8_t res; 12361 res = a + b; 12362 if (res < a) 12363 res = 0xff; 12364 return res; 12365 } 12366 12367 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12368 { 12369 if (a > b) 12370 return a - b; 12371 else 12372 return 0; 12373 } 12374 12375 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12376 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12377 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12378 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12379 #define PFX uq 12380 12381 #include "op_addsub.h" 12382 12383 /* Signed modulo arithmetic. */ 12384 #define SARITH16(a, b, n, op) do { \ 12385 int32_t sum; \ 12386 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12387 RESULT(sum, n, 16); \ 12388 if (sum >= 0) \ 12389 ge |= 3 << (n * 2); \ 12390 } while(0) 12391 12392 #define SARITH8(a, b, n, op) do { \ 12393 int32_t sum; \ 12394 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12395 RESULT(sum, n, 8); \ 12396 if (sum >= 0) \ 12397 ge |= 1 << n; \ 12398 } while(0) 12399 12400 12401 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12402 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12403 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12404 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12405 #define PFX s 12406 #define ARITH_GE 12407 12408 #include "op_addsub.h" 12409 12410 /* Unsigned modulo arithmetic. */ 12411 #define ADD16(a, b, n) do { \ 12412 uint32_t sum; \ 12413 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12414 RESULT(sum, n, 16); \ 12415 if ((sum >> 16) == 1) \ 12416 ge |= 3 << (n * 2); \ 12417 } while(0) 12418 12419 #define ADD8(a, b, n) do { \ 12420 uint32_t sum; \ 12421 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12422 RESULT(sum, n, 8); \ 12423 if ((sum >> 8) == 1) \ 12424 ge |= 1 << n; \ 12425 } while(0) 12426 12427 #define SUB16(a, b, n) do { \ 12428 uint32_t sum; \ 12429 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12430 RESULT(sum, n, 16); \ 12431 if ((sum >> 16) == 0) \ 12432 ge |= 3 << (n * 2); \ 12433 } while(0) 12434 12435 #define SUB8(a, b, n) do { \ 12436 uint32_t sum; \ 12437 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12438 RESULT(sum, n, 8); \ 12439 if ((sum >> 8) == 0) \ 12440 ge |= 1 << n; \ 12441 } while(0) 12442 12443 #define PFX u 12444 #define ARITH_GE 12445 12446 #include "op_addsub.h" 12447 12448 /* Halved signed arithmetic. */ 12449 #define ADD16(a, b, n) \ 12450 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12451 #define SUB16(a, b, n) \ 12452 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12453 #define ADD8(a, b, n) \ 12454 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12455 #define SUB8(a, b, n) \ 12456 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12457 #define PFX sh 12458 12459 #include "op_addsub.h" 12460 12461 /* Halved unsigned arithmetic. */ 12462 #define ADD16(a, b, n) \ 12463 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12464 #define SUB16(a, b, n) \ 12465 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12466 #define ADD8(a, b, n) \ 12467 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12468 #define SUB8(a, b, n) \ 12469 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12470 #define PFX uh 12471 12472 #include "op_addsub.h" 12473 12474 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12475 { 12476 if (a > b) 12477 return a - b; 12478 else 12479 return b - a; 12480 } 12481 12482 /* Unsigned sum of absolute byte differences. */ 12483 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12484 { 12485 uint32_t sum; 12486 sum = do_usad(a, b); 12487 sum += do_usad(a >> 8, b >> 8); 12488 sum += do_usad(a >> 16, b >>16); 12489 sum += do_usad(a >> 24, b >> 24); 12490 return sum; 12491 } 12492 12493 /* For ARMv6 SEL instruction. */ 12494 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12495 { 12496 uint32_t mask; 12497 12498 mask = 0; 12499 if (flags & 1) 12500 mask |= 0xff; 12501 if (flags & 2) 12502 mask |= 0xff00; 12503 if (flags & 4) 12504 mask |= 0xff0000; 12505 if (flags & 8) 12506 mask |= 0xff000000; 12507 return (a & mask) | (b & ~mask); 12508 } 12509 12510 /* CRC helpers. 12511 * The upper bytes of val (above the number specified by 'bytes') must have 12512 * been zeroed out by the caller. 12513 */ 12514 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12515 { 12516 uint8_t buf[4]; 12517 12518 stl_le_p(buf, val); 12519 12520 /* zlib crc32 converts the accumulator and output to one's complement. */ 12521 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12522 } 12523 12524 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12525 { 12526 uint8_t buf[4]; 12527 12528 stl_le_p(buf, val); 12529 12530 /* Linux crc32c converts the output to one's complement. */ 12531 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12532 } 12533 12534 /* Return the exception level to which FP-disabled exceptions should 12535 * be taken, or 0 if FP is enabled. 12536 */ 12537 int fp_exception_el(CPUARMState *env, int cur_el) 12538 { 12539 #ifndef CONFIG_USER_ONLY 12540 /* CPACR and the CPTR registers don't exist before v6, so FP is 12541 * always accessible 12542 */ 12543 if (!arm_feature(env, ARM_FEATURE_V6)) { 12544 return 0; 12545 } 12546 12547 if (arm_feature(env, ARM_FEATURE_M)) { 12548 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12549 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12550 return 1; 12551 } 12552 12553 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12554 if (!extract32(env->v7m.nsacr, 10, 1)) { 12555 /* FP insns cause a NOCP UsageFault taken to Secure */ 12556 return 3; 12557 } 12558 } 12559 12560 return 0; 12561 } 12562 12563 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12564 * 0, 2 : trap EL0 and EL1/PL1 accesses 12565 * 1 : trap only EL0 accesses 12566 * 3 : trap no accesses 12567 * This register is ignored if E2H+TGE are both set. 12568 */ 12569 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12570 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12571 12572 switch (fpen) { 12573 case 0: 12574 case 2: 12575 if (cur_el == 0 || cur_el == 1) { 12576 /* Trap to PL1, which might be EL1 or EL3 */ 12577 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12578 return 3; 12579 } 12580 return 1; 12581 } 12582 if (cur_el == 3 && !is_a64(env)) { 12583 /* Secure PL1 running at EL3 */ 12584 return 3; 12585 } 12586 break; 12587 case 1: 12588 if (cur_el == 0) { 12589 return 1; 12590 } 12591 break; 12592 case 3: 12593 break; 12594 } 12595 } 12596 12597 /* 12598 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12599 * to control non-secure access to the FPU. It doesn't have any 12600 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12601 */ 12602 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12603 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12604 if (!extract32(env->cp15.nsacr, 10, 1)) { 12605 /* FP insns act as UNDEF */ 12606 return cur_el == 2 ? 2 : 1; 12607 } 12608 } 12609 12610 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12611 * check because zero bits in the registers mean "don't trap". 12612 */ 12613 12614 /* CPTR_EL2 : present in v7VE or v8 */ 12615 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12616 && !arm_is_secure_below_el3(env)) { 12617 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12618 return 2; 12619 } 12620 12621 /* CPTR_EL3 : present in v8 */ 12622 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12623 /* Trap all FP ops to EL3 */ 12624 return 3; 12625 } 12626 #endif 12627 return 0; 12628 } 12629 12630 /* Return the exception level we're running at if this is our mmu_idx */ 12631 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12632 { 12633 if (mmu_idx & ARM_MMU_IDX_M) { 12634 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12635 } 12636 12637 switch (mmu_idx) { 12638 case ARMMMUIdx_E10_0: 12639 case ARMMMUIdx_E20_0: 12640 case ARMMMUIdx_SE10_0: 12641 return 0; 12642 case ARMMMUIdx_E10_1: 12643 case ARMMMUIdx_E10_1_PAN: 12644 case ARMMMUIdx_SE10_1: 12645 case ARMMMUIdx_SE10_1_PAN: 12646 return 1; 12647 case ARMMMUIdx_E2: 12648 case ARMMMUIdx_E20_2: 12649 case ARMMMUIdx_E20_2_PAN: 12650 return 2; 12651 case ARMMMUIdx_SE3: 12652 return 3; 12653 default: 12654 g_assert_not_reached(); 12655 } 12656 } 12657 12658 #ifndef CONFIG_TCG 12659 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12660 { 12661 g_assert_not_reached(); 12662 } 12663 #endif 12664 12665 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12666 { 12667 if (arm_feature(env, ARM_FEATURE_M)) { 12668 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12669 } 12670 12671 /* See ARM pseudo-function ELIsInHost. */ 12672 switch (el) { 12673 case 0: 12674 if (arm_is_secure_below_el3(env)) { 12675 return ARMMMUIdx_SE10_0; 12676 } 12677 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE) 12678 && arm_el_is_aa64(env, 2)) { 12679 return ARMMMUIdx_E20_0; 12680 } 12681 return ARMMMUIdx_E10_0; 12682 case 1: 12683 if (arm_is_secure_below_el3(env)) { 12684 if (env->pstate & PSTATE_PAN) { 12685 return ARMMMUIdx_SE10_1_PAN; 12686 } 12687 return ARMMMUIdx_SE10_1; 12688 } 12689 if (env->pstate & PSTATE_PAN) { 12690 return ARMMMUIdx_E10_1_PAN; 12691 } 12692 return ARMMMUIdx_E10_1; 12693 case 2: 12694 /* TODO: ARMv8.4-SecEL2 */ 12695 /* Note that TGE does not apply at EL2. */ 12696 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) { 12697 if (env->pstate & PSTATE_PAN) { 12698 return ARMMMUIdx_E20_2_PAN; 12699 } 12700 return ARMMMUIdx_E20_2; 12701 } 12702 return ARMMMUIdx_E2; 12703 case 3: 12704 return ARMMMUIdx_SE3; 12705 default: 12706 g_assert_not_reached(); 12707 } 12708 } 12709 12710 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12711 { 12712 return arm_mmu_idx_el(env, arm_current_el(env)); 12713 } 12714 12715 #ifndef CONFIG_USER_ONLY 12716 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12717 { 12718 return stage_1_mmu_idx(arm_mmu_idx(env)); 12719 } 12720 #endif 12721 12722 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12723 ARMMMUIdx mmu_idx, uint32_t flags) 12724 { 12725 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12726 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12727 arm_to_core_mmu_idx(mmu_idx)); 12728 12729 if (arm_singlestep_active(env)) { 12730 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12731 } 12732 return flags; 12733 } 12734 12735 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12736 ARMMMUIdx mmu_idx, uint32_t flags) 12737 { 12738 bool sctlr_b = arm_sctlr_b(env); 12739 12740 if (sctlr_b) { 12741 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12742 } 12743 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12744 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12745 } 12746 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12747 12748 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12749 } 12750 12751 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12752 ARMMMUIdx mmu_idx) 12753 { 12754 uint32_t flags = 0; 12755 12756 if (arm_v7m_is_handler_mode(env)) { 12757 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12758 } 12759 12760 /* 12761 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12762 * is suppressing them because the requested execution priority 12763 * is less than 0. 12764 */ 12765 if (arm_feature(env, ARM_FEATURE_V8) && 12766 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12767 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12768 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12769 } 12770 12771 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12772 } 12773 12774 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 12775 { 12776 int flags = 0; 12777 12778 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 12779 arm_debug_target_el(env)); 12780 return flags; 12781 } 12782 12783 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 12784 ARMMMUIdx mmu_idx) 12785 { 12786 uint32_t flags = rebuild_hflags_aprofile(env); 12787 12788 if (arm_el_is_aa64(env, 1)) { 12789 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12790 } 12791 12792 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 12793 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12794 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 12795 } 12796 12797 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12798 } 12799 12800 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 12801 ARMMMUIdx mmu_idx) 12802 { 12803 uint32_t flags = rebuild_hflags_aprofile(env); 12804 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12805 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 12806 uint64_t sctlr; 12807 int tbii, tbid; 12808 12809 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12810 12811 /* Get control bits for tagged addresses. */ 12812 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12813 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12814 12815 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12816 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12817 12818 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12819 int sve_el = sve_exception_el(env, el); 12820 uint32_t zcr_len; 12821 12822 /* 12823 * If SVE is disabled, but FP is enabled, 12824 * then the effective len is 0. 12825 */ 12826 if (sve_el != 0 && fp_el == 0) { 12827 zcr_len = 0; 12828 } else { 12829 zcr_len = sve_zcr_len_for_el(env, el); 12830 } 12831 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12832 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 12833 } 12834 12835 sctlr = regime_sctlr(env, stage1); 12836 12837 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12838 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12839 } 12840 12841 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12842 /* 12843 * In order to save space in flags, we record only whether 12844 * pauth is "inactive", meaning all insns are implemented as 12845 * a nop, or "active" when some action must be performed. 12846 * The decision of which action to take is left to a helper. 12847 */ 12848 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12849 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 12850 } 12851 } 12852 12853 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12854 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12855 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12856 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 12857 } 12858 } 12859 12860 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12861 if (!(env->pstate & PSTATE_UAO)) { 12862 switch (mmu_idx) { 12863 case ARMMMUIdx_E10_1: 12864 case ARMMMUIdx_E10_1_PAN: 12865 case ARMMMUIdx_SE10_1: 12866 case ARMMMUIdx_SE10_1_PAN: 12867 /* TODO: ARMv8.3-NV */ 12868 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12869 break; 12870 case ARMMMUIdx_E20_2: 12871 case ARMMMUIdx_E20_2_PAN: 12872 /* TODO: ARMv8.4-SecEL2 */ 12873 /* 12874 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12875 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12876 */ 12877 if (env->cp15.hcr_el2 & HCR_TGE) { 12878 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12879 } 12880 break; 12881 default: 12882 break; 12883 } 12884 } 12885 12886 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 12887 /* 12888 * Set MTE_ACTIVE if any access may be Checked, and leave clear 12889 * if all accesses must be Unchecked: 12890 * 1) If no TBI, then there are no tags in the address to check, 12891 * 2) If Tag Check Override, then all accesses are Unchecked, 12892 * 3) If Tag Check Fail == 0, then Checked access have no effect, 12893 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 12894 */ 12895 if (allocation_tag_access_enabled(env, el, sctlr)) { 12896 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1); 12897 if (tbid 12898 && !(env->pstate & PSTATE_TCO) 12899 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 12900 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1); 12901 } 12902 } 12903 /* And again for unprivileged accesses, if required. */ 12904 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV) 12905 && tbid 12906 && !(env->pstate & PSTATE_TCO) 12907 && (sctlr & SCTLR_TCF0) 12908 && allocation_tag_access_enabled(env, 0, sctlr)) { 12909 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1); 12910 } 12911 /* Cache TCMA as well as TBI. */ 12912 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA, 12913 aa64_va_parameter_tcma(tcr, mmu_idx)); 12914 } 12915 12916 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12917 } 12918 12919 static uint32_t rebuild_hflags_internal(CPUARMState *env) 12920 { 12921 int el = arm_current_el(env); 12922 int fp_el = fp_exception_el(env, el); 12923 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12924 12925 if (is_a64(env)) { 12926 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12927 } else if (arm_feature(env, ARM_FEATURE_M)) { 12928 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12929 } else { 12930 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12931 } 12932 } 12933 12934 void arm_rebuild_hflags(CPUARMState *env) 12935 { 12936 env->hflags = rebuild_hflags_internal(env); 12937 } 12938 12939 /* 12940 * If we have triggered a EL state change we can't rely on the 12941 * translator having passed it to us, we need to recompute. 12942 */ 12943 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 12944 { 12945 int el = arm_current_el(env); 12946 int fp_el = fp_exception_el(env, el); 12947 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12948 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12949 } 12950 12951 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12952 { 12953 int fp_el = fp_exception_el(env, el); 12954 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12955 12956 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12957 } 12958 12959 /* 12960 * If we have triggered a EL state change we can't rely on the 12961 * translator having passed it to us, we need to recompute. 12962 */ 12963 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12964 { 12965 int el = arm_current_el(env); 12966 int fp_el = fp_exception_el(env, el); 12967 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12968 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12969 } 12970 12971 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 12972 { 12973 int fp_el = fp_exception_el(env, el); 12974 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12975 12976 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12977 } 12978 12979 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 12980 { 12981 int fp_el = fp_exception_el(env, el); 12982 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12983 12984 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12985 } 12986 12987 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 12988 { 12989 #ifdef CONFIG_DEBUG_TCG 12990 uint32_t env_flags_current = env->hflags; 12991 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 12992 12993 if (unlikely(env_flags_current != env_flags_rebuilt)) { 12994 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 12995 env_flags_current, env_flags_rebuilt); 12996 abort(); 12997 } 12998 #endif 12999 } 13000 13001 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13002 target_ulong *cs_base, uint32_t *pflags) 13003 { 13004 uint32_t flags = env->hflags; 13005 uint32_t pstate_for_ss; 13006 13007 *cs_base = 0; 13008 assert_hflags_rebuild_correctly(env); 13009 13010 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 13011 *pc = env->pc; 13012 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13013 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13014 } 13015 pstate_for_ss = env->pstate; 13016 } else { 13017 *pc = env->regs[15]; 13018 13019 if (arm_feature(env, ARM_FEATURE_M)) { 13020 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13021 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13022 != env->v7m.secure) { 13023 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 13024 } 13025 13026 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13027 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13028 (env->v7m.secure && 13029 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13030 /* 13031 * ASPEN is set, but FPCA/SFPA indicate that there is no 13032 * active FP context; we must create a new FP context before 13033 * executing any FP insn. 13034 */ 13035 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 13036 } 13037 13038 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13039 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13040 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 13041 } 13042 } else { 13043 /* 13044 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13045 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13046 */ 13047 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13048 flags = FIELD_DP32(flags, TBFLAG_A32, 13049 XSCALE_CPAR, env->cp15.c15_cpar); 13050 } else { 13051 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 13052 env->vfp.vec_len); 13053 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 13054 env->vfp.vec_stride); 13055 } 13056 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13057 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13058 } 13059 } 13060 13061 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 13062 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 13063 pstate_for_ss = env->uncached_cpsr; 13064 } 13065 13066 /* 13067 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13068 * states defined in the ARM ARM for software singlestep: 13069 * SS_ACTIVE PSTATE.SS State 13070 * 0 x Inactive (the TB flag for SS is always 0) 13071 * 1 0 Active-pending 13072 * 1 1 Active-not-pending 13073 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 13074 */ 13075 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 13076 (pstate_for_ss & PSTATE_SS)) { 13077 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13078 } 13079 13080 *pflags = flags; 13081 } 13082 13083 #ifdef TARGET_AARCH64 13084 /* 13085 * The manual says that when SVE is enabled and VQ is widened the 13086 * implementation is allowed to zero the previously inaccessible 13087 * portion of the registers. The corollary to that is that when 13088 * SVE is enabled and VQ is narrowed we are also allowed to zero 13089 * the now inaccessible portion of the registers. 13090 * 13091 * The intent of this is that no predicate bit beyond VQ is ever set. 13092 * Which means that some operations on predicate registers themselves 13093 * may operate on full uint64_t or even unrolled across the maximum 13094 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13095 * may well be cheaper than conditionals to restrict the operation 13096 * to the relevant portion of a uint16_t[16]. 13097 */ 13098 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13099 { 13100 int i, j; 13101 uint64_t pmask; 13102 13103 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13104 assert(vq <= env_archcpu(env)->sve_max_vq); 13105 13106 /* Zap the high bits of the zregs. */ 13107 for (i = 0; i < 32; i++) { 13108 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13109 } 13110 13111 /* Zap the high bits of the pregs and ffr. */ 13112 pmask = 0; 13113 if (vq & 3) { 13114 pmask = ~(-1ULL << (16 * (vq & 3))); 13115 } 13116 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13117 for (i = 0; i < 17; ++i) { 13118 env->vfp.pregs[i].p[j] &= pmask; 13119 } 13120 pmask = 0; 13121 } 13122 } 13123 13124 /* 13125 * Notice a change in SVE vector size when changing EL. 13126 */ 13127 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13128 int new_el, bool el0_a64) 13129 { 13130 ARMCPU *cpu = env_archcpu(env); 13131 int old_len, new_len; 13132 bool old_a64, new_a64; 13133 13134 /* Nothing to do if no SVE. */ 13135 if (!cpu_isar_feature(aa64_sve, cpu)) { 13136 return; 13137 } 13138 13139 /* Nothing to do if FP is disabled in either EL. */ 13140 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13141 return; 13142 } 13143 13144 /* 13145 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13146 * at ELx, or not available because the EL is in AArch32 state, then 13147 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13148 * has an effective value of 0". 13149 * 13150 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13151 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13152 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13153 * we already have the correct register contents when encountering the 13154 * vq0->vq0 transition between EL0->EL1. 13155 */ 13156 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13157 old_len = (old_a64 && !sve_exception_el(env, old_el) 13158 ? sve_zcr_len_for_el(env, old_el) : 0); 13159 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13160 new_len = (new_a64 && !sve_exception_el(env, new_el) 13161 ? sve_zcr_len_for_el(env, new_el) : 0); 13162 13163 /* When changing vector length, clear inaccessible state. */ 13164 if (new_len < old_len) { 13165 aarch64_sve_narrow_vq(env, new_len + 1); 13166 } 13167 } 13168 #endif 13169