1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 35 36 static void switch_mode(CPUARMState *env, int mode); 37 38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 39 { 40 assert(ri->fieldoffset); 41 if (cpreg_field_is_64bit(ri)) { 42 return CPREG_FIELD64(env, ri); 43 } else { 44 return CPREG_FIELD32(env, ri); 45 } 46 } 47 48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 49 { 50 assert(ri->fieldoffset); 51 if (cpreg_field_is_64bit(ri)) { 52 CPREG_FIELD64(env, ri) = value; 53 } else { 54 CPREG_FIELD32(env, ri) = value; 55 } 56 } 57 58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 return (char *)env + ri->fieldoffset; 61 } 62 63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 64 { 65 /* Raw read of a coprocessor register (as needed for migration, etc). */ 66 if (ri->type & ARM_CP_CONST) { 67 return ri->resetvalue; 68 } else if (ri->raw_readfn) { 69 return ri->raw_readfn(env, ri); 70 } else if (ri->readfn) { 71 return ri->readfn(env, ri); 72 } else { 73 return raw_read(env, ri); 74 } 75 } 76 77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 78 uint64_t v) 79 { 80 /* 81 * Raw write of a coprocessor register (as needed for migration, etc). 82 * Note that constant registers are treated as write-ignored; the 83 * caller should check for success by whether a readback gives the 84 * value written. 85 */ 86 if (ri->type & ARM_CP_CONST) { 87 return; 88 } else if (ri->raw_writefn) { 89 ri->raw_writefn(env, ri, v); 90 } else if (ri->writefn) { 91 ri->writefn(env, ri, v); 92 } else { 93 raw_write(env, ri, v); 94 } 95 } 96 97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 98 { 99 /* 100 * Return true if the regdef would cause an assertion if you called 101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 102 * program bug for it not to have the NO_RAW flag). 103 * NB that returning false here doesn't necessarily mean that calling 104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 105 * read/write access functions which are safe for raw use" from "has 106 * read/write access functions which have side effects but has forgotten 107 * to provide raw access functions". 108 * The tests here line up with the conditions in read/write_raw_cp_reg() 109 * and assertions in raw_read()/raw_write(). 110 */ 111 if ((ri->type & ARM_CP_CONST) || 112 ri->fieldoffset || 113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 114 return false; 115 } 116 return true; 117 } 118 119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 120 { 121 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 122 int i; 123 bool ok = true; 124 125 for (i = 0; i < cpu->cpreg_array_len; i++) { 126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 127 const ARMCPRegInfo *ri; 128 uint64_t newval; 129 130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 131 if (!ri) { 132 ok = false; 133 continue; 134 } 135 if (ri->type & ARM_CP_NO_RAW) { 136 continue; 137 } 138 139 newval = read_raw_cp_reg(&cpu->env, ri); 140 if (kvm_sync) { 141 /* 142 * Only sync if the previous list->cpustate sync succeeded. 143 * Rather than tracking the success/failure state for every 144 * item in the list, we just recheck "does the raw write we must 145 * have made in write_list_to_cpustate() read back OK" here. 146 */ 147 uint64_t oldval = cpu->cpreg_values[i]; 148 149 if (oldval == newval) { 150 continue; 151 } 152 153 write_raw_cp_reg(&cpu->env, ri, oldval); 154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 155 continue; 156 } 157 158 write_raw_cp_reg(&cpu->env, ri, newval); 159 } 160 cpu->cpreg_values[i] = newval; 161 } 162 return ok; 163 } 164 165 bool write_list_to_cpustate(ARMCPU *cpu) 166 { 167 int i; 168 bool ok = true; 169 170 for (i = 0; i < cpu->cpreg_array_len; i++) { 171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 172 uint64_t v = cpu->cpreg_values[i]; 173 const ARMCPRegInfo *ri; 174 175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 176 if (!ri) { 177 ok = false; 178 continue; 179 } 180 if (ri->type & ARM_CP_NO_RAW) { 181 continue; 182 } 183 /* 184 * Write value and confirm it reads back as written 185 * (to catch read-only registers and partially read-only 186 * registers where the incoming migration value doesn't match) 187 */ 188 write_raw_cp_reg(&cpu->env, ri, v); 189 if (read_raw_cp_reg(&cpu->env, ri) != v) { 190 ok = false; 191 } 192 } 193 return ok; 194 } 195 196 static void add_cpreg_to_list(gpointer key, gpointer opaque) 197 { 198 ARMCPU *cpu = opaque; 199 uint32_t regidx = (uintptr_t)key; 200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 201 202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 204 /* The value array need not be initialized at this point */ 205 cpu->cpreg_array_len++; 206 } 207 } 208 209 static void count_cpreg(gpointer key, gpointer opaque) 210 { 211 ARMCPU *cpu = opaque; 212 const ARMCPRegInfo *ri; 213 214 ri = g_hash_table_lookup(cpu->cp_regs, key); 215 216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 217 cpu->cpreg_array_len++; 218 } 219 } 220 221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 222 { 223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 225 226 if (aidx > bidx) { 227 return 1; 228 } 229 if (aidx < bidx) { 230 return -1; 231 } 232 return 0; 233 } 234 235 void init_cpreg_list(ARMCPU *cpu) 236 { 237 /* 238 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 239 * Note that we require cpreg_tuples[] to be sorted by key ID. 240 */ 241 GList *keys; 242 int arraylen; 243 244 keys = g_hash_table_get_keys(cpu->cp_regs); 245 keys = g_list_sort(keys, cpreg_key_compare); 246 247 cpu->cpreg_array_len = 0; 248 249 g_list_foreach(keys, count_cpreg, cpu); 250 251 arraylen = cpu->cpreg_array_len; 252 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 253 cpu->cpreg_values = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 257 cpu->cpreg_array_len = 0; 258 259 g_list_foreach(keys, add_cpreg_to_list, cpu); 260 261 assert(cpu->cpreg_array_len == arraylen); 262 263 g_list_free(keys); 264 } 265 266 /* 267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 268 */ 269 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 270 const ARMCPRegInfo *ri, 271 bool isread) 272 { 273 if (!is_a64(env) && arm_current_el(env) == 3 && 274 arm_is_secure_below_el3(env)) { 275 return CP_ACCESS_TRAP_UNCATEGORIZED; 276 } 277 return CP_ACCESS_OK; 278 } 279 280 /* 281 * Some secure-only AArch32 registers trap to EL3 if used from 282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 284 * We assume that the .access field is set to PL1_RW. 285 */ 286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (arm_current_el(env) == 3) { 291 return CP_ACCESS_OK; 292 } 293 if (arm_is_secure_below_el3(env)) { 294 if (env->cp15.scr_el3 & SCR_EEL2) { 295 return CP_ACCESS_TRAP_EL2; 296 } 297 return CP_ACCESS_TRAP_EL3; 298 } 299 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 300 return CP_ACCESS_TRAP_UNCATEGORIZED; 301 } 302 303 /* 304 * Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 367 bool isread) 368 { 369 if (arm_current_el(env) == 1 && 370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 371 return CP_ACCESS_TRAP_EL2; 372 } 373 return CP_ACCESS_OK; 374 } 375 376 #ifdef TARGET_AARCH64 377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 379 bool isread) 380 { 381 if (arm_current_el(env) == 1 && 382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 383 return CP_ACCESS_TRAP_EL2; 384 } 385 return CP_ACCESS_OK; 386 } 387 #endif 388 389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 390 { 391 ARMCPU *cpu = env_archcpu(env); 392 393 raw_write(env, ri, value); 394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 395 } 396 397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 398 { 399 ARMCPU *cpu = env_archcpu(env); 400 401 if (raw_read(env, ri) != value) { 402 /* 403 * Unlike real hardware the qemu TLB uses virtual addresses, 404 * not modified virtual addresses, so this causes a TLB flush. 405 */ 406 tlb_flush(CPU(cpu)); 407 raw_write(env, ri, value); 408 } 409 } 410 411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 412 uint64_t value) 413 { 414 ARMCPU *cpu = env_archcpu(env); 415 416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 417 && !extended_addresses_enabled(env)) { 418 /* 419 * For VMSA (when not using the LPAE long descriptor page table 420 * format) this register includes the ASID, so do a TLB flush. 421 * For PMSA it is purely a process ID and no action is needed. 422 */ 423 tlb_flush(CPU(cpu)); 424 } 425 raw_write(env, ri, value); 426 } 427 428 static int alle1_tlbmask(CPUARMState *env) 429 { 430 /* 431 * Note that the 'ALL' scope must invalidate both stage 1 and 432 * stage 2 translations, whereas most other scopes only invalidate 433 * stage 1 translations. 434 */ 435 return (ARMMMUIdxBit_E10_1 | 436 ARMMMUIdxBit_E10_1_PAN | 437 ARMMMUIdxBit_E10_0 | 438 ARMMMUIdxBit_Stage2 | 439 ARMMMUIdxBit_Stage2_S); 440 } 441 442 443 /* IS variants of TLB operations must affect all cores */ 444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 445 uint64_t value) 446 { 447 CPUState *cs = env_cpu(env); 448 449 tlb_flush_all_cpus_synced(cs); 450 } 451 452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 453 uint64_t value) 454 { 455 CPUState *cs = env_cpu(env); 456 457 tlb_flush_all_cpus_synced(cs); 458 } 459 460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 461 uint64_t value) 462 { 463 CPUState *cs = env_cpu(env); 464 465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 466 } 467 468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 469 uint64_t value) 470 { 471 CPUState *cs = env_cpu(env); 472 473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 474 } 475 476 /* 477 * Non-IS variants of TLB operations are upgraded to 478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 479 * force broadcast of these operations. 480 */ 481 static bool tlb_force_broadcast(CPUARMState *env) 482 { 483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 484 } 485 486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 487 uint64_t value) 488 { 489 /* Invalidate all (TLBIALL) */ 490 CPUState *cs = env_cpu(env); 491 492 if (tlb_force_broadcast(env)) { 493 tlb_flush_all_cpus_synced(cs); 494 } else { 495 tlb_flush(cs); 496 } 497 } 498 499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 503 CPUState *cs = env_cpu(env); 504 505 value &= TARGET_PAGE_MASK; 506 if (tlb_force_broadcast(env)) { 507 tlb_flush_page_all_cpus_synced(cs, value); 508 } else { 509 tlb_flush_page(cs, value); 510 } 511 } 512 513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 514 uint64_t value) 515 { 516 /* Invalidate by ASID (TLBIASID) */ 517 CPUState *cs = env_cpu(env); 518 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_all_cpus_synced(cs); 521 } else { 522 tlb_flush(cs); 523 } 524 } 525 526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 530 CPUState *cs = env_cpu(env); 531 532 value &= TARGET_PAGE_MASK; 533 if (tlb_force_broadcast(env)) { 534 tlb_flush_page_all_cpus_synced(cs, value); 535 } else { 536 tlb_flush_page(cs, value); 537 } 538 } 539 540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 541 uint64_t value) 542 { 543 CPUState *cs = env_cpu(env); 544 545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 546 } 547 548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 549 uint64_t value) 550 { 551 CPUState *cs = env_cpu(env); 552 553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 554 } 555 556 557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 CPUState *cs = env_cpu(env); 561 562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 563 } 564 565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 CPUState *cs = env_cpu(env); 569 570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 571 } 572 573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 574 uint64_t value) 575 { 576 CPUState *cs = env_cpu(env); 577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 578 579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 580 } 581 582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = env_cpu(env); 586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 587 588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 589 ARMMMUIdxBit_E2); 590 } 591 592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 593 uint64_t value) 594 { 595 CPUState *cs = env_cpu(env); 596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 597 598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 599 } 600 601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 602 uint64_t value) 603 { 604 CPUState *cs = env_cpu(env); 605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 606 607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 608 } 609 610 static const ARMCPRegInfo cp_reginfo[] = { 611 /* 612 * Define the secure and non-secure FCSE identifier CP registers 613 * separately because there is no secure bank in V8 (no _EL3). This allows 614 * the secure register to be properly reset and migrated. There is also no 615 * v8 EL1 version of the register so the non-secure instance stands alone. 616 */ 617 { .name = "FCSEIDR", 618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 622 { .name = "FCSEIDR_S", 623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 627 /* 628 * Define the secure and non-secure context identifier CP registers 629 * separately because there is no secure bank in V8 (no _EL3). This allows 630 * the secure register to be properly reset and migrated. In the 631 * non-secure case, the 32-bit register will have reset and migration 632 * disabled during registration as it is handled by the 64-bit instance. 633 */ 634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 636 .access = PL1_RW, .accessfn = access_tvm_trvm, 637 .fgt = FGT_CONTEXTIDR_EL1, 638 .secure = ARM_CP_SECSTATE_NS, 639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 643 .access = PL1_RW, .accessfn = access_tvm_trvm, 644 .secure = ARM_CP_SECSTATE_S, 645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 647 }; 648 649 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 650 /* 651 * NB: Some of these registers exist in v8 but with more precise 652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 653 */ 654 /* MMU Domain access control / MPU write buffer control */ 655 { .name = "DACR", 656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 658 .writefn = dacr_write, .raw_writefn = raw_write, 659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 660 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 661 /* 662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 663 * For v6 and v5, these mappings are overly broad. 664 */ 665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 673 /* Cache maintenance ops; some of this space may be overridden later. */ 674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 677 }; 678 679 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 680 /* 681 * Not all pre-v6 cores implemented this WFI, so this is slightly 682 * over-broad. 683 */ 684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 685 .access = PL1_W, .type = ARM_CP_WFI }, 686 }; 687 688 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 689 /* 690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 691 * is UNPREDICTABLE; we choose to NOP as most implementations do). 692 */ 693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 694 .access = PL1_W, .type = ARM_CP_WFI }, 695 /* 696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 698 * OMAPCP will override this space. 699 */ 700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 702 .resetvalue = 0 }, 703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 705 .resetvalue = 0 }, 706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 709 .resetvalue = 0 }, 710 /* 711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 712 * implementing it as RAZ means the "debug architecture version" bits 713 * will read as a reserved value, which should cause Linux to not try 714 * to use the debug hardware. 715 */ 716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 718 /* 719 * MMU TLB control. Note that the wildcarding means we cover not just 720 * the unified TLB ops but also the dside/iside/inner-shareable variants. 721 */ 722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 724 .type = ARM_CP_NO_RAW }, 725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 727 .type = ARM_CP_NO_RAW }, 728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 730 .type = ARM_CP_NO_RAW }, 731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 733 .type = ARM_CP_NO_RAW }, 734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 738 }; 739 740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 741 uint64_t value) 742 { 743 uint32_t mask = 0; 744 745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 746 if (!arm_feature(env, ARM_FEATURE_V8)) { 747 /* 748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 751 */ 752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 753 /* VFP coprocessor: cp10 & cp11 [23:20] */ 754 mask |= R_CPACR_ASEDIS_MASK | 755 R_CPACR_D32DIS_MASK | 756 R_CPACR_CP11_MASK | 757 R_CPACR_CP10_MASK; 758 759 if (!arm_feature(env, ARM_FEATURE_NEON)) { 760 /* ASEDIS [31] bit is RAO/WI */ 761 value |= R_CPACR_ASEDIS_MASK; 762 } 763 764 /* 765 * VFPv3 and upwards with NEON implement 32 double precision 766 * registers (D0-D31). 767 */ 768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 770 value |= R_CPACR_D32DIS_MASK; 771 } 772 } 773 value &= mask; 774 } 775 776 /* 777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 779 */ 780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 784 } 785 786 env->cp15.cpacr_el1 = value; 787 } 788 789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 790 { 791 /* 792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 794 */ 795 uint64_t value = env->cp15.cpacr_el1; 796 797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 800 } 801 return value; 802 } 803 804 805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 806 { 807 /* 808 * Call cpacr_write() so that we reset with the correct RAO bits set 809 * for our CPU features. 810 */ 811 cpacr_write(env, ri, 0); 812 } 813 814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 815 bool isread) 816 { 817 if (arm_feature(env, ARM_FEATURE_V8)) { 818 /* Check if CPACR accesses are to be trapped to EL2 */ 819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 821 return CP_ACCESS_TRAP_EL2; 822 /* Check if CPACR accesses are to be trapped to EL3 */ 823 } else if (arm_current_el(env) < 3 && 824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 825 return CP_ACCESS_TRAP_EL3; 826 } 827 } 828 829 return CP_ACCESS_OK; 830 } 831 832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 833 bool isread) 834 { 835 /* Check if CPTR accesses are set to trap to EL3 */ 836 if (arm_current_el(env) == 2 && 837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 838 return CP_ACCESS_TRAP_EL3; 839 } 840 841 return CP_ACCESS_OK; 842 } 843 844 static const ARMCPRegInfo v6_cp_reginfo[] = { 845 /* prefetch by MVA in v6, NOP in v7 */ 846 { .name = "MVA_prefetch", 847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 848 .access = PL1_W, .type = ARM_CP_NOP }, 849 /* 850 * We need to break the TB after ISB to execute self-modifying code 851 * correctly and also to take any pending interrupts immediately. 852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 853 */ 854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 857 .access = PL0_W, .type = ARM_CP_NOP }, 858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 859 .access = PL0_W, .type = ARM_CP_NOP }, 860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 861 .access = PL1_RW, .accessfn = access_tvm_trvm, 862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 863 offsetof(CPUARMState, cp15.ifar_ns) }, 864 .resetvalue = 0, }, 865 /* 866 * Watchpoint Fault Address Register : should actually only be present 867 * for 1136, 1176, 11MPCore. 868 */ 869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 873 .fgt = FGT_CPACR_EL1, 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 876 }; 877 878 typedef struct pm_event { 879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 881 bool (*supported)(CPUARMState *); 882 /* 883 * Retrieve the current count of the underlying event. The programmed 884 * counters hold a difference from the return value from this function 885 */ 886 uint64_t (*get_count)(CPUARMState *); 887 /* 888 * Return how many nanoseconds it will take (at a minimum) for count events 889 * to occur. A negative value indicates the counter will never overflow, or 890 * that the counter has otherwise arranged for the overflow bit to be set 891 * and the PMU interrupt to be raised on overflow. 892 */ 893 int64_t (*ns_per_count)(uint64_t); 894 } pm_event; 895 896 static bool event_always_supported(CPUARMState *env) 897 { 898 return true; 899 } 900 901 static uint64_t swinc_get_count(CPUARMState *env) 902 { 903 /* 904 * SW_INCR events are written directly to the pmevcntr's by writes to 905 * PMSWINC, so there is no underlying count maintained by the PMU itself 906 */ 907 return 0; 908 } 909 910 static int64_t swinc_ns_per(uint64_t ignored) 911 { 912 return -1; 913 } 914 915 /* 916 * Return the underlying cycle count for the PMU cycle counters. If we're in 917 * usermode, simply return 0. 918 */ 919 static uint64_t cycles_get_count(CPUARMState *env) 920 { 921 #ifndef CONFIG_USER_ONLY 922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 924 #else 925 return cpu_get_host_ticks(); 926 #endif 927 } 928 929 #ifndef CONFIG_USER_ONLY 930 static int64_t cycles_ns_per(uint64_t cycles) 931 { 932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 933 } 934 935 static bool instructions_supported(CPUARMState *env) 936 { 937 return icount_enabled() == 1; /* Precise instruction counting */ 938 } 939 940 static uint64_t instructions_get_count(CPUARMState *env) 941 { 942 return (uint64_t)icount_get_raw(); 943 } 944 945 static int64_t instructions_ns_per(uint64_t icount) 946 { 947 return icount_to_ns((int64_t)icount); 948 } 949 #endif 950 951 static bool pmuv3p1_events_supported(CPUARMState *env) 952 { 953 /* For events which are supported in any v8.1 PMU */ 954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 955 } 956 957 static bool pmuv3p4_events_supported(CPUARMState *env) 958 { 959 /* For events which are supported in any v8.1 PMU */ 960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 961 } 962 963 static uint64_t zero_event_get_count(CPUARMState *env) 964 { 965 /* For events which on QEMU never fire, so their count is always zero */ 966 return 0; 967 } 968 969 static int64_t zero_event_ns_per(uint64_t cycles) 970 { 971 /* An event which never fires can never overflow */ 972 return -1; 973 } 974 975 static const pm_event pm_events[] = { 976 { .number = 0x000, /* SW_INCR */ 977 .supported = event_always_supported, 978 .get_count = swinc_get_count, 979 .ns_per_count = swinc_ns_per, 980 }, 981 #ifndef CONFIG_USER_ONLY 982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 983 .supported = instructions_supported, 984 .get_count = instructions_get_count, 985 .ns_per_count = instructions_ns_per, 986 }, 987 { .number = 0x011, /* CPU_CYCLES, Cycle */ 988 .supported = event_always_supported, 989 .get_count = cycles_get_count, 990 .ns_per_count = cycles_ns_per, 991 }, 992 #endif 993 { .number = 0x023, /* STALL_FRONTEND */ 994 .supported = pmuv3p1_events_supported, 995 .get_count = zero_event_get_count, 996 .ns_per_count = zero_event_ns_per, 997 }, 998 { .number = 0x024, /* STALL_BACKEND */ 999 .supported = pmuv3p1_events_supported, 1000 .get_count = zero_event_get_count, 1001 .ns_per_count = zero_event_ns_per, 1002 }, 1003 { .number = 0x03c, /* STALL */ 1004 .supported = pmuv3p4_events_supported, 1005 .get_count = zero_event_get_count, 1006 .ns_per_count = zero_event_ns_per, 1007 }, 1008 }; 1009 1010 /* 1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1012 * events (i.e. the statistical profiling extension), this implementation 1013 * should first be updated to something sparse instead of the current 1014 * supported_event_map[] array. 1015 */ 1016 #define MAX_EVENT_ID 0x3c 1017 #define UNSUPPORTED_EVENT UINT16_MAX 1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1019 1020 /* 1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1022 * of ARM event numbers to indices in our pm_events array. 1023 * 1024 * Note: Events in the 0x40XX range are not currently supported. 1025 */ 1026 void pmu_init(ARMCPU *cpu) 1027 { 1028 unsigned int i; 1029 1030 /* 1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1032 * events to them 1033 */ 1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1035 supported_event_map[i] = UNSUPPORTED_EVENT; 1036 } 1037 cpu->pmceid0 = 0; 1038 cpu->pmceid1 = 0; 1039 1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1041 const pm_event *cnt = &pm_events[i]; 1042 assert(cnt->number <= MAX_EVENT_ID); 1043 /* We do not currently support events in the 0x40xx range */ 1044 assert(cnt->number <= 0x3f); 1045 1046 if (cnt->supported(&cpu->env)) { 1047 supported_event_map[cnt->number] = i; 1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1049 if (cnt->number & 0x20) { 1050 cpu->pmceid1 |= event_mask; 1051 } else { 1052 cpu->pmceid0 |= event_mask; 1053 } 1054 } 1055 } 1056 } 1057 1058 /* 1059 * Check at runtime whether a PMU event is supported for the current machine 1060 */ 1061 static bool event_supported(uint16_t number) 1062 { 1063 if (number > MAX_EVENT_ID) { 1064 return false; 1065 } 1066 return supported_event_map[number] != UNSUPPORTED_EVENT; 1067 } 1068 1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1070 bool isread) 1071 { 1072 /* 1073 * Performance monitor registers user accessibility is controlled 1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1075 * trapping to EL2 or EL3 for other accesses. 1076 */ 1077 int el = arm_current_el(env); 1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1079 1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1081 return CP_ACCESS_TRAP; 1082 } 1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1084 return CP_ACCESS_TRAP_EL2; 1085 } 1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1087 return CP_ACCESS_TRAP_EL3; 1088 } 1089 1090 return CP_ACCESS_OK; 1091 } 1092 1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1094 const ARMCPRegInfo *ri, 1095 bool isread) 1096 { 1097 /* ER: event counter read trap control */ 1098 if (arm_feature(env, ARM_FEATURE_V8) 1099 && arm_current_el(env) == 0 1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1101 && isread) { 1102 return CP_ACCESS_OK; 1103 } 1104 1105 return pmreg_access(env, ri, isread); 1106 } 1107 1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1109 const ARMCPRegInfo *ri, 1110 bool isread) 1111 { 1112 /* SW: software increment write trap control */ 1113 if (arm_feature(env, ARM_FEATURE_V8) 1114 && arm_current_el(env) == 0 1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1116 && !isread) { 1117 return CP_ACCESS_OK; 1118 } 1119 1120 return pmreg_access(env, ri, isread); 1121 } 1122 1123 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1124 const ARMCPRegInfo *ri, 1125 bool isread) 1126 { 1127 /* ER: event counter read trap control */ 1128 if (arm_feature(env, ARM_FEATURE_V8) 1129 && arm_current_el(env) == 0 1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1131 return CP_ACCESS_OK; 1132 } 1133 1134 return pmreg_access(env, ri, isread); 1135 } 1136 1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1138 const ARMCPRegInfo *ri, 1139 bool isread) 1140 { 1141 /* CR: cycle counter read trap control */ 1142 if (arm_feature(env, ARM_FEATURE_V8) 1143 && arm_current_el(env) == 0 1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1145 && isread) { 1146 return CP_ACCESS_OK; 1147 } 1148 1149 return pmreg_access(env, ri, isread); 1150 } 1151 1152 /* 1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1154 * We use these to decide whether we need to wrap a write to MDCR_EL2 1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1156 */ 1157 #define MDCR_EL2_PMU_ENABLE_BITS \ 1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1160 1161 /* 1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1163 * the current EL, security state, and register configuration. 1164 */ 1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1166 { 1167 uint64_t filter; 1168 bool e, p, u, nsk, nsu, nsh, m; 1169 bool enabled, prohibited = false, filtered; 1170 bool secure = arm_is_secure(env); 1171 int el = arm_current_el(env); 1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1174 1175 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1176 return false; 1177 } 1178 1179 if (!arm_feature(env, ARM_FEATURE_EL2) || 1180 (counter < hpmn || counter == 31)) { 1181 e = env->cp15.c9_pmcr & PMCRE; 1182 } else { 1183 e = mdcr_el2 & MDCR_HPME; 1184 } 1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1186 1187 /* Is event counting prohibited? */ 1188 if (el == 2 && (counter < hpmn || counter == 31)) { 1189 prohibited = mdcr_el2 & MDCR_HPMD; 1190 } 1191 if (secure) { 1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1193 } 1194 1195 if (counter == 31) { 1196 /* 1197 * The cycle counter defaults to running. PMCR.DP says "disable 1198 * the cycle counter when event counting is prohibited". 1199 * Some MDCR bits disable the cycle counter specifically. 1200 */ 1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1203 if (secure) { 1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1205 } 1206 if (el == 2) { 1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1208 } 1209 } 1210 } 1211 1212 if (counter == 31) { 1213 filter = env->cp15.pmccfiltr_el0; 1214 } else { 1215 filter = env->cp15.c14_pmevtyper[counter]; 1216 } 1217 1218 p = filter & PMXEVTYPER_P; 1219 u = filter & PMXEVTYPER_U; 1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1223 m = arm_el_is_aa64(env, 1) && 1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1225 1226 if (el == 0) { 1227 filtered = secure ? u : u != nsu; 1228 } else if (el == 1) { 1229 filtered = secure ? p : p != nsk; 1230 } else if (el == 2) { 1231 filtered = !nsh; 1232 } else { /* EL3 */ 1233 filtered = m != p; 1234 } 1235 1236 if (counter != 31) { 1237 /* 1238 * If not checking PMCCNTR, ensure the counter is setup to an event we 1239 * support 1240 */ 1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1242 if (!event_supported(event)) { 1243 return false; 1244 } 1245 } 1246 1247 return enabled && !prohibited && !filtered; 1248 } 1249 1250 static void pmu_update_irq(CPUARMState *env) 1251 { 1252 ARMCPU *cpu = env_archcpu(env); 1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1255 } 1256 1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1258 { 1259 /* 1260 * Return true if the clock divider is enabled and the cycle counter 1261 * is supposed to tick only once every 64 clock cycles. This is 1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1263 * (64-bit) cycle counter PMCR.D has no effect. 1264 */ 1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1266 } 1267 1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1269 { 1270 /* Return true if the specified event counter is configured to be 64 bit */ 1271 1272 /* This isn't intended to be used with the cycle counter */ 1273 assert(counter < 31); 1274 1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1276 return false; 1277 } 1278 1279 if (arm_feature(env, ARM_FEATURE_EL2)) { 1280 /* 1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1282 * current security state, so we don't use arm_mdcr_el2_eff() here. 1283 */ 1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1286 1287 if (counter >= hpmn) { 1288 return hlp; 1289 } 1290 } 1291 return env->cp15.c9_pmcr & PMCRLP; 1292 } 1293 1294 /* 1295 * Ensure c15_ccnt is the guest-visible count so that operations such as 1296 * enabling/disabling the counter or filtering, modifying the count itself, 1297 * etc. can be done logically. This is essentially a no-op if the counter is 1298 * not enabled at the time of the call. 1299 */ 1300 static void pmccntr_op_start(CPUARMState *env) 1301 { 1302 uint64_t cycles = cycles_get_count(env); 1303 1304 if (pmu_counter_enabled(env, 31)) { 1305 uint64_t eff_cycles = cycles; 1306 if (pmccntr_clockdiv_enabled(env)) { 1307 eff_cycles /= 64; 1308 } 1309 1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1311 1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1313 1ull << 63 : 1ull << 31; 1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1315 env->cp15.c9_pmovsr |= (1ULL << 31); 1316 pmu_update_irq(env); 1317 } 1318 1319 env->cp15.c15_ccnt = new_pmccntr; 1320 } 1321 env->cp15.c15_ccnt_delta = cycles; 1322 } 1323 1324 /* 1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1327 * pmccntr_op_start. 1328 */ 1329 static void pmccntr_op_finish(CPUARMState *env) 1330 { 1331 if (pmu_counter_enabled(env, 31)) { 1332 #ifndef CONFIG_USER_ONLY 1333 /* Calculate when the counter will next overflow */ 1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1335 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1336 remaining_cycles = (uint32_t)remaining_cycles; 1337 } 1338 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1339 1340 if (overflow_in > 0) { 1341 int64_t overflow_at; 1342 1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1344 overflow_in, &overflow_at)) { 1345 ARMCPU *cpu = env_archcpu(env); 1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1347 } 1348 } 1349 #endif 1350 1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1352 if (pmccntr_clockdiv_enabled(env)) { 1353 prev_cycles /= 64; 1354 } 1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1356 } 1357 } 1358 1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1360 { 1361 1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1363 uint64_t count = 0; 1364 if (event_supported(event)) { 1365 uint16_t event_idx = supported_event_map[event]; 1366 count = pm_events[event_idx].get_count(env); 1367 } 1368 1369 if (pmu_counter_enabled(env, counter)) { 1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1372 1ULL << 63 : 1ULL << 31; 1373 1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1375 env->cp15.c9_pmovsr |= (1 << counter); 1376 pmu_update_irq(env); 1377 } 1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1379 } 1380 env->cp15.c14_pmevcntr_delta[counter] = count; 1381 } 1382 1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1384 { 1385 if (pmu_counter_enabled(env, counter)) { 1386 #ifndef CONFIG_USER_ONLY 1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1388 uint16_t event_idx = supported_event_map[event]; 1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1390 int64_t overflow_in; 1391 1392 if (!pmevcntr_is_64_bit(env, counter)) { 1393 delta = (uint32_t)delta; 1394 } 1395 overflow_in = pm_events[event_idx].ns_per_count(delta); 1396 1397 if (overflow_in > 0) { 1398 int64_t overflow_at; 1399 1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1401 overflow_in, &overflow_at)) { 1402 ARMCPU *cpu = env_archcpu(env); 1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1404 } 1405 } 1406 #endif 1407 1408 env->cp15.c14_pmevcntr_delta[counter] -= 1409 env->cp15.c14_pmevcntr[counter]; 1410 } 1411 } 1412 1413 void pmu_op_start(CPUARMState *env) 1414 { 1415 unsigned int i; 1416 pmccntr_op_start(env); 1417 for (i = 0; i < pmu_num_counters(env); i++) { 1418 pmevcntr_op_start(env, i); 1419 } 1420 } 1421 1422 void pmu_op_finish(CPUARMState *env) 1423 { 1424 unsigned int i; 1425 pmccntr_op_finish(env); 1426 for (i = 0; i < pmu_num_counters(env); i++) { 1427 pmevcntr_op_finish(env, i); 1428 } 1429 } 1430 1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1432 { 1433 pmu_op_start(&cpu->env); 1434 } 1435 1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1437 { 1438 pmu_op_finish(&cpu->env); 1439 } 1440 1441 void arm_pmu_timer_cb(void *opaque) 1442 { 1443 ARMCPU *cpu = opaque; 1444 1445 /* 1446 * Update all the counter values based on the current underlying counts, 1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1449 * counter may expire. 1450 */ 1451 pmu_op_start(&cpu->env); 1452 pmu_op_finish(&cpu->env); 1453 } 1454 1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1456 uint64_t value) 1457 { 1458 pmu_op_start(env); 1459 1460 if (value & PMCRC) { 1461 /* The counter has been reset */ 1462 env->cp15.c15_ccnt = 0; 1463 } 1464 1465 if (value & PMCRP) { 1466 unsigned int i; 1467 for (i = 0; i < pmu_num_counters(env); i++) { 1468 env->cp15.c14_pmevcntr[i] = 0; 1469 } 1470 } 1471 1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1474 1475 pmu_op_finish(env); 1476 } 1477 1478 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1479 uint64_t value) 1480 { 1481 unsigned int i; 1482 uint64_t overflow_mask, new_pmswinc; 1483 1484 for (i = 0; i < pmu_num_counters(env); i++) { 1485 /* Increment a counter's count iff: */ 1486 if ((value & (1 << i)) && /* counter's bit is set */ 1487 /* counter is enabled and not filtered */ 1488 pmu_counter_enabled(env, i) && 1489 /* counter is SW_INCR */ 1490 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1491 pmevcntr_op_start(env, i); 1492 1493 /* 1494 * Detect if this write causes an overflow since we can't predict 1495 * PMSWINC overflows like we can for other events 1496 */ 1497 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1498 1499 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1500 1ULL << 63 : 1ULL << 31; 1501 1502 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1503 env->cp15.c9_pmovsr |= (1 << i); 1504 pmu_update_irq(env); 1505 } 1506 1507 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1508 1509 pmevcntr_op_finish(env, i); 1510 } 1511 } 1512 } 1513 1514 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1515 { 1516 uint64_t ret; 1517 pmccntr_op_start(env); 1518 ret = env->cp15.c15_ccnt; 1519 pmccntr_op_finish(env); 1520 return ret; 1521 } 1522 1523 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1524 uint64_t value) 1525 { 1526 /* 1527 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1528 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1529 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1530 * accessed. 1531 */ 1532 env->cp15.c9_pmselr = value & 0x1f; 1533 } 1534 1535 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1536 uint64_t value) 1537 { 1538 pmccntr_op_start(env); 1539 env->cp15.c15_ccnt = value; 1540 pmccntr_op_finish(env); 1541 } 1542 1543 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1544 uint64_t value) 1545 { 1546 uint64_t cur_val = pmccntr_read(env, NULL); 1547 1548 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1549 } 1550 1551 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1552 uint64_t value) 1553 { 1554 pmccntr_op_start(env); 1555 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1556 pmccntr_op_finish(env); 1557 } 1558 1559 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1560 uint64_t value) 1561 { 1562 pmccntr_op_start(env); 1563 /* M is not accessible from AArch32 */ 1564 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1565 (value & PMCCFILTR); 1566 pmccntr_op_finish(env); 1567 } 1568 1569 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1570 { 1571 /* M is not visible in AArch32 */ 1572 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1573 } 1574 1575 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1576 uint64_t value) 1577 { 1578 pmu_op_start(env); 1579 value &= pmu_counter_mask(env); 1580 env->cp15.c9_pmcnten |= value; 1581 pmu_op_finish(env); 1582 } 1583 1584 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1585 uint64_t value) 1586 { 1587 pmu_op_start(env); 1588 value &= pmu_counter_mask(env); 1589 env->cp15.c9_pmcnten &= ~value; 1590 pmu_op_finish(env); 1591 } 1592 1593 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 value &= pmu_counter_mask(env); 1597 env->cp15.c9_pmovsr &= ~value; 1598 pmu_update_irq(env); 1599 } 1600 1601 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 value &= pmu_counter_mask(env); 1605 env->cp15.c9_pmovsr |= value; 1606 pmu_update_irq(env); 1607 } 1608 1609 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1610 uint64_t value, const uint8_t counter) 1611 { 1612 if (counter == 31) { 1613 pmccfiltr_write(env, ri, value); 1614 } else if (counter < pmu_num_counters(env)) { 1615 pmevcntr_op_start(env, counter); 1616 1617 /* 1618 * If this counter's event type is changing, store the current 1619 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1620 * pmevcntr_op_finish has the correct baseline when it converts back to 1621 * a delta. 1622 */ 1623 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1624 PMXEVTYPER_EVTCOUNT; 1625 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1626 if (old_event != new_event) { 1627 uint64_t count = 0; 1628 if (event_supported(new_event)) { 1629 uint16_t event_idx = supported_event_map[new_event]; 1630 count = pm_events[event_idx].get_count(env); 1631 } 1632 env->cp15.c14_pmevcntr_delta[counter] = count; 1633 } 1634 1635 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1636 pmevcntr_op_finish(env, counter); 1637 } 1638 /* 1639 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1640 * PMSELR value is equal to or greater than the number of implemented 1641 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1642 */ 1643 } 1644 1645 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1646 const uint8_t counter) 1647 { 1648 if (counter == 31) { 1649 return env->cp15.pmccfiltr_el0; 1650 } else if (counter < pmu_num_counters(env)) { 1651 return env->cp15.c14_pmevtyper[counter]; 1652 } else { 1653 /* 1654 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1655 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1656 */ 1657 return 0; 1658 } 1659 } 1660 1661 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1662 uint64_t value) 1663 { 1664 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1665 pmevtyper_write(env, ri, value, counter); 1666 } 1667 1668 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1669 uint64_t value) 1670 { 1671 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1672 env->cp15.c14_pmevtyper[counter] = value; 1673 1674 /* 1675 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1676 * pmu_op_finish calls when loading saved state for a migration. Because 1677 * we're potentially updating the type of event here, the value written to 1678 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1679 * different counter type. Therefore, we need to set this value to the 1680 * current count for the counter type we're writing so that pmu_op_finish 1681 * has the correct count for its calculation. 1682 */ 1683 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1684 if (event_supported(event)) { 1685 uint16_t event_idx = supported_event_map[event]; 1686 env->cp15.c14_pmevcntr_delta[counter] = 1687 pm_events[event_idx].get_count(env); 1688 } 1689 } 1690 1691 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1692 { 1693 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1694 return pmevtyper_read(env, ri, counter); 1695 } 1696 1697 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1698 uint64_t value) 1699 { 1700 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1701 } 1702 1703 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1704 { 1705 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1706 } 1707 1708 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1709 uint64_t value, uint8_t counter) 1710 { 1711 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1712 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1713 value &= MAKE_64BIT_MASK(0, 32); 1714 } 1715 if (counter < pmu_num_counters(env)) { 1716 pmevcntr_op_start(env, counter); 1717 env->cp15.c14_pmevcntr[counter] = value; 1718 pmevcntr_op_finish(env, counter); 1719 } 1720 /* 1721 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1722 * are CONSTRAINED UNPREDICTABLE. 1723 */ 1724 } 1725 1726 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1727 uint8_t counter) 1728 { 1729 if (counter < pmu_num_counters(env)) { 1730 uint64_t ret; 1731 pmevcntr_op_start(env, counter); 1732 ret = env->cp15.c14_pmevcntr[counter]; 1733 pmevcntr_op_finish(env, counter); 1734 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1735 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1736 ret &= MAKE_64BIT_MASK(0, 32); 1737 } 1738 return ret; 1739 } else { 1740 /* 1741 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1742 * are CONSTRAINED UNPREDICTABLE. 1743 */ 1744 return 0; 1745 } 1746 } 1747 1748 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1749 uint64_t value) 1750 { 1751 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1752 pmevcntr_write(env, ri, value, counter); 1753 } 1754 1755 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1756 { 1757 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1758 return pmevcntr_read(env, ri, counter); 1759 } 1760 1761 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1762 uint64_t value) 1763 { 1764 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1765 assert(counter < pmu_num_counters(env)); 1766 env->cp15.c14_pmevcntr[counter] = value; 1767 pmevcntr_write(env, ri, value, counter); 1768 } 1769 1770 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1771 { 1772 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1773 assert(counter < pmu_num_counters(env)); 1774 return env->cp15.c14_pmevcntr[counter]; 1775 } 1776 1777 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1778 uint64_t value) 1779 { 1780 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1781 } 1782 1783 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1784 { 1785 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1786 } 1787 1788 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1789 uint64_t value) 1790 { 1791 if (arm_feature(env, ARM_FEATURE_V8)) { 1792 env->cp15.c9_pmuserenr = value & 0xf; 1793 } else { 1794 env->cp15.c9_pmuserenr = value & 1; 1795 } 1796 } 1797 1798 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 /* We have no event counters so only the C bit can be changed */ 1802 value &= pmu_counter_mask(env); 1803 env->cp15.c9_pminten |= value; 1804 pmu_update_irq(env); 1805 } 1806 1807 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1808 uint64_t value) 1809 { 1810 value &= pmu_counter_mask(env); 1811 env->cp15.c9_pminten &= ~value; 1812 pmu_update_irq(env); 1813 } 1814 1815 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1816 uint64_t value) 1817 { 1818 /* 1819 * Note that even though the AArch64 view of this register has bits 1820 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1821 * architectural requirements for bits which are RES0 only in some 1822 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1823 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1824 */ 1825 raw_write(env, ri, value & ~0x1FULL); 1826 } 1827 1828 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1829 { 1830 /* Begin with base v8.0 state. */ 1831 uint64_t valid_mask = 0x3fff; 1832 ARMCPU *cpu = env_archcpu(env); 1833 uint64_t changed; 1834 1835 /* 1836 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1837 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1838 * Instead, choose the format based on the mode of EL3. 1839 */ 1840 if (arm_el_is_aa64(env, 3)) { 1841 value |= SCR_FW | SCR_AW; /* RES1 */ 1842 valid_mask &= ~SCR_NET; /* RES0 */ 1843 1844 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1845 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1846 value |= SCR_RW; /* RAO/WI */ 1847 } 1848 if (cpu_isar_feature(aa64_ras, cpu)) { 1849 valid_mask |= SCR_TERR; 1850 } 1851 if (cpu_isar_feature(aa64_lor, cpu)) { 1852 valid_mask |= SCR_TLOR; 1853 } 1854 if (cpu_isar_feature(aa64_pauth, cpu)) { 1855 valid_mask |= SCR_API | SCR_APK; 1856 } 1857 if (cpu_isar_feature(aa64_sel2, cpu)) { 1858 valid_mask |= SCR_EEL2; 1859 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1860 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1861 value |= SCR_NS; 1862 } 1863 if (cpu_isar_feature(aa64_mte, cpu)) { 1864 valid_mask |= SCR_ATA; 1865 } 1866 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1867 valid_mask |= SCR_ENSCXT; 1868 } 1869 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1870 valid_mask |= SCR_EASE | SCR_NMEA; 1871 } 1872 if (cpu_isar_feature(aa64_sme, cpu)) { 1873 valid_mask |= SCR_ENTP2; 1874 } 1875 if (cpu_isar_feature(aa64_hcx, cpu)) { 1876 valid_mask |= SCR_HXEN; 1877 } 1878 if (cpu_isar_feature(aa64_fgt, cpu)) { 1879 valid_mask |= SCR_FGTEN; 1880 } 1881 if (cpu_isar_feature(aa64_rme, cpu)) { 1882 valid_mask |= SCR_NSE | SCR_GPF; 1883 } 1884 } else { 1885 valid_mask &= ~(SCR_RW | SCR_ST); 1886 if (cpu_isar_feature(aa32_ras, cpu)) { 1887 valid_mask |= SCR_TERR; 1888 } 1889 } 1890 1891 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1892 valid_mask &= ~SCR_HCE; 1893 1894 /* 1895 * On ARMv7, SMD (or SCD as it is called in v7) is only 1896 * supported if EL2 exists. The bit is UNK/SBZP when 1897 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1898 * when EL2 is unavailable. 1899 * On ARMv8, this bit is always available. 1900 */ 1901 if (arm_feature(env, ARM_FEATURE_V7) && 1902 !arm_feature(env, ARM_FEATURE_V8)) { 1903 valid_mask &= ~SCR_SMD; 1904 } 1905 } 1906 1907 /* Clear all-context RES0 bits. */ 1908 value &= valid_mask; 1909 changed = env->cp15.scr_el3 ^ value; 1910 env->cp15.scr_el3 = value; 1911 1912 /* 1913 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1914 * we must invalidate all TLBs below EL3. 1915 */ 1916 if (changed & (SCR_NS | SCR_NSE)) { 1917 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1918 ARMMMUIdxBit_E20_0 | 1919 ARMMMUIdxBit_E10_1 | 1920 ARMMMUIdxBit_E20_2 | 1921 ARMMMUIdxBit_E10_1_PAN | 1922 ARMMMUIdxBit_E20_2_PAN | 1923 ARMMMUIdxBit_E2)); 1924 } 1925 } 1926 1927 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1928 { 1929 /* 1930 * scr_write will set the RES1 bits on an AArch64-only CPU. 1931 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1932 */ 1933 scr_write(env, ri, 0); 1934 } 1935 1936 static CPAccessResult access_tid4(CPUARMState *env, 1937 const ARMCPRegInfo *ri, 1938 bool isread) 1939 { 1940 if (arm_current_el(env) == 1 && 1941 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1942 return CP_ACCESS_TRAP_EL2; 1943 } 1944 1945 return CP_ACCESS_OK; 1946 } 1947 1948 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1949 { 1950 ARMCPU *cpu = env_archcpu(env); 1951 1952 /* 1953 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1954 * bank 1955 */ 1956 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1957 ri->secure & ARM_CP_SECSTATE_S); 1958 1959 return cpu->ccsidr[index]; 1960 } 1961 1962 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1963 uint64_t value) 1964 { 1965 raw_write(env, ri, value & 0xf); 1966 } 1967 1968 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1969 { 1970 CPUState *cs = env_cpu(env); 1971 bool el1 = arm_current_el(env) == 1; 1972 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1973 uint64_t ret = 0; 1974 1975 if (hcr_el2 & HCR_IMO) { 1976 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1977 ret |= CPSR_I; 1978 } 1979 } else { 1980 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1981 ret |= CPSR_I; 1982 } 1983 } 1984 1985 if (hcr_el2 & HCR_FMO) { 1986 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1987 ret |= CPSR_F; 1988 } 1989 } else { 1990 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1991 ret |= CPSR_F; 1992 } 1993 } 1994 1995 if (hcr_el2 & HCR_AMO) { 1996 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1997 ret |= CPSR_A; 1998 } 1999 } 2000 2001 return ret; 2002 } 2003 2004 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2005 bool isread) 2006 { 2007 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2008 return CP_ACCESS_TRAP_EL2; 2009 } 2010 2011 return CP_ACCESS_OK; 2012 } 2013 2014 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2015 bool isread) 2016 { 2017 if (arm_feature(env, ARM_FEATURE_V8)) { 2018 return access_aa64_tid1(env, ri, isread); 2019 } 2020 2021 return CP_ACCESS_OK; 2022 } 2023 2024 static const ARMCPRegInfo v7_cp_reginfo[] = { 2025 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2026 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2027 .access = PL1_W, .type = ARM_CP_NOP }, 2028 /* 2029 * Performance monitors are implementation defined in v7, 2030 * but with an ARM recommended set of registers, which we 2031 * follow. 2032 * 2033 * Performance registers fall into three categories: 2034 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2035 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2036 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2037 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2038 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2039 */ 2040 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2041 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2042 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2043 .writefn = pmcntenset_write, 2044 .accessfn = pmreg_access, 2045 .fgt = FGT_PMCNTEN, 2046 .raw_writefn = raw_write }, 2047 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2048 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2049 .access = PL0_RW, .accessfn = pmreg_access, 2050 .fgt = FGT_PMCNTEN, 2051 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2052 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2053 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2054 .access = PL0_RW, 2055 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2056 .accessfn = pmreg_access, 2057 .fgt = FGT_PMCNTEN, 2058 .writefn = pmcntenclr_write, 2059 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2060 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2061 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2062 .access = PL0_RW, .accessfn = pmreg_access, 2063 .fgt = FGT_PMCNTEN, 2064 .type = ARM_CP_ALIAS | ARM_CP_IO, 2065 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2066 .writefn = pmcntenclr_write }, 2067 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2068 .access = PL0_RW, .type = ARM_CP_IO, 2069 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2070 .accessfn = pmreg_access, 2071 .fgt = FGT_PMOVS, 2072 .writefn = pmovsr_write, 2073 .raw_writefn = raw_write }, 2074 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2075 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2076 .access = PL0_RW, .accessfn = pmreg_access, 2077 .fgt = FGT_PMOVS, 2078 .type = ARM_CP_ALIAS | ARM_CP_IO, 2079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2080 .writefn = pmovsr_write, 2081 .raw_writefn = raw_write }, 2082 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2083 .access = PL0_W, .accessfn = pmreg_access_swinc, 2084 .fgt = FGT_PMSWINC_EL0, 2085 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2086 .writefn = pmswinc_write }, 2087 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2088 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2089 .access = PL0_W, .accessfn = pmreg_access_swinc, 2090 .fgt = FGT_PMSWINC_EL0, 2091 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2092 .writefn = pmswinc_write }, 2093 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2094 .access = PL0_RW, .type = ARM_CP_ALIAS, 2095 .fgt = FGT_PMSELR_EL0, 2096 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2097 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2098 .raw_writefn = raw_write}, 2099 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2100 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2101 .access = PL0_RW, .accessfn = pmreg_access_selr, 2102 .fgt = FGT_PMSELR_EL0, 2103 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2104 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2105 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2106 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2107 .fgt = FGT_PMCCNTR_EL0, 2108 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2109 .accessfn = pmreg_access_ccntr }, 2110 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2111 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2112 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2113 .fgt = FGT_PMCCNTR_EL0, 2114 .type = ARM_CP_IO, 2115 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2116 .readfn = pmccntr_read, .writefn = pmccntr_write, 2117 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2118 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2119 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2120 .access = PL0_RW, .accessfn = pmreg_access, 2121 .fgt = FGT_PMCCFILTR_EL0, 2122 .type = ARM_CP_ALIAS | ARM_CP_IO, 2123 .resetvalue = 0, }, 2124 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2126 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2127 .access = PL0_RW, .accessfn = pmreg_access, 2128 .fgt = FGT_PMCCFILTR_EL0, 2129 .type = ARM_CP_IO, 2130 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2131 .resetvalue = 0, }, 2132 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2133 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2134 .accessfn = pmreg_access, 2135 .fgt = FGT_PMEVTYPERN_EL0, 2136 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2137 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2139 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2140 .accessfn = pmreg_access, 2141 .fgt = FGT_PMEVTYPERN_EL0, 2142 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2143 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2144 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2145 .accessfn = pmreg_access_xevcntr, 2146 .fgt = FGT_PMEVCNTRN_EL0, 2147 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2148 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2150 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2151 .accessfn = pmreg_access_xevcntr, 2152 .fgt = FGT_PMEVCNTRN_EL0, 2153 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2154 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2155 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2157 .resetvalue = 0, 2158 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2159 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2160 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2161 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2162 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2163 .resetvalue = 0, 2164 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2165 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2166 .access = PL1_RW, .accessfn = access_tpm, 2167 .fgt = FGT_PMINTEN, 2168 .type = ARM_CP_ALIAS | ARM_CP_IO, 2169 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2170 .resetvalue = 0, 2171 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2172 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2173 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2174 .access = PL1_RW, .accessfn = access_tpm, 2175 .fgt = FGT_PMINTEN, 2176 .type = ARM_CP_IO, 2177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2178 .writefn = pmintenset_write, .raw_writefn = raw_write, 2179 .resetvalue = 0x0 }, 2180 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2181 .access = PL1_RW, .accessfn = access_tpm, 2182 .fgt = FGT_PMINTEN, 2183 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2185 .writefn = pmintenclr_write, }, 2186 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2187 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2188 .access = PL1_RW, .accessfn = access_tpm, 2189 .fgt = FGT_PMINTEN, 2190 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2192 .writefn = pmintenclr_write }, 2193 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2195 .access = PL1_R, 2196 .accessfn = access_tid4, 2197 .fgt = FGT_CCSIDR_EL1, 2198 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2199 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2200 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2201 .access = PL1_RW, 2202 .accessfn = access_tid4, 2203 .fgt = FGT_CSSELR_EL1, 2204 .writefn = csselr_write, .resetvalue = 0, 2205 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2206 offsetof(CPUARMState, cp15.csselr_ns) } }, 2207 /* 2208 * Auxiliary ID register: this actually has an IMPDEF value but for now 2209 * just RAZ for all cores: 2210 */ 2211 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2212 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2213 .access = PL1_R, .type = ARM_CP_CONST, 2214 .accessfn = access_aa64_tid1, 2215 .fgt = FGT_AIDR_EL1, 2216 .resetvalue = 0 }, 2217 /* 2218 * Auxiliary fault status registers: these also are IMPDEF, and we 2219 * choose to RAZ/WI for all cores. 2220 */ 2221 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2222 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2223 .access = PL1_RW, .accessfn = access_tvm_trvm, 2224 .fgt = FGT_AFSR0_EL1, 2225 .type = ARM_CP_CONST, .resetvalue = 0 }, 2226 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2227 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2228 .access = PL1_RW, .accessfn = access_tvm_trvm, 2229 .fgt = FGT_AFSR1_EL1, 2230 .type = ARM_CP_CONST, .resetvalue = 0 }, 2231 /* 2232 * MAIR can just read-as-written because we don't implement caches 2233 * and so don't need to care about memory attributes. 2234 */ 2235 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2236 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2237 .access = PL1_RW, .accessfn = access_tvm_trvm, 2238 .fgt = FGT_MAIR_EL1, 2239 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2240 .resetvalue = 0 }, 2241 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2242 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2243 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2244 .resetvalue = 0 }, 2245 /* 2246 * For non-long-descriptor page tables these are PRRR and NMRR; 2247 * regardless they still act as reads-as-written for QEMU. 2248 */ 2249 /* 2250 * MAIR0/1 are defined separately from their 64-bit counterpart which 2251 * allows them to assign the correct fieldoffset based on the endianness 2252 * handled in the field definitions. 2253 */ 2254 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2255 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2256 .access = PL1_RW, .accessfn = access_tvm_trvm, 2257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2258 offsetof(CPUARMState, cp15.mair0_ns) }, 2259 .resetfn = arm_cp_reset_ignore }, 2260 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2261 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2262 .access = PL1_RW, .accessfn = access_tvm_trvm, 2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2264 offsetof(CPUARMState, cp15.mair1_ns) }, 2265 .resetfn = arm_cp_reset_ignore }, 2266 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2267 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2268 .fgt = FGT_ISR_EL1, 2269 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2270 /* 32 bit ITLB invalidates */ 2271 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2272 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2273 .writefn = tlbiall_write }, 2274 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2276 .writefn = tlbimva_write }, 2277 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2279 .writefn = tlbiasid_write }, 2280 /* 32 bit DTLB invalidates */ 2281 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2282 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2283 .writefn = tlbiall_write }, 2284 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2286 .writefn = tlbimva_write }, 2287 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2289 .writefn = tlbiasid_write }, 2290 /* 32 bit TLB invalidates */ 2291 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2292 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2293 .writefn = tlbiall_write }, 2294 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2295 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2296 .writefn = tlbimva_write }, 2297 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2298 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2299 .writefn = tlbiasid_write }, 2300 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2302 .writefn = tlbimvaa_write }, 2303 }; 2304 2305 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2306 /* 32 bit TLB invalidates, Inner Shareable */ 2307 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2309 .writefn = tlbiall_is_write }, 2310 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2312 .writefn = tlbimva_is_write }, 2313 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2315 .writefn = tlbiasid_is_write }, 2316 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2318 .writefn = tlbimvaa_is_write }, 2319 }; 2320 2321 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2322 /* PMOVSSET is not implemented in v7 before v7ve */ 2323 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2324 .access = PL0_RW, .accessfn = pmreg_access, 2325 .fgt = FGT_PMOVS, 2326 .type = ARM_CP_ALIAS | ARM_CP_IO, 2327 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2328 .writefn = pmovsset_write, 2329 .raw_writefn = raw_write }, 2330 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2332 .access = PL0_RW, .accessfn = pmreg_access, 2333 .fgt = FGT_PMOVS, 2334 .type = ARM_CP_ALIAS | ARM_CP_IO, 2335 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2336 .writefn = pmovsset_write, 2337 .raw_writefn = raw_write }, 2338 }; 2339 2340 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2341 uint64_t value) 2342 { 2343 value &= 1; 2344 env->teecr = value; 2345 } 2346 2347 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2348 bool isread) 2349 { 2350 /* 2351 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2352 * at all, so we don't need to check whether we're v8A. 2353 */ 2354 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2355 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2356 return CP_ACCESS_TRAP_EL2; 2357 } 2358 return CP_ACCESS_OK; 2359 } 2360 2361 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2362 bool isread) 2363 { 2364 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2365 return CP_ACCESS_TRAP; 2366 } 2367 return teecr_access(env, ri, isread); 2368 } 2369 2370 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2371 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2372 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2373 .resetvalue = 0, 2374 .writefn = teecr_write, .accessfn = teecr_access }, 2375 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2376 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2377 .accessfn = teehbr_access, .resetvalue = 0 }, 2378 }; 2379 2380 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2381 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2382 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2383 .access = PL0_RW, 2384 .fgt = FGT_TPIDR_EL0, 2385 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2386 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2387 .access = PL0_RW, 2388 .fgt = FGT_TPIDR_EL0, 2389 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2390 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2391 .resetfn = arm_cp_reset_ignore }, 2392 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2393 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2394 .access = PL0_R | PL1_W, 2395 .fgt = FGT_TPIDRRO_EL0, 2396 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2397 .resetvalue = 0}, 2398 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2399 .access = PL0_R | PL1_W, 2400 .fgt = FGT_TPIDRRO_EL0, 2401 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2402 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2403 .resetfn = arm_cp_reset_ignore }, 2404 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2405 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2406 .access = PL1_RW, 2407 .fgt = FGT_TPIDR_EL1, 2408 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2409 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2410 .access = PL1_RW, 2411 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2412 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2413 .resetvalue = 0 }, 2414 }; 2415 2416 #ifndef CONFIG_USER_ONLY 2417 2418 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2419 bool isread) 2420 { 2421 /* 2422 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2423 * Writable only at the highest implemented exception level. 2424 */ 2425 int el = arm_current_el(env); 2426 uint64_t hcr; 2427 uint32_t cntkctl; 2428 2429 switch (el) { 2430 case 0: 2431 hcr = arm_hcr_el2_eff(env); 2432 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2433 cntkctl = env->cp15.cnthctl_el2; 2434 } else { 2435 cntkctl = env->cp15.c14_cntkctl; 2436 } 2437 if (!extract32(cntkctl, 0, 2)) { 2438 return CP_ACCESS_TRAP; 2439 } 2440 break; 2441 case 1: 2442 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2443 arm_is_secure_below_el3(env)) { 2444 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2445 return CP_ACCESS_TRAP_UNCATEGORIZED; 2446 } 2447 break; 2448 case 2: 2449 case 3: 2450 break; 2451 } 2452 2453 if (!isread && el < arm_highest_el(env)) { 2454 return CP_ACCESS_TRAP_UNCATEGORIZED; 2455 } 2456 2457 return CP_ACCESS_OK; 2458 } 2459 2460 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2461 bool isread) 2462 { 2463 unsigned int cur_el = arm_current_el(env); 2464 bool has_el2 = arm_is_el2_enabled(env); 2465 uint64_t hcr = arm_hcr_el2_eff(env); 2466 2467 switch (cur_el) { 2468 case 0: 2469 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2470 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2471 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2472 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2473 } 2474 2475 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2476 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2477 return CP_ACCESS_TRAP; 2478 } 2479 /* fall through */ 2480 case 1: 2481 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2482 if (has_el2 && timeridx == GTIMER_PHYS && 2483 (hcr & HCR_E2H 2484 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2485 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2486 return CP_ACCESS_TRAP_EL2; 2487 } 2488 break; 2489 } 2490 return CP_ACCESS_OK; 2491 } 2492 2493 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2494 bool isread) 2495 { 2496 unsigned int cur_el = arm_current_el(env); 2497 bool has_el2 = arm_is_el2_enabled(env); 2498 uint64_t hcr = arm_hcr_el2_eff(env); 2499 2500 switch (cur_el) { 2501 case 0: 2502 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2503 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2504 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2505 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2506 } 2507 2508 /* 2509 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2510 * EL0 if EL0[PV]TEN is zero. 2511 */ 2512 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2513 return CP_ACCESS_TRAP; 2514 } 2515 /* fall through */ 2516 2517 case 1: 2518 if (has_el2 && timeridx == GTIMER_PHYS) { 2519 if (hcr & HCR_E2H) { 2520 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2521 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2522 return CP_ACCESS_TRAP_EL2; 2523 } 2524 } else { 2525 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2526 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2527 return CP_ACCESS_TRAP_EL2; 2528 } 2529 } 2530 } 2531 break; 2532 } 2533 return CP_ACCESS_OK; 2534 } 2535 2536 static CPAccessResult gt_pct_access(CPUARMState *env, 2537 const ARMCPRegInfo *ri, 2538 bool isread) 2539 { 2540 return gt_counter_access(env, GTIMER_PHYS, isread); 2541 } 2542 2543 static CPAccessResult gt_vct_access(CPUARMState *env, 2544 const ARMCPRegInfo *ri, 2545 bool isread) 2546 { 2547 return gt_counter_access(env, GTIMER_VIRT, isread); 2548 } 2549 2550 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2551 bool isread) 2552 { 2553 return gt_timer_access(env, GTIMER_PHYS, isread); 2554 } 2555 2556 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2557 bool isread) 2558 { 2559 return gt_timer_access(env, GTIMER_VIRT, isread); 2560 } 2561 2562 static CPAccessResult gt_stimer_access(CPUARMState *env, 2563 const ARMCPRegInfo *ri, 2564 bool isread) 2565 { 2566 /* 2567 * The AArch64 register view of the secure physical timer is 2568 * always accessible from EL3, and configurably accessible from 2569 * Secure EL1. 2570 */ 2571 switch (arm_current_el(env)) { 2572 case 1: 2573 if (!arm_is_secure(env)) { 2574 return CP_ACCESS_TRAP; 2575 } 2576 if (!(env->cp15.scr_el3 & SCR_ST)) { 2577 return CP_ACCESS_TRAP_EL3; 2578 } 2579 return CP_ACCESS_OK; 2580 case 0: 2581 case 2: 2582 return CP_ACCESS_TRAP; 2583 case 3: 2584 return CP_ACCESS_OK; 2585 default: 2586 g_assert_not_reached(); 2587 } 2588 } 2589 2590 static uint64_t gt_get_countervalue(CPUARMState *env) 2591 { 2592 ARMCPU *cpu = env_archcpu(env); 2593 2594 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2595 } 2596 2597 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2598 { 2599 CPUARMState *env = &cpu->env; 2600 uint64_t cnthctl = env->cp15.cnthctl_el2; 2601 ARMSecuritySpace ss = arm_security_space(env); 2602 /* ISTATUS && !IMASK */ 2603 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2604 2605 /* 2606 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2607 * It is RES0 in Secure and NonSecure state. 2608 */ 2609 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2610 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) || 2611 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) { 2612 irqstate = 0; 2613 } 2614 2615 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2616 trace_arm_gt_update_irq(timeridx, irqstate); 2617 } 2618 2619 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2620 { 2621 /* 2622 * Changing security state between Root and Secure/NonSecure, which may 2623 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2624 * mask bits. Update the IRQ state accordingly. 2625 */ 2626 gt_update_irq(cpu, GTIMER_VIRT); 2627 gt_update_irq(cpu, GTIMER_PHYS); 2628 } 2629 2630 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2631 { 2632 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2633 2634 if (gt->ctl & 1) { 2635 /* 2636 * Timer enabled: calculate and set current ISTATUS, irq, and 2637 * reset timer to when ISTATUS next has to change 2638 */ 2639 uint64_t offset = timeridx == GTIMER_VIRT ? 2640 cpu->env.cp15.cntvoff_el2 : 0; 2641 uint64_t count = gt_get_countervalue(&cpu->env); 2642 /* Note that this must be unsigned 64 bit arithmetic: */ 2643 int istatus = count - offset >= gt->cval; 2644 uint64_t nexttick; 2645 2646 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2647 2648 if (istatus) { 2649 /* Next transition is when count rolls back over to zero */ 2650 nexttick = UINT64_MAX; 2651 } else { 2652 /* Next transition is when we hit cval */ 2653 nexttick = gt->cval + offset; 2654 } 2655 /* 2656 * Note that the desired next expiry time might be beyond the 2657 * signed-64-bit range of a QEMUTimer -- in this case we just 2658 * set the timer for as far in the future as possible. When the 2659 * timer expires we will reset the timer for any remaining period. 2660 */ 2661 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2662 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2663 } else { 2664 timer_mod(cpu->gt_timer[timeridx], nexttick); 2665 } 2666 trace_arm_gt_recalc(timeridx, nexttick); 2667 } else { 2668 /* Timer disabled: ISTATUS and timer output always clear */ 2669 gt->ctl &= ~4; 2670 timer_del(cpu->gt_timer[timeridx]); 2671 trace_arm_gt_recalc_disabled(timeridx); 2672 } 2673 gt_update_irq(cpu, timeridx); 2674 } 2675 2676 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2677 int timeridx) 2678 { 2679 ARMCPU *cpu = env_archcpu(env); 2680 2681 timer_del(cpu->gt_timer[timeridx]); 2682 } 2683 2684 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2685 { 2686 return gt_get_countervalue(env); 2687 } 2688 2689 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2690 { 2691 uint64_t hcr; 2692 2693 switch (arm_current_el(env)) { 2694 case 2: 2695 hcr = arm_hcr_el2_eff(env); 2696 if (hcr & HCR_E2H) { 2697 return 0; 2698 } 2699 break; 2700 case 0: 2701 hcr = arm_hcr_el2_eff(env); 2702 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2703 return 0; 2704 } 2705 break; 2706 } 2707 2708 return env->cp15.cntvoff_el2; 2709 } 2710 2711 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2712 { 2713 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2714 } 2715 2716 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2717 int timeridx, 2718 uint64_t value) 2719 { 2720 trace_arm_gt_cval_write(timeridx, value); 2721 env->cp15.c14_timer[timeridx].cval = value; 2722 gt_recalc_timer(env_archcpu(env), timeridx); 2723 } 2724 2725 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2726 int timeridx) 2727 { 2728 uint64_t offset = 0; 2729 2730 switch (timeridx) { 2731 case GTIMER_VIRT: 2732 case GTIMER_HYPVIRT: 2733 offset = gt_virt_cnt_offset(env); 2734 break; 2735 } 2736 2737 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2738 (gt_get_countervalue(env) - offset)); 2739 } 2740 2741 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2742 int timeridx, 2743 uint64_t value) 2744 { 2745 uint64_t offset = 0; 2746 2747 switch (timeridx) { 2748 case GTIMER_VIRT: 2749 case GTIMER_HYPVIRT: 2750 offset = gt_virt_cnt_offset(env); 2751 break; 2752 } 2753 2754 trace_arm_gt_tval_write(timeridx, value); 2755 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2756 sextract64(value, 0, 32); 2757 gt_recalc_timer(env_archcpu(env), timeridx); 2758 } 2759 2760 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2761 int timeridx, 2762 uint64_t value) 2763 { 2764 ARMCPU *cpu = env_archcpu(env); 2765 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2766 2767 trace_arm_gt_ctl_write(timeridx, value); 2768 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2769 if ((oldval ^ value) & 1) { 2770 /* Enable toggled */ 2771 gt_recalc_timer(cpu, timeridx); 2772 } else if ((oldval ^ value) & 2) { 2773 /* 2774 * IMASK toggled: don't need to recalculate, 2775 * just set the interrupt line based on ISTATUS 2776 */ 2777 trace_arm_gt_imask_toggle(timeridx); 2778 gt_update_irq(cpu, timeridx); 2779 } 2780 } 2781 2782 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2783 { 2784 gt_timer_reset(env, ri, GTIMER_PHYS); 2785 } 2786 2787 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2788 uint64_t value) 2789 { 2790 gt_cval_write(env, ri, GTIMER_PHYS, value); 2791 } 2792 2793 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2794 { 2795 return gt_tval_read(env, ri, GTIMER_PHYS); 2796 } 2797 2798 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2799 uint64_t value) 2800 { 2801 gt_tval_write(env, ri, GTIMER_PHYS, value); 2802 } 2803 2804 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2805 uint64_t value) 2806 { 2807 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2808 } 2809 2810 static int gt_phys_redir_timeridx(CPUARMState *env) 2811 { 2812 switch (arm_mmu_idx(env)) { 2813 case ARMMMUIdx_E20_0: 2814 case ARMMMUIdx_E20_2: 2815 case ARMMMUIdx_E20_2_PAN: 2816 return GTIMER_HYP; 2817 default: 2818 return GTIMER_PHYS; 2819 } 2820 } 2821 2822 static int gt_virt_redir_timeridx(CPUARMState *env) 2823 { 2824 switch (arm_mmu_idx(env)) { 2825 case ARMMMUIdx_E20_0: 2826 case ARMMMUIdx_E20_2: 2827 case ARMMMUIdx_E20_2_PAN: 2828 return GTIMER_HYPVIRT; 2829 default: 2830 return GTIMER_VIRT; 2831 } 2832 } 2833 2834 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2835 const ARMCPRegInfo *ri) 2836 { 2837 int timeridx = gt_phys_redir_timeridx(env); 2838 return env->cp15.c14_timer[timeridx].cval; 2839 } 2840 2841 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2842 uint64_t value) 2843 { 2844 int timeridx = gt_phys_redir_timeridx(env); 2845 gt_cval_write(env, ri, timeridx, value); 2846 } 2847 2848 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2849 const ARMCPRegInfo *ri) 2850 { 2851 int timeridx = gt_phys_redir_timeridx(env); 2852 return gt_tval_read(env, ri, timeridx); 2853 } 2854 2855 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 int timeridx = gt_phys_redir_timeridx(env); 2859 gt_tval_write(env, ri, timeridx, value); 2860 } 2861 2862 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2863 const ARMCPRegInfo *ri) 2864 { 2865 int timeridx = gt_phys_redir_timeridx(env); 2866 return env->cp15.c14_timer[timeridx].ctl; 2867 } 2868 2869 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2870 uint64_t value) 2871 { 2872 int timeridx = gt_phys_redir_timeridx(env); 2873 gt_ctl_write(env, ri, timeridx, value); 2874 } 2875 2876 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2877 { 2878 gt_timer_reset(env, ri, GTIMER_VIRT); 2879 } 2880 2881 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2882 uint64_t value) 2883 { 2884 gt_cval_write(env, ri, GTIMER_VIRT, value); 2885 } 2886 2887 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2888 { 2889 return gt_tval_read(env, ri, GTIMER_VIRT); 2890 } 2891 2892 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2893 uint64_t value) 2894 { 2895 gt_tval_write(env, ri, GTIMER_VIRT, value); 2896 } 2897 2898 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2899 uint64_t value) 2900 { 2901 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2902 } 2903 2904 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2905 uint64_t value) 2906 { 2907 ARMCPU *cpu = env_archcpu(env); 2908 uint32_t oldval = env->cp15.cnthctl_el2; 2909 2910 raw_write(env, ri, value); 2911 2912 if ((oldval ^ value) & CNTHCTL_CNTVMASK) { 2913 gt_update_irq(cpu, GTIMER_VIRT); 2914 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) { 2915 gt_update_irq(cpu, GTIMER_PHYS); 2916 } 2917 } 2918 2919 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2920 uint64_t value) 2921 { 2922 ARMCPU *cpu = env_archcpu(env); 2923 2924 trace_arm_gt_cntvoff_write(value); 2925 raw_write(env, ri, value); 2926 gt_recalc_timer(cpu, GTIMER_VIRT); 2927 } 2928 2929 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2930 const ARMCPRegInfo *ri) 2931 { 2932 int timeridx = gt_virt_redir_timeridx(env); 2933 return env->cp15.c14_timer[timeridx].cval; 2934 } 2935 2936 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2937 uint64_t value) 2938 { 2939 int timeridx = gt_virt_redir_timeridx(env); 2940 gt_cval_write(env, ri, timeridx, value); 2941 } 2942 2943 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2944 const ARMCPRegInfo *ri) 2945 { 2946 int timeridx = gt_virt_redir_timeridx(env); 2947 return gt_tval_read(env, ri, timeridx); 2948 } 2949 2950 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2951 uint64_t value) 2952 { 2953 int timeridx = gt_virt_redir_timeridx(env); 2954 gt_tval_write(env, ri, timeridx, value); 2955 } 2956 2957 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2958 const ARMCPRegInfo *ri) 2959 { 2960 int timeridx = gt_virt_redir_timeridx(env); 2961 return env->cp15.c14_timer[timeridx].ctl; 2962 } 2963 2964 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2965 uint64_t value) 2966 { 2967 int timeridx = gt_virt_redir_timeridx(env); 2968 gt_ctl_write(env, ri, timeridx, value); 2969 } 2970 2971 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2972 { 2973 gt_timer_reset(env, ri, GTIMER_HYP); 2974 } 2975 2976 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2977 uint64_t value) 2978 { 2979 gt_cval_write(env, ri, GTIMER_HYP, value); 2980 } 2981 2982 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2983 { 2984 return gt_tval_read(env, ri, GTIMER_HYP); 2985 } 2986 2987 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2988 uint64_t value) 2989 { 2990 gt_tval_write(env, ri, GTIMER_HYP, value); 2991 } 2992 2993 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2994 uint64_t value) 2995 { 2996 gt_ctl_write(env, ri, GTIMER_HYP, value); 2997 } 2998 2999 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3000 { 3001 gt_timer_reset(env, ri, GTIMER_SEC); 3002 } 3003 3004 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3005 uint64_t value) 3006 { 3007 gt_cval_write(env, ri, GTIMER_SEC, value); 3008 } 3009 3010 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3011 { 3012 return gt_tval_read(env, ri, GTIMER_SEC); 3013 } 3014 3015 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3016 uint64_t value) 3017 { 3018 gt_tval_write(env, ri, GTIMER_SEC, value); 3019 } 3020 3021 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3022 uint64_t value) 3023 { 3024 gt_ctl_write(env, ri, GTIMER_SEC, value); 3025 } 3026 3027 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3028 { 3029 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3030 } 3031 3032 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3033 uint64_t value) 3034 { 3035 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3036 } 3037 3038 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3039 { 3040 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3041 } 3042 3043 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3044 uint64_t value) 3045 { 3046 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3047 } 3048 3049 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3050 uint64_t value) 3051 { 3052 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3053 } 3054 3055 void arm_gt_ptimer_cb(void *opaque) 3056 { 3057 ARMCPU *cpu = opaque; 3058 3059 gt_recalc_timer(cpu, GTIMER_PHYS); 3060 } 3061 3062 void arm_gt_vtimer_cb(void *opaque) 3063 { 3064 ARMCPU *cpu = opaque; 3065 3066 gt_recalc_timer(cpu, GTIMER_VIRT); 3067 } 3068 3069 void arm_gt_htimer_cb(void *opaque) 3070 { 3071 ARMCPU *cpu = opaque; 3072 3073 gt_recalc_timer(cpu, GTIMER_HYP); 3074 } 3075 3076 void arm_gt_stimer_cb(void *opaque) 3077 { 3078 ARMCPU *cpu = opaque; 3079 3080 gt_recalc_timer(cpu, GTIMER_SEC); 3081 } 3082 3083 void arm_gt_hvtimer_cb(void *opaque) 3084 { 3085 ARMCPU *cpu = opaque; 3086 3087 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3088 } 3089 3090 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3091 { 3092 ARMCPU *cpu = env_archcpu(env); 3093 3094 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3095 } 3096 3097 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3098 /* 3099 * Note that CNTFRQ is purely reads-as-written for the benefit 3100 * of software; writing it doesn't actually change the timer frequency. 3101 * Our reset value matches the fixed frequency we implement the timer at. 3102 */ 3103 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3104 .type = ARM_CP_ALIAS, 3105 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3106 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3107 }, 3108 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3109 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3110 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3111 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3112 .resetfn = arm_gt_cntfrq_reset, 3113 }, 3114 /* overall control: mostly access permissions */ 3115 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3116 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3117 .access = PL1_RW, 3118 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3119 .resetvalue = 0, 3120 }, 3121 /* per-timer control */ 3122 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3123 .secure = ARM_CP_SECSTATE_NS, 3124 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3125 .accessfn = gt_ptimer_access, 3126 .fieldoffset = offsetoflow32(CPUARMState, 3127 cp15.c14_timer[GTIMER_PHYS].ctl), 3128 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3129 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3130 }, 3131 { .name = "CNTP_CTL_S", 3132 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3133 .secure = ARM_CP_SECSTATE_S, 3134 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3135 .accessfn = gt_ptimer_access, 3136 .fieldoffset = offsetoflow32(CPUARMState, 3137 cp15.c14_timer[GTIMER_SEC].ctl), 3138 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3139 }, 3140 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3141 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3142 .type = ARM_CP_IO, .access = PL0_RW, 3143 .accessfn = gt_ptimer_access, 3144 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3145 .resetvalue = 0, 3146 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3147 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3148 }, 3149 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3150 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3151 .accessfn = gt_vtimer_access, 3152 .fieldoffset = offsetoflow32(CPUARMState, 3153 cp15.c14_timer[GTIMER_VIRT].ctl), 3154 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3155 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3156 }, 3157 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3159 .type = ARM_CP_IO, .access = PL0_RW, 3160 .accessfn = gt_vtimer_access, 3161 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3162 .resetvalue = 0, 3163 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3164 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3165 }, 3166 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3167 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3168 .secure = ARM_CP_SECSTATE_NS, 3169 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3170 .accessfn = gt_ptimer_access, 3171 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3172 }, 3173 { .name = "CNTP_TVAL_S", 3174 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3175 .secure = ARM_CP_SECSTATE_S, 3176 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3177 .accessfn = gt_ptimer_access, 3178 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3179 }, 3180 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3181 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3182 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3183 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3184 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3185 }, 3186 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3187 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3188 .accessfn = gt_vtimer_access, 3189 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3190 }, 3191 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3192 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3193 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3194 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3195 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3196 }, 3197 /* The counter itself */ 3198 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3199 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3200 .accessfn = gt_pct_access, 3201 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3202 }, 3203 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3204 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3205 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3206 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3207 }, 3208 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3209 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3210 .accessfn = gt_vct_access, 3211 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3212 }, 3213 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3214 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3215 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3216 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3217 }, 3218 /* Comparison value, indicating when the timer goes off */ 3219 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3220 .secure = ARM_CP_SECSTATE_NS, 3221 .access = PL0_RW, 3222 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3223 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3224 .accessfn = gt_ptimer_access, 3225 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3226 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3227 }, 3228 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3229 .secure = ARM_CP_SECSTATE_S, 3230 .access = PL0_RW, 3231 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3232 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3233 .accessfn = gt_ptimer_access, 3234 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3235 }, 3236 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3238 .access = PL0_RW, 3239 .type = ARM_CP_IO, 3240 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3241 .resetvalue = 0, .accessfn = gt_ptimer_access, 3242 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3243 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3244 }, 3245 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3246 .access = PL0_RW, 3247 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3248 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3249 .accessfn = gt_vtimer_access, 3250 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3251 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3252 }, 3253 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3254 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3255 .access = PL0_RW, 3256 .type = ARM_CP_IO, 3257 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3258 .resetvalue = 0, .accessfn = gt_vtimer_access, 3259 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3260 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3261 }, 3262 /* 3263 * Secure timer -- this is actually restricted to only EL3 3264 * and configurably Secure-EL1 via the accessfn. 3265 */ 3266 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3267 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3268 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3269 .accessfn = gt_stimer_access, 3270 .readfn = gt_sec_tval_read, 3271 .writefn = gt_sec_tval_write, 3272 .resetfn = gt_sec_timer_reset, 3273 }, 3274 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3275 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3276 .type = ARM_CP_IO, .access = PL1_RW, 3277 .accessfn = gt_stimer_access, 3278 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3279 .resetvalue = 0, 3280 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3281 }, 3282 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3283 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3284 .type = ARM_CP_IO, .access = PL1_RW, 3285 .accessfn = gt_stimer_access, 3286 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3287 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3288 }, 3289 }; 3290 3291 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3292 bool isread) 3293 { 3294 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3295 return CP_ACCESS_TRAP; 3296 } 3297 return CP_ACCESS_OK; 3298 } 3299 3300 #else 3301 3302 /* 3303 * In user-mode most of the generic timer registers are inaccessible 3304 * however modern kernels (4.12+) allow access to cntvct_el0 3305 */ 3306 3307 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3308 { 3309 ARMCPU *cpu = env_archcpu(env); 3310 3311 /* 3312 * Currently we have no support for QEMUTimer in linux-user so we 3313 * can't call gt_get_countervalue(env), instead we directly 3314 * call the lower level functions. 3315 */ 3316 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3317 } 3318 3319 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3320 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3321 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3322 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3323 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3324 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3325 }, 3326 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3327 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3328 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3329 .readfn = gt_virt_cnt_read, 3330 }, 3331 }; 3332 3333 #endif 3334 3335 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3336 { 3337 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3338 raw_write(env, ri, value); 3339 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3340 raw_write(env, ri, value & 0xfffff6ff); 3341 } else { 3342 raw_write(env, ri, value & 0xfffff1ff); 3343 } 3344 } 3345 3346 #ifndef CONFIG_USER_ONLY 3347 /* get_phys_addr() isn't present for user-mode-only targets */ 3348 3349 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3350 bool isread) 3351 { 3352 if (ri->opc2 & 4) { 3353 /* 3354 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3355 * Secure EL1 (which can only happen if EL3 is AArch64). 3356 * They are simply UNDEF if executed from NS EL1. 3357 * They function normally from EL2 or EL3. 3358 */ 3359 if (arm_current_el(env) == 1) { 3360 if (arm_is_secure_below_el3(env)) { 3361 if (env->cp15.scr_el3 & SCR_EEL2) { 3362 return CP_ACCESS_TRAP_EL2; 3363 } 3364 return CP_ACCESS_TRAP_EL3; 3365 } 3366 return CP_ACCESS_TRAP_UNCATEGORIZED; 3367 } 3368 } 3369 return CP_ACCESS_OK; 3370 } 3371 3372 #ifdef CONFIG_TCG 3373 static int par_el1_shareability(GetPhysAddrResult *res) 3374 { 3375 /* 3376 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3377 * memory -- see pseudocode PAREncodeShareability(). 3378 */ 3379 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3380 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3381 return 2; 3382 } 3383 return res->cacheattrs.shareability; 3384 } 3385 3386 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3387 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3388 ARMSecuritySpace ss) 3389 { 3390 bool ret; 3391 uint64_t par64; 3392 bool format64 = false; 3393 ARMMMUFaultInfo fi = {}; 3394 GetPhysAddrResult res = {}; 3395 3396 /* 3397 * I_MXTJT: Granule protection checks are not performed on the final address 3398 * of a successful translation. 3399 */ 3400 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3401 &res, &fi); 3402 3403 /* 3404 * ATS operations only do S1 or S1+S2 translations, so we never 3405 * have to deal with the ARMCacheAttrs format for S2 only. 3406 */ 3407 assert(!res.cacheattrs.is_s2_format); 3408 3409 if (ret) { 3410 /* 3411 * Some kinds of translation fault must cause exceptions rather 3412 * than being reported in the PAR. 3413 */ 3414 int current_el = arm_current_el(env); 3415 int target_el; 3416 uint32_t syn, fsr, fsc; 3417 bool take_exc = false; 3418 3419 if (fi.s1ptw && current_el == 1 3420 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3421 /* 3422 * Synchronous stage 2 fault on an access made as part of the 3423 * translation table walk for AT S1E0* or AT S1E1* insn 3424 * executed from NS EL1. If this is a synchronous external abort 3425 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3426 * to EL3. Otherwise the fault is taken as an exception to EL2, 3427 * and HPFAR_EL2 holds the faulting IPA. 3428 */ 3429 if (fi.type == ARMFault_SyncExternalOnWalk && 3430 (env->cp15.scr_el3 & SCR_EA)) { 3431 target_el = 3; 3432 } else { 3433 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3434 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3435 env->cp15.hpfar_el2 |= HPFAR_NS; 3436 } 3437 target_el = 2; 3438 } 3439 take_exc = true; 3440 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3441 /* 3442 * Synchronous external aborts during a translation table walk 3443 * are taken as Data Abort exceptions. 3444 */ 3445 if (fi.stage2) { 3446 if (current_el == 3) { 3447 target_el = 3; 3448 } else { 3449 target_el = 2; 3450 } 3451 } else { 3452 target_el = exception_target_el(env); 3453 } 3454 take_exc = true; 3455 } 3456 3457 if (take_exc) { 3458 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3459 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3460 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3461 fsr = arm_fi_to_lfsc(&fi); 3462 fsc = extract32(fsr, 0, 6); 3463 } else { 3464 fsr = arm_fi_to_sfsc(&fi); 3465 fsc = 0x3f; 3466 } 3467 /* 3468 * Report exception with ESR indicating a fault due to a 3469 * translation table walk for a cache maintenance instruction. 3470 */ 3471 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3472 fi.ea, 1, fi.s1ptw, 1, fsc); 3473 env->exception.vaddress = value; 3474 env->exception.fsr = fsr; 3475 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3476 } 3477 } 3478 3479 if (is_a64(env)) { 3480 format64 = true; 3481 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3482 /* 3483 * ATS1Cxx: 3484 * * TTBCR.EAE determines whether the result is returned using the 3485 * 32-bit or the 64-bit PAR format 3486 * * Instructions executed in Hyp mode always use the 64bit format 3487 * 3488 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3489 * * The Non-secure TTBCR.EAE bit is set to 1 3490 * * The implementation includes EL2, and the value of HCR.VM is 1 3491 * 3492 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3493 * 3494 * ATS1Hx always uses the 64bit format. 3495 */ 3496 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3497 3498 if (arm_feature(env, ARM_FEATURE_EL2)) { 3499 if (mmu_idx == ARMMMUIdx_E10_0 || 3500 mmu_idx == ARMMMUIdx_E10_1 || 3501 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3502 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3503 } else { 3504 format64 |= arm_current_el(env) == 2; 3505 } 3506 } 3507 } 3508 3509 if (format64) { 3510 /* Create a 64-bit PAR */ 3511 par64 = (1 << 11); /* LPAE bit always set */ 3512 if (!ret) { 3513 par64 |= res.f.phys_addr & ~0xfffULL; 3514 if (!res.f.attrs.secure) { 3515 par64 |= (1 << 9); /* NS */ 3516 } 3517 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3518 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3519 } else { 3520 uint32_t fsr = arm_fi_to_lfsc(&fi); 3521 3522 par64 |= 1; /* F */ 3523 par64 |= (fsr & 0x3f) << 1; /* FS */ 3524 if (fi.stage2) { 3525 par64 |= (1 << 9); /* S */ 3526 } 3527 if (fi.s1ptw) { 3528 par64 |= (1 << 8); /* PTW */ 3529 } 3530 } 3531 } else { 3532 /* 3533 * fsr is a DFSR/IFSR value for the short descriptor 3534 * translation table format (with WnR always clear). 3535 * Convert it to a 32-bit PAR. 3536 */ 3537 if (!ret) { 3538 /* We do not set any attribute bits in the PAR */ 3539 if (res.f.lg_page_size == 24 3540 && arm_feature(env, ARM_FEATURE_V7)) { 3541 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3542 } else { 3543 par64 = res.f.phys_addr & 0xfffff000; 3544 } 3545 if (!res.f.attrs.secure) { 3546 par64 |= (1 << 9); /* NS */ 3547 } 3548 } else { 3549 uint32_t fsr = arm_fi_to_sfsc(&fi); 3550 3551 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3552 ((fsr & 0xf) << 1) | 1; 3553 } 3554 } 3555 return par64; 3556 } 3557 #endif /* CONFIG_TCG */ 3558 3559 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3560 { 3561 #ifdef CONFIG_TCG 3562 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3563 uint64_t par64; 3564 ARMMMUIdx mmu_idx; 3565 int el = arm_current_el(env); 3566 ARMSecuritySpace ss = arm_security_space(env); 3567 3568 switch (ri->opc2 & 6) { 3569 case 0: 3570 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3571 switch (el) { 3572 case 3: 3573 mmu_idx = ARMMMUIdx_E3; 3574 break; 3575 case 2: 3576 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3577 /* fall through */ 3578 case 1: 3579 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3580 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3581 } else { 3582 mmu_idx = ARMMMUIdx_Stage1_E1; 3583 } 3584 break; 3585 default: 3586 g_assert_not_reached(); 3587 } 3588 break; 3589 case 2: 3590 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3591 switch (el) { 3592 case 3: 3593 mmu_idx = ARMMMUIdx_E10_0; 3594 break; 3595 case 2: 3596 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3597 mmu_idx = ARMMMUIdx_Stage1_E0; 3598 break; 3599 case 1: 3600 mmu_idx = ARMMMUIdx_Stage1_E0; 3601 break; 3602 default: 3603 g_assert_not_reached(); 3604 } 3605 break; 3606 case 4: 3607 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3608 mmu_idx = ARMMMUIdx_E10_1; 3609 ss = ARMSS_NonSecure; 3610 break; 3611 case 6: 3612 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3613 mmu_idx = ARMMMUIdx_E10_0; 3614 ss = ARMSS_NonSecure; 3615 break; 3616 default: 3617 g_assert_not_reached(); 3618 } 3619 3620 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3621 3622 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3623 #else 3624 /* Handled by hardware accelerator. */ 3625 g_assert_not_reached(); 3626 #endif /* CONFIG_TCG */ 3627 } 3628 3629 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3630 uint64_t value) 3631 { 3632 #ifdef CONFIG_TCG 3633 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3634 uint64_t par64; 3635 3636 /* There is no SecureEL2 for AArch32. */ 3637 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3638 ARMSS_NonSecure); 3639 3640 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3641 #else 3642 /* Handled by hardware accelerator. */ 3643 g_assert_not_reached(); 3644 #endif /* CONFIG_TCG */ 3645 } 3646 3647 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3648 bool isread) 3649 { 3650 /* 3651 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3652 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3653 * only happen when executing at EL3 because that combination also causes an 3654 * illegal exception return. We don't need to check FEAT_RME either, because 3655 * scr_write() ensures that the NSE bit is not set otherwise. 3656 */ 3657 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3658 return CP_ACCESS_TRAP; 3659 } 3660 return CP_ACCESS_OK; 3661 } 3662 3663 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3664 bool isread) 3665 { 3666 if (arm_current_el(env) == 3 && 3667 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3668 return CP_ACCESS_TRAP; 3669 } 3670 return at_e012_access(env, ri, isread); 3671 } 3672 3673 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3674 uint64_t value) 3675 { 3676 #ifdef CONFIG_TCG 3677 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3678 ARMMMUIdx mmu_idx; 3679 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3680 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3681 3682 switch (ri->opc2 & 6) { 3683 case 0: 3684 switch (ri->opc1) { 3685 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3686 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3687 mmu_idx = regime_e20 ? 3688 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3689 } else { 3690 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3691 } 3692 break; 3693 case 4: /* AT S1E2R, AT S1E2W */ 3694 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3695 break; 3696 case 6: /* AT S1E3R, AT S1E3W */ 3697 mmu_idx = ARMMMUIdx_E3; 3698 break; 3699 default: 3700 g_assert_not_reached(); 3701 } 3702 break; 3703 case 2: /* AT S1E0R, AT S1E0W */ 3704 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3705 break; 3706 case 4: /* AT S12E1R, AT S12E1W */ 3707 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3708 break; 3709 case 6: /* AT S12E0R, AT S12E0W */ 3710 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3711 break; 3712 default: 3713 g_assert_not_reached(); 3714 } 3715 3716 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3717 mmu_idx, arm_security_space(env)); 3718 #else 3719 /* Handled by hardware accelerator. */ 3720 g_assert_not_reached(); 3721 #endif /* CONFIG_TCG */ 3722 } 3723 #endif 3724 3725 /* Return basic MPU access permission bits. */ 3726 static uint32_t simple_mpu_ap_bits(uint32_t val) 3727 { 3728 uint32_t ret; 3729 uint32_t mask; 3730 int i; 3731 ret = 0; 3732 mask = 3; 3733 for (i = 0; i < 16; i += 2) { 3734 ret |= (val >> i) & mask; 3735 mask <<= 2; 3736 } 3737 return ret; 3738 } 3739 3740 /* Pad basic MPU access permission bits to extended format. */ 3741 static uint32_t extended_mpu_ap_bits(uint32_t val) 3742 { 3743 uint32_t ret; 3744 uint32_t mask; 3745 int i; 3746 ret = 0; 3747 mask = 3; 3748 for (i = 0; i < 16; i += 2) { 3749 ret |= (val & mask) << i; 3750 mask <<= 2; 3751 } 3752 return ret; 3753 } 3754 3755 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3756 uint64_t value) 3757 { 3758 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3759 } 3760 3761 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3762 { 3763 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3764 } 3765 3766 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3767 uint64_t value) 3768 { 3769 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3770 } 3771 3772 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3773 { 3774 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3775 } 3776 3777 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3778 { 3779 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3780 3781 if (!u32p) { 3782 return 0; 3783 } 3784 3785 u32p += env->pmsav7.rnr[M_REG_NS]; 3786 return *u32p; 3787 } 3788 3789 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3790 uint64_t value) 3791 { 3792 ARMCPU *cpu = env_archcpu(env); 3793 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3794 3795 if (!u32p) { 3796 return; 3797 } 3798 3799 u32p += env->pmsav7.rnr[M_REG_NS]; 3800 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3801 *u32p = value; 3802 } 3803 3804 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3805 uint64_t value) 3806 { 3807 ARMCPU *cpu = env_archcpu(env); 3808 uint32_t nrgs = cpu->pmsav7_dregion; 3809 3810 if (value >= nrgs) { 3811 qemu_log_mask(LOG_GUEST_ERROR, 3812 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3813 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3814 return; 3815 } 3816 3817 raw_write(env, ri, value); 3818 } 3819 3820 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3821 uint64_t value) 3822 { 3823 ARMCPU *cpu = env_archcpu(env); 3824 3825 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3826 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3827 } 3828 3829 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3830 { 3831 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3832 } 3833 3834 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3835 uint64_t value) 3836 { 3837 ARMCPU *cpu = env_archcpu(env); 3838 3839 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3840 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3841 } 3842 3843 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3844 { 3845 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3846 } 3847 3848 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3849 uint64_t value) 3850 { 3851 ARMCPU *cpu = env_archcpu(env); 3852 3853 /* 3854 * Ignore writes that would select not implemented region. 3855 * This is architecturally UNPREDICTABLE. 3856 */ 3857 if (value >= cpu->pmsav7_dregion) { 3858 return; 3859 } 3860 3861 env->pmsav7.rnr[M_REG_NS] = value; 3862 } 3863 3864 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3865 uint64_t value) 3866 { 3867 ARMCPU *cpu = env_archcpu(env); 3868 3869 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3870 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3871 } 3872 3873 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3874 { 3875 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3876 } 3877 3878 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3879 uint64_t value) 3880 { 3881 ARMCPU *cpu = env_archcpu(env); 3882 3883 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3884 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3885 } 3886 3887 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3888 { 3889 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3890 } 3891 3892 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3893 uint64_t value) 3894 { 3895 uint32_t n; 3896 uint32_t bit; 3897 ARMCPU *cpu = env_archcpu(env); 3898 3899 /* Ignore writes to unimplemented regions */ 3900 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3901 value &= MAKE_64BIT_MASK(0, rmax); 3902 3903 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3904 3905 /* Register alias is only valid for first 32 indexes */ 3906 for (n = 0; n < rmax; ++n) { 3907 bit = extract32(value, n, 1); 3908 env->pmsav8.hprlar[n] = deposit32( 3909 env->pmsav8.hprlar[n], 0, 1, bit); 3910 } 3911 } 3912 3913 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3914 { 3915 uint32_t n; 3916 uint32_t result = 0x0; 3917 ARMCPU *cpu = env_archcpu(env); 3918 3919 /* Register alias is only valid for first 32 indexes */ 3920 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3921 if (env->pmsav8.hprlar[n] & 0x1) { 3922 result |= (0x1 << n); 3923 } 3924 } 3925 return result; 3926 } 3927 3928 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3929 uint64_t value) 3930 { 3931 ARMCPU *cpu = env_archcpu(env); 3932 3933 /* 3934 * Ignore writes that would select not implemented region. 3935 * This is architecturally UNPREDICTABLE. 3936 */ 3937 if (value >= cpu->pmsav8r_hdregion) { 3938 return; 3939 } 3940 3941 env->pmsav8.hprselr = value; 3942 } 3943 3944 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3945 uint64_t value) 3946 { 3947 ARMCPU *cpu = env_archcpu(env); 3948 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3949 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3950 3951 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3952 3953 if (ri->opc1 & 4) { 3954 if (index >= cpu->pmsav8r_hdregion) { 3955 return; 3956 } 3957 if (ri->opc2 & 0x1) { 3958 env->pmsav8.hprlar[index] = value; 3959 } else { 3960 env->pmsav8.hprbar[index] = value; 3961 } 3962 } else { 3963 if (index >= cpu->pmsav7_dregion) { 3964 return; 3965 } 3966 if (ri->opc2 & 0x1) { 3967 env->pmsav8.rlar[M_REG_NS][index] = value; 3968 } else { 3969 env->pmsav8.rbar[M_REG_NS][index] = value; 3970 } 3971 } 3972 } 3973 3974 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3975 { 3976 ARMCPU *cpu = env_archcpu(env); 3977 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3978 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3979 3980 if (ri->opc1 & 4) { 3981 if (index >= cpu->pmsav8r_hdregion) { 3982 return 0x0; 3983 } 3984 if (ri->opc2 & 0x1) { 3985 return env->pmsav8.hprlar[index]; 3986 } else { 3987 return env->pmsav8.hprbar[index]; 3988 } 3989 } else { 3990 if (index >= cpu->pmsav7_dregion) { 3991 return 0x0; 3992 } 3993 if (ri->opc2 & 0x1) { 3994 return env->pmsav8.rlar[M_REG_NS][index]; 3995 } else { 3996 return env->pmsav8.rbar[M_REG_NS][index]; 3997 } 3998 } 3999 } 4000 4001 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4002 { .name = "PRBAR", 4003 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4004 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4005 .accessfn = access_tvm_trvm, 4006 .readfn = prbar_read, .writefn = prbar_write }, 4007 { .name = "PRLAR", 4008 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4009 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4010 .accessfn = access_tvm_trvm, 4011 .readfn = prlar_read, .writefn = prlar_write }, 4012 { .name = "PRSELR", .resetvalue = 0, 4013 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4014 .access = PL1_RW, .accessfn = access_tvm_trvm, 4015 .writefn = prselr_write, 4016 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4017 { .name = "HPRBAR", .resetvalue = 0, 4018 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4019 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4020 .readfn = hprbar_read, .writefn = hprbar_write }, 4021 { .name = "HPRLAR", 4022 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4023 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4024 .readfn = hprlar_read, .writefn = hprlar_write }, 4025 { .name = "HPRSELR", .resetvalue = 0, 4026 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4027 .access = PL2_RW, 4028 .writefn = hprselr_write, 4029 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4030 { .name = "HPRENR", 4031 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4032 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4033 .readfn = hprenr_read, .writefn = hprenr_write }, 4034 }; 4035 4036 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4037 /* 4038 * Reset for all these registers is handled in arm_cpu_reset(), 4039 * because the PMSAv7 is also used by M-profile CPUs, which do 4040 * not register cpregs but still need the state to be reset. 4041 */ 4042 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4043 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4044 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4045 .readfn = pmsav7_read, .writefn = pmsav7_write, 4046 .resetfn = arm_cp_reset_ignore }, 4047 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4048 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4049 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4050 .readfn = pmsav7_read, .writefn = pmsav7_write, 4051 .resetfn = arm_cp_reset_ignore }, 4052 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4053 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4054 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4055 .readfn = pmsav7_read, .writefn = pmsav7_write, 4056 .resetfn = arm_cp_reset_ignore }, 4057 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4058 .access = PL1_RW, 4059 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4060 .writefn = pmsav7_rgnr_write, 4061 .resetfn = arm_cp_reset_ignore }, 4062 }; 4063 4064 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4065 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4066 .access = PL1_RW, .type = ARM_CP_ALIAS, 4067 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4068 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4069 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4070 .access = PL1_RW, .type = ARM_CP_ALIAS, 4071 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4072 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4073 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4074 .access = PL1_RW, 4075 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4076 .resetvalue = 0, }, 4077 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4078 .access = PL1_RW, 4079 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4080 .resetvalue = 0, }, 4081 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4082 .access = PL1_RW, 4083 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4084 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4085 .access = PL1_RW, 4086 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4087 /* Protection region base and size registers */ 4088 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4089 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4090 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4091 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4092 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4093 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4094 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4095 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4096 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4097 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4098 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4099 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4100 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4101 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4102 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4103 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4104 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4105 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4106 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4107 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4108 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4109 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4110 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4111 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4112 }; 4113 4114 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4115 uint64_t value) 4116 { 4117 ARMCPU *cpu = env_archcpu(env); 4118 4119 if (!arm_feature(env, ARM_FEATURE_V8)) { 4120 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4121 /* 4122 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4123 * using Long-descriptor translation table format 4124 */ 4125 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4126 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4127 /* 4128 * In an implementation that includes the Security Extensions 4129 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4130 * Short-descriptor translation table format. 4131 */ 4132 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4133 } else { 4134 value &= TTBCR_N; 4135 } 4136 } 4137 4138 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4139 /* 4140 * With LPAE the TTBCR could result in a change of ASID 4141 * via the TTBCR.A1 bit, so do a TLB flush. 4142 */ 4143 tlb_flush(CPU(cpu)); 4144 } 4145 raw_write(env, ri, value); 4146 } 4147 4148 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4149 uint64_t value) 4150 { 4151 ARMCPU *cpu = env_archcpu(env); 4152 4153 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4154 tlb_flush(CPU(cpu)); 4155 raw_write(env, ri, value); 4156 } 4157 4158 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4159 uint64_t value) 4160 { 4161 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4162 if (cpreg_field_is_64bit(ri) && 4163 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4164 ARMCPU *cpu = env_archcpu(env); 4165 tlb_flush(CPU(cpu)); 4166 } 4167 raw_write(env, ri, value); 4168 } 4169 4170 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4171 uint64_t value) 4172 { 4173 /* 4174 * If we are running with E2&0 regime, then an ASID is active. 4175 * Flush if that might be changing. Note we're not checking 4176 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4177 * holds the active ASID, only checking the field that might. 4178 */ 4179 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4180 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4181 uint16_t mask = ARMMMUIdxBit_E20_2 | 4182 ARMMMUIdxBit_E20_2_PAN | 4183 ARMMMUIdxBit_E20_0; 4184 tlb_flush_by_mmuidx(env_cpu(env), mask); 4185 } 4186 raw_write(env, ri, value); 4187 } 4188 4189 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4190 uint64_t value) 4191 { 4192 ARMCPU *cpu = env_archcpu(env); 4193 CPUState *cs = CPU(cpu); 4194 4195 /* 4196 * A change in VMID to the stage2 page table (Stage2) invalidates 4197 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4198 */ 4199 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4200 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4201 } 4202 raw_write(env, ri, value); 4203 } 4204 4205 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4206 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4207 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4208 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4209 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4210 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4211 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4212 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4213 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4214 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4215 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4216 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4217 offsetof(CPUARMState, cp15.dfar_ns) } }, 4218 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4219 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4220 .access = PL1_RW, .accessfn = access_tvm_trvm, 4221 .fgt = FGT_FAR_EL1, 4222 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4223 .resetvalue = 0, }, 4224 }; 4225 4226 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4227 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4228 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4229 .access = PL1_RW, .accessfn = access_tvm_trvm, 4230 .fgt = FGT_ESR_EL1, 4231 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4232 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4233 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4234 .access = PL1_RW, .accessfn = access_tvm_trvm, 4235 .fgt = FGT_TTBR0_EL1, 4236 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4237 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4238 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4239 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4240 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4241 .access = PL1_RW, .accessfn = access_tvm_trvm, 4242 .fgt = FGT_TTBR1_EL1, 4243 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4244 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4245 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4246 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4247 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4248 .access = PL1_RW, .accessfn = access_tvm_trvm, 4249 .fgt = FGT_TCR_EL1, 4250 .writefn = vmsa_tcr_el12_write, 4251 .raw_writefn = raw_write, 4252 .resetvalue = 0, 4253 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4254 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4255 .access = PL1_RW, .accessfn = access_tvm_trvm, 4256 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4257 .raw_writefn = raw_write, 4258 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4259 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4260 }; 4261 4262 /* 4263 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4264 * qemu tlbs nor adjusting cached masks. 4265 */ 4266 static const ARMCPRegInfo ttbcr2_reginfo = { 4267 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4268 .access = PL1_RW, .accessfn = access_tvm_trvm, 4269 .type = ARM_CP_ALIAS, 4270 .bank_fieldoffsets = { 4271 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4272 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4273 }, 4274 }; 4275 4276 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4277 uint64_t value) 4278 { 4279 env->cp15.c15_ticonfig = value & 0xe7; 4280 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4281 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4282 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4283 } 4284 4285 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4286 uint64_t value) 4287 { 4288 env->cp15.c15_threadid = value & 0xffff; 4289 } 4290 4291 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4292 uint64_t value) 4293 { 4294 /* Wait-for-interrupt (deprecated) */ 4295 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4296 } 4297 4298 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4299 uint64_t value) 4300 { 4301 /* 4302 * On OMAP there are registers indicating the max/min index of dcache lines 4303 * containing a dirty line; cache flush operations have to reset these. 4304 */ 4305 env->cp15.c15_i_max = 0x000; 4306 env->cp15.c15_i_min = 0xff0; 4307 } 4308 4309 static const ARMCPRegInfo omap_cp_reginfo[] = { 4310 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4311 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4312 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4313 .resetvalue = 0, }, 4314 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4315 .access = PL1_RW, .type = ARM_CP_NOP }, 4316 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4317 .access = PL1_RW, 4318 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4319 .writefn = omap_ticonfig_write }, 4320 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4321 .access = PL1_RW, 4322 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4323 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4324 .access = PL1_RW, .resetvalue = 0xff0, 4325 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4326 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4327 .access = PL1_RW, 4328 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4329 .writefn = omap_threadid_write }, 4330 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4331 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4332 .type = ARM_CP_NO_RAW, 4333 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4334 /* 4335 * TODO: Peripheral port remap register: 4336 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4337 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4338 * when MMU is off. 4339 */ 4340 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4341 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4342 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4343 .writefn = omap_cachemaint_write }, 4344 { .name = "C9", .cp = 15, .crn = 9, 4345 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4346 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4347 }; 4348 4349 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4350 uint64_t value) 4351 { 4352 env->cp15.c15_cpar = value & 0x3fff; 4353 } 4354 4355 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4356 { .name = "XSCALE_CPAR", 4357 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4358 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4359 .writefn = xscale_cpar_write, }, 4360 { .name = "XSCALE_AUXCR", 4361 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4362 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4363 .resetvalue = 0, }, 4364 /* 4365 * XScale specific cache-lockdown: since we have no cache we NOP these 4366 * and hope the guest does not really rely on cache behaviour. 4367 */ 4368 { .name = "XSCALE_LOCK_ICACHE_LINE", 4369 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4370 .access = PL1_W, .type = ARM_CP_NOP }, 4371 { .name = "XSCALE_UNLOCK_ICACHE", 4372 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4373 .access = PL1_W, .type = ARM_CP_NOP }, 4374 { .name = "XSCALE_DCACHE_LOCK", 4375 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4376 .access = PL1_RW, .type = ARM_CP_NOP }, 4377 { .name = "XSCALE_UNLOCK_DCACHE", 4378 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4379 .access = PL1_W, .type = ARM_CP_NOP }, 4380 }; 4381 4382 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4383 /* 4384 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4385 * implementation of this implementation-defined space. 4386 * Ideally this should eventually disappear in favour of actually 4387 * implementing the correct behaviour for all cores. 4388 */ 4389 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4390 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4391 .access = PL1_RW, 4392 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4393 .resetvalue = 0 }, 4394 }; 4395 4396 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4397 /* Cache status: RAZ because we have no cache so it's always clean */ 4398 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4399 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4400 .resetvalue = 0 }, 4401 }; 4402 4403 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4404 /* We never have a block transfer operation in progress */ 4405 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4406 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4407 .resetvalue = 0 }, 4408 /* The cache ops themselves: these all NOP for QEMU */ 4409 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4410 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4411 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4412 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4413 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4414 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4415 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4416 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4417 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4418 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4419 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4420 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4421 }; 4422 4423 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4424 /* 4425 * The cache test-and-clean instructions always return (1 << 30) 4426 * to indicate that there are no dirty cache lines. 4427 */ 4428 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4429 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4430 .resetvalue = (1 << 30) }, 4431 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4432 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4433 .resetvalue = (1 << 30) }, 4434 }; 4435 4436 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4437 /* Ignore ReadBuffer accesses */ 4438 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4439 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4440 .access = PL1_RW, .resetvalue = 0, 4441 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4442 }; 4443 4444 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4445 { 4446 unsigned int cur_el = arm_current_el(env); 4447 4448 if (arm_is_el2_enabled(env) && cur_el == 1) { 4449 return env->cp15.vpidr_el2; 4450 } 4451 return raw_read(env, ri); 4452 } 4453 4454 static uint64_t mpidr_read_val(CPUARMState *env) 4455 { 4456 ARMCPU *cpu = env_archcpu(env); 4457 uint64_t mpidr = cpu->mp_affinity; 4458 4459 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4460 mpidr |= (1U << 31); 4461 /* 4462 * Cores which are uniprocessor (non-coherent) 4463 * but still implement the MP extensions set 4464 * bit 30. (For instance, Cortex-R5). 4465 */ 4466 if (cpu->mp_is_up) { 4467 mpidr |= (1u << 30); 4468 } 4469 } 4470 return mpidr; 4471 } 4472 4473 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4474 { 4475 unsigned int cur_el = arm_current_el(env); 4476 4477 if (arm_is_el2_enabled(env) && cur_el == 1) { 4478 return env->cp15.vmpidr_el2; 4479 } 4480 return mpidr_read_val(env); 4481 } 4482 4483 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4484 /* NOP AMAIR0/1 */ 4485 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4486 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4487 .access = PL1_RW, .accessfn = access_tvm_trvm, 4488 .fgt = FGT_AMAIR_EL1, 4489 .type = ARM_CP_CONST, .resetvalue = 0 }, 4490 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4491 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4492 .access = PL1_RW, .accessfn = access_tvm_trvm, 4493 .type = ARM_CP_CONST, .resetvalue = 0 }, 4494 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4495 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4496 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4497 offsetof(CPUARMState, cp15.par_ns)} }, 4498 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4499 .access = PL1_RW, .accessfn = access_tvm_trvm, 4500 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4501 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4502 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4503 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4504 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4505 .access = PL1_RW, .accessfn = access_tvm_trvm, 4506 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4507 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4508 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4509 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4510 }; 4511 4512 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4513 { 4514 return vfp_get_fpcr(env); 4515 } 4516 4517 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4518 uint64_t value) 4519 { 4520 vfp_set_fpcr(env, value); 4521 } 4522 4523 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4524 { 4525 return vfp_get_fpsr(env); 4526 } 4527 4528 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4529 uint64_t value) 4530 { 4531 vfp_set_fpsr(env, value); 4532 } 4533 4534 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4535 bool isread) 4536 { 4537 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4538 return CP_ACCESS_TRAP; 4539 } 4540 return CP_ACCESS_OK; 4541 } 4542 4543 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4544 uint64_t value) 4545 { 4546 env->daif = value & PSTATE_DAIF; 4547 } 4548 4549 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4550 { 4551 return env->pstate & PSTATE_PAN; 4552 } 4553 4554 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4555 uint64_t value) 4556 { 4557 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4558 } 4559 4560 static const ARMCPRegInfo pan_reginfo = { 4561 .name = "PAN", .state = ARM_CP_STATE_AA64, 4562 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4563 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4564 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4565 }; 4566 4567 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4568 { 4569 return env->pstate & PSTATE_UAO; 4570 } 4571 4572 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4573 uint64_t value) 4574 { 4575 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4576 } 4577 4578 static const ARMCPRegInfo uao_reginfo = { 4579 .name = "UAO", .state = ARM_CP_STATE_AA64, 4580 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4581 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4582 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4583 }; 4584 4585 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4586 { 4587 return env->pstate & PSTATE_DIT; 4588 } 4589 4590 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4591 uint64_t value) 4592 { 4593 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4594 } 4595 4596 static const ARMCPRegInfo dit_reginfo = { 4597 .name = "DIT", .state = ARM_CP_STATE_AA64, 4598 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4599 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4600 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4601 }; 4602 4603 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4604 { 4605 return env->pstate & PSTATE_SSBS; 4606 } 4607 4608 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4609 uint64_t value) 4610 { 4611 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4612 } 4613 4614 static const ARMCPRegInfo ssbs_reginfo = { 4615 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4616 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4617 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4618 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4619 }; 4620 4621 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4622 const ARMCPRegInfo *ri, 4623 bool isread) 4624 { 4625 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4626 switch (arm_current_el(env)) { 4627 case 0: 4628 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4629 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4630 return CP_ACCESS_TRAP; 4631 } 4632 /* fall through */ 4633 case 1: 4634 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4635 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4636 return CP_ACCESS_TRAP_EL2; 4637 } 4638 break; 4639 } 4640 return CP_ACCESS_OK; 4641 } 4642 4643 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4644 { 4645 /* Cache invalidate/clean to Point of Unification... */ 4646 switch (arm_current_el(env)) { 4647 case 0: 4648 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4649 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4650 return CP_ACCESS_TRAP; 4651 } 4652 /* fall through */ 4653 case 1: 4654 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4655 if (arm_hcr_el2_eff(env) & hcrflags) { 4656 return CP_ACCESS_TRAP_EL2; 4657 } 4658 break; 4659 } 4660 return CP_ACCESS_OK; 4661 } 4662 4663 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4664 bool isread) 4665 { 4666 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4667 } 4668 4669 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4670 bool isread) 4671 { 4672 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4673 } 4674 4675 /* 4676 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4677 * Page D4-1736 (DDI0487A.b) 4678 */ 4679 4680 static int vae1_tlbmask(CPUARMState *env) 4681 { 4682 uint64_t hcr = arm_hcr_el2_eff(env); 4683 uint16_t mask; 4684 4685 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4686 mask = ARMMMUIdxBit_E20_2 | 4687 ARMMMUIdxBit_E20_2_PAN | 4688 ARMMMUIdxBit_E20_0; 4689 } else { 4690 mask = ARMMMUIdxBit_E10_1 | 4691 ARMMMUIdxBit_E10_1_PAN | 4692 ARMMMUIdxBit_E10_0; 4693 } 4694 return mask; 4695 } 4696 4697 static int vae2_tlbmask(CPUARMState *env) 4698 { 4699 uint64_t hcr = arm_hcr_el2_eff(env); 4700 uint16_t mask; 4701 4702 if (hcr & HCR_E2H) { 4703 mask = ARMMMUIdxBit_E20_2 | 4704 ARMMMUIdxBit_E20_2_PAN | 4705 ARMMMUIdxBit_E20_0; 4706 } else { 4707 mask = ARMMMUIdxBit_E2; 4708 } 4709 return mask; 4710 } 4711 4712 /* Return 56 if TBI is enabled, 64 otherwise. */ 4713 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4714 uint64_t addr) 4715 { 4716 uint64_t tcr = regime_tcr(env, mmu_idx); 4717 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4718 int select = extract64(addr, 55, 1); 4719 4720 return (tbi >> select) & 1 ? 56 : 64; 4721 } 4722 4723 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4724 { 4725 uint64_t hcr = arm_hcr_el2_eff(env); 4726 ARMMMUIdx mmu_idx; 4727 4728 /* Only the regime of the mmu_idx below is significant. */ 4729 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4730 mmu_idx = ARMMMUIdx_E20_0; 4731 } else { 4732 mmu_idx = ARMMMUIdx_E10_0; 4733 } 4734 4735 return tlbbits_for_regime(env, mmu_idx, addr); 4736 } 4737 4738 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4739 { 4740 uint64_t hcr = arm_hcr_el2_eff(env); 4741 ARMMMUIdx mmu_idx; 4742 4743 /* 4744 * Only the regime of the mmu_idx below is significant. 4745 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4746 * only has one. 4747 */ 4748 if (hcr & HCR_E2H) { 4749 mmu_idx = ARMMMUIdx_E20_2; 4750 } else { 4751 mmu_idx = ARMMMUIdx_E2; 4752 } 4753 4754 return tlbbits_for_regime(env, mmu_idx, addr); 4755 } 4756 4757 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4758 uint64_t value) 4759 { 4760 CPUState *cs = env_cpu(env); 4761 int mask = vae1_tlbmask(env); 4762 4763 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4764 } 4765 4766 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4767 uint64_t value) 4768 { 4769 CPUState *cs = env_cpu(env); 4770 int mask = vae1_tlbmask(env); 4771 4772 if (tlb_force_broadcast(env)) { 4773 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4774 } else { 4775 tlb_flush_by_mmuidx(cs, mask); 4776 } 4777 } 4778 4779 static int e2_tlbmask(CPUARMState *env) 4780 { 4781 return (ARMMMUIdxBit_E20_0 | 4782 ARMMMUIdxBit_E20_2 | 4783 ARMMMUIdxBit_E20_2_PAN | 4784 ARMMMUIdxBit_E2); 4785 } 4786 4787 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4788 uint64_t value) 4789 { 4790 CPUState *cs = env_cpu(env); 4791 int mask = alle1_tlbmask(env); 4792 4793 tlb_flush_by_mmuidx(cs, mask); 4794 } 4795 4796 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4797 uint64_t value) 4798 { 4799 CPUState *cs = env_cpu(env); 4800 int mask = e2_tlbmask(env); 4801 4802 tlb_flush_by_mmuidx(cs, mask); 4803 } 4804 4805 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4806 uint64_t value) 4807 { 4808 ARMCPU *cpu = env_archcpu(env); 4809 CPUState *cs = CPU(cpu); 4810 4811 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4812 } 4813 4814 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4815 uint64_t value) 4816 { 4817 CPUState *cs = env_cpu(env); 4818 int mask = alle1_tlbmask(env); 4819 4820 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4821 } 4822 4823 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4824 uint64_t value) 4825 { 4826 CPUState *cs = env_cpu(env); 4827 int mask = e2_tlbmask(env); 4828 4829 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4830 } 4831 4832 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4833 uint64_t value) 4834 { 4835 CPUState *cs = env_cpu(env); 4836 4837 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4838 } 4839 4840 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4841 uint64_t value) 4842 { 4843 /* 4844 * Invalidate by VA, EL2 4845 * Currently handles both VAE2 and VALE2, since we don't support 4846 * flush-last-level-only. 4847 */ 4848 CPUState *cs = env_cpu(env); 4849 int mask = vae2_tlbmask(env); 4850 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4851 int bits = vae2_tlbbits(env, pageaddr); 4852 4853 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4854 } 4855 4856 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4857 uint64_t value) 4858 { 4859 /* 4860 * Invalidate by VA, EL3 4861 * Currently handles both VAE3 and VALE3, since we don't support 4862 * flush-last-level-only. 4863 */ 4864 ARMCPU *cpu = env_archcpu(env); 4865 CPUState *cs = CPU(cpu); 4866 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4867 4868 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4869 } 4870 4871 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4872 uint64_t value) 4873 { 4874 CPUState *cs = env_cpu(env); 4875 int mask = vae1_tlbmask(env); 4876 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4877 int bits = vae1_tlbbits(env, pageaddr); 4878 4879 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4880 } 4881 4882 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4883 uint64_t value) 4884 { 4885 /* 4886 * Invalidate by VA, EL1&0 (AArch64 version). 4887 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4888 * since we don't support flush-for-specific-ASID-only or 4889 * flush-last-level-only. 4890 */ 4891 CPUState *cs = env_cpu(env); 4892 int mask = vae1_tlbmask(env); 4893 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4894 int bits = vae1_tlbbits(env, pageaddr); 4895 4896 if (tlb_force_broadcast(env)) { 4897 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4898 } else { 4899 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4900 } 4901 } 4902 4903 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4904 uint64_t value) 4905 { 4906 CPUState *cs = env_cpu(env); 4907 int mask = vae2_tlbmask(env); 4908 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4909 int bits = vae2_tlbbits(env, pageaddr); 4910 4911 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4912 } 4913 4914 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4915 uint64_t value) 4916 { 4917 CPUState *cs = env_cpu(env); 4918 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4919 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4920 4921 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4922 ARMMMUIdxBit_E3, bits); 4923 } 4924 4925 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4926 { 4927 /* 4928 * The MSB of value is the NS field, which only applies if SEL2 4929 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4930 */ 4931 return (value >= 0 4932 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4933 && arm_is_secure_below_el3(env) 4934 ? ARMMMUIdxBit_Stage2_S 4935 : ARMMMUIdxBit_Stage2); 4936 } 4937 4938 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4939 uint64_t value) 4940 { 4941 CPUState *cs = env_cpu(env); 4942 int mask = ipas2e1_tlbmask(env, value); 4943 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4944 4945 if (tlb_force_broadcast(env)) { 4946 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4947 } else { 4948 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4949 } 4950 } 4951 4952 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4953 uint64_t value) 4954 { 4955 CPUState *cs = env_cpu(env); 4956 int mask = ipas2e1_tlbmask(env, value); 4957 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4958 4959 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4960 } 4961 4962 #ifdef TARGET_AARCH64 4963 typedef struct { 4964 uint64_t base; 4965 uint64_t length; 4966 } TLBIRange; 4967 4968 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4969 { 4970 /* 4971 * Note that the TLBI range TG field encoding differs from both 4972 * TG0 and TG1 encodings. 4973 */ 4974 switch (tg) { 4975 case 1: 4976 return Gran4K; 4977 case 2: 4978 return Gran16K; 4979 case 3: 4980 return Gran64K; 4981 default: 4982 return GranInvalid; 4983 } 4984 } 4985 4986 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4987 uint64_t value) 4988 { 4989 unsigned int page_size_granule, page_shift, num, scale, exponent; 4990 /* Extract one bit to represent the va selector in use. */ 4991 uint64_t select = sextract64(value, 36, 1); 4992 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 4993 TLBIRange ret = { }; 4994 ARMGranuleSize gran; 4995 4996 page_size_granule = extract64(value, 46, 2); 4997 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4998 4999 /* The granule encoded in value must match the granule in use. */ 5000 if (gran != param.gran) { 5001 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5002 page_size_granule); 5003 return ret; 5004 } 5005 5006 page_shift = arm_granule_bits(gran); 5007 num = extract64(value, 39, 5); 5008 scale = extract64(value, 44, 2); 5009 exponent = (5 * scale) + 1; 5010 5011 ret.length = (num + 1) << (exponent + page_shift); 5012 5013 if (param.select) { 5014 ret.base = sextract64(value, 0, 37); 5015 } else { 5016 ret.base = extract64(value, 0, 37); 5017 } 5018 if (param.ds) { 5019 /* 5020 * With DS=1, BaseADDR is always shifted 16 so that it is able 5021 * to address all 52 va bits. The input address is perforce 5022 * aligned on a 64k boundary regardless of translation granule. 5023 */ 5024 page_shift = 16; 5025 } 5026 ret.base <<= page_shift; 5027 5028 return ret; 5029 } 5030 5031 static void do_rvae_write(CPUARMState *env, uint64_t value, 5032 int idxmap, bool synced) 5033 { 5034 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5035 TLBIRange range; 5036 int bits; 5037 5038 range = tlbi_aa64_get_range(env, one_idx, value); 5039 bits = tlbbits_for_regime(env, one_idx, range.base); 5040 5041 if (synced) { 5042 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5043 range.base, 5044 range.length, 5045 idxmap, 5046 bits); 5047 } else { 5048 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5049 range.length, idxmap, bits); 5050 } 5051 } 5052 5053 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5054 const ARMCPRegInfo *ri, 5055 uint64_t value) 5056 { 5057 /* 5058 * Invalidate by VA range, EL1&0. 5059 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5060 * since we don't support flush-for-specific-ASID-only or 5061 * flush-last-level-only. 5062 */ 5063 5064 do_rvae_write(env, value, vae1_tlbmask(env), 5065 tlb_force_broadcast(env)); 5066 } 5067 5068 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5069 const ARMCPRegInfo *ri, 5070 uint64_t value) 5071 { 5072 /* 5073 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5074 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5075 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5076 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5077 * shareable specific flushes. 5078 */ 5079 5080 do_rvae_write(env, value, vae1_tlbmask(env), true); 5081 } 5082 5083 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5084 const ARMCPRegInfo *ri, 5085 uint64_t value) 5086 { 5087 /* 5088 * Invalidate by VA range, EL2. 5089 * Currently handles all of RVAE2 and RVALE2, 5090 * since we don't support flush-for-specific-ASID-only or 5091 * flush-last-level-only. 5092 */ 5093 5094 do_rvae_write(env, value, vae2_tlbmask(env), 5095 tlb_force_broadcast(env)); 5096 5097 5098 } 5099 5100 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5101 const ARMCPRegInfo *ri, 5102 uint64_t value) 5103 { 5104 /* 5105 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5106 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5107 * since we don't support flush-for-specific-ASID-only, 5108 * flush-last-level-only or inner/outer shareable specific flushes. 5109 */ 5110 5111 do_rvae_write(env, value, vae2_tlbmask(env), true); 5112 5113 } 5114 5115 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5116 const ARMCPRegInfo *ri, 5117 uint64_t value) 5118 { 5119 /* 5120 * Invalidate by VA range, EL3. 5121 * Currently handles all of RVAE3 and RVALE3, 5122 * since we don't support flush-for-specific-ASID-only or 5123 * flush-last-level-only. 5124 */ 5125 5126 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5127 } 5128 5129 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5130 const ARMCPRegInfo *ri, 5131 uint64_t value) 5132 { 5133 /* 5134 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5135 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5136 * since we don't support flush-for-specific-ASID-only, 5137 * flush-last-level-only or inner/outer specific flushes. 5138 */ 5139 5140 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5141 } 5142 5143 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5144 uint64_t value) 5145 { 5146 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5147 tlb_force_broadcast(env)); 5148 } 5149 5150 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5151 const ARMCPRegInfo *ri, 5152 uint64_t value) 5153 { 5154 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5155 } 5156 #endif 5157 5158 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5159 bool isread) 5160 { 5161 int cur_el = arm_current_el(env); 5162 5163 if (cur_el < 2) { 5164 uint64_t hcr = arm_hcr_el2_eff(env); 5165 5166 if (cur_el == 0) { 5167 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5168 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5169 return CP_ACCESS_TRAP_EL2; 5170 } 5171 } else { 5172 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5173 return CP_ACCESS_TRAP; 5174 } 5175 if (hcr & HCR_TDZ) { 5176 return CP_ACCESS_TRAP_EL2; 5177 } 5178 } 5179 } else if (hcr & HCR_TDZ) { 5180 return CP_ACCESS_TRAP_EL2; 5181 } 5182 } 5183 return CP_ACCESS_OK; 5184 } 5185 5186 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5187 { 5188 ARMCPU *cpu = env_archcpu(env); 5189 int dzp_bit = 1 << 4; 5190 5191 /* DZP indicates whether DC ZVA access is allowed */ 5192 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5193 dzp_bit = 0; 5194 } 5195 return cpu->dcz_blocksize | dzp_bit; 5196 } 5197 5198 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5199 bool isread) 5200 { 5201 if (!(env->pstate & PSTATE_SP)) { 5202 /* 5203 * Access to SP_EL0 is undefined if it's being used as 5204 * the stack pointer. 5205 */ 5206 return CP_ACCESS_TRAP_UNCATEGORIZED; 5207 } 5208 return CP_ACCESS_OK; 5209 } 5210 5211 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5212 { 5213 return env->pstate & PSTATE_SP; 5214 } 5215 5216 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5217 { 5218 update_spsel(env, val); 5219 } 5220 5221 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5222 uint64_t value) 5223 { 5224 ARMCPU *cpu = env_archcpu(env); 5225 5226 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5227 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5228 value &= ~SCTLR_M; 5229 } 5230 5231 /* ??? Lots of these bits are not implemented. */ 5232 5233 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5234 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5235 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5236 } else { 5237 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5238 SCTLR_ATA0 | SCTLR_ATA); 5239 } 5240 } 5241 5242 if (raw_read(env, ri) == value) { 5243 /* 5244 * Skip the TLB flush if nothing actually changed; Linux likes 5245 * to do a lot of pointless SCTLR writes. 5246 */ 5247 return; 5248 } 5249 5250 raw_write(env, ri, value); 5251 5252 /* This may enable/disable the MMU, so do a TLB flush. */ 5253 tlb_flush(CPU(cpu)); 5254 5255 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5256 /* 5257 * Normally we would always end the TB on an SCTLR write; see the 5258 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5259 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5260 * of hflags from the translator, so do it here. 5261 */ 5262 arm_rebuild_hflags(env); 5263 } 5264 } 5265 5266 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5267 uint64_t value) 5268 { 5269 /* 5270 * Some MDCR_EL3 bits affect whether PMU counters are running: 5271 * if we are trying to change any of those then we must 5272 * bracket this update with PMU start/finish calls. 5273 */ 5274 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5275 5276 if (pmu_op) { 5277 pmu_op_start(env); 5278 } 5279 env->cp15.mdcr_el3 = value; 5280 if (pmu_op) { 5281 pmu_op_finish(env); 5282 } 5283 } 5284 5285 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5286 uint64_t value) 5287 { 5288 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5289 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5290 } 5291 5292 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5293 uint64_t value) 5294 { 5295 /* 5296 * Some MDCR_EL2 bits affect whether PMU counters are running: 5297 * if we are trying to change any of those then we must 5298 * bracket this update with PMU start/finish calls. 5299 */ 5300 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5301 5302 if (pmu_op) { 5303 pmu_op_start(env); 5304 } 5305 env->cp15.mdcr_el2 = value; 5306 if (pmu_op) { 5307 pmu_op_finish(env); 5308 } 5309 } 5310 5311 #ifdef CONFIG_USER_ONLY 5312 /* 5313 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5314 * code to get around W^X restrictions, where one region is writable and the 5315 * other is executable. 5316 * 5317 * Since the executable region is never written to we cannot detect code 5318 * changes when running in user mode, and rely on the emulated JIT telling us 5319 * that the code has changed by executing this instruction. 5320 */ 5321 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5322 uint64_t value) 5323 { 5324 uint64_t icache_line_mask, start_address, end_address; 5325 const ARMCPU *cpu; 5326 5327 cpu = env_archcpu(env); 5328 5329 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5330 start_address = value & ~icache_line_mask; 5331 end_address = value | icache_line_mask; 5332 5333 mmap_lock(); 5334 5335 tb_invalidate_phys_range(start_address, end_address); 5336 5337 mmap_unlock(); 5338 } 5339 #endif 5340 5341 static const ARMCPRegInfo v8_cp_reginfo[] = { 5342 /* 5343 * Minimal set of EL0-visible registers. This will need to be expanded 5344 * significantly for system emulation of AArch64 CPUs. 5345 */ 5346 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5347 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5348 .access = PL0_RW, .type = ARM_CP_NZCV }, 5349 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5350 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5351 .type = ARM_CP_NO_RAW, 5352 .access = PL0_RW, .accessfn = aa64_daif_access, 5353 .fieldoffset = offsetof(CPUARMState, daif), 5354 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5355 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5356 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5357 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5358 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5359 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5360 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5361 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5362 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5363 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5364 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5365 .access = PL0_R, .type = ARM_CP_NO_RAW, 5366 .fgt = FGT_DCZID_EL0, 5367 .readfn = aa64_dczid_read }, 5368 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5369 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5370 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5371 #ifndef CONFIG_USER_ONLY 5372 /* Avoid overhead of an access check that always passes in user-mode */ 5373 .accessfn = aa64_zva_access, 5374 .fgt = FGT_DCZVA, 5375 #endif 5376 }, 5377 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5378 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5379 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5380 /* 5381 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5382 * don't emulate caches. 5383 */ 5384 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5385 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5386 .access = PL1_W, .type = ARM_CP_NOP, 5387 .fgt = FGT_ICIALLUIS, 5388 .accessfn = access_ticab }, 5389 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5390 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5391 .access = PL1_W, .type = ARM_CP_NOP, 5392 .fgt = FGT_ICIALLU, 5393 .accessfn = access_tocu }, 5394 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5395 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5396 .access = PL0_W, 5397 .fgt = FGT_ICIVAU, 5398 .accessfn = access_tocu, 5399 #ifdef CONFIG_USER_ONLY 5400 .type = ARM_CP_NO_RAW, 5401 .writefn = ic_ivau_write 5402 #else 5403 .type = ARM_CP_NOP 5404 #endif 5405 }, 5406 /* Cache ops: all NOPs since we don't emulate caches */ 5407 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5408 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5409 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5410 .fgt = FGT_DCIVAC, 5411 .type = ARM_CP_NOP }, 5412 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5413 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5414 .fgt = FGT_DCISW, 5415 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5416 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5417 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5418 .access = PL0_W, .type = ARM_CP_NOP, 5419 .fgt = FGT_DCCVAC, 5420 .accessfn = aa64_cacheop_poc_access }, 5421 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5422 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5423 .fgt = FGT_DCCSW, 5424 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5425 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5426 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5427 .access = PL0_W, .type = ARM_CP_NOP, 5428 .fgt = FGT_DCCVAU, 5429 .accessfn = access_tocu }, 5430 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5431 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5432 .access = PL0_W, .type = ARM_CP_NOP, 5433 .fgt = FGT_DCCIVAC, 5434 .accessfn = aa64_cacheop_poc_access }, 5435 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5436 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5437 .fgt = FGT_DCCISW, 5438 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5439 /* TLBI operations */ 5440 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5441 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5442 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5443 .fgt = FGT_TLBIVMALLE1IS, 5444 .writefn = tlbi_aa64_vmalle1is_write }, 5445 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5446 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5447 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5448 .fgt = FGT_TLBIVAE1IS, 5449 .writefn = tlbi_aa64_vae1is_write }, 5450 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5451 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5452 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5453 .fgt = FGT_TLBIASIDE1IS, 5454 .writefn = tlbi_aa64_vmalle1is_write }, 5455 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5456 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5457 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5458 .fgt = FGT_TLBIVAAE1IS, 5459 .writefn = tlbi_aa64_vae1is_write }, 5460 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5461 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5462 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5463 .fgt = FGT_TLBIVALE1IS, 5464 .writefn = tlbi_aa64_vae1is_write }, 5465 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5466 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5467 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5468 .fgt = FGT_TLBIVAALE1IS, 5469 .writefn = tlbi_aa64_vae1is_write }, 5470 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5471 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5472 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5473 .fgt = FGT_TLBIVMALLE1, 5474 .writefn = tlbi_aa64_vmalle1_write }, 5475 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5476 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5477 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5478 .fgt = FGT_TLBIVAE1, 5479 .writefn = tlbi_aa64_vae1_write }, 5480 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5481 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5482 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5483 .fgt = FGT_TLBIASIDE1, 5484 .writefn = tlbi_aa64_vmalle1_write }, 5485 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5486 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5487 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5488 .fgt = FGT_TLBIVAAE1, 5489 .writefn = tlbi_aa64_vae1_write }, 5490 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5491 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5492 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5493 .fgt = FGT_TLBIVALE1, 5494 .writefn = tlbi_aa64_vae1_write }, 5495 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5496 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5497 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5498 .fgt = FGT_TLBIVAALE1, 5499 .writefn = tlbi_aa64_vae1_write }, 5500 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5501 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5502 .access = PL2_W, .type = ARM_CP_NO_RAW, 5503 .writefn = tlbi_aa64_ipas2e1is_write }, 5504 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5505 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5506 .access = PL2_W, .type = ARM_CP_NO_RAW, 5507 .writefn = tlbi_aa64_ipas2e1is_write }, 5508 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5509 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5510 .access = PL2_W, .type = ARM_CP_NO_RAW, 5511 .writefn = tlbi_aa64_alle1is_write }, 5512 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5513 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5514 .access = PL2_W, .type = ARM_CP_NO_RAW, 5515 .writefn = tlbi_aa64_alle1is_write }, 5516 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5517 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5518 .access = PL2_W, .type = ARM_CP_NO_RAW, 5519 .writefn = tlbi_aa64_ipas2e1_write }, 5520 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5521 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5522 .access = PL2_W, .type = ARM_CP_NO_RAW, 5523 .writefn = tlbi_aa64_ipas2e1_write }, 5524 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5525 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5526 .access = PL2_W, .type = ARM_CP_NO_RAW, 5527 .writefn = tlbi_aa64_alle1_write }, 5528 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5529 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5530 .access = PL2_W, .type = ARM_CP_NO_RAW, 5531 .writefn = tlbi_aa64_alle1is_write }, 5532 #ifndef CONFIG_USER_ONLY 5533 /* 64 bit address translation operations */ 5534 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5535 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5536 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5537 .fgt = FGT_ATS1E1R, 5538 .accessfn = at_e012_access, .writefn = ats_write64 }, 5539 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5540 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5541 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5542 .fgt = FGT_ATS1E1W, 5543 .accessfn = at_e012_access, .writefn = ats_write64 }, 5544 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5545 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5546 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5547 .fgt = FGT_ATS1E0R, 5548 .accessfn = at_e012_access, .writefn = ats_write64 }, 5549 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5550 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5551 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5552 .fgt = FGT_ATS1E0W, 5553 .accessfn = at_e012_access, .writefn = ats_write64 }, 5554 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5555 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5556 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5557 .accessfn = at_e012_access, .writefn = ats_write64 }, 5558 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5559 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5560 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5561 .accessfn = at_e012_access, .writefn = ats_write64 }, 5562 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5563 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5564 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5565 .accessfn = at_e012_access, .writefn = ats_write64 }, 5566 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5567 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5568 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5569 .accessfn = at_e012_access, .writefn = ats_write64 }, 5570 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5571 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5572 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5573 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5574 .writefn = ats_write64 }, 5575 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5576 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5577 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5578 .writefn = ats_write64 }, 5579 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5580 .type = ARM_CP_ALIAS, 5581 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5582 .access = PL1_RW, .resetvalue = 0, 5583 .fgt = FGT_PAR_EL1, 5584 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5585 .writefn = par_write }, 5586 #endif 5587 /* TLB invalidate last level of translation table walk */ 5588 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5589 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5590 .writefn = tlbimva_is_write }, 5591 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5592 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5593 .writefn = tlbimvaa_is_write }, 5594 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5595 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5596 .writefn = tlbimva_write }, 5597 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5598 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5599 .writefn = tlbimvaa_write }, 5600 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5601 .type = ARM_CP_NO_RAW, .access = PL2_W, 5602 .writefn = tlbimva_hyp_write }, 5603 { .name = "TLBIMVALHIS", 5604 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5605 .type = ARM_CP_NO_RAW, .access = PL2_W, 5606 .writefn = tlbimva_hyp_is_write }, 5607 { .name = "TLBIIPAS2", 5608 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5609 .type = ARM_CP_NO_RAW, .access = PL2_W, 5610 .writefn = tlbiipas2_hyp_write }, 5611 { .name = "TLBIIPAS2IS", 5612 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5613 .type = ARM_CP_NO_RAW, .access = PL2_W, 5614 .writefn = tlbiipas2is_hyp_write }, 5615 { .name = "TLBIIPAS2L", 5616 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5617 .type = ARM_CP_NO_RAW, .access = PL2_W, 5618 .writefn = tlbiipas2_hyp_write }, 5619 { .name = "TLBIIPAS2LIS", 5620 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5621 .type = ARM_CP_NO_RAW, .access = PL2_W, 5622 .writefn = tlbiipas2is_hyp_write }, 5623 /* 32 bit cache operations */ 5624 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5625 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5626 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5627 .type = ARM_CP_NOP, .access = PL1_W }, 5628 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5629 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5630 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5631 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5632 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5633 .type = ARM_CP_NOP, .access = PL1_W }, 5634 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5635 .type = ARM_CP_NOP, .access = PL1_W }, 5636 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5637 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5638 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5639 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5640 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5641 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5642 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5643 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5644 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5645 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5646 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5647 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5648 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5649 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5650 /* MMU Domain access control / MPU write buffer control */ 5651 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5652 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5653 .writefn = dacr_write, .raw_writefn = raw_write, 5654 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5655 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5656 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5657 .type = ARM_CP_ALIAS, 5658 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5659 .access = PL1_RW, 5660 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5661 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5662 .type = ARM_CP_ALIAS, 5663 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5664 .access = PL1_RW, 5665 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5666 /* 5667 * We rely on the access checks not allowing the guest to write to the 5668 * state field when SPSel indicates that it's being used as the stack 5669 * pointer. 5670 */ 5671 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5672 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5673 .access = PL1_RW, .accessfn = sp_el0_access, 5674 .type = ARM_CP_ALIAS, 5675 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5676 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5677 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5678 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5679 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5680 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5681 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5682 .type = ARM_CP_NO_RAW, 5683 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5684 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5685 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5686 .access = PL2_RW, 5687 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5688 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5689 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5690 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5691 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5692 .writefn = dacr_write, .raw_writefn = raw_write, 5693 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5694 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5695 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5696 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5697 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5698 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5699 .type = ARM_CP_ALIAS, 5700 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5701 .access = PL2_RW, 5702 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5703 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5704 .type = ARM_CP_ALIAS, 5705 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5706 .access = PL2_RW, 5707 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5708 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5709 .type = ARM_CP_ALIAS, 5710 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5711 .access = PL2_RW, 5712 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5713 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5714 .type = ARM_CP_ALIAS, 5715 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5716 .access = PL2_RW, 5717 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5718 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5719 .type = ARM_CP_IO, 5720 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5721 .resetvalue = 0, 5722 .access = PL3_RW, 5723 .writefn = mdcr_el3_write, 5724 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5725 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5726 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5727 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5728 .writefn = sdcr_write, 5729 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5730 }; 5731 5732 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5733 { 5734 ARMCPU *cpu = env_archcpu(env); 5735 5736 if (arm_feature(env, ARM_FEATURE_V8)) { 5737 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5738 } else { 5739 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5740 } 5741 5742 if (arm_feature(env, ARM_FEATURE_EL3)) { 5743 valid_mask &= ~HCR_HCD; 5744 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5745 /* 5746 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5747 * However, if we're using the SMC PSCI conduit then QEMU is 5748 * effectively acting like EL3 firmware and so the guest at 5749 * EL2 should retain the ability to prevent EL1 from being 5750 * able to make SMC calls into the ersatz firmware, so in 5751 * that case HCR.TSC should be read/write. 5752 */ 5753 valid_mask &= ~HCR_TSC; 5754 } 5755 5756 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5757 if (cpu_isar_feature(aa64_vh, cpu)) { 5758 valid_mask |= HCR_E2H; 5759 } 5760 if (cpu_isar_feature(aa64_ras, cpu)) { 5761 valid_mask |= HCR_TERR | HCR_TEA; 5762 } 5763 if (cpu_isar_feature(aa64_lor, cpu)) { 5764 valid_mask |= HCR_TLOR; 5765 } 5766 if (cpu_isar_feature(aa64_pauth, cpu)) { 5767 valid_mask |= HCR_API | HCR_APK; 5768 } 5769 if (cpu_isar_feature(aa64_mte, cpu)) { 5770 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5771 } 5772 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5773 valid_mask |= HCR_ENSCXT; 5774 } 5775 if (cpu_isar_feature(aa64_fwb, cpu)) { 5776 valid_mask |= HCR_FWB; 5777 } 5778 if (cpu_isar_feature(aa64_rme, cpu)) { 5779 valid_mask |= HCR_GPF; 5780 } 5781 } 5782 5783 if (cpu_isar_feature(any_evt, cpu)) { 5784 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5785 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5786 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5787 } 5788 5789 /* Clear RES0 bits. */ 5790 value &= valid_mask; 5791 5792 /* 5793 * These bits change the MMU setup: 5794 * HCR_VM enables stage 2 translation 5795 * HCR_PTW forbids certain page-table setups 5796 * HCR_DC disables stage1 and enables stage2 translation 5797 * HCR_DCT enables tagging on (disabled) stage1 translation 5798 * HCR_FWB changes the interpretation of stage2 descriptor bits 5799 */ 5800 if ((env->cp15.hcr_el2 ^ value) & 5801 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5802 tlb_flush(CPU(cpu)); 5803 } 5804 env->cp15.hcr_el2 = value; 5805 5806 /* 5807 * Updates to VI and VF require us to update the status of 5808 * virtual interrupts, which are the logical OR of these bits 5809 * and the state of the input lines from the GIC. (This requires 5810 * that we have the iothread lock, which is done by marking the 5811 * reginfo structs as ARM_CP_IO.) 5812 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5813 * possible for it to be taken immediately, because VIRQ and 5814 * VFIQ are masked unless running at EL0 or EL1, and HCR 5815 * can only be written at EL2. 5816 */ 5817 g_assert(qemu_mutex_iothread_locked()); 5818 arm_cpu_update_virq(cpu); 5819 arm_cpu_update_vfiq(cpu); 5820 arm_cpu_update_vserr(cpu); 5821 } 5822 5823 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5824 { 5825 do_hcr_write(env, value, 0); 5826 } 5827 5828 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5829 uint64_t value) 5830 { 5831 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5832 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5833 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5834 } 5835 5836 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5837 uint64_t value) 5838 { 5839 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5840 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5841 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5842 } 5843 5844 /* 5845 * Return the effective value of HCR_EL2, at the given security state. 5846 * Bits that are not included here: 5847 * RW (read from SCR_EL3.RW as needed) 5848 */ 5849 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5850 { 5851 uint64_t ret = env->cp15.hcr_el2; 5852 5853 assert(space != ARMSS_Root); 5854 5855 if (!arm_is_el2_enabled_secstate(env, space)) { 5856 /* 5857 * "This register has no effect if EL2 is not enabled in the 5858 * current Security state". This is ARMv8.4-SecEL2 speak for 5859 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5860 * 5861 * Prior to that, the language was "In an implementation that 5862 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5863 * as if this field is 0 for all purposes other than a direct 5864 * read or write access of HCR_EL2". With lots of enumeration 5865 * on a per-field basis. In current QEMU, this is condition 5866 * is arm_is_secure_below_el3. 5867 * 5868 * Since the v8.4 language applies to the entire register, and 5869 * appears to be backward compatible, use that. 5870 */ 5871 return 0; 5872 } 5873 5874 /* 5875 * For a cpu that supports both aarch64 and aarch32, we can set bits 5876 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5877 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5878 */ 5879 if (!arm_el_is_aa64(env, 2)) { 5880 uint64_t aa32_valid; 5881 5882 /* 5883 * These bits are up-to-date as of ARMv8.6. 5884 * For HCR, it's easiest to list just the 2 bits that are invalid. 5885 * For HCR2, list those that are valid. 5886 */ 5887 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5888 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5889 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5890 ret &= aa32_valid; 5891 } 5892 5893 if (ret & HCR_TGE) { 5894 /* These bits are up-to-date as of ARMv8.6. */ 5895 if (ret & HCR_E2H) { 5896 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5897 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5898 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5899 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5900 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5901 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5902 } else { 5903 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5904 } 5905 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5906 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5907 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5908 HCR_TLOR); 5909 } 5910 5911 return ret; 5912 } 5913 5914 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5915 { 5916 if (arm_feature(env, ARM_FEATURE_M)) { 5917 return 0; 5918 } 5919 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5920 } 5921 5922 /* 5923 * Corresponds to ARM pseudocode function ELIsInHost(). 5924 */ 5925 bool el_is_in_host(CPUARMState *env, int el) 5926 { 5927 uint64_t mask; 5928 5929 /* 5930 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5931 * Perform the simplest bit tests first, and validate EL2 afterward. 5932 */ 5933 if (el & 1) { 5934 return false; /* EL1 or EL3 */ 5935 } 5936 5937 /* 5938 * Note that hcr_write() checks isar_feature_aa64_vh(), 5939 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5940 */ 5941 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5942 if ((env->cp15.hcr_el2 & mask) != mask) { 5943 return false; 5944 } 5945 5946 /* TGE and/or E2H set: double check those bits are currently legal. */ 5947 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5948 } 5949 5950 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5951 uint64_t value) 5952 { 5953 uint64_t valid_mask = 0; 5954 5955 /* FEAT_MOPS adds MSCEn and MCE2 */ 5956 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5957 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5958 } 5959 5960 /* Clear RES0 bits. */ 5961 env->cp15.hcrx_el2 = value & valid_mask; 5962 } 5963 5964 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5965 bool isread) 5966 { 5967 if (arm_current_el(env) < 3 5968 && arm_feature(env, ARM_FEATURE_EL3) 5969 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5970 return CP_ACCESS_TRAP_EL3; 5971 } 5972 return CP_ACCESS_OK; 5973 } 5974 5975 static const ARMCPRegInfo hcrx_el2_reginfo = { 5976 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5977 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5978 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5979 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5980 }; 5981 5982 /* Return the effective value of HCRX_EL2. */ 5983 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5984 { 5985 /* 5986 * The bits in this register behave as 0 for all purposes other than 5987 * direct reads of the register if SCR_EL3.HXEn is 0. 5988 * If EL2 is not enabled in the current security state, then the 5989 * bit may behave as if 0, or as if 1, depending on the bit. 5990 * For the moment, we treat the EL2-disabled case as taking 5991 * priority over the HXEn-disabled case. This is true for the only 5992 * bit for a feature which we implement where the answer is different 5993 * for the two cases (MSCEn for FEAT_MOPS). 5994 * This may need to be revisited for future bits. 5995 */ 5996 if (!arm_is_el2_enabled(env)) { 5997 uint64_t hcrx = 0; 5998 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5999 /* MSCEn behaves as 1 if EL2 is not enabled */ 6000 hcrx |= HCRX_MSCEN; 6001 } 6002 return hcrx; 6003 } 6004 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6005 return 0; 6006 } 6007 return env->cp15.hcrx_el2; 6008 } 6009 6010 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6011 uint64_t value) 6012 { 6013 /* 6014 * For A-profile AArch32 EL3, if NSACR.CP10 6015 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6016 */ 6017 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6018 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6019 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6020 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6021 } 6022 env->cp15.cptr_el[2] = value; 6023 } 6024 6025 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6026 { 6027 /* 6028 * For A-profile AArch32 EL3, if NSACR.CP10 6029 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6030 */ 6031 uint64_t value = env->cp15.cptr_el[2]; 6032 6033 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6034 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6035 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6036 } 6037 return value; 6038 } 6039 6040 static const ARMCPRegInfo el2_cp_reginfo[] = { 6041 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6042 .type = ARM_CP_IO, 6043 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6044 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6045 .writefn = hcr_write, .raw_writefn = raw_write }, 6046 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6047 .type = ARM_CP_ALIAS | ARM_CP_IO, 6048 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6049 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6050 .writefn = hcr_writelow }, 6051 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6052 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6053 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6054 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6055 .type = ARM_CP_ALIAS, 6056 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6057 .access = PL2_RW, 6058 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6059 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6060 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6061 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6062 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6063 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6064 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6065 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6066 .type = ARM_CP_ALIAS, 6067 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6068 .access = PL2_RW, 6069 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6070 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6071 .type = ARM_CP_ALIAS, 6072 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6073 .access = PL2_RW, 6074 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6075 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6076 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6077 .access = PL2_RW, .writefn = vbar_write, 6078 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6079 .resetvalue = 0 }, 6080 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6081 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6082 .access = PL3_RW, .type = ARM_CP_ALIAS, 6083 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6084 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6085 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6086 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6087 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6088 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6089 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6090 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6091 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6092 .resetvalue = 0 }, 6093 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6094 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6095 .access = PL2_RW, .type = ARM_CP_ALIAS, 6096 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6097 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6098 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6099 .access = PL2_RW, .type = ARM_CP_CONST, 6100 .resetvalue = 0 }, 6101 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6102 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6103 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6104 .access = PL2_RW, .type = ARM_CP_CONST, 6105 .resetvalue = 0 }, 6106 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6107 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6108 .access = PL2_RW, .type = ARM_CP_CONST, 6109 .resetvalue = 0 }, 6110 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6111 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6112 .access = PL2_RW, .type = ARM_CP_CONST, 6113 .resetvalue = 0 }, 6114 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6115 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6116 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6117 .raw_writefn = raw_write, 6118 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6119 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6120 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6121 .type = ARM_CP_ALIAS, 6122 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6123 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6124 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6125 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6126 .access = PL2_RW, 6127 /* no .writefn needed as this can't cause an ASID change */ 6128 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6129 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6130 .cp = 15, .opc1 = 6, .crm = 2, 6131 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6132 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6133 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6134 .writefn = vttbr_write, .raw_writefn = raw_write }, 6135 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6136 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6137 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6138 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6139 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6140 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6141 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6142 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6143 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6144 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6145 .access = PL2_RW, .resetvalue = 0, 6146 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6147 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6148 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6149 .access = PL2_RW, .resetvalue = 0, 6150 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6151 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6152 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6153 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6154 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6155 { .name = "TLBIALLNSNH", 6156 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6157 .type = ARM_CP_NO_RAW, .access = PL2_W, 6158 .writefn = tlbiall_nsnh_write }, 6159 { .name = "TLBIALLNSNHIS", 6160 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6161 .type = ARM_CP_NO_RAW, .access = PL2_W, 6162 .writefn = tlbiall_nsnh_is_write }, 6163 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6164 .type = ARM_CP_NO_RAW, .access = PL2_W, 6165 .writefn = tlbiall_hyp_write }, 6166 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6167 .type = ARM_CP_NO_RAW, .access = PL2_W, 6168 .writefn = tlbiall_hyp_is_write }, 6169 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6170 .type = ARM_CP_NO_RAW, .access = PL2_W, 6171 .writefn = tlbimva_hyp_write }, 6172 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6173 .type = ARM_CP_NO_RAW, .access = PL2_W, 6174 .writefn = tlbimva_hyp_is_write }, 6175 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6176 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6177 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6178 .writefn = tlbi_aa64_alle2_write }, 6179 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6180 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6181 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6182 .writefn = tlbi_aa64_vae2_write }, 6183 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6184 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6185 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6186 .writefn = tlbi_aa64_vae2_write }, 6187 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6188 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6189 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6190 .writefn = tlbi_aa64_alle2is_write }, 6191 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6192 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6193 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6194 .writefn = tlbi_aa64_vae2is_write }, 6195 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6196 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6197 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6198 .writefn = tlbi_aa64_vae2is_write }, 6199 #ifndef CONFIG_USER_ONLY 6200 /* 6201 * Unlike the other EL2-related AT operations, these must 6202 * UNDEF from EL3 if EL2 is not implemented, which is why we 6203 * define them here rather than with the rest of the AT ops. 6204 */ 6205 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6206 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6207 .access = PL2_W, .accessfn = at_s1e2_access, 6208 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6209 .writefn = ats_write64 }, 6210 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6211 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6212 .access = PL2_W, .accessfn = at_s1e2_access, 6213 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6214 .writefn = ats_write64 }, 6215 /* 6216 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6217 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6218 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6219 * to behave as if SCR.NS was 1. 6220 */ 6221 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6222 .access = PL2_W, 6223 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6224 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6225 .access = PL2_W, 6226 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6227 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6228 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6229 /* 6230 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6231 * reset values as IMPDEF. We choose to reset to 3 to comply with 6232 * both ARMv7 and ARMv8. 6233 */ 6234 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6235 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6236 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6237 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6238 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6239 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6240 .writefn = gt_cntvoff_write, 6241 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6242 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6243 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6244 .writefn = gt_cntvoff_write, 6245 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6246 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6247 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6248 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6249 .type = ARM_CP_IO, .access = PL2_RW, 6250 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6251 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6252 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6253 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6254 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6255 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6256 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6257 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6258 .resetfn = gt_hyp_timer_reset, 6259 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6260 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6261 .type = ARM_CP_IO, 6262 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6263 .access = PL2_RW, 6264 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6265 .resetvalue = 0, 6266 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6267 #endif 6268 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6269 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6270 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6271 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6272 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6273 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6274 .access = PL2_RW, 6275 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6276 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6277 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6278 .access = PL2_RW, 6279 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6280 }; 6281 6282 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6283 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6284 .type = ARM_CP_ALIAS | ARM_CP_IO, 6285 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6286 .access = PL2_RW, 6287 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6288 .writefn = hcr_writehigh }, 6289 }; 6290 6291 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6292 bool isread) 6293 { 6294 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6295 return CP_ACCESS_OK; 6296 } 6297 return CP_ACCESS_TRAP_UNCATEGORIZED; 6298 } 6299 6300 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6301 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6302 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6303 .access = PL2_RW, .accessfn = sel2_access, 6304 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6305 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6306 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6307 .access = PL2_RW, .accessfn = sel2_access, 6308 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6309 }; 6310 6311 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6312 bool isread) 6313 { 6314 /* 6315 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6316 * At Secure EL1 it traps to EL3 or EL2. 6317 */ 6318 if (arm_current_el(env) == 3) { 6319 return CP_ACCESS_OK; 6320 } 6321 if (arm_is_secure_below_el3(env)) { 6322 if (env->cp15.scr_el3 & SCR_EEL2) { 6323 return CP_ACCESS_TRAP_EL2; 6324 } 6325 return CP_ACCESS_TRAP_EL3; 6326 } 6327 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6328 if (isread) { 6329 return CP_ACCESS_OK; 6330 } 6331 return CP_ACCESS_TRAP_UNCATEGORIZED; 6332 } 6333 6334 static const ARMCPRegInfo el3_cp_reginfo[] = { 6335 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6336 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6337 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6338 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6339 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6340 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6341 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6342 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6343 .writefn = scr_write, .raw_writefn = raw_write }, 6344 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6345 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6346 .access = PL3_RW, .resetvalue = 0, 6347 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6348 { .name = "SDER", 6349 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6350 .access = PL3_RW, .resetvalue = 0, 6351 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6352 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6353 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6354 .writefn = vbar_write, .resetvalue = 0, 6355 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6356 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6357 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6358 .access = PL3_RW, .resetvalue = 0, 6359 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6360 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6361 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6362 .access = PL3_RW, 6363 /* no .writefn needed as this can't cause an ASID change */ 6364 .resetvalue = 0, 6365 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6366 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6367 .type = ARM_CP_ALIAS, 6368 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6369 .access = PL3_RW, 6370 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6371 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6372 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6373 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6374 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6375 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6376 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6377 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6378 .type = ARM_CP_ALIAS, 6379 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6380 .access = PL3_RW, 6381 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6382 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6383 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6384 .access = PL3_RW, .writefn = vbar_write, 6385 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6386 .resetvalue = 0 }, 6387 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6388 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6389 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6390 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6391 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6392 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6393 .access = PL3_RW, .resetvalue = 0, 6394 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6395 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6396 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6397 .access = PL3_RW, .type = ARM_CP_CONST, 6398 .resetvalue = 0 }, 6399 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6400 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6401 .access = PL3_RW, .type = ARM_CP_CONST, 6402 .resetvalue = 0 }, 6403 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6404 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6405 .access = PL3_RW, .type = ARM_CP_CONST, 6406 .resetvalue = 0 }, 6407 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6408 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6409 .access = PL3_W, .type = ARM_CP_NO_RAW, 6410 .writefn = tlbi_aa64_alle3is_write }, 6411 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6412 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6413 .access = PL3_W, .type = ARM_CP_NO_RAW, 6414 .writefn = tlbi_aa64_vae3is_write }, 6415 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6416 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6417 .access = PL3_W, .type = ARM_CP_NO_RAW, 6418 .writefn = tlbi_aa64_vae3is_write }, 6419 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6420 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6421 .access = PL3_W, .type = ARM_CP_NO_RAW, 6422 .writefn = tlbi_aa64_alle3_write }, 6423 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6424 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6425 .access = PL3_W, .type = ARM_CP_NO_RAW, 6426 .writefn = tlbi_aa64_vae3_write }, 6427 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6428 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6429 .access = PL3_W, .type = ARM_CP_NO_RAW, 6430 .writefn = tlbi_aa64_vae3_write }, 6431 }; 6432 6433 #ifndef CONFIG_USER_ONLY 6434 /* Test if system register redirection is to occur in the current state. */ 6435 static bool redirect_for_e2h(CPUARMState *env) 6436 { 6437 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6438 } 6439 6440 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6441 { 6442 CPReadFn *readfn; 6443 6444 if (redirect_for_e2h(env)) { 6445 /* Switch to the saved EL2 version of the register. */ 6446 ri = ri->opaque; 6447 readfn = ri->readfn; 6448 } else { 6449 readfn = ri->orig_readfn; 6450 } 6451 if (readfn == NULL) { 6452 readfn = raw_read; 6453 } 6454 return readfn(env, ri); 6455 } 6456 6457 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6458 uint64_t value) 6459 { 6460 CPWriteFn *writefn; 6461 6462 if (redirect_for_e2h(env)) { 6463 /* Switch to the saved EL2 version of the register. */ 6464 ri = ri->opaque; 6465 writefn = ri->writefn; 6466 } else { 6467 writefn = ri->orig_writefn; 6468 } 6469 if (writefn == NULL) { 6470 writefn = raw_write; 6471 } 6472 writefn(env, ri, value); 6473 } 6474 6475 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6476 { 6477 struct E2HAlias { 6478 uint32_t src_key, dst_key, new_key; 6479 const char *src_name, *dst_name, *new_name; 6480 bool (*feature)(const ARMISARegisters *id); 6481 }; 6482 6483 #define K(op0, op1, crn, crm, op2) \ 6484 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6485 6486 static const struct E2HAlias aliases[] = { 6487 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6488 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6489 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6490 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6491 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6492 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6493 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6494 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6495 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6496 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6497 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6498 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6499 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6500 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6501 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6502 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6503 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6504 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6505 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6506 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6507 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6508 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6509 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6510 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6511 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6512 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6513 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6514 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6515 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6516 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6517 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6518 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6519 6520 /* 6521 * Note that redirection of ZCR is mentioned in the description 6522 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6523 * not in the summary table. 6524 */ 6525 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6526 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6527 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6528 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6529 6530 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6531 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6532 6533 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6534 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6535 isar_feature_aa64_scxtnum }, 6536 6537 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6538 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6539 }; 6540 #undef K 6541 6542 size_t i; 6543 6544 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6545 const struct E2HAlias *a = &aliases[i]; 6546 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6547 bool ok; 6548 6549 if (a->feature && !a->feature(&cpu->isar)) { 6550 continue; 6551 } 6552 6553 src_reg = g_hash_table_lookup(cpu->cp_regs, 6554 (gpointer)(uintptr_t)a->src_key); 6555 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6556 (gpointer)(uintptr_t)a->dst_key); 6557 g_assert(src_reg != NULL); 6558 g_assert(dst_reg != NULL); 6559 6560 /* Cross-compare names to detect typos in the keys. */ 6561 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6562 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6563 6564 /* None of the core system registers use opaque; we will. */ 6565 g_assert(src_reg->opaque == NULL); 6566 6567 /* Create alias before redirection so we dup the right data. */ 6568 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6569 6570 new_reg->name = a->new_name; 6571 new_reg->type |= ARM_CP_ALIAS; 6572 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6573 new_reg->access &= PL2_RW | PL3_RW; 6574 6575 ok = g_hash_table_insert(cpu->cp_regs, 6576 (gpointer)(uintptr_t)a->new_key, new_reg); 6577 g_assert(ok); 6578 6579 src_reg->opaque = dst_reg; 6580 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6581 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6582 if (!src_reg->raw_readfn) { 6583 src_reg->raw_readfn = raw_read; 6584 } 6585 if (!src_reg->raw_writefn) { 6586 src_reg->raw_writefn = raw_write; 6587 } 6588 src_reg->readfn = el2_e2h_read; 6589 src_reg->writefn = el2_e2h_write; 6590 } 6591 } 6592 #endif 6593 6594 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6595 bool isread) 6596 { 6597 int cur_el = arm_current_el(env); 6598 6599 if (cur_el < 2) { 6600 uint64_t hcr = arm_hcr_el2_eff(env); 6601 6602 if (cur_el == 0) { 6603 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6604 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6605 return CP_ACCESS_TRAP_EL2; 6606 } 6607 } else { 6608 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6609 return CP_ACCESS_TRAP; 6610 } 6611 if (hcr & HCR_TID2) { 6612 return CP_ACCESS_TRAP_EL2; 6613 } 6614 } 6615 } else if (hcr & HCR_TID2) { 6616 return CP_ACCESS_TRAP_EL2; 6617 } 6618 } 6619 6620 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6621 return CP_ACCESS_TRAP_EL2; 6622 } 6623 6624 return CP_ACCESS_OK; 6625 } 6626 6627 /* 6628 * Check for traps to RAS registers, which are controlled 6629 * by HCR_EL2.TERR and SCR_EL3.TERR. 6630 */ 6631 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6632 bool isread) 6633 { 6634 int el = arm_current_el(env); 6635 6636 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6637 return CP_ACCESS_TRAP_EL2; 6638 } 6639 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6640 return CP_ACCESS_TRAP_EL3; 6641 } 6642 return CP_ACCESS_OK; 6643 } 6644 6645 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6646 { 6647 int el = arm_current_el(env); 6648 6649 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6650 return env->cp15.vdisr_el2; 6651 } 6652 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6653 return 0; /* RAZ/WI */ 6654 } 6655 return env->cp15.disr_el1; 6656 } 6657 6658 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6659 { 6660 int el = arm_current_el(env); 6661 6662 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6663 env->cp15.vdisr_el2 = val; 6664 return; 6665 } 6666 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6667 return; /* RAZ/WI */ 6668 } 6669 env->cp15.disr_el1 = val; 6670 } 6671 6672 /* 6673 * Minimal RAS implementation with no Error Records. 6674 * Which means that all of the Error Record registers: 6675 * ERXADDR_EL1 6676 * ERXCTLR_EL1 6677 * ERXFR_EL1 6678 * ERXMISC0_EL1 6679 * ERXMISC1_EL1 6680 * ERXMISC2_EL1 6681 * ERXMISC3_EL1 6682 * ERXPFGCDN_EL1 (RASv1p1) 6683 * ERXPFGCTL_EL1 (RASv1p1) 6684 * ERXPFGF_EL1 (RASv1p1) 6685 * ERXSTATUS_EL1 6686 * and 6687 * ERRSELR_EL1 6688 * may generate UNDEFINED, which is the effect we get by not 6689 * listing them at all. 6690 * 6691 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6692 * is higher priority than FGT-to-EL2 so we do not need to list them 6693 * in order to check for an FGT. 6694 */ 6695 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6696 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6697 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6698 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6699 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6700 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6701 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6702 .access = PL1_R, .accessfn = access_terr, 6703 .fgt = FGT_ERRIDR_EL1, 6704 .type = ARM_CP_CONST, .resetvalue = 0 }, 6705 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6706 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6707 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6708 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6709 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6710 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6711 }; 6712 6713 /* 6714 * Return the exception level to which exceptions should be taken 6715 * via SVEAccessTrap. This excludes the check for whether the exception 6716 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6717 * be found by testing 0 < fp_exception_el < sve_exception_el. 6718 * 6719 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6720 * pseudocode does *not* separate out the FP trap checks, but has them 6721 * all in one function. 6722 */ 6723 int sve_exception_el(CPUARMState *env, int el) 6724 { 6725 #ifndef CONFIG_USER_ONLY 6726 if (el <= 1 && !el_is_in_host(env, el)) { 6727 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6728 case 1: 6729 if (el != 0) { 6730 break; 6731 } 6732 /* fall through */ 6733 case 0: 6734 case 2: 6735 return 1; 6736 } 6737 } 6738 6739 if (el <= 2 && arm_is_el2_enabled(env)) { 6740 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6741 if (env->cp15.hcr_el2 & HCR_E2H) { 6742 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6743 case 1: 6744 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6745 break; 6746 } 6747 /* fall through */ 6748 case 0: 6749 case 2: 6750 return 2; 6751 } 6752 } else { 6753 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6754 return 2; 6755 } 6756 } 6757 } 6758 6759 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6760 if (arm_feature(env, ARM_FEATURE_EL3) 6761 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6762 return 3; 6763 } 6764 #endif 6765 return 0; 6766 } 6767 6768 /* 6769 * Return the exception level to which exceptions should be taken for SME. 6770 * C.f. the ARM pseudocode function CheckSMEAccess. 6771 */ 6772 int sme_exception_el(CPUARMState *env, int el) 6773 { 6774 #ifndef CONFIG_USER_ONLY 6775 if (el <= 1 && !el_is_in_host(env, el)) { 6776 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6777 case 1: 6778 if (el != 0) { 6779 break; 6780 } 6781 /* fall through */ 6782 case 0: 6783 case 2: 6784 return 1; 6785 } 6786 } 6787 6788 if (el <= 2 && arm_is_el2_enabled(env)) { 6789 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6790 if (env->cp15.hcr_el2 & HCR_E2H) { 6791 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6792 case 1: 6793 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6794 break; 6795 } 6796 /* fall through */ 6797 case 0: 6798 case 2: 6799 return 2; 6800 } 6801 } else { 6802 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6803 return 2; 6804 } 6805 } 6806 } 6807 6808 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6809 if (arm_feature(env, ARM_FEATURE_EL3) 6810 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6811 return 3; 6812 } 6813 #endif 6814 return 0; 6815 } 6816 6817 /* 6818 * Given that SVE is enabled, return the vector length for EL. 6819 */ 6820 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6821 { 6822 ARMCPU *cpu = env_archcpu(env); 6823 uint64_t *cr = env->vfp.zcr_el; 6824 uint32_t map = cpu->sve_vq.map; 6825 uint32_t len = ARM_MAX_VQ - 1; 6826 6827 if (sm) { 6828 cr = env->vfp.smcr_el; 6829 map = cpu->sme_vq.map; 6830 } 6831 6832 if (el <= 1 && !el_is_in_host(env, el)) { 6833 len = MIN(len, 0xf & (uint32_t)cr[1]); 6834 } 6835 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6836 len = MIN(len, 0xf & (uint32_t)cr[2]); 6837 } 6838 if (arm_feature(env, ARM_FEATURE_EL3)) { 6839 len = MIN(len, 0xf & (uint32_t)cr[3]); 6840 } 6841 6842 map &= MAKE_64BIT_MASK(0, len + 1); 6843 if (map != 0) { 6844 return 31 - clz32(map); 6845 } 6846 6847 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6848 assert(sm); 6849 return ctz32(cpu->sme_vq.map); 6850 } 6851 6852 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6853 { 6854 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6855 } 6856 6857 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6858 uint64_t value) 6859 { 6860 int cur_el = arm_current_el(env); 6861 int old_len = sve_vqm1_for_el(env, cur_el); 6862 int new_len; 6863 6864 /* Bits other than [3:0] are RAZ/WI. */ 6865 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6866 raw_write(env, ri, value & 0xf); 6867 6868 /* 6869 * Because we arrived here, we know both FP and SVE are enabled; 6870 * otherwise we would have trapped access to the ZCR_ELn register. 6871 */ 6872 new_len = sve_vqm1_for_el(env, cur_el); 6873 if (new_len < old_len) { 6874 aarch64_sve_narrow_vq(env, new_len + 1); 6875 } 6876 } 6877 6878 static const ARMCPRegInfo zcr_reginfo[] = { 6879 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6880 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6881 .access = PL1_RW, .type = ARM_CP_SVE, 6882 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6883 .writefn = zcr_write, .raw_writefn = raw_write }, 6884 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6885 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6886 .access = PL2_RW, .type = ARM_CP_SVE, 6887 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6888 .writefn = zcr_write, .raw_writefn = raw_write }, 6889 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6890 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6891 .access = PL3_RW, .type = ARM_CP_SVE, 6892 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6893 .writefn = zcr_write, .raw_writefn = raw_write }, 6894 }; 6895 6896 #ifdef TARGET_AARCH64 6897 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6898 bool isread) 6899 { 6900 int el = arm_current_el(env); 6901 6902 if (el == 0) { 6903 uint64_t sctlr = arm_sctlr(env, el); 6904 if (!(sctlr & SCTLR_EnTP2)) { 6905 return CP_ACCESS_TRAP; 6906 } 6907 } 6908 /* TODO: FEAT_FGT */ 6909 if (el < 3 6910 && arm_feature(env, ARM_FEATURE_EL3) 6911 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6912 return CP_ACCESS_TRAP_EL3; 6913 } 6914 return CP_ACCESS_OK; 6915 } 6916 6917 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6918 bool isread) 6919 { 6920 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6921 if (arm_current_el(env) < 3 6922 && arm_feature(env, ARM_FEATURE_EL3) 6923 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6924 return CP_ACCESS_TRAP_EL3; 6925 } 6926 return CP_ACCESS_OK; 6927 } 6928 6929 /* ResetSVEState */ 6930 static void arm_reset_sve_state(CPUARMState *env) 6931 { 6932 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6933 /* Recall that FFR is stored as pregs[16]. */ 6934 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6935 vfp_set_fpcr(env, 0x0800009f); 6936 } 6937 6938 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6939 { 6940 uint64_t change = (env->svcr ^ new) & mask; 6941 6942 if (change == 0) { 6943 return; 6944 } 6945 env->svcr ^= change; 6946 6947 if (change & R_SVCR_SM_MASK) { 6948 arm_reset_sve_state(env); 6949 } 6950 6951 /* 6952 * ResetSMEState. 6953 * 6954 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6955 * on enable: while disabled, the storage is inaccessible and the 6956 * value does not matter. We're not saving the storage in vmstate 6957 * when disabled either. 6958 */ 6959 if (change & new & R_SVCR_ZA_MASK) { 6960 memset(env->zarray, 0, sizeof(env->zarray)); 6961 } 6962 6963 if (tcg_enabled()) { 6964 arm_rebuild_hflags(env); 6965 } 6966 } 6967 6968 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6969 uint64_t value) 6970 { 6971 aarch64_set_svcr(env, value, -1); 6972 } 6973 6974 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6975 uint64_t value) 6976 { 6977 int cur_el = arm_current_el(env); 6978 int old_len = sve_vqm1_for_el(env, cur_el); 6979 int new_len; 6980 6981 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6982 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6983 raw_write(env, ri, value); 6984 6985 /* 6986 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6987 * when SVL is widened (old values kept, or zeros). Choose to keep the 6988 * current values for simplicity. But for QEMU internals, we must still 6989 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6990 * above aarch64_sve_narrow_vq. 6991 */ 6992 new_len = sve_vqm1_for_el(env, cur_el); 6993 if (new_len < old_len) { 6994 aarch64_sve_narrow_vq(env, new_len + 1); 6995 } 6996 } 6997 6998 static const ARMCPRegInfo sme_reginfo[] = { 6999 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7000 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7001 .access = PL0_RW, .accessfn = access_tpidr2, 7002 .fgt = FGT_NTPIDR2_EL0, 7003 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7004 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7005 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7006 .access = PL0_RW, .type = ARM_CP_SME, 7007 .fieldoffset = offsetof(CPUARMState, svcr), 7008 .writefn = svcr_write, .raw_writefn = raw_write }, 7009 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7010 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7011 .access = PL1_RW, .type = ARM_CP_SME, 7012 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7013 .writefn = smcr_write, .raw_writefn = raw_write }, 7014 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7015 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7016 .access = PL2_RW, .type = ARM_CP_SME, 7017 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7018 .writefn = smcr_write, .raw_writefn = raw_write }, 7019 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7020 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7021 .access = PL3_RW, .type = ARM_CP_SME, 7022 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7023 .writefn = smcr_write, .raw_writefn = raw_write }, 7024 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7025 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7026 .access = PL1_R, .accessfn = access_aa64_tid1, 7027 /* 7028 * IMPLEMENTOR = 0 (software) 7029 * REVISION = 0 (implementation defined) 7030 * SMPS = 0 (no streaming execution priority in QEMU) 7031 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7032 */ 7033 .type = ARM_CP_CONST, .resetvalue = 0, }, 7034 /* 7035 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7036 */ 7037 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7038 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7039 .access = PL1_RW, .accessfn = access_esm, 7040 .fgt = FGT_NSMPRI_EL1, 7041 .type = ARM_CP_CONST, .resetvalue = 0 }, 7042 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7043 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7044 .access = PL2_RW, .accessfn = access_esm, 7045 .type = ARM_CP_CONST, .resetvalue = 0 }, 7046 }; 7047 7048 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7049 uint64_t value) 7050 { 7051 CPUState *cs = env_cpu(env); 7052 7053 tlb_flush(cs); 7054 } 7055 7056 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7057 uint64_t value) 7058 { 7059 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7060 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7061 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7062 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7063 7064 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7065 } 7066 7067 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7068 { 7069 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7070 env_archcpu(env)->reset_l0gptsz); 7071 } 7072 7073 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7074 uint64_t value) 7075 { 7076 CPUState *cs = env_cpu(env); 7077 7078 tlb_flush_all_cpus_synced(cs); 7079 } 7080 7081 static const ARMCPRegInfo rme_reginfo[] = { 7082 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7083 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7084 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7085 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7086 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7087 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7088 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7089 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7090 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7091 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7092 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7093 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7094 .access = PL3_W, .type = ARM_CP_NO_RAW, 7095 .writefn = tlbi_aa64_paall_write }, 7096 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7097 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7098 .access = PL3_W, .type = ARM_CP_NO_RAW, 7099 .writefn = tlbi_aa64_paallos_write }, 7100 /* 7101 * QEMU does not have a way to invalidate by physical address, thus 7102 * invalidating a range of physical addresses is accomplished by 7103 * flushing all tlb entries in the outer shareable domain, 7104 * just like PAALLOS. 7105 */ 7106 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7107 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7108 .access = PL3_W, .type = ARM_CP_NO_RAW, 7109 .writefn = tlbi_aa64_paallos_write }, 7110 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7111 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7112 .access = PL3_W, .type = ARM_CP_NO_RAW, 7113 .writefn = tlbi_aa64_paallos_write }, 7114 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7115 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7116 .access = PL3_W, .type = ARM_CP_NOP }, 7117 }; 7118 7119 static const ARMCPRegInfo rme_mte_reginfo[] = { 7120 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7121 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7122 .access = PL3_W, .type = ARM_CP_NOP }, 7123 }; 7124 #endif /* TARGET_AARCH64 */ 7125 7126 static void define_pmu_regs(ARMCPU *cpu) 7127 { 7128 /* 7129 * v7 performance monitor control register: same implementor 7130 * field as main ID register, and we implement four counters in 7131 * addition to the cycle count register. 7132 */ 7133 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7134 ARMCPRegInfo pmcr = { 7135 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7136 .access = PL0_RW, 7137 .fgt = FGT_PMCR_EL0, 7138 .type = ARM_CP_IO | ARM_CP_ALIAS, 7139 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7140 .accessfn = pmreg_access, .writefn = pmcr_write, 7141 .raw_writefn = raw_write, 7142 }; 7143 ARMCPRegInfo pmcr64 = { 7144 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7145 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7146 .access = PL0_RW, .accessfn = pmreg_access, 7147 .fgt = FGT_PMCR_EL0, 7148 .type = ARM_CP_IO, 7149 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7150 .resetvalue = cpu->isar.reset_pmcr_el0, 7151 .writefn = pmcr_write, .raw_writefn = raw_write, 7152 }; 7153 7154 define_one_arm_cp_reg(cpu, &pmcr); 7155 define_one_arm_cp_reg(cpu, &pmcr64); 7156 for (i = 0; i < pmcrn; i++) { 7157 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7158 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7159 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7160 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7161 ARMCPRegInfo pmev_regs[] = { 7162 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7163 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7164 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7165 .fgt = FGT_PMEVCNTRN_EL0, 7166 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7167 .accessfn = pmreg_access_xevcntr }, 7168 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7169 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7170 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7171 .type = ARM_CP_IO, 7172 .fgt = FGT_PMEVCNTRN_EL0, 7173 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7174 .raw_readfn = pmevcntr_rawread, 7175 .raw_writefn = pmevcntr_rawwrite }, 7176 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7177 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7178 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7179 .fgt = FGT_PMEVTYPERN_EL0, 7180 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7181 .accessfn = pmreg_access }, 7182 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7184 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7185 .fgt = FGT_PMEVTYPERN_EL0, 7186 .type = ARM_CP_IO, 7187 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7188 .raw_writefn = pmevtyper_rawwrite }, 7189 }; 7190 define_arm_cp_regs(cpu, pmev_regs); 7191 g_free(pmevcntr_name); 7192 g_free(pmevcntr_el0_name); 7193 g_free(pmevtyper_name); 7194 g_free(pmevtyper_el0_name); 7195 } 7196 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7197 ARMCPRegInfo v81_pmu_regs[] = { 7198 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7199 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7200 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7201 .fgt = FGT_PMCEIDN_EL0, 7202 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7203 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7204 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7205 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7206 .fgt = FGT_PMCEIDN_EL0, 7207 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7208 }; 7209 define_arm_cp_regs(cpu, v81_pmu_regs); 7210 } 7211 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7212 static const ARMCPRegInfo v84_pmmir = { 7213 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7214 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7215 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7216 .fgt = FGT_PMMIR_EL1, 7217 .resetvalue = 0 7218 }; 7219 define_one_arm_cp_reg(cpu, &v84_pmmir); 7220 } 7221 } 7222 7223 #ifndef CONFIG_USER_ONLY 7224 /* 7225 * We don't know until after realize whether there's a GICv3 7226 * attached, and that is what registers the gicv3 sysregs. 7227 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7228 * at runtime. 7229 */ 7230 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7231 { 7232 ARMCPU *cpu = env_archcpu(env); 7233 uint64_t pfr1 = cpu->isar.id_pfr1; 7234 7235 if (env->gicv3state) { 7236 pfr1 |= 1 << 28; 7237 } 7238 return pfr1; 7239 } 7240 7241 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7242 { 7243 ARMCPU *cpu = env_archcpu(env); 7244 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7245 7246 if (env->gicv3state) { 7247 pfr0 |= 1 << 24; 7248 } 7249 return pfr0; 7250 } 7251 #endif 7252 7253 /* 7254 * Shared logic between LORID and the rest of the LOR* registers. 7255 * Secure state exclusion has already been dealt with. 7256 */ 7257 static CPAccessResult access_lor_ns(CPUARMState *env, 7258 const ARMCPRegInfo *ri, bool isread) 7259 { 7260 int el = arm_current_el(env); 7261 7262 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7263 return CP_ACCESS_TRAP_EL2; 7264 } 7265 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7266 return CP_ACCESS_TRAP_EL3; 7267 } 7268 return CP_ACCESS_OK; 7269 } 7270 7271 static CPAccessResult access_lor_other(CPUARMState *env, 7272 const ARMCPRegInfo *ri, bool isread) 7273 { 7274 if (arm_is_secure_below_el3(env)) { 7275 /* Access denied in secure mode. */ 7276 return CP_ACCESS_TRAP; 7277 } 7278 return access_lor_ns(env, ri, isread); 7279 } 7280 7281 /* 7282 * A trivial implementation of ARMv8.1-LOR leaves all of these 7283 * registers fixed at 0, which indicates that there are zero 7284 * supported Limited Ordering regions. 7285 */ 7286 static const ARMCPRegInfo lor_reginfo[] = { 7287 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7289 .access = PL1_RW, .accessfn = access_lor_other, 7290 .fgt = FGT_LORSA_EL1, 7291 .type = ARM_CP_CONST, .resetvalue = 0 }, 7292 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7293 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7294 .access = PL1_RW, .accessfn = access_lor_other, 7295 .fgt = FGT_LOREA_EL1, 7296 .type = ARM_CP_CONST, .resetvalue = 0 }, 7297 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7298 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7299 .access = PL1_RW, .accessfn = access_lor_other, 7300 .fgt = FGT_LORN_EL1, 7301 .type = ARM_CP_CONST, .resetvalue = 0 }, 7302 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7303 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7304 .access = PL1_RW, .accessfn = access_lor_other, 7305 .fgt = FGT_LORC_EL1, 7306 .type = ARM_CP_CONST, .resetvalue = 0 }, 7307 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7308 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7309 .access = PL1_R, .accessfn = access_lor_ns, 7310 .fgt = FGT_LORID_EL1, 7311 .type = ARM_CP_CONST, .resetvalue = 0 }, 7312 }; 7313 7314 #ifdef TARGET_AARCH64 7315 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7316 bool isread) 7317 { 7318 int el = arm_current_el(env); 7319 7320 if (el < 2 && 7321 arm_is_el2_enabled(env) && 7322 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7323 return CP_ACCESS_TRAP_EL2; 7324 } 7325 if (el < 3 && 7326 arm_feature(env, ARM_FEATURE_EL3) && 7327 !(env->cp15.scr_el3 & SCR_APK)) { 7328 return CP_ACCESS_TRAP_EL3; 7329 } 7330 return CP_ACCESS_OK; 7331 } 7332 7333 static const ARMCPRegInfo pauth_reginfo[] = { 7334 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7335 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7336 .access = PL1_RW, .accessfn = access_pauth, 7337 .fgt = FGT_APDAKEY, 7338 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7339 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7340 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7341 .access = PL1_RW, .accessfn = access_pauth, 7342 .fgt = FGT_APDAKEY, 7343 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7344 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7345 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7346 .access = PL1_RW, .accessfn = access_pauth, 7347 .fgt = FGT_APDBKEY, 7348 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7349 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7350 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7351 .access = PL1_RW, .accessfn = access_pauth, 7352 .fgt = FGT_APDBKEY, 7353 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7354 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7355 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7356 .access = PL1_RW, .accessfn = access_pauth, 7357 .fgt = FGT_APGAKEY, 7358 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7359 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7360 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7361 .access = PL1_RW, .accessfn = access_pauth, 7362 .fgt = FGT_APGAKEY, 7363 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7364 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7365 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7366 .access = PL1_RW, .accessfn = access_pauth, 7367 .fgt = FGT_APIAKEY, 7368 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7369 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7370 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7371 .access = PL1_RW, .accessfn = access_pauth, 7372 .fgt = FGT_APIAKEY, 7373 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7374 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7375 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7376 .access = PL1_RW, .accessfn = access_pauth, 7377 .fgt = FGT_APIBKEY, 7378 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7379 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7380 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7381 .access = PL1_RW, .accessfn = access_pauth, 7382 .fgt = FGT_APIBKEY, 7383 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7384 }; 7385 7386 static const ARMCPRegInfo tlbirange_reginfo[] = { 7387 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7388 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7389 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7390 .fgt = FGT_TLBIRVAE1IS, 7391 .writefn = tlbi_aa64_rvae1is_write }, 7392 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7393 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7394 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7395 .fgt = FGT_TLBIRVAAE1IS, 7396 .writefn = tlbi_aa64_rvae1is_write }, 7397 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7398 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7399 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7400 .fgt = FGT_TLBIRVALE1IS, 7401 .writefn = tlbi_aa64_rvae1is_write }, 7402 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7403 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7404 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7405 .fgt = FGT_TLBIRVAALE1IS, 7406 .writefn = tlbi_aa64_rvae1is_write }, 7407 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7408 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7409 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7410 .fgt = FGT_TLBIRVAE1OS, 7411 .writefn = tlbi_aa64_rvae1is_write }, 7412 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7413 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7414 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7415 .fgt = FGT_TLBIRVAAE1OS, 7416 .writefn = tlbi_aa64_rvae1is_write }, 7417 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7418 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7419 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7420 .fgt = FGT_TLBIRVALE1OS, 7421 .writefn = tlbi_aa64_rvae1is_write }, 7422 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7423 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7424 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7425 .fgt = FGT_TLBIRVAALE1OS, 7426 .writefn = tlbi_aa64_rvae1is_write }, 7427 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7428 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7429 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7430 .fgt = FGT_TLBIRVAE1, 7431 .writefn = tlbi_aa64_rvae1_write }, 7432 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7433 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7434 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7435 .fgt = FGT_TLBIRVAAE1, 7436 .writefn = tlbi_aa64_rvae1_write }, 7437 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7438 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7439 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7440 .fgt = FGT_TLBIRVALE1, 7441 .writefn = tlbi_aa64_rvae1_write }, 7442 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7443 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7444 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7445 .fgt = FGT_TLBIRVAALE1, 7446 .writefn = tlbi_aa64_rvae1_write }, 7447 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7448 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7449 .access = PL2_W, .type = ARM_CP_NO_RAW, 7450 .writefn = tlbi_aa64_ripas2e1is_write }, 7451 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7452 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7453 .access = PL2_W, .type = ARM_CP_NO_RAW, 7454 .writefn = tlbi_aa64_ripas2e1is_write }, 7455 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7457 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7458 .writefn = tlbi_aa64_rvae2is_write }, 7459 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7460 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7461 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7462 .writefn = tlbi_aa64_rvae2is_write }, 7463 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7464 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7465 .access = PL2_W, .type = ARM_CP_NO_RAW, 7466 .writefn = tlbi_aa64_ripas2e1_write }, 7467 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7468 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7469 .access = PL2_W, .type = ARM_CP_NO_RAW, 7470 .writefn = tlbi_aa64_ripas2e1_write }, 7471 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7472 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7473 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7474 .writefn = tlbi_aa64_rvae2is_write }, 7475 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7476 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7477 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7478 .writefn = tlbi_aa64_rvae2is_write }, 7479 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7480 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7481 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7482 .writefn = tlbi_aa64_rvae2_write }, 7483 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7484 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7485 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7486 .writefn = tlbi_aa64_rvae2_write }, 7487 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7488 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7489 .access = PL3_W, .type = ARM_CP_NO_RAW, 7490 .writefn = tlbi_aa64_rvae3is_write }, 7491 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7492 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7493 .access = PL3_W, .type = ARM_CP_NO_RAW, 7494 .writefn = tlbi_aa64_rvae3is_write }, 7495 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7496 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7497 .access = PL3_W, .type = ARM_CP_NO_RAW, 7498 .writefn = tlbi_aa64_rvae3is_write }, 7499 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7500 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7501 .access = PL3_W, .type = ARM_CP_NO_RAW, 7502 .writefn = tlbi_aa64_rvae3is_write }, 7503 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7504 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7505 .access = PL3_W, .type = ARM_CP_NO_RAW, 7506 .writefn = tlbi_aa64_rvae3_write }, 7507 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7508 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7509 .access = PL3_W, .type = ARM_CP_NO_RAW, 7510 .writefn = tlbi_aa64_rvae3_write }, 7511 }; 7512 7513 static const ARMCPRegInfo tlbios_reginfo[] = { 7514 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7515 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7516 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7517 .fgt = FGT_TLBIVMALLE1OS, 7518 .writefn = tlbi_aa64_vmalle1is_write }, 7519 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7520 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7521 .fgt = FGT_TLBIVAE1OS, 7522 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7523 .writefn = tlbi_aa64_vae1is_write }, 7524 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7525 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7526 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7527 .fgt = FGT_TLBIASIDE1OS, 7528 .writefn = tlbi_aa64_vmalle1is_write }, 7529 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7530 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7531 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7532 .fgt = FGT_TLBIVAAE1OS, 7533 .writefn = tlbi_aa64_vae1is_write }, 7534 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7535 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7536 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7537 .fgt = FGT_TLBIVALE1OS, 7538 .writefn = tlbi_aa64_vae1is_write }, 7539 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7540 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7541 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7542 .fgt = FGT_TLBIVAALE1OS, 7543 .writefn = tlbi_aa64_vae1is_write }, 7544 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7545 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7546 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7547 .writefn = tlbi_aa64_alle2is_write }, 7548 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7549 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7550 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7551 .writefn = tlbi_aa64_vae2is_write }, 7552 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7553 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7554 .access = PL2_W, .type = ARM_CP_NO_RAW, 7555 .writefn = tlbi_aa64_alle1is_write }, 7556 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7557 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7558 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7559 .writefn = tlbi_aa64_vae2is_write }, 7560 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7562 .access = PL2_W, .type = ARM_CP_NO_RAW, 7563 .writefn = tlbi_aa64_alle1is_write }, 7564 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7565 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7566 .access = PL2_W, .type = ARM_CP_NOP }, 7567 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7568 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7569 .access = PL2_W, .type = ARM_CP_NOP }, 7570 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7571 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7572 .access = PL2_W, .type = ARM_CP_NOP }, 7573 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7574 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7575 .access = PL2_W, .type = ARM_CP_NOP }, 7576 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7577 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7578 .access = PL3_W, .type = ARM_CP_NO_RAW, 7579 .writefn = tlbi_aa64_alle3is_write }, 7580 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7581 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7582 .access = PL3_W, .type = ARM_CP_NO_RAW, 7583 .writefn = tlbi_aa64_vae3is_write }, 7584 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7585 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7586 .access = PL3_W, .type = ARM_CP_NO_RAW, 7587 .writefn = tlbi_aa64_vae3is_write }, 7588 }; 7589 7590 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7591 { 7592 Error *err = NULL; 7593 uint64_t ret; 7594 7595 /* Success sets NZCV = 0000. */ 7596 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7597 7598 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7599 /* 7600 * ??? Failed, for unknown reasons in the crypto subsystem. 7601 * The best we can do is log the reason and return the 7602 * timed-out indication to the guest. There is no reason 7603 * we know to expect this failure to be transitory, so the 7604 * guest may well hang retrying the operation. 7605 */ 7606 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7607 ri->name, error_get_pretty(err)); 7608 error_free(err); 7609 7610 env->ZF = 0; /* NZCF = 0100 */ 7611 return 0; 7612 } 7613 return ret; 7614 } 7615 7616 /* We do not support re-seeding, so the two registers operate the same. */ 7617 static const ARMCPRegInfo rndr_reginfo[] = { 7618 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7619 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7620 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7621 .access = PL0_R, .readfn = rndr_readfn }, 7622 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7623 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7624 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7625 .access = PL0_R, .readfn = rndr_readfn }, 7626 }; 7627 7628 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7629 uint64_t value) 7630 { 7631 ARMCPU *cpu = env_archcpu(env); 7632 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7633 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7634 uint64_t vaddr_in = (uint64_t) value; 7635 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7636 void *haddr; 7637 int mem_idx = cpu_mmu_index(env, false); 7638 7639 /* This won't be crossing page boundaries */ 7640 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7641 if (haddr) { 7642 #ifndef CONFIG_USER_ONLY 7643 7644 ram_addr_t offset; 7645 MemoryRegion *mr; 7646 7647 /* RCU lock is already being held */ 7648 mr = memory_region_from_host(haddr, &offset); 7649 7650 if (mr) { 7651 memory_region_writeback(mr, offset, dline_size); 7652 } 7653 #endif /*CONFIG_USER_ONLY*/ 7654 } 7655 } 7656 7657 static const ARMCPRegInfo dcpop_reg[] = { 7658 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7659 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7660 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7661 .fgt = FGT_DCCVAP, 7662 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7663 }; 7664 7665 static const ARMCPRegInfo dcpodp_reg[] = { 7666 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7667 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7668 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7669 .fgt = FGT_DCCVADP, 7670 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7671 }; 7672 7673 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7674 bool isread) 7675 { 7676 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7677 return CP_ACCESS_TRAP_EL2; 7678 } 7679 7680 return CP_ACCESS_OK; 7681 } 7682 7683 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7684 bool isread) 7685 { 7686 int el = arm_current_el(env); 7687 7688 if (el < 2 && arm_is_el2_enabled(env)) { 7689 uint64_t hcr = arm_hcr_el2_eff(env); 7690 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7691 return CP_ACCESS_TRAP_EL2; 7692 } 7693 } 7694 if (el < 3 && 7695 arm_feature(env, ARM_FEATURE_EL3) && 7696 !(env->cp15.scr_el3 & SCR_ATA)) { 7697 return CP_ACCESS_TRAP_EL3; 7698 } 7699 return CP_ACCESS_OK; 7700 } 7701 7702 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7703 { 7704 return env->pstate & PSTATE_TCO; 7705 } 7706 7707 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7708 { 7709 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7710 } 7711 7712 static const ARMCPRegInfo mte_reginfo[] = { 7713 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7714 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7715 .access = PL1_RW, .accessfn = access_mte, 7716 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7717 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7718 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7719 .access = PL1_RW, .accessfn = access_mte, 7720 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7721 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7722 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7723 .access = PL2_RW, .accessfn = access_mte, 7724 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7725 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7726 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7727 .access = PL3_RW, 7728 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7729 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7730 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7731 .access = PL1_RW, .accessfn = access_mte, 7732 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7733 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7734 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7735 .access = PL1_RW, .accessfn = access_mte, 7736 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7737 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7738 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7739 .type = ARM_CP_NO_RAW, 7740 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7741 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7742 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7743 .type = ARM_CP_NOP, .access = PL1_W, 7744 .fgt = FGT_DCIVAC, 7745 .accessfn = aa64_cacheop_poc_access }, 7746 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7748 .fgt = FGT_DCISW, 7749 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7750 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7751 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7752 .type = ARM_CP_NOP, .access = PL1_W, 7753 .fgt = FGT_DCIVAC, 7754 .accessfn = aa64_cacheop_poc_access }, 7755 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7756 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7757 .fgt = FGT_DCISW, 7758 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7759 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7760 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7761 .fgt = FGT_DCCSW, 7762 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7763 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7764 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7765 .fgt = FGT_DCCSW, 7766 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7767 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7768 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7769 .fgt = FGT_DCCISW, 7770 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7771 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7772 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7773 .fgt = FGT_DCCISW, 7774 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7775 }; 7776 7777 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7778 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7779 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7780 .type = ARM_CP_CONST, .access = PL0_RW, }, 7781 }; 7782 7783 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7784 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7785 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7786 .type = ARM_CP_NOP, .access = PL0_W, 7787 .fgt = FGT_DCCVAC, 7788 .accessfn = aa64_cacheop_poc_access }, 7789 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7790 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7791 .type = ARM_CP_NOP, .access = PL0_W, 7792 .fgt = FGT_DCCVAC, 7793 .accessfn = aa64_cacheop_poc_access }, 7794 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7795 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7796 .type = ARM_CP_NOP, .access = PL0_W, 7797 .fgt = FGT_DCCVAP, 7798 .accessfn = aa64_cacheop_poc_access }, 7799 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7800 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7801 .type = ARM_CP_NOP, .access = PL0_W, 7802 .fgt = FGT_DCCVAP, 7803 .accessfn = aa64_cacheop_poc_access }, 7804 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7805 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7806 .type = ARM_CP_NOP, .access = PL0_W, 7807 .fgt = FGT_DCCVADP, 7808 .accessfn = aa64_cacheop_poc_access }, 7809 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7810 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7811 .type = ARM_CP_NOP, .access = PL0_W, 7812 .fgt = FGT_DCCVADP, 7813 .accessfn = aa64_cacheop_poc_access }, 7814 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7815 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7816 .type = ARM_CP_NOP, .access = PL0_W, 7817 .fgt = FGT_DCCIVAC, 7818 .accessfn = aa64_cacheop_poc_access }, 7819 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7820 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7821 .type = ARM_CP_NOP, .access = PL0_W, 7822 .fgt = FGT_DCCIVAC, 7823 .accessfn = aa64_cacheop_poc_access }, 7824 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7825 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7826 .access = PL0_W, .type = ARM_CP_DC_GVA, 7827 #ifndef CONFIG_USER_ONLY 7828 /* Avoid overhead of an access check that always passes in user-mode */ 7829 .accessfn = aa64_zva_access, 7830 .fgt = FGT_DCZVA, 7831 #endif 7832 }, 7833 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7834 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7835 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7836 #ifndef CONFIG_USER_ONLY 7837 /* Avoid overhead of an access check that always passes in user-mode */ 7838 .accessfn = aa64_zva_access, 7839 .fgt = FGT_DCZVA, 7840 #endif 7841 }, 7842 }; 7843 7844 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7845 bool isread) 7846 { 7847 uint64_t hcr = arm_hcr_el2_eff(env); 7848 int el = arm_current_el(env); 7849 7850 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7851 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7852 if (hcr & HCR_TGE) { 7853 return CP_ACCESS_TRAP_EL2; 7854 } 7855 return CP_ACCESS_TRAP; 7856 } 7857 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7858 return CP_ACCESS_TRAP_EL2; 7859 } 7860 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7861 return CP_ACCESS_TRAP_EL2; 7862 } 7863 if (el < 3 7864 && arm_feature(env, ARM_FEATURE_EL3) 7865 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7866 return CP_ACCESS_TRAP_EL3; 7867 } 7868 return CP_ACCESS_OK; 7869 } 7870 7871 static const ARMCPRegInfo scxtnum_reginfo[] = { 7872 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7873 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7874 .access = PL0_RW, .accessfn = access_scxtnum, 7875 .fgt = FGT_SCXTNUM_EL0, 7876 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7877 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7878 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7879 .access = PL1_RW, .accessfn = access_scxtnum, 7880 .fgt = FGT_SCXTNUM_EL1, 7881 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7882 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7883 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7884 .access = PL2_RW, .accessfn = access_scxtnum, 7885 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7886 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7887 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7888 .access = PL3_RW, 7889 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7890 }; 7891 7892 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7893 bool isread) 7894 { 7895 if (arm_current_el(env) == 2 && 7896 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7897 return CP_ACCESS_TRAP_EL3; 7898 } 7899 return CP_ACCESS_OK; 7900 } 7901 7902 static const ARMCPRegInfo fgt_reginfo[] = { 7903 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7904 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7905 .access = PL2_RW, .accessfn = access_fgt, 7906 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7907 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7908 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7909 .access = PL2_RW, .accessfn = access_fgt, 7910 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7911 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7912 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7913 .access = PL2_RW, .accessfn = access_fgt, 7914 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7915 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7916 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7917 .access = PL2_RW, .accessfn = access_fgt, 7918 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7919 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7920 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7921 .access = PL2_RW, .accessfn = access_fgt, 7922 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7923 }; 7924 #endif /* TARGET_AARCH64 */ 7925 7926 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7927 bool isread) 7928 { 7929 int el = arm_current_el(env); 7930 7931 if (el == 0) { 7932 uint64_t sctlr = arm_sctlr(env, el); 7933 if (!(sctlr & SCTLR_EnRCTX)) { 7934 return CP_ACCESS_TRAP; 7935 } 7936 } else if (el == 1) { 7937 uint64_t hcr = arm_hcr_el2_eff(env); 7938 if (hcr & HCR_NV) { 7939 return CP_ACCESS_TRAP_EL2; 7940 } 7941 } 7942 return CP_ACCESS_OK; 7943 } 7944 7945 static const ARMCPRegInfo predinv_reginfo[] = { 7946 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7947 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7948 .fgt = FGT_CFPRCTX, 7949 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7950 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7951 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7952 .fgt = FGT_DVPRCTX, 7953 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7954 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7955 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7956 .fgt = FGT_CPPRCTX, 7957 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7958 /* 7959 * Note the AArch32 opcodes have a different OPC1. 7960 */ 7961 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7962 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7963 .fgt = FGT_CFPRCTX, 7964 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7965 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7966 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7967 .fgt = FGT_DVPRCTX, 7968 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7969 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7970 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7971 .fgt = FGT_CPPRCTX, 7972 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7973 }; 7974 7975 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7976 { 7977 /* Read the high 32 bits of the current CCSIDR */ 7978 return extract64(ccsidr_read(env, ri), 32, 32); 7979 } 7980 7981 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7982 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7983 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7984 .access = PL1_R, 7985 .accessfn = access_tid4, 7986 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7987 }; 7988 7989 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7990 bool isread) 7991 { 7992 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7993 return CP_ACCESS_TRAP_EL2; 7994 } 7995 7996 return CP_ACCESS_OK; 7997 } 7998 7999 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8000 bool isread) 8001 { 8002 if (arm_feature(env, ARM_FEATURE_V8)) { 8003 return access_aa64_tid3(env, ri, isread); 8004 } 8005 8006 return CP_ACCESS_OK; 8007 } 8008 8009 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8010 bool isread) 8011 { 8012 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8013 return CP_ACCESS_TRAP_EL2; 8014 } 8015 8016 return CP_ACCESS_OK; 8017 } 8018 8019 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8020 const ARMCPRegInfo *ri, bool isread) 8021 { 8022 /* 8023 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8024 * in v7A, not in v8A. 8025 */ 8026 if (!arm_feature(env, ARM_FEATURE_V8) && 8027 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8028 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8029 return CP_ACCESS_TRAP_EL2; 8030 } 8031 return CP_ACCESS_OK; 8032 } 8033 8034 static const ARMCPRegInfo jazelle_regs[] = { 8035 { .name = "JIDR", 8036 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8037 .access = PL1_R, .accessfn = access_jazelle, 8038 .type = ARM_CP_CONST, .resetvalue = 0 }, 8039 { .name = "JOSCR", 8040 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8041 .accessfn = access_joscr_jmcr, 8042 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8043 { .name = "JMCR", 8044 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8045 .accessfn = access_joscr_jmcr, 8046 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8047 }; 8048 8049 static const ARMCPRegInfo contextidr_el2 = { 8050 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8051 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8052 .access = PL2_RW, 8053 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8054 }; 8055 8056 static const ARMCPRegInfo vhe_reginfo[] = { 8057 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8058 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8059 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8060 .raw_writefn = raw_write, 8061 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8062 #ifndef CONFIG_USER_ONLY 8063 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8064 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8065 .fieldoffset = 8066 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8067 .type = ARM_CP_IO, .access = PL2_RW, 8068 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8069 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8070 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8071 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8072 .resetfn = gt_hv_timer_reset, 8073 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8074 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8075 .type = ARM_CP_IO, 8076 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8077 .access = PL2_RW, 8078 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8079 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8080 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8081 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8082 .type = ARM_CP_IO | ARM_CP_ALIAS, 8083 .access = PL2_RW, .accessfn = e2h_access, 8084 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8085 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8086 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8087 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8088 .type = ARM_CP_IO | ARM_CP_ALIAS, 8089 .access = PL2_RW, .accessfn = e2h_access, 8090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8091 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8092 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8093 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8094 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8095 .access = PL2_RW, .accessfn = e2h_access, 8096 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8097 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8098 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8099 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8100 .access = PL2_RW, .accessfn = e2h_access, 8101 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8102 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8103 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8104 .type = ARM_CP_IO | ARM_CP_ALIAS, 8105 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8106 .access = PL2_RW, .accessfn = e2h_access, 8107 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8108 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8109 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8110 .type = ARM_CP_IO | ARM_CP_ALIAS, 8111 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8112 .access = PL2_RW, .accessfn = e2h_access, 8113 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8114 #endif 8115 }; 8116 8117 #ifndef CONFIG_USER_ONLY 8118 static const ARMCPRegInfo ats1e1_reginfo[] = { 8119 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8120 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8121 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8122 .fgt = FGT_ATS1E1RP, 8123 .accessfn = at_e012_access, .writefn = ats_write64 }, 8124 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8125 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8126 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8127 .fgt = FGT_ATS1E1WP, 8128 .accessfn = at_e012_access, .writefn = ats_write64 }, 8129 }; 8130 8131 static const ARMCPRegInfo ats1cp_reginfo[] = { 8132 { .name = "ATS1CPRP", 8133 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8134 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8135 .writefn = ats_write }, 8136 { .name = "ATS1CPWP", 8137 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8138 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8139 .writefn = ats_write }, 8140 }; 8141 #endif 8142 8143 /* 8144 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8145 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8146 * is non-zero, which is never for ARMv7, optionally in ARMv8 8147 * and mandatorily for ARMv8.2 and up. 8148 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8149 * implementation is RAZ/WI we can ignore this detail, as we 8150 * do for ACTLR. 8151 */ 8152 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8153 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8154 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8155 .access = PL1_RW, .accessfn = access_tacr, 8156 .type = ARM_CP_CONST, .resetvalue = 0 }, 8157 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8158 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8159 .access = PL2_RW, .type = ARM_CP_CONST, 8160 .resetvalue = 0 }, 8161 }; 8162 8163 void register_cp_regs_for_features(ARMCPU *cpu) 8164 { 8165 /* Register all the coprocessor registers based on feature bits */ 8166 CPUARMState *env = &cpu->env; 8167 if (arm_feature(env, ARM_FEATURE_M)) { 8168 /* M profile has no coprocessor registers */ 8169 return; 8170 } 8171 8172 define_arm_cp_regs(cpu, cp_reginfo); 8173 if (!arm_feature(env, ARM_FEATURE_V8)) { 8174 /* 8175 * Must go early as it is full of wildcards that may be 8176 * overridden by later definitions. 8177 */ 8178 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8179 } 8180 8181 if (arm_feature(env, ARM_FEATURE_V6)) { 8182 /* The ID registers all have impdef reset values */ 8183 ARMCPRegInfo v6_idregs[] = { 8184 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8185 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8186 .access = PL1_R, .type = ARM_CP_CONST, 8187 .accessfn = access_aa32_tid3, 8188 .resetvalue = cpu->isar.id_pfr0 }, 8189 /* 8190 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8191 * the value of the GIC field until after we define these regs. 8192 */ 8193 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8194 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8195 .access = PL1_R, .type = ARM_CP_NO_RAW, 8196 .accessfn = access_aa32_tid3, 8197 #ifdef CONFIG_USER_ONLY 8198 .type = ARM_CP_CONST, 8199 .resetvalue = cpu->isar.id_pfr1, 8200 #else 8201 .type = ARM_CP_NO_RAW, 8202 .accessfn = access_aa32_tid3, 8203 .readfn = id_pfr1_read, 8204 .writefn = arm_cp_write_ignore 8205 #endif 8206 }, 8207 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8209 .access = PL1_R, .type = ARM_CP_CONST, 8210 .accessfn = access_aa32_tid3, 8211 .resetvalue = cpu->isar.id_dfr0 }, 8212 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8213 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8214 .access = PL1_R, .type = ARM_CP_CONST, 8215 .accessfn = access_aa32_tid3, 8216 .resetvalue = cpu->id_afr0 }, 8217 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8218 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8219 .access = PL1_R, .type = ARM_CP_CONST, 8220 .accessfn = access_aa32_tid3, 8221 .resetvalue = cpu->isar.id_mmfr0 }, 8222 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8223 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8224 .access = PL1_R, .type = ARM_CP_CONST, 8225 .accessfn = access_aa32_tid3, 8226 .resetvalue = cpu->isar.id_mmfr1 }, 8227 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8229 .access = PL1_R, .type = ARM_CP_CONST, 8230 .accessfn = access_aa32_tid3, 8231 .resetvalue = cpu->isar.id_mmfr2 }, 8232 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8233 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8234 .access = PL1_R, .type = ARM_CP_CONST, 8235 .accessfn = access_aa32_tid3, 8236 .resetvalue = cpu->isar.id_mmfr3 }, 8237 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8239 .access = PL1_R, .type = ARM_CP_CONST, 8240 .accessfn = access_aa32_tid3, 8241 .resetvalue = cpu->isar.id_isar0 }, 8242 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8243 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8244 .access = PL1_R, .type = ARM_CP_CONST, 8245 .accessfn = access_aa32_tid3, 8246 .resetvalue = cpu->isar.id_isar1 }, 8247 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8249 .access = PL1_R, .type = ARM_CP_CONST, 8250 .accessfn = access_aa32_tid3, 8251 .resetvalue = cpu->isar.id_isar2 }, 8252 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8253 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8254 .access = PL1_R, .type = ARM_CP_CONST, 8255 .accessfn = access_aa32_tid3, 8256 .resetvalue = cpu->isar.id_isar3 }, 8257 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8258 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8259 .access = PL1_R, .type = ARM_CP_CONST, 8260 .accessfn = access_aa32_tid3, 8261 .resetvalue = cpu->isar.id_isar4 }, 8262 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8263 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8264 .access = PL1_R, .type = ARM_CP_CONST, 8265 .accessfn = access_aa32_tid3, 8266 .resetvalue = cpu->isar.id_isar5 }, 8267 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8269 .access = PL1_R, .type = ARM_CP_CONST, 8270 .accessfn = access_aa32_tid3, 8271 .resetvalue = cpu->isar.id_mmfr4 }, 8272 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8274 .access = PL1_R, .type = ARM_CP_CONST, 8275 .accessfn = access_aa32_tid3, 8276 .resetvalue = cpu->isar.id_isar6 }, 8277 }; 8278 define_arm_cp_regs(cpu, v6_idregs); 8279 define_arm_cp_regs(cpu, v6_cp_reginfo); 8280 } else { 8281 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8282 } 8283 if (arm_feature(env, ARM_FEATURE_V6K)) { 8284 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8285 } 8286 if (arm_feature(env, ARM_FEATURE_V7MP) && 8287 !arm_feature(env, ARM_FEATURE_PMSA)) { 8288 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8289 } 8290 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8291 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8292 } 8293 if (arm_feature(env, ARM_FEATURE_V7)) { 8294 ARMCPRegInfo clidr = { 8295 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8296 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8297 .access = PL1_R, .type = ARM_CP_CONST, 8298 .accessfn = access_tid4, 8299 .fgt = FGT_CLIDR_EL1, 8300 .resetvalue = cpu->clidr 8301 }; 8302 define_one_arm_cp_reg(cpu, &clidr); 8303 define_arm_cp_regs(cpu, v7_cp_reginfo); 8304 define_debug_regs(cpu); 8305 define_pmu_regs(cpu); 8306 } else { 8307 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8308 } 8309 if (arm_feature(env, ARM_FEATURE_V8)) { 8310 /* 8311 * v8 ID registers, which all have impdef reset values. 8312 * Note that within the ID register ranges the unused slots 8313 * must all RAZ, not UNDEF; future architecture versions may 8314 * define new registers here. 8315 * ID registers which are AArch64 views of the AArch32 ID registers 8316 * which already existed in v6 and v7 are handled elsewhere, 8317 * in v6_idregs[]. 8318 */ 8319 int i; 8320 ARMCPRegInfo v8_idregs[] = { 8321 /* 8322 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8323 * emulation because we don't know the right value for the 8324 * GIC field until after we define these regs. 8325 */ 8326 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8327 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8328 .access = PL1_R, 8329 #ifdef CONFIG_USER_ONLY 8330 .type = ARM_CP_CONST, 8331 .resetvalue = cpu->isar.id_aa64pfr0 8332 #else 8333 .type = ARM_CP_NO_RAW, 8334 .accessfn = access_aa64_tid3, 8335 .readfn = id_aa64pfr0_read, 8336 .writefn = arm_cp_write_ignore 8337 #endif 8338 }, 8339 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8340 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8341 .access = PL1_R, .type = ARM_CP_CONST, 8342 .accessfn = access_aa64_tid3, 8343 .resetvalue = cpu->isar.id_aa64pfr1}, 8344 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8345 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8346 .access = PL1_R, .type = ARM_CP_CONST, 8347 .accessfn = access_aa64_tid3, 8348 .resetvalue = 0 }, 8349 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8350 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8351 .access = PL1_R, .type = ARM_CP_CONST, 8352 .accessfn = access_aa64_tid3, 8353 .resetvalue = 0 }, 8354 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8355 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8356 .access = PL1_R, .type = ARM_CP_CONST, 8357 .accessfn = access_aa64_tid3, 8358 .resetvalue = cpu->isar.id_aa64zfr0 }, 8359 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8360 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8361 .access = PL1_R, .type = ARM_CP_CONST, 8362 .accessfn = access_aa64_tid3, 8363 .resetvalue = cpu->isar.id_aa64smfr0 }, 8364 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8365 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8366 .access = PL1_R, .type = ARM_CP_CONST, 8367 .accessfn = access_aa64_tid3, 8368 .resetvalue = 0 }, 8369 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8370 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8371 .access = PL1_R, .type = ARM_CP_CONST, 8372 .accessfn = access_aa64_tid3, 8373 .resetvalue = 0 }, 8374 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8375 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8376 .access = PL1_R, .type = ARM_CP_CONST, 8377 .accessfn = access_aa64_tid3, 8378 .resetvalue = cpu->isar.id_aa64dfr0 }, 8379 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8380 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8381 .access = PL1_R, .type = ARM_CP_CONST, 8382 .accessfn = access_aa64_tid3, 8383 .resetvalue = cpu->isar.id_aa64dfr1 }, 8384 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8385 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8386 .access = PL1_R, .type = ARM_CP_CONST, 8387 .accessfn = access_aa64_tid3, 8388 .resetvalue = 0 }, 8389 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8390 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8391 .access = PL1_R, .type = ARM_CP_CONST, 8392 .accessfn = access_aa64_tid3, 8393 .resetvalue = 0 }, 8394 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8395 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8396 .access = PL1_R, .type = ARM_CP_CONST, 8397 .accessfn = access_aa64_tid3, 8398 .resetvalue = cpu->id_aa64afr0 }, 8399 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8401 .access = PL1_R, .type = ARM_CP_CONST, 8402 .accessfn = access_aa64_tid3, 8403 .resetvalue = cpu->id_aa64afr1 }, 8404 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8405 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8406 .access = PL1_R, .type = ARM_CP_CONST, 8407 .accessfn = access_aa64_tid3, 8408 .resetvalue = 0 }, 8409 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8411 .access = PL1_R, .type = ARM_CP_CONST, 8412 .accessfn = access_aa64_tid3, 8413 .resetvalue = 0 }, 8414 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8416 .access = PL1_R, .type = ARM_CP_CONST, 8417 .accessfn = access_aa64_tid3, 8418 .resetvalue = cpu->isar.id_aa64isar0 }, 8419 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8420 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8421 .access = PL1_R, .type = ARM_CP_CONST, 8422 .accessfn = access_aa64_tid3, 8423 .resetvalue = cpu->isar.id_aa64isar1 }, 8424 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8425 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8426 .access = PL1_R, .type = ARM_CP_CONST, 8427 .accessfn = access_aa64_tid3, 8428 .resetvalue = cpu->isar.id_aa64isar2 }, 8429 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8430 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8431 .access = PL1_R, .type = ARM_CP_CONST, 8432 .accessfn = access_aa64_tid3, 8433 .resetvalue = 0 }, 8434 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8436 .access = PL1_R, .type = ARM_CP_CONST, 8437 .accessfn = access_aa64_tid3, 8438 .resetvalue = 0 }, 8439 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8441 .access = PL1_R, .type = ARM_CP_CONST, 8442 .accessfn = access_aa64_tid3, 8443 .resetvalue = 0 }, 8444 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8445 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8446 .access = PL1_R, .type = ARM_CP_CONST, 8447 .accessfn = access_aa64_tid3, 8448 .resetvalue = 0 }, 8449 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8450 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8451 .access = PL1_R, .type = ARM_CP_CONST, 8452 .accessfn = access_aa64_tid3, 8453 .resetvalue = 0 }, 8454 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8456 .access = PL1_R, .type = ARM_CP_CONST, 8457 .accessfn = access_aa64_tid3, 8458 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8459 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8461 .access = PL1_R, .type = ARM_CP_CONST, 8462 .accessfn = access_aa64_tid3, 8463 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8464 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8465 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8466 .access = PL1_R, .type = ARM_CP_CONST, 8467 .accessfn = access_aa64_tid3, 8468 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8469 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8470 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8471 .access = PL1_R, .type = ARM_CP_CONST, 8472 .accessfn = access_aa64_tid3, 8473 .resetvalue = 0 }, 8474 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8476 .access = PL1_R, .type = ARM_CP_CONST, 8477 .accessfn = access_aa64_tid3, 8478 .resetvalue = 0 }, 8479 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8481 .access = PL1_R, .type = ARM_CP_CONST, 8482 .accessfn = access_aa64_tid3, 8483 .resetvalue = 0 }, 8484 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8485 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8486 .access = PL1_R, .type = ARM_CP_CONST, 8487 .accessfn = access_aa64_tid3, 8488 .resetvalue = 0 }, 8489 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8491 .access = PL1_R, .type = ARM_CP_CONST, 8492 .accessfn = access_aa64_tid3, 8493 .resetvalue = 0 }, 8494 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8496 .access = PL1_R, .type = ARM_CP_CONST, 8497 .accessfn = access_aa64_tid3, 8498 .resetvalue = cpu->isar.mvfr0 }, 8499 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8501 .access = PL1_R, .type = ARM_CP_CONST, 8502 .accessfn = access_aa64_tid3, 8503 .resetvalue = cpu->isar.mvfr1 }, 8504 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8506 .access = PL1_R, .type = ARM_CP_CONST, 8507 .accessfn = access_aa64_tid3, 8508 .resetvalue = cpu->isar.mvfr2 }, 8509 /* 8510 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8511 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8512 * as RAZ, since it is in the "reserved for future ID 8513 * registers, RAZ" part of the AArch32 encoding space. 8514 */ 8515 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8516 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8517 .access = PL1_R, .type = ARM_CP_CONST, 8518 .accessfn = access_aa64_tid3, 8519 .resetvalue = 0 }, 8520 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8521 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8522 .access = PL1_R, .type = ARM_CP_CONST, 8523 .accessfn = access_aa64_tid3, 8524 .resetvalue = 0 }, 8525 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8526 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8527 .access = PL1_R, .type = ARM_CP_CONST, 8528 .accessfn = access_aa64_tid3, 8529 .resetvalue = 0 }, 8530 /* 8531 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8532 * they're also RAZ for AArch64, and in v8 are gradually 8533 * being filled with AArch64-view-of-AArch32-ID-register 8534 * for new ID registers. 8535 */ 8536 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8537 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8538 .access = PL1_R, .type = ARM_CP_CONST, 8539 .accessfn = access_aa64_tid3, 8540 .resetvalue = 0 }, 8541 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8542 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8543 .access = PL1_R, .type = ARM_CP_CONST, 8544 .accessfn = access_aa64_tid3, 8545 .resetvalue = cpu->isar.id_pfr2 }, 8546 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8547 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8548 .access = PL1_R, .type = ARM_CP_CONST, 8549 .accessfn = access_aa64_tid3, 8550 .resetvalue = cpu->isar.id_dfr1 }, 8551 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8553 .access = PL1_R, .type = ARM_CP_CONST, 8554 .accessfn = access_aa64_tid3, 8555 .resetvalue = cpu->isar.id_mmfr5 }, 8556 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8557 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8558 .access = PL1_R, .type = ARM_CP_CONST, 8559 .accessfn = access_aa64_tid3, 8560 .resetvalue = 0 }, 8561 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8562 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8563 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8564 .fgt = FGT_PMCEIDN_EL0, 8565 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8566 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8567 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8568 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8569 .fgt = FGT_PMCEIDN_EL0, 8570 .resetvalue = cpu->pmceid0 }, 8571 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8572 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8573 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8574 .fgt = FGT_PMCEIDN_EL0, 8575 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8576 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8577 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8578 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8579 .fgt = FGT_PMCEIDN_EL0, 8580 .resetvalue = cpu->pmceid1 }, 8581 }; 8582 #ifdef CONFIG_USER_ONLY 8583 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8584 { .name = "ID_AA64PFR0_EL1", 8585 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8586 R_ID_AA64PFR0_ADVSIMD_MASK | 8587 R_ID_AA64PFR0_SVE_MASK | 8588 R_ID_AA64PFR0_DIT_MASK, 8589 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8590 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8591 { .name = "ID_AA64PFR1_EL1", 8592 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8593 R_ID_AA64PFR1_SSBS_MASK | 8594 R_ID_AA64PFR1_MTE_MASK | 8595 R_ID_AA64PFR1_SME_MASK }, 8596 { .name = "ID_AA64PFR*_EL1_RESERVED", 8597 .is_glob = true }, 8598 { .name = "ID_AA64ZFR0_EL1", 8599 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8600 R_ID_AA64ZFR0_AES_MASK | 8601 R_ID_AA64ZFR0_BITPERM_MASK | 8602 R_ID_AA64ZFR0_BFLOAT16_MASK | 8603 R_ID_AA64ZFR0_SHA3_MASK | 8604 R_ID_AA64ZFR0_SM4_MASK | 8605 R_ID_AA64ZFR0_I8MM_MASK | 8606 R_ID_AA64ZFR0_F32MM_MASK | 8607 R_ID_AA64ZFR0_F64MM_MASK }, 8608 { .name = "ID_AA64SMFR0_EL1", 8609 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8610 R_ID_AA64SMFR0_BI32I32_MASK | 8611 R_ID_AA64SMFR0_B16F32_MASK | 8612 R_ID_AA64SMFR0_F16F32_MASK | 8613 R_ID_AA64SMFR0_I8I32_MASK | 8614 R_ID_AA64SMFR0_F16F16_MASK | 8615 R_ID_AA64SMFR0_B16B16_MASK | 8616 R_ID_AA64SMFR0_I16I32_MASK | 8617 R_ID_AA64SMFR0_F64F64_MASK | 8618 R_ID_AA64SMFR0_I16I64_MASK | 8619 R_ID_AA64SMFR0_SMEVER_MASK | 8620 R_ID_AA64SMFR0_FA64_MASK }, 8621 { .name = "ID_AA64MMFR0_EL1", 8622 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8623 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8624 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8625 { .name = "ID_AA64MMFR1_EL1", 8626 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8627 { .name = "ID_AA64MMFR2_EL1", 8628 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8629 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8630 .is_glob = true }, 8631 { .name = "ID_AA64DFR0_EL1", 8632 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8633 { .name = "ID_AA64DFR1_EL1" }, 8634 { .name = "ID_AA64DFR*_EL1_RESERVED", 8635 .is_glob = true }, 8636 { .name = "ID_AA64AFR*", 8637 .is_glob = true }, 8638 { .name = "ID_AA64ISAR0_EL1", 8639 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8640 R_ID_AA64ISAR0_SHA1_MASK | 8641 R_ID_AA64ISAR0_SHA2_MASK | 8642 R_ID_AA64ISAR0_CRC32_MASK | 8643 R_ID_AA64ISAR0_ATOMIC_MASK | 8644 R_ID_AA64ISAR0_RDM_MASK | 8645 R_ID_AA64ISAR0_SHA3_MASK | 8646 R_ID_AA64ISAR0_SM3_MASK | 8647 R_ID_AA64ISAR0_SM4_MASK | 8648 R_ID_AA64ISAR0_DP_MASK | 8649 R_ID_AA64ISAR0_FHM_MASK | 8650 R_ID_AA64ISAR0_TS_MASK | 8651 R_ID_AA64ISAR0_RNDR_MASK }, 8652 { .name = "ID_AA64ISAR1_EL1", 8653 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8654 R_ID_AA64ISAR1_APA_MASK | 8655 R_ID_AA64ISAR1_API_MASK | 8656 R_ID_AA64ISAR1_JSCVT_MASK | 8657 R_ID_AA64ISAR1_FCMA_MASK | 8658 R_ID_AA64ISAR1_LRCPC_MASK | 8659 R_ID_AA64ISAR1_GPA_MASK | 8660 R_ID_AA64ISAR1_GPI_MASK | 8661 R_ID_AA64ISAR1_FRINTTS_MASK | 8662 R_ID_AA64ISAR1_SB_MASK | 8663 R_ID_AA64ISAR1_BF16_MASK | 8664 R_ID_AA64ISAR1_DGH_MASK | 8665 R_ID_AA64ISAR1_I8MM_MASK }, 8666 { .name = "ID_AA64ISAR2_EL1", 8667 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8668 R_ID_AA64ISAR2_RPRES_MASK | 8669 R_ID_AA64ISAR2_GPA3_MASK | 8670 R_ID_AA64ISAR2_APA3_MASK | 8671 R_ID_AA64ISAR2_MOPS_MASK | 8672 R_ID_AA64ISAR2_BC_MASK | 8673 R_ID_AA64ISAR2_RPRFM_MASK | 8674 R_ID_AA64ISAR2_CSSC_MASK }, 8675 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8676 .is_glob = true }, 8677 }; 8678 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8679 #endif 8680 /* 8681 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8682 * TODO: For RMR, a write with bit 1 set should do something with 8683 * cpu_reset(). In the meantime, "the bit is strictly a request", 8684 * so we are in spec just ignoring writes. 8685 */ 8686 if (!arm_feature(env, ARM_FEATURE_EL3) && 8687 !arm_feature(env, ARM_FEATURE_EL2)) { 8688 ARMCPRegInfo el1_reset_regs[] = { 8689 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8690 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8691 .access = PL1_R, 8692 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8693 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8694 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8695 .access = PL1_RW, .type = ARM_CP_CONST, 8696 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8697 }; 8698 define_arm_cp_regs(cpu, el1_reset_regs); 8699 } 8700 define_arm_cp_regs(cpu, v8_idregs); 8701 define_arm_cp_regs(cpu, v8_cp_reginfo); 8702 8703 for (i = 4; i < 16; i++) { 8704 /* 8705 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8706 * For pre-v8 cores there are RAZ patterns for these in 8707 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8708 * v8 extends the "must RAZ" part of the ID register space 8709 * to also cover c0, 0, c{8-15}, {0-7}. 8710 * These are STATE_AA32 because in the AArch64 sysreg space 8711 * c4-c7 is where the AArch64 ID registers live (and we've 8712 * already defined those in v8_idregs[]), and c8-c15 are not 8713 * "must RAZ" for AArch64. 8714 */ 8715 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8716 ARMCPRegInfo v8_aa32_raz_idregs = { 8717 .name = name, 8718 .state = ARM_CP_STATE_AA32, 8719 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8720 .access = PL1_R, .type = ARM_CP_CONST, 8721 .accessfn = access_aa64_tid3, 8722 .resetvalue = 0 }; 8723 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8724 } 8725 } 8726 8727 /* 8728 * Register the base EL2 cpregs. 8729 * Pre v8, these registers are implemented only as part of the 8730 * Virtualization Extensions (EL2 present). Beginning with v8, 8731 * if EL2 is missing but EL3 is enabled, mostly these become 8732 * RES0 from EL3, with some specific exceptions. 8733 */ 8734 if (arm_feature(env, ARM_FEATURE_EL2) 8735 || (arm_feature(env, ARM_FEATURE_EL3) 8736 && arm_feature(env, ARM_FEATURE_V8))) { 8737 uint64_t vmpidr_def = mpidr_read_val(env); 8738 ARMCPRegInfo vpidr_regs[] = { 8739 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8740 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8741 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8742 .resetvalue = cpu->midr, 8743 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8744 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8745 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8746 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8747 .access = PL2_RW, .resetvalue = cpu->midr, 8748 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8749 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8750 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8751 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8752 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8753 .resetvalue = vmpidr_def, 8754 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8755 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8756 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8757 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8758 .access = PL2_RW, .resetvalue = vmpidr_def, 8759 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8760 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8761 }; 8762 /* 8763 * The only field of MDCR_EL2 that has a defined architectural reset 8764 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8765 */ 8766 ARMCPRegInfo mdcr_el2 = { 8767 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8768 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8769 .writefn = mdcr_el2_write, 8770 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8771 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8772 }; 8773 define_one_arm_cp_reg(cpu, &mdcr_el2); 8774 define_arm_cp_regs(cpu, vpidr_regs); 8775 define_arm_cp_regs(cpu, el2_cp_reginfo); 8776 if (arm_feature(env, ARM_FEATURE_V8)) { 8777 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8778 } 8779 if (cpu_isar_feature(aa64_sel2, cpu)) { 8780 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8781 } 8782 /* 8783 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8784 * See commentary near RMR_EL1. 8785 */ 8786 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8787 static const ARMCPRegInfo el2_reset_regs[] = { 8788 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8789 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8790 .access = PL2_R, 8791 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8792 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8793 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8794 .access = PL2_R, 8795 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8796 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8797 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8798 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8799 }; 8800 define_arm_cp_regs(cpu, el2_reset_regs); 8801 } 8802 } 8803 8804 /* Register the base EL3 cpregs. */ 8805 if (arm_feature(env, ARM_FEATURE_EL3)) { 8806 define_arm_cp_regs(cpu, el3_cp_reginfo); 8807 ARMCPRegInfo el3_regs[] = { 8808 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8809 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8810 .access = PL3_R, 8811 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8812 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8813 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8814 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8815 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8816 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8817 .access = PL3_RW, .type = ARM_CP_CONST, 8818 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8819 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8820 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8821 .access = PL3_RW, 8822 .raw_writefn = raw_write, .writefn = sctlr_write, 8823 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8824 .resetvalue = cpu->reset_sctlr }, 8825 }; 8826 8827 define_arm_cp_regs(cpu, el3_regs); 8828 } 8829 /* 8830 * The behaviour of NSACR is sufficiently various that we don't 8831 * try to describe it in a single reginfo: 8832 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8833 * reads as constant 0xc00 from NS EL1 and NS EL2 8834 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8835 * if v7 without EL3, register doesn't exist 8836 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8837 */ 8838 if (arm_feature(env, ARM_FEATURE_EL3)) { 8839 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8840 static const ARMCPRegInfo nsacr = { 8841 .name = "NSACR", .type = ARM_CP_CONST, 8842 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8843 .access = PL1_RW, .accessfn = nsacr_access, 8844 .resetvalue = 0xc00 8845 }; 8846 define_one_arm_cp_reg(cpu, &nsacr); 8847 } else { 8848 static const ARMCPRegInfo nsacr = { 8849 .name = "NSACR", 8850 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8851 .access = PL3_RW | PL1_R, 8852 .resetvalue = 0, 8853 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8854 }; 8855 define_one_arm_cp_reg(cpu, &nsacr); 8856 } 8857 } else { 8858 if (arm_feature(env, ARM_FEATURE_V8)) { 8859 static const ARMCPRegInfo nsacr = { 8860 .name = "NSACR", .type = ARM_CP_CONST, 8861 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8862 .access = PL1_R, 8863 .resetvalue = 0xc00 8864 }; 8865 define_one_arm_cp_reg(cpu, &nsacr); 8866 } 8867 } 8868 8869 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8870 if (arm_feature(env, ARM_FEATURE_V6)) { 8871 /* PMSAv6 not implemented */ 8872 assert(arm_feature(env, ARM_FEATURE_V7)); 8873 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8874 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8875 } else { 8876 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8877 } 8878 } else { 8879 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8880 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8881 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8882 if (cpu_isar_feature(aa32_hpd, cpu)) { 8883 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8884 } 8885 } 8886 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8887 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8888 } 8889 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8890 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8891 } 8892 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8893 ARMCPRegInfo vapa_cp_reginfo[] = { 8894 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 8895 .access = PL1_RW, .resetvalue = 0, 8896 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 8897 offsetoflow32(CPUARMState, cp15.par_ns) }, 8898 .writefn = par_write}, 8899 #ifndef CONFIG_USER_ONLY 8900 /* This underdecoding is safe because the reginfo is NO_RAW. */ 8901 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 8902 .access = PL1_W, .accessfn = ats_access, 8903 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 8904 #endif 8905 }; 8906 8907 /* 8908 * When LPAE exists this 32-bit PAR register is an alias of the 8909 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 8910 */ 8911 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8912 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 8913 } 8914 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8915 } 8916 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8917 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8918 } 8919 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8920 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8921 } 8922 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8923 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8924 } 8925 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8926 define_arm_cp_regs(cpu, omap_cp_reginfo); 8927 } 8928 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8929 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8930 } 8931 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8932 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8933 } 8934 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8935 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8936 } 8937 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8938 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8939 } 8940 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8941 define_arm_cp_regs(cpu, jazelle_regs); 8942 } 8943 /* 8944 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8945 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8946 * be read-only (ie write causes UNDEF exception). 8947 */ 8948 { 8949 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8950 /* 8951 * Pre-v8 MIDR space. 8952 * Note that the MIDR isn't a simple constant register because 8953 * of the TI925 behaviour where writes to another register can 8954 * cause the MIDR value to change. 8955 * 8956 * Unimplemented registers in the c15 0 0 0 space default to 8957 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8958 * and friends override accordingly. 8959 */ 8960 { .name = "MIDR", 8961 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8962 .access = PL1_R, .resetvalue = cpu->midr, 8963 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8964 .readfn = midr_read, 8965 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8966 .type = ARM_CP_OVERRIDE }, 8967 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8968 { .name = "DUMMY", 8969 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8970 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8971 { .name = "DUMMY", 8972 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8973 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8974 { .name = "DUMMY", 8975 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8976 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8977 { .name = "DUMMY", 8978 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8979 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8980 { .name = "DUMMY", 8981 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8982 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8983 }; 8984 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8985 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8987 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8988 .fgt = FGT_MIDR_EL1, 8989 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8990 .readfn = midr_read }, 8991 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8992 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8993 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8994 .access = PL1_R, .resetvalue = cpu->midr }, 8995 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8997 .access = PL1_R, 8998 .accessfn = access_aa64_tid1, 8999 .fgt = FGT_REVIDR_EL1, 9000 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9001 }; 9002 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9003 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 9004 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9005 .access = PL1_R, .resetvalue = cpu->midr 9006 }; 9007 ARMCPRegInfo id_cp_reginfo[] = { 9008 /* These are common to v8 and pre-v8 */ 9009 { .name = "CTR", 9010 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9011 .access = PL1_R, .accessfn = ctr_el0_access, 9012 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9013 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9014 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9015 .access = PL0_R, .accessfn = ctr_el0_access, 9016 .fgt = FGT_CTR_EL0, 9017 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9018 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9019 { .name = "TCMTR", 9020 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9021 .access = PL1_R, 9022 .accessfn = access_aa32_tid1, 9023 .type = ARM_CP_CONST, .resetvalue = 0 }, 9024 }; 9025 /* TLBTR is specific to VMSA */ 9026 ARMCPRegInfo id_tlbtr_reginfo = { 9027 .name = "TLBTR", 9028 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9029 .access = PL1_R, 9030 .accessfn = access_aa32_tid1, 9031 .type = ARM_CP_CONST, .resetvalue = 0, 9032 }; 9033 /* MPUIR is specific to PMSA V6+ */ 9034 ARMCPRegInfo id_mpuir_reginfo = { 9035 .name = "MPUIR", 9036 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9037 .access = PL1_R, .type = ARM_CP_CONST, 9038 .resetvalue = cpu->pmsav7_dregion << 8 9039 }; 9040 /* HMPUIR is specific to PMSA V8 */ 9041 ARMCPRegInfo id_hmpuir_reginfo = { 9042 .name = "HMPUIR", 9043 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9044 .access = PL2_R, .type = ARM_CP_CONST, 9045 .resetvalue = cpu->pmsav8r_hdregion 9046 }; 9047 static const ARMCPRegInfo crn0_wi_reginfo = { 9048 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9049 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9050 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9051 }; 9052 #ifdef CONFIG_USER_ONLY 9053 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9054 { .name = "MIDR_EL1", 9055 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9056 R_MIDR_EL1_PARTNUM_MASK | 9057 R_MIDR_EL1_ARCHITECTURE_MASK | 9058 R_MIDR_EL1_VARIANT_MASK | 9059 R_MIDR_EL1_IMPLEMENTER_MASK }, 9060 { .name = "REVIDR_EL1" }, 9061 }; 9062 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9063 #endif 9064 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9065 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9066 size_t i; 9067 /* 9068 * Register the blanket "writes ignored" value first to cover the 9069 * whole space. Then update the specific ID registers to allow write 9070 * access, so that they ignore writes rather than causing them to 9071 * UNDEF. 9072 */ 9073 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9074 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9075 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9076 } 9077 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9078 id_cp_reginfo[i].access = PL1_RW; 9079 } 9080 id_mpuir_reginfo.access = PL1_RW; 9081 id_tlbtr_reginfo.access = PL1_RW; 9082 } 9083 if (arm_feature(env, ARM_FEATURE_V8)) { 9084 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9085 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9086 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9087 } 9088 } else { 9089 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9090 } 9091 define_arm_cp_regs(cpu, id_cp_reginfo); 9092 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9093 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9094 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9095 arm_feature(env, ARM_FEATURE_V8)) { 9096 uint32_t i = 0; 9097 char *tmp_string; 9098 9099 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9100 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9101 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9102 9103 /* Register alias is only valid for first 32 indexes */ 9104 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9105 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9106 uint8_t opc1 = extract32(i, 4, 1); 9107 uint8_t opc2 = extract32(i, 0, 1) << 2; 9108 9109 tmp_string = g_strdup_printf("PRBAR%u", i); 9110 ARMCPRegInfo tmp_prbarn_reginfo = { 9111 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9112 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9113 .access = PL1_RW, .resetvalue = 0, 9114 .accessfn = access_tvm_trvm, 9115 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9116 }; 9117 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9118 g_free(tmp_string); 9119 9120 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9121 tmp_string = g_strdup_printf("PRLAR%u", i); 9122 ARMCPRegInfo tmp_prlarn_reginfo = { 9123 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9124 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9125 .access = PL1_RW, .resetvalue = 0, 9126 .accessfn = access_tvm_trvm, 9127 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9128 }; 9129 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9130 g_free(tmp_string); 9131 } 9132 9133 /* Register alias is only valid for first 32 indexes */ 9134 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9135 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9136 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9137 uint8_t opc2 = extract32(i, 0, 1) << 2; 9138 9139 tmp_string = g_strdup_printf("HPRBAR%u", i); 9140 ARMCPRegInfo tmp_hprbarn_reginfo = { 9141 .name = tmp_string, 9142 .type = ARM_CP_NO_RAW, 9143 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9144 .access = PL2_RW, .resetvalue = 0, 9145 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9146 }; 9147 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9148 g_free(tmp_string); 9149 9150 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9151 tmp_string = g_strdup_printf("HPRLAR%u", i); 9152 ARMCPRegInfo tmp_hprlarn_reginfo = { 9153 .name = tmp_string, 9154 .type = ARM_CP_NO_RAW, 9155 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9156 .access = PL2_RW, .resetvalue = 0, 9157 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9158 }; 9159 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9160 g_free(tmp_string); 9161 } 9162 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9163 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9164 } 9165 } 9166 9167 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9168 ARMCPRegInfo mpidr_cp_reginfo[] = { 9169 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9170 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9171 .fgt = FGT_MPIDR_EL1, 9172 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9173 }; 9174 #ifdef CONFIG_USER_ONLY 9175 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9176 { .name = "MPIDR_EL1", 9177 .fixed_bits = 0x0000000080000000 }, 9178 }; 9179 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9180 #endif 9181 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9182 } 9183 9184 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9185 ARMCPRegInfo auxcr_reginfo[] = { 9186 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9187 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9188 .access = PL1_RW, .accessfn = access_tacr, 9189 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9190 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9191 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9192 .access = PL2_RW, .type = ARM_CP_CONST, 9193 .resetvalue = 0 }, 9194 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9195 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9196 .access = PL3_RW, .type = ARM_CP_CONST, 9197 .resetvalue = 0 }, 9198 }; 9199 define_arm_cp_regs(cpu, auxcr_reginfo); 9200 if (cpu_isar_feature(aa32_ac2, cpu)) { 9201 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9202 } 9203 } 9204 9205 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9206 /* 9207 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9208 * There are two flavours: 9209 * (1) older 32-bit only cores have a simple 32-bit CBAR 9210 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9211 * 32-bit register visible to AArch32 at a different encoding 9212 * to the "flavour 1" register and with the bits rearranged to 9213 * be able to squash a 64-bit address into the 32-bit view. 9214 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9215 * in future if we support AArch32-only configs of some of the 9216 * AArch64 cores we might need to add a specific feature flag 9217 * to indicate cores with "flavour 2" CBAR. 9218 */ 9219 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9220 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9221 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9222 | extract64(cpu->reset_cbar, 32, 12); 9223 ARMCPRegInfo cbar_reginfo[] = { 9224 { .name = "CBAR", 9225 .type = ARM_CP_CONST, 9226 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9227 .access = PL1_R, .resetvalue = cbar32 }, 9228 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9229 .type = ARM_CP_CONST, 9230 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9231 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9232 }; 9233 /* We don't implement a r/w 64 bit CBAR currently */ 9234 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9235 define_arm_cp_regs(cpu, cbar_reginfo); 9236 } else { 9237 ARMCPRegInfo cbar = { 9238 .name = "CBAR", 9239 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9240 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9241 .fieldoffset = offsetof(CPUARMState, 9242 cp15.c15_config_base_address) 9243 }; 9244 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9245 cbar.access = PL1_R; 9246 cbar.fieldoffset = 0; 9247 cbar.type = ARM_CP_CONST; 9248 } 9249 define_one_arm_cp_reg(cpu, &cbar); 9250 } 9251 } 9252 9253 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9254 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9255 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9256 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9257 .access = PL1_RW, .writefn = vbar_write, 9258 .fgt = FGT_VBAR_EL1, 9259 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9260 offsetof(CPUARMState, cp15.vbar_ns) }, 9261 .resetvalue = 0 }, 9262 }; 9263 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9264 } 9265 9266 /* Generic registers whose values depend on the implementation */ 9267 { 9268 ARMCPRegInfo sctlr = { 9269 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9270 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9271 .access = PL1_RW, .accessfn = access_tvm_trvm, 9272 .fgt = FGT_SCTLR_EL1, 9273 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9274 offsetof(CPUARMState, cp15.sctlr_ns) }, 9275 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9276 .raw_writefn = raw_write, 9277 }; 9278 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9279 /* 9280 * Normally we would always end the TB on an SCTLR write, but Linux 9281 * arch/arm/mach-pxa/sleep.S expects two instructions following 9282 * an MMU enable to execute from cache. Imitate this behaviour. 9283 */ 9284 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9285 } 9286 define_one_arm_cp_reg(cpu, &sctlr); 9287 9288 if (arm_feature(env, ARM_FEATURE_PMSA) && 9289 arm_feature(env, ARM_FEATURE_V8)) { 9290 ARMCPRegInfo vsctlr = { 9291 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9292 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9293 .access = PL2_RW, .resetvalue = 0x0, 9294 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9295 }; 9296 define_one_arm_cp_reg(cpu, &vsctlr); 9297 } 9298 } 9299 9300 if (cpu_isar_feature(aa64_lor, cpu)) { 9301 define_arm_cp_regs(cpu, lor_reginfo); 9302 } 9303 if (cpu_isar_feature(aa64_pan, cpu)) { 9304 define_one_arm_cp_reg(cpu, &pan_reginfo); 9305 } 9306 #ifndef CONFIG_USER_ONLY 9307 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9308 define_arm_cp_regs(cpu, ats1e1_reginfo); 9309 } 9310 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9311 define_arm_cp_regs(cpu, ats1cp_reginfo); 9312 } 9313 #endif 9314 if (cpu_isar_feature(aa64_uao, cpu)) { 9315 define_one_arm_cp_reg(cpu, &uao_reginfo); 9316 } 9317 9318 if (cpu_isar_feature(aa64_dit, cpu)) { 9319 define_one_arm_cp_reg(cpu, &dit_reginfo); 9320 } 9321 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9322 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9323 } 9324 if (cpu_isar_feature(any_ras, cpu)) { 9325 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9326 } 9327 9328 if (cpu_isar_feature(aa64_vh, cpu) || 9329 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9330 define_one_arm_cp_reg(cpu, &contextidr_el2); 9331 } 9332 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9333 define_arm_cp_regs(cpu, vhe_reginfo); 9334 } 9335 9336 if (cpu_isar_feature(aa64_sve, cpu)) { 9337 define_arm_cp_regs(cpu, zcr_reginfo); 9338 } 9339 9340 if (cpu_isar_feature(aa64_hcx, cpu)) { 9341 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9342 } 9343 9344 #ifdef TARGET_AARCH64 9345 if (cpu_isar_feature(aa64_sme, cpu)) { 9346 define_arm_cp_regs(cpu, sme_reginfo); 9347 } 9348 if (cpu_isar_feature(aa64_pauth, cpu)) { 9349 define_arm_cp_regs(cpu, pauth_reginfo); 9350 } 9351 if (cpu_isar_feature(aa64_rndr, cpu)) { 9352 define_arm_cp_regs(cpu, rndr_reginfo); 9353 } 9354 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9355 define_arm_cp_regs(cpu, tlbirange_reginfo); 9356 } 9357 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9358 define_arm_cp_regs(cpu, tlbios_reginfo); 9359 } 9360 /* Data Cache clean instructions up to PoP */ 9361 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9362 define_one_arm_cp_reg(cpu, dcpop_reg); 9363 9364 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9365 define_one_arm_cp_reg(cpu, dcpodp_reg); 9366 } 9367 } 9368 9369 /* 9370 * If full MTE is enabled, add all of the system registers. 9371 * If only "instructions available at EL0" are enabled, 9372 * then define only a RAZ/WI version of PSTATE.TCO. 9373 */ 9374 if (cpu_isar_feature(aa64_mte, cpu)) { 9375 ARMCPRegInfo gmid_reginfo = { 9376 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9377 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9378 .access = PL1_R, .accessfn = access_aa64_tid5, 9379 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9380 }; 9381 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9382 define_arm_cp_regs(cpu, mte_reginfo); 9383 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9384 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9385 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9386 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9387 } 9388 9389 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9390 define_arm_cp_regs(cpu, scxtnum_reginfo); 9391 } 9392 9393 if (cpu_isar_feature(aa64_fgt, cpu)) { 9394 define_arm_cp_regs(cpu, fgt_reginfo); 9395 } 9396 9397 if (cpu_isar_feature(aa64_rme, cpu)) { 9398 define_arm_cp_regs(cpu, rme_reginfo); 9399 if (cpu_isar_feature(aa64_mte, cpu)) { 9400 define_arm_cp_regs(cpu, rme_mte_reginfo); 9401 } 9402 } 9403 #endif 9404 9405 if (cpu_isar_feature(any_predinv, cpu)) { 9406 define_arm_cp_regs(cpu, predinv_reginfo); 9407 } 9408 9409 if (cpu_isar_feature(any_ccidx, cpu)) { 9410 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9411 } 9412 9413 #ifndef CONFIG_USER_ONLY 9414 /* 9415 * Register redirections and aliases must be done last, 9416 * after the registers from the other extensions have been defined. 9417 */ 9418 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9419 define_arm_vh_e2h_redirects_aliases(cpu); 9420 } 9421 #endif 9422 } 9423 9424 /* Sort alphabetically by type name, except for "any". */ 9425 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9426 { 9427 ObjectClass *class_a = (ObjectClass *)a; 9428 ObjectClass *class_b = (ObjectClass *)b; 9429 const char *name_a, *name_b; 9430 9431 name_a = object_class_get_name(class_a); 9432 name_b = object_class_get_name(class_b); 9433 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9434 return 1; 9435 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9436 return -1; 9437 } else { 9438 return strcmp(name_a, name_b); 9439 } 9440 } 9441 9442 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9443 { 9444 ObjectClass *oc = data; 9445 CPUClass *cc = CPU_CLASS(oc); 9446 const char *typename; 9447 char *name; 9448 9449 typename = object_class_get_name(oc); 9450 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9451 if (cc->deprecation_note) { 9452 qemu_printf(" %s (deprecated)\n", name); 9453 } else { 9454 qemu_printf(" %s\n", name); 9455 } 9456 g_free(name); 9457 } 9458 9459 void arm_cpu_list(void) 9460 { 9461 GSList *list; 9462 9463 list = object_class_get_list(TYPE_ARM_CPU, false); 9464 list = g_slist_sort(list, arm_cpu_list_compare); 9465 qemu_printf("Available CPUs:\n"); 9466 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9467 g_slist_free(list); 9468 } 9469 9470 /* 9471 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9472 * add a single reginfo struct to the hash table. 9473 */ 9474 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9475 void *opaque, CPState state, 9476 CPSecureState secstate, 9477 int crm, int opc1, int opc2, 9478 const char *name) 9479 { 9480 CPUARMState *env = &cpu->env; 9481 uint32_t key; 9482 ARMCPRegInfo *r2; 9483 bool is64 = r->type & ARM_CP_64BIT; 9484 bool ns = secstate & ARM_CP_SECSTATE_NS; 9485 int cp = r->cp; 9486 size_t name_len; 9487 bool make_const; 9488 9489 switch (state) { 9490 case ARM_CP_STATE_AA32: 9491 /* We assume it is a cp15 register if the .cp field is left unset. */ 9492 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9493 cp = 15; 9494 } 9495 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9496 break; 9497 case ARM_CP_STATE_AA64: 9498 /* 9499 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9500 * cp == 0 as equivalent to the value for "standard guest-visible 9501 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9502 * in their AArch64 view (the .cp value may be non-zero for the 9503 * benefit of the AArch32 view). 9504 */ 9505 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9506 cp = CP_REG_ARM64_SYSREG_CP; 9507 } 9508 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9509 break; 9510 default: 9511 g_assert_not_reached(); 9512 } 9513 9514 /* Overriding of an existing definition must be explicitly requested. */ 9515 if (!(r->type & ARM_CP_OVERRIDE)) { 9516 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9517 if (oldreg) { 9518 assert(oldreg->type & ARM_CP_OVERRIDE); 9519 } 9520 } 9521 9522 /* 9523 * Eliminate registers that are not present because the EL is missing. 9524 * Doing this here makes it easier to put all registers for a given 9525 * feature into the same ARMCPRegInfo array and define them all at once. 9526 */ 9527 make_const = false; 9528 if (arm_feature(env, ARM_FEATURE_EL3)) { 9529 /* 9530 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9531 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9532 */ 9533 int min_el = ctz32(r->access) / 2; 9534 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9535 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9536 return; 9537 } 9538 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9539 } 9540 } else { 9541 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9542 ? PL2_RW : PL1_RW); 9543 if ((r->access & max_el) == 0) { 9544 return; 9545 } 9546 } 9547 9548 /* Combine cpreg and name into one allocation. */ 9549 name_len = strlen(name) + 1; 9550 r2 = g_malloc(sizeof(*r2) + name_len); 9551 *r2 = *r; 9552 r2->name = memcpy(r2 + 1, name, name_len); 9553 9554 /* 9555 * Update fields to match the instantiation, overwiting wildcards 9556 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9557 */ 9558 r2->cp = cp; 9559 r2->crm = crm; 9560 r2->opc1 = opc1; 9561 r2->opc2 = opc2; 9562 r2->state = state; 9563 r2->secure = secstate; 9564 if (opaque) { 9565 r2->opaque = opaque; 9566 } 9567 9568 if (make_const) { 9569 /* This should not have been a very special register to begin. */ 9570 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9571 assert(old_special == 0 || old_special == ARM_CP_NOP); 9572 /* 9573 * Set the special function to CONST, retaining the other flags. 9574 * This is important for e.g. ARM_CP_SVE so that we still 9575 * take the SVE trap if CPTR_EL3.EZ == 0. 9576 */ 9577 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9578 /* 9579 * Usually, these registers become RES0, but there are a few 9580 * special cases like VPIDR_EL2 which have a constant non-zero 9581 * value with writes ignored. 9582 */ 9583 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9584 r2->resetvalue = 0; 9585 } 9586 /* 9587 * ARM_CP_CONST has precedence, so removing the callbacks and 9588 * offsets are not strictly necessary, but it is potentially 9589 * less confusing to debug later. 9590 */ 9591 r2->readfn = NULL; 9592 r2->writefn = NULL; 9593 r2->raw_readfn = NULL; 9594 r2->raw_writefn = NULL; 9595 r2->resetfn = NULL; 9596 r2->fieldoffset = 0; 9597 r2->bank_fieldoffsets[0] = 0; 9598 r2->bank_fieldoffsets[1] = 0; 9599 } else { 9600 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9601 9602 if (isbanked) { 9603 /* 9604 * Register is banked (using both entries in array). 9605 * Overwriting fieldoffset as the array is only used to define 9606 * banked registers but later only fieldoffset is used. 9607 */ 9608 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9609 } 9610 if (state == ARM_CP_STATE_AA32) { 9611 if (isbanked) { 9612 /* 9613 * If the register is banked then we don't need to migrate or 9614 * reset the 32-bit instance in certain cases: 9615 * 9616 * 1) If the register has both 32-bit and 64-bit instances 9617 * then we can count on the 64-bit instance taking care 9618 * of the non-secure bank. 9619 * 2) If ARMv8 is enabled then we can count on a 64-bit 9620 * version taking care of the secure bank. This requires 9621 * that separate 32 and 64-bit definitions are provided. 9622 */ 9623 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9624 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9625 r2->type |= ARM_CP_ALIAS; 9626 } 9627 } else if ((secstate != r->secure) && !ns) { 9628 /* 9629 * The register is not banked so we only want to allow 9630 * migration of the non-secure instance. 9631 */ 9632 r2->type |= ARM_CP_ALIAS; 9633 } 9634 9635 if (HOST_BIG_ENDIAN && 9636 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9637 r2->fieldoffset += sizeof(uint32_t); 9638 } 9639 } 9640 } 9641 9642 /* 9643 * By convention, for wildcarded registers only the first 9644 * entry is used for migration; the others are marked as 9645 * ALIAS so we don't try to transfer the register 9646 * multiple times. Special registers (ie NOP/WFI) are 9647 * never migratable and not even raw-accessible. 9648 */ 9649 if (r2->type & ARM_CP_SPECIAL_MASK) { 9650 r2->type |= ARM_CP_NO_RAW; 9651 } 9652 if (((r->crm == CP_ANY) && crm != 0) || 9653 ((r->opc1 == CP_ANY) && opc1 != 0) || 9654 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9655 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9656 } 9657 9658 /* 9659 * Check that raw accesses are either forbidden or handled. Note that 9660 * we can't assert this earlier because the setup of fieldoffset for 9661 * banked registers has to be done first. 9662 */ 9663 if (!(r2->type & ARM_CP_NO_RAW)) { 9664 assert(!raw_accessors_invalid(r2)); 9665 } 9666 9667 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9668 } 9669 9670 9671 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9672 const ARMCPRegInfo *r, void *opaque) 9673 { 9674 /* 9675 * Define implementations of coprocessor registers. 9676 * We store these in a hashtable because typically 9677 * there are less than 150 registers in a space which 9678 * is 16*16*16*8*8 = 262144 in size. 9679 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9680 * If a register is defined twice then the second definition is 9681 * used, so this can be used to define some generic registers and 9682 * then override them with implementation specific variations. 9683 * At least one of the original and the second definition should 9684 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9685 * against accidental use. 9686 * 9687 * The state field defines whether the register is to be 9688 * visible in the AArch32 or AArch64 execution state. If the 9689 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9690 * reginfo structure for the AArch32 view, which sees the lower 9691 * 32 bits of the 64 bit register. 9692 * 9693 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9694 * be wildcarded. AArch64 registers are always considered to be 64 9695 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9696 * the register, if any. 9697 */ 9698 int crm, opc1, opc2; 9699 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9700 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9701 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9702 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9703 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9704 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9705 CPState state; 9706 9707 /* 64 bit registers have only CRm and Opc1 fields */ 9708 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9709 /* op0 only exists in the AArch64 encodings */ 9710 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9711 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9712 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9713 /* 9714 * This API is only for Arm's system coprocessors (14 and 15) or 9715 * (M-profile or v7A-and-earlier only) for implementation defined 9716 * coprocessors in the range 0..7. Our decode assumes this, since 9717 * 8..13 can be used for other insns including VFP and Neon. See 9718 * valid_cp() in translate.c. Assert here that we haven't tried 9719 * to use an invalid coprocessor number. 9720 */ 9721 switch (r->state) { 9722 case ARM_CP_STATE_BOTH: 9723 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9724 if (r->cp == 0) { 9725 break; 9726 } 9727 /* fall through */ 9728 case ARM_CP_STATE_AA32: 9729 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9730 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9731 assert(r->cp >= 14 && r->cp <= 15); 9732 } else { 9733 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9734 } 9735 break; 9736 case ARM_CP_STATE_AA64: 9737 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9738 break; 9739 default: 9740 g_assert_not_reached(); 9741 } 9742 /* 9743 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9744 * encodes a minimum access level for the register. We roll this 9745 * runtime check into our general permission check code, so check 9746 * here that the reginfo's specified permissions are strict enough 9747 * to encompass the generic architectural permission check. 9748 */ 9749 if (r->state != ARM_CP_STATE_AA32) { 9750 CPAccessRights mask; 9751 switch (r->opc1) { 9752 case 0: 9753 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9754 mask = PL0U_R | PL1_RW; 9755 break; 9756 case 1: case 2: 9757 /* min_EL EL1 */ 9758 mask = PL1_RW; 9759 break; 9760 case 3: 9761 /* min_EL EL0 */ 9762 mask = PL0_RW; 9763 break; 9764 case 4: 9765 case 5: 9766 /* min_EL EL2 */ 9767 mask = PL2_RW; 9768 break; 9769 case 6: 9770 /* min_EL EL3 */ 9771 mask = PL3_RW; 9772 break; 9773 case 7: 9774 /* min_EL EL1, secure mode only (we don't check the latter) */ 9775 mask = PL1_RW; 9776 break; 9777 default: 9778 /* broken reginfo with out-of-range opc1 */ 9779 g_assert_not_reached(); 9780 } 9781 /* assert our permissions are not too lax (stricter is fine) */ 9782 assert((r->access & ~mask) == 0); 9783 } 9784 9785 /* 9786 * Check that the register definition has enough info to handle 9787 * reads and writes if they are permitted. 9788 */ 9789 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9790 if (r->access & PL3_R) { 9791 assert((r->fieldoffset || 9792 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9793 r->readfn); 9794 } 9795 if (r->access & PL3_W) { 9796 assert((r->fieldoffset || 9797 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9798 r->writefn); 9799 } 9800 } 9801 9802 for (crm = crmmin; crm <= crmmax; crm++) { 9803 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9804 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9805 for (state = ARM_CP_STATE_AA32; 9806 state <= ARM_CP_STATE_AA64; state++) { 9807 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9808 continue; 9809 } 9810 if (state == ARM_CP_STATE_AA32) { 9811 /* 9812 * Under AArch32 CP registers can be common 9813 * (same for secure and non-secure world) or banked. 9814 */ 9815 char *name; 9816 9817 switch (r->secure) { 9818 case ARM_CP_SECSTATE_S: 9819 case ARM_CP_SECSTATE_NS: 9820 add_cpreg_to_hashtable(cpu, r, opaque, state, 9821 r->secure, crm, opc1, opc2, 9822 r->name); 9823 break; 9824 case ARM_CP_SECSTATE_BOTH: 9825 name = g_strdup_printf("%s_S", r->name); 9826 add_cpreg_to_hashtable(cpu, r, opaque, state, 9827 ARM_CP_SECSTATE_S, 9828 crm, opc1, opc2, name); 9829 g_free(name); 9830 add_cpreg_to_hashtable(cpu, r, opaque, state, 9831 ARM_CP_SECSTATE_NS, 9832 crm, opc1, opc2, r->name); 9833 break; 9834 default: 9835 g_assert_not_reached(); 9836 } 9837 } else { 9838 /* 9839 * AArch64 registers get mapped to non-secure instance 9840 * of AArch32 9841 */ 9842 add_cpreg_to_hashtable(cpu, r, opaque, state, 9843 ARM_CP_SECSTATE_NS, 9844 crm, opc1, opc2, r->name); 9845 } 9846 } 9847 } 9848 } 9849 } 9850 } 9851 9852 /* Define a whole list of registers */ 9853 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9854 void *opaque, size_t len) 9855 { 9856 size_t i; 9857 for (i = 0; i < len; ++i) { 9858 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9859 } 9860 } 9861 9862 /* 9863 * Modify ARMCPRegInfo for access from userspace. 9864 * 9865 * This is a data driven modification directed by 9866 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9867 * user-space cannot alter any values and dynamic values pertaining to 9868 * execution state are hidden from user space view anyway. 9869 */ 9870 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9871 const ARMCPRegUserSpaceInfo *mods, 9872 size_t mods_len) 9873 { 9874 for (size_t mi = 0; mi < mods_len; ++mi) { 9875 const ARMCPRegUserSpaceInfo *m = mods + mi; 9876 GPatternSpec *pat = NULL; 9877 9878 if (m->is_glob) { 9879 pat = g_pattern_spec_new(m->name); 9880 } 9881 for (size_t ri = 0; ri < regs_len; ++ri) { 9882 ARMCPRegInfo *r = regs + ri; 9883 9884 if (pat && g_pattern_match_string(pat, r->name)) { 9885 r->type = ARM_CP_CONST; 9886 r->access = PL0U_R; 9887 r->resetvalue = 0; 9888 /* continue */ 9889 } else if (strcmp(r->name, m->name) == 0) { 9890 r->type = ARM_CP_CONST; 9891 r->access = PL0U_R; 9892 r->resetvalue &= m->exported_bits; 9893 r->resetvalue |= m->fixed_bits; 9894 break; 9895 } 9896 } 9897 if (pat) { 9898 g_pattern_spec_free(pat); 9899 } 9900 } 9901 } 9902 9903 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9904 { 9905 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9906 } 9907 9908 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9909 uint64_t value) 9910 { 9911 /* Helper coprocessor write function for write-ignore registers */ 9912 } 9913 9914 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9915 { 9916 /* Helper coprocessor write function for read-as-zero registers */ 9917 return 0; 9918 } 9919 9920 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9921 { 9922 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9923 } 9924 9925 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9926 { 9927 /* 9928 * Return true if it is not valid for us to switch to 9929 * this CPU mode (ie all the UNPREDICTABLE cases in 9930 * the ARM ARM CPSRWriteByInstr pseudocode). 9931 */ 9932 9933 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9934 if (write_type == CPSRWriteByInstr && 9935 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9936 mode == ARM_CPU_MODE_HYP)) { 9937 return 1; 9938 } 9939 9940 switch (mode) { 9941 case ARM_CPU_MODE_USR: 9942 return 0; 9943 case ARM_CPU_MODE_SYS: 9944 case ARM_CPU_MODE_SVC: 9945 case ARM_CPU_MODE_ABT: 9946 case ARM_CPU_MODE_UND: 9947 case ARM_CPU_MODE_IRQ: 9948 case ARM_CPU_MODE_FIQ: 9949 /* 9950 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9951 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9952 */ 9953 /* 9954 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9955 * and CPS are treated as illegal mode changes. 9956 */ 9957 if (write_type == CPSRWriteByInstr && 9958 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9959 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9960 return 1; 9961 } 9962 return 0; 9963 case ARM_CPU_MODE_HYP: 9964 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9965 case ARM_CPU_MODE_MON: 9966 return arm_current_el(env) < 3; 9967 default: 9968 return 1; 9969 } 9970 } 9971 9972 uint32_t cpsr_read(CPUARMState *env) 9973 { 9974 int ZF; 9975 ZF = (env->ZF == 0); 9976 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9977 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9978 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9979 | ((env->condexec_bits & 0xfc) << 8) 9980 | (env->GE << 16) | (env->daif & CPSR_AIF); 9981 } 9982 9983 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9984 CPSRWriteType write_type) 9985 { 9986 uint32_t changed_daif; 9987 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9988 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9989 9990 if (mask & CPSR_NZCV) { 9991 env->ZF = (~val) & CPSR_Z; 9992 env->NF = val; 9993 env->CF = (val >> 29) & 1; 9994 env->VF = (val << 3) & 0x80000000; 9995 } 9996 if (mask & CPSR_Q) { 9997 env->QF = ((val & CPSR_Q) != 0); 9998 } 9999 if (mask & CPSR_T) { 10000 env->thumb = ((val & CPSR_T) != 0); 10001 } 10002 if (mask & CPSR_IT_0_1) { 10003 env->condexec_bits &= ~3; 10004 env->condexec_bits |= (val >> 25) & 3; 10005 } 10006 if (mask & CPSR_IT_2_7) { 10007 env->condexec_bits &= 3; 10008 env->condexec_bits |= (val >> 8) & 0xfc; 10009 } 10010 if (mask & CPSR_GE) { 10011 env->GE = (val >> 16) & 0xf; 10012 } 10013 10014 /* 10015 * In a V7 implementation that includes the security extensions but does 10016 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10017 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10018 * bits respectively. 10019 * 10020 * In a V8 implementation, it is permitted for privileged software to 10021 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10022 */ 10023 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10024 arm_feature(env, ARM_FEATURE_EL3) && 10025 !arm_feature(env, ARM_FEATURE_EL2) && 10026 !arm_is_secure(env)) { 10027 10028 changed_daif = (env->daif ^ val) & mask; 10029 10030 if (changed_daif & CPSR_A) { 10031 /* 10032 * Check to see if we are allowed to change the masking of async 10033 * abort exceptions from a non-secure state. 10034 */ 10035 if (!(env->cp15.scr_el3 & SCR_AW)) { 10036 qemu_log_mask(LOG_GUEST_ERROR, 10037 "Ignoring attempt to switch CPSR_A flag from " 10038 "non-secure world with SCR.AW bit clear\n"); 10039 mask &= ~CPSR_A; 10040 } 10041 } 10042 10043 if (changed_daif & CPSR_F) { 10044 /* 10045 * Check to see if we are allowed to change the masking of FIQ 10046 * exceptions from a non-secure state. 10047 */ 10048 if (!(env->cp15.scr_el3 & SCR_FW)) { 10049 qemu_log_mask(LOG_GUEST_ERROR, 10050 "Ignoring attempt to switch CPSR_F flag from " 10051 "non-secure world with SCR.FW bit clear\n"); 10052 mask &= ~CPSR_F; 10053 } 10054 10055 /* 10056 * Check whether non-maskable FIQ (NMFI) support is enabled. 10057 * If this bit is set software is not allowed to mask 10058 * FIQs, but is allowed to set CPSR_F to 0. 10059 */ 10060 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10061 (val & CPSR_F)) { 10062 qemu_log_mask(LOG_GUEST_ERROR, 10063 "Ignoring attempt to enable CPSR_F flag " 10064 "(non-maskable FIQ [NMFI] support enabled)\n"); 10065 mask &= ~CPSR_F; 10066 } 10067 } 10068 } 10069 10070 env->daif &= ~(CPSR_AIF & mask); 10071 env->daif |= val & CPSR_AIF & mask; 10072 10073 if (write_type != CPSRWriteRaw && 10074 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10075 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10076 /* 10077 * Note that we can only get here in USR mode if this is a 10078 * gdb stub write; for this case we follow the architectural 10079 * behaviour for guest writes in USR mode of ignoring an attempt 10080 * to switch mode. (Those are caught by translate.c for writes 10081 * triggered by guest instructions.) 10082 */ 10083 mask &= ~CPSR_M; 10084 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10085 /* 10086 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10087 * v7, and has defined behaviour in v8: 10088 * + leave CPSR.M untouched 10089 * + allow changes to the other CPSR fields 10090 * + set PSTATE.IL 10091 * For user changes via the GDB stub, we don't set PSTATE.IL, 10092 * as this would be unnecessarily harsh for a user error. 10093 */ 10094 mask &= ~CPSR_M; 10095 if (write_type != CPSRWriteByGDBStub && 10096 arm_feature(env, ARM_FEATURE_V8)) { 10097 mask |= CPSR_IL; 10098 val |= CPSR_IL; 10099 } 10100 qemu_log_mask(LOG_GUEST_ERROR, 10101 "Illegal AArch32 mode switch attempt from %s to %s\n", 10102 aarch32_mode_name(env->uncached_cpsr), 10103 aarch32_mode_name(val)); 10104 } else { 10105 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10106 write_type == CPSRWriteExceptionReturn ? 10107 "Exception return from AArch32" : 10108 "AArch32 mode switch from", 10109 aarch32_mode_name(env->uncached_cpsr), 10110 aarch32_mode_name(val), env->regs[15]); 10111 switch_mode(env, val & CPSR_M); 10112 } 10113 } 10114 mask &= ~CACHED_CPSR_BITS; 10115 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10116 if (tcg_enabled() && rebuild_hflags) { 10117 arm_rebuild_hflags(env); 10118 } 10119 } 10120 10121 /* Sign/zero extend */ 10122 uint32_t HELPER(sxtb16)(uint32_t x) 10123 { 10124 uint32_t res; 10125 res = (uint16_t)(int8_t)x; 10126 res |= (uint32_t)(int8_t)(x >> 16) << 16; 10127 return res; 10128 } 10129 10130 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 10131 { 10132 /* 10133 * Take a division-by-zero exception if necessary; otherwise return 10134 * to get the usual non-trapping division behaviour (result of 0) 10135 */ 10136 if (arm_feature(env, ARM_FEATURE_M) 10137 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 10138 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 10139 } 10140 } 10141 10142 uint32_t HELPER(uxtb16)(uint32_t x) 10143 { 10144 uint32_t res; 10145 res = (uint16_t)(uint8_t)x; 10146 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 10147 return res; 10148 } 10149 10150 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 10151 { 10152 if (den == 0) { 10153 handle_possible_div0_trap(env, GETPC()); 10154 return 0; 10155 } 10156 if (num == INT_MIN && den == -1) { 10157 return INT_MIN; 10158 } 10159 return num / den; 10160 } 10161 10162 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 10163 { 10164 if (den == 0) { 10165 handle_possible_div0_trap(env, GETPC()); 10166 return 0; 10167 } 10168 return num / den; 10169 } 10170 10171 uint32_t HELPER(rbit)(uint32_t x) 10172 { 10173 return revbit32(x); 10174 } 10175 10176 #ifdef CONFIG_USER_ONLY 10177 10178 static void switch_mode(CPUARMState *env, int mode) 10179 { 10180 ARMCPU *cpu = env_archcpu(env); 10181 10182 if (mode != ARM_CPU_MODE_USR) { 10183 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10184 } 10185 } 10186 10187 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10188 uint32_t cur_el, bool secure) 10189 { 10190 return 1; 10191 } 10192 10193 void aarch64_sync_64_to_32(CPUARMState *env) 10194 { 10195 g_assert_not_reached(); 10196 } 10197 10198 #else 10199 10200 static void switch_mode(CPUARMState *env, int mode) 10201 { 10202 int old_mode; 10203 int i; 10204 10205 old_mode = env->uncached_cpsr & CPSR_M; 10206 if (mode == old_mode) { 10207 return; 10208 } 10209 10210 if (old_mode == ARM_CPU_MODE_FIQ) { 10211 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10212 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10213 } else if (mode == ARM_CPU_MODE_FIQ) { 10214 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10215 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10216 } 10217 10218 i = bank_number(old_mode); 10219 env->banked_r13[i] = env->regs[13]; 10220 env->banked_spsr[i] = env->spsr; 10221 10222 i = bank_number(mode); 10223 env->regs[13] = env->banked_r13[i]; 10224 env->spsr = env->banked_spsr[i]; 10225 10226 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10227 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10228 } 10229 10230 /* 10231 * Physical Interrupt Target EL Lookup Table 10232 * 10233 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10234 * 10235 * The below multi-dimensional table is used for looking up the target 10236 * exception level given numerous condition criteria. Specifically, the 10237 * target EL is based on SCR and HCR routing controls as well as the 10238 * currently executing EL and secure state. 10239 * 10240 * Dimensions: 10241 * target_el_table[2][2][2][2][2][4] 10242 * | | | | | +--- Current EL 10243 * | | | | +------ Non-secure(0)/Secure(1) 10244 * | | | +--------- HCR mask override 10245 * | | +------------ SCR exec state control 10246 * | +--------------- SCR mask override 10247 * +------------------ 32-bit(0)/64-bit(1) EL3 10248 * 10249 * The table values are as such: 10250 * 0-3 = EL0-EL3 10251 * -1 = Cannot occur 10252 * 10253 * The ARM ARM target EL table includes entries indicating that an "exception 10254 * is not taken". The two cases where this is applicable are: 10255 * 1) An exception is taken from EL3 but the SCR does not have the exception 10256 * routed to EL3. 10257 * 2) An exception is taken from EL2 but the HCR does not have the exception 10258 * routed to EL2. 10259 * In these two cases, the below table contain a target of EL1. This value is 10260 * returned as it is expected that the consumer of the table data will check 10261 * for "target EL >= current EL" to ensure the exception is not taken. 10262 * 10263 * SCR HCR 10264 * 64 EA AMO From 10265 * BIT IRQ IMO Non-secure Secure 10266 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10267 */ 10268 static const int8_t target_el_table[2][2][2][2][2][4] = { 10269 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10270 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10271 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10272 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10273 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10274 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10275 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10276 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10277 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10278 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10279 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10280 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10281 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10282 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10283 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10284 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10285 }; 10286 10287 /* 10288 * Determine the target EL for physical exceptions 10289 */ 10290 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10291 uint32_t cur_el, bool secure) 10292 { 10293 CPUARMState *env = cpu_env(cs); 10294 bool rw; 10295 bool scr; 10296 bool hcr; 10297 int target_el; 10298 /* Is the highest EL AArch64? */ 10299 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10300 uint64_t hcr_el2; 10301 10302 if (arm_feature(env, ARM_FEATURE_EL3)) { 10303 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10304 } else { 10305 /* 10306 * Either EL2 is the highest EL (and so the EL2 register width 10307 * is given by is64); or there is no EL2 or EL3, in which case 10308 * the value of 'rw' does not affect the table lookup anyway. 10309 */ 10310 rw = is64; 10311 } 10312 10313 hcr_el2 = arm_hcr_el2_eff(env); 10314 switch (excp_idx) { 10315 case EXCP_IRQ: 10316 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10317 hcr = hcr_el2 & HCR_IMO; 10318 break; 10319 case EXCP_FIQ: 10320 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10321 hcr = hcr_el2 & HCR_FMO; 10322 break; 10323 default: 10324 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10325 hcr = hcr_el2 & HCR_AMO; 10326 break; 10327 }; 10328 10329 /* 10330 * For these purposes, TGE and AMO/IMO/FMO both force the 10331 * interrupt to EL2. Fold TGE into the bit extracted above. 10332 */ 10333 hcr |= (hcr_el2 & HCR_TGE) != 0; 10334 10335 /* Perform a table-lookup for the target EL given the current state */ 10336 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10337 10338 assert(target_el > 0); 10339 10340 return target_el; 10341 } 10342 10343 void arm_log_exception(CPUState *cs) 10344 { 10345 int idx = cs->exception_index; 10346 10347 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10348 const char *exc = NULL; 10349 static const char * const excnames[] = { 10350 [EXCP_UDEF] = "Undefined Instruction", 10351 [EXCP_SWI] = "SVC", 10352 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10353 [EXCP_DATA_ABORT] = "Data Abort", 10354 [EXCP_IRQ] = "IRQ", 10355 [EXCP_FIQ] = "FIQ", 10356 [EXCP_BKPT] = "Breakpoint", 10357 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10358 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10359 [EXCP_HVC] = "Hypervisor Call", 10360 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10361 [EXCP_SMC] = "Secure Monitor Call", 10362 [EXCP_VIRQ] = "Virtual IRQ", 10363 [EXCP_VFIQ] = "Virtual FIQ", 10364 [EXCP_SEMIHOST] = "Semihosting call", 10365 [EXCP_NOCP] = "v7M NOCP UsageFault", 10366 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10367 [EXCP_STKOF] = "v8M STKOF UsageFault", 10368 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10369 [EXCP_LSERR] = "v8M LSERR UsageFault", 10370 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10371 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10372 [EXCP_VSERR] = "Virtual SERR", 10373 [EXCP_GPC] = "Granule Protection Check", 10374 }; 10375 10376 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10377 exc = excnames[idx]; 10378 } 10379 if (!exc) { 10380 exc = "unknown"; 10381 } 10382 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10383 idx, exc, cs->cpu_index); 10384 } 10385 } 10386 10387 /* 10388 * Function used to synchronize QEMU's AArch64 register set with AArch32 10389 * register set. This is necessary when switching between AArch32 and AArch64 10390 * execution state. 10391 */ 10392 void aarch64_sync_32_to_64(CPUARMState *env) 10393 { 10394 int i; 10395 uint32_t mode = env->uncached_cpsr & CPSR_M; 10396 10397 /* We can blanket copy R[0:7] to X[0:7] */ 10398 for (i = 0; i < 8; i++) { 10399 env->xregs[i] = env->regs[i]; 10400 } 10401 10402 /* 10403 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10404 * Otherwise, they come from the banked user regs. 10405 */ 10406 if (mode == ARM_CPU_MODE_FIQ) { 10407 for (i = 8; i < 13; i++) { 10408 env->xregs[i] = env->usr_regs[i - 8]; 10409 } 10410 } else { 10411 for (i = 8; i < 13; i++) { 10412 env->xregs[i] = env->regs[i]; 10413 } 10414 } 10415 10416 /* 10417 * Registers x13-x23 are the various mode SP and FP registers. Registers 10418 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10419 * from the mode banked register. 10420 */ 10421 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10422 env->xregs[13] = env->regs[13]; 10423 env->xregs[14] = env->regs[14]; 10424 } else { 10425 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10426 /* HYP is an exception in that it is copied from r14 */ 10427 if (mode == ARM_CPU_MODE_HYP) { 10428 env->xregs[14] = env->regs[14]; 10429 } else { 10430 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10431 } 10432 } 10433 10434 if (mode == ARM_CPU_MODE_HYP) { 10435 env->xregs[15] = env->regs[13]; 10436 } else { 10437 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10438 } 10439 10440 if (mode == ARM_CPU_MODE_IRQ) { 10441 env->xregs[16] = env->regs[14]; 10442 env->xregs[17] = env->regs[13]; 10443 } else { 10444 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10445 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10446 } 10447 10448 if (mode == ARM_CPU_MODE_SVC) { 10449 env->xregs[18] = env->regs[14]; 10450 env->xregs[19] = env->regs[13]; 10451 } else { 10452 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10453 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10454 } 10455 10456 if (mode == ARM_CPU_MODE_ABT) { 10457 env->xregs[20] = env->regs[14]; 10458 env->xregs[21] = env->regs[13]; 10459 } else { 10460 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10461 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10462 } 10463 10464 if (mode == ARM_CPU_MODE_UND) { 10465 env->xregs[22] = env->regs[14]; 10466 env->xregs[23] = env->regs[13]; 10467 } else { 10468 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10469 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10470 } 10471 10472 /* 10473 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10474 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10475 * FIQ bank for r8-r14. 10476 */ 10477 if (mode == ARM_CPU_MODE_FIQ) { 10478 for (i = 24; i < 31; i++) { 10479 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10480 } 10481 } else { 10482 for (i = 24; i < 29; i++) { 10483 env->xregs[i] = env->fiq_regs[i - 24]; 10484 } 10485 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10486 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10487 } 10488 10489 env->pc = env->regs[15]; 10490 } 10491 10492 /* 10493 * Function used to synchronize QEMU's AArch32 register set with AArch64 10494 * register set. This is necessary when switching between AArch32 and AArch64 10495 * execution state. 10496 */ 10497 void aarch64_sync_64_to_32(CPUARMState *env) 10498 { 10499 int i; 10500 uint32_t mode = env->uncached_cpsr & CPSR_M; 10501 10502 /* We can blanket copy X[0:7] to R[0:7] */ 10503 for (i = 0; i < 8; i++) { 10504 env->regs[i] = env->xregs[i]; 10505 } 10506 10507 /* 10508 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10509 * Otherwise, we copy x8-x12 into the banked user regs. 10510 */ 10511 if (mode == ARM_CPU_MODE_FIQ) { 10512 for (i = 8; i < 13; i++) { 10513 env->usr_regs[i - 8] = env->xregs[i]; 10514 } 10515 } else { 10516 for (i = 8; i < 13; i++) { 10517 env->regs[i] = env->xregs[i]; 10518 } 10519 } 10520 10521 /* 10522 * Registers r13 & r14 depend on the current mode. 10523 * If we are in a given mode, we copy the corresponding x registers to r13 10524 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10525 * for the mode. 10526 */ 10527 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10528 env->regs[13] = env->xregs[13]; 10529 env->regs[14] = env->xregs[14]; 10530 } else { 10531 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10532 10533 /* 10534 * HYP is an exception in that it does not have its own banked r14 but 10535 * shares the USR r14 10536 */ 10537 if (mode == ARM_CPU_MODE_HYP) { 10538 env->regs[14] = env->xregs[14]; 10539 } else { 10540 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10541 } 10542 } 10543 10544 if (mode == ARM_CPU_MODE_HYP) { 10545 env->regs[13] = env->xregs[15]; 10546 } else { 10547 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10548 } 10549 10550 if (mode == ARM_CPU_MODE_IRQ) { 10551 env->regs[14] = env->xregs[16]; 10552 env->regs[13] = env->xregs[17]; 10553 } else { 10554 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10555 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10556 } 10557 10558 if (mode == ARM_CPU_MODE_SVC) { 10559 env->regs[14] = env->xregs[18]; 10560 env->regs[13] = env->xregs[19]; 10561 } else { 10562 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10563 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10564 } 10565 10566 if (mode == ARM_CPU_MODE_ABT) { 10567 env->regs[14] = env->xregs[20]; 10568 env->regs[13] = env->xregs[21]; 10569 } else { 10570 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10571 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10572 } 10573 10574 if (mode == ARM_CPU_MODE_UND) { 10575 env->regs[14] = env->xregs[22]; 10576 env->regs[13] = env->xregs[23]; 10577 } else { 10578 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10579 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10580 } 10581 10582 /* 10583 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10584 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10585 * FIQ bank for r8-r14. 10586 */ 10587 if (mode == ARM_CPU_MODE_FIQ) { 10588 for (i = 24; i < 31; i++) { 10589 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10590 } 10591 } else { 10592 for (i = 24; i < 29; i++) { 10593 env->fiq_regs[i - 24] = env->xregs[i]; 10594 } 10595 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10596 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10597 } 10598 10599 env->regs[15] = env->pc; 10600 } 10601 10602 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10603 uint32_t mask, uint32_t offset, 10604 uint32_t newpc) 10605 { 10606 int new_el; 10607 10608 /* Change the CPU state so as to actually take the exception. */ 10609 switch_mode(env, new_mode); 10610 10611 /* 10612 * For exceptions taken to AArch32 we must clear the SS bit in both 10613 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10614 */ 10615 env->pstate &= ~PSTATE_SS; 10616 env->spsr = cpsr_read(env); 10617 /* Clear IT bits. */ 10618 env->condexec_bits = 0; 10619 /* Switch to the new mode, and to the correct instruction set. */ 10620 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10621 10622 /* This must be after mode switching. */ 10623 new_el = arm_current_el(env); 10624 10625 /* Set new mode endianness */ 10626 env->uncached_cpsr &= ~CPSR_E; 10627 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10628 env->uncached_cpsr |= CPSR_E; 10629 } 10630 /* J and IL must always be cleared for exception entry */ 10631 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10632 env->daif |= mask; 10633 10634 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10635 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10636 env->uncached_cpsr |= CPSR_SSBS; 10637 } else { 10638 env->uncached_cpsr &= ~CPSR_SSBS; 10639 } 10640 } 10641 10642 if (new_mode == ARM_CPU_MODE_HYP) { 10643 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10644 env->elr_el[2] = env->regs[15]; 10645 } else { 10646 /* CPSR.PAN is normally preserved preserved unless... */ 10647 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10648 switch (new_el) { 10649 case 3: 10650 if (!arm_is_secure_below_el3(env)) { 10651 /* ... the target is EL3, from non-secure state. */ 10652 env->uncached_cpsr &= ~CPSR_PAN; 10653 break; 10654 } 10655 /* ... the target is EL3, from secure state ... */ 10656 /* fall through */ 10657 case 1: 10658 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10659 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10660 env->uncached_cpsr |= CPSR_PAN; 10661 } 10662 break; 10663 } 10664 } 10665 /* 10666 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10667 * and we should just guard the thumb mode on V4 10668 */ 10669 if (arm_feature(env, ARM_FEATURE_V4T)) { 10670 env->thumb = 10671 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10672 } 10673 env->regs[14] = env->regs[15] + offset; 10674 } 10675 env->regs[15] = newpc; 10676 10677 if (tcg_enabled()) { 10678 arm_rebuild_hflags(env); 10679 } 10680 } 10681 10682 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10683 { 10684 /* 10685 * Handle exception entry to Hyp mode; this is sufficiently 10686 * different to entry to other AArch32 modes that we handle it 10687 * separately here. 10688 * 10689 * The vector table entry used is always the 0x14 Hyp mode entry point, 10690 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10691 * The offset applied to the preferred return address is always zero 10692 * (see DDI0487C.a section G1.12.3). 10693 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10694 */ 10695 uint32_t addr, mask; 10696 ARMCPU *cpu = ARM_CPU(cs); 10697 CPUARMState *env = &cpu->env; 10698 10699 switch (cs->exception_index) { 10700 case EXCP_UDEF: 10701 addr = 0x04; 10702 break; 10703 case EXCP_SWI: 10704 addr = 0x08; 10705 break; 10706 case EXCP_BKPT: 10707 /* Fall through to prefetch abort. */ 10708 case EXCP_PREFETCH_ABORT: 10709 env->cp15.ifar_s = env->exception.vaddress; 10710 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10711 (uint32_t)env->exception.vaddress); 10712 addr = 0x0c; 10713 break; 10714 case EXCP_DATA_ABORT: 10715 env->cp15.dfar_s = env->exception.vaddress; 10716 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10717 (uint32_t)env->exception.vaddress); 10718 addr = 0x10; 10719 break; 10720 case EXCP_IRQ: 10721 addr = 0x18; 10722 break; 10723 case EXCP_FIQ: 10724 addr = 0x1c; 10725 break; 10726 case EXCP_HVC: 10727 addr = 0x08; 10728 break; 10729 case EXCP_HYP_TRAP: 10730 addr = 0x14; 10731 break; 10732 default: 10733 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10734 } 10735 10736 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10737 if (!arm_feature(env, ARM_FEATURE_V8)) { 10738 /* 10739 * QEMU syndrome values are v8-style. v7 has the IL bit 10740 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10741 * If this is a v7 CPU, squash the IL bit in those cases. 10742 */ 10743 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10744 (cs->exception_index == EXCP_DATA_ABORT && 10745 !(env->exception.syndrome & ARM_EL_ISV)) || 10746 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10747 env->exception.syndrome &= ~ARM_EL_IL; 10748 } 10749 } 10750 env->cp15.esr_el[2] = env->exception.syndrome; 10751 } 10752 10753 if (arm_current_el(env) != 2 && addr < 0x14) { 10754 addr = 0x14; 10755 } 10756 10757 mask = 0; 10758 if (!(env->cp15.scr_el3 & SCR_EA)) { 10759 mask |= CPSR_A; 10760 } 10761 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10762 mask |= CPSR_I; 10763 } 10764 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10765 mask |= CPSR_F; 10766 } 10767 10768 addr += env->cp15.hvbar; 10769 10770 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10771 } 10772 10773 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10774 { 10775 ARMCPU *cpu = ARM_CPU(cs); 10776 CPUARMState *env = &cpu->env; 10777 uint32_t addr; 10778 uint32_t mask; 10779 int new_mode; 10780 uint32_t offset; 10781 uint32_t moe; 10782 10783 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10784 switch (syn_get_ec(env->exception.syndrome)) { 10785 case EC_BREAKPOINT: 10786 case EC_BREAKPOINT_SAME_EL: 10787 moe = 1; 10788 break; 10789 case EC_WATCHPOINT: 10790 case EC_WATCHPOINT_SAME_EL: 10791 moe = 10; 10792 break; 10793 case EC_AA32_BKPT: 10794 moe = 3; 10795 break; 10796 case EC_VECTORCATCH: 10797 moe = 5; 10798 break; 10799 default: 10800 moe = 0; 10801 break; 10802 } 10803 10804 if (moe) { 10805 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10806 } 10807 10808 if (env->exception.target_el == 2) { 10809 arm_cpu_do_interrupt_aarch32_hyp(cs); 10810 return; 10811 } 10812 10813 switch (cs->exception_index) { 10814 case EXCP_UDEF: 10815 new_mode = ARM_CPU_MODE_UND; 10816 addr = 0x04; 10817 mask = CPSR_I; 10818 if (env->thumb) { 10819 offset = 2; 10820 } else { 10821 offset = 4; 10822 } 10823 break; 10824 case EXCP_SWI: 10825 new_mode = ARM_CPU_MODE_SVC; 10826 addr = 0x08; 10827 mask = CPSR_I; 10828 /* The PC already points to the next instruction. */ 10829 offset = 0; 10830 break; 10831 case EXCP_BKPT: 10832 /* Fall through to prefetch abort. */ 10833 case EXCP_PREFETCH_ABORT: 10834 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10835 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10836 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10837 env->exception.fsr, (uint32_t)env->exception.vaddress); 10838 new_mode = ARM_CPU_MODE_ABT; 10839 addr = 0x0c; 10840 mask = CPSR_A | CPSR_I; 10841 offset = 4; 10842 break; 10843 case EXCP_DATA_ABORT: 10844 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10845 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10846 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10847 env->exception.fsr, 10848 (uint32_t)env->exception.vaddress); 10849 new_mode = ARM_CPU_MODE_ABT; 10850 addr = 0x10; 10851 mask = CPSR_A | CPSR_I; 10852 offset = 8; 10853 break; 10854 case EXCP_IRQ: 10855 new_mode = ARM_CPU_MODE_IRQ; 10856 addr = 0x18; 10857 /* Disable IRQ and imprecise data aborts. */ 10858 mask = CPSR_A | CPSR_I; 10859 offset = 4; 10860 if (env->cp15.scr_el3 & SCR_IRQ) { 10861 /* IRQ routed to monitor mode */ 10862 new_mode = ARM_CPU_MODE_MON; 10863 mask |= CPSR_F; 10864 } 10865 break; 10866 case EXCP_FIQ: 10867 new_mode = ARM_CPU_MODE_FIQ; 10868 addr = 0x1c; 10869 /* Disable FIQ, IRQ and imprecise data aborts. */ 10870 mask = CPSR_A | CPSR_I | CPSR_F; 10871 if (env->cp15.scr_el3 & SCR_FIQ) { 10872 /* FIQ routed to monitor mode */ 10873 new_mode = ARM_CPU_MODE_MON; 10874 } 10875 offset = 4; 10876 break; 10877 case EXCP_VIRQ: 10878 new_mode = ARM_CPU_MODE_IRQ; 10879 addr = 0x18; 10880 /* Disable IRQ and imprecise data aborts. */ 10881 mask = CPSR_A | CPSR_I; 10882 offset = 4; 10883 break; 10884 case EXCP_VFIQ: 10885 new_mode = ARM_CPU_MODE_FIQ; 10886 addr = 0x1c; 10887 /* Disable FIQ, IRQ and imprecise data aborts. */ 10888 mask = CPSR_A | CPSR_I | CPSR_F; 10889 offset = 4; 10890 break; 10891 case EXCP_VSERR: 10892 { 10893 /* 10894 * Note that this is reported as a data abort, but the DFAR 10895 * has an UNKNOWN value. Construct the SError syndrome from 10896 * AET and ExT fields. 10897 */ 10898 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10899 10900 if (extended_addresses_enabled(env)) { 10901 env->exception.fsr = arm_fi_to_lfsc(&fi); 10902 } else { 10903 env->exception.fsr = arm_fi_to_sfsc(&fi); 10904 } 10905 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10906 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10907 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10908 env->exception.fsr); 10909 10910 new_mode = ARM_CPU_MODE_ABT; 10911 addr = 0x10; 10912 mask = CPSR_A | CPSR_I; 10913 offset = 8; 10914 } 10915 break; 10916 case EXCP_SMC: 10917 new_mode = ARM_CPU_MODE_MON; 10918 addr = 0x08; 10919 mask = CPSR_A | CPSR_I | CPSR_F; 10920 offset = 0; 10921 break; 10922 default: 10923 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10924 return; /* Never happens. Keep compiler happy. */ 10925 } 10926 10927 if (new_mode == ARM_CPU_MODE_MON) { 10928 addr += env->cp15.mvbar; 10929 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10930 /* High vectors. When enabled, base address cannot be remapped. */ 10931 addr += 0xffff0000; 10932 } else { 10933 /* 10934 * ARM v7 architectures provide a vector base address register to remap 10935 * the interrupt vector table. 10936 * This register is only followed in non-monitor mode, and is banked. 10937 * Note: only bits 31:5 are valid. 10938 */ 10939 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10940 } 10941 10942 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10943 env->cp15.scr_el3 &= ~SCR_NS; 10944 } 10945 10946 take_aarch32_exception(env, new_mode, mask, offset, addr); 10947 } 10948 10949 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10950 { 10951 /* 10952 * Return the register number of the AArch64 view of the AArch32 10953 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10954 * be that of the AArch32 mode the exception came from. 10955 */ 10956 int mode = env->uncached_cpsr & CPSR_M; 10957 10958 switch (aarch32_reg) { 10959 case 0 ... 7: 10960 return aarch32_reg; 10961 case 8 ... 12: 10962 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10963 case 13: 10964 switch (mode) { 10965 case ARM_CPU_MODE_USR: 10966 case ARM_CPU_MODE_SYS: 10967 return 13; 10968 case ARM_CPU_MODE_HYP: 10969 return 15; 10970 case ARM_CPU_MODE_IRQ: 10971 return 17; 10972 case ARM_CPU_MODE_SVC: 10973 return 19; 10974 case ARM_CPU_MODE_ABT: 10975 return 21; 10976 case ARM_CPU_MODE_UND: 10977 return 23; 10978 case ARM_CPU_MODE_FIQ: 10979 return 29; 10980 default: 10981 g_assert_not_reached(); 10982 } 10983 case 14: 10984 switch (mode) { 10985 case ARM_CPU_MODE_USR: 10986 case ARM_CPU_MODE_SYS: 10987 case ARM_CPU_MODE_HYP: 10988 return 14; 10989 case ARM_CPU_MODE_IRQ: 10990 return 16; 10991 case ARM_CPU_MODE_SVC: 10992 return 18; 10993 case ARM_CPU_MODE_ABT: 10994 return 20; 10995 case ARM_CPU_MODE_UND: 10996 return 22; 10997 case ARM_CPU_MODE_FIQ: 10998 return 30; 10999 default: 11000 g_assert_not_reached(); 11001 } 11002 case 15: 11003 return 31; 11004 default: 11005 g_assert_not_reached(); 11006 } 11007 } 11008 11009 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11010 { 11011 uint32_t ret = cpsr_read(env); 11012 11013 /* Move DIT to the correct location for SPSR_ELx */ 11014 if (ret & CPSR_DIT) { 11015 ret &= ~CPSR_DIT; 11016 ret |= PSTATE_DIT; 11017 } 11018 /* Merge PSTATE.SS into SPSR_ELx */ 11019 ret |= env->pstate & PSTATE_SS; 11020 11021 return ret; 11022 } 11023 11024 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11025 { 11026 /* Return true if this syndrome value is a synchronous external abort */ 11027 switch (syn_get_ec(syndrome)) { 11028 case EC_INSNABORT: 11029 case EC_INSNABORT_SAME_EL: 11030 case EC_DATAABORT: 11031 case EC_DATAABORT_SAME_EL: 11032 /* Look at fault status code for all the synchronous ext abort cases */ 11033 switch (syndrome & 0x3f) { 11034 case 0x10: 11035 case 0x13: 11036 case 0x14: 11037 case 0x15: 11038 case 0x16: 11039 case 0x17: 11040 return true; 11041 default: 11042 return false; 11043 } 11044 default: 11045 return false; 11046 } 11047 } 11048 11049 /* Handle exception entry to a target EL which is using AArch64 */ 11050 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11051 { 11052 ARMCPU *cpu = ARM_CPU(cs); 11053 CPUARMState *env = &cpu->env; 11054 unsigned int new_el = env->exception.target_el; 11055 target_ulong addr = env->cp15.vbar_el[new_el]; 11056 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11057 unsigned int old_mode; 11058 unsigned int cur_el = arm_current_el(env); 11059 int rt; 11060 11061 if (tcg_enabled()) { 11062 /* 11063 * Note that new_el can never be 0. If cur_el is 0, then 11064 * el0_a64 is is_a64(), else el0_a64 is ignored. 11065 */ 11066 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11067 } 11068 11069 if (cur_el < new_el) { 11070 /* 11071 * Entry vector offset depends on whether the implemented EL 11072 * immediately lower than the target level is using AArch32 or AArch64 11073 */ 11074 bool is_aa64; 11075 uint64_t hcr; 11076 11077 switch (new_el) { 11078 case 3: 11079 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11080 break; 11081 case 2: 11082 hcr = arm_hcr_el2_eff(env); 11083 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11084 is_aa64 = (hcr & HCR_RW) != 0; 11085 break; 11086 } 11087 /* fall through */ 11088 case 1: 11089 is_aa64 = is_a64(env); 11090 break; 11091 default: 11092 g_assert_not_reached(); 11093 } 11094 11095 if (is_aa64) { 11096 addr += 0x400; 11097 } else { 11098 addr += 0x600; 11099 } 11100 } else if (pstate_read(env) & PSTATE_SP) { 11101 addr += 0x200; 11102 } 11103 11104 switch (cs->exception_index) { 11105 case EXCP_GPC: 11106 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11107 env->cp15.mfar_el3); 11108 /* fall through */ 11109 case EXCP_PREFETCH_ABORT: 11110 case EXCP_DATA_ABORT: 11111 /* 11112 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11113 * to be taken to the SError vector entrypoint. 11114 */ 11115 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11116 syndrome_is_sync_extabt(env->exception.syndrome)) { 11117 addr += 0x180; 11118 } 11119 env->cp15.far_el[new_el] = env->exception.vaddress; 11120 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11121 env->cp15.far_el[new_el]); 11122 /* fall through */ 11123 case EXCP_BKPT: 11124 case EXCP_UDEF: 11125 case EXCP_SWI: 11126 case EXCP_HVC: 11127 case EXCP_HYP_TRAP: 11128 case EXCP_SMC: 11129 switch (syn_get_ec(env->exception.syndrome)) { 11130 case EC_ADVSIMDFPACCESSTRAP: 11131 /* 11132 * QEMU internal FP/SIMD syndromes from AArch32 include the 11133 * TA and coproc fields which are only exposed if the exception 11134 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11135 * AArch64 format syndrome. 11136 */ 11137 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11138 break; 11139 case EC_CP14RTTRAP: 11140 case EC_CP15RTTRAP: 11141 case EC_CP14DTTRAP: 11142 /* 11143 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11144 * the raw register field from the insn; when taking this to 11145 * AArch64 we must convert it to the AArch64 view of the register 11146 * number. Notice that we read a 4-bit AArch32 register number and 11147 * write back a 5-bit AArch64 one. 11148 */ 11149 rt = extract32(env->exception.syndrome, 5, 4); 11150 rt = aarch64_regnum(env, rt); 11151 env->exception.syndrome = deposit32(env->exception.syndrome, 11152 5, 5, rt); 11153 break; 11154 case EC_CP15RRTTRAP: 11155 case EC_CP14RRTTRAP: 11156 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11157 rt = extract32(env->exception.syndrome, 5, 4); 11158 rt = aarch64_regnum(env, rt); 11159 env->exception.syndrome = deposit32(env->exception.syndrome, 11160 5, 5, rt); 11161 rt = extract32(env->exception.syndrome, 10, 4); 11162 rt = aarch64_regnum(env, rt); 11163 env->exception.syndrome = deposit32(env->exception.syndrome, 11164 10, 5, rt); 11165 break; 11166 } 11167 env->cp15.esr_el[new_el] = env->exception.syndrome; 11168 break; 11169 case EXCP_IRQ: 11170 case EXCP_VIRQ: 11171 addr += 0x80; 11172 break; 11173 case EXCP_FIQ: 11174 case EXCP_VFIQ: 11175 addr += 0x100; 11176 break; 11177 case EXCP_VSERR: 11178 addr += 0x180; 11179 /* Construct the SError syndrome from IDS and ISS fields. */ 11180 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11181 env->cp15.esr_el[new_el] = env->exception.syndrome; 11182 break; 11183 default: 11184 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11185 } 11186 11187 if (is_a64(env)) { 11188 old_mode = pstate_read(env); 11189 aarch64_save_sp(env, arm_current_el(env)); 11190 env->elr_el[new_el] = env->pc; 11191 } else { 11192 old_mode = cpsr_read_for_spsr_elx(env); 11193 env->elr_el[new_el] = env->regs[15]; 11194 11195 aarch64_sync_32_to_64(env); 11196 11197 env->condexec_bits = 0; 11198 } 11199 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11200 11201 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11202 env->elr_el[new_el]); 11203 11204 if (cpu_isar_feature(aa64_pan, cpu)) { 11205 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11206 new_mode |= old_mode & PSTATE_PAN; 11207 switch (new_el) { 11208 case 2: 11209 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11210 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11211 != (HCR_E2H | HCR_TGE)) { 11212 break; 11213 } 11214 /* fall through */ 11215 case 1: 11216 /* ... the target is EL1 ... */ 11217 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11218 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11219 new_mode |= PSTATE_PAN; 11220 } 11221 break; 11222 } 11223 } 11224 if (cpu_isar_feature(aa64_mte, cpu)) { 11225 new_mode |= PSTATE_TCO; 11226 } 11227 11228 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11229 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11230 new_mode |= PSTATE_SSBS; 11231 } else { 11232 new_mode &= ~PSTATE_SSBS; 11233 } 11234 } 11235 11236 pstate_write(env, PSTATE_DAIF | new_mode); 11237 env->aarch64 = true; 11238 aarch64_restore_sp(env, new_el); 11239 11240 if (tcg_enabled()) { 11241 helper_rebuild_hflags_a64(env, new_el); 11242 } 11243 11244 env->pc = addr; 11245 11246 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11247 new_el, env->pc, pstate_read(env)); 11248 } 11249 11250 /* 11251 * Do semihosting call and set the appropriate return value. All the 11252 * permission and validity checks have been done at translate time. 11253 * 11254 * We only see semihosting exceptions in TCG only as they are not 11255 * trapped to the hypervisor in KVM. 11256 */ 11257 #ifdef CONFIG_TCG 11258 static void tcg_handle_semihosting(CPUState *cs) 11259 { 11260 ARMCPU *cpu = ARM_CPU(cs); 11261 CPUARMState *env = &cpu->env; 11262 11263 if (is_a64(env)) { 11264 qemu_log_mask(CPU_LOG_INT, 11265 "...handling as semihosting call 0x%" PRIx64 "\n", 11266 env->xregs[0]); 11267 do_common_semihosting(cs); 11268 env->pc += 4; 11269 } else { 11270 qemu_log_mask(CPU_LOG_INT, 11271 "...handling as semihosting call 0x%x\n", 11272 env->regs[0]); 11273 do_common_semihosting(cs); 11274 env->regs[15] += env->thumb ? 2 : 4; 11275 } 11276 } 11277 #endif 11278 11279 /* 11280 * Handle a CPU exception for A and R profile CPUs. 11281 * Do any appropriate logging, handle PSCI calls, and then hand off 11282 * to the AArch64-entry or AArch32-entry function depending on the 11283 * target exception level's register width. 11284 * 11285 * Note: this is used for both TCG (as the do_interrupt tcg op), 11286 * and KVM to re-inject guest debug exceptions, and to 11287 * inject a Synchronous-External-Abort. 11288 */ 11289 void arm_cpu_do_interrupt(CPUState *cs) 11290 { 11291 ARMCPU *cpu = ARM_CPU(cs); 11292 CPUARMState *env = &cpu->env; 11293 unsigned int new_el = env->exception.target_el; 11294 11295 assert(!arm_feature(env, ARM_FEATURE_M)); 11296 11297 arm_log_exception(cs); 11298 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11299 new_el); 11300 if (qemu_loglevel_mask(CPU_LOG_INT) 11301 && !excp_is_internal(cs->exception_index)) { 11302 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11303 syn_get_ec(env->exception.syndrome), 11304 env->exception.syndrome); 11305 } 11306 11307 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11308 arm_handle_psci_call(cpu); 11309 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11310 return; 11311 } 11312 11313 /* 11314 * Semihosting semantics depend on the register width of the code 11315 * that caused the exception, not the target exception level, so 11316 * must be handled here. 11317 */ 11318 #ifdef CONFIG_TCG 11319 if (cs->exception_index == EXCP_SEMIHOST) { 11320 tcg_handle_semihosting(cs); 11321 return; 11322 } 11323 #endif 11324 11325 /* 11326 * Hooks may change global state so BQL should be held, also the 11327 * BQL needs to be held for any modification of 11328 * cs->interrupt_request. 11329 */ 11330 g_assert(qemu_mutex_iothread_locked()); 11331 11332 arm_call_pre_el_change_hook(cpu); 11333 11334 assert(!excp_is_internal(cs->exception_index)); 11335 if (arm_el_is_aa64(env, new_el)) { 11336 arm_cpu_do_interrupt_aarch64(cs); 11337 } else { 11338 arm_cpu_do_interrupt_aarch32(cs); 11339 } 11340 11341 arm_call_el_change_hook(cpu); 11342 11343 if (!kvm_enabled()) { 11344 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11345 } 11346 } 11347 #endif /* !CONFIG_USER_ONLY */ 11348 11349 uint64_t arm_sctlr(CPUARMState *env, int el) 11350 { 11351 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11352 if (el == 0) { 11353 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11354 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11355 } 11356 return env->cp15.sctlr_el[el]; 11357 } 11358 11359 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11360 { 11361 if (regime_has_2_ranges(mmu_idx)) { 11362 return extract64(tcr, 37, 2); 11363 } else if (regime_is_stage2(mmu_idx)) { 11364 return 0; /* VTCR_EL2 */ 11365 } else { 11366 /* Replicate the single TBI bit so we always have 2 bits. */ 11367 return extract32(tcr, 20, 1) * 3; 11368 } 11369 } 11370 11371 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11372 { 11373 if (regime_has_2_ranges(mmu_idx)) { 11374 return extract64(tcr, 51, 2); 11375 } else if (regime_is_stage2(mmu_idx)) { 11376 return 0; /* VTCR_EL2 */ 11377 } else { 11378 /* Replicate the single TBID bit so we always have 2 bits. */ 11379 return extract32(tcr, 29, 1) * 3; 11380 } 11381 } 11382 11383 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11384 { 11385 if (regime_has_2_ranges(mmu_idx)) { 11386 return extract64(tcr, 57, 2); 11387 } else { 11388 /* Replicate the single TCMA bit so we always have 2 bits. */ 11389 return extract32(tcr, 30, 1) * 3; 11390 } 11391 } 11392 11393 static ARMGranuleSize tg0_to_gran_size(int tg) 11394 { 11395 switch (tg) { 11396 case 0: 11397 return Gran4K; 11398 case 1: 11399 return Gran64K; 11400 case 2: 11401 return Gran16K; 11402 default: 11403 return GranInvalid; 11404 } 11405 } 11406 11407 static ARMGranuleSize tg1_to_gran_size(int tg) 11408 { 11409 switch (tg) { 11410 case 1: 11411 return Gran16K; 11412 case 2: 11413 return Gran4K; 11414 case 3: 11415 return Gran64K; 11416 default: 11417 return GranInvalid; 11418 } 11419 } 11420 11421 static inline bool have4k(ARMCPU *cpu, bool stage2) 11422 { 11423 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11424 : cpu_isar_feature(aa64_tgran4, cpu); 11425 } 11426 11427 static inline bool have16k(ARMCPU *cpu, bool stage2) 11428 { 11429 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11430 : cpu_isar_feature(aa64_tgran16, cpu); 11431 } 11432 11433 static inline bool have64k(ARMCPU *cpu, bool stage2) 11434 { 11435 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11436 : cpu_isar_feature(aa64_tgran64, cpu); 11437 } 11438 11439 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11440 bool stage2) 11441 { 11442 switch (gran) { 11443 case Gran4K: 11444 if (have4k(cpu, stage2)) { 11445 return gran; 11446 } 11447 break; 11448 case Gran16K: 11449 if (have16k(cpu, stage2)) { 11450 return gran; 11451 } 11452 break; 11453 case Gran64K: 11454 if (have64k(cpu, stage2)) { 11455 return gran; 11456 } 11457 break; 11458 case GranInvalid: 11459 break; 11460 } 11461 /* 11462 * If the guest selects a granule size that isn't implemented, 11463 * the architecture requires that we behave as if it selected one 11464 * that is (with an IMPDEF choice of which one to pick). We choose 11465 * to implement the smallest supported granule size. 11466 */ 11467 if (have4k(cpu, stage2)) { 11468 return Gran4K; 11469 } 11470 if (have16k(cpu, stage2)) { 11471 return Gran16K; 11472 } 11473 assert(have64k(cpu, stage2)); 11474 return Gran64K; 11475 } 11476 11477 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11478 ARMMMUIdx mmu_idx, bool data, 11479 bool el1_is_aa32) 11480 { 11481 uint64_t tcr = regime_tcr(env, mmu_idx); 11482 bool epd, hpd, tsz_oob, ds, ha, hd; 11483 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11484 ARMGranuleSize gran; 11485 ARMCPU *cpu = env_archcpu(env); 11486 bool stage2 = regime_is_stage2(mmu_idx); 11487 11488 if (!regime_has_2_ranges(mmu_idx)) { 11489 select = 0; 11490 tsz = extract32(tcr, 0, 6); 11491 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11492 if (stage2) { 11493 /* VTCR_EL2 */ 11494 hpd = false; 11495 } else { 11496 hpd = extract32(tcr, 24, 1); 11497 } 11498 epd = false; 11499 sh = extract32(tcr, 12, 2); 11500 ps = extract32(tcr, 16, 3); 11501 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11502 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11503 ds = extract64(tcr, 32, 1); 11504 } else { 11505 bool e0pd; 11506 11507 /* 11508 * Bit 55 is always between the two regions, and is canonical for 11509 * determining if address tagging is enabled. 11510 */ 11511 select = extract64(va, 55, 1); 11512 if (!select) { 11513 tsz = extract32(tcr, 0, 6); 11514 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11515 epd = extract32(tcr, 7, 1); 11516 sh = extract32(tcr, 12, 2); 11517 hpd = extract64(tcr, 41, 1); 11518 e0pd = extract64(tcr, 55, 1); 11519 } else { 11520 tsz = extract32(tcr, 16, 6); 11521 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11522 epd = extract32(tcr, 23, 1); 11523 sh = extract32(tcr, 28, 2); 11524 hpd = extract64(tcr, 42, 1); 11525 e0pd = extract64(tcr, 56, 1); 11526 } 11527 ps = extract64(tcr, 32, 3); 11528 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11529 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11530 ds = extract64(tcr, 59, 1); 11531 11532 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11533 regime_is_user(env, mmu_idx)) { 11534 epd = true; 11535 } 11536 } 11537 11538 gran = sanitize_gran_size(cpu, gran, stage2); 11539 11540 if (cpu_isar_feature(aa64_st, cpu)) { 11541 max_tsz = 48 - (gran == Gran64K); 11542 } else { 11543 max_tsz = 39; 11544 } 11545 11546 /* 11547 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11548 * adjust the effective value of DS, as documented. 11549 */ 11550 min_tsz = 16; 11551 if (gran == Gran64K) { 11552 if (cpu_isar_feature(aa64_lva, cpu)) { 11553 min_tsz = 12; 11554 } 11555 ds = false; 11556 } else if (ds) { 11557 if (regime_is_stage2(mmu_idx)) { 11558 if (gran == Gran16K) { 11559 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11560 } else { 11561 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11562 } 11563 } else { 11564 if (gran == Gran16K) { 11565 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11566 } else { 11567 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11568 } 11569 } 11570 if (ds) { 11571 min_tsz = 12; 11572 } 11573 } 11574 11575 if (stage2 && el1_is_aa32) { 11576 /* 11577 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11578 * are loosened: a configured IPA of 40 bits is permitted even if 11579 * the implemented PA is less than that (and so a 40 bit IPA would 11580 * fault for an AArch64 EL1). See R_DTLMN. 11581 */ 11582 min_tsz = MIN(min_tsz, 24); 11583 } 11584 11585 if (tsz > max_tsz) { 11586 tsz = max_tsz; 11587 tsz_oob = true; 11588 } else if (tsz < min_tsz) { 11589 tsz = min_tsz; 11590 tsz_oob = true; 11591 } else { 11592 tsz_oob = false; 11593 } 11594 11595 /* Present TBI as a composite with TBID. */ 11596 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11597 if (!data) { 11598 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11599 } 11600 tbi = (tbi >> select) & 1; 11601 11602 return (ARMVAParameters) { 11603 .tsz = tsz, 11604 .ps = ps, 11605 .sh = sh, 11606 .select = select, 11607 .tbi = tbi, 11608 .epd = epd, 11609 .hpd = hpd, 11610 .tsz_oob = tsz_oob, 11611 .ds = ds, 11612 .ha = ha, 11613 .hd = ha && hd, 11614 .gran = gran, 11615 }; 11616 } 11617 11618 /* 11619 * Note that signed overflow is undefined in C. The following routines are 11620 * careful to use unsigned types where modulo arithmetic is required. 11621 * Failure to do so _will_ break on newer gcc. 11622 */ 11623 11624 /* Signed saturating arithmetic. */ 11625 11626 /* Perform 16-bit signed saturating addition. */ 11627 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11628 { 11629 uint16_t res; 11630 11631 res = a + b; 11632 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11633 if (a & 0x8000) { 11634 res = 0x8000; 11635 } else { 11636 res = 0x7fff; 11637 } 11638 } 11639 return res; 11640 } 11641 11642 /* Perform 8-bit signed saturating addition. */ 11643 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11644 { 11645 uint8_t res; 11646 11647 res = a + b; 11648 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11649 if (a & 0x80) { 11650 res = 0x80; 11651 } else { 11652 res = 0x7f; 11653 } 11654 } 11655 return res; 11656 } 11657 11658 /* Perform 16-bit signed saturating subtraction. */ 11659 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11660 { 11661 uint16_t res; 11662 11663 res = a - b; 11664 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11665 if (a & 0x8000) { 11666 res = 0x8000; 11667 } else { 11668 res = 0x7fff; 11669 } 11670 } 11671 return res; 11672 } 11673 11674 /* Perform 8-bit signed saturating subtraction. */ 11675 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11676 { 11677 uint8_t res; 11678 11679 res = a - b; 11680 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11681 if (a & 0x80) { 11682 res = 0x80; 11683 } else { 11684 res = 0x7f; 11685 } 11686 } 11687 return res; 11688 } 11689 11690 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11691 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11692 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11693 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11694 #define PFX q 11695 11696 #include "op_addsub.h" 11697 11698 /* Unsigned saturating arithmetic. */ 11699 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11700 { 11701 uint16_t res; 11702 res = a + b; 11703 if (res < a) { 11704 res = 0xffff; 11705 } 11706 return res; 11707 } 11708 11709 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11710 { 11711 if (a > b) { 11712 return a - b; 11713 } else { 11714 return 0; 11715 } 11716 } 11717 11718 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11719 { 11720 uint8_t res; 11721 res = a + b; 11722 if (res < a) { 11723 res = 0xff; 11724 } 11725 return res; 11726 } 11727 11728 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11729 { 11730 if (a > b) { 11731 return a - b; 11732 } else { 11733 return 0; 11734 } 11735 } 11736 11737 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11738 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11739 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11740 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11741 #define PFX uq 11742 11743 #include "op_addsub.h" 11744 11745 /* Signed modulo arithmetic. */ 11746 #define SARITH16(a, b, n, op) do { \ 11747 int32_t sum; \ 11748 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11749 RESULT(sum, n, 16); \ 11750 if (sum >= 0) \ 11751 ge |= 3 << (n * 2); \ 11752 } while (0) 11753 11754 #define SARITH8(a, b, n, op) do { \ 11755 int32_t sum; \ 11756 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11757 RESULT(sum, n, 8); \ 11758 if (sum >= 0) \ 11759 ge |= 1 << n; \ 11760 } while (0) 11761 11762 11763 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11764 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11765 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11766 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11767 #define PFX s 11768 #define ARITH_GE 11769 11770 #include "op_addsub.h" 11771 11772 /* Unsigned modulo arithmetic. */ 11773 #define ADD16(a, b, n) do { \ 11774 uint32_t sum; \ 11775 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11776 RESULT(sum, n, 16); \ 11777 if ((sum >> 16) == 1) \ 11778 ge |= 3 << (n * 2); \ 11779 } while (0) 11780 11781 #define ADD8(a, b, n) do { \ 11782 uint32_t sum; \ 11783 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11784 RESULT(sum, n, 8); \ 11785 if ((sum >> 8) == 1) \ 11786 ge |= 1 << n; \ 11787 } while (0) 11788 11789 #define SUB16(a, b, n) do { \ 11790 uint32_t sum; \ 11791 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11792 RESULT(sum, n, 16); \ 11793 if ((sum >> 16) == 0) \ 11794 ge |= 3 << (n * 2); \ 11795 } while (0) 11796 11797 #define SUB8(a, b, n) do { \ 11798 uint32_t sum; \ 11799 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11800 RESULT(sum, n, 8); \ 11801 if ((sum >> 8) == 0) \ 11802 ge |= 1 << n; \ 11803 } while (0) 11804 11805 #define PFX u 11806 #define ARITH_GE 11807 11808 #include "op_addsub.h" 11809 11810 /* Halved signed arithmetic. */ 11811 #define ADD16(a, b, n) \ 11812 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11813 #define SUB16(a, b, n) \ 11814 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11815 #define ADD8(a, b, n) \ 11816 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11817 #define SUB8(a, b, n) \ 11818 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11819 #define PFX sh 11820 11821 #include "op_addsub.h" 11822 11823 /* Halved unsigned arithmetic. */ 11824 #define ADD16(a, b, n) \ 11825 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11826 #define SUB16(a, b, n) \ 11827 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11828 #define ADD8(a, b, n) \ 11829 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11830 #define SUB8(a, b, n) \ 11831 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11832 #define PFX uh 11833 11834 #include "op_addsub.h" 11835 11836 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11837 { 11838 if (a > b) { 11839 return a - b; 11840 } else { 11841 return b - a; 11842 } 11843 } 11844 11845 /* Unsigned sum of absolute byte differences. */ 11846 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11847 { 11848 uint32_t sum; 11849 sum = do_usad(a, b); 11850 sum += do_usad(a >> 8, b >> 8); 11851 sum += do_usad(a >> 16, b >> 16); 11852 sum += do_usad(a >> 24, b >> 24); 11853 return sum; 11854 } 11855 11856 /* For ARMv6 SEL instruction. */ 11857 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11858 { 11859 uint32_t mask; 11860 11861 mask = 0; 11862 if (flags & 1) { 11863 mask |= 0xff; 11864 } 11865 if (flags & 2) { 11866 mask |= 0xff00; 11867 } 11868 if (flags & 4) { 11869 mask |= 0xff0000; 11870 } 11871 if (flags & 8) { 11872 mask |= 0xff000000; 11873 } 11874 return (a & mask) | (b & ~mask); 11875 } 11876 11877 /* 11878 * CRC helpers. 11879 * The upper bytes of val (above the number specified by 'bytes') must have 11880 * been zeroed out by the caller. 11881 */ 11882 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11883 { 11884 uint8_t buf[4]; 11885 11886 stl_le_p(buf, val); 11887 11888 /* zlib crc32 converts the accumulator and output to one's complement. */ 11889 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11890 } 11891 11892 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11893 { 11894 uint8_t buf[4]; 11895 11896 stl_le_p(buf, val); 11897 11898 /* Linux crc32c converts the output to one's complement. */ 11899 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11900 } 11901 11902 /* 11903 * Return the exception level to which FP-disabled exceptions should 11904 * be taken, or 0 if FP is enabled. 11905 */ 11906 int fp_exception_el(CPUARMState *env, int cur_el) 11907 { 11908 #ifndef CONFIG_USER_ONLY 11909 uint64_t hcr_el2; 11910 11911 /* 11912 * CPACR and the CPTR registers don't exist before v6, so FP is 11913 * always accessible 11914 */ 11915 if (!arm_feature(env, ARM_FEATURE_V6)) { 11916 return 0; 11917 } 11918 11919 if (arm_feature(env, ARM_FEATURE_M)) { 11920 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11921 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11922 return 1; 11923 } 11924 11925 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11926 if (!extract32(env->v7m.nsacr, 10, 1)) { 11927 /* FP insns cause a NOCP UsageFault taken to Secure */ 11928 return 3; 11929 } 11930 } 11931 11932 return 0; 11933 } 11934 11935 hcr_el2 = arm_hcr_el2_eff(env); 11936 11937 /* 11938 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11939 * 0, 2 : trap EL0 and EL1/PL1 accesses 11940 * 1 : trap only EL0 accesses 11941 * 3 : trap no accesses 11942 * This register is ignored if E2H+TGE are both set. 11943 */ 11944 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11945 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11946 11947 switch (fpen) { 11948 case 1: 11949 if (cur_el != 0) { 11950 break; 11951 } 11952 /* fall through */ 11953 case 0: 11954 case 2: 11955 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11956 if (!arm_el_is_aa64(env, 3) 11957 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11958 return 3; 11959 } 11960 if (cur_el <= 1) { 11961 return 1; 11962 } 11963 break; 11964 } 11965 } 11966 11967 /* 11968 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11969 * to control non-secure access to the FPU. It doesn't have any 11970 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11971 */ 11972 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11973 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11974 if (!extract32(env->cp15.nsacr, 10, 1)) { 11975 /* FP insns act as UNDEF */ 11976 return cur_el == 2 ? 2 : 1; 11977 } 11978 } 11979 11980 /* 11981 * CPTR_EL2 is present in v7VE or v8, and changes format 11982 * with HCR_EL2.E2H (regardless of TGE). 11983 */ 11984 if (cur_el <= 2) { 11985 if (hcr_el2 & HCR_E2H) { 11986 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11987 case 1: 11988 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11989 break; 11990 } 11991 /* fall through */ 11992 case 0: 11993 case 2: 11994 return 2; 11995 } 11996 } else if (arm_is_el2_enabled(env)) { 11997 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11998 return 2; 11999 } 12000 } 12001 } 12002 12003 /* CPTR_EL3 : present in v8 */ 12004 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 12005 /* Trap all FP ops to EL3 */ 12006 return 3; 12007 } 12008 #endif 12009 return 0; 12010 } 12011 12012 /* Return the exception level we're running at if this is our mmu_idx */ 12013 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12014 { 12015 if (mmu_idx & ARM_MMU_IDX_M) { 12016 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12017 } 12018 12019 switch (mmu_idx) { 12020 case ARMMMUIdx_E10_0: 12021 case ARMMMUIdx_E20_0: 12022 return 0; 12023 case ARMMMUIdx_E10_1: 12024 case ARMMMUIdx_E10_1_PAN: 12025 return 1; 12026 case ARMMMUIdx_E2: 12027 case ARMMMUIdx_E20_2: 12028 case ARMMMUIdx_E20_2_PAN: 12029 return 2; 12030 case ARMMMUIdx_E3: 12031 return 3; 12032 default: 12033 g_assert_not_reached(); 12034 } 12035 } 12036 12037 #ifndef CONFIG_TCG 12038 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12039 { 12040 g_assert_not_reached(); 12041 } 12042 #endif 12043 12044 static bool arm_pan_enabled(CPUARMState *env) 12045 { 12046 if (is_a64(env)) { 12047 return env->pstate & PSTATE_PAN; 12048 } else { 12049 return env->uncached_cpsr & CPSR_PAN; 12050 } 12051 } 12052 12053 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12054 { 12055 ARMMMUIdx idx; 12056 uint64_t hcr; 12057 12058 if (arm_feature(env, ARM_FEATURE_M)) { 12059 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12060 } 12061 12062 /* See ARM pseudo-function ELIsInHost. */ 12063 switch (el) { 12064 case 0: 12065 hcr = arm_hcr_el2_eff(env); 12066 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12067 idx = ARMMMUIdx_E20_0; 12068 } else { 12069 idx = ARMMMUIdx_E10_0; 12070 } 12071 break; 12072 case 1: 12073 if (arm_pan_enabled(env)) { 12074 idx = ARMMMUIdx_E10_1_PAN; 12075 } else { 12076 idx = ARMMMUIdx_E10_1; 12077 } 12078 break; 12079 case 2: 12080 /* Note that TGE does not apply at EL2. */ 12081 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12082 if (arm_pan_enabled(env)) { 12083 idx = ARMMMUIdx_E20_2_PAN; 12084 } else { 12085 idx = ARMMMUIdx_E20_2; 12086 } 12087 } else { 12088 idx = ARMMMUIdx_E2; 12089 } 12090 break; 12091 case 3: 12092 return ARMMMUIdx_E3; 12093 default: 12094 g_assert_not_reached(); 12095 } 12096 12097 return idx; 12098 } 12099 12100 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12101 { 12102 return arm_mmu_idx_el(env, arm_current_el(env)); 12103 } 12104 12105 static bool mve_no_pred(CPUARMState *env) 12106 { 12107 /* 12108 * Return true if there is definitely no predication of MVE 12109 * instructions by VPR or LTPSIZE. (Returning false even if there 12110 * isn't any predication is OK; generated code will just be 12111 * a little worse.) 12112 * If the CPU does not implement MVE then this TB flag is always 0. 12113 * 12114 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12115 * logic in gen_update_fp_context() needs to be updated to match. 12116 * 12117 * We do not include the effect of the ECI bits here -- they are 12118 * tracked in other TB flags. This simplifies the logic for 12119 * "when did we emit code that changes the MVE_NO_PRED TB flag 12120 * and thus need to end the TB?". 12121 */ 12122 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12123 return false; 12124 } 12125 if (env->v7m.vpr) { 12126 return false; 12127 } 12128 if (env->v7m.ltpsize < 4) { 12129 return false; 12130 } 12131 return true; 12132 } 12133 12134 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12135 uint64_t *cs_base, uint32_t *pflags) 12136 { 12137 CPUARMTBFlags flags; 12138 12139 assert_hflags_rebuild_correctly(env); 12140 flags = env->hflags; 12141 12142 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12143 *pc = env->pc; 12144 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12145 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12146 } 12147 } else { 12148 *pc = env->regs[15]; 12149 12150 if (arm_feature(env, ARM_FEATURE_M)) { 12151 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12152 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12153 != env->v7m.secure) { 12154 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12155 } 12156 12157 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12158 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12159 (env->v7m.secure && 12160 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12161 /* 12162 * ASPEN is set, but FPCA/SFPA indicate that there is no 12163 * active FP context; we must create a new FP context before 12164 * executing any FP insn. 12165 */ 12166 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12167 } 12168 12169 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12170 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12171 DP_TBFLAG_M32(flags, LSPACT, 1); 12172 } 12173 12174 if (mve_no_pred(env)) { 12175 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12176 } 12177 } else { 12178 /* 12179 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12180 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12181 */ 12182 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12183 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12184 } else { 12185 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12186 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12187 } 12188 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12189 DP_TBFLAG_A32(flags, VFPEN, 1); 12190 } 12191 } 12192 12193 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12194 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12195 } 12196 12197 /* 12198 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12199 * states defined in the ARM ARM for software singlestep: 12200 * SS_ACTIVE PSTATE.SS State 12201 * 0 x Inactive (the TB flag for SS is always 0) 12202 * 1 0 Active-pending 12203 * 1 1 Active-not-pending 12204 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12205 */ 12206 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12207 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12208 } 12209 12210 *pflags = flags.flags; 12211 *cs_base = flags.flags2; 12212 } 12213 12214 #ifdef TARGET_AARCH64 12215 /* 12216 * The manual says that when SVE is enabled and VQ is widened the 12217 * implementation is allowed to zero the previously inaccessible 12218 * portion of the registers. The corollary to that is that when 12219 * SVE is enabled and VQ is narrowed we are also allowed to zero 12220 * the now inaccessible portion of the registers. 12221 * 12222 * The intent of this is that no predicate bit beyond VQ is ever set. 12223 * Which means that some operations on predicate registers themselves 12224 * may operate on full uint64_t or even unrolled across the maximum 12225 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12226 * may well be cheaper than conditionals to restrict the operation 12227 * to the relevant portion of a uint16_t[16]. 12228 */ 12229 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12230 { 12231 int i, j; 12232 uint64_t pmask; 12233 12234 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12235 assert(vq <= env_archcpu(env)->sve_max_vq); 12236 12237 /* Zap the high bits of the zregs. */ 12238 for (i = 0; i < 32; i++) { 12239 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12240 } 12241 12242 /* Zap the high bits of the pregs and ffr. */ 12243 pmask = 0; 12244 if (vq & 3) { 12245 pmask = ~(-1ULL << (16 * (vq & 3))); 12246 } 12247 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12248 for (i = 0; i < 17; ++i) { 12249 env->vfp.pregs[i].p[j] &= pmask; 12250 } 12251 pmask = 0; 12252 } 12253 } 12254 12255 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12256 { 12257 int exc_el; 12258 12259 if (sm) { 12260 exc_el = sme_exception_el(env, el); 12261 } else { 12262 exc_el = sve_exception_el(env, el); 12263 } 12264 if (exc_el) { 12265 return 0; /* disabled */ 12266 } 12267 return sve_vqm1_for_el_sm(env, el, sm); 12268 } 12269 12270 /* 12271 * Notice a change in SVE vector size when changing EL. 12272 */ 12273 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12274 int new_el, bool el0_a64) 12275 { 12276 ARMCPU *cpu = env_archcpu(env); 12277 int old_len, new_len; 12278 bool old_a64, new_a64, sm; 12279 12280 /* Nothing to do if no SVE. */ 12281 if (!cpu_isar_feature(aa64_sve, cpu)) { 12282 return; 12283 } 12284 12285 /* Nothing to do if FP is disabled in either EL. */ 12286 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12287 return; 12288 } 12289 12290 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12291 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12292 12293 /* 12294 * Both AArch64.TakeException and AArch64.ExceptionReturn 12295 * invoke ResetSVEState when taking an exception from, or 12296 * returning to, AArch32 state when PSTATE.SM is enabled. 12297 */ 12298 sm = FIELD_EX64(env->svcr, SVCR, SM); 12299 if (old_a64 != new_a64 && sm) { 12300 arm_reset_sve_state(env); 12301 return; 12302 } 12303 12304 /* 12305 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12306 * at ELx, or not available because the EL is in AArch32 state, then 12307 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12308 * has an effective value of 0". 12309 * 12310 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12311 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12312 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12313 * we already have the correct register contents when encountering the 12314 * vq0->vq0 transition between EL0->EL1. 12315 */ 12316 old_len = new_len = 0; 12317 if (old_a64) { 12318 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12319 } 12320 if (new_a64) { 12321 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12322 } 12323 12324 /* When changing vector length, clear inaccessible state. */ 12325 if (new_len < old_len) { 12326 aarch64_sve_narrow_vq(env, new_len + 1); 12327 } 12328 } 12329 #endif 12330 12331 #ifndef CONFIG_USER_ONLY 12332 ARMSecuritySpace arm_security_space(CPUARMState *env) 12333 { 12334 if (arm_feature(env, ARM_FEATURE_M)) { 12335 return arm_secure_to_space(env->v7m.secure); 12336 } 12337 12338 /* 12339 * If EL3 is not supported then the secure state is implementation 12340 * defined, in which case QEMU defaults to non-secure. 12341 */ 12342 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12343 return ARMSS_NonSecure; 12344 } 12345 12346 /* Check for AArch64 EL3 or AArch32 Mon. */ 12347 if (is_a64(env)) { 12348 if (extract32(env->pstate, 2, 2) == 3) { 12349 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12350 return ARMSS_Root; 12351 } else { 12352 return ARMSS_Secure; 12353 } 12354 } 12355 } else { 12356 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12357 return ARMSS_Secure; 12358 } 12359 } 12360 12361 return arm_security_space_below_el3(env); 12362 } 12363 12364 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12365 { 12366 assert(!arm_feature(env, ARM_FEATURE_M)); 12367 12368 /* 12369 * If EL3 is not supported then the secure state is implementation 12370 * defined, in which case QEMU defaults to non-secure. 12371 */ 12372 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12373 return ARMSS_NonSecure; 12374 } 12375 12376 /* 12377 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12378 * Ignoring NSE when !NS retains consistency without having to 12379 * modify other predicates. 12380 */ 12381 if (!(env->cp15.scr_el3 & SCR_NS)) { 12382 return ARMSS_Secure; 12383 } else if (env->cp15.scr_el3 & SCR_NSE) { 12384 return ARMSS_Realm; 12385 } else { 12386 return ARMSS_NonSecure; 12387 } 12388 } 12389 #endif /* !CONFIG_USER_ONLY */ 12390