1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "hw/semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 42 43 #ifndef CONFIG_USER_ONLY 44 45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 46 MMUAccessType access_type, ARMMMUIdx mmu_idx, 47 bool s1_is_el0, 48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 49 target_ulong *page_size_ptr, 50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 51 __attribute__((nonnull)); 52 #endif 53 54 static void switch_mode(CPUARMState *env, int mode); 55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 56 57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 58 { 59 ARMCPU *cpu = env_archcpu(env); 60 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 61 62 /* VFP data registers are always little-endian. */ 63 if (reg < nregs) { 64 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 65 } 66 if (arm_feature(env, ARM_FEATURE_NEON)) { 67 /* Aliases for Q regs. */ 68 nregs += 16; 69 if (reg < nregs) { 70 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 71 return gdb_get_reg128(buf, q[0], q[1]); 72 } 73 } 74 switch (reg - nregs) { 75 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 76 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 77 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 78 } 79 return 0; 80 } 81 82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 83 { 84 ARMCPU *cpu = env_archcpu(env); 85 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 86 87 if (reg < nregs) { 88 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 89 return 8; 90 } 91 if (arm_feature(env, ARM_FEATURE_NEON)) { 92 nregs += 16; 93 if (reg < nregs) { 94 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 95 q[0] = ldq_le_p(buf); 96 q[1] = ldq_le_p(buf + 8); 97 return 16; 98 } 99 } 100 switch (reg - nregs) { 101 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 102 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 103 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 104 } 105 return 0; 106 } 107 108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 109 { 110 switch (reg) { 111 case 0 ... 31: 112 { 113 /* 128 bit FP register - quads are in LE order */ 114 uint64_t *q = aa64_vfp_qreg(env, reg); 115 return gdb_get_reg128(buf, q[1], q[0]); 116 } 117 case 32: 118 /* FPSR */ 119 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 120 case 33: 121 /* FPCR */ 122 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 /** 212 * arm_get/set_gdb_*: get/set a gdb register 213 * @env: the CPU state 214 * @buf: a buffer to copy to/from 215 * @reg: register number (offset from start of group) 216 * 217 * We return the number of bytes copied 218 */ 219 220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 221 { 222 ARMCPU *cpu = env_archcpu(env); 223 const ARMCPRegInfo *ri; 224 uint32_t key; 225 226 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 227 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 228 if (ri) { 229 if (cpreg_field_is_64bit(ri)) { 230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 231 } else { 232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 233 } 234 } 235 return 0; 236 } 237 238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 239 { 240 return 0; 241 } 242 243 #ifdef TARGET_AARCH64 244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 245 { 246 ARMCPU *cpu = env_archcpu(env); 247 248 switch (reg) { 249 /* The first 32 registers are the zregs */ 250 case 0 ... 31: 251 { 252 int vq, len = 0; 253 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 254 len += gdb_get_reg128(buf, 255 env->vfp.zregs[reg].d[vq * 2 + 1], 256 env->vfp.zregs[reg].d[vq * 2]); 257 } 258 return len; 259 } 260 case 32: 261 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 262 case 33: 263 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 264 /* then 16 predicates and the ffr */ 265 case 34 ... 50: 266 { 267 int preg = reg - 34; 268 int vq, len = 0; 269 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 270 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 271 } 272 return len; 273 } 274 case 51: 275 { 276 /* 277 * We report in Vector Granules (VG) which is 64bit in a Z reg 278 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 279 */ 280 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 281 return gdb_get_reg64(buf, vq * 2); 282 } 283 default: 284 /* gdbstub asked for something out our range */ 285 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 286 break; 287 } 288 289 return 0; 290 } 291 292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 293 { 294 ARMCPU *cpu = env_archcpu(env); 295 296 /* The first 32 registers are the zregs */ 297 switch (reg) { 298 /* The first 32 registers are the zregs */ 299 case 0 ... 31: 300 { 301 int vq, len = 0; 302 uint64_t *p = (uint64_t *) buf; 303 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 304 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 305 env->vfp.zregs[reg].d[vq * 2] = *p++; 306 len += 16; 307 } 308 return len; 309 } 310 case 32: 311 vfp_set_fpsr(env, *(uint32_t *)buf); 312 return 4; 313 case 33: 314 vfp_set_fpcr(env, *(uint32_t *)buf); 315 return 4; 316 case 34 ... 50: 317 { 318 int preg = reg - 34; 319 int vq, len = 0; 320 uint64_t *p = (uint64_t *) buf; 321 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 322 env->vfp.pregs[preg].p[vq / 4] = *p++; 323 len += 8; 324 } 325 return len; 326 } 327 case 51: 328 /* cannot set vg via gdbstub */ 329 return 0; 330 default: 331 /* gdbstub asked for something out our range */ 332 break; 333 } 334 335 return 0; 336 } 337 #endif /* TARGET_AARCH64 */ 338 339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 340 { 341 /* Return true if the regdef would cause an assertion if you called 342 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 343 * program bug for it not to have the NO_RAW flag). 344 * NB that returning false here doesn't necessarily mean that calling 345 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 346 * read/write access functions which are safe for raw use" from "has 347 * read/write access functions which have side effects but has forgotten 348 * to provide raw access functions". 349 * The tests here line up with the conditions in read/write_raw_cp_reg() 350 * and assertions in raw_read()/raw_write(). 351 */ 352 if ((ri->type & ARM_CP_CONST) || 353 ri->fieldoffset || 354 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 355 return false; 356 } 357 return true; 358 } 359 360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 361 { 362 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 363 int i; 364 bool ok = true; 365 366 for (i = 0; i < cpu->cpreg_array_len; i++) { 367 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 368 const ARMCPRegInfo *ri; 369 uint64_t newval; 370 371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 372 if (!ri) { 373 ok = false; 374 continue; 375 } 376 if (ri->type & ARM_CP_NO_RAW) { 377 continue; 378 } 379 380 newval = read_raw_cp_reg(&cpu->env, ri); 381 if (kvm_sync) { 382 /* 383 * Only sync if the previous list->cpustate sync succeeded. 384 * Rather than tracking the success/failure state for every 385 * item in the list, we just recheck "does the raw write we must 386 * have made in write_list_to_cpustate() read back OK" here. 387 */ 388 uint64_t oldval = cpu->cpreg_values[i]; 389 390 if (oldval == newval) { 391 continue; 392 } 393 394 write_raw_cp_reg(&cpu->env, ri, oldval); 395 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 396 continue; 397 } 398 399 write_raw_cp_reg(&cpu->env, ri, newval); 400 } 401 cpu->cpreg_values[i] = newval; 402 } 403 return ok; 404 } 405 406 bool write_list_to_cpustate(ARMCPU *cpu) 407 { 408 int i; 409 bool ok = true; 410 411 for (i = 0; i < cpu->cpreg_array_len; i++) { 412 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 413 uint64_t v = cpu->cpreg_values[i]; 414 const ARMCPRegInfo *ri; 415 416 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 417 if (!ri) { 418 ok = false; 419 continue; 420 } 421 if (ri->type & ARM_CP_NO_RAW) { 422 continue; 423 } 424 /* Write value and confirm it reads back as written 425 * (to catch read-only registers and partially read-only 426 * registers where the incoming migration value doesn't match) 427 */ 428 write_raw_cp_reg(&cpu->env, ri, v); 429 if (read_raw_cp_reg(&cpu->env, ri) != v) { 430 ok = false; 431 } 432 } 433 return ok; 434 } 435 436 static void add_cpreg_to_list(gpointer key, gpointer opaque) 437 { 438 ARMCPU *cpu = opaque; 439 uint64_t regidx; 440 const ARMCPRegInfo *ri; 441 442 regidx = *(uint32_t *)key; 443 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 444 445 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 446 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 447 /* The value array need not be initialized at this point */ 448 cpu->cpreg_array_len++; 449 } 450 } 451 452 static void count_cpreg(gpointer key, gpointer opaque) 453 { 454 ARMCPU *cpu = opaque; 455 uint64_t regidx; 456 const ARMCPRegInfo *ri; 457 458 regidx = *(uint32_t *)key; 459 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 460 461 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 462 cpu->cpreg_array_len++; 463 } 464 } 465 466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 467 { 468 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 469 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 470 471 if (aidx > bidx) { 472 return 1; 473 } 474 if (aidx < bidx) { 475 return -1; 476 } 477 return 0; 478 } 479 480 void init_cpreg_list(ARMCPU *cpu) 481 { 482 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 483 * Note that we require cpreg_tuples[] to be sorted by key ID. 484 */ 485 GList *keys; 486 int arraylen; 487 488 keys = g_hash_table_get_keys(cpu->cp_regs); 489 keys = g_list_sort(keys, cpreg_key_compare); 490 491 cpu->cpreg_array_len = 0; 492 493 g_list_foreach(keys, count_cpreg, cpu); 494 495 arraylen = cpu->cpreg_array_len; 496 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 497 cpu->cpreg_values = g_new(uint64_t, arraylen); 498 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 499 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 500 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 501 cpu->cpreg_array_len = 0; 502 503 g_list_foreach(keys, add_cpreg_to_list, cpu); 504 505 assert(cpu->cpreg_array_len == arraylen); 506 507 g_list_free(keys); 508 } 509 510 /* 511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 512 */ 513 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 514 const ARMCPRegInfo *ri, 515 bool isread) 516 { 517 if (!is_a64(env) && arm_current_el(env) == 3 && 518 arm_is_secure_below_el3(env)) { 519 return CP_ACCESS_TRAP_UNCATEGORIZED; 520 } 521 return CP_ACCESS_OK; 522 } 523 524 /* Some secure-only AArch32 registers trap to EL3 if used from 525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 527 * We assume that the .access field is set to PL1_RW. 528 */ 529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 530 const ARMCPRegInfo *ri, 531 bool isread) 532 { 533 if (arm_current_el(env) == 3) { 534 return CP_ACCESS_OK; 535 } 536 if (arm_is_secure_below_el3(env)) { 537 if (env->cp15.scr_el3 & SCR_EEL2) { 538 return CP_ACCESS_TRAP_EL2; 539 } 540 return CP_ACCESS_TRAP_EL3; 541 } 542 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 543 return CP_ACCESS_TRAP_UNCATEGORIZED; 544 } 545 546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 547 { 548 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 549 } 550 551 /* Check for traps to "powerdown debug" registers, which are controlled 552 * by MDCR.TDOSA 553 */ 554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 555 bool isread) 556 { 557 int el = arm_current_el(env); 558 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 559 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 560 (arm_hcr_el2_eff(env) & HCR_TGE); 561 562 if (el < 2 && mdcr_el2_tdosa) { 563 return CP_ACCESS_TRAP_EL2; 564 } 565 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 566 return CP_ACCESS_TRAP_EL3; 567 } 568 return CP_ACCESS_OK; 569 } 570 571 /* Check for traps to "debug ROM" registers, which are controlled 572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 573 */ 574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 575 bool isread) 576 { 577 int el = arm_current_el(env); 578 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 579 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 580 (arm_hcr_el2_eff(env) & HCR_TGE); 581 582 if (el < 2 && mdcr_el2_tdra) { 583 return CP_ACCESS_TRAP_EL2; 584 } 585 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 586 return CP_ACCESS_TRAP_EL3; 587 } 588 return CP_ACCESS_OK; 589 } 590 591 /* Check for traps to general debug registers, which are controlled 592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 593 */ 594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 595 bool isread) 596 { 597 int el = arm_current_el(env); 598 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 599 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 600 (arm_hcr_el2_eff(env) & HCR_TGE); 601 602 if (el < 2 && mdcr_el2_tda) { 603 return CP_ACCESS_TRAP_EL2; 604 } 605 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 606 return CP_ACCESS_TRAP_EL3; 607 } 608 return CP_ACCESS_OK; 609 } 610 611 /* Check for traps to performance monitor registers, which are controlled 612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 613 */ 614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 615 bool isread) 616 { 617 int el = arm_current_el(env); 618 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 619 620 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 621 return CP_ACCESS_TRAP_EL2; 622 } 623 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 624 return CP_ACCESS_TRAP_EL3; 625 } 626 return CP_ACCESS_OK; 627 } 628 629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 631 bool isread) 632 { 633 if (arm_current_el(env) == 1) { 634 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 635 if (arm_hcr_el2_eff(env) & trap) { 636 return CP_ACCESS_TRAP_EL2; 637 } 638 } 639 return CP_ACCESS_OK; 640 } 641 642 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 644 bool isread) 645 { 646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 647 return CP_ACCESS_TRAP_EL2; 648 } 649 return CP_ACCESS_OK; 650 } 651 652 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 654 bool isread) 655 { 656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 657 return CP_ACCESS_TRAP_EL2; 658 } 659 return CP_ACCESS_OK; 660 } 661 662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 664 bool isread) 665 { 666 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 667 return CP_ACCESS_TRAP_EL2; 668 } 669 return CP_ACCESS_OK; 670 } 671 672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 673 { 674 ARMCPU *cpu = env_archcpu(env); 675 676 raw_write(env, ri, value); 677 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 678 } 679 680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 681 { 682 ARMCPU *cpu = env_archcpu(env); 683 684 if (raw_read(env, ri) != value) { 685 /* Unlike real hardware the qemu TLB uses virtual addresses, 686 * not modified virtual addresses, so this causes a TLB flush. 687 */ 688 tlb_flush(CPU(cpu)); 689 raw_write(env, ri, value); 690 } 691 } 692 693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 694 uint64_t value) 695 { 696 ARMCPU *cpu = env_archcpu(env); 697 698 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 699 && !extended_addresses_enabled(env)) { 700 /* For VMSA (when not using the LPAE long descriptor page table 701 * format) this register includes the ASID, so do a TLB flush. 702 * For PMSA it is purely a process ID and no action is needed. 703 */ 704 tlb_flush(CPU(cpu)); 705 } 706 raw_write(env, ri, value); 707 } 708 709 /* IS variants of TLB operations must affect all cores */ 710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 711 uint64_t value) 712 { 713 CPUState *cs = env_cpu(env); 714 715 tlb_flush_all_cpus_synced(cs); 716 } 717 718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 719 uint64_t value) 720 { 721 CPUState *cs = env_cpu(env); 722 723 tlb_flush_all_cpus_synced(cs); 724 } 725 726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 727 uint64_t value) 728 { 729 CPUState *cs = env_cpu(env); 730 731 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 732 } 733 734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 735 uint64_t value) 736 { 737 CPUState *cs = env_cpu(env); 738 739 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 740 } 741 742 /* 743 * Non-IS variants of TLB operations are upgraded to 744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 745 * force broadcast of these operations. 746 */ 747 static bool tlb_force_broadcast(CPUARMState *env) 748 { 749 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 750 } 751 752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 753 uint64_t value) 754 { 755 /* Invalidate all (TLBIALL) */ 756 CPUState *cs = env_cpu(env); 757 758 if (tlb_force_broadcast(env)) { 759 tlb_flush_all_cpus_synced(cs); 760 } else { 761 tlb_flush(cs); 762 } 763 } 764 765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 766 uint64_t value) 767 { 768 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 769 CPUState *cs = env_cpu(env); 770 771 value &= TARGET_PAGE_MASK; 772 if (tlb_force_broadcast(env)) { 773 tlb_flush_page_all_cpus_synced(cs, value); 774 } else { 775 tlb_flush_page(cs, value); 776 } 777 } 778 779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 780 uint64_t value) 781 { 782 /* Invalidate by ASID (TLBIASID) */ 783 CPUState *cs = env_cpu(env); 784 785 if (tlb_force_broadcast(env)) { 786 tlb_flush_all_cpus_synced(cs); 787 } else { 788 tlb_flush(cs); 789 } 790 } 791 792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 793 uint64_t value) 794 { 795 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 796 CPUState *cs = env_cpu(env); 797 798 value &= TARGET_PAGE_MASK; 799 if (tlb_force_broadcast(env)) { 800 tlb_flush_page_all_cpus_synced(cs, value); 801 } else { 802 tlb_flush_page(cs, value); 803 } 804 } 805 806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 807 uint64_t value) 808 { 809 CPUState *cs = env_cpu(env); 810 811 tlb_flush_by_mmuidx(cs, 812 ARMMMUIdxBit_E10_1 | 813 ARMMMUIdxBit_E10_1_PAN | 814 ARMMMUIdxBit_E10_0); 815 } 816 817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 818 uint64_t value) 819 { 820 CPUState *cs = env_cpu(env); 821 822 tlb_flush_by_mmuidx_all_cpus_synced(cs, 823 ARMMMUIdxBit_E10_1 | 824 ARMMMUIdxBit_E10_1_PAN | 825 ARMMMUIdxBit_E10_0); 826 } 827 828 829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 830 uint64_t value) 831 { 832 CPUState *cs = env_cpu(env); 833 834 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 835 } 836 837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 838 uint64_t value) 839 { 840 CPUState *cs = env_cpu(env); 841 842 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 843 } 844 845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 846 uint64_t value) 847 { 848 CPUState *cs = env_cpu(env); 849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 850 851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 852 } 853 854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 855 uint64_t value) 856 { 857 CPUState *cs = env_cpu(env); 858 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 859 860 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 861 ARMMMUIdxBit_E2); 862 } 863 864 static const ARMCPRegInfo cp_reginfo[] = { 865 /* Define the secure and non-secure FCSE identifier CP registers 866 * separately because there is no secure bank in V8 (no _EL3). This allows 867 * the secure register to be properly reset and migrated. There is also no 868 * v8 EL1 version of the register so the non-secure instance stands alone. 869 */ 870 { .name = "FCSEIDR", 871 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 872 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 873 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 874 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 875 { .name = "FCSEIDR_S", 876 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 877 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 878 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 879 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 880 /* Define the secure and non-secure context identifier CP registers 881 * separately because there is no secure bank in V8 (no _EL3). This allows 882 * the secure register to be properly reset and migrated. In the 883 * non-secure case, the 32-bit register will have reset and migration 884 * disabled during registration as it is handled by the 64-bit instance. 885 */ 886 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 887 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 888 .access = PL1_RW, .accessfn = access_tvm_trvm, 889 .secure = ARM_CP_SECSTATE_NS, 890 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 891 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 892 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 893 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 894 .access = PL1_RW, .accessfn = access_tvm_trvm, 895 .secure = ARM_CP_SECSTATE_S, 896 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 897 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 898 REGINFO_SENTINEL 899 }; 900 901 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 902 /* NB: Some of these registers exist in v8 but with more precise 903 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 904 */ 905 /* MMU Domain access control / MPU write buffer control */ 906 { .name = "DACR", 907 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 908 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 909 .writefn = dacr_write, .raw_writefn = raw_write, 910 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 911 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 912 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 913 * For v6 and v5, these mappings are overly broad. 914 */ 915 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 916 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 917 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 918 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 919 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 920 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 921 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 922 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 923 /* Cache maintenance ops; some of this space may be overridden later. */ 924 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 925 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 926 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 927 REGINFO_SENTINEL 928 }; 929 930 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 931 /* Not all pre-v6 cores implemented this WFI, so this is slightly 932 * over-broad. 933 */ 934 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 935 .access = PL1_W, .type = ARM_CP_WFI }, 936 REGINFO_SENTINEL 937 }; 938 939 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 940 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 941 * is UNPREDICTABLE; we choose to NOP as most implementations do). 942 */ 943 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 944 .access = PL1_W, .type = ARM_CP_WFI }, 945 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 946 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 947 * OMAPCP will override this space. 948 */ 949 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 950 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 951 .resetvalue = 0 }, 952 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 953 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 954 .resetvalue = 0 }, 955 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 956 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 957 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 958 .resetvalue = 0 }, 959 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 960 * implementing it as RAZ means the "debug architecture version" bits 961 * will read as a reserved value, which should cause Linux to not try 962 * to use the debug hardware. 963 */ 964 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 965 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 966 /* MMU TLB control. Note that the wildcarding means we cover not just 967 * the unified TLB ops but also the dside/iside/inner-shareable variants. 968 */ 969 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 970 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 971 .type = ARM_CP_NO_RAW }, 972 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 973 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 974 .type = ARM_CP_NO_RAW }, 975 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 976 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 977 .type = ARM_CP_NO_RAW }, 978 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 979 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 980 .type = ARM_CP_NO_RAW }, 981 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 982 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 983 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 984 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 985 REGINFO_SENTINEL 986 }; 987 988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 989 uint64_t value) 990 { 991 uint32_t mask = 0; 992 993 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 994 if (!arm_feature(env, ARM_FEATURE_V8)) { 995 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 996 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 997 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 998 */ 999 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 1000 /* VFP coprocessor: cp10 & cp11 [23:20] */ 1001 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 1002 1003 if (!arm_feature(env, ARM_FEATURE_NEON)) { 1004 /* ASEDIS [31] bit is RAO/WI */ 1005 value |= (1 << 31); 1006 } 1007 1008 /* VFPv3 and upwards with NEON implement 32 double precision 1009 * registers (D0-D31). 1010 */ 1011 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1012 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1013 value |= (1 << 30); 1014 } 1015 } 1016 value &= mask; 1017 } 1018 1019 /* 1020 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1021 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1022 */ 1023 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1024 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1025 value &= ~(0xf << 20); 1026 value |= env->cp15.cpacr_el1 & (0xf << 20); 1027 } 1028 1029 env->cp15.cpacr_el1 = value; 1030 } 1031 1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1033 { 1034 /* 1035 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1036 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1037 */ 1038 uint64_t value = env->cp15.cpacr_el1; 1039 1040 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1041 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1042 value &= ~(0xf << 20); 1043 } 1044 return value; 1045 } 1046 1047 1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1049 { 1050 /* Call cpacr_write() so that we reset with the correct RAO bits set 1051 * for our CPU features. 1052 */ 1053 cpacr_write(env, ri, 0); 1054 } 1055 1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1057 bool isread) 1058 { 1059 if (arm_feature(env, ARM_FEATURE_V8)) { 1060 /* Check if CPACR accesses are to be trapped to EL2 */ 1061 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 1062 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 1063 return CP_ACCESS_TRAP_EL2; 1064 /* Check if CPACR accesses are to be trapped to EL3 */ 1065 } else if (arm_current_el(env) < 3 && 1066 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1067 return CP_ACCESS_TRAP_EL3; 1068 } 1069 } 1070 1071 return CP_ACCESS_OK; 1072 } 1073 1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1075 bool isread) 1076 { 1077 /* Check if CPTR accesses are set to trap to EL3 */ 1078 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1079 return CP_ACCESS_TRAP_EL3; 1080 } 1081 1082 return CP_ACCESS_OK; 1083 } 1084 1085 static const ARMCPRegInfo v6_cp_reginfo[] = { 1086 /* prefetch by MVA in v6, NOP in v7 */ 1087 { .name = "MVA_prefetch", 1088 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1089 .access = PL1_W, .type = ARM_CP_NOP }, 1090 /* We need to break the TB after ISB to execute self-modifying code 1091 * correctly and also to take any pending interrupts immediately. 1092 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1093 */ 1094 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1095 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1096 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1097 .access = PL0_W, .type = ARM_CP_NOP }, 1098 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1099 .access = PL0_W, .type = ARM_CP_NOP }, 1100 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1101 .access = PL1_RW, .accessfn = access_tvm_trvm, 1102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1103 offsetof(CPUARMState, cp15.ifar_ns) }, 1104 .resetvalue = 0, }, 1105 /* Watchpoint Fault Address Register : should actually only be present 1106 * for 1136, 1176, 11MPCore. 1107 */ 1108 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1110 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1111 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1112 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1113 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1114 REGINFO_SENTINEL 1115 }; 1116 1117 /* Definitions for the PMU registers */ 1118 #define PMCRN_MASK 0xf800 1119 #define PMCRN_SHIFT 11 1120 #define PMCRLC 0x40 1121 #define PMCRDP 0x20 1122 #define PMCRX 0x10 1123 #define PMCRD 0x8 1124 #define PMCRC 0x4 1125 #define PMCRP 0x2 1126 #define PMCRE 0x1 1127 /* 1128 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1129 * which can be written as 1 to trigger behaviour but which stay RAZ). 1130 */ 1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1132 1133 #define PMXEVTYPER_P 0x80000000 1134 #define PMXEVTYPER_U 0x40000000 1135 #define PMXEVTYPER_NSK 0x20000000 1136 #define PMXEVTYPER_NSU 0x10000000 1137 #define PMXEVTYPER_NSH 0x08000000 1138 #define PMXEVTYPER_M 0x04000000 1139 #define PMXEVTYPER_MT 0x02000000 1140 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1141 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1142 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1143 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1144 PMXEVTYPER_EVTCOUNT) 1145 1146 #define PMCCFILTR 0xf8000000 1147 #define PMCCFILTR_M PMXEVTYPER_M 1148 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1149 1150 static inline uint32_t pmu_num_counters(CPUARMState *env) 1151 { 1152 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1153 } 1154 1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1156 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1157 { 1158 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1159 } 1160 1161 typedef struct pm_event { 1162 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1163 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1164 bool (*supported)(CPUARMState *); 1165 /* 1166 * Retrieve the current count of the underlying event. The programmed 1167 * counters hold a difference from the return value from this function 1168 */ 1169 uint64_t (*get_count)(CPUARMState *); 1170 /* 1171 * Return how many nanoseconds it will take (at a minimum) for count events 1172 * to occur. A negative value indicates the counter will never overflow, or 1173 * that the counter has otherwise arranged for the overflow bit to be set 1174 * and the PMU interrupt to be raised on overflow. 1175 */ 1176 int64_t (*ns_per_count)(uint64_t); 1177 } pm_event; 1178 1179 static bool event_always_supported(CPUARMState *env) 1180 { 1181 return true; 1182 } 1183 1184 static uint64_t swinc_get_count(CPUARMState *env) 1185 { 1186 /* 1187 * SW_INCR events are written directly to the pmevcntr's by writes to 1188 * PMSWINC, so there is no underlying count maintained by the PMU itself 1189 */ 1190 return 0; 1191 } 1192 1193 static int64_t swinc_ns_per(uint64_t ignored) 1194 { 1195 return -1; 1196 } 1197 1198 /* 1199 * Return the underlying cycle count for the PMU cycle counters. If we're in 1200 * usermode, simply return 0. 1201 */ 1202 static uint64_t cycles_get_count(CPUARMState *env) 1203 { 1204 #ifndef CONFIG_USER_ONLY 1205 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1206 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1207 #else 1208 return cpu_get_host_ticks(); 1209 #endif 1210 } 1211 1212 #ifndef CONFIG_USER_ONLY 1213 static int64_t cycles_ns_per(uint64_t cycles) 1214 { 1215 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1216 } 1217 1218 static bool instructions_supported(CPUARMState *env) 1219 { 1220 return icount_enabled() == 1; /* Precise instruction counting */ 1221 } 1222 1223 static uint64_t instructions_get_count(CPUARMState *env) 1224 { 1225 return (uint64_t)icount_get_raw(); 1226 } 1227 1228 static int64_t instructions_ns_per(uint64_t icount) 1229 { 1230 return icount_to_ns((int64_t)icount); 1231 } 1232 #endif 1233 1234 static bool pmu_8_1_events_supported(CPUARMState *env) 1235 { 1236 /* For events which are supported in any v8.1 PMU */ 1237 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1238 } 1239 1240 static bool pmu_8_4_events_supported(CPUARMState *env) 1241 { 1242 /* For events which are supported in any v8.1 PMU */ 1243 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1244 } 1245 1246 static uint64_t zero_event_get_count(CPUARMState *env) 1247 { 1248 /* For events which on QEMU never fire, so their count is always zero */ 1249 return 0; 1250 } 1251 1252 static int64_t zero_event_ns_per(uint64_t cycles) 1253 { 1254 /* An event which never fires can never overflow */ 1255 return -1; 1256 } 1257 1258 static const pm_event pm_events[] = { 1259 { .number = 0x000, /* SW_INCR */ 1260 .supported = event_always_supported, 1261 .get_count = swinc_get_count, 1262 .ns_per_count = swinc_ns_per, 1263 }, 1264 #ifndef CONFIG_USER_ONLY 1265 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1266 .supported = instructions_supported, 1267 .get_count = instructions_get_count, 1268 .ns_per_count = instructions_ns_per, 1269 }, 1270 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1271 .supported = event_always_supported, 1272 .get_count = cycles_get_count, 1273 .ns_per_count = cycles_ns_per, 1274 }, 1275 #endif 1276 { .number = 0x023, /* STALL_FRONTEND */ 1277 .supported = pmu_8_1_events_supported, 1278 .get_count = zero_event_get_count, 1279 .ns_per_count = zero_event_ns_per, 1280 }, 1281 { .number = 0x024, /* STALL_BACKEND */ 1282 .supported = pmu_8_1_events_supported, 1283 .get_count = zero_event_get_count, 1284 .ns_per_count = zero_event_ns_per, 1285 }, 1286 { .number = 0x03c, /* STALL */ 1287 .supported = pmu_8_4_events_supported, 1288 .get_count = zero_event_get_count, 1289 .ns_per_count = zero_event_ns_per, 1290 }, 1291 }; 1292 1293 /* 1294 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1295 * events (i.e. the statistical profiling extension), this implementation 1296 * should first be updated to something sparse instead of the current 1297 * supported_event_map[] array. 1298 */ 1299 #define MAX_EVENT_ID 0x3c 1300 #define UNSUPPORTED_EVENT UINT16_MAX 1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1302 1303 /* 1304 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1305 * of ARM event numbers to indices in our pm_events array. 1306 * 1307 * Note: Events in the 0x40XX range are not currently supported. 1308 */ 1309 void pmu_init(ARMCPU *cpu) 1310 { 1311 unsigned int i; 1312 1313 /* 1314 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1315 * events to them 1316 */ 1317 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1318 supported_event_map[i] = UNSUPPORTED_EVENT; 1319 } 1320 cpu->pmceid0 = 0; 1321 cpu->pmceid1 = 0; 1322 1323 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1324 const pm_event *cnt = &pm_events[i]; 1325 assert(cnt->number <= MAX_EVENT_ID); 1326 /* We do not currently support events in the 0x40xx range */ 1327 assert(cnt->number <= 0x3f); 1328 1329 if (cnt->supported(&cpu->env)) { 1330 supported_event_map[cnt->number] = i; 1331 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1332 if (cnt->number & 0x20) { 1333 cpu->pmceid1 |= event_mask; 1334 } else { 1335 cpu->pmceid0 |= event_mask; 1336 } 1337 } 1338 } 1339 } 1340 1341 /* 1342 * Check at runtime whether a PMU event is supported for the current machine 1343 */ 1344 static bool event_supported(uint16_t number) 1345 { 1346 if (number > MAX_EVENT_ID) { 1347 return false; 1348 } 1349 return supported_event_map[number] != UNSUPPORTED_EVENT; 1350 } 1351 1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1353 bool isread) 1354 { 1355 /* Performance monitor registers user accessibility is controlled 1356 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1357 * trapping to EL2 or EL3 for other accesses. 1358 */ 1359 int el = arm_current_el(env); 1360 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1361 1362 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1363 return CP_ACCESS_TRAP; 1364 } 1365 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1366 return CP_ACCESS_TRAP_EL2; 1367 } 1368 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1369 return CP_ACCESS_TRAP_EL3; 1370 } 1371 1372 return CP_ACCESS_OK; 1373 } 1374 1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1376 const ARMCPRegInfo *ri, 1377 bool isread) 1378 { 1379 /* ER: event counter read trap control */ 1380 if (arm_feature(env, ARM_FEATURE_V8) 1381 && arm_current_el(env) == 0 1382 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1383 && isread) { 1384 return CP_ACCESS_OK; 1385 } 1386 1387 return pmreg_access(env, ri, isread); 1388 } 1389 1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1391 const ARMCPRegInfo *ri, 1392 bool isread) 1393 { 1394 /* SW: software increment write trap control */ 1395 if (arm_feature(env, ARM_FEATURE_V8) 1396 && arm_current_el(env) == 0 1397 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1398 && !isread) { 1399 return CP_ACCESS_OK; 1400 } 1401 1402 return pmreg_access(env, ri, isread); 1403 } 1404 1405 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1406 const ARMCPRegInfo *ri, 1407 bool isread) 1408 { 1409 /* ER: event counter read trap control */ 1410 if (arm_feature(env, ARM_FEATURE_V8) 1411 && arm_current_el(env) == 0 1412 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1413 return CP_ACCESS_OK; 1414 } 1415 1416 return pmreg_access(env, ri, isread); 1417 } 1418 1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1420 const ARMCPRegInfo *ri, 1421 bool isread) 1422 { 1423 /* CR: cycle counter read trap control */ 1424 if (arm_feature(env, ARM_FEATURE_V8) 1425 && arm_current_el(env) == 0 1426 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1427 && isread) { 1428 return CP_ACCESS_OK; 1429 } 1430 1431 return pmreg_access(env, ri, isread); 1432 } 1433 1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1435 * the current EL, security state, and register configuration. 1436 */ 1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1438 { 1439 uint64_t filter; 1440 bool e, p, u, nsk, nsu, nsh, m; 1441 bool enabled, prohibited, filtered; 1442 bool secure = arm_is_secure(env); 1443 int el = arm_current_el(env); 1444 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1445 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1446 1447 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1448 return false; 1449 } 1450 1451 if (!arm_feature(env, ARM_FEATURE_EL2) || 1452 (counter < hpmn || counter == 31)) { 1453 e = env->cp15.c9_pmcr & PMCRE; 1454 } else { 1455 e = mdcr_el2 & MDCR_HPME; 1456 } 1457 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1458 1459 if (!secure) { 1460 if (el == 2 && (counter < hpmn || counter == 31)) { 1461 prohibited = mdcr_el2 & MDCR_HPMD; 1462 } else { 1463 prohibited = false; 1464 } 1465 } else { 1466 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1467 !(env->cp15.mdcr_el3 & MDCR_SPME); 1468 } 1469 1470 if (prohibited && counter == 31) { 1471 prohibited = env->cp15.c9_pmcr & PMCRDP; 1472 } 1473 1474 if (counter == 31) { 1475 filter = env->cp15.pmccfiltr_el0; 1476 } else { 1477 filter = env->cp15.c14_pmevtyper[counter]; 1478 } 1479 1480 p = filter & PMXEVTYPER_P; 1481 u = filter & PMXEVTYPER_U; 1482 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1483 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1484 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1485 m = arm_el_is_aa64(env, 1) && 1486 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1487 1488 if (el == 0) { 1489 filtered = secure ? u : u != nsu; 1490 } else if (el == 1) { 1491 filtered = secure ? p : p != nsk; 1492 } else if (el == 2) { 1493 filtered = !nsh; 1494 } else { /* EL3 */ 1495 filtered = m != p; 1496 } 1497 1498 if (counter != 31) { 1499 /* 1500 * If not checking PMCCNTR, ensure the counter is setup to an event we 1501 * support 1502 */ 1503 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1504 if (!event_supported(event)) { 1505 return false; 1506 } 1507 } 1508 1509 return enabled && !prohibited && !filtered; 1510 } 1511 1512 static void pmu_update_irq(CPUARMState *env) 1513 { 1514 ARMCPU *cpu = env_archcpu(env); 1515 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1516 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1517 } 1518 1519 /* 1520 * Ensure c15_ccnt is the guest-visible count so that operations such as 1521 * enabling/disabling the counter or filtering, modifying the count itself, 1522 * etc. can be done logically. This is essentially a no-op if the counter is 1523 * not enabled at the time of the call. 1524 */ 1525 static void pmccntr_op_start(CPUARMState *env) 1526 { 1527 uint64_t cycles = cycles_get_count(env); 1528 1529 if (pmu_counter_enabled(env, 31)) { 1530 uint64_t eff_cycles = cycles; 1531 if (env->cp15.c9_pmcr & PMCRD) { 1532 /* Increment once every 64 processor clock cycles */ 1533 eff_cycles /= 64; 1534 } 1535 1536 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1537 1538 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1539 1ull << 63 : 1ull << 31; 1540 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1541 env->cp15.c9_pmovsr |= (1 << 31); 1542 pmu_update_irq(env); 1543 } 1544 1545 env->cp15.c15_ccnt = new_pmccntr; 1546 } 1547 env->cp15.c15_ccnt_delta = cycles; 1548 } 1549 1550 /* 1551 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1552 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1553 * pmccntr_op_start. 1554 */ 1555 static void pmccntr_op_finish(CPUARMState *env) 1556 { 1557 if (pmu_counter_enabled(env, 31)) { 1558 #ifndef CONFIG_USER_ONLY 1559 /* Calculate when the counter will next overflow */ 1560 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1561 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1562 remaining_cycles = (uint32_t)remaining_cycles; 1563 } 1564 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1565 1566 if (overflow_in > 0) { 1567 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1568 overflow_in; 1569 ARMCPU *cpu = env_archcpu(env); 1570 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1571 } 1572 #endif 1573 1574 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1575 if (env->cp15.c9_pmcr & PMCRD) { 1576 /* Increment once every 64 processor clock cycles */ 1577 prev_cycles /= 64; 1578 } 1579 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1580 } 1581 } 1582 1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1584 { 1585 1586 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1587 uint64_t count = 0; 1588 if (event_supported(event)) { 1589 uint16_t event_idx = supported_event_map[event]; 1590 count = pm_events[event_idx].get_count(env); 1591 } 1592 1593 if (pmu_counter_enabled(env, counter)) { 1594 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1595 1596 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1597 env->cp15.c9_pmovsr |= (1 << counter); 1598 pmu_update_irq(env); 1599 } 1600 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1601 } 1602 env->cp15.c14_pmevcntr_delta[counter] = count; 1603 } 1604 1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1606 { 1607 if (pmu_counter_enabled(env, counter)) { 1608 #ifndef CONFIG_USER_ONLY 1609 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1610 uint16_t event_idx = supported_event_map[event]; 1611 uint64_t delta = UINT32_MAX - 1612 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1613 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1614 1615 if (overflow_in > 0) { 1616 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1617 overflow_in; 1618 ARMCPU *cpu = env_archcpu(env); 1619 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1620 } 1621 #endif 1622 1623 env->cp15.c14_pmevcntr_delta[counter] -= 1624 env->cp15.c14_pmevcntr[counter]; 1625 } 1626 } 1627 1628 void pmu_op_start(CPUARMState *env) 1629 { 1630 unsigned int i; 1631 pmccntr_op_start(env); 1632 for (i = 0; i < pmu_num_counters(env); i++) { 1633 pmevcntr_op_start(env, i); 1634 } 1635 } 1636 1637 void pmu_op_finish(CPUARMState *env) 1638 { 1639 unsigned int i; 1640 pmccntr_op_finish(env); 1641 for (i = 0; i < pmu_num_counters(env); i++) { 1642 pmevcntr_op_finish(env, i); 1643 } 1644 } 1645 1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1647 { 1648 pmu_op_start(&cpu->env); 1649 } 1650 1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1652 { 1653 pmu_op_finish(&cpu->env); 1654 } 1655 1656 void arm_pmu_timer_cb(void *opaque) 1657 { 1658 ARMCPU *cpu = opaque; 1659 1660 /* 1661 * Update all the counter values based on the current underlying counts, 1662 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1663 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1664 * counter may expire. 1665 */ 1666 pmu_op_start(&cpu->env); 1667 pmu_op_finish(&cpu->env); 1668 } 1669 1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1671 uint64_t value) 1672 { 1673 pmu_op_start(env); 1674 1675 if (value & PMCRC) { 1676 /* The counter has been reset */ 1677 env->cp15.c15_ccnt = 0; 1678 } 1679 1680 if (value & PMCRP) { 1681 unsigned int i; 1682 for (i = 0; i < pmu_num_counters(env); i++) { 1683 env->cp15.c14_pmevcntr[i] = 0; 1684 } 1685 } 1686 1687 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1688 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1689 1690 pmu_op_finish(env); 1691 } 1692 1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1694 uint64_t value) 1695 { 1696 unsigned int i; 1697 for (i = 0; i < pmu_num_counters(env); i++) { 1698 /* Increment a counter's count iff: */ 1699 if ((value & (1 << i)) && /* counter's bit is set */ 1700 /* counter is enabled and not filtered */ 1701 pmu_counter_enabled(env, i) && 1702 /* counter is SW_INCR */ 1703 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1704 pmevcntr_op_start(env, i); 1705 1706 /* 1707 * Detect if this write causes an overflow since we can't predict 1708 * PMSWINC overflows like we can for other events 1709 */ 1710 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1711 1712 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1713 env->cp15.c9_pmovsr |= (1 << i); 1714 pmu_update_irq(env); 1715 } 1716 1717 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1718 1719 pmevcntr_op_finish(env, i); 1720 } 1721 } 1722 } 1723 1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1725 { 1726 uint64_t ret; 1727 pmccntr_op_start(env); 1728 ret = env->cp15.c15_ccnt; 1729 pmccntr_op_finish(env); 1730 return ret; 1731 } 1732 1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1737 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1738 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1739 * accessed. 1740 */ 1741 env->cp15.c9_pmselr = value & 0x1f; 1742 } 1743 1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1745 uint64_t value) 1746 { 1747 pmccntr_op_start(env); 1748 env->cp15.c15_ccnt = value; 1749 pmccntr_op_finish(env); 1750 } 1751 1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1753 uint64_t value) 1754 { 1755 uint64_t cur_val = pmccntr_read(env, NULL); 1756 1757 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1758 } 1759 1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 pmccntr_op_start(env); 1764 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1765 pmccntr_op_finish(env); 1766 } 1767 1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1769 uint64_t value) 1770 { 1771 pmccntr_op_start(env); 1772 /* M is not accessible from AArch32 */ 1773 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1774 (value & PMCCFILTR); 1775 pmccntr_op_finish(env); 1776 } 1777 1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 /* M is not visible in AArch32 */ 1781 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1782 } 1783 1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1785 uint64_t value) 1786 { 1787 value &= pmu_counter_mask(env); 1788 env->cp15.c9_pmcnten |= value; 1789 } 1790 1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1792 uint64_t value) 1793 { 1794 value &= pmu_counter_mask(env); 1795 env->cp15.c9_pmcnten &= ~value; 1796 } 1797 1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pmovsr &= ~value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pmovsr |= value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value, const uint8_t counter) 1816 { 1817 if (counter == 31) { 1818 pmccfiltr_write(env, ri, value); 1819 } else if (counter < pmu_num_counters(env)) { 1820 pmevcntr_op_start(env, counter); 1821 1822 /* 1823 * If this counter's event type is changing, store the current 1824 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1825 * pmevcntr_op_finish has the correct baseline when it converts back to 1826 * a delta. 1827 */ 1828 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1829 PMXEVTYPER_EVTCOUNT; 1830 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1831 if (old_event != new_event) { 1832 uint64_t count = 0; 1833 if (event_supported(new_event)) { 1834 uint16_t event_idx = supported_event_map[new_event]; 1835 count = pm_events[event_idx].get_count(env); 1836 } 1837 env->cp15.c14_pmevcntr_delta[counter] = count; 1838 } 1839 1840 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1841 pmevcntr_op_finish(env, counter); 1842 } 1843 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1844 * PMSELR value is equal to or greater than the number of implemented 1845 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1846 */ 1847 } 1848 1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1850 const uint8_t counter) 1851 { 1852 if (counter == 31) { 1853 return env->cp15.pmccfiltr_el0; 1854 } else if (counter < pmu_num_counters(env)) { 1855 return env->cp15.c14_pmevtyper[counter]; 1856 } else { 1857 /* 1858 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1859 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1860 */ 1861 return 0; 1862 } 1863 } 1864 1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1866 uint64_t value) 1867 { 1868 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1869 pmevtyper_write(env, ri, value, counter); 1870 } 1871 1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1873 uint64_t value) 1874 { 1875 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1876 env->cp15.c14_pmevtyper[counter] = value; 1877 1878 /* 1879 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1880 * pmu_op_finish calls when loading saved state for a migration. Because 1881 * we're potentially updating the type of event here, the value written to 1882 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1883 * different counter type. Therefore, we need to set this value to the 1884 * current count for the counter type we're writing so that pmu_op_finish 1885 * has the correct count for its calculation. 1886 */ 1887 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1888 if (event_supported(event)) { 1889 uint16_t event_idx = supported_event_map[event]; 1890 env->cp15.c14_pmevcntr_delta[counter] = 1891 pm_events[event_idx].get_count(env); 1892 } 1893 } 1894 1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1896 { 1897 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1898 return pmevtyper_read(env, ri, counter); 1899 } 1900 1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1902 uint64_t value) 1903 { 1904 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1905 } 1906 1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1908 { 1909 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1910 } 1911 1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1913 uint64_t value, uint8_t counter) 1914 { 1915 if (counter < pmu_num_counters(env)) { 1916 pmevcntr_op_start(env, counter); 1917 env->cp15.c14_pmevcntr[counter] = value; 1918 pmevcntr_op_finish(env, counter); 1919 } 1920 /* 1921 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1922 * are CONSTRAINED UNPREDICTABLE. 1923 */ 1924 } 1925 1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1927 uint8_t counter) 1928 { 1929 if (counter < pmu_num_counters(env)) { 1930 uint64_t ret; 1931 pmevcntr_op_start(env, counter); 1932 ret = env->cp15.c14_pmevcntr[counter]; 1933 pmevcntr_op_finish(env, counter); 1934 return ret; 1935 } else { 1936 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1937 * are CONSTRAINED UNPREDICTABLE. */ 1938 return 0; 1939 } 1940 } 1941 1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1943 uint64_t value) 1944 { 1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1946 pmevcntr_write(env, ri, value, counter); 1947 } 1948 1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1950 { 1951 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1952 return pmevcntr_read(env, ri, counter); 1953 } 1954 1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1956 uint64_t value) 1957 { 1958 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1959 assert(counter < pmu_num_counters(env)); 1960 env->cp15.c14_pmevcntr[counter] = value; 1961 pmevcntr_write(env, ri, value, counter); 1962 } 1963 1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1965 { 1966 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1967 assert(counter < pmu_num_counters(env)); 1968 return env->cp15.c14_pmevcntr[counter]; 1969 } 1970 1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1972 uint64_t value) 1973 { 1974 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1975 } 1976 1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1978 { 1979 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1980 } 1981 1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1983 uint64_t value) 1984 { 1985 if (arm_feature(env, ARM_FEATURE_V8)) { 1986 env->cp15.c9_pmuserenr = value & 0xf; 1987 } else { 1988 env->cp15.c9_pmuserenr = value & 1; 1989 } 1990 } 1991 1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1993 uint64_t value) 1994 { 1995 /* We have no event counters so only the C bit can be changed */ 1996 value &= pmu_counter_mask(env); 1997 env->cp15.c9_pminten |= value; 1998 pmu_update_irq(env); 1999 } 2000 2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2002 uint64_t value) 2003 { 2004 value &= pmu_counter_mask(env); 2005 env->cp15.c9_pminten &= ~value; 2006 pmu_update_irq(env); 2007 } 2008 2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2010 uint64_t value) 2011 { 2012 /* Note that even though the AArch64 view of this register has bits 2013 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2014 * architectural requirements for bits which are RES0 only in some 2015 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2016 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2017 */ 2018 raw_write(env, ri, value & ~0x1FULL); 2019 } 2020 2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2022 { 2023 /* Begin with base v8.0 state. */ 2024 uint32_t valid_mask = 0x3fff; 2025 ARMCPU *cpu = env_archcpu(env); 2026 2027 if (ri->state == ARM_CP_STATE_AA64) { 2028 if (arm_feature(env, ARM_FEATURE_AARCH64) && 2029 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 2030 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2031 } 2032 valid_mask &= ~SCR_NET; 2033 2034 if (cpu_isar_feature(aa64_lor, cpu)) { 2035 valid_mask |= SCR_TLOR; 2036 } 2037 if (cpu_isar_feature(aa64_pauth, cpu)) { 2038 valid_mask |= SCR_API | SCR_APK; 2039 } 2040 if (cpu_isar_feature(aa64_sel2, cpu)) { 2041 valid_mask |= SCR_EEL2; 2042 } 2043 if (cpu_isar_feature(aa64_mte, cpu)) { 2044 valid_mask |= SCR_ATA; 2045 } 2046 } else { 2047 valid_mask &= ~(SCR_RW | SCR_ST); 2048 } 2049 2050 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2051 valid_mask &= ~SCR_HCE; 2052 2053 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2054 * supported if EL2 exists. The bit is UNK/SBZP when 2055 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2056 * when EL2 is unavailable. 2057 * On ARMv8, this bit is always available. 2058 */ 2059 if (arm_feature(env, ARM_FEATURE_V7) && 2060 !arm_feature(env, ARM_FEATURE_V8)) { 2061 valid_mask &= ~SCR_SMD; 2062 } 2063 } 2064 2065 /* Clear all-context RES0 bits. */ 2066 value &= valid_mask; 2067 raw_write(env, ri, value); 2068 } 2069 2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2071 { 2072 /* 2073 * scr_write will set the RES1 bits on an AArch64-only CPU. 2074 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 2075 */ 2076 scr_write(env, ri, 0); 2077 } 2078 2079 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2080 const ARMCPRegInfo *ri, 2081 bool isread) 2082 { 2083 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2084 return CP_ACCESS_TRAP_EL2; 2085 } 2086 2087 return CP_ACCESS_OK; 2088 } 2089 2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2091 { 2092 ARMCPU *cpu = env_archcpu(env); 2093 2094 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2095 * bank 2096 */ 2097 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2098 ri->secure & ARM_CP_SECSTATE_S); 2099 2100 return cpu->ccsidr[index]; 2101 } 2102 2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2104 uint64_t value) 2105 { 2106 raw_write(env, ri, value & 0xf); 2107 } 2108 2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2110 { 2111 CPUState *cs = env_cpu(env); 2112 bool el1 = arm_current_el(env) == 1; 2113 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2114 uint64_t ret = 0; 2115 2116 if (hcr_el2 & HCR_IMO) { 2117 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2118 ret |= CPSR_I; 2119 } 2120 } else { 2121 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2122 ret |= CPSR_I; 2123 } 2124 } 2125 2126 if (hcr_el2 & HCR_FMO) { 2127 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2128 ret |= CPSR_F; 2129 } 2130 } else { 2131 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2132 ret |= CPSR_F; 2133 } 2134 } 2135 2136 /* External aborts are not possible in QEMU so A bit is always clear */ 2137 return ret; 2138 } 2139 2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2141 bool isread) 2142 { 2143 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2144 return CP_ACCESS_TRAP_EL2; 2145 } 2146 2147 return CP_ACCESS_OK; 2148 } 2149 2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2151 bool isread) 2152 { 2153 if (arm_feature(env, ARM_FEATURE_V8)) { 2154 return access_aa64_tid1(env, ri, isread); 2155 } 2156 2157 return CP_ACCESS_OK; 2158 } 2159 2160 static const ARMCPRegInfo v7_cp_reginfo[] = { 2161 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2162 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2163 .access = PL1_W, .type = ARM_CP_NOP }, 2164 /* Performance monitors are implementation defined in v7, 2165 * but with an ARM recommended set of registers, which we 2166 * follow. 2167 * 2168 * Performance registers fall into three categories: 2169 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2170 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2171 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2172 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2173 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2174 */ 2175 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2176 .access = PL0_RW, .type = ARM_CP_ALIAS, 2177 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2178 .writefn = pmcntenset_write, 2179 .accessfn = pmreg_access, 2180 .raw_writefn = raw_write }, 2181 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2183 .access = PL0_RW, .accessfn = pmreg_access, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2185 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2186 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2187 .access = PL0_RW, 2188 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2189 .accessfn = pmreg_access, 2190 .writefn = pmcntenclr_write, 2191 .type = ARM_CP_ALIAS }, 2192 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2194 .access = PL0_RW, .accessfn = pmreg_access, 2195 .type = ARM_CP_ALIAS, 2196 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2197 .writefn = pmcntenclr_write }, 2198 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2199 .access = PL0_RW, .type = ARM_CP_IO, 2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2201 .accessfn = pmreg_access, 2202 .writefn = pmovsr_write, 2203 .raw_writefn = raw_write }, 2204 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2206 .access = PL0_RW, .accessfn = pmreg_access, 2207 .type = ARM_CP_ALIAS | ARM_CP_IO, 2208 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2209 .writefn = pmovsr_write, 2210 .raw_writefn = raw_write }, 2211 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2212 .access = PL0_W, .accessfn = pmreg_access_swinc, 2213 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2214 .writefn = pmswinc_write }, 2215 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2217 .access = PL0_W, .accessfn = pmreg_access_swinc, 2218 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2219 .writefn = pmswinc_write }, 2220 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2221 .access = PL0_RW, .type = ARM_CP_ALIAS, 2222 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2223 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2224 .raw_writefn = raw_write}, 2225 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2226 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2227 .access = PL0_RW, .accessfn = pmreg_access_selr, 2228 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2229 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2230 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2231 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2232 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2233 .accessfn = pmreg_access_ccntr }, 2234 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2236 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2237 .type = ARM_CP_IO, 2238 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2239 .readfn = pmccntr_read, .writefn = pmccntr_write, 2240 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2241 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2242 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2243 .access = PL0_RW, .accessfn = pmreg_access, 2244 .type = ARM_CP_ALIAS | ARM_CP_IO, 2245 .resetvalue = 0, }, 2246 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2248 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2249 .access = PL0_RW, .accessfn = pmreg_access, 2250 .type = ARM_CP_IO, 2251 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2252 .resetvalue = 0, }, 2253 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2254 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2255 .accessfn = pmreg_access, 2256 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2257 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2259 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2260 .accessfn = pmreg_access, 2261 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2262 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2263 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2264 .accessfn = pmreg_access_xevcntr, 2265 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2266 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2267 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2268 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2269 .accessfn = pmreg_access_xevcntr, 2270 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2271 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2272 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2273 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2274 .resetvalue = 0, 2275 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2276 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2277 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2278 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2280 .resetvalue = 0, 2281 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2282 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2283 .access = PL1_RW, .accessfn = access_tpm, 2284 .type = ARM_CP_ALIAS | ARM_CP_IO, 2285 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2286 .resetvalue = 0, 2287 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2288 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2289 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2290 .access = PL1_RW, .accessfn = access_tpm, 2291 .type = ARM_CP_IO, 2292 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2293 .writefn = pmintenset_write, .raw_writefn = raw_write, 2294 .resetvalue = 0x0 }, 2295 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2296 .access = PL1_RW, .accessfn = access_tpm, 2297 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2298 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2299 .writefn = pmintenclr_write, }, 2300 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2301 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2302 .access = PL1_RW, .accessfn = access_tpm, 2303 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2304 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2305 .writefn = pmintenclr_write }, 2306 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2307 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2308 .access = PL1_R, 2309 .accessfn = access_aa64_tid2, 2310 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2311 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2312 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2313 .access = PL1_RW, 2314 .accessfn = access_aa64_tid2, 2315 .writefn = csselr_write, .resetvalue = 0, 2316 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2317 offsetof(CPUARMState, cp15.csselr_ns) } }, 2318 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2319 * just RAZ for all cores: 2320 */ 2321 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2322 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2323 .access = PL1_R, .type = ARM_CP_CONST, 2324 .accessfn = access_aa64_tid1, 2325 .resetvalue = 0 }, 2326 /* Auxiliary fault status registers: these also are IMPDEF, and we 2327 * choose to RAZ/WI for all cores. 2328 */ 2329 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2330 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2331 .access = PL1_RW, .accessfn = access_tvm_trvm, 2332 .type = ARM_CP_CONST, .resetvalue = 0 }, 2333 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2334 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2335 .access = PL1_RW, .accessfn = access_tvm_trvm, 2336 .type = ARM_CP_CONST, .resetvalue = 0 }, 2337 /* MAIR can just read-as-written because we don't implement caches 2338 * and so don't need to care about memory attributes. 2339 */ 2340 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2341 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2342 .access = PL1_RW, .accessfn = access_tvm_trvm, 2343 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2344 .resetvalue = 0 }, 2345 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2346 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2347 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2348 .resetvalue = 0 }, 2349 /* For non-long-descriptor page tables these are PRRR and NMRR; 2350 * regardless they still act as reads-as-written for QEMU. 2351 */ 2352 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2353 * allows them to assign the correct fieldoffset based on the endianness 2354 * handled in the field definitions. 2355 */ 2356 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2357 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2358 .access = PL1_RW, .accessfn = access_tvm_trvm, 2359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2360 offsetof(CPUARMState, cp15.mair0_ns) }, 2361 .resetfn = arm_cp_reset_ignore }, 2362 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2363 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2364 .access = PL1_RW, .accessfn = access_tvm_trvm, 2365 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2366 offsetof(CPUARMState, cp15.mair1_ns) }, 2367 .resetfn = arm_cp_reset_ignore }, 2368 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2369 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2370 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2371 /* 32 bit ITLB invalidates */ 2372 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2374 .writefn = tlbiall_write }, 2375 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2377 .writefn = tlbimva_write }, 2378 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2379 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2380 .writefn = tlbiasid_write }, 2381 /* 32 bit DTLB invalidates */ 2382 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2384 .writefn = tlbiall_write }, 2385 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2387 .writefn = tlbimva_write }, 2388 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2390 .writefn = tlbiasid_write }, 2391 /* 32 bit TLB invalidates */ 2392 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2394 .writefn = tlbiall_write }, 2395 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2397 .writefn = tlbimva_write }, 2398 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2400 .writefn = tlbiasid_write }, 2401 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2403 .writefn = tlbimvaa_write }, 2404 REGINFO_SENTINEL 2405 }; 2406 2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2408 /* 32 bit TLB invalidates, Inner Shareable */ 2409 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2410 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2411 .writefn = tlbiall_is_write }, 2412 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2413 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2414 .writefn = tlbimva_is_write }, 2415 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2417 .writefn = tlbiasid_is_write }, 2418 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2420 .writefn = tlbimvaa_is_write }, 2421 REGINFO_SENTINEL 2422 }; 2423 2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2425 /* PMOVSSET is not implemented in v7 before v7ve */ 2426 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2427 .access = PL0_RW, .accessfn = pmreg_access, 2428 .type = ARM_CP_ALIAS | ARM_CP_IO, 2429 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2430 .writefn = pmovsset_write, 2431 .raw_writefn = raw_write }, 2432 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2433 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2434 .access = PL0_RW, .accessfn = pmreg_access, 2435 .type = ARM_CP_ALIAS | ARM_CP_IO, 2436 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2437 .writefn = pmovsset_write, 2438 .raw_writefn = raw_write }, 2439 REGINFO_SENTINEL 2440 }; 2441 2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2443 uint64_t value) 2444 { 2445 value &= 1; 2446 env->teecr = value; 2447 } 2448 2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2450 bool isread) 2451 { 2452 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2453 return CP_ACCESS_TRAP; 2454 } 2455 return CP_ACCESS_OK; 2456 } 2457 2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2459 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2460 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2461 .resetvalue = 0, 2462 .writefn = teecr_write }, 2463 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2464 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2465 .accessfn = teehbr_access, .resetvalue = 0 }, 2466 REGINFO_SENTINEL 2467 }; 2468 2469 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2470 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2471 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2472 .access = PL0_RW, 2473 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2474 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2475 .access = PL0_RW, 2476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2477 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2478 .resetfn = arm_cp_reset_ignore }, 2479 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2480 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2481 .access = PL0_R|PL1_W, 2482 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2483 .resetvalue = 0}, 2484 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2485 .access = PL0_R|PL1_W, 2486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2487 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2488 .resetfn = arm_cp_reset_ignore }, 2489 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2490 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2491 .access = PL1_RW, 2492 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2493 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2494 .access = PL1_RW, 2495 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2496 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2497 .resetvalue = 0 }, 2498 REGINFO_SENTINEL 2499 }; 2500 2501 #ifndef CONFIG_USER_ONLY 2502 2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2504 bool isread) 2505 { 2506 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2507 * Writable only at the highest implemented exception level. 2508 */ 2509 int el = arm_current_el(env); 2510 uint64_t hcr; 2511 uint32_t cntkctl; 2512 2513 switch (el) { 2514 case 0: 2515 hcr = arm_hcr_el2_eff(env); 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 cntkctl = env->cp15.cnthctl_el2; 2518 } else { 2519 cntkctl = env->cp15.c14_cntkctl; 2520 } 2521 if (!extract32(cntkctl, 0, 2)) { 2522 return CP_ACCESS_TRAP; 2523 } 2524 break; 2525 case 1: 2526 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2527 arm_is_secure_below_el3(env)) { 2528 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2529 return CP_ACCESS_TRAP_UNCATEGORIZED; 2530 } 2531 break; 2532 case 2: 2533 case 3: 2534 break; 2535 } 2536 2537 if (!isread && el < arm_highest_el(env)) { 2538 return CP_ACCESS_TRAP_UNCATEGORIZED; 2539 } 2540 2541 return CP_ACCESS_OK; 2542 } 2543 2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2545 bool isread) 2546 { 2547 unsigned int cur_el = arm_current_el(env); 2548 bool has_el2 = arm_is_el2_enabled(env); 2549 uint64_t hcr = arm_hcr_el2_eff(env); 2550 2551 switch (cur_el) { 2552 case 0: 2553 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2554 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2555 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2556 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2557 } 2558 2559 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2560 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2561 return CP_ACCESS_TRAP; 2562 } 2563 2564 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2565 if (hcr & HCR_E2H) { 2566 if (timeridx == GTIMER_PHYS && 2567 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2568 return CP_ACCESS_TRAP_EL2; 2569 } 2570 } else { 2571 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2572 if (has_el2 && timeridx == GTIMER_PHYS && 2573 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2574 return CP_ACCESS_TRAP_EL2; 2575 } 2576 } 2577 break; 2578 2579 case 1: 2580 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2581 if (has_el2 && timeridx == GTIMER_PHYS && 2582 (hcr & HCR_E2H 2583 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2584 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2585 return CP_ACCESS_TRAP_EL2; 2586 } 2587 break; 2588 } 2589 return CP_ACCESS_OK; 2590 } 2591 2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2593 bool isread) 2594 { 2595 unsigned int cur_el = arm_current_el(env); 2596 bool has_el2 = arm_is_el2_enabled(env); 2597 uint64_t hcr = arm_hcr_el2_eff(env); 2598 2599 switch (cur_el) { 2600 case 0: 2601 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2602 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2603 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2604 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2605 } 2606 2607 /* 2608 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2609 * EL0 if EL0[PV]TEN is zero. 2610 */ 2611 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2612 return CP_ACCESS_TRAP; 2613 } 2614 /* fall through */ 2615 2616 case 1: 2617 if (has_el2 && timeridx == GTIMER_PHYS) { 2618 if (hcr & HCR_E2H) { 2619 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2620 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2621 return CP_ACCESS_TRAP_EL2; 2622 } 2623 } else { 2624 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2625 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2626 return CP_ACCESS_TRAP_EL2; 2627 } 2628 } 2629 } 2630 break; 2631 } 2632 return CP_ACCESS_OK; 2633 } 2634 2635 static CPAccessResult gt_pct_access(CPUARMState *env, 2636 const ARMCPRegInfo *ri, 2637 bool isread) 2638 { 2639 return gt_counter_access(env, GTIMER_PHYS, isread); 2640 } 2641 2642 static CPAccessResult gt_vct_access(CPUARMState *env, 2643 const ARMCPRegInfo *ri, 2644 bool isread) 2645 { 2646 return gt_counter_access(env, GTIMER_VIRT, isread); 2647 } 2648 2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2650 bool isread) 2651 { 2652 return gt_timer_access(env, GTIMER_PHYS, isread); 2653 } 2654 2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2656 bool isread) 2657 { 2658 return gt_timer_access(env, GTIMER_VIRT, isread); 2659 } 2660 2661 static CPAccessResult gt_stimer_access(CPUARMState *env, 2662 const ARMCPRegInfo *ri, 2663 bool isread) 2664 { 2665 /* The AArch64 register view of the secure physical timer is 2666 * always accessible from EL3, and configurably accessible from 2667 * Secure EL1. 2668 */ 2669 switch (arm_current_el(env)) { 2670 case 1: 2671 if (!arm_is_secure(env)) { 2672 return CP_ACCESS_TRAP; 2673 } 2674 if (!(env->cp15.scr_el3 & SCR_ST)) { 2675 return CP_ACCESS_TRAP_EL3; 2676 } 2677 return CP_ACCESS_OK; 2678 case 0: 2679 case 2: 2680 return CP_ACCESS_TRAP; 2681 case 3: 2682 return CP_ACCESS_OK; 2683 default: 2684 g_assert_not_reached(); 2685 } 2686 } 2687 2688 static uint64_t gt_get_countervalue(CPUARMState *env) 2689 { 2690 ARMCPU *cpu = env_archcpu(env); 2691 2692 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2693 } 2694 2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2696 { 2697 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2698 2699 if (gt->ctl & 1) { 2700 /* Timer enabled: calculate and set current ISTATUS, irq, and 2701 * reset timer to when ISTATUS next has to change 2702 */ 2703 uint64_t offset = timeridx == GTIMER_VIRT ? 2704 cpu->env.cp15.cntvoff_el2 : 0; 2705 uint64_t count = gt_get_countervalue(&cpu->env); 2706 /* Note that this must be unsigned 64 bit arithmetic: */ 2707 int istatus = count - offset >= gt->cval; 2708 uint64_t nexttick; 2709 int irqstate; 2710 2711 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2712 2713 irqstate = (istatus && !(gt->ctl & 2)); 2714 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2715 2716 if (istatus) { 2717 /* Next transition is when count rolls back over to zero */ 2718 nexttick = UINT64_MAX; 2719 } else { 2720 /* Next transition is when we hit cval */ 2721 nexttick = gt->cval + offset; 2722 } 2723 /* Note that the desired next expiry time might be beyond the 2724 * signed-64-bit range of a QEMUTimer -- in this case we just 2725 * set the timer for as far in the future as possible. When the 2726 * timer expires we will reset the timer for any remaining period. 2727 */ 2728 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2729 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2730 } else { 2731 timer_mod(cpu->gt_timer[timeridx], nexttick); 2732 } 2733 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2734 } else { 2735 /* Timer disabled: ISTATUS and timer output always clear */ 2736 gt->ctl &= ~4; 2737 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2738 timer_del(cpu->gt_timer[timeridx]); 2739 trace_arm_gt_recalc_disabled(timeridx); 2740 } 2741 } 2742 2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2744 int timeridx) 2745 { 2746 ARMCPU *cpu = env_archcpu(env); 2747 2748 timer_del(cpu->gt_timer[timeridx]); 2749 } 2750 2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2752 { 2753 return gt_get_countervalue(env); 2754 } 2755 2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2757 { 2758 uint64_t hcr; 2759 2760 switch (arm_current_el(env)) { 2761 case 2: 2762 hcr = arm_hcr_el2_eff(env); 2763 if (hcr & HCR_E2H) { 2764 return 0; 2765 } 2766 break; 2767 case 0: 2768 hcr = arm_hcr_el2_eff(env); 2769 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2770 return 0; 2771 } 2772 break; 2773 } 2774 2775 return env->cp15.cntvoff_el2; 2776 } 2777 2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2781 } 2782 2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 int timeridx, 2785 uint64_t value) 2786 { 2787 trace_arm_gt_cval_write(timeridx, value); 2788 env->cp15.c14_timer[timeridx].cval = value; 2789 gt_recalc_timer(env_archcpu(env), timeridx); 2790 } 2791 2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2793 int timeridx) 2794 { 2795 uint64_t offset = 0; 2796 2797 switch (timeridx) { 2798 case GTIMER_VIRT: 2799 case GTIMER_HYPVIRT: 2800 offset = gt_virt_cnt_offset(env); 2801 break; 2802 } 2803 2804 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2805 (gt_get_countervalue(env) - offset)); 2806 } 2807 2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2809 int timeridx, 2810 uint64_t value) 2811 { 2812 uint64_t offset = 0; 2813 2814 switch (timeridx) { 2815 case GTIMER_VIRT: 2816 case GTIMER_HYPVIRT: 2817 offset = gt_virt_cnt_offset(env); 2818 break; 2819 } 2820 2821 trace_arm_gt_tval_write(timeridx, value); 2822 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2823 sextract64(value, 0, 32); 2824 gt_recalc_timer(env_archcpu(env), timeridx); 2825 } 2826 2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2828 int timeridx, 2829 uint64_t value) 2830 { 2831 ARMCPU *cpu = env_archcpu(env); 2832 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2833 2834 trace_arm_gt_ctl_write(timeridx, value); 2835 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2836 if ((oldval ^ value) & 1) { 2837 /* Enable toggled */ 2838 gt_recalc_timer(cpu, timeridx); 2839 } else if ((oldval ^ value) & 2) { 2840 /* IMASK toggled: don't need to recalculate, 2841 * just set the interrupt line based on ISTATUS 2842 */ 2843 int irqstate = (oldval & 4) && !(value & 2); 2844 2845 trace_arm_gt_imask_toggle(timeridx, irqstate); 2846 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2847 } 2848 } 2849 2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2851 { 2852 gt_timer_reset(env, ri, GTIMER_PHYS); 2853 } 2854 2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_cval_write(env, ri, GTIMER_PHYS, value); 2859 } 2860 2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2862 { 2863 return gt_tval_read(env, ri, GTIMER_PHYS); 2864 } 2865 2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2867 uint64_t value) 2868 { 2869 gt_tval_write(env, ri, GTIMER_PHYS, value); 2870 } 2871 2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2873 uint64_t value) 2874 { 2875 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2876 } 2877 2878 static int gt_phys_redir_timeridx(CPUARMState *env) 2879 { 2880 switch (arm_mmu_idx(env)) { 2881 case ARMMMUIdx_E20_0: 2882 case ARMMMUIdx_E20_2: 2883 case ARMMMUIdx_E20_2_PAN: 2884 case ARMMMUIdx_SE20_0: 2885 case ARMMMUIdx_SE20_2: 2886 case ARMMMUIdx_SE20_2_PAN: 2887 return GTIMER_HYP; 2888 default: 2889 return GTIMER_PHYS; 2890 } 2891 } 2892 2893 static int gt_virt_redir_timeridx(CPUARMState *env) 2894 { 2895 switch (arm_mmu_idx(env)) { 2896 case ARMMMUIdx_E20_0: 2897 case ARMMMUIdx_E20_2: 2898 case ARMMMUIdx_E20_2_PAN: 2899 case ARMMMUIdx_SE20_0: 2900 case ARMMMUIdx_SE20_2: 2901 case ARMMMUIdx_SE20_2_PAN: 2902 return GTIMER_HYPVIRT; 2903 default: 2904 return GTIMER_VIRT; 2905 } 2906 } 2907 2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2909 const ARMCPRegInfo *ri) 2910 { 2911 int timeridx = gt_phys_redir_timeridx(env); 2912 return env->cp15.c14_timer[timeridx].cval; 2913 } 2914 2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2916 uint64_t value) 2917 { 2918 int timeridx = gt_phys_redir_timeridx(env); 2919 gt_cval_write(env, ri, timeridx, value); 2920 } 2921 2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2923 const ARMCPRegInfo *ri) 2924 { 2925 int timeridx = gt_phys_redir_timeridx(env); 2926 return gt_tval_read(env, ri, timeridx); 2927 } 2928 2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2930 uint64_t value) 2931 { 2932 int timeridx = gt_phys_redir_timeridx(env); 2933 gt_tval_write(env, ri, timeridx, value); 2934 } 2935 2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2937 const ARMCPRegInfo *ri) 2938 { 2939 int timeridx = gt_phys_redir_timeridx(env); 2940 return env->cp15.c14_timer[timeridx].ctl; 2941 } 2942 2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2944 uint64_t value) 2945 { 2946 int timeridx = gt_phys_redir_timeridx(env); 2947 gt_ctl_write(env, ri, timeridx, value); 2948 } 2949 2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2951 { 2952 gt_timer_reset(env, ri, GTIMER_VIRT); 2953 } 2954 2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2956 uint64_t value) 2957 { 2958 gt_cval_write(env, ri, GTIMER_VIRT, value); 2959 } 2960 2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2962 { 2963 return gt_tval_read(env, ri, GTIMER_VIRT); 2964 } 2965 2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2967 uint64_t value) 2968 { 2969 gt_tval_write(env, ri, GTIMER_VIRT, value); 2970 } 2971 2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2973 uint64_t value) 2974 { 2975 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2976 } 2977 2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2979 uint64_t value) 2980 { 2981 ARMCPU *cpu = env_archcpu(env); 2982 2983 trace_arm_gt_cntvoff_write(value); 2984 raw_write(env, ri, value); 2985 gt_recalc_timer(cpu, GTIMER_VIRT); 2986 } 2987 2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2989 const ARMCPRegInfo *ri) 2990 { 2991 int timeridx = gt_virt_redir_timeridx(env); 2992 return env->cp15.c14_timer[timeridx].cval; 2993 } 2994 2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2996 uint64_t value) 2997 { 2998 int timeridx = gt_virt_redir_timeridx(env); 2999 gt_cval_write(env, ri, timeridx, value); 3000 } 3001 3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3003 const ARMCPRegInfo *ri) 3004 { 3005 int timeridx = gt_virt_redir_timeridx(env); 3006 return gt_tval_read(env, ri, timeridx); 3007 } 3008 3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3010 uint64_t value) 3011 { 3012 int timeridx = gt_virt_redir_timeridx(env); 3013 gt_tval_write(env, ri, timeridx, value); 3014 } 3015 3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3017 const ARMCPRegInfo *ri) 3018 { 3019 int timeridx = gt_virt_redir_timeridx(env); 3020 return env->cp15.c14_timer[timeridx].ctl; 3021 } 3022 3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3024 uint64_t value) 3025 { 3026 int timeridx = gt_virt_redir_timeridx(env); 3027 gt_ctl_write(env, ri, timeridx, value); 3028 } 3029 3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3031 { 3032 gt_timer_reset(env, ri, GTIMER_HYP); 3033 } 3034 3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3036 uint64_t value) 3037 { 3038 gt_cval_write(env, ri, GTIMER_HYP, value); 3039 } 3040 3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3042 { 3043 return gt_tval_read(env, ri, GTIMER_HYP); 3044 } 3045 3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 gt_tval_write(env, ri, GTIMER_HYP, value); 3050 } 3051 3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3053 uint64_t value) 3054 { 3055 gt_ctl_write(env, ri, GTIMER_HYP, value); 3056 } 3057 3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3059 { 3060 gt_timer_reset(env, ri, GTIMER_SEC); 3061 } 3062 3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3064 uint64_t value) 3065 { 3066 gt_cval_write(env, ri, GTIMER_SEC, value); 3067 } 3068 3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3070 { 3071 return gt_tval_read(env, ri, GTIMER_SEC); 3072 } 3073 3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3075 uint64_t value) 3076 { 3077 gt_tval_write(env, ri, GTIMER_SEC, value); 3078 } 3079 3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3081 uint64_t value) 3082 { 3083 gt_ctl_write(env, ri, GTIMER_SEC, value); 3084 } 3085 3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3087 { 3088 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3089 } 3090 3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3092 uint64_t value) 3093 { 3094 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3095 } 3096 3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3098 { 3099 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3100 } 3101 3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3103 uint64_t value) 3104 { 3105 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3106 } 3107 3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3109 uint64_t value) 3110 { 3111 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3112 } 3113 3114 void arm_gt_ptimer_cb(void *opaque) 3115 { 3116 ARMCPU *cpu = opaque; 3117 3118 gt_recalc_timer(cpu, GTIMER_PHYS); 3119 } 3120 3121 void arm_gt_vtimer_cb(void *opaque) 3122 { 3123 ARMCPU *cpu = opaque; 3124 3125 gt_recalc_timer(cpu, GTIMER_VIRT); 3126 } 3127 3128 void arm_gt_htimer_cb(void *opaque) 3129 { 3130 ARMCPU *cpu = opaque; 3131 3132 gt_recalc_timer(cpu, GTIMER_HYP); 3133 } 3134 3135 void arm_gt_stimer_cb(void *opaque) 3136 { 3137 ARMCPU *cpu = opaque; 3138 3139 gt_recalc_timer(cpu, GTIMER_SEC); 3140 } 3141 3142 void arm_gt_hvtimer_cb(void *opaque) 3143 { 3144 ARMCPU *cpu = opaque; 3145 3146 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3147 } 3148 3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3150 { 3151 ARMCPU *cpu = env_archcpu(env); 3152 3153 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3154 } 3155 3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3157 /* Note that CNTFRQ is purely reads-as-written for the benefit 3158 * of software; writing it doesn't actually change the timer frequency. 3159 * Our reset value matches the fixed frequency we implement the timer at. 3160 */ 3161 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3162 .type = ARM_CP_ALIAS, 3163 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3165 }, 3166 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3167 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3168 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3169 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3170 .resetfn = arm_gt_cntfrq_reset, 3171 }, 3172 /* overall control: mostly access permissions */ 3173 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3174 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3175 .access = PL1_RW, 3176 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3177 .resetvalue = 0, 3178 }, 3179 /* per-timer control */ 3180 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3181 .secure = ARM_CP_SECSTATE_NS, 3182 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3183 .accessfn = gt_ptimer_access, 3184 .fieldoffset = offsetoflow32(CPUARMState, 3185 cp15.c14_timer[GTIMER_PHYS].ctl), 3186 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3187 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3188 }, 3189 { .name = "CNTP_CTL_S", 3190 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3191 .secure = ARM_CP_SECSTATE_S, 3192 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3193 .accessfn = gt_ptimer_access, 3194 .fieldoffset = offsetoflow32(CPUARMState, 3195 cp15.c14_timer[GTIMER_SEC].ctl), 3196 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3197 }, 3198 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3200 .type = ARM_CP_IO, .access = PL0_RW, 3201 .accessfn = gt_ptimer_access, 3202 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3203 .resetvalue = 0, 3204 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3205 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3206 }, 3207 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3208 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3209 .accessfn = gt_vtimer_access, 3210 .fieldoffset = offsetoflow32(CPUARMState, 3211 cp15.c14_timer[GTIMER_VIRT].ctl), 3212 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3213 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3214 }, 3215 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3216 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3217 .type = ARM_CP_IO, .access = PL0_RW, 3218 .accessfn = gt_vtimer_access, 3219 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3220 .resetvalue = 0, 3221 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3222 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3223 }, 3224 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3225 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3226 .secure = ARM_CP_SECSTATE_NS, 3227 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3228 .accessfn = gt_ptimer_access, 3229 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3230 }, 3231 { .name = "CNTP_TVAL_S", 3232 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3233 .secure = ARM_CP_SECSTATE_S, 3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3235 .accessfn = gt_ptimer_access, 3236 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3237 }, 3238 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3239 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3241 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3242 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3243 }, 3244 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3245 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3246 .accessfn = gt_vtimer_access, 3247 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3248 }, 3249 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3251 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3252 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3253 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3254 }, 3255 /* The counter itself */ 3256 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3257 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3258 .accessfn = gt_pct_access, 3259 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3260 }, 3261 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3262 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3263 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3264 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3265 }, 3266 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3267 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3268 .accessfn = gt_vct_access, 3269 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3270 }, 3271 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3272 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3273 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3274 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3275 }, 3276 /* Comparison value, indicating when the timer goes off */ 3277 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3278 .secure = ARM_CP_SECSTATE_NS, 3279 .access = PL0_RW, 3280 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3282 .accessfn = gt_ptimer_access, 3283 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3284 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3285 }, 3286 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3287 .secure = ARM_CP_SECSTATE_S, 3288 .access = PL0_RW, 3289 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3291 .accessfn = gt_ptimer_access, 3292 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3293 }, 3294 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3295 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3296 .access = PL0_RW, 3297 .type = ARM_CP_IO, 3298 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3299 .resetvalue = 0, .accessfn = gt_ptimer_access, 3300 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3301 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3302 }, 3303 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3304 .access = PL0_RW, 3305 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3306 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3307 .accessfn = gt_vtimer_access, 3308 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3309 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3310 }, 3311 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3312 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3313 .access = PL0_RW, 3314 .type = ARM_CP_IO, 3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3316 .resetvalue = 0, .accessfn = gt_vtimer_access, 3317 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3318 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3319 }, 3320 /* Secure timer -- this is actually restricted to only EL3 3321 * and configurably Secure-EL1 via the accessfn. 3322 */ 3323 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3326 .accessfn = gt_stimer_access, 3327 .readfn = gt_sec_tval_read, 3328 .writefn = gt_sec_tval_write, 3329 .resetfn = gt_sec_timer_reset, 3330 }, 3331 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3332 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3333 .type = ARM_CP_IO, .access = PL1_RW, 3334 .accessfn = gt_stimer_access, 3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3336 .resetvalue = 0, 3337 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3338 }, 3339 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3340 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3341 .type = ARM_CP_IO, .access = PL1_RW, 3342 .accessfn = gt_stimer_access, 3343 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3344 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3345 }, 3346 REGINFO_SENTINEL 3347 }; 3348 3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3350 bool isread) 3351 { 3352 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3353 return CP_ACCESS_TRAP; 3354 } 3355 return CP_ACCESS_OK; 3356 } 3357 3358 #else 3359 3360 /* In user-mode most of the generic timer registers are inaccessible 3361 * however modern kernels (4.12+) allow access to cntvct_el0 3362 */ 3363 3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3365 { 3366 ARMCPU *cpu = env_archcpu(env); 3367 3368 /* Currently we have no support for QEMUTimer in linux-user so we 3369 * can't call gt_get_countervalue(env), instead we directly 3370 * call the lower level functions. 3371 */ 3372 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3373 } 3374 3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3376 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3377 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3378 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3380 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3381 }, 3382 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3384 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3385 .readfn = gt_virt_cnt_read, 3386 }, 3387 REGINFO_SENTINEL 3388 }; 3389 3390 #endif 3391 3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3393 { 3394 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3395 raw_write(env, ri, value); 3396 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3397 raw_write(env, ri, value & 0xfffff6ff); 3398 } else { 3399 raw_write(env, ri, value & 0xfffff1ff); 3400 } 3401 } 3402 3403 #ifndef CONFIG_USER_ONLY 3404 /* get_phys_addr() isn't present for user-mode-only targets */ 3405 3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3407 bool isread) 3408 { 3409 if (ri->opc2 & 4) { 3410 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3411 * Secure EL1 (which can only happen if EL3 is AArch64). 3412 * They are simply UNDEF if executed from NS EL1. 3413 * They function normally from EL2 or EL3. 3414 */ 3415 if (arm_current_el(env) == 1) { 3416 if (arm_is_secure_below_el3(env)) { 3417 if (env->cp15.scr_el3 & SCR_EEL2) { 3418 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3419 } 3420 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3421 } 3422 return CP_ACCESS_TRAP_UNCATEGORIZED; 3423 } 3424 } 3425 return CP_ACCESS_OK; 3426 } 3427 3428 #ifdef CONFIG_TCG 3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3430 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3431 { 3432 hwaddr phys_addr; 3433 target_ulong page_size; 3434 int prot; 3435 bool ret; 3436 uint64_t par64; 3437 bool format64 = false; 3438 MemTxAttrs attrs = {}; 3439 ARMMMUFaultInfo fi = {}; 3440 ARMCacheAttrs cacheattrs = {}; 3441 3442 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3443 &prot, &page_size, &fi, &cacheattrs); 3444 3445 if (ret) { 3446 /* 3447 * Some kinds of translation fault must cause exceptions rather 3448 * than being reported in the PAR. 3449 */ 3450 int current_el = arm_current_el(env); 3451 int target_el; 3452 uint32_t syn, fsr, fsc; 3453 bool take_exc = false; 3454 3455 if (fi.s1ptw && current_el == 1 3456 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3457 /* 3458 * Synchronous stage 2 fault on an access made as part of the 3459 * translation table walk for AT S1E0* or AT S1E1* insn 3460 * executed from NS EL1. If this is a synchronous external abort 3461 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3462 * to EL3. Otherwise the fault is taken as an exception to EL2, 3463 * and HPFAR_EL2 holds the faulting IPA. 3464 */ 3465 if (fi.type == ARMFault_SyncExternalOnWalk && 3466 (env->cp15.scr_el3 & SCR_EA)) { 3467 target_el = 3; 3468 } else { 3469 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3470 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3471 env->cp15.hpfar_el2 |= HPFAR_NS; 3472 } 3473 target_el = 2; 3474 } 3475 take_exc = true; 3476 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3477 /* 3478 * Synchronous external aborts during a translation table walk 3479 * are taken as Data Abort exceptions. 3480 */ 3481 if (fi.stage2) { 3482 if (current_el == 3) { 3483 target_el = 3; 3484 } else { 3485 target_el = 2; 3486 } 3487 } else { 3488 target_el = exception_target_el(env); 3489 } 3490 take_exc = true; 3491 } 3492 3493 if (take_exc) { 3494 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3495 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3496 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3497 fsr = arm_fi_to_lfsc(&fi); 3498 fsc = extract32(fsr, 0, 6); 3499 } else { 3500 fsr = arm_fi_to_sfsc(&fi); 3501 fsc = 0x3f; 3502 } 3503 /* 3504 * Report exception with ESR indicating a fault due to a 3505 * translation table walk for a cache maintenance instruction. 3506 */ 3507 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3508 fi.ea, 1, fi.s1ptw, 1, fsc); 3509 env->exception.vaddress = value; 3510 env->exception.fsr = fsr; 3511 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3512 } 3513 } 3514 3515 if (is_a64(env)) { 3516 format64 = true; 3517 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3518 /* 3519 * ATS1Cxx: 3520 * * TTBCR.EAE determines whether the result is returned using the 3521 * 32-bit or the 64-bit PAR format 3522 * * Instructions executed in Hyp mode always use the 64bit format 3523 * 3524 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3525 * * The Non-secure TTBCR.EAE bit is set to 1 3526 * * The implementation includes EL2, and the value of HCR.VM is 1 3527 * 3528 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3529 * 3530 * ATS1Hx always uses the 64bit format. 3531 */ 3532 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3533 3534 if (arm_feature(env, ARM_FEATURE_EL2)) { 3535 if (mmu_idx == ARMMMUIdx_E10_0 || 3536 mmu_idx == ARMMMUIdx_E10_1 || 3537 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3538 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3539 } else { 3540 format64 |= arm_current_el(env) == 2; 3541 } 3542 } 3543 } 3544 3545 if (format64) { 3546 /* Create a 64-bit PAR */ 3547 par64 = (1 << 11); /* LPAE bit always set */ 3548 if (!ret) { 3549 par64 |= phys_addr & ~0xfffULL; 3550 if (!attrs.secure) { 3551 par64 |= (1 << 9); /* NS */ 3552 } 3553 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3554 par64 |= cacheattrs.shareability << 7; /* SH */ 3555 } else { 3556 uint32_t fsr = arm_fi_to_lfsc(&fi); 3557 3558 par64 |= 1; /* F */ 3559 par64 |= (fsr & 0x3f) << 1; /* FS */ 3560 if (fi.stage2) { 3561 par64 |= (1 << 9); /* S */ 3562 } 3563 if (fi.s1ptw) { 3564 par64 |= (1 << 8); /* PTW */ 3565 } 3566 } 3567 } else { 3568 /* fsr is a DFSR/IFSR value for the short descriptor 3569 * translation table format (with WnR always clear). 3570 * Convert it to a 32-bit PAR. 3571 */ 3572 if (!ret) { 3573 /* We do not set any attribute bits in the PAR */ 3574 if (page_size == (1 << 24) 3575 && arm_feature(env, ARM_FEATURE_V7)) { 3576 par64 = (phys_addr & 0xff000000) | (1 << 1); 3577 } else { 3578 par64 = phys_addr & 0xfffff000; 3579 } 3580 if (!attrs.secure) { 3581 par64 |= (1 << 9); /* NS */ 3582 } 3583 } else { 3584 uint32_t fsr = arm_fi_to_sfsc(&fi); 3585 3586 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3587 ((fsr & 0xf) << 1) | 1; 3588 } 3589 } 3590 return par64; 3591 } 3592 #endif /* CONFIG_TCG */ 3593 3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3595 { 3596 #ifdef CONFIG_TCG 3597 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3598 uint64_t par64; 3599 ARMMMUIdx mmu_idx; 3600 int el = arm_current_el(env); 3601 bool secure = arm_is_secure_below_el3(env); 3602 3603 switch (ri->opc2 & 6) { 3604 case 0: 3605 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3606 switch (el) { 3607 case 3: 3608 mmu_idx = ARMMMUIdx_SE3; 3609 break; 3610 case 2: 3611 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3612 /* fall through */ 3613 case 1: 3614 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3615 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3616 : ARMMMUIdx_Stage1_E1_PAN); 3617 } else { 3618 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3619 } 3620 break; 3621 default: 3622 g_assert_not_reached(); 3623 } 3624 break; 3625 case 2: 3626 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3627 switch (el) { 3628 case 3: 3629 mmu_idx = ARMMMUIdx_SE10_0; 3630 break; 3631 case 2: 3632 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3633 mmu_idx = ARMMMUIdx_Stage1_E0; 3634 break; 3635 case 1: 3636 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3637 break; 3638 default: 3639 g_assert_not_reached(); 3640 } 3641 break; 3642 case 4: 3643 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3644 mmu_idx = ARMMMUIdx_E10_1; 3645 break; 3646 case 6: 3647 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3648 mmu_idx = ARMMMUIdx_E10_0; 3649 break; 3650 default: 3651 g_assert_not_reached(); 3652 } 3653 3654 par64 = do_ats_write(env, value, access_type, mmu_idx); 3655 3656 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3657 #else 3658 /* Handled by hardware accelerator. */ 3659 g_assert_not_reached(); 3660 #endif /* CONFIG_TCG */ 3661 } 3662 3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3664 uint64_t value) 3665 { 3666 #ifdef CONFIG_TCG 3667 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3668 uint64_t par64; 3669 3670 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3671 3672 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3673 #else 3674 /* Handled by hardware accelerator. */ 3675 g_assert_not_reached(); 3676 #endif /* CONFIG_TCG */ 3677 } 3678 3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3680 bool isread) 3681 { 3682 if (arm_current_el(env) == 3 && 3683 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3684 return CP_ACCESS_TRAP; 3685 } 3686 return CP_ACCESS_OK; 3687 } 3688 3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3690 uint64_t value) 3691 { 3692 #ifdef CONFIG_TCG 3693 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3694 ARMMMUIdx mmu_idx; 3695 int secure = arm_is_secure_below_el3(env); 3696 3697 switch (ri->opc2 & 6) { 3698 case 0: 3699 switch (ri->opc1) { 3700 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3701 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3702 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3703 : ARMMMUIdx_Stage1_E1_PAN); 3704 } else { 3705 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3706 } 3707 break; 3708 case 4: /* AT S1E2R, AT S1E2W */ 3709 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3710 break; 3711 case 6: /* AT S1E3R, AT S1E3W */ 3712 mmu_idx = ARMMMUIdx_SE3; 3713 break; 3714 default: 3715 g_assert_not_reached(); 3716 } 3717 break; 3718 case 2: /* AT S1E0R, AT S1E0W */ 3719 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3720 break; 3721 case 4: /* AT S12E1R, AT S12E1W */ 3722 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3723 break; 3724 case 6: /* AT S12E0R, AT S12E0W */ 3725 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3726 break; 3727 default: 3728 g_assert_not_reached(); 3729 } 3730 3731 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3732 #else 3733 /* Handled by hardware accelerator. */ 3734 g_assert_not_reached(); 3735 #endif /* CONFIG_TCG */ 3736 } 3737 #endif 3738 3739 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3740 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3741 .access = PL1_RW, .resetvalue = 0, 3742 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3743 offsetoflow32(CPUARMState, cp15.par_ns) }, 3744 .writefn = par_write }, 3745 #ifndef CONFIG_USER_ONLY 3746 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3747 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3748 .access = PL1_W, .accessfn = ats_access, 3749 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3750 #endif 3751 REGINFO_SENTINEL 3752 }; 3753 3754 /* Return basic MPU access permission bits. */ 3755 static uint32_t simple_mpu_ap_bits(uint32_t val) 3756 { 3757 uint32_t ret; 3758 uint32_t mask; 3759 int i; 3760 ret = 0; 3761 mask = 3; 3762 for (i = 0; i < 16; i += 2) { 3763 ret |= (val >> i) & mask; 3764 mask <<= 2; 3765 } 3766 return ret; 3767 } 3768 3769 /* Pad basic MPU access permission bits to extended format. */ 3770 static uint32_t extended_mpu_ap_bits(uint32_t val) 3771 { 3772 uint32_t ret; 3773 uint32_t mask; 3774 int i; 3775 ret = 0; 3776 mask = 3; 3777 for (i = 0; i < 16; i += 2) { 3778 ret |= (val & mask) << i; 3779 mask <<= 2; 3780 } 3781 return ret; 3782 } 3783 3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3788 } 3789 3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3791 { 3792 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3793 } 3794 3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3796 uint64_t value) 3797 { 3798 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3799 } 3800 3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3802 { 3803 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3804 } 3805 3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3807 { 3808 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3809 3810 if (!u32p) { 3811 return 0; 3812 } 3813 3814 u32p += env->pmsav7.rnr[M_REG_NS]; 3815 return *u32p; 3816 } 3817 3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3819 uint64_t value) 3820 { 3821 ARMCPU *cpu = env_archcpu(env); 3822 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3823 3824 if (!u32p) { 3825 return; 3826 } 3827 3828 u32p += env->pmsav7.rnr[M_REG_NS]; 3829 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3830 *u32p = value; 3831 } 3832 3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3834 uint64_t value) 3835 { 3836 ARMCPU *cpu = env_archcpu(env); 3837 uint32_t nrgs = cpu->pmsav7_dregion; 3838 3839 if (value >= nrgs) { 3840 qemu_log_mask(LOG_GUEST_ERROR, 3841 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3842 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3843 return; 3844 } 3845 3846 raw_write(env, ri, value); 3847 } 3848 3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3850 /* Reset for all these registers is handled in arm_cpu_reset(), 3851 * because the PMSAv7 is also used by M-profile CPUs, which do 3852 * not register cpregs but still need the state to be reset. 3853 */ 3854 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3855 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3856 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3857 .readfn = pmsav7_read, .writefn = pmsav7_write, 3858 .resetfn = arm_cp_reset_ignore }, 3859 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3860 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3861 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3862 .readfn = pmsav7_read, .writefn = pmsav7_write, 3863 .resetfn = arm_cp_reset_ignore }, 3864 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3865 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3866 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3867 .readfn = pmsav7_read, .writefn = pmsav7_write, 3868 .resetfn = arm_cp_reset_ignore }, 3869 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3870 .access = PL1_RW, 3871 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3872 .writefn = pmsav7_rgnr_write, 3873 .resetfn = arm_cp_reset_ignore }, 3874 REGINFO_SENTINEL 3875 }; 3876 3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3878 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3879 .access = PL1_RW, .type = ARM_CP_ALIAS, 3880 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3881 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3882 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3883 .access = PL1_RW, .type = ARM_CP_ALIAS, 3884 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3885 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3886 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3887 .access = PL1_RW, 3888 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3889 .resetvalue = 0, }, 3890 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3891 .access = PL1_RW, 3892 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3893 .resetvalue = 0, }, 3894 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3895 .access = PL1_RW, 3896 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3897 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3898 .access = PL1_RW, 3899 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3900 /* Protection region base and size registers */ 3901 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3902 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3903 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3904 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3905 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3906 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3907 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3908 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3909 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3910 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3911 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3912 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3913 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3914 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3915 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3916 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3917 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3918 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3919 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3920 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3922 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3923 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3925 REGINFO_SENTINEL 3926 }; 3927 3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3929 uint64_t value) 3930 { 3931 TCR *tcr = raw_ptr(env, ri); 3932 int maskshift = extract32(value, 0, 3); 3933 3934 if (!arm_feature(env, ARM_FEATURE_V8)) { 3935 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3936 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3937 * using Long-desciptor translation table format */ 3938 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3939 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3940 /* In an implementation that includes the Security Extensions 3941 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3942 * Short-descriptor translation table format. 3943 */ 3944 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3945 } else { 3946 value &= TTBCR_N; 3947 } 3948 } 3949 3950 /* Update the masks corresponding to the TCR bank being written 3951 * Note that we always calculate mask and base_mask, but 3952 * they are only used for short-descriptor tables (ie if EAE is 0); 3953 * for long-descriptor tables the TCR fields are used differently 3954 * and the mask and base_mask values are meaningless. 3955 */ 3956 tcr->raw_tcr = value; 3957 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3958 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3959 } 3960 3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3962 uint64_t value) 3963 { 3964 ARMCPU *cpu = env_archcpu(env); 3965 TCR *tcr = raw_ptr(env, ri); 3966 3967 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3968 /* With LPAE the TTBCR could result in a change of ASID 3969 * via the TTBCR.A1 bit, so do a TLB flush. 3970 */ 3971 tlb_flush(CPU(cpu)); 3972 } 3973 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3974 value = deposit64(tcr->raw_tcr, 0, 32, value); 3975 vmsa_ttbcr_raw_write(env, ri, value); 3976 } 3977 3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3979 { 3980 TCR *tcr = raw_ptr(env, ri); 3981 3982 /* Reset both the TCR as well as the masks corresponding to the bank of 3983 * the TCR being reset. 3984 */ 3985 tcr->raw_tcr = 0; 3986 tcr->mask = 0; 3987 tcr->base_mask = 0xffffc000u; 3988 } 3989 3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3991 uint64_t value) 3992 { 3993 ARMCPU *cpu = env_archcpu(env); 3994 TCR *tcr = raw_ptr(env, ri); 3995 3996 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3997 tlb_flush(CPU(cpu)); 3998 tcr->raw_tcr = value; 3999 } 4000 4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4002 uint64_t value) 4003 { 4004 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4005 if (cpreg_field_is_64bit(ri) && 4006 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4007 ARMCPU *cpu = env_archcpu(env); 4008 tlb_flush(CPU(cpu)); 4009 } 4010 raw_write(env, ri, value); 4011 } 4012 4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4014 uint64_t value) 4015 { 4016 /* 4017 * If we are running with E2&0 regime, then an ASID is active. 4018 * Flush if that might be changing. Note we're not checking 4019 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4020 * holds the active ASID, only checking the field that might. 4021 */ 4022 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4023 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4024 uint16_t mask = ARMMMUIdxBit_E20_2 | 4025 ARMMMUIdxBit_E20_2_PAN | 4026 ARMMMUIdxBit_E20_0; 4027 4028 if (arm_is_secure_below_el3(env)) { 4029 mask >>= ARM_MMU_IDX_A_NS; 4030 } 4031 4032 tlb_flush_by_mmuidx(env_cpu(env), mask); 4033 } 4034 raw_write(env, ri, value); 4035 } 4036 4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4038 uint64_t value) 4039 { 4040 ARMCPU *cpu = env_archcpu(env); 4041 CPUState *cs = CPU(cpu); 4042 4043 /* 4044 * A change in VMID to the stage2 page table (Stage2) invalidates 4045 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4046 */ 4047 if (raw_read(env, ri) != value) { 4048 uint16_t mask = ARMMMUIdxBit_E10_1 | 4049 ARMMMUIdxBit_E10_1_PAN | 4050 ARMMMUIdxBit_E10_0; 4051 4052 if (arm_is_secure_below_el3(env)) { 4053 mask >>= ARM_MMU_IDX_A_NS; 4054 } 4055 4056 tlb_flush_by_mmuidx(cs, mask); 4057 raw_write(env, ri, value); 4058 } 4059 } 4060 4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4062 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4063 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4064 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4065 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4066 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4067 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4068 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4069 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4070 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4071 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4072 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4073 offsetof(CPUARMState, cp15.dfar_ns) } }, 4074 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4075 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4076 .access = PL1_RW, .accessfn = access_tvm_trvm, 4077 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4078 .resetvalue = 0, }, 4079 REGINFO_SENTINEL 4080 }; 4081 4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4083 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4084 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4085 .access = PL1_RW, .accessfn = access_tvm_trvm, 4086 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4087 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4088 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4089 .access = PL1_RW, .accessfn = access_tvm_trvm, 4090 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4092 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4093 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4094 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4095 .access = PL1_RW, .accessfn = access_tvm_trvm, 4096 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4098 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4099 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4100 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4101 .access = PL1_RW, .accessfn = access_tvm_trvm, 4102 .writefn = vmsa_tcr_el12_write, 4103 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4104 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4105 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4106 .access = PL1_RW, .accessfn = access_tvm_trvm, 4107 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4108 .raw_writefn = vmsa_ttbcr_raw_write, 4109 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4110 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4111 REGINFO_SENTINEL 4112 }; 4113 4114 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4115 * qemu tlbs nor adjusting cached masks. 4116 */ 4117 static const ARMCPRegInfo ttbcr2_reginfo = { 4118 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4119 .access = PL1_RW, .accessfn = access_tvm_trvm, 4120 .type = ARM_CP_ALIAS, 4121 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4122 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4123 }; 4124 4125 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4126 uint64_t value) 4127 { 4128 env->cp15.c15_ticonfig = value & 0xe7; 4129 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4130 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4131 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4132 } 4133 4134 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4135 uint64_t value) 4136 { 4137 env->cp15.c15_threadid = value & 0xffff; 4138 } 4139 4140 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4141 uint64_t value) 4142 { 4143 /* Wait-for-interrupt (deprecated) */ 4144 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4145 } 4146 4147 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4148 uint64_t value) 4149 { 4150 /* On OMAP there are registers indicating the max/min index of dcache lines 4151 * containing a dirty line; cache flush operations have to reset these. 4152 */ 4153 env->cp15.c15_i_max = 0x000; 4154 env->cp15.c15_i_min = 0xff0; 4155 } 4156 4157 static const ARMCPRegInfo omap_cp_reginfo[] = { 4158 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4159 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4160 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4161 .resetvalue = 0, }, 4162 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4163 .access = PL1_RW, .type = ARM_CP_NOP }, 4164 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4165 .access = PL1_RW, 4166 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4167 .writefn = omap_ticonfig_write }, 4168 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4169 .access = PL1_RW, 4170 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4171 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4172 .access = PL1_RW, .resetvalue = 0xff0, 4173 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4174 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4175 .access = PL1_RW, 4176 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4177 .writefn = omap_threadid_write }, 4178 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4179 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4180 .type = ARM_CP_NO_RAW, 4181 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4182 /* TODO: Peripheral port remap register: 4183 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4184 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4185 * when MMU is off. 4186 */ 4187 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4188 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4189 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4190 .writefn = omap_cachemaint_write }, 4191 { .name = "C9", .cp = 15, .crn = 9, 4192 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4193 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4194 REGINFO_SENTINEL 4195 }; 4196 4197 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4198 uint64_t value) 4199 { 4200 env->cp15.c15_cpar = value & 0x3fff; 4201 } 4202 4203 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4204 { .name = "XSCALE_CPAR", 4205 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4206 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4207 .writefn = xscale_cpar_write, }, 4208 { .name = "XSCALE_AUXCR", 4209 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4210 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4211 .resetvalue = 0, }, 4212 /* XScale specific cache-lockdown: since we have no cache we NOP these 4213 * and hope the guest does not really rely on cache behaviour. 4214 */ 4215 { .name = "XSCALE_LOCK_ICACHE_LINE", 4216 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4217 .access = PL1_W, .type = ARM_CP_NOP }, 4218 { .name = "XSCALE_UNLOCK_ICACHE", 4219 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4220 .access = PL1_W, .type = ARM_CP_NOP }, 4221 { .name = "XSCALE_DCACHE_LOCK", 4222 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4223 .access = PL1_RW, .type = ARM_CP_NOP }, 4224 { .name = "XSCALE_UNLOCK_DCACHE", 4225 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4226 .access = PL1_W, .type = ARM_CP_NOP }, 4227 REGINFO_SENTINEL 4228 }; 4229 4230 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4231 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4232 * implementation of this implementation-defined space. 4233 * Ideally this should eventually disappear in favour of actually 4234 * implementing the correct behaviour for all cores. 4235 */ 4236 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4237 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4238 .access = PL1_RW, 4239 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4240 .resetvalue = 0 }, 4241 REGINFO_SENTINEL 4242 }; 4243 4244 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4245 /* Cache status: RAZ because we have no cache so it's always clean */ 4246 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4247 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4248 .resetvalue = 0 }, 4249 REGINFO_SENTINEL 4250 }; 4251 4252 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4253 /* We never have a a block transfer operation in progress */ 4254 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4255 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4256 .resetvalue = 0 }, 4257 /* The cache ops themselves: these all NOP for QEMU */ 4258 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4259 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4260 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4261 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4262 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4263 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4264 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4265 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4266 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4267 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4268 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4269 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4270 REGINFO_SENTINEL 4271 }; 4272 4273 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4274 /* The cache test-and-clean instructions always return (1 << 30) 4275 * to indicate that there are no dirty cache lines. 4276 */ 4277 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4278 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4279 .resetvalue = (1 << 30) }, 4280 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4281 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4282 .resetvalue = (1 << 30) }, 4283 REGINFO_SENTINEL 4284 }; 4285 4286 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4287 /* Ignore ReadBuffer accesses */ 4288 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4289 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4290 .access = PL1_RW, .resetvalue = 0, 4291 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4292 REGINFO_SENTINEL 4293 }; 4294 4295 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4296 { 4297 unsigned int cur_el = arm_current_el(env); 4298 4299 if (arm_is_el2_enabled(env) && cur_el == 1) { 4300 return env->cp15.vpidr_el2; 4301 } 4302 return raw_read(env, ri); 4303 } 4304 4305 static uint64_t mpidr_read_val(CPUARMState *env) 4306 { 4307 ARMCPU *cpu = env_archcpu(env); 4308 uint64_t mpidr = cpu->mp_affinity; 4309 4310 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4311 mpidr |= (1U << 31); 4312 /* Cores which are uniprocessor (non-coherent) 4313 * but still implement the MP extensions set 4314 * bit 30. (For instance, Cortex-R5). 4315 */ 4316 if (cpu->mp_is_up) { 4317 mpidr |= (1u << 30); 4318 } 4319 } 4320 return mpidr; 4321 } 4322 4323 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4324 { 4325 unsigned int cur_el = arm_current_el(env); 4326 4327 if (arm_is_el2_enabled(env) && cur_el == 1) { 4328 return env->cp15.vmpidr_el2; 4329 } 4330 return mpidr_read_val(env); 4331 } 4332 4333 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4334 /* NOP AMAIR0/1 */ 4335 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4336 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4337 .access = PL1_RW, .accessfn = access_tvm_trvm, 4338 .type = ARM_CP_CONST, .resetvalue = 0 }, 4339 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4340 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4341 .access = PL1_RW, .accessfn = access_tvm_trvm, 4342 .type = ARM_CP_CONST, .resetvalue = 0 }, 4343 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4344 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4345 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4346 offsetof(CPUARMState, cp15.par_ns)} }, 4347 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4348 .access = PL1_RW, .accessfn = access_tvm_trvm, 4349 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4350 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4351 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4352 .writefn = vmsa_ttbr_write, }, 4353 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4354 .access = PL1_RW, .accessfn = access_tvm_trvm, 4355 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4356 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4357 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4358 .writefn = vmsa_ttbr_write, }, 4359 REGINFO_SENTINEL 4360 }; 4361 4362 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4363 { 4364 return vfp_get_fpcr(env); 4365 } 4366 4367 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4368 uint64_t value) 4369 { 4370 vfp_set_fpcr(env, value); 4371 } 4372 4373 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4374 { 4375 return vfp_get_fpsr(env); 4376 } 4377 4378 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4379 uint64_t value) 4380 { 4381 vfp_set_fpsr(env, value); 4382 } 4383 4384 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4385 bool isread) 4386 { 4387 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4388 return CP_ACCESS_TRAP; 4389 } 4390 return CP_ACCESS_OK; 4391 } 4392 4393 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4394 uint64_t value) 4395 { 4396 env->daif = value & PSTATE_DAIF; 4397 } 4398 4399 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4400 { 4401 return env->pstate & PSTATE_PAN; 4402 } 4403 4404 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4405 uint64_t value) 4406 { 4407 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4408 } 4409 4410 static const ARMCPRegInfo pan_reginfo = { 4411 .name = "PAN", .state = ARM_CP_STATE_AA64, 4412 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4413 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4414 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4415 }; 4416 4417 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4418 { 4419 return env->pstate & PSTATE_UAO; 4420 } 4421 4422 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4423 uint64_t value) 4424 { 4425 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4426 } 4427 4428 static const ARMCPRegInfo uao_reginfo = { 4429 .name = "UAO", .state = ARM_CP_STATE_AA64, 4430 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4431 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4432 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4433 }; 4434 4435 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4436 { 4437 return env->pstate & PSTATE_DIT; 4438 } 4439 4440 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4441 uint64_t value) 4442 { 4443 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4444 } 4445 4446 static const ARMCPRegInfo dit_reginfo = { 4447 .name = "DIT", .state = ARM_CP_STATE_AA64, 4448 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4449 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4450 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4451 }; 4452 4453 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4454 const ARMCPRegInfo *ri, 4455 bool isread) 4456 { 4457 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4458 switch (arm_current_el(env)) { 4459 case 0: 4460 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4461 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4462 return CP_ACCESS_TRAP; 4463 } 4464 /* fall through */ 4465 case 1: 4466 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4467 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4468 return CP_ACCESS_TRAP_EL2; 4469 } 4470 break; 4471 } 4472 return CP_ACCESS_OK; 4473 } 4474 4475 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4476 const ARMCPRegInfo *ri, 4477 bool isread) 4478 { 4479 /* Cache invalidate/clean to Point of Unification... */ 4480 switch (arm_current_el(env)) { 4481 case 0: 4482 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4483 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4484 return CP_ACCESS_TRAP; 4485 } 4486 /* fall through */ 4487 case 1: 4488 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4489 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4490 return CP_ACCESS_TRAP_EL2; 4491 } 4492 break; 4493 } 4494 return CP_ACCESS_OK; 4495 } 4496 4497 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4498 * Page D4-1736 (DDI0487A.b) 4499 */ 4500 4501 static int vae1_tlbmask(CPUARMState *env) 4502 { 4503 uint64_t hcr = arm_hcr_el2_eff(env); 4504 uint16_t mask; 4505 4506 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4507 mask = ARMMMUIdxBit_E20_2 | 4508 ARMMMUIdxBit_E20_2_PAN | 4509 ARMMMUIdxBit_E20_0; 4510 } else { 4511 mask = ARMMMUIdxBit_E10_1 | 4512 ARMMMUIdxBit_E10_1_PAN | 4513 ARMMMUIdxBit_E10_0; 4514 } 4515 4516 if (arm_is_secure_below_el3(env)) { 4517 mask >>= ARM_MMU_IDX_A_NS; 4518 } 4519 4520 return mask; 4521 } 4522 4523 /* Return 56 if TBI is enabled, 64 otherwise. */ 4524 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4525 uint64_t addr) 4526 { 4527 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4528 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4529 int select = extract64(addr, 55, 1); 4530 4531 return (tbi >> select) & 1 ? 56 : 64; 4532 } 4533 4534 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4535 { 4536 uint64_t hcr = arm_hcr_el2_eff(env); 4537 ARMMMUIdx mmu_idx; 4538 4539 /* Only the regime of the mmu_idx below is significant. */ 4540 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4541 mmu_idx = ARMMMUIdx_E20_0; 4542 } else { 4543 mmu_idx = ARMMMUIdx_E10_0; 4544 } 4545 4546 if (arm_is_secure_below_el3(env)) { 4547 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4548 } 4549 4550 return tlbbits_for_regime(env, mmu_idx, addr); 4551 } 4552 4553 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4554 uint64_t value) 4555 { 4556 CPUState *cs = env_cpu(env); 4557 int mask = vae1_tlbmask(env); 4558 4559 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4560 } 4561 4562 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4563 uint64_t value) 4564 { 4565 CPUState *cs = env_cpu(env); 4566 int mask = vae1_tlbmask(env); 4567 4568 if (tlb_force_broadcast(env)) { 4569 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4570 } else { 4571 tlb_flush_by_mmuidx(cs, mask); 4572 } 4573 } 4574 4575 static int alle1_tlbmask(CPUARMState *env) 4576 { 4577 /* 4578 * Note that the 'ALL' scope must invalidate both stage 1 and 4579 * stage 2 translations, whereas most other scopes only invalidate 4580 * stage 1 translations. 4581 */ 4582 if (arm_is_secure_below_el3(env)) { 4583 return ARMMMUIdxBit_SE10_1 | 4584 ARMMMUIdxBit_SE10_1_PAN | 4585 ARMMMUIdxBit_SE10_0; 4586 } else { 4587 return ARMMMUIdxBit_E10_1 | 4588 ARMMMUIdxBit_E10_1_PAN | 4589 ARMMMUIdxBit_E10_0; 4590 } 4591 } 4592 4593 static int e2_tlbmask(CPUARMState *env) 4594 { 4595 if (arm_is_secure_below_el3(env)) { 4596 return ARMMMUIdxBit_SE20_0 | 4597 ARMMMUIdxBit_SE20_2 | 4598 ARMMMUIdxBit_SE20_2_PAN | 4599 ARMMMUIdxBit_SE2; 4600 } else { 4601 return ARMMMUIdxBit_E20_0 | 4602 ARMMMUIdxBit_E20_2 | 4603 ARMMMUIdxBit_E20_2_PAN | 4604 ARMMMUIdxBit_E2; 4605 } 4606 } 4607 4608 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4609 uint64_t value) 4610 { 4611 CPUState *cs = env_cpu(env); 4612 int mask = alle1_tlbmask(env); 4613 4614 tlb_flush_by_mmuidx(cs, mask); 4615 } 4616 4617 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4618 uint64_t value) 4619 { 4620 CPUState *cs = env_cpu(env); 4621 int mask = e2_tlbmask(env); 4622 4623 tlb_flush_by_mmuidx(cs, mask); 4624 } 4625 4626 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4627 uint64_t value) 4628 { 4629 ARMCPU *cpu = env_archcpu(env); 4630 CPUState *cs = CPU(cpu); 4631 4632 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4633 } 4634 4635 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4636 uint64_t value) 4637 { 4638 CPUState *cs = env_cpu(env); 4639 int mask = alle1_tlbmask(env); 4640 4641 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4642 } 4643 4644 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4645 uint64_t value) 4646 { 4647 CPUState *cs = env_cpu(env); 4648 int mask = e2_tlbmask(env); 4649 4650 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4651 } 4652 4653 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4654 uint64_t value) 4655 { 4656 CPUState *cs = env_cpu(env); 4657 4658 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4659 } 4660 4661 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4662 uint64_t value) 4663 { 4664 /* Invalidate by VA, EL2 4665 * Currently handles both VAE2 and VALE2, since we don't support 4666 * flush-last-level-only. 4667 */ 4668 CPUState *cs = env_cpu(env); 4669 int mask = e2_tlbmask(env); 4670 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4671 4672 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4673 } 4674 4675 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4676 uint64_t value) 4677 { 4678 /* Invalidate by VA, EL3 4679 * Currently handles both VAE3 and VALE3, since we don't support 4680 * flush-last-level-only. 4681 */ 4682 ARMCPU *cpu = env_archcpu(env); 4683 CPUState *cs = CPU(cpu); 4684 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4685 4686 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4687 } 4688 4689 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4690 uint64_t value) 4691 { 4692 CPUState *cs = env_cpu(env); 4693 int mask = vae1_tlbmask(env); 4694 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4695 int bits = vae1_tlbbits(env, pageaddr); 4696 4697 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4698 } 4699 4700 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4701 uint64_t value) 4702 { 4703 /* Invalidate by VA, EL1&0 (AArch64 version). 4704 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4705 * since we don't support flush-for-specific-ASID-only or 4706 * flush-last-level-only. 4707 */ 4708 CPUState *cs = env_cpu(env); 4709 int mask = vae1_tlbmask(env); 4710 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4711 int bits = vae1_tlbbits(env, pageaddr); 4712 4713 if (tlb_force_broadcast(env)) { 4714 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4715 } else { 4716 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4717 } 4718 } 4719 4720 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4721 uint64_t value) 4722 { 4723 CPUState *cs = env_cpu(env); 4724 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4725 bool secure = arm_is_secure_below_el3(env); 4726 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4727 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_E2 : ARMMMUIdx_SE2, 4728 pageaddr); 4729 4730 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4731 } 4732 4733 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4734 uint64_t value) 4735 { 4736 CPUState *cs = env_cpu(env); 4737 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4738 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4739 4740 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4741 ARMMMUIdxBit_SE3, bits); 4742 } 4743 4744 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4745 bool isread) 4746 { 4747 int cur_el = arm_current_el(env); 4748 4749 if (cur_el < 2) { 4750 uint64_t hcr = arm_hcr_el2_eff(env); 4751 4752 if (cur_el == 0) { 4753 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4754 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4755 return CP_ACCESS_TRAP_EL2; 4756 } 4757 } else { 4758 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4759 return CP_ACCESS_TRAP; 4760 } 4761 if (hcr & HCR_TDZ) { 4762 return CP_ACCESS_TRAP_EL2; 4763 } 4764 } 4765 } else if (hcr & HCR_TDZ) { 4766 return CP_ACCESS_TRAP_EL2; 4767 } 4768 } 4769 return CP_ACCESS_OK; 4770 } 4771 4772 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4773 { 4774 ARMCPU *cpu = env_archcpu(env); 4775 int dzp_bit = 1 << 4; 4776 4777 /* DZP indicates whether DC ZVA access is allowed */ 4778 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4779 dzp_bit = 0; 4780 } 4781 return cpu->dcz_blocksize | dzp_bit; 4782 } 4783 4784 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4785 bool isread) 4786 { 4787 if (!(env->pstate & PSTATE_SP)) { 4788 /* Access to SP_EL0 is undefined if it's being used as 4789 * the stack pointer. 4790 */ 4791 return CP_ACCESS_TRAP_UNCATEGORIZED; 4792 } 4793 return CP_ACCESS_OK; 4794 } 4795 4796 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4797 { 4798 return env->pstate & PSTATE_SP; 4799 } 4800 4801 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4802 { 4803 update_spsel(env, val); 4804 } 4805 4806 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4807 uint64_t value) 4808 { 4809 ARMCPU *cpu = env_archcpu(env); 4810 4811 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4812 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4813 value &= ~SCTLR_M; 4814 } 4815 4816 /* ??? Lots of these bits are not implemented. */ 4817 4818 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4819 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4820 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4821 } else { 4822 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4823 SCTLR_ATA0 | SCTLR_ATA); 4824 } 4825 } 4826 4827 if (raw_read(env, ri) == value) { 4828 /* Skip the TLB flush if nothing actually changed; Linux likes 4829 * to do a lot of pointless SCTLR writes. 4830 */ 4831 return; 4832 } 4833 4834 raw_write(env, ri, value); 4835 4836 /* This may enable/disable the MMU, so do a TLB flush. */ 4837 tlb_flush(CPU(cpu)); 4838 4839 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4840 /* 4841 * Normally we would always end the TB on an SCTLR write; see the 4842 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4843 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4844 * of hflags from the translator, so do it here. 4845 */ 4846 arm_rebuild_hflags(env); 4847 } 4848 } 4849 4850 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4851 bool isread) 4852 { 4853 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4854 return CP_ACCESS_TRAP_FP_EL2; 4855 } 4856 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4857 return CP_ACCESS_TRAP_FP_EL3; 4858 } 4859 return CP_ACCESS_OK; 4860 } 4861 4862 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4863 uint64_t value) 4864 { 4865 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4866 } 4867 4868 static const ARMCPRegInfo v8_cp_reginfo[] = { 4869 /* Minimal set of EL0-visible registers. This will need to be expanded 4870 * significantly for system emulation of AArch64 CPUs. 4871 */ 4872 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4873 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4874 .access = PL0_RW, .type = ARM_CP_NZCV }, 4875 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4877 .type = ARM_CP_NO_RAW, 4878 .access = PL0_RW, .accessfn = aa64_daif_access, 4879 .fieldoffset = offsetof(CPUARMState, daif), 4880 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4881 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4883 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4884 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4885 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4887 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4888 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4889 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4891 .access = PL0_R, .type = ARM_CP_NO_RAW, 4892 .readfn = aa64_dczid_read }, 4893 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4895 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4896 #ifndef CONFIG_USER_ONLY 4897 /* Avoid overhead of an access check that always passes in user-mode */ 4898 .accessfn = aa64_zva_access, 4899 #endif 4900 }, 4901 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4903 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4904 /* Cache ops: all NOPs since we don't emulate caches */ 4905 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4907 .access = PL1_W, .type = ARM_CP_NOP, 4908 .accessfn = aa64_cacheop_pou_access }, 4909 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4911 .access = PL1_W, .type = ARM_CP_NOP, 4912 .accessfn = aa64_cacheop_pou_access }, 4913 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4915 .access = PL0_W, .type = ARM_CP_NOP, 4916 .accessfn = aa64_cacheop_pou_access }, 4917 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4919 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4920 .type = ARM_CP_NOP }, 4921 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4923 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4924 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4926 .access = PL0_W, .type = ARM_CP_NOP, 4927 .accessfn = aa64_cacheop_poc_access }, 4928 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4929 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4930 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4931 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4933 .access = PL0_W, .type = ARM_CP_NOP, 4934 .accessfn = aa64_cacheop_pou_access }, 4935 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4937 .access = PL0_W, .type = ARM_CP_NOP, 4938 .accessfn = aa64_cacheop_poc_access }, 4939 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4941 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4942 /* TLBI operations */ 4943 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4944 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4945 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4946 .writefn = tlbi_aa64_vmalle1is_write }, 4947 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4948 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4949 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4950 .writefn = tlbi_aa64_vae1is_write }, 4951 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4952 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4953 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4954 .writefn = tlbi_aa64_vmalle1is_write }, 4955 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4957 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4958 .writefn = tlbi_aa64_vae1is_write }, 4959 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4961 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4962 .writefn = tlbi_aa64_vae1is_write }, 4963 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4965 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4966 .writefn = tlbi_aa64_vae1is_write }, 4967 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4969 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4970 .writefn = tlbi_aa64_vmalle1_write }, 4971 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4972 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4973 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4974 .writefn = tlbi_aa64_vae1_write }, 4975 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4976 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4977 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4978 .writefn = tlbi_aa64_vmalle1_write }, 4979 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4980 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4981 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4982 .writefn = tlbi_aa64_vae1_write }, 4983 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4984 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4985 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4986 .writefn = tlbi_aa64_vae1_write }, 4987 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4988 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4989 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4990 .writefn = tlbi_aa64_vae1_write }, 4991 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4992 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4993 .access = PL2_W, .type = ARM_CP_NOP }, 4994 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4995 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4996 .access = PL2_W, .type = ARM_CP_NOP }, 4997 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4998 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4999 .access = PL2_W, .type = ARM_CP_NO_RAW, 5000 .writefn = tlbi_aa64_alle1is_write }, 5001 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5002 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5003 .access = PL2_W, .type = ARM_CP_NO_RAW, 5004 .writefn = tlbi_aa64_alle1is_write }, 5005 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5006 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5007 .access = PL2_W, .type = ARM_CP_NOP }, 5008 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5009 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5010 .access = PL2_W, .type = ARM_CP_NOP }, 5011 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5012 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5013 .access = PL2_W, .type = ARM_CP_NO_RAW, 5014 .writefn = tlbi_aa64_alle1_write }, 5015 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5016 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5017 .access = PL2_W, .type = ARM_CP_NO_RAW, 5018 .writefn = tlbi_aa64_alle1is_write }, 5019 #ifndef CONFIG_USER_ONLY 5020 /* 64 bit address translation operations */ 5021 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5022 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5023 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5024 .writefn = ats_write64 }, 5025 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5026 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5027 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5028 .writefn = ats_write64 }, 5029 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5030 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5031 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5032 .writefn = ats_write64 }, 5033 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5034 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5035 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5036 .writefn = ats_write64 }, 5037 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5038 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5039 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5040 .writefn = ats_write64 }, 5041 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5042 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5043 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5044 .writefn = ats_write64 }, 5045 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5046 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5047 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5048 .writefn = ats_write64 }, 5049 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5050 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5051 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5052 .writefn = ats_write64 }, 5053 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5054 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5055 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5056 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5057 .writefn = ats_write64 }, 5058 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5059 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5060 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5061 .writefn = ats_write64 }, 5062 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5063 .type = ARM_CP_ALIAS, 5064 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5065 .access = PL1_RW, .resetvalue = 0, 5066 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5067 .writefn = par_write }, 5068 #endif 5069 /* TLB invalidate last level of translation table walk */ 5070 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5071 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5072 .writefn = tlbimva_is_write }, 5073 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5074 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5075 .writefn = tlbimvaa_is_write }, 5076 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5077 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5078 .writefn = tlbimva_write }, 5079 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5080 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5081 .writefn = tlbimvaa_write }, 5082 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5083 .type = ARM_CP_NO_RAW, .access = PL2_W, 5084 .writefn = tlbimva_hyp_write }, 5085 { .name = "TLBIMVALHIS", 5086 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5087 .type = ARM_CP_NO_RAW, .access = PL2_W, 5088 .writefn = tlbimva_hyp_is_write }, 5089 { .name = "TLBIIPAS2", 5090 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5091 .type = ARM_CP_NOP, .access = PL2_W }, 5092 { .name = "TLBIIPAS2IS", 5093 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5094 .type = ARM_CP_NOP, .access = PL2_W }, 5095 { .name = "TLBIIPAS2L", 5096 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5097 .type = ARM_CP_NOP, .access = PL2_W }, 5098 { .name = "TLBIIPAS2LIS", 5099 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5100 .type = ARM_CP_NOP, .access = PL2_W }, 5101 /* 32 bit cache operations */ 5102 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5103 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5104 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5105 .type = ARM_CP_NOP, .access = PL1_W }, 5106 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5107 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5108 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5109 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5110 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5111 .type = ARM_CP_NOP, .access = PL1_W }, 5112 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5113 .type = ARM_CP_NOP, .access = PL1_W }, 5114 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5115 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5116 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5117 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5118 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5119 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5120 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5121 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5122 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5123 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5124 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5125 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5126 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5127 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5128 /* MMU Domain access control / MPU write buffer control */ 5129 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5130 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5131 .writefn = dacr_write, .raw_writefn = raw_write, 5132 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5133 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5134 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5135 .type = ARM_CP_ALIAS, 5136 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5137 .access = PL1_RW, 5138 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5139 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5140 .type = ARM_CP_ALIAS, 5141 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5142 .access = PL1_RW, 5143 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5144 /* We rely on the access checks not allowing the guest to write to the 5145 * state field when SPSel indicates that it's being used as the stack 5146 * pointer. 5147 */ 5148 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5149 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5150 .access = PL1_RW, .accessfn = sp_el0_access, 5151 .type = ARM_CP_ALIAS, 5152 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5153 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5154 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5155 .access = PL2_RW, .type = ARM_CP_ALIAS, 5156 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5157 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5158 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5159 .type = ARM_CP_NO_RAW, 5160 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5161 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5162 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5163 .type = ARM_CP_ALIAS, 5164 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5165 .access = PL2_RW, .accessfn = fpexc32_access }, 5166 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5167 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5168 .access = PL2_RW, .resetvalue = 0, 5169 .writefn = dacr_write, .raw_writefn = raw_write, 5170 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5171 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5172 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5173 .access = PL2_RW, .resetvalue = 0, 5174 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5175 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5176 .type = ARM_CP_ALIAS, 5177 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5178 .access = PL2_RW, 5179 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5180 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5181 .type = ARM_CP_ALIAS, 5182 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5183 .access = PL2_RW, 5184 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5185 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5186 .type = ARM_CP_ALIAS, 5187 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5188 .access = PL2_RW, 5189 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5190 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5191 .type = ARM_CP_ALIAS, 5192 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5193 .access = PL2_RW, 5194 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5195 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5196 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5197 .resetvalue = 0, 5198 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5199 { .name = "SDCR", .type = ARM_CP_ALIAS, 5200 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5201 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5202 .writefn = sdcr_write, 5203 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5204 REGINFO_SENTINEL 5205 }; 5206 5207 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5208 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5209 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5210 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5211 .access = PL2_RW, 5212 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5213 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5214 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5215 .access = PL2_RW, 5216 .type = ARM_CP_CONST, .resetvalue = 0 }, 5217 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5218 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5219 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5220 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5221 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5222 .access = PL2_RW, 5223 .type = ARM_CP_CONST, .resetvalue = 0 }, 5224 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5225 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5226 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5227 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5228 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5229 .access = PL2_RW, .type = ARM_CP_CONST, 5230 .resetvalue = 0 }, 5231 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5232 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5233 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5234 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5235 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5236 .access = PL2_RW, .type = ARM_CP_CONST, 5237 .resetvalue = 0 }, 5238 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5239 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5240 .access = PL2_RW, .type = ARM_CP_CONST, 5241 .resetvalue = 0 }, 5242 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5243 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5244 .access = PL2_RW, .type = ARM_CP_CONST, 5245 .resetvalue = 0 }, 5246 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5247 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5248 .access = PL2_RW, .type = ARM_CP_CONST, 5249 .resetvalue = 0 }, 5250 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5251 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5252 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5253 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5254 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5255 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5256 .type = ARM_CP_CONST, .resetvalue = 0 }, 5257 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5258 .cp = 15, .opc1 = 6, .crm = 2, 5259 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5260 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5261 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5262 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5263 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5264 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5265 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5266 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5267 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5268 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5269 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5270 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5271 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5272 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5273 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5274 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5275 .resetvalue = 0 }, 5276 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5277 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5278 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5279 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5280 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5281 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5282 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5283 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5284 .resetvalue = 0 }, 5285 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5286 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5287 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5288 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5289 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5290 .resetvalue = 0 }, 5291 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5292 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5293 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5294 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5295 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5296 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5297 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5298 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5299 .access = PL2_RW, .accessfn = access_tda, 5300 .type = ARM_CP_CONST, .resetvalue = 0 }, 5301 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5302 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5303 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5304 .type = ARM_CP_CONST, .resetvalue = 0 }, 5305 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5306 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5307 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5308 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5309 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5310 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5311 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5312 .type = ARM_CP_CONST, 5313 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5314 .access = PL2_RW, .resetvalue = 0 }, 5315 REGINFO_SENTINEL 5316 }; 5317 5318 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5319 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5320 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5321 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5322 .access = PL2_RW, 5323 .type = ARM_CP_CONST, .resetvalue = 0 }, 5324 REGINFO_SENTINEL 5325 }; 5326 5327 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5328 { 5329 ARMCPU *cpu = env_archcpu(env); 5330 5331 if (arm_feature(env, ARM_FEATURE_V8)) { 5332 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5333 } else { 5334 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5335 } 5336 5337 if (arm_feature(env, ARM_FEATURE_EL3)) { 5338 valid_mask &= ~HCR_HCD; 5339 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5340 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5341 * However, if we're using the SMC PSCI conduit then QEMU is 5342 * effectively acting like EL3 firmware and so the guest at 5343 * EL2 should retain the ability to prevent EL1 from being 5344 * able to make SMC calls into the ersatz firmware, so in 5345 * that case HCR.TSC should be read/write. 5346 */ 5347 valid_mask &= ~HCR_TSC; 5348 } 5349 5350 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5351 if (cpu_isar_feature(aa64_vh, cpu)) { 5352 valid_mask |= HCR_E2H; 5353 } 5354 if (cpu_isar_feature(aa64_lor, cpu)) { 5355 valid_mask |= HCR_TLOR; 5356 } 5357 if (cpu_isar_feature(aa64_pauth, cpu)) { 5358 valid_mask |= HCR_API | HCR_APK; 5359 } 5360 if (cpu_isar_feature(aa64_mte, cpu)) { 5361 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5362 } 5363 } 5364 5365 /* Clear RES0 bits. */ 5366 value &= valid_mask; 5367 5368 /* 5369 * These bits change the MMU setup: 5370 * HCR_VM enables stage 2 translation 5371 * HCR_PTW forbids certain page-table setups 5372 * HCR_DC disables stage1 and enables stage2 translation 5373 * HCR_DCT enables tagging on (disabled) stage1 translation 5374 */ 5375 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5376 tlb_flush(CPU(cpu)); 5377 } 5378 env->cp15.hcr_el2 = value; 5379 5380 /* 5381 * Updates to VI and VF require us to update the status of 5382 * virtual interrupts, which are the logical OR of these bits 5383 * and the state of the input lines from the GIC. (This requires 5384 * that we have the iothread lock, which is done by marking the 5385 * reginfo structs as ARM_CP_IO.) 5386 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5387 * possible for it to be taken immediately, because VIRQ and 5388 * VFIQ are masked unless running at EL0 or EL1, and HCR 5389 * can only be written at EL2. 5390 */ 5391 g_assert(qemu_mutex_iothread_locked()); 5392 arm_cpu_update_virq(cpu); 5393 arm_cpu_update_vfiq(cpu); 5394 } 5395 5396 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5397 { 5398 do_hcr_write(env, value, 0); 5399 } 5400 5401 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5402 uint64_t value) 5403 { 5404 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5405 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5406 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5407 } 5408 5409 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5410 uint64_t value) 5411 { 5412 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5413 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5414 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5415 } 5416 5417 /* 5418 * Return the effective value of HCR_EL2. 5419 * Bits that are not included here: 5420 * RW (read from SCR_EL3.RW as needed) 5421 */ 5422 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5423 { 5424 uint64_t ret = env->cp15.hcr_el2; 5425 5426 if (!arm_is_el2_enabled(env)) { 5427 /* 5428 * "This register has no effect if EL2 is not enabled in the 5429 * current Security state". This is ARMv8.4-SecEL2 speak for 5430 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5431 * 5432 * Prior to that, the language was "In an implementation that 5433 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5434 * as if this field is 0 for all purposes other than a direct 5435 * read or write access of HCR_EL2". With lots of enumeration 5436 * on a per-field basis. In current QEMU, this is condition 5437 * is arm_is_secure_below_el3. 5438 * 5439 * Since the v8.4 language applies to the entire register, and 5440 * appears to be backward compatible, use that. 5441 */ 5442 return 0; 5443 } 5444 5445 /* 5446 * For a cpu that supports both aarch64 and aarch32, we can set bits 5447 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5448 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5449 */ 5450 if (!arm_el_is_aa64(env, 2)) { 5451 uint64_t aa32_valid; 5452 5453 /* 5454 * These bits are up-to-date as of ARMv8.6. 5455 * For HCR, it's easiest to list just the 2 bits that are invalid. 5456 * For HCR2, list those that are valid. 5457 */ 5458 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5459 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5460 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5461 ret &= aa32_valid; 5462 } 5463 5464 if (ret & HCR_TGE) { 5465 /* These bits are up-to-date as of ARMv8.6. */ 5466 if (ret & HCR_E2H) { 5467 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5468 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5469 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5470 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5471 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5472 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5473 } else { 5474 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5475 } 5476 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5477 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5478 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5479 HCR_TLOR); 5480 } 5481 5482 return ret; 5483 } 5484 5485 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5486 uint64_t value) 5487 { 5488 /* 5489 * For A-profile AArch32 EL3, if NSACR.CP10 5490 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5491 */ 5492 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5493 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5494 value &= ~(0x3 << 10); 5495 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5496 } 5497 env->cp15.cptr_el[2] = value; 5498 } 5499 5500 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5501 { 5502 /* 5503 * For A-profile AArch32 EL3, if NSACR.CP10 5504 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5505 */ 5506 uint64_t value = env->cp15.cptr_el[2]; 5507 5508 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5509 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5510 value |= 0x3 << 10; 5511 } 5512 return value; 5513 } 5514 5515 static const ARMCPRegInfo el2_cp_reginfo[] = { 5516 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5517 .type = ARM_CP_IO, 5518 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5519 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5520 .writefn = hcr_write }, 5521 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5522 .type = ARM_CP_ALIAS | ARM_CP_IO, 5523 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5524 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5525 .writefn = hcr_writelow }, 5526 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5527 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5528 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5529 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5530 .type = ARM_CP_ALIAS, 5531 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5532 .access = PL2_RW, 5533 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5534 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5535 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5536 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5537 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5538 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5539 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5540 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5541 .type = ARM_CP_ALIAS, 5542 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5543 .access = PL2_RW, 5544 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5545 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5546 .type = ARM_CP_ALIAS, 5547 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5548 .access = PL2_RW, 5549 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5550 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5551 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5552 .access = PL2_RW, .writefn = vbar_write, 5553 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5554 .resetvalue = 0 }, 5555 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5556 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5557 .access = PL3_RW, .type = ARM_CP_ALIAS, 5558 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5559 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5560 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5561 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5562 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5563 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5564 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5565 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5566 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5567 .resetvalue = 0 }, 5568 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5569 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5570 .access = PL2_RW, .type = ARM_CP_ALIAS, 5571 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5572 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5573 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5574 .access = PL2_RW, .type = ARM_CP_CONST, 5575 .resetvalue = 0 }, 5576 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5577 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5578 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5579 .access = PL2_RW, .type = ARM_CP_CONST, 5580 .resetvalue = 0 }, 5581 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5582 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5583 .access = PL2_RW, .type = ARM_CP_CONST, 5584 .resetvalue = 0 }, 5585 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5586 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5587 .access = PL2_RW, .type = ARM_CP_CONST, 5588 .resetvalue = 0 }, 5589 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5590 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5591 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5592 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5593 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5594 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5595 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5596 .type = ARM_CP_ALIAS, 5597 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5598 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5599 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5600 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5601 .access = PL2_RW, 5602 /* no .writefn needed as this can't cause an ASID change; 5603 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5604 */ 5605 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5606 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5607 .cp = 15, .opc1 = 6, .crm = 2, 5608 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5609 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5610 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5611 .writefn = vttbr_write }, 5612 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5613 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5614 .access = PL2_RW, .writefn = vttbr_write, 5615 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5616 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5617 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5618 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5619 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5620 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5621 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5622 .access = PL2_RW, .resetvalue = 0, 5623 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5624 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5625 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5626 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5627 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5628 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5629 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5630 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5631 { .name = "TLBIALLNSNH", 5632 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5633 .type = ARM_CP_NO_RAW, .access = PL2_W, 5634 .writefn = tlbiall_nsnh_write }, 5635 { .name = "TLBIALLNSNHIS", 5636 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5637 .type = ARM_CP_NO_RAW, .access = PL2_W, 5638 .writefn = tlbiall_nsnh_is_write }, 5639 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5640 .type = ARM_CP_NO_RAW, .access = PL2_W, 5641 .writefn = tlbiall_hyp_write }, 5642 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5643 .type = ARM_CP_NO_RAW, .access = PL2_W, 5644 .writefn = tlbiall_hyp_is_write }, 5645 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5646 .type = ARM_CP_NO_RAW, .access = PL2_W, 5647 .writefn = tlbimva_hyp_write }, 5648 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5649 .type = ARM_CP_NO_RAW, .access = PL2_W, 5650 .writefn = tlbimva_hyp_is_write }, 5651 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5652 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5653 .type = ARM_CP_NO_RAW, .access = PL2_W, 5654 .writefn = tlbi_aa64_alle2_write }, 5655 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5656 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5657 .type = ARM_CP_NO_RAW, .access = PL2_W, 5658 .writefn = tlbi_aa64_vae2_write }, 5659 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5660 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5661 .access = PL2_W, .type = ARM_CP_NO_RAW, 5662 .writefn = tlbi_aa64_vae2_write }, 5663 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5664 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5665 .access = PL2_W, .type = ARM_CP_NO_RAW, 5666 .writefn = tlbi_aa64_alle2is_write }, 5667 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5668 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5669 .type = ARM_CP_NO_RAW, .access = PL2_W, 5670 .writefn = tlbi_aa64_vae2is_write }, 5671 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5672 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5673 .access = PL2_W, .type = ARM_CP_NO_RAW, 5674 .writefn = tlbi_aa64_vae2is_write }, 5675 #ifndef CONFIG_USER_ONLY 5676 /* Unlike the other EL2-related AT operations, these must 5677 * UNDEF from EL3 if EL2 is not implemented, which is why we 5678 * define them here rather than with the rest of the AT ops. 5679 */ 5680 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5681 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5682 .access = PL2_W, .accessfn = at_s1e2_access, 5683 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5684 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5685 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5686 .access = PL2_W, .accessfn = at_s1e2_access, 5687 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5688 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5689 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5690 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5691 * to behave as if SCR.NS was 1. 5692 */ 5693 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5694 .access = PL2_W, 5695 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5696 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5697 .access = PL2_W, 5698 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5699 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5700 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5701 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5702 * reset values as IMPDEF. We choose to reset to 3 to comply with 5703 * both ARMv7 and ARMv8. 5704 */ 5705 .access = PL2_RW, .resetvalue = 3, 5706 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5707 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5708 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5709 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5710 .writefn = gt_cntvoff_write, 5711 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5712 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5713 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5714 .writefn = gt_cntvoff_write, 5715 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5716 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5717 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5718 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5719 .type = ARM_CP_IO, .access = PL2_RW, 5720 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5721 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5722 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5723 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5724 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5725 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5726 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5727 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5728 .resetfn = gt_hyp_timer_reset, 5729 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5730 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5731 .type = ARM_CP_IO, 5732 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5733 .access = PL2_RW, 5734 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5735 .resetvalue = 0, 5736 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5737 #endif 5738 /* The only field of MDCR_EL2 that has a defined architectural reset value 5739 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5740 */ 5741 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5742 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5743 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5744 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5745 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5746 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5747 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5748 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5749 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5750 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5751 .access = PL2_RW, 5752 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5753 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5754 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5755 .access = PL2_RW, 5756 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5757 REGINFO_SENTINEL 5758 }; 5759 5760 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5761 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5762 .type = ARM_CP_ALIAS | ARM_CP_IO, 5763 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5764 .access = PL2_RW, 5765 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5766 .writefn = hcr_writehigh }, 5767 REGINFO_SENTINEL 5768 }; 5769 5770 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5771 bool isread) 5772 { 5773 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5774 return CP_ACCESS_OK; 5775 } 5776 return CP_ACCESS_TRAP_UNCATEGORIZED; 5777 } 5778 5779 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5780 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5781 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5782 .access = PL2_RW, .accessfn = sel2_access, 5783 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5784 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5785 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5786 .access = PL2_RW, .accessfn = sel2_access, 5787 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5788 REGINFO_SENTINEL 5789 }; 5790 5791 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5792 bool isread) 5793 { 5794 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5795 * At Secure EL1 it traps to EL3 or EL2. 5796 */ 5797 if (arm_current_el(env) == 3) { 5798 return CP_ACCESS_OK; 5799 } 5800 if (arm_is_secure_below_el3(env)) { 5801 if (env->cp15.scr_el3 & SCR_EEL2) { 5802 return CP_ACCESS_TRAP_EL2; 5803 } 5804 return CP_ACCESS_TRAP_EL3; 5805 } 5806 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5807 if (isread) { 5808 return CP_ACCESS_OK; 5809 } 5810 return CP_ACCESS_TRAP_UNCATEGORIZED; 5811 } 5812 5813 static const ARMCPRegInfo el3_cp_reginfo[] = { 5814 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5815 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5816 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5817 .resetfn = scr_reset, .writefn = scr_write }, 5818 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5819 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5820 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5821 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5822 .writefn = scr_write }, 5823 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5824 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5825 .access = PL3_RW, .resetvalue = 0, 5826 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5827 { .name = "SDER", 5828 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5829 .access = PL3_RW, .resetvalue = 0, 5830 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5831 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5832 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5833 .writefn = vbar_write, .resetvalue = 0, 5834 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5835 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5836 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5837 .access = PL3_RW, .resetvalue = 0, 5838 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5839 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5840 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5841 .access = PL3_RW, 5842 /* no .writefn needed as this can't cause an ASID change; 5843 * we must provide a .raw_writefn and .resetfn because we handle 5844 * reset and migration for the AArch32 TTBCR(S), which might be 5845 * using mask and base_mask. 5846 */ 5847 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5848 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5849 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5850 .type = ARM_CP_ALIAS, 5851 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5852 .access = PL3_RW, 5853 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5854 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5855 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5856 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5857 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5858 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5859 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5860 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5861 .type = ARM_CP_ALIAS, 5862 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5863 .access = PL3_RW, 5864 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5865 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5866 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5867 .access = PL3_RW, .writefn = vbar_write, 5868 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5869 .resetvalue = 0 }, 5870 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5871 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5872 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5873 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5874 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5875 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5876 .access = PL3_RW, .resetvalue = 0, 5877 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5878 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5879 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5880 .access = PL3_RW, .type = ARM_CP_CONST, 5881 .resetvalue = 0 }, 5882 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5883 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5884 .access = PL3_RW, .type = ARM_CP_CONST, 5885 .resetvalue = 0 }, 5886 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5887 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5888 .access = PL3_RW, .type = ARM_CP_CONST, 5889 .resetvalue = 0 }, 5890 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5891 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5892 .access = PL3_W, .type = ARM_CP_NO_RAW, 5893 .writefn = tlbi_aa64_alle3is_write }, 5894 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5895 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5896 .access = PL3_W, .type = ARM_CP_NO_RAW, 5897 .writefn = tlbi_aa64_vae3is_write }, 5898 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5899 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5900 .access = PL3_W, .type = ARM_CP_NO_RAW, 5901 .writefn = tlbi_aa64_vae3is_write }, 5902 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5903 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5904 .access = PL3_W, .type = ARM_CP_NO_RAW, 5905 .writefn = tlbi_aa64_alle3_write }, 5906 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5907 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5908 .access = PL3_W, .type = ARM_CP_NO_RAW, 5909 .writefn = tlbi_aa64_vae3_write }, 5910 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5911 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5912 .access = PL3_W, .type = ARM_CP_NO_RAW, 5913 .writefn = tlbi_aa64_vae3_write }, 5914 REGINFO_SENTINEL 5915 }; 5916 5917 #ifndef CONFIG_USER_ONLY 5918 /* Test if system register redirection is to occur in the current state. */ 5919 static bool redirect_for_e2h(CPUARMState *env) 5920 { 5921 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5922 } 5923 5924 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5925 { 5926 CPReadFn *readfn; 5927 5928 if (redirect_for_e2h(env)) { 5929 /* Switch to the saved EL2 version of the register. */ 5930 ri = ri->opaque; 5931 readfn = ri->readfn; 5932 } else { 5933 readfn = ri->orig_readfn; 5934 } 5935 if (readfn == NULL) { 5936 readfn = raw_read; 5937 } 5938 return readfn(env, ri); 5939 } 5940 5941 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5942 uint64_t value) 5943 { 5944 CPWriteFn *writefn; 5945 5946 if (redirect_for_e2h(env)) { 5947 /* Switch to the saved EL2 version of the register. */ 5948 ri = ri->opaque; 5949 writefn = ri->writefn; 5950 } else { 5951 writefn = ri->orig_writefn; 5952 } 5953 if (writefn == NULL) { 5954 writefn = raw_write; 5955 } 5956 writefn(env, ri, value); 5957 } 5958 5959 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5960 { 5961 struct E2HAlias { 5962 uint32_t src_key, dst_key, new_key; 5963 const char *src_name, *dst_name, *new_name; 5964 bool (*feature)(const ARMISARegisters *id); 5965 }; 5966 5967 #define K(op0, op1, crn, crm, op2) \ 5968 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5969 5970 static const struct E2HAlias aliases[] = { 5971 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5972 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5973 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5974 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5975 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5976 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5977 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5978 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5979 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5980 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5981 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5982 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5983 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5984 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5985 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5986 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5987 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5988 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5989 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5990 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5991 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5992 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5993 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5994 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5995 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5996 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5997 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5998 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5999 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6000 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6001 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6002 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6003 6004 /* 6005 * Note that redirection of ZCR is mentioned in the description 6006 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6007 * not in the summary table. 6008 */ 6009 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6010 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6011 6012 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6013 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6014 6015 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6016 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6017 }; 6018 #undef K 6019 6020 size_t i; 6021 6022 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6023 const struct E2HAlias *a = &aliases[i]; 6024 ARMCPRegInfo *src_reg, *dst_reg; 6025 6026 if (a->feature && !a->feature(&cpu->isar)) { 6027 continue; 6028 } 6029 6030 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 6031 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 6032 g_assert(src_reg != NULL); 6033 g_assert(dst_reg != NULL); 6034 6035 /* Cross-compare names to detect typos in the keys. */ 6036 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6037 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6038 6039 /* None of the core system registers use opaque; we will. */ 6040 g_assert(src_reg->opaque == NULL); 6041 6042 /* Create alias before redirection so we dup the right data. */ 6043 if (a->new_key) { 6044 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6045 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 6046 bool ok; 6047 6048 new_reg->name = a->new_name; 6049 new_reg->type |= ARM_CP_ALIAS; 6050 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6051 new_reg->access &= PL2_RW | PL3_RW; 6052 6053 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 6054 g_assert(ok); 6055 } 6056 6057 src_reg->opaque = dst_reg; 6058 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6059 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6060 if (!src_reg->raw_readfn) { 6061 src_reg->raw_readfn = raw_read; 6062 } 6063 if (!src_reg->raw_writefn) { 6064 src_reg->raw_writefn = raw_write; 6065 } 6066 src_reg->readfn = el2_e2h_read; 6067 src_reg->writefn = el2_e2h_write; 6068 } 6069 } 6070 #endif 6071 6072 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6073 bool isread) 6074 { 6075 int cur_el = arm_current_el(env); 6076 6077 if (cur_el < 2) { 6078 uint64_t hcr = arm_hcr_el2_eff(env); 6079 6080 if (cur_el == 0) { 6081 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6082 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6083 return CP_ACCESS_TRAP_EL2; 6084 } 6085 } else { 6086 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6087 return CP_ACCESS_TRAP; 6088 } 6089 if (hcr & HCR_TID2) { 6090 return CP_ACCESS_TRAP_EL2; 6091 } 6092 } 6093 } else if (hcr & HCR_TID2) { 6094 return CP_ACCESS_TRAP_EL2; 6095 } 6096 } 6097 6098 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6099 return CP_ACCESS_TRAP_EL2; 6100 } 6101 6102 return CP_ACCESS_OK; 6103 } 6104 6105 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6106 uint64_t value) 6107 { 6108 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6109 * read via a bit in OSLSR_EL1. 6110 */ 6111 int oslock; 6112 6113 if (ri->state == ARM_CP_STATE_AA32) { 6114 oslock = (value == 0xC5ACCE55); 6115 } else { 6116 oslock = value & 1; 6117 } 6118 6119 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6120 } 6121 6122 static const ARMCPRegInfo debug_cp_reginfo[] = { 6123 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6124 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6125 * unlike DBGDRAR it is never accessible from EL0. 6126 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6127 * accessor. 6128 */ 6129 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6130 .access = PL0_R, .accessfn = access_tdra, 6131 .type = ARM_CP_CONST, .resetvalue = 0 }, 6132 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6133 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6134 .access = PL1_R, .accessfn = access_tdra, 6135 .type = ARM_CP_CONST, .resetvalue = 0 }, 6136 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6137 .access = PL0_R, .accessfn = access_tdra, 6138 .type = ARM_CP_CONST, .resetvalue = 0 }, 6139 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6140 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6141 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6142 .access = PL1_RW, .accessfn = access_tda, 6143 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6144 .resetvalue = 0 }, 6145 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6146 * We don't implement the configurable EL0 access. 6147 */ 6148 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6149 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6150 .type = ARM_CP_ALIAS, 6151 .access = PL1_R, .accessfn = access_tda, 6152 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6153 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6154 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6155 .access = PL1_W, .type = ARM_CP_NO_RAW, 6156 .accessfn = access_tdosa, 6157 .writefn = oslar_write }, 6158 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6159 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6160 .access = PL1_R, .resetvalue = 10, 6161 .accessfn = access_tdosa, 6162 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6163 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6164 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6165 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6166 .access = PL1_RW, .accessfn = access_tdosa, 6167 .type = ARM_CP_NOP }, 6168 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6169 * implement vector catch debug events yet. 6170 */ 6171 { .name = "DBGVCR", 6172 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6173 .access = PL1_RW, .accessfn = access_tda, 6174 .type = ARM_CP_NOP }, 6175 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6176 * to save and restore a 32-bit guest's DBGVCR) 6177 */ 6178 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6179 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6180 .access = PL2_RW, .accessfn = access_tda, 6181 .type = ARM_CP_NOP }, 6182 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6183 * Channel but Linux may try to access this register. The 32-bit 6184 * alias is DBGDCCINT. 6185 */ 6186 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6187 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6188 .access = PL1_RW, .accessfn = access_tda, 6189 .type = ARM_CP_NOP }, 6190 REGINFO_SENTINEL 6191 }; 6192 6193 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6194 /* 64 bit access versions of the (dummy) debug registers */ 6195 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6196 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6197 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6198 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6199 REGINFO_SENTINEL 6200 }; 6201 6202 /* Return the exception level to which exceptions should be taken 6203 * via SVEAccessTrap. If an exception should be routed through 6204 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6205 * take care of raising that exception. 6206 * C.f. the ARM pseudocode function CheckSVEEnabled. 6207 */ 6208 int sve_exception_el(CPUARMState *env, int el) 6209 { 6210 #ifndef CONFIG_USER_ONLY 6211 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6212 6213 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6214 bool disabled = false; 6215 6216 /* The CPACR.ZEN controls traps to EL1: 6217 * 0, 2 : trap EL0 and EL1 accesses 6218 * 1 : trap only EL0 accesses 6219 * 3 : trap no accesses 6220 */ 6221 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6222 disabled = true; 6223 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6224 disabled = el == 0; 6225 } 6226 if (disabled) { 6227 /* route_to_el2 */ 6228 return hcr_el2 & HCR_TGE ? 2 : 1; 6229 } 6230 6231 /* Check CPACR.FPEN. */ 6232 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6233 disabled = true; 6234 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6235 disabled = el == 0; 6236 } 6237 if (disabled) { 6238 return 0; 6239 } 6240 } 6241 6242 /* CPTR_EL2. Since TZ and TFP are positive, 6243 * they will be zero when EL2 is not present. 6244 */ 6245 if (el <= 2 && arm_is_el2_enabled(env)) { 6246 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6247 return 2; 6248 } 6249 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6250 return 0; 6251 } 6252 } 6253 6254 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6255 if (arm_feature(env, ARM_FEATURE_EL3) 6256 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6257 return 3; 6258 } 6259 #endif 6260 return 0; 6261 } 6262 6263 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6264 { 6265 uint32_t end_len; 6266 6267 end_len = start_len &= 0xf; 6268 if (!test_bit(start_len, cpu->sve_vq_map)) { 6269 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6270 assert(end_len < start_len); 6271 } 6272 return end_len; 6273 } 6274 6275 /* 6276 * Given that SVE is enabled, return the vector length for EL. 6277 */ 6278 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6279 { 6280 ARMCPU *cpu = env_archcpu(env); 6281 uint32_t zcr_len = cpu->sve_max_vq - 1; 6282 6283 if (el <= 1) { 6284 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6285 } 6286 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6287 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6288 } 6289 if (arm_feature(env, ARM_FEATURE_EL3)) { 6290 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6291 } 6292 6293 return sve_zcr_get_valid_len(cpu, zcr_len); 6294 } 6295 6296 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6297 uint64_t value) 6298 { 6299 int cur_el = arm_current_el(env); 6300 int old_len = sve_zcr_len_for_el(env, cur_el); 6301 int new_len; 6302 6303 /* Bits other than [3:0] are RAZ/WI. */ 6304 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6305 raw_write(env, ri, value & 0xf); 6306 6307 /* 6308 * Because we arrived here, we know both FP and SVE are enabled; 6309 * otherwise we would have trapped access to the ZCR_ELn register. 6310 */ 6311 new_len = sve_zcr_len_for_el(env, cur_el); 6312 if (new_len < old_len) { 6313 aarch64_sve_narrow_vq(env, new_len + 1); 6314 } 6315 } 6316 6317 static const ARMCPRegInfo zcr_el1_reginfo = { 6318 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6319 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6320 .access = PL1_RW, .type = ARM_CP_SVE, 6321 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6322 .writefn = zcr_write, .raw_writefn = raw_write 6323 }; 6324 6325 static const ARMCPRegInfo zcr_el2_reginfo = { 6326 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6327 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6328 .access = PL2_RW, .type = ARM_CP_SVE, 6329 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6330 .writefn = zcr_write, .raw_writefn = raw_write 6331 }; 6332 6333 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6334 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6335 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6336 .access = PL2_RW, .type = ARM_CP_SVE, 6337 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6338 }; 6339 6340 static const ARMCPRegInfo zcr_el3_reginfo = { 6341 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6342 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6343 .access = PL3_RW, .type = ARM_CP_SVE, 6344 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6345 .writefn = zcr_write, .raw_writefn = raw_write 6346 }; 6347 6348 void hw_watchpoint_update(ARMCPU *cpu, int n) 6349 { 6350 CPUARMState *env = &cpu->env; 6351 vaddr len = 0; 6352 vaddr wvr = env->cp15.dbgwvr[n]; 6353 uint64_t wcr = env->cp15.dbgwcr[n]; 6354 int mask; 6355 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6356 6357 if (env->cpu_watchpoint[n]) { 6358 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6359 env->cpu_watchpoint[n] = NULL; 6360 } 6361 6362 if (!extract64(wcr, 0, 1)) { 6363 /* E bit clear : watchpoint disabled */ 6364 return; 6365 } 6366 6367 switch (extract64(wcr, 3, 2)) { 6368 case 0: 6369 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6370 return; 6371 case 1: 6372 flags |= BP_MEM_READ; 6373 break; 6374 case 2: 6375 flags |= BP_MEM_WRITE; 6376 break; 6377 case 3: 6378 flags |= BP_MEM_ACCESS; 6379 break; 6380 } 6381 6382 /* Attempts to use both MASK and BAS fields simultaneously are 6383 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6384 * thus generating a watchpoint for every byte in the masked region. 6385 */ 6386 mask = extract64(wcr, 24, 4); 6387 if (mask == 1 || mask == 2) { 6388 /* Reserved values of MASK; we must act as if the mask value was 6389 * some non-reserved value, or as if the watchpoint were disabled. 6390 * We choose the latter. 6391 */ 6392 return; 6393 } else if (mask) { 6394 /* Watchpoint covers an aligned area up to 2GB in size */ 6395 len = 1ULL << mask; 6396 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6397 * whether the watchpoint fires when the unmasked bits match; we opt 6398 * to generate the exceptions. 6399 */ 6400 wvr &= ~(len - 1); 6401 } else { 6402 /* Watchpoint covers bytes defined by the byte address select bits */ 6403 int bas = extract64(wcr, 5, 8); 6404 int basstart; 6405 6406 if (extract64(wvr, 2, 1)) { 6407 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6408 * ignored, and BAS[3:0] define which bytes to watch. 6409 */ 6410 bas &= 0xf; 6411 } 6412 6413 if (bas == 0) { 6414 /* This must act as if the watchpoint is disabled */ 6415 return; 6416 } 6417 6418 /* The BAS bits are supposed to be programmed to indicate a contiguous 6419 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6420 * we fire for each byte in the word/doubleword addressed by the WVR. 6421 * We choose to ignore any non-zero bits after the first range of 1s. 6422 */ 6423 basstart = ctz32(bas); 6424 len = cto32(bas >> basstart); 6425 wvr += basstart; 6426 } 6427 6428 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6429 &env->cpu_watchpoint[n]); 6430 } 6431 6432 void hw_watchpoint_update_all(ARMCPU *cpu) 6433 { 6434 int i; 6435 CPUARMState *env = &cpu->env; 6436 6437 /* Completely clear out existing QEMU watchpoints and our array, to 6438 * avoid possible stale entries following migration load. 6439 */ 6440 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6441 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6442 6443 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6444 hw_watchpoint_update(cpu, i); 6445 } 6446 } 6447 6448 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6449 uint64_t value) 6450 { 6451 ARMCPU *cpu = env_archcpu(env); 6452 int i = ri->crm; 6453 6454 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6455 * register reads and behaves as if values written are sign extended. 6456 * Bits [1:0] are RES0. 6457 */ 6458 value = sextract64(value, 0, 49) & ~3ULL; 6459 6460 raw_write(env, ri, value); 6461 hw_watchpoint_update(cpu, i); 6462 } 6463 6464 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6465 uint64_t value) 6466 { 6467 ARMCPU *cpu = env_archcpu(env); 6468 int i = ri->crm; 6469 6470 raw_write(env, ri, value); 6471 hw_watchpoint_update(cpu, i); 6472 } 6473 6474 void hw_breakpoint_update(ARMCPU *cpu, int n) 6475 { 6476 CPUARMState *env = &cpu->env; 6477 uint64_t bvr = env->cp15.dbgbvr[n]; 6478 uint64_t bcr = env->cp15.dbgbcr[n]; 6479 vaddr addr; 6480 int bt; 6481 int flags = BP_CPU; 6482 6483 if (env->cpu_breakpoint[n]) { 6484 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6485 env->cpu_breakpoint[n] = NULL; 6486 } 6487 6488 if (!extract64(bcr, 0, 1)) { 6489 /* E bit clear : watchpoint disabled */ 6490 return; 6491 } 6492 6493 bt = extract64(bcr, 20, 4); 6494 6495 switch (bt) { 6496 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6497 case 5: /* linked address mismatch (reserved if AArch64) */ 6498 qemu_log_mask(LOG_UNIMP, 6499 "arm: address mismatch breakpoint types not implemented\n"); 6500 return; 6501 case 0: /* unlinked address match */ 6502 case 1: /* linked address match */ 6503 { 6504 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6505 * we behave as if the register was sign extended. Bits [1:0] are 6506 * RES0. The BAS field is used to allow setting breakpoints on 16 6507 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6508 * a bp will fire if the addresses covered by the bp and the addresses 6509 * covered by the insn overlap but the insn doesn't start at the 6510 * start of the bp address range. We choose to require the insn and 6511 * the bp to have the same address. The constraints on writing to 6512 * BAS enforced in dbgbcr_write mean we have only four cases: 6513 * 0b0000 => no breakpoint 6514 * 0b0011 => breakpoint on addr 6515 * 0b1100 => breakpoint on addr + 2 6516 * 0b1111 => breakpoint on addr 6517 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6518 */ 6519 int bas = extract64(bcr, 5, 4); 6520 addr = sextract64(bvr, 0, 49) & ~3ULL; 6521 if (bas == 0) { 6522 return; 6523 } 6524 if (bas == 0xc) { 6525 addr += 2; 6526 } 6527 break; 6528 } 6529 case 2: /* unlinked context ID match */ 6530 case 8: /* unlinked VMID match (reserved if no EL2) */ 6531 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6532 qemu_log_mask(LOG_UNIMP, 6533 "arm: unlinked context breakpoint types not implemented\n"); 6534 return; 6535 case 9: /* linked VMID match (reserved if no EL2) */ 6536 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6537 case 3: /* linked context ID match */ 6538 default: 6539 /* We must generate no events for Linked context matches (unless 6540 * they are linked to by some other bp/wp, which is handled in 6541 * updates for the linking bp/wp). We choose to also generate no events 6542 * for reserved values. 6543 */ 6544 return; 6545 } 6546 6547 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6548 } 6549 6550 void hw_breakpoint_update_all(ARMCPU *cpu) 6551 { 6552 int i; 6553 CPUARMState *env = &cpu->env; 6554 6555 /* Completely clear out existing QEMU breakpoints and our array, to 6556 * avoid possible stale entries following migration load. 6557 */ 6558 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6559 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6560 6561 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6562 hw_breakpoint_update(cpu, i); 6563 } 6564 } 6565 6566 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6567 uint64_t value) 6568 { 6569 ARMCPU *cpu = env_archcpu(env); 6570 int i = ri->crm; 6571 6572 raw_write(env, ri, value); 6573 hw_breakpoint_update(cpu, i); 6574 } 6575 6576 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6577 uint64_t value) 6578 { 6579 ARMCPU *cpu = env_archcpu(env); 6580 int i = ri->crm; 6581 6582 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6583 * copy of BAS[0]. 6584 */ 6585 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6586 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6587 6588 raw_write(env, ri, value); 6589 hw_breakpoint_update(cpu, i); 6590 } 6591 6592 static void define_debug_regs(ARMCPU *cpu) 6593 { 6594 /* Define v7 and v8 architectural debug registers. 6595 * These are just dummy implementations for now. 6596 */ 6597 int i; 6598 int wrps, brps, ctx_cmps; 6599 6600 /* 6601 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6602 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6603 * the register must not exist for this cpu. 6604 */ 6605 if (cpu->isar.dbgdidr != 0) { 6606 ARMCPRegInfo dbgdidr = { 6607 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6608 .opc1 = 0, .opc2 = 0, 6609 .access = PL0_R, .accessfn = access_tda, 6610 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6611 }; 6612 define_one_arm_cp_reg(cpu, &dbgdidr); 6613 } 6614 6615 /* Note that all these register fields hold "number of Xs minus 1". */ 6616 brps = arm_num_brps(cpu); 6617 wrps = arm_num_wrps(cpu); 6618 ctx_cmps = arm_num_ctx_cmps(cpu); 6619 6620 assert(ctx_cmps <= brps); 6621 6622 define_arm_cp_regs(cpu, debug_cp_reginfo); 6623 6624 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6625 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6626 } 6627 6628 for (i = 0; i < brps; i++) { 6629 ARMCPRegInfo dbgregs[] = { 6630 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6631 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6632 .access = PL1_RW, .accessfn = access_tda, 6633 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6634 .writefn = dbgbvr_write, .raw_writefn = raw_write 6635 }, 6636 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6637 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6638 .access = PL1_RW, .accessfn = access_tda, 6639 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6640 .writefn = dbgbcr_write, .raw_writefn = raw_write 6641 }, 6642 REGINFO_SENTINEL 6643 }; 6644 define_arm_cp_regs(cpu, dbgregs); 6645 } 6646 6647 for (i = 0; i < wrps; i++) { 6648 ARMCPRegInfo dbgregs[] = { 6649 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6650 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6651 .access = PL1_RW, .accessfn = access_tda, 6652 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6653 .writefn = dbgwvr_write, .raw_writefn = raw_write 6654 }, 6655 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6656 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6657 .access = PL1_RW, .accessfn = access_tda, 6658 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6659 .writefn = dbgwcr_write, .raw_writefn = raw_write 6660 }, 6661 REGINFO_SENTINEL 6662 }; 6663 define_arm_cp_regs(cpu, dbgregs); 6664 } 6665 } 6666 6667 static void define_pmu_regs(ARMCPU *cpu) 6668 { 6669 /* 6670 * v7 performance monitor control register: same implementor 6671 * field as main ID register, and we implement four counters in 6672 * addition to the cycle count register. 6673 */ 6674 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6675 ARMCPRegInfo pmcr = { 6676 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6677 .access = PL0_RW, 6678 .type = ARM_CP_IO | ARM_CP_ALIAS, 6679 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6680 .accessfn = pmreg_access, .writefn = pmcr_write, 6681 .raw_writefn = raw_write, 6682 }; 6683 ARMCPRegInfo pmcr64 = { 6684 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6685 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6686 .access = PL0_RW, .accessfn = pmreg_access, 6687 .type = ARM_CP_IO, 6688 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6689 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6690 PMCRLC, 6691 .writefn = pmcr_write, .raw_writefn = raw_write, 6692 }; 6693 define_one_arm_cp_reg(cpu, &pmcr); 6694 define_one_arm_cp_reg(cpu, &pmcr64); 6695 for (i = 0; i < pmcrn; i++) { 6696 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6697 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6698 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6699 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6700 ARMCPRegInfo pmev_regs[] = { 6701 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6702 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6703 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6704 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6705 .accessfn = pmreg_access }, 6706 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6707 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6708 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6709 .type = ARM_CP_IO, 6710 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6711 .raw_readfn = pmevcntr_rawread, 6712 .raw_writefn = pmevcntr_rawwrite }, 6713 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6714 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6715 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6716 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6717 .accessfn = pmreg_access }, 6718 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6719 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6720 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6721 .type = ARM_CP_IO, 6722 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6723 .raw_writefn = pmevtyper_rawwrite }, 6724 REGINFO_SENTINEL 6725 }; 6726 define_arm_cp_regs(cpu, pmev_regs); 6727 g_free(pmevcntr_name); 6728 g_free(pmevcntr_el0_name); 6729 g_free(pmevtyper_name); 6730 g_free(pmevtyper_el0_name); 6731 } 6732 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6733 ARMCPRegInfo v81_pmu_regs[] = { 6734 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6735 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6736 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6737 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6738 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6739 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6740 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6741 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6742 REGINFO_SENTINEL 6743 }; 6744 define_arm_cp_regs(cpu, v81_pmu_regs); 6745 } 6746 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6747 static const ARMCPRegInfo v84_pmmir = { 6748 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6749 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6750 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6751 .resetvalue = 0 6752 }; 6753 define_one_arm_cp_reg(cpu, &v84_pmmir); 6754 } 6755 } 6756 6757 /* We don't know until after realize whether there's a GICv3 6758 * attached, and that is what registers the gicv3 sysregs. 6759 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6760 * at runtime. 6761 */ 6762 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6763 { 6764 ARMCPU *cpu = env_archcpu(env); 6765 uint64_t pfr1 = cpu->isar.id_pfr1; 6766 6767 if (env->gicv3state) { 6768 pfr1 |= 1 << 28; 6769 } 6770 return pfr1; 6771 } 6772 6773 #ifndef CONFIG_USER_ONLY 6774 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6775 { 6776 ARMCPU *cpu = env_archcpu(env); 6777 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6778 6779 if (env->gicv3state) { 6780 pfr0 |= 1 << 24; 6781 } 6782 return pfr0; 6783 } 6784 #endif 6785 6786 /* Shared logic between LORID and the rest of the LOR* registers. 6787 * Secure state exclusion has already been dealt with. 6788 */ 6789 static CPAccessResult access_lor_ns(CPUARMState *env, 6790 const ARMCPRegInfo *ri, bool isread) 6791 { 6792 int el = arm_current_el(env); 6793 6794 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6795 return CP_ACCESS_TRAP_EL2; 6796 } 6797 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6798 return CP_ACCESS_TRAP_EL3; 6799 } 6800 return CP_ACCESS_OK; 6801 } 6802 6803 static CPAccessResult access_lor_other(CPUARMState *env, 6804 const ARMCPRegInfo *ri, bool isread) 6805 { 6806 if (arm_is_secure_below_el3(env)) { 6807 /* Access denied in secure mode. */ 6808 return CP_ACCESS_TRAP; 6809 } 6810 return access_lor_ns(env, ri, isread); 6811 } 6812 6813 /* 6814 * A trivial implementation of ARMv8.1-LOR leaves all of these 6815 * registers fixed at 0, which indicates that there are zero 6816 * supported Limited Ordering regions. 6817 */ 6818 static const ARMCPRegInfo lor_reginfo[] = { 6819 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6820 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6821 .access = PL1_RW, .accessfn = access_lor_other, 6822 .type = ARM_CP_CONST, .resetvalue = 0 }, 6823 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6824 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6825 .access = PL1_RW, .accessfn = access_lor_other, 6826 .type = ARM_CP_CONST, .resetvalue = 0 }, 6827 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6828 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6829 .access = PL1_RW, .accessfn = access_lor_other, 6830 .type = ARM_CP_CONST, .resetvalue = 0 }, 6831 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6832 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6833 .access = PL1_RW, .accessfn = access_lor_other, 6834 .type = ARM_CP_CONST, .resetvalue = 0 }, 6835 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6836 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6837 .access = PL1_R, .accessfn = access_lor_ns, 6838 .type = ARM_CP_CONST, .resetvalue = 0 }, 6839 REGINFO_SENTINEL 6840 }; 6841 6842 #ifdef TARGET_AARCH64 6843 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6844 bool isread) 6845 { 6846 int el = arm_current_el(env); 6847 6848 if (el < 2 && 6849 arm_feature(env, ARM_FEATURE_EL2) && 6850 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6851 return CP_ACCESS_TRAP_EL2; 6852 } 6853 if (el < 3 && 6854 arm_feature(env, ARM_FEATURE_EL3) && 6855 !(env->cp15.scr_el3 & SCR_APK)) { 6856 return CP_ACCESS_TRAP_EL3; 6857 } 6858 return CP_ACCESS_OK; 6859 } 6860 6861 static const ARMCPRegInfo pauth_reginfo[] = { 6862 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6863 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6864 .access = PL1_RW, .accessfn = access_pauth, 6865 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6866 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6867 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6868 .access = PL1_RW, .accessfn = access_pauth, 6869 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6870 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6871 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6872 .access = PL1_RW, .accessfn = access_pauth, 6873 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6874 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6875 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6876 .access = PL1_RW, .accessfn = access_pauth, 6877 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6878 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6879 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6880 .access = PL1_RW, .accessfn = access_pauth, 6881 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6882 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6883 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6884 .access = PL1_RW, .accessfn = access_pauth, 6885 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6886 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6887 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6888 .access = PL1_RW, .accessfn = access_pauth, 6889 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6890 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6891 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6892 .access = PL1_RW, .accessfn = access_pauth, 6893 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6894 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6895 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6896 .access = PL1_RW, .accessfn = access_pauth, 6897 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6898 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6899 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6900 .access = PL1_RW, .accessfn = access_pauth, 6901 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6902 REGINFO_SENTINEL 6903 }; 6904 6905 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6906 { 6907 Error *err = NULL; 6908 uint64_t ret; 6909 6910 /* Success sets NZCV = 0000. */ 6911 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6912 6913 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6914 /* 6915 * ??? Failed, for unknown reasons in the crypto subsystem. 6916 * The best we can do is log the reason and return the 6917 * timed-out indication to the guest. There is no reason 6918 * we know to expect this failure to be transitory, so the 6919 * guest may well hang retrying the operation. 6920 */ 6921 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6922 ri->name, error_get_pretty(err)); 6923 error_free(err); 6924 6925 env->ZF = 0; /* NZCF = 0100 */ 6926 return 0; 6927 } 6928 return ret; 6929 } 6930 6931 /* We do not support re-seeding, so the two registers operate the same. */ 6932 static const ARMCPRegInfo rndr_reginfo[] = { 6933 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6934 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6935 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6936 .access = PL0_R, .readfn = rndr_readfn }, 6937 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6938 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6939 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6940 .access = PL0_R, .readfn = rndr_readfn }, 6941 REGINFO_SENTINEL 6942 }; 6943 6944 #ifndef CONFIG_USER_ONLY 6945 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6946 uint64_t value) 6947 { 6948 ARMCPU *cpu = env_archcpu(env); 6949 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6950 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6951 uint64_t vaddr_in = (uint64_t) value; 6952 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6953 void *haddr; 6954 int mem_idx = cpu_mmu_index(env, false); 6955 6956 /* This won't be crossing page boundaries */ 6957 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6958 if (haddr) { 6959 6960 ram_addr_t offset; 6961 MemoryRegion *mr; 6962 6963 /* RCU lock is already being held */ 6964 mr = memory_region_from_host(haddr, &offset); 6965 6966 if (mr) { 6967 memory_region_writeback(mr, offset, dline_size); 6968 } 6969 } 6970 } 6971 6972 static const ARMCPRegInfo dcpop_reg[] = { 6973 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6974 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6975 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6976 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6977 REGINFO_SENTINEL 6978 }; 6979 6980 static const ARMCPRegInfo dcpodp_reg[] = { 6981 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6982 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6983 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6984 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6985 REGINFO_SENTINEL 6986 }; 6987 #endif /*CONFIG_USER_ONLY*/ 6988 6989 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6990 bool isread) 6991 { 6992 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6993 return CP_ACCESS_TRAP_EL2; 6994 } 6995 6996 return CP_ACCESS_OK; 6997 } 6998 6999 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7000 bool isread) 7001 { 7002 int el = arm_current_el(env); 7003 7004 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7005 uint64_t hcr = arm_hcr_el2_eff(env); 7006 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7007 return CP_ACCESS_TRAP_EL2; 7008 } 7009 } 7010 if (el < 3 && 7011 arm_feature(env, ARM_FEATURE_EL3) && 7012 !(env->cp15.scr_el3 & SCR_ATA)) { 7013 return CP_ACCESS_TRAP_EL3; 7014 } 7015 return CP_ACCESS_OK; 7016 } 7017 7018 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7019 { 7020 return env->pstate & PSTATE_TCO; 7021 } 7022 7023 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7024 { 7025 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7026 } 7027 7028 static const ARMCPRegInfo mte_reginfo[] = { 7029 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7030 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7031 .access = PL1_RW, .accessfn = access_mte, 7032 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7033 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7034 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7035 .access = PL1_RW, .accessfn = access_mte, 7036 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7037 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7038 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7039 .access = PL2_RW, .accessfn = access_mte, 7040 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7041 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7042 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7043 .access = PL3_RW, 7044 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7045 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7046 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7047 .access = PL1_RW, .accessfn = access_mte, 7048 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7049 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7051 .access = PL1_RW, .accessfn = access_mte, 7052 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7053 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7055 .access = PL1_R, .accessfn = access_aa64_tid5, 7056 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7057 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7058 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7059 .type = ARM_CP_NO_RAW, 7060 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7061 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7062 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7063 .type = ARM_CP_NOP, .access = PL1_W, 7064 .accessfn = aa64_cacheop_poc_access }, 7065 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7066 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7067 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7068 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7069 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7070 .type = ARM_CP_NOP, .access = PL1_W, 7071 .accessfn = aa64_cacheop_poc_access }, 7072 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7073 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7074 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7075 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7077 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7078 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7079 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7080 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7081 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7082 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7083 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7084 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7085 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7086 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7087 REGINFO_SENTINEL 7088 }; 7089 7090 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7091 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7092 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7093 .type = ARM_CP_CONST, .access = PL0_RW, }, 7094 REGINFO_SENTINEL 7095 }; 7096 7097 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7098 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7099 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7100 .type = ARM_CP_NOP, .access = PL0_W, 7101 .accessfn = aa64_cacheop_poc_access }, 7102 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7103 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7104 .type = ARM_CP_NOP, .access = PL0_W, 7105 .accessfn = aa64_cacheop_poc_access }, 7106 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7107 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7108 .type = ARM_CP_NOP, .access = PL0_W, 7109 .accessfn = aa64_cacheop_poc_access }, 7110 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7111 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7112 .type = ARM_CP_NOP, .access = PL0_W, 7113 .accessfn = aa64_cacheop_poc_access }, 7114 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7115 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7116 .type = ARM_CP_NOP, .access = PL0_W, 7117 .accessfn = aa64_cacheop_poc_access }, 7118 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7119 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7120 .type = ARM_CP_NOP, .access = PL0_W, 7121 .accessfn = aa64_cacheop_poc_access }, 7122 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7123 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7124 .type = ARM_CP_NOP, .access = PL0_W, 7125 .accessfn = aa64_cacheop_poc_access }, 7126 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7127 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7128 .type = ARM_CP_NOP, .access = PL0_W, 7129 .accessfn = aa64_cacheop_poc_access }, 7130 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7131 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7132 .access = PL0_W, .type = ARM_CP_DC_GVA, 7133 #ifndef CONFIG_USER_ONLY 7134 /* Avoid overhead of an access check that always passes in user-mode */ 7135 .accessfn = aa64_zva_access, 7136 #endif 7137 }, 7138 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7139 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7140 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7141 #ifndef CONFIG_USER_ONLY 7142 /* Avoid overhead of an access check that always passes in user-mode */ 7143 .accessfn = aa64_zva_access, 7144 #endif 7145 }, 7146 REGINFO_SENTINEL 7147 }; 7148 7149 #endif 7150 7151 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7152 bool isread) 7153 { 7154 int el = arm_current_el(env); 7155 7156 if (el == 0) { 7157 uint64_t sctlr = arm_sctlr(env, el); 7158 if (!(sctlr & SCTLR_EnRCTX)) { 7159 return CP_ACCESS_TRAP; 7160 } 7161 } else if (el == 1) { 7162 uint64_t hcr = arm_hcr_el2_eff(env); 7163 if (hcr & HCR_NV) { 7164 return CP_ACCESS_TRAP_EL2; 7165 } 7166 } 7167 return CP_ACCESS_OK; 7168 } 7169 7170 static const ARMCPRegInfo predinv_reginfo[] = { 7171 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7172 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7173 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7174 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7175 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7176 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7177 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7178 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7179 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7180 /* 7181 * Note the AArch32 opcodes have a different OPC1. 7182 */ 7183 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7184 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7185 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7186 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7187 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7188 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7189 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7190 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7191 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7192 REGINFO_SENTINEL 7193 }; 7194 7195 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7196 { 7197 /* Read the high 32 bits of the current CCSIDR */ 7198 return extract64(ccsidr_read(env, ri), 32, 32); 7199 } 7200 7201 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7202 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7203 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7204 .access = PL1_R, 7205 .accessfn = access_aa64_tid2, 7206 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7207 REGINFO_SENTINEL 7208 }; 7209 7210 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7211 bool isread) 7212 { 7213 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7214 return CP_ACCESS_TRAP_EL2; 7215 } 7216 7217 return CP_ACCESS_OK; 7218 } 7219 7220 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7221 bool isread) 7222 { 7223 if (arm_feature(env, ARM_FEATURE_V8)) { 7224 return access_aa64_tid3(env, ri, isread); 7225 } 7226 7227 return CP_ACCESS_OK; 7228 } 7229 7230 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7231 bool isread) 7232 { 7233 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7234 return CP_ACCESS_TRAP_EL2; 7235 } 7236 7237 return CP_ACCESS_OK; 7238 } 7239 7240 static const ARMCPRegInfo jazelle_regs[] = { 7241 { .name = "JIDR", 7242 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7243 .access = PL1_R, .accessfn = access_jazelle, 7244 .type = ARM_CP_CONST, .resetvalue = 0 }, 7245 { .name = "JOSCR", 7246 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7247 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7248 { .name = "JMCR", 7249 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7250 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7251 REGINFO_SENTINEL 7252 }; 7253 7254 static const ARMCPRegInfo vhe_reginfo[] = { 7255 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7256 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7257 .access = PL2_RW, 7258 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7259 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7260 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7261 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7262 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7263 #ifndef CONFIG_USER_ONLY 7264 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7265 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7266 .fieldoffset = 7267 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7268 .type = ARM_CP_IO, .access = PL2_RW, 7269 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7270 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7271 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7272 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7273 .resetfn = gt_hv_timer_reset, 7274 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7275 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7276 .type = ARM_CP_IO, 7277 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7278 .access = PL2_RW, 7279 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7280 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7281 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7282 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7283 .type = ARM_CP_IO | ARM_CP_ALIAS, 7284 .access = PL2_RW, .accessfn = e2h_access, 7285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7286 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7287 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7289 .type = ARM_CP_IO | ARM_CP_ALIAS, 7290 .access = PL2_RW, .accessfn = e2h_access, 7291 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7292 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7293 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7294 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7295 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7296 .access = PL2_RW, .accessfn = e2h_access, 7297 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7298 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7299 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7300 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7301 .access = PL2_RW, .accessfn = e2h_access, 7302 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7303 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7304 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7305 .type = ARM_CP_IO | ARM_CP_ALIAS, 7306 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7307 .access = PL2_RW, .accessfn = e2h_access, 7308 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7309 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7310 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7311 .type = ARM_CP_IO | ARM_CP_ALIAS, 7312 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7313 .access = PL2_RW, .accessfn = e2h_access, 7314 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7315 #endif 7316 REGINFO_SENTINEL 7317 }; 7318 7319 #ifndef CONFIG_USER_ONLY 7320 static const ARMCPRegInfo ats1e1_reginfo[] = { 7321 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7322 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7323 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7324 .writefn = ats_write64 }, 7325 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7326 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7327 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7328 .writefn = ats_write64 }, 7329 REGINFO_SENTINEL 7330 }; 7331 7332 static const ARMCPRegInfo ats1cp_reginfo[] = { 7333 { .name = "ATS1CPRP", 7334 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7335 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7336 .writefn = ats_write }, 7337 { .name = "ATS1CPWP", 7338 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7339 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7340 .writefn = ats_write }, 7341 REGINFO_SENTINEL 7342 }; 7343 #endif 7344 7345 /* 7346 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7347 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7348 * is non-zero, which is never for ARMv7, optionally in ARMv8 7349 * and mandatorily for ARMv8.2 and up. 7350 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7351 * implementation is RAZ/WI we can ignore this detail, as we 7352 * do for ACTLR. 7353 */ 7354 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7355 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7356 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7357 .access = PL1_RW, .accessfn = access_tacr, 7358 .type = ARM_CP_CONST, .resetvalue = 0 }, 7359 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7360 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7361 .access = PL2_RW, .type = ARM_CP_CONST, 7362 .resetvalue = 0 }, 7363 REGINFO_SENTINEL 7364 }; 7365 7366 void register_cp_regs_for_features(ARMCPU *cpu) 7367 { 7368 /* Register all the coprocessor registers based on feature bits */ 7369 CPUARMState *env = &cpu->env; 7370 if (arm_feature(env, ARM_FEATURE_M)) { 7371 /* M profile has no coprocessor registers */ 7372 return; 7373 } 7374 7375 define_arm_cp_regs(cpu, cp_reginfo); 7376 if (!arm_feature(env, ARM_FEATURE_V8)) { 7377 /* Must go early as it is full of wildcards that may be 7378 * overridden by later definitions. 7379 */ 7380 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7381 } 7382 7383 if (arm_feature(env, ARM_FEATURE_V6)) { 7384 /* The ID registers all have impdef reset values */ 7385 ARMCPRegInfo v6_idregs[] = { 7386 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7388 .access = PL1_R, .type = ARM_CP_CONST, 7389 .accessfn = access_aa32_tid3, 7390 .resetvalue = cpu->isar.id_pfr0 }, 7391 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7392 * the value of the GIC field until after we define these regs. 7393 */ 7394 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7395 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7396 .access = PL1_R, .type = ARM_CP_NO_RAW, 7397 .accessfn = access_aa32_tid3, 7398 .readfn = id_pfr1_read, 7399 .writefn = arm_cp_write_ignore }, 7400 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7401 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7402 .access = PL1_R, .type = ARM_CP_CONST, 7403 .accessfn = access_aa32_tid3, 7404 .resetvalue = cpu->isar.id_dfr0 }, 7405 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7406 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7407 .access = PL1_R, .type = ARM_CP_CONST, 7408 .accessfn = access_aa32_tid3, 7409 .resetvalue = cpu->id_afr0 }, 7410 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7411 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7412 .access = PL1_R, .type = ARM_CP_CONST, 7413 .accessfn = access_aa32_tid3, 7414 .resetvalue = cpu->isar.id_mmfr0 }, 7415 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7416 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7417 .access = PL1_R, .type = ARM_CP_CONST, 7418 .accessfn = access_aa32_tid3, 7419 .resetvalue = cpu->isar.id_mmfr1 }, 7420 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7422 .access = PL1_R, .type = ARM_CP_CONST, 7423 .accessfn = access_aa32_tid3, 7424 .resetvalue = cpu->isar.id_mmfr2 }, 7425 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7427 .access = PL1_R, .type = ARM_CP_CONST, 7428 .accessfn = access_aa32_tid3, 7429 .resetvalue = cpu->isar.id_mmfr3 }, 7430 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7432 .access = PL1_R, .type = ARM_CP_CONST, 7433 .accessfn = access_aa32_tid3, 7434 .resetvalue = cpu->isar.id_isar0 }, 7435 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7437 .access = PL1_R, .type = ARM_CP_CONST, 7438 .accessfn = access_aa32_tid3, 7439 .resetvalue = cpu->isar.id_isar1 }, 7440 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7441 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7442 .access = PL1_R, .type = ARM_CP_CONST, 7443 .accessfn = access_aa32_tid3, 7444 .resetvalue = cpu->isar.id_isar2 }, 7445 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7446 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7447 .access = PL1_R, .type = ARM_CP_CONST, 7448 .accessfn = access_aa32_tid3, 7449 .resetvalue = cpu->isar.id_isar3 }, 7450 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7452 .access = PL1_R, .type = ARM_CP_CONST, 7453 .accessfn = access_aa32_tid3, 7454 .resetvalue = cpu->isar.id_isar4 }, 7455 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7457 .access = PL1_R, .type = ARM_CP_CONST, 7458 .accessfn = access_aa32_tid3, 7459 .resetvalue = cpu->isar.id_isar5 }, 7460 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7461 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7462 .access = PL1_R, .type = ARM_CP_CONST, 7463 .accessfn = access_aa32_tid3, 7464 .resetvalue = cpu->isar.id_mmfr4 }, 7465 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7466 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7467 .access = PL1_R, .type = ARM_CP_CONST, 7468 .accessfn = access_aa32_tid3, 7469 .resetvalue = cpu->isar.id_isar6 }, 7470 REGINFO_SENTINEL 7471 }; 7472 define_arm_cp_regs(cpu, v6_idregs); 7473 define_arm_cp_regs(cpu, v6_cp_reginfo); 7474 } else { 7475 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7476 } 7477 if (arm_feature(env, ARM_FEATURE_V6K)) { 7478 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7479 } 7480 if (arm_feature(env, ARM_FEATURE_V7MP) && 7481 !arm_feature(env, ARM_FEATURE_PMSA)) { 7482 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7483 } 7484 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7485 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7486 } 7487 if (arm_feature(env, ARM_FEATURE_V7)) { 7488 ARMCPRegInfo clidr = { 7489 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7490 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7491 .access = PL1_R, .type = ARM_CP_CONST, 7492 .accessfn = access_aa64_tid2, 7493 .resetvalue = cpu->clidr 7494 }; 7495 define_one_arm_cp_reg(cpu, &clidr); 7496 define_arm_cp_regs(cpu, v7_cp_reginfo); 7497 define_debug_regs(cpu); 7498 define_pmu_regs(cpu); 7499 } else { 7500 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7501 } 7502 if (arm_feature(env, ARM_FEATURE_V8)) { 7503 /* AArch64 ID registers, which all have impdef reset values. 7504 * Note that within the ID register ranges the unused slots 7505 * must all RAZ, not UNDEF; future architecture versions may 7506 * define new registers here. 7507 */ 7508 ARMCPRegInfo v8_idregs[] = { 7509 /* 7510 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7511 * emulation because we don't know the right value for the 7512 * GIC field until after we define these regs. 7513 */ 7514 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7516 .access = PL1_R, 7517 #ifdef CONFIG_USER_ONLY 7518 .type = ARM_CP_CONST, 7519 .resetvalue = cpu->isar.id_aa64pfr0 7520 #else 7521 .type = ARM_CP_NO_RAW, 7522 .accessfn = access_aa64_tid3, 7523 .readfn = id_aa64pfr0_read, 7524 .writefn = arm_cp_write_ignore 7525 #endif 7526 }, 7527 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7529 .access = PL1_R, .type = ARM_CP_CONST, 7530 .accessfn = access_aa64_tid3, 7531 .resetvalue = cpu->isar.id_aa64pfr1}, 7532 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7534 .access = PL1_R, .type = ARM_CP_CONST, 7535 .accessfn = access_aa64_tid3, 7536 .resetvalue = 0 }, 7537 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7539 .access = PL1_R, .type = ARM_CP_CONST, 7540 .accessfn = access_aa64_tid3, 7541 .resetvalue = 0 }, 7542 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7544 .access = PL1_R, .type = ARM_CP_CONST, 7545 .accessfn = access_aa64_tid3, 7546 /* At present, only SVEver == 0 is defined anyway. */ 7547 .resetvalue = 0 }, 7548 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7549 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7550 .access = PL1_R, .type = ARM_CP_CONST, 7551 .accessfn = access_aa64_tid3, 7552 .resetvalue = 0 }, 7553 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7554 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7555 .access = PL1_R, .type = ARM_CP_CONST, 7556 .accessfn = access_aa64_tid3, 7557 .resetvalue = 0 }, 7558 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7560 .access = PL1_R, .type = ARM_CP_CONST, 7561 .accessfn = access_aa64_tid3, 7562 .resetvalue = 0 }, 7563 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7564 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7565 .access = PL1_R, .type = ARM_CP_CONST, 7566 .accessfn = access_aa64_tid3, 7567 .resetvalue = cpu->isar.id_aa64dfr0 }, 7568 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7569 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7570 .access = PL1_R, .type = ARM_CP_CONST, 7571 .accessfn = access_aa64_tid3, 7572 .resetvalue = cpu->isar.id_aa64dfr1 }, 7573 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7575 .access = PL1_R, .type = ARM_CP_CONST, 7576 .accessfn = access_aa64_tid3, 7577 .resetvalue = 0 }, 7578 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7580 .access = PL1_R, .type = ARM_CP_CONST, 7581 .accessfn = access_aa64_tid3, 7582 .resetvalue = 0 }, 7583 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7585 .access = PL1_R, .type = ARM_CP_CONST, 7586 .accessfn = access_aa64_tid3, 7587 .resetvalue = cpu->id_aa64afr0 }, 7588 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7590 .access = PL1_R, .type = ARM_CP_CONST, 7591 .accessfn = access_aa64_tid3, 7592 .resetvalue = cpu->id_aa64afr1 }, 7593 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7594 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7595 .access = PL1_R, .type = ARM_CP_CONST, 7596 .accessfn = access_aa64_tid3, 7597 .resetvalue = 0 }, 7598 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7600 .access = PL1_R, .type = ARM_CP_CONST, 7601 .accessfn = access_aa64_tid3, 7602 .resetvalue = 0 }, 7603 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7605 .access = PL1_R, .type = ARM_CP_CONST, 7606 .accessfn = access_aa64_tid3, 7607 .resetvalue = cpu->isar.id_aa64isar0 }, 7608 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7610 .access = PL1_R, .type = ARM_CP_CONST, 7611 .accessfn = access_aa64_tid3, 7612 .resetvalue = cpu->isar.id_aa64isar1 }, 7613 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7614 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7615 .access = PL1_R, .type = ARM_CP_CONST, 7616 .accessfn = access_aa64_tid3, 7617 .resetvalue = 0 }, 7618 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7620 .access = PL1_R, .type = ARM_CP_CONST, 7621 .accessfn = access_aa64_tid3, 7622 .resetvalue = 0 }, 7623 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7625 .access = PL1_R, .type = ARM_CP_CONST, 7626 .accessfn = access_aa64_tid3, 7627 .resetvalue = 0 }, 7628 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7629 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7630 .access = PL1_R, .type = ARM_CP_CONST, 7631 .accessfn = access_aa64_tid3, 7632 .resetvalue = 0 }, 7633 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7634 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7635 .access = PL1_R, .type = ARM_CP_CONST, 7636 .accessfn = access_aa64_tid3, 7637 .resetvalue = 0 }, 7638 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7639 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7640 .access = PL1_R, .type = ARM_CP_CONST, 7641 .accessfn = access_aa64_tid3, 7642 .resetvalue = 0 }, 7643 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7645 .access = PL1_R, .type = ARM_CP_CONST, 7646 .accessfn = access_aa64_tid3, 7647 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7648 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7649 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7650 .access = PL1_R, .type = ARM_CP_CONST, 7651 .accessfn = access_aa64_tid3, 7652 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7653 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7654 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7655 .access = PL1_R, .type = ARM_CP_CONST, 7656 .accessfn = access_aa64_tid3, 7657 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7658 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7659 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7660 .access = PL1_R, .type = ARM_CP_CONST, 7661 .accessfn = access_aa64_tid3, 7662 .resetvalue = 0 }, 7663 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7664 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7665 .access = PL1_R, .type = ARM_CP_CONST, 7666 .accessfn = access_aa64_tid3, 7667 .resetvalue = 0 }, 7668 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7669 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7670 .access = PL1_R, .type = ARM_CP_CONST, 7671 .accessfn = access_aa64_tid3, 7672 .resetvalue = 0 }, 7673 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7674 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7675 .access = PL1_R, .type = ARM_CP_CONST, 7676 .accessfn = access_aa64_tid3, 7677 .resetvalue = 0 }, 7678 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7680 .access = PL1_R, .type = ARM_CP_CONST, 7681 .accessfn = access_aa64_tid3, 7682 .resetvalue = 0 }, 7683 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7684 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7685 .access = PL1_R, .type = ARM_CP_CONST, 7686 .accessfn = access_aa64_tid3, 7687 .resetvalue = cpu->isar.mvfr0 }, 7688 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7689 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7690 .access = PL1_R, .type = ARM_CP_CONST, 7691 .accessfn = access_aa64_tid3, 7692 .resetvalue = cpu->isar.mvfr1 }, 7693 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7694 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7695 .access = PL1_R, .type = ARM_CP_CONST, 7696 .accessfn = access_aa64_tid3, 7697 .resetvalue = cpu->isar.mvfr2 }, 7698 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7700 .access = PL1_R, .type = ARM_CP_CONST, 7701 .accessfn = access_aa64_tid3, 7702 .resetvalue = 0 }, 7703 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7705 .access = PL1_R, .type = ARM_CP_CONST, 7706 .accessfn = access_aa64_tid3, 7707 .resetvalue = cpu->isar.id_pfr2 }, 7708 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7709 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7710 .access = PL1_R, .type = ARM_CP_CONST, 7711 .accessfn = access_aa64_tid3, 7712 .resetvalue = 0 }, 7713 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7715 .access = PL1_R, .type = ARM_CP_CONST, 7716 .accessfn = access_aa64_tid3, 7717 .resetvalue = 0 }, 7718 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7720 .access = PL1_R, .type = ARM_CP_CONST, 7721 .accessfn = access_aa64_tid3, 7722 .resetvalue = 0 }, 7723 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7724 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7725 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7726 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7727 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7728 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7729 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7730 .resetvalue = cpu->pmceid0 }, 7731 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7732 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7733 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7734 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7735 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7736 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7737 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7738 .resetvalue = cpu->pmceid1 }, 7739 REGINFO_SENTINEL 7740 }; 7741 #ifdef CONFIG_USER_ONLY 7742 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7743 { .name = "ID_AA64PFR0_EL1", 7744 .exported_bits = 0x000f000f00ff0000, 7745 .fixed_bits = 0x0000000000000011 }, 7746 { .name = "ID_AA64PFR1_EL1", 7747 .exported_bits = 0x00000000000000f0 }, 7748 { .name = "ID_AA64PFR*_EL1_RESERVED", 7749 .is_glob = true }, 7750 { .name = "ID_AA64ZFR0_EL1" }, 7751 { .name = "ID_AA64MMFR0_EL1", 7752 .fixed_bits = 0x00000000ff000000 }, 7753 { .name = "ID_AA64MMFR1_EL1" }, 7754 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7755 .is_glob = true }, 7756 { .name = "ID_AA64DFR0_EL1", 7757 .fixed_bits = 0x0000000000000006 }, 7758 { .name = "ID_AA64DFR1_EL1" }, 7759 { .name = "ID_AA64DFR*_EL1_RESERVED", 7760 .is_glob = true }, 7761 { .name = "ID_AA64AFR*", 7762 .is_glob = true }, 7763 { .name = "ID_AA64ISAR0_EL1", 7764 .exported_bits = 0x00fffffff0fffff0 }, 7765 { .name = "ID_AA64ISAR1_EL1", 7766 .exported_bits = 0x000000f0ffffffff }, 7767 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7768 .is_glob = true }, 7769 REGUSERINFO_SENTINEL 7770 }; 7771 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7772 #endif 7773 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7774 if (!arm_feature(env, ARM_FEATURE_EL3) && 7775 !arm_feature(env, ARM_FEATURE_EL2)) { 7776 ARMCPRegInfo rvbar = { 7777 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7778 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7779 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7780 }; 7781 define_one_arm_cp_reg(cpu, &rvbar); 7782 } 7783 define_arm_cp_regs(cpu, v8_idregs); 7784 define_arm_cp_regs(cpu, v8_cp_reginfo); 7785 } 7786 if (arm_feature(env, ARM_FEATURE_EL2)) { 7787 uint64_t vmpidr_def = mpidr_read_val(env); 7788 ARMCPRegInfo vpidr_regs[] = { 7789 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7790 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7791 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7792 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7793 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7794 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7795 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7796 .access = PL2_RW, .resetvalue = cpu->midr, 7797 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7798 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7799 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7800 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7801 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7802 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7803 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7804 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7805 .access = PL2_RW, 7806 .resetvalue = vmpidr_def, 7807 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7808 REGINFO_SENTINEL 7809 }; 7810 define_arm_cp_regs(cpu, vpidr_regs); 7811 define_arm_cp_regs(cpu, el2_cp_reginfo); 7812 if (arm_feature(env, ARM_FEATURE_V8)) { 7813 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7814 } 7815 if (cpu_isar_feature(aa64_sel2, cpu)) { 7816 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7817 } 7818 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7819 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7820 ARMCPRegInfo rvbar = { 7821 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7822 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7823 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7824 }; 7825 define_one_arm_cp_reg(cpu, &rvbar); 7826 } 7827 } else { 7828 /* If EL2 is missing but higher ELs are enabled, we need to 7829 * register the no_el2 reginfos. 7830 */ 7831 if (arm_feature(env, ARM_FEATURE_EL3)) { 7832 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7833 * of MIDR_EL1 and MPIDR_EL1. 7834 */ 7835 ARMCPRegInfo vpidr_regs[] = { 7836 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7837 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7838 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7839 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7840 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7841 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7842 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7843 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7844 .type = ARM_CP_NO_RAW, 7845 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7846 REGINFO_SENTINEL 7847 }; 7848 define_arm_cp_regs(cpu, vpidr_regs); 7849 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7850 if (arm_feature(env, ARM_FEATURE_V8)) { 7851 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7852 } 7853 } 7854 } 7855 if (arm_feature(env, ARM_FEATURE_EL3)) { 7856 define_arm_cp_regs(cpu, el3_cp_reginfo); 7857 ARMCPRegInfo el3_regs[] = { 7858 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7859 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7860 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7861 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7862 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7863 .access = PL3_RW, 7864 .raw_writefn = raw_write, .writefn = sctlr_write, 7865 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7866 .resetvalue = cpu->reset_sctlr }, 7867 REGINFO_SENTINEL 7868 }; 7869 7870 define_arm_cp_regs(cpu, el3_regs); 7871 } 7872 /* The behaviour of NSACR is sufficiently various that we don't 7873 * try to describe it in a single reginfo: 7874 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7875 * reads as constant 0xc00 from NS EL1 and NS EL2 7876 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7877 * if v7 without EL3, register doesn't exist 7878 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7879 */ 7880 if (arm_feature(env, ARM_FEATURE_EL3)) { 7881 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7882 ARMCPRegInfo nsacr = { 7883 .name = "NSACR", .type = ARM_CP_CONST, 7884 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7885 .access = PL1_RW, .accessfn = nsacr_access, 7886 .resetvalue = 0xc00 7887 }; 7888 define_one_arm_cp_reg(cpu, &nsacr); 7889 } else { 7890 ARMCPRegInfo nsacr = { 7891 .name = "NSACR", 7892 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7893 .access = PL3_RW | PL1_R, 7894 .resetvalue = 0, 7895 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7896 }; 7897 define_one_arm_cp_reg(cpu, &nsacr); 7898 } 7899 } else { 7900 if (arm_feature(env, ARM_FEATURE_V8)) { 7901 ARMCPRegInfo nsacr = { 7902 .name = "NSACR", .type = ARM_CP_CONST, 7903 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7904 .access = PL1_R, 7905 .resetvalue = 0xc00 7906 }; 7907 define_one_arm_cp_reg(cpu, &nsacr); 7908 } 7909 } 7910 7911 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7912 if (arm_feature(env, ARM_FEATURE_V6)) { 7913 /* PMSAv6 not implemented */ 7914 assert(arm_feature(env, ARM_FEATURE_V7)); 7915 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7916 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7917 } else { 7918 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7919 } 7920 } else { 7921 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7922 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7923 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7924 if (cpu_isar_feature(aa32_hpd, cpu)) { 7925 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7926 } 7927 } 7928 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7929 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7930 } 7931 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7932 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7933 } 7934 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7935 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7936 } 7937 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7938 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7939 } 7940 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7941 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7942 } 7943 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7944 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7945 } 7946 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7947 define_arm_cp_regs(cpu, omap_cp_reginfo); 7948 } 7949 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7950 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7951 } 7952 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7953 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7954 } 7955 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7956 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7957 } 7958 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7959 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7960 } 7961 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7962 define_arm_cp_regs(cpu, jazelle_regs); 7963 } 7964 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7965 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7966 * be read-only (ie write causes UNDEF exception). 7967 */ 7968 { 7969 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7970 /* Pre-v8 MIDR space. 7971 * Note that the MIDR isn't a simple constant register because 7972 * of the TI925 behaviour where writes to another register can 7973 * cause the MIDR value to change. 7974 * 7975 * Unimplemented registers in the c15 0 0 0 space default to 7976 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7977 * and friends override accordingly. 7978 */ 7979 { .name = "MIDR", 7980 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7981 .access = PL1_R, .resetvalue = cpu->midr, 7982 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7983 .readfn = midr_read, 7984 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7985 .type = ARM_CP_OVERRIDE }, 7986 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7987 { .name = "DUMMY", 7988 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7989 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7990 { .name = "DUMMY", 7991 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7992 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7993 { .name = "DUMMY", 7994 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7995 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7996 { .name = "DUMMY", 7997 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7998 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7999 { .name = "DUMMY", 8000 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8001 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8002 REGINFO_SENTINEL 8003 }; 8004 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8005 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8007 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8008 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8009 .readfn = midr_read }, 8010 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8011 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8012 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8013 .access = PL1_R, .resetvalue = cpu->midr }, 8014 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8015 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8016 .access = PL1_R, .resetvalue = cpu->midr }, 8017 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8019 .access = PL1_R, 8020 .accessfn = access_aa64_tid1, 8021 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8022 REGINFO_SENTINEL 8023 }; 8024 ARMCPRegInfo id_cp_reginfo[] = { 8025 /* These are common to v8 and pre-v8 */ 8026 { .name = "CTR", 8027 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8028 .access = PL1_R, .accessfn = ctr_el0_access, 8029 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8030 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8031 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8032 .access = PL0_R, .accessfn = ctr_el0_access, 8033 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8034 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8035 { .name = "TCMTR", 8036 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8037 .access = PL1_R, 8038 .accessfn = access_aa32_tid1, 8039 .type = ARM_CP_CONST, .resetvalue = 0 }, 8040 REGINFO_SENTINEL 8041 }; 8042 /* TLBTR is specific to VMSA */ 8043 ARMCPRegInfo id_tlbtr_reginfo = { 8044 .name = "TLBTR", 8045 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8046 .access = PL1_R, 8047 .accessfn = access_aa32_tid1, 8048 .type = ARM_CP_CONST, .resetvalue = 0, 8049 }; 8050 /* MPUIR is specific to PMSA V6+ */ 8051 ARMCPRegInfo id_mpuir_reginfo = { 8052 .name = "MPUIR", 8053 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8054 .access = PL1_R, .type = ARM_CP_CONST, 8055 .resetvalue = cpu->pmsav7_dregion << 8 8056 }; 8057 ARMCPRegInfo crn0_wi_reginfo = { 8058 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8059 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8060 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8061 }; 8062 #ifdef CONFIG_USER_ONLY 8063 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8064 { .name = "MIDR_EL1", 8065 .exported_bits = 0x00000000ffffffff }, 8066 { .name = "REVIDR_EL1" }, 8067 REGUSERINFO_SENTINEL 8068 }; 8069 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8070 #endif 8071 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8072 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8073 ARMCPRegInfo *r; 8074 /* Register the blanket "writes ignored" value first to cover the 8075 * whole space. Then update the specific ID registers to allow write 8076 * access, so that they ignore writes rather than causing them to 8077 * UNDEF. 8078 */ 8079 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8080 for (r = id_pre_v8_midr_cp_reginfo; 8081 r->type != ARM_CP_SENTINEL; r++) { 8082 r->access = PL1_RW; 8083 } 8084 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8085 r->access = PL1_RW; 8086 } 8087 id_mpuir_reginfo.access = PL1_RW; 8088 id_tlbtr_reginfo.access = PL1_RW; 8089 } 8090 if (arm_feature(env, ARM_FEATURE_V8)) { 8091 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8092 } else { 8093 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8094 } 8095 define_arm_cp_regs(cpu, id_cp_reginfo); 8096 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8097 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8098 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8099 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8100 } 8101 } 8102 8103 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8104 ARMCPRegInfo mpidr_cp_reginfo[] = { 8105 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8106 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8107 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8108 REGINFO_SENTINEL 8109 }; 8110 #ifdef CONFIG_USER_ONLY 8111 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8112 { .name = "MPIDR_EL1", 8113 .fixed_bits = 0x0000000080000000 }, 8114 REGUSERINFO_SENTINEL 8115 }; 8116 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8117 #endif 8118 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8119 } 8120 8121 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8122 ARMCPRegInfo auxcr_reginfo[] = { 8123 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8124 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8125 .access = PL1_RW, .accessfn = access_tacr, 8126 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8127 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8128 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8129 .access = PL2_RW, .type = ARM_CP_CONST, 8130 .resetvalue = 0 }, 8131 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8132 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8133 .access = PL3_RW, .type = ARM_CP_CONST, 8134 .resetvalue = 0 }, 8135 REGINFO_SENTINEL 8136 }; 8137 define_arm_cp_regs(cpu, auxcr_reginfo); 8138 if (cpu_isar_feature(aa32_ac2, cpu)) { 8139 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8140 } 8141 } 8142 8143 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8144 /* 8145 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8146 * There are two flavours: 8147 * (1) older 32-bit only cores have a simple 32-bit CBAR 8148 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8149 * 32-bit register visible to AArch32 at a different encoding 8150 * to the "flavour 1" register and with the bits rearranged to 8151 * be able to squash a 64-bit address into the 32-bit view. 8152 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8153 * in future if we support AArch32-only configs of some of the 8154 * AArch64 cores we might need to add a specific feature flag 8155 * to indicate cores with "flavour 2" CBAR. 8156 */ 8157 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8158 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8159 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8160 | extract64(cpu->reset_cbar, 32, 12); 8161 ARMCPRegInfo cbar_reginfo[] = { 8162 { .name = "CBAR", 8163 .type = ARM_CP_CONST, 8164 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8165 .access = PL1_R, .resetvalue = cbar32 }, 8166 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8167 .type = ARM_CP_CONST, 8168 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8169 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8170 REGINFO_SENTINEL 8171 }; 8172 /* We don't implement a r/w 64 bit CBAR currently */ 8173 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8174 define_arm_cp_regs(cpu, cbar_reginfo); 8175 } else { 8176 ARMCPRegInfo cbar = { 8177 .name = "CBAR", 8178 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8179 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8180 .fieldoffset = offsetof(CPUARMState, 8181 cp15.c15_config_base_address) 8182 }; 8183 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8184 cbar.access = PL1_R; 8185 cbar.fieldoffset = 0; 8186 cbar.type = ARM_CP_CONST; 8187 } 8188 define_one_arm_cp_reg(cpu, &cbar); 8189 } 8190 } 8191 8192 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8193 ARMCPRegInfo vbar_cp_reginfo[] = { 8194 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8195 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8196 .access = PL1_RW, .writefn = vbar_write, 8197 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8198 offsetof(CPUARMState, cp15.vbar_ns) }, 8199 .resetvalue = 0 }, 8200 REGINFO_SENTINEL 8201 }; 8202 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8203 } 8204 8205 /* Generic registers whose values depend on the implementation */ 8206 { 8207 ARMCPRegInfo sctlr = { 8208 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8209 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8210 .access = PL1_RW, .accessfn = access_tvm_trvm, 8211 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8212 offsetof(CPUARMState, cp15.sctlr_ns) }, 8213 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8214 .raw_writefn = raw_write, 8215 }; 8216 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8217 /* Normally we would always end the TB on an SCTLR write, but Linux 8218 * arch/arm/mach-pxa/sleep.S expects two instructions following 8219 * an MMU enable to execute from cache. Imitate this behaviour. 8220 */ 8221 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8222 } 8223 define_one_arm_cp_reg(cpu, &sctlr); 8224 } 8225 8226 if (cpu_isar_feature(aa64_lor, cpu)) { 8227 define_arm_cp_regs(cpu, lor_reginfo); 8228 } 8229 if (cpu_isar_feature(aa64_pan, cpu)) { 8230 define_one_arm_cp_reg(cpu, &pan_reginfo); 8231 } 8232 #ifndef CONFIG_USER_ONLY 8233 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8234 define_arm_cp_regs(cpu, ats1e1_reginfo); 8235 } 8236 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8237 define_arm_cp_regs(cpu, ats1cp_reginfo); 8238 } 8239 #endif 8240 if (cpu_isar_feature(aa64_uao, cpu)) { 8241 define_one_arm_cp_reg(cpu, &uao_reginfo); 8242 } 8243 8244 if (cpu_isar_feature(aa64_dit, cpu)) { 8245 define_one_arm_cp_reg(cpu, &dit_reginfo); 8246 } 8247 8248 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8249 define_arm_cp_regs(cpu, vhe_reginfo); 8250 } 8251 8252 if (cpu_isar_feature(aa64_sve, cpu)) { 8253 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8254 if (arm_feature(env, ARM_FEATURE_EL2)) { 8255 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8256 } else { 8257 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8258 } 8259 if (arm_feature(env, ARM_FEATURE_EL3)) { 8260 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8261 } 8262 } 8263 8264 #ifdef TARGET_AARCH64 8265 if (cpu_isar_feature(aa64_pauth, cpu)) { 8266 define_arm_cp_regs(cpu, pauth_reginfo); 8267 } 8268 if (cpu_isar_feature(aa64_rndr, cpu)) { 8269 define_arm_cp_regs(cpu, rndr_reginfo); 8270 } 8271 #ifndef CONFIG_USER_ONLY 8272 /* Data Cache clean instructions up to PoP */ 8273 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8274 define_one_arm_cp_reg(cpu, dcpop_reg); 8275 8276 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8277 define_one_arm_cp_reg(cpu, dcpodp_reg); 8278 } 8279 } 8280 #endif /*CONFIG_USER_ONLY*/ 8281 8282 /* 8283 * If full MTE is enabled, add all of the system registers. 8284 * If only "instructions available at EL0" are enabled, 8285 * then define only a RAZ/WI version of PSTATE.TCO. 8286 */ 8287 if (cpu_isar_feature(aa64_mte, cpu)) { 8288 define_arm_cp_regs(cpu, mte_reginfo); 8289 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8290 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8291 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8292 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8293 } 8294 #endif 8295 8296 if (cpu_isar_feature(any_predinv, cpu)) { 8297 define_arm_cp_regs(cpu, predinv_reginfo); 8298 } 8299 8300 if (cpu_isar_feature(any_ccidx, cpu)) { 8301 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8302 } 8303 8304 #ifndef CONFIG_USER_ONLY 8305 /* 8306 * Register redirections and aliases must be done last, 8307 * after the registers from the other extensions have been defined. 8308 */ 8309 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8310 define_arm_vh_e2h_redirects_aliases(cpu); 8311 } 8312 #endif 8313 } 8314 8315 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8316 { 8317 CPUState *cs = CPU(cpu); 8318 CPUARMState *env = &cpu->env; 8319 8320 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8321 /* 8322 * The lower part of each SVE register aliases to the FPU 8323 * registers so we don't need to include both. 8324 */ 8325 #ifdef TARGET_AARCH64 8326 if (isar_feature_aa64_sve(&cpu->isar)) { 8327 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8328 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8329 "sve-registers.xml", 0); 8330 } else 8331 #endif 8332 { 8333 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8334 aarch64_fpu_gdb_set_reg, 8335 34, "aarch64-fpu.xml", 0); 8336 } 8337 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8338 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8339 51, "arm-neon.xml", 0); 8340 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8341 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8342 35, "arm-vfp3.xml", 0); 8343 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8344 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8345 19, "arm-vfp.xml", 0); 8346 } 8347 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8348 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8349 "system-registers.xml", 0); 8350 8351 } 8352 8353 /* Sort alphabetically by type name, except for "any". */ 8354 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8355 { 8356 ObjectClass *class_a = (ObjectClass *)a; 8357 ObjectClass *class_b = (ObjectClass *)b; 8358 const char *name_a, *name_b; 8359 8360 name_a = object_class_get_name(class_a); 8361 name_b = object_class_get_name(class_b); 8362 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8363 return 1; 8364 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8365 return -1; 8366 } else { 8367 return strcmp(name_a, name_b); 8368 } 8369 } 8370 8371 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8372 { 8373 ObjectClass *oc = data; 8374 const char *typename; 8375 char *name; 8376 8377 typename = object_class_get_name(oc); 8378 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8379 qemu_printf(" %s\n", name); 8380 g_free(name); 8381 } 8382 8383 void arm_cpu_list(void) 8384 { 8385 GSList *list; 8386 8387 list = object_class_get_list(TYPE_ARM_CPU, false); 8388 list = g_slist_sort(list, arm_cpu_list_compare); 8389 qemu_printf("Available CPUs:\n"); 8390 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8391 g_slist_free(list); 8392 } 8393 8394 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8395 { 8396 ObjectClass *oc = data; 8397 CpuDefinitionInfoList **cpu_list = user_data; 8398 CpuDefinitionInfo *info; 8399 const char *typename; 8400 8401 typename = object_class_get_name(oc); 8402 info = g_malloc0(sizeof(*info)); 8403 info->name = g_strndup(typename, 8404 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8405 info->q_typename = g_strdup(typename); 8406 8407 QAPI_LIST_PREPEND(*cpu_list, info); 8408 } 8409 8410 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8411 { 8412 CpuDefinitionInfoList *cpu_list = NULL; 8413 GSList *list; 8414 8415 list = object_class_get_list(TYPE_ARM_CPU, false); 8416 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8417 g_slist_free(list); 8418 8419 return cpu_list; 8420 } 8421 8422 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8423 void *opaque, int state, int secstate, 8424 int crm, int opc1, int opc2, 8425 const char *name) 8426 { 8427 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8428 * add a single reginfo struct to the hash table. 8429 */ 8430 uint32_t *key = g_new(uint32_t, 1); 8431 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8432 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8433 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8434 8435 r2->name = g_strdup(name); 8436 /* Reset the secure state to the specific incoming state. This is 8437 * necessary as the register may have been defined with both states. 8438 */ 8439 r2->secure = secstate; 8440 8441 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8442 /* Register is banked (using both entries in array). 8443 * Overwriting fieldoffset as the array is only used to define 8444 * banked registers but later only fieldoffset is used. 8445 */ 8446 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8447 } 8448 8449 if (state == ARM_CP_STATE_AA32) { 8450 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8451 /* If the register is banked then we don't need to migrate or 8452 * reset the 32-bit instance in certain cases: 8453 * 8454 * 1) If the register has both 32-bit and 64-bit instances then we 8455 * can count on the 64-bit instance taking care of the 8456 * non-secure bank. 8457 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8458 * taking care of the secure bank. This requires that separate 8459 * 32 and 64-bit definitions are provided. 8460 */ 8461 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8462 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8463 r2->type |= ARM_CP_ALIAS; 8464 } 8465 } else if ((secstate != r->secure) && !ns) { 8466 /* The register is not banked so we only want to allow migration of 8467 * the non-secure instance. 8468 */ 8469 r2->type |= ARM_CP_ALIAS; 8470 } 8471 8472 if (r->state == ARM_CP_STATE_BOTH) { 8473 /* We assume it is a cp15 register if the .cp field is left unset. 8474 */ 8475 if (r2->cp == 0) { 8476 r2->cp = 15; 8477 } 8478 8479 #ifdef HOST_WORDS_BIGENDIAN 8480 if (r2->fieldoffset) { 8481 r2->fieldoffset += sizeof(uint32_t); 8482 } 8483 #endif 8484 } 8485 } 8486 if (state == ARM_CP_STATE_AA64) { 8487 /* To allow abbreviation of ARMCPRegInfo 8488 * definitions, we treat cp == 0 as equivalent to 8489 * the value for "standard guest-visible sysreg". 8490 * STATE_BOTH definitions are also always "standard 8491 * sysreg" in their AArch64 view (the .cp value may 8492 * be non-zero for the benefit of the AArch32 view). 8493 */ 8494 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8495 r2->cp = CP_REG_ARM64_SYSREG_CP; 8496 } 8497 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8498 r2->opc0, opc1, opc2); 8499 } else { 8500 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8501 } 8502 if (opaque) { 8503 r2->opaque = opaque; 8504 } 8505 /* reginfo passed to helpers is correct for the actual access, 8506 * and is never ARM_CP_STATE_BOTH: 8507 */ 8508 r2->state = state; 8509 /* Make sure reginfo passed to helpers for wildcarded regs 8510 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8511 */ 8512 r2->crm = crm; 8513 r2->opc1 = opc1; 8514 r2->opc2 = opc2; 8515 /* By convention, for wildcarded registers only the first 8516 * entry is used for migration; the others are marked as 8517 * ALIAS so we don't try to transfer the register 8518 * multiple times. Special registers (ie NOP/WFI) are 8519 * never migratable and not even raw-accessible. 8520 */ 8521 if ((r->type & ARM_CP_SPECIAL)) { 8522 r2->type |= ARM_CP_NO_RAW; 8523 } 8524 if (((r->crm == CP_ANY) && crm != 0) || 8525 ((r->opc1 == CP_ANY) && opc1 != 0) || 8526 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8527 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8528 } 8529 8530 /* Check that raw accesses are either forbidden or handled. Note that 8531 * we can't assert this earlier because the setup of fieldoffset for 8532 * banked registers has to be done first. 8533 */ 8534 if (!(r2->type & ARM_CP_NO_RAW)) { 8535 assert(!raw_accessors_invalid(r2)); 8536 } 8537 8538 /* Overriding of an existing definition must be explicitly 8539 * requested. 8540 */ 8541 if (!(r->type & ARM_CP_OVERRIDE)) { 8542 ARMCPRegInfo *oldreg; 8543 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8544 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8545 fprintf(stderr, "Register redefined: cp=%d %d bit " 8546 "crn=%d crm=%d opc1=%d opc2=%d, " 8547 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8548 r2->crn, r2->crm, r2->opc1, r2->opc2, 8549 oldreg->name, r2->name); 8550 g_assert_not_reached(); 8551 } 8552 } 8553 g_hash_table_insert(cpu->cp_regs, key, r2); 8554 } 8555 8556 8557 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8558 const ARMCPRegInfo *r, void *opaque) 8559 { 8560 /* Define implementations of coprocessor registers. 8561 * We store these in a hashtable because typically 8562 * there are less than 150 registers in a space which 8563 * is 16*16*16*8*8 = 262144 in size. 8564 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8565 * If a register is defined twice then the second definition is 8566 * used, so this can be used to define some generic registers and 8567 * then override them with implementation specific variations. 8568 * At least one of the original and the second definition should 8569 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8570 * against accidental use. 8571 * 8572 * The state field defines whether the register is to be 8573 * visible in the AArch32 or AArch64 execution state. If the 8574 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8575 * reginfo structure for the AArch32 view, which sees the lower 8576 * 32 bits of the 64 bit register. 8577 * 8578 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8579 * be wildcarded. AArch64 registers are always considered to be 64 8580 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8581 * the register, if any. 8582 */ 8583 int crm, opc1, opc2, state; 8584 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8585 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8586 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8587 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8588 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8589 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8590 /* 64 bit registers have only CRm and Opc1 fields */ 8591 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8592 /* op0 only exists in the AArch64 encodings */ 8593 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8594 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8595 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8596 /* 8597 * This API is only for Arm's system coprocessors (14 and 15) or 8598 * (M-profile or v7A-and-earlier only) for implementation defined 8599 * coprocessors in the range 0..7. Our decode assumes this, since 8600 * 8..13 can be used for other insns including VFP and Neon. See 8601 * valid_cp() in translate.c. Assert here that we haven't tried 8602 * to use an invalid coprocessor number. 8603 */ 8604 switch (r->state) { 8605 case ARM_CP_STATE_BOTH: 8606 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8607 if (r->cp == 0) { 8608 break; 8609 } 8610 /* fall through */ 8611 case ARM_CP_STATE_AA32: 8612 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8613 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8614 assert(r->cp >= 14 && r->cp <= 15); 8615 } else { 8616 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8617 } 8618 break; 8619 case ARM_CP_STATE_AA64: 8620 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8621 break; 8622 default: 8623 g_assert_not_reached(); 8624 } 8625 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8626 * encodes a minimum access level for the register. We roll this 8627 * runtime check into our general permission check code, so check 8628 * here that the reginfo's specified permissions are strict enough 8629 * to encompass the generic architectural permission check. 8630 */ 8631 if (r->state != ARM_CP_STATE_AA32) { 8632 int mask = 0; 8633 switch (r->opc1) { 8634 case 0: 8635 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8636 mask = PL0U_R | PL1_RW; 8637 break; 8638 case 1: case 2: 8639 /* min_EL EL1 */ 8640 mask = PL1_RW; 8641 break; 8642 case 3: 8643 /* min_EL EL0 */ 8644 mask = PL0_RW; 8645 break; 8646 case 4: 8647 case 5: 8648 /* min_EL EL2 */ 8649 mask = PL2_RW; 8650 break; 8651 case 6: 8652 /* min_EL EL3 */ 8653 mask = PL3_RW; 8654 break; 8655 case 7: 8656 /* min_EL EL1, secure mode only (we don't check the latter) */ 8657 mask = PL1_RW; 8658 break; 8659 default: 8660 /* broken reginfo with out-of-range opc1 */ 8661 assert(false); 8662 break; 8663 } 8664 /* assert our permissions are not too lax (stricter is fine) */ 8665 assert((r->access & ~mask) == 0); 8666 } 8667 8668 /* Check that the register definition has enough info to handle 8669 * reads and writes if they are permitted. 8670 */ 8671 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8672 if (r->access & PL3_R) { 8673 assert((r->fieldoffset || 8674 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8675 r->readfn); 8676 } 8677 if (r->access & PL3_W) { 8678 assert((r->fieldoffset || 8679 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8680 r->writefn); 8681 } 8682 } 8683 /* Bad type field probably means missing sentinel at end of reg list */ 8684 assert(cptype_valid(r->type)); 8685 for (crm = crmmin; crm <= crmmax; crm++) { 8686 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8687 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8688 for (state = ARM_CP_STATE_AA32; 8689 state <= ARM_CP_STATE_AA64; state++) { 8690 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8691 continue; 8692 } 8693 if (state == ARM_CP_STATE_AA32) { 8694 /* Under AArch32 CP registers can be common 8695 * (same for secure and non-secure world) or banked. 8696 */ 8697 char *name; 8698 8699 switch (r->secure) { 8700 case ARM_CP_SECSTATE_S: 8701 case ARM_CP_SECSTATE_NS: 8702 add_cpreg_to_hashtable(cpu, r, opaque, state, 8703 r->secure, crm, opc1, opc2, 8704 r->name); 8705 break; 8706 default: 8707 name = g_strdup_printf("%s_S", r->name); 8708 add_cpreg_to_hashtable(cpu, r, opaque, state, 8709 ARM_CP_SECSTATE_S, 8710 crm, opc1, opc2, name); 8711 g_free(name); 8712 add_cpreg_to_hashtable(cpu, r, opaque, state, 8713 ARM_CP_SECSTATE_NS, 8714 crm, opc1, opc2, r->name); 8715 break; 8716 } 8717 } else { 8718 /* AArch64 registers get mapped to non-secure instance 8719 * of AArch32 */ 8720 add_cpreg_to_hashtable(cpu, r, opaque, state, 8721 ARM_CP_SECSTATE_NS, 8722 crm, opc1, opc2, r->name); 8723 } 8724 } 8725 } 8726 } 8727 } 8728 } 8729 8730 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8731 const ARMCPRegInfo *regs, void *opaque) 8732 { 8733 /* Define a whole list of registers */ 8734 const ARMCPRegInfo *r; 8735 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8736 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8737 } 8738 } 8739 8740 /* 8741 * Modify ARMCPRegInfo for access from userspace. 8742 * 8743 * This is a data driven modification directed by 8744 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8745 * user-space cannot alter any values and dynamic values pertaining to 8746 * execution state are hidden from user space view anyway. 8747 */ 8748 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8749 { 8750 const ARMCPRegUserSpaceInfo *m; 8751 ARMCPRegInfo *r; 8752 8753 for (m = mods; m->name; m++) { 8754 GPatternSpec *pat = NULL; 8755 if (m->is_glob) { 8756 pat = g_pattern_spec_new(m->name); 8757 } 8758 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8759 if (pat && g_pattern_match_string(pat, r->name)) { 8760 r->type = ARM_CP_CONST; 8761 r->access = PL0U_R; 8762 r->resetvalue = 0; 8763 /* continue */ 8764 } else if (strcmp(r->name, m->name) == 0) { 8765 r->type = ARM_CP_CONST; 8766 r->access = PL0U_R; 8767 r->resetvalue &= m->exported_bits; 8768 r->resetvalue |= m->fixed_bits; 8769 break; 8770 } 8771 } 8772 if (pat) { 8773 g_pattern_spec_free(pat); 8774 } 8775 } 8776 } 8777 8778 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8779 { 8780 return g_hash_table_lookup(cpregs, &encoded_cp); 8781 } 8782 8783 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8784 uint64_t value) 8785 { 8786 /* Helper coprocessor write function for write-ignore registers */ 8787 } 8788 8789 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8790 { 8791 /* Helper coprocessor write function for read-as-zero registers */ 8792 return 0; 8793 } 8794 8795 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8796 { 8797 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8798 } 8799 8800 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8801 { 8802 /* Return true if it is not valid for us to switch to 8803 * this CPU mode (ie all the UNPREDICTABLE cases in 8804 * the ARM ARM CPSRWriteByInstr pseudocode). 8805 */ 8806 8807 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8808 if (write_type == CPSRWriteByInstr && 8809 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8810 mode == ARM_CPU_MODE_HYP)) { 8811 return 1; 8812 } 8813 8814 switch (mode) { 8815 case ARM_CPU_MODE_USR: 8816 return 0; 8817 case ARM_CPU_MODE_SYS: 8818 case ARM_CPU_MODE_SVC: 8819 case ARM_CPU_MODE_ABT: 8820 case ARM_CPU_MODE_UND: 8821 case ARM_CPU_MODE_IRQ: 8822 case ARM_CPU_MODE_FIQ: 8823 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8824 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8825 */ 8826 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8827 * and CPS are treated as illegal mode changes. 8828 */ 8829 if (write_type == CPSRWriteByInstr && 8830 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8831 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8832 return 1; 8833 } 8834 return 0; 8835 case ARM_CPU_MODE_HYP: 8836 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8837 case ARM_CPU_MODE_MON: 8838 return arm_current_el(env) < 3; 8839 default: 8840 return 1; 8841 } 8842 } 8843 8844 uint32_t cpsr_read(CPUARMState *env) 8845 { 8846 int ZF; 8847 ZF = (env->ZF == 0); 8848 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8849 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8850 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8851 | ((env->condexec_bits & 0xfc) << 8) 8852 | (env->GE << 16) | (env->daif & CPSR_AIF); 8853 } 8854 8855 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8856 CPSRWriteType write_type) 8857 { 8858 uint32_t changed_daif; 8859 8860 if (mask & CPSR_NZCV) { 8861 env->ZF = (~val) & CPSR_Z; 8862 env->NF = val; 8863 env->CF = (val >> 29) & 1; 8864 env->VF = (val << 3) & 0x80000000; 8865 } 8866 if (mask & CPSR_Q) 8867 env->QF = ((val & CPSR_Q) != 0); 8868 if (mask & CPSR_T) 8869 env->thumb = ((val & CPSR_T) != 0); 8870 if (mask & CPSR_IT_0_1) { 8871 env->condexec_bits &= ~3; 8872 env->condexec_bits |= (val >> 25) & 3; 8873 } 8874 if (mask & CPSR_IT_2_7) { 8875 env->condexec_bits &= 3; 8876 env->condexec_bits |= (val >> 8) & 0xfc; 8877 } 8878 if (mask & CPSR_GE) { 8879 env->GE = (val >> 16) & 0xf; 8880 } 8881 8882 /* In a V7 implementation that includes the security extensions but does 8883 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8884 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8885 * bits respectively. 8886 * 8887 * In a V8 implementation, it is permitted for privileged software to 8888 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8889 */ 8890 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8891 arm_feature(env, ARM_FEATURE_EL3) && 8892 !arm_feature(env, ARM_FEATURE_EL2) && 8893 !arm_is_secure(env)) { 8894 8895 changed_daif = (env->daif ^ val) & mask; 8896 8897 if (changed_daif & CPSR_A) { 8898 /* Check to see if we are allowed to change the masking of async 8899 * abort exceptions from a non-secure state. 8900 */ 8901 if (!(env->cp15.scr_el3 & SCR_AW)) { 8902 qemu_log_mask(LOG_GUEST_ERROR, 8903 "Ignoring attempt to switch CPSR_A flag from " 8904 "non-secure world with SCR.AW bit clear\n"); 8905 mask &= ~CPSR_A; 8906 } 8907 } 8908 8909 if (changed_daif & CPSR_F) { 8910 /* Check to see if we are allowed to change the masking of FIQ 8911 * exceptions from a non-secure state. 8912 */ 8913 if (!(env->cp15.scr_el3 & SCR_FW)) { 8914 qemu_log_mask(LOG_GUEST_ERROR, 8915 "Ignoring attempt to switch CPSR_F flag from " 8916 "non-secure world with SCR.FW bit clear\n"); 8917 mask &= ~CPSR_F; 8918 } 8919 8920 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8921 * If this bit is set software is not allowed to mask 8922 * FIQs, but is allowed to set CPSR_F to 0. 8923 */ 8924 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8925 (val & CPSR_F)) { 8926 qemu_log_mask(LOG_GUEST_ERROR, 8927 "Ignoring attempt to enable CPSR_F flag " 8928 "(non-maskable FIQ [NMFI] support enabled)\n"); 8929 mask &= ~CPSR_F; 8930 } 8931 } 8932 } 8933 8934 env->daif &= ~(CPSR_AIF & mask); 8935 env->daif |= val & CPSR_AIF & mask; 8936 8937 if (write_type != CPSRWriteRaw && 8938 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8939 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8940 /* Note that we can only get here in USR mode if this is a 8941 * gdb stub write; for this case we follow the architectural 8942 * behaviour for guest writes in USR mode of ignoring an attempt 8943 * to switch mode. (Those are caught by translate.c for writes 8944 * triggered by guest instructions.) 8945 */ 8946 mask &= ~CPSR_M; 8947 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8948 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8949 * v7, and has defined behaviour in v8: 8950 * + leave CPSR.M untouched 8951 * + allow changes to the other CPSR fields 8952 * + set PSTATE.IL 8953 * For user changes via the GDB stub, we don't set PSTATE.IL, 8954 * as this would be unnecessarily harsh for a user error. 8955 */ 8956 mask &= ~CPSR_M; 8957 if (write_type != CPSRWriteByGDBStub && 8958 arm_feature(env, ARM_FEATURE_V8)) { 8959 mask |= CPSR_IL; 8960 val |= CPSR_IL; 8961 } 8962 qemu_log_mask(LOG_GUEST_ERROR, 8963 "Illegal AArch32 mode switch attempt from %s to %s\n", 8964 aarch32_mode_name(env->uncached_cpsr), 8965 aarch32_mode_name(val)); 8966 } else { 8967 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8968 write_type == CPSRWriteExceptionReturn ? 8969 "Exception return from AArch32" : 8970 "AArch32 mode switch from", 8971 aarch32_mode_name(env->uncached_cpsr), 8972 aarch32_mode_name(val), env->regs[15]); 8973 switch_mode(env, val & CPSR_M); 8974 } 8975 } 8976 mask &= ~CACHED_CPSR_BITS; 8977 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8978 } 8979 8980 /* Sign/zero extend */ 8981 uint32_t HELPER(sxtb16)(uint32_t x) 8982 { 8983 uint32_t res; 8984 res = (uint16_t)(int8_t)x; 8985 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8986 return res; 8987 } 8988 8989 uint32_t HELPER(uxtb16)(uint32_t x) 8990 { 8991 uint32_t res; 8992 res = (uint16_t)(uint8_t)x; 8993 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8994 return res; 8995 } 8996 8997 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8998 { 8999 if (den == 0) 9000 return 0; 9001 if (num == INT_MIN && den == -1) 9002 return INT_MIN; 9003 return num / den; 9004 } 9005 9006 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 9007 { 9008 if (den == 0) 9009 return 0; 9010 return num / den; 9011 } 9012 9013 uint32_t HELPER(rbit)(uint32_t x) 9014 { 9015 return revbit32(x); 9016 } 9017 9018 #ifdef CONFIG_USER_ONLY 9019 9020 static void switch_mode(CPUARMState *env, int mode) 9021 { 9022 ARMCPU *cpu = env_archcpu(env); 9023 9024 if (mode != ARM_CPU_MODE_USR) { 9025 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9026 } 9027 } 9028 9029 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9030 uint32_t cur_el, bool secure) 9031 { 9032 return 1; 9033 } 9034 9035 void aarch64_sync_64_to_32(CPUARMState *env) 9036 { 9037 g_assert_not_reached(); 9038 } 9039 9040 #else 9041 9042 static void switch_mode(CPUARMState *env, int mode) 9043 { 9044 int old_mode; 9045 int i; 9046 9047 old_mode = env->uncached_cpsr & CPSR_M; 9048 if (mode == old_mode) 9049 return; 9050 9051 if (old_mode == ARM_CPU_MODE_FIQ) { 9052 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9053 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9054 } else if (mode == ARM_CPU_MODE_FIQ) { 9055 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9056 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9057 } 9058 9059 i = bank_number(old_mode); 9060 env->banked_r13[i] = env->regs[13]; 9061 env->banked_spsr[i] = env->spsr; 9062 9063 i = bank_number(mode); 9064 env->regs[13] = env->banked_r13[i]; 9065 env->spsr = env->banked_spsr[i]; 9066 9067 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9068 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9069 } 9070 9071 /* Physical Interrupt Target EL Lookup Table 9072 * 9073 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9074 * 9075 * The below multi-dimensional table is used for looking up the target 9076 * exception level given numerous condition criteria. Specifically, the 9077 * target EL is based on SCR and HCR routing controls as well as the 9078 * currently executing EL and secure state. 9079 * 9080 * Dimensions: 9081 * target_el_table[2][2][2][2][2][4] 9082 * | | | | | +--- Current EL 9083 * | | | | +------ Non-secure(0)/Secure(1) 9084 * | | | +--------- HCR mask override 9085 * | | +------------ SCR exec state control 9086 * | +--------------- SCR mask override 9087 * +------------------ 32-bit(0)/64-bit(1) EL3 9088 * 9089 * The table values are as such: 9090 * 0-3 = EL0-EL3 9091 * -1 = Cannot occur 9092 * 9093 * The ARM ARM target EL table includes entries indicating that an "exception 9094 * is not taken". The two cases where this is applicable are: 9095 * 1) An exception is taken from EL3 but the SCR does not have the exception 9096 * routed to EL3. 9097 * 2) An exception is taken from EL2 but the HCR does not have the exception 9098 * routed to EL2. 9099 * In these two cases, the below table contain a target of EL1. This value is 9100 * returned as it is expected that the consumer of the table data will check 9101 * for "target EL >= current EL" to ensure the exception is not taken. 9102 * 9103 * SCR HCR 9104 * 64 EA AMO From 9105 * BIT IRQ IMO Non-secure Secure 9106 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9107 */ 9108 static const int8_t target_el_table[2][2][2][2][2][4] = { 9109 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9110 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9111 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9112 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9113 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9114 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9115 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9116 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9117 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9118 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9119 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9120 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9121 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9122 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9123 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9124 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9125 }; 9126 9127 /* 9128 * Determine the target EL for physical exceptions 9129 */ 9130 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9131 uint32_t cur_el, bool secure) 9132 { 9133 CPUARMState *env = cs->env_ptr; 9134 bool rw; 9135 bool scr; 9136 bool hcr; 9137 int target_el; 9138 /* Is the highest EL AArch64? */ 9139 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9140 uint64_t hcr_el2; 9141 9142 if (arm_feature(env, ARM_FEATURE_EL3)) { 9143 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9144 } else { 9145 /* Either EL2 is the highest EL (and so the EL2 register width 9146 * is given by is64); or there is no EL2 or EL3, in which case 9147 * the value of 'rw' does not affect the table lookup anyway. 9148 */ 9149 rw = is64; 9150 } 9151 9152 hcr_el2 = arm_hcr_el2_eff(env); 9153 switch (excp_idx) { 9154 case EXCP_IRQ: 9155 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9156 hcr = hcr_el2 & HCR_IMO; 9157 break; 9158 case EXCP_FIQ: 9159 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9160 hcr = hcr_el2 & HCR_FMO; 9161 break; 9162 default: 9163 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9164 hcr = hcr_el2 & HCR_AMO; 9165 break; 9166 }; 9167 9168 /* 9169 * For these purposes, TGE and AMO/IMO/FMO both force the 9170 * interrupt to EL2. Fold TGE into the bit extracted above. 9171 */ 9172 hcr |= (hcr_el2 & HCR_TGE) != 0; 9173 9174 /* Perform a table-lookup for the target EL given the current state */ 9175 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9176 9177 assert(target_el > 0); 9178 9179 return target_el; 9180 } 9181 9182 void arm_log_exception(int idx) 9183 { 9184 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9185 const char *exc = NULL; 9186 static const char * const excnames[] = { 9187 [EXCP_UDEF] = "Undefined Instruction", 9188 [EXCP_SWI] = "SVC", 9189 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9190 [EXCP_DATA_ABORT] = "Data Abort", 9191 [EXCP_IRQ] = "IRQ", 9192 [EXCP_FIQ] = "FIQ", 9193 [EXCP_BKPT] = "Breakpoint", 9194 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9195 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9196 [EXCP_HVC] = "Hypervisor Call", 9197 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9198 [EXCP_SMC] = "Secure Monitor Call", 9199 [EXCP_VIRQ] = "Virtual IRQ", 9200 [EXCP_VFIQ] = "Virtual FIQ", 9201 [EXCP_SEMIHOST] = "Semihosting call", 9202 [EXCP_NOCP] = "v7M NOCP UsageFault", 9203 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9204 [EXCP_STKOF] = "v8M STKOF UsageFault", 9205 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9206 [EXCP_LSERR] = "v8M LSERR UsageFault", 9207 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9208 }; 9209 9210 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9211 exc = excnames[idx]; 9212 } 9213 if (!exc) { 9214 exc = "unknown"; 9215 } 9216 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9217 } 9218 } 9219 9220 /* 9221 * Function used to synchronize QEMU's AArch64 register set with AArch32 9222 * register set. This is necessary when switching between AArch32 and AArch64 9223 * execution state. 9224 */ 9225 void aarch64_sync_32_to_64(CPUARMState *env) 9226 { 9227 int i; 9228 uint32_t mode = env->uncached_cpsr & CPSR_M; 9229 9230 /* We can blanket copy R[0:7] to X[0:7] */ 9231 for (i = 0; i < 8; i++) { 9232 env->xregs[i] = env->regs[i]; 9233 } 9234 9235 /* 9236 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9237 * Otherwise, they come from the banked user regs. 9238 */ 9239 if (mode == ARM_CPU_MODE_FIQ) { 9240 for (i = 8; i < 13; i++) { 9241 env->xregs[i] = env->usr_regs[i - 8]; 9242 } 9243 } else { 9244 for (i = 8; i < 13; i++) { 9245 env->xregs[i] = env->regs[i]; 9246 } 9247 } 9248 9249 /* 9250 * Registers x13-x23 are the various mode SP and FP registers. Registers 9251 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9252 * from the mode banked register. 9253 */ 9254 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9255 env->xregs[13] = env->regs[13]; 9256 env->xregs[14] = env->regs[14]; 9257 } else { 9258 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9259 /* HYP is an exception in that it is copied from r14 */ 9260 if (mode == ARM_CPU_MODE_HYP) { 9261 env->xregs[14] = env->regs[14]; 9262 } else { 9263 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9264 } 9265 } 9266 9267 if (mode == ARM_CPU_MODE_HYP) { 9268 env->xregs[15] = env->regs[13]; 9269 } else { 9270 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9271 } 9272 9273 if (mode == ARM_CPU_MODE_IRQ) { 9274 env->xregs[16] = env->regs[14]; 9275 env->xregs[17] = env->regs[13]; 9276 } else { 9277 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9278 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9279 } 9280 9281 if (mode == ARM_CPU_MODE_SVC) { 9282 env->xregs[18] = env->regs[14]; 9283 env->xregs[19] = env->regs[13]; 9284 } else { 9285 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9286 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9287 } 9288 9289 if (mode == ARM_CPU_MODE_ABT) { 9290 env->xregs[20] = env->regs[14]; 9291 env->xregs[21] = env->regs[13]; 9292 } else { 9293 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9294 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9295 } 9296 9297 if (mode == ARM_CPU_MODE_UND) { 9298 env->xregs[22] = env->regs[14]; 9299 env->xregs[23] = env->regs[13]; 9300 } else { 9301 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9302 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9303 } 9304 9305 /* 9306 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9307 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9308 * FIQ bank for r8-r14. 9309 */ 9310 if (mode == ARM_CPU_MODE_FIQ) { 9311 for (i = 24; i < 31; i++) { 9312 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9313 } 9314 } else { 9315 for (i = 24; i < 29; i++) { 9316 env->xregs[i] = env->fiq_regs[i - 24]; 9317 } 9318 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9319 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9320 } 9321 9322 env->pc = env->regs[15]; 9323 } 9324 9325 /* 9326 * Function used to synchronize QEMU's AArch32 register set with AArch64 9327 * register set. This is necessary when switching between AArch32 and AArch64 9328 * execution state. 9329 */ 9330 void aarch64_sync_64_to_32(CPUARMState *env) 9331 { 9332 int i; 9333 uint32_t mode = env->uncached_cpsr & CPSR_M; 9334 9335 /* We can blanket copy X[0:7] to R[0:7] */ 9336 for (i = 0; i < 8; i++) { 9337 env->regs[i] = env->xregs[i]; 9338 } 9339 9340 /* 9341 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9342 * Otherwise, we copy x8-x12 into the banked user regs. 9343 */ 9344 if (mode == ARM_CPU_MODE_FIQ) { 9345 for (i = 8; i < 13; i++) { 9346 env->usr_regs[i - 8] = env->xregs[i]; 9347 } 9348 } else { 9349 for (i = 8; i < 13; i++) { 9350 env->regs[i] = env->xregs[i]; 9351 } 9352 } 9353 9354 /* 9355 * Registers r13 & r14 depend on the current mode. 9356 * If we are in a given mode, we copy the corresponding x registers to r13 9357 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9358 * for the mode. 9359 */ 9360 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9361 env->regs[13] = env->xregs[13]; 9362 env->regs[14] = env->xregs[14]; 9363 } else { 9364 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9365 9366 /* 9367 * HYP is an exception in that it does not have its own banked r14 but 9368 * shares the USR r14 9369 */ 9370 if (mode == ARM_CPU_MODE_HYP) { 9371 env->regs[14] = env->xregs[14]; 9372 } else { 9373 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9374 } 9375 } 9376 9377 if (mode == ARM_CPU_MODE_HYP) { 9378 env->regs[13] = env->xregs[15]; 9379 } else { 9380 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9381 } 9382 9383 if (mode == ARM_CPU_MODE_IRQ) { 9384 env->regs[14] = env->xregs[16]; 9385 env->regs[13] = env->xregs[17]; 9386 } else { 9387 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9388 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9389 } 9390 9391 if (mode == ARM_CPU_MODE_SVC) { 9392 env->regs[14] = env->xregs[18]; 9393 env->regs[13] = env->xregs[19]; 9394 } else { 9395 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9396 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9397 } 9398 9399 if (mode == ARM_CPU_MODE_ABT) { 9400 env->regs[14] = env->xregs[20]; 9401 env->regs[13] = env->xregs[21]; 9402 } else { 9403 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9404 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9405 } 9406 9407 if (mode == ARM_CPU_MODE_UND) { 9408 env->regs[14] = env->xregs[22]; 9409 env->regs[13] = env->xregs[23]; 9410 } else { 9411 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9412 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9413 } 9414 9415 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9416 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9417 * FIQ bank for r8-r14. 9418 */ 9419 if (mode == ARM_CPU_MODE_FIQ) { 9420 for (i = 24; i < 31; i++) { 9421 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9422 } 9423 } else { 9424 for (i = 24; i < 29; i++) { 9425 env->fiq_regs[i - 24] = env->xregs[i]; 9426 } 9427 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9428 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9429 } 9430 9431 env->regs[15] = env->pc; 9432 } 9433 9434 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9435 uint32_t mask, uint32_t offset, 9436 uint32_t newpc) 9437 { 9438 int new_el; 9439 9440 /* Change the CPU state so as to actually take the exception. */ 9441 switch_mode(env, new_mode); 9442 9443 /* 9444 * For exceptions taken to AArch32 we must clear the SS bit in both 9445 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9446 */ 9447 env->pstate &= ~PSTATE_SS; 9448 env->spsr = cpsr_read(env); 9449 /* Clear IT bits. */ 9450 env->condexec_bits = 0; 9451 /* Switch to the new mode, and to the correct instruction set. */ 9452 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9453 9454 /* This must be after mode switching. */ 9455 new_el = arm_current_el(env); 9456 9457 /* Set new mode endianness */ 9458 env->uncached_cpsr &= ~CPSR_E; 9459 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9460 env->uncached_cpsr |= CPSR_E; 9461 } 9462 /* J and IL must always be cleared for exception entry */ 9463 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9464 env->daif |= mask; 9465 9466 if (new_mode == ARM_CPU_MODE_HYP) { 9467 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9468 env->elr_el[2] = env->regs[15]; 9469 } else { 9470 /* CPSR.PAN is normally preserved preserved unless... */ 9471 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9472 switch (new_el) { 9473 case 3: 9474 if (!arm_is_secure_below_el3(env)) { 9475 /* ... the target is EL3, from non-secure state. */ 9476 env->uncached_cpsr &= ~CPSR_PAN; 9477 break; 9478 } 9479 /* ... the target is EL3, from secure state ... */ 9480 /* fall through */ 9481 case 1: 9482 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9483 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9484 env->uncached_cpsr |= CPSR_PAN; 9485 } 9486 break; 9487 } 9488 } 9489 /* 9490 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9491 * and we should just guard the thumb mode on V4 9492 */ 9493 if (arm_feature(env, ARM_FEATURE_V4T)) { 9494 env->thumb = 9495 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9496 } 9497 env->regs[14] = env->regs[15] + offset; 9498 } 9499 env->regs[15] = newpc; 9500 arm_rebuild_hflags(env); 9501 } 9502 9503 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9504 { 9505 /* 9506 * Handle exception entry to Hyp mode; this is sufficiently 9507 * different to entry to other AArch32 modes that we handle it 9508 * separately here. 9509 * 9510 * The vector table entry used is always the 0x14 Hyp mode entry point, 9511 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9512 * The offset applied to the preferred return address is always zero 9513 * (see DDI0487C.a section G1.12.3). 9514 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9515 */ 9516 uint32_t addr, mask; 9517 ARMCPU *cpu = ARM_CPU(cs); 9518 CPUARMState *env = &cpu->env; 9519 9520 switch (cs->exception_index) { 9521 case EXCP_UDEF: 9522 addr = 0x04; 9523 break; 9524 case EXCP_SWI: 9525 addr = 0x14; 9526 break; 9527 case EXCP_BKPT: 9528 /* Fall through to prefetch abort. */ 9529 case EXCP_PREFETCH_ABORT: 9530 env->cp15.ifar_s = env->exception.vaddress; 9531 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9532 (uint32_t)env->exception.vaddress); 9533 addr = 0x0c; 9534 break; 9535 case EXCP_DATA_ABORT: 9536 env->cp15.dfar_s = env->exception.vaddress; 9537 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9538 (uint32_t)env->exception.vaddress); 9539 addr = 0x10; 9540 break; 9541 case EXCP_IRQ: 9542 addr = 0x18; 9543 break; 9544 case EXCP_FIQ: 9545 addr = 0x1c; 9546 break; 9547 case EXCP_HVC: 9548 addr = 0x08; 9549 break; 9550 case EXCP_HYP_TRAP: 9551 addr = 0x14; 9552 break; 9553 default: 9554 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9555 } 9556 9557 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9558 if (!arm_feature(env, ARM_FEATURE_V8)) { 9559 /* 9560 * QEMU syndrome values are v8-style. v7 has the IL bit 9561 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9562 * If this is a v7 CPU, squash the IL bit in those cases. 9563 */ 9564 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9565 (cs->exception_index == EXCP_DATA_ABORT && 9566 !(env->exception.syndrome & ARM_EL_ISV)) || 9567 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9568 env->exception.syndrome &= ~ARM_EL_IL; 9569 } 9570 } 9571 env->cp15.esr_el[2] = env->exception.syndrome; 9572 } 9573 9574 if (arm_current_el(env) != 2 && addr < 0x14) { 9575 addr = 0x14; 9576 } 9577 9578 mask = 0; 9579 if (!(env->cp15.scr_el3 & SCR_EA)) { 9580 mask |= CPSR_A; 9581 } 9582 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9583 mask |= CPSR_I; 9584 } 9585 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9586 mask |= CPSR_F; 9587 } 9588 9589 addr += env->cp15.hvbar; 9590 9591 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9592 } 9593 9594 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9595 { 9596 ARMCPU *cpu = ARM_CPU(cs); 9597 CPUARMState *env = &cpu->env; 9598 uint32_t addr; 9599 uint32_t mask; 9600 int new_mode; 9601 uint32_t offset; 9602 uint32_t moe; 9603 9604 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9605 switch (syn_get_ec(env->exception.syndrome)) { 9606 case EC_BREAKPOINT: 9607 case EC_BREAKPOINT_SAME_EL: 9608 moe = 1; 9609 break; 9610 case EC_WATCHPOINT: 9611 case EC_WATCHPOINT_SAME_EL: 9612 moe = 10; 9613 break; 9614 case EC_AA32_BKPT: 9615 moe = 3; 9616 break; 9617 case EC_VECTORCATCH: 9618 moe = 5; 9619 break; 9620 default: 9621 moe = 0; 9622 break; 9623 } 9624 9625 if (moe) { 9626 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9627 } 9628 9629 if (env->exception.target_el == 2) { 9630 arm_cpu_do_interrupt_aarch32_hyp(cs); 9631 return; 9632 } 9633 9634 switch (cs->exception_index) { 9635 case EXCP_UDEF: 9636 new_mode = ARM_CPU_MODE_UND; 9637 addr = 0x04; 9638 mask = CPSR_I; 9639 if (env->thumb) 9640 offset = 2; 9641 else 9642 offset = 4; 9643 break; 9644 case EXCP_SWI: 9645 new_mode = ARM_CPU_MODE_SVC; 9646 addr = 0x08; 9647 mask = CPSR_I; 9648 /* The PC already points to the next instruction. */ 9649 offset = 0; 9650 break; 9651 case EXCP_BKPT: 9652 /* Fall through to prefetch abort. */ 9653 case EXCP_PREFETCH_ABORT: 9654 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9655 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9656 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9657 env->exception.fsr, (uint32_t)env->exception.vaddress); 9658 new_mode = ARM_CPU_MODE_ABT; 9659 addr = 0x0c; 9660 mask = CPSR_A | CPSR_I; 9661 offset = 4; 9662 break; 9663 case EXCP_DATA_ABORT: 9664 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9665 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9666 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9667 env->exception.fsr, 9668 (uint32_t)env->exception.vaddress); 9669 new_mode = ARM_CPU_MODE_ABT; 9670 addr = 0x10; 9671 mask = CPSR_A | CPSR_I; 9672 offset = 8; 9673 break; 9674 case EXCP_IRQ: 9675 new_mode = ARM_CPU_MODE_IRQ; 9676 addr = 0x18; 9677 /* Disable IRQ and imprecise data aborts. */ 9678 mask = CPSR_A | CPSR_I; 9679 offset = 4; 9680 if (env->cp15.scr_el3 & SCR_IRQ) { 9681 /* IRQ routed to monitor mode */ 9682 new_mode = ARM_CPU_MODE_MON; 9683 mask |= CPSR_F; 9684 } 9685 break; 9686 case EXCP_FIQ: 9687 new_mode = ARM_CPU_MODE_FIQ; 9688 addr = 0x1c; 9689 /* Disable FIQ, IRQ and imprecise data aborts. */ 9690 mask = CPSR_A | CPSR_I | CPSR_F; 9691 if (env->cp15.scr_el3 & SCR_FIQ) { 9692 /* FIQ routed to monitor mode */ 9693 new_mode = ARM_CPU_MODE_MON; 9694 } 9695 offset = 4; 9696 break; 9697 case EXCP_VIRQ: 9698 new_mode = ARM_CPU_MODE_IRQ; 9699 addr = 0x18; 9700 /* Disable IRQ and imprecise data aborts. */ 9701 mask = CPSR_A | CPSR_I; 9702 offset = 4; 9703 break; 9704 case EXCP_VFIQ: 9705 new_mode = ARM_CPU_MODE_FIQ; 9706 addr = 0x1c; 9707 /* Disable FIQ, IRQ and imprecise data aborts. */ 9708 mask = CPSR_A | CPSR_I | CPSR_F; 9709 offset = 4; 9710 break; 9711 case EXCP_SMC: 9712 new_mode = ARM_CPU_MODE_MON; 9713 addr = 0x08; 9714 mask = CPSR_A | CPSR_I | CPSR_F; 9715 offset = 0; 9716 break; 9717 default: 9718 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9719 return; /* Never happens. Keep compiler happy. */ 9720 } 9721 9722 if (new_mode == ARM_CPU_MODE_MON) { 9723 addr += env->cp15.mvbar; 9724 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9725 /* High vectors. When enabled, base address cannot be remapped. */ 9726 addr += 0xffff0000; 9727 } else { 9728 /* ARM v7 architectures provide a vector base address register to remap 9729 * the interrupt vector table. 9730 * This register is only followed in non-monitor mode, and is banked. 9731 * Note: only bits 31:5 are valid. 9732 */ 9733 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9734 } 9735 9736 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9737 env->cp15.scr_el3 &= ~SCR_NS; 9738 } 9739 9740 take_aarch32_exception(env, new_mode, mask, offset, addr); 9741 } 9742 9743 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9744 { 9745 /* 9746 * Return the register number of the AArch64 view of the AArch32 9747 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9748 * be that of the AArch32 mode the exception came from. 9749 */ 9750 int mode = env->uncached_cpsr & CPSR_M; 9751 9752 switch (aarch32_reg) { 9753 case 0 ... 7: 9754 return aarch32_reg; 9755 case 8 ... 12: 9756 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9757 case 13: 9758 switch (mode) { 9759 case ARM_CPU_MODE_USR: 9760 case ARM_CPU_MODE_SYS: 9761 return 13; 9762 case ARM_CPU_MODE_HYP: 9763 return 15; 9764 case ARM_CPU_MODE_IRQ: 9765 return 17; 9766 case ARM_CPU_MODE_SVC: 9767 return 19; 9768 case ARM_CPU_MODE_ABT: 9769 return 21; 9770 case ARM_CPU_MODE_UND: 9771 return 23; 9772 case ARM_CPU_MODE_FIQ: 9773 return 29; 9774 default: 9775 g_assert_not_reached(); 9776 } 9777 case 14: 9778 switch (mode) { 9779 case ARM_CPU_MODE_USR: 9780 case ARM_CPU_MODE_SYS: 9781 case ARM_CPU_MODE_HYP: 9782 return 14; 9783 case ARM_CPU_MODE_IRQ: 9784 return 16; 9785 case ARM_CPU_MODE_SVC: 9786 return 18; 9787 case ARM_CPU_MODE_ABT: 9788 return 20; 9789 case ARM_CPU_MODE_UND: 9790 return 22; 9791 case ARM_CPU_MODE_FIQ: 9792 return 30; 9793 default: 9794 g_assert_not_reached(); 9795 } 9796 case 15: 9797 return 31; 9798 default: 9799 g_assert_not_reached(); 9800 } 9801 } 9802 9803 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9804 { 9805 uint32_t ret = cpsr_read(env); 9806 9807 /* Move DIT to the correct location for SPSR_ELx */ 9808 if (ret & CPSR_DIT) { 9809 ret &= ~CPSR_DIT; 9810 ret |= PSTATE_DIT; 9811 } 9812 /* Merge PSTATE.SS into SPSR_ELx */ 9813 ret |= env->pstate & PSTATE_SS; 9814 9815 return ret; 9816 } 9817 9818 /* Handle exception entry to a target EL which is using AArch64 */ 9819 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9820 { 9821 ARMCPU *cpu = ARM_CPU(cs); 9822 CPUARMState *env = &cpu->env; 9823 unsigned int new_el = env->exception.target_el; 9824 target_ulong addr = env->cp15.vbar_el[new_el]; 9825 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9826 unsigned int old_mode; 9827 unsigned int cur_el = arm_current_el(env); 9828 int rt; 9829 9830 /* 9831 * Note that new_el can never be 0. If cur_el is 0, then 9832 * el0_a64 is is_a64(), else el0_a64 is ignored. 9833 */ 9834 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9835 9836 if (cur_el < new_el) { 9837 /* Entry vector offset depends on whether the implemented EL 9838 * immediately lower than the target level is using AArch32 or AArch64 9839 */ 9840 bool is_aa64; 9841 uint64_t hcr; 9842 9843 switch (new_el) { 9844 case 3: 9845 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9846 break; 9847 case 2: 9848 hcr = arm_hcr_el2_eff(env); 9849 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9850 is_aa64 = (hcr & HCR_RW) != 0; 9851 break; 9852 } 9853 /* fall through */ 9854 case 1: 9855 is_aa64 = is_a64(env); 9856 break; 9857 default: 9858 g_assert_not_reached(); 9859 } 9860 9861 if (is_aa64) { 9862 addr += 0x400; 9863 } else { 9864 addr += 0x600; 9865 } 9866 } else if (pstate_read(env) & PSTATE_SP) { 9867 addr += 0x200; 9868 } 9869 9870 switch (cs->exception_index) { 9871 case EXCP_PREFETCH_ABORT: 9872 case EXCP_DATA_ABORT: 9873 env->cp15.far_el[new_el] = env->exception.vaddress; 9874 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9875 env->cp15.far_el[new_el]); 9876 /* fall through */ 9877 case EXCP_BKPT: 9878 case EXCP_UDEF: 9879 case EXCP_SWI: 9880 case EXCP_HVC: 9881 case EXCP_HYP_TRAP: 9882 case EXCP_SMC: 9883 switch (syn_get_ec(env->exception.syndrome)) { 9884 case EC_ADVSIMDFPACCESSTRAP: 9885 /* 9886 * QEMU internal FP/SIMD syndromes from AArch32 include the 9887 * TA and coproc fields which are only exposed if the exception 9888 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9889 * AArch64 format syndrome. 9890 */ 9891 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9892 break; 9893 case EC_CP14RTTRAP: 9894 case EC_CP15RTTRAP: 9895 case EC_CP14DTTRAP: 9896 /* 9897 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 9898 * the raw register field from the insn; when taking this to 9899 * AArch64 we must convert it to the AArch64 view of the register 9900 * number. Notice that we read a 4-bit AArch32 register number and 9901 * write back a 5-bit AArch64 one. 9902 */ 9903 rt = extract32(env->exception.syndrome, 5, 4); 9904 rt = aarch64_regnum(env, rt); 9905 env->exception.syndrome = deposit32(env->exception.syndrome, 9906 5, 5, rt); 9907 break; 9908 case EC_CP15RRTTRAP: 9909 case EC_CP14RRTTRAP: 9910 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 9911 rt = extract32(env->exception.syndrome, 5, 4); 9912 rt = aarch64_regnum(env, rt); 9913 env->exception.syndrome = deposit32(env->exception.syndrome, 9914 5, 5, rt); 9915 rt = extract32(env->exception.syndrome, 10, 4); 9916 rt = aarch64_regnum(env, rt); 9917 env->exception.syndrome = deposit32(env->exception.syndrome, 9918 10, 5, rt); 9919 break; 9920 } 9921 env->cp15.esr_el[new_el] = env->exception.syndrome; 9922 break; 9923 case EXCP_IRQ: 9924 case EXCP_VIRQ: 9925 addr += 0x80; 9926 break; 9927 case EXCP_FIQ: 9928 case EXCP_VFIQ: 9929 addr += 0x100; 9930 break; 9931 default: 9932 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9933 } 9934 9935 if (is_a64(env)) { 9936 old_mode = pstate_read(env); 9937 aarch64_save_sp(env, arm_current_el(env)); 9938 env->elr_el[new_el] = env->pc; 9939 } else { 9940 old_mode = cpsr_read_for_spsr_elx(env); 9941 env->elr_el[new_el] = env->regs[15]; 9942 9943 aarch64_sync_32_to_64(env); 9944 9945 env->condexec_bits = 0; 9946 } 9947 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9948 9949 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9950 env->elr_el[new_el]); 9951 9952 if (cpu_isar_feature(aa64_pan, cpu)) { 9953 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9954 new_mode |= old_mode & PSTATE_PAN; 9955 switch (new_el) { 9956 case 2: 9957 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9958 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9959 != (HCR_E2H | HCR_TGE)) { 9960 break; 9961 } 9962 /* fall through */ 9963 case 1: 9964 /* ... the target is EL1 ... */ 9965 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9966 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9967 new_mode |= PSTATE_PAN; 9968 } 9969 break; 9970 } 9971 } 9972 if (cpu_isar_feature(aa64_mte, cpu)) { 9973 new_mode |= PSTATE_TCO; 9974 } 9975 9976 pstate_write(env, PSTATE_DAIF | new_mode); 9977 env->aarch64 = 1; 9978 aarch64_restore_sp(env, new_el); 9979 helper_rebuild_hflags_a64(env, new_el); 9980 9981 env->pc = addr; 9982 9983 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9984 new_el, env->pc, pstate_read(env)); 9985 } 9986 9987 /* 9988 * Do semihosting call and set the appropriate return value. All the 9989 * permission and validity checks have been done at translate time. 9990 * 9991 * We only see semihosting exceptions in TCG only as they are not 9992 * trapped to the hypervisor in KVM. 9993 */ 9994 #ifdef CONFIG_TCG 9995 static void handle_semihosting(CPUState *cs) 9996 { 9997 ARMCPU *cpu = ARM_CPU(cs); 9998 CPUARMState *env = &cpu->env; 9999 10000 if (is_a64(env)) { 10001 qemu_log_mask(CPU_LOG_INT, 10002 "...handling as semihosting call 0x%" PRIx64 "\n", 10003 env->xregs[0]); 10004 env->xregs[0] = do_common_semihosting(cs); 10005 env->pc += 4; 10006 } else { 10007 qemu_log_mask(CPU_LOG_INT, 10008 "...handling as semihosting call 0x%x\n", 10009 env->regs[0]); 10010 env->regs[0] = do_common_semihosting(cs); 10011 env->regs[15] += env->thumb ? 2 : 4; 10012 } 10013 } 10014 #endif 10015 10016 /* Handle a CPU exception for A and R profile CPUs. 10017 * Do any appropriate logging, handle PSCI calls, and then hand off 10018 * to the AArch64-entry or AArch32-entry function depending on the 10019 * target exception level's register width. 10020 * 10021 * Note: this is used for both TCG (as the do_interrupt tcg op), 10022 * and KVM to re-inject guest debug exceptions, and to 10023 * inject a Synchronous-External-Abort. 10024 */ 10025 void arm_cpu_do_interrupt(CPUState *cs) 10026 { 10027 ARMCPU *cpu = ARM_CPU(cs); 10028 CPUARMState *env = &cpu->env; 10029 unsigned int new_el = env->exception.target_el; 10030 10031 assert(!arm_feature(env, ARM_FEATURE_M)); 10032 10033 arm_log_exception(cs->exception_index); 10034 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10035 new_el); 10036 if (qemu_loglevel_mask(CPU_LOG_INT) 10037 && !excp_is_internal(cs->exception_index)) { 10038 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10039 syn_get_ec(env->exception.syndrome), 10040 env->exception.syndrome); 10041 } 10042 10043 if (arm_is_psci_call(cpu, cs->exception_index)) { 10044 arm_handle_psci_call(cpu); 10045 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10046 return; 10047 } 10048 10049 /* 10050 * Semihosting semantics depend on the register width of the code 10051 * that caused the exception, not the target exception level, so 10052 * must be handled here. 10053 */ 10054 #ifdef CONFIG_TCG 10055 if (cs->exception_index == EXCP_SEMIHOST) { 10056 handle_semihosting(cs); 10057 return; 10058 } 10059 #endif 10060 10061 /* Hooks may change global state so BQL should be held, also the 10062 * BQL needs to be held for any modification of 10063 * cs->interrupt_request. 10064 */ 10065 g_assert(qemu_mutex_iothread_locked()); 10066 10067 arm_call_pre_el_change_hook(cpu); 10068 10069 assert(!excp_is_internal(cs->exception_index)); 10070 if (arm_el_is_aa64(env, new_el)) { 10071 arm_cpu_do_interrupt_aarch64(cs); 10072 } else { 10073 arm_cpu_do_interrupt_aarch32(cs); 10074 } 10075 10076 arm_call_el_change_hook(cpu); 10077 10078 if (!kvm_enabled()) { 10079 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10080 } 10081 } 10082 #endif /* !CONFIG_USER_ONLY */ 10083 10084 uint64_t arm_sctlr(CPUARMState *env, int el) 10085 { 10086 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10087 if (el == 0) { 10088 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10089 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10090 ? 2 : 1; 10091 } 10092 return env->cp15.sctlr_el[el]; 10093 } 10094 10095 /* Return the SCTLR value which controls this address translation regime */ 10096 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10097 { 10098 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10099 } 10100 10101 #ifndef CONFIG_USER_ONLY 10102 10103 /* Return true if the specified stage of address translation is disabled */ 10104 static inline bool regime_translation_disabled(CPUARMState *env, 10105 ARMMMUIdx mmu_idx) 10106 { 10107 uint64_t hcr_el2; 10108 10109 if (arm_feature(env, ARM_FEATURE_M)) { 10110 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10111 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10112 case R_V7M_MPU_CTRL_ENABLE_MASK: 10113 /* Enabled, but not for HardFault and NMI */ 10114 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10115 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10116 /* Enabled for all cases */ 10117 return false; 10118 case 0: 10119 default: 10120 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10121 * we warned about that in armv7m_nvic.c when the guest set it. 10122 */ 10123 return true; 10124 } 10125 } 10126 10127 hcr_el2 = arm_hcr_el2_eff(env); 10128 10129 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10130 /* HCR.DC means HCR.VM behaves as 1 */ 10131 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10132 } 10133 10134 if (hcr_el2 & HCR_TGE) { 10135 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10136 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10137 return true; 10138 } 10139 } 10140 10141 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10142 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10143 return true; 10144 } 10145 10146 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10147 } 10148 10149 static inline bool regime_translation_big_endian(CPUARMState *env, 10150 ARMMMUIdx mmu_idx) 10151 { 10152 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10153 } 10154 10155 /* Return the TTBR associated with this translation regime */ 10156 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10157 int ttbrn) 10158 { 10159 if (mmu_idx == ARMMMUIdx_Stage2) { 10160 return env->cp15.vttbr_el2; 10161 } 10162 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10163 return env->cp15.vsttbr_el2; 10164 } 10165 if (ttbrn == 0) { 10166 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10167 } else { 10168 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10169 } 10170 } 10171 10172 #endif /* !CONFIG_USER_ONLY */ 10173 10174 /* Convert a possible stage1+2 MMU index into the appropriate 10175 * stage 1 MMU index 10176 */ 10177 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10178 { 10179 switch (mmu_idx) { 10180 case ARMMMUIdx_SE10_0: 10181 return ARMMMUIdx_Stage1_SE0; 10182 case ARMMMUIdx_SE10_1: 10183 return ARMMMUIdx_Stage1_SE1; 10184 case ARMMMUIdx_SE10_1_PAN: 10185 return ARMMMUIdx_Stage1_SE1_PAN; 10186 case ARMMMUIdx_E10_0: 10187 return ARMMMUIdx_Stage1_E0; 10188 case ARMMMUIdx_E10_1: 10189 return ARMMMUIdx_Stage1_E1; 10190 case ARMMMUIdx_E10_1_PAN: 10191 return ARMMMUIdx_Stage1_E1_PAN; 10192 default: 10193 return mmu_idx; 10194 } 10195 } 10196 10197 /* Return true if the translation regime is using LPAE format page tables */ 10198 static inline bool regime_using_lpae_format(CPUARMState *env, 10199 ARMMMUIdx mmu_idx) 10200 { 10201 int el = regime_el(env, mmu_idx); 10202 if (el == 2 || arm_el_is_aa64(env, el)) { 10203 return true; 10204 } 10205 if (arm_feature(env, ARM_FEATURE_LPAE) 10206 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10207 return true; 10208 } 10209 return false; 10210 } 10211 10212 /* Returns true if the stage 1 translation regime is using LPAE format page 10213 * tables. Used when raising alignment exceptions, whose FSR changes depending 10214 * on whether the long or short descriptor format is in use. */ 10215 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10216 { 10217 mmu_idx = stage_1_mmu_idx(mmu_idx); 10218 10219 return regime_using_lpae_format(env, mmu_idx); 10220 } 10221 10222 #ifndef CONFIG_USER_ONLY 10223 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10224 { 10225 switch (mmu_idx) { 10226 case ARMMMUIdx_SE10_0: 10227 case ARMMMUIdx_E20_0: 10228 case ARMMMUIdx_SE20_0: 10229 case ARMMMUIdx_Stage1_E0: 10230 case ARMMMUIdx_Stage1_SE0: 10231 case ARMMMUIdx_MUser: 10232 case ARMMMUIdx_MSUser: 10233 case ARMMMUIdx_MUserNegPri: 10234 case ARMMMUIdx_MSUserNegPri: 10235 return true; 10236 default: 10237 return false; 10238 case ARMMMUIdx_E10_0: 10239 case ARMMMUIdx_E10_1: 10240 case ARMMMUIdx_E10_1_PAN: 10241 g_assert_not_reached(); 10242 } 10243 } 10244 10245 /* Translate section/page access permissions to page 10246 * R/W protection flags 10247 * 10248 * @env: CPUARMState 10249 * @mmu_idx: MMU index indicating required translation regime 10250 * @ap: The 3-bit access permissions (AP[2:0]) 10251 * @domain_prot: The 2-bit domain access permissions 10252 */ 10253 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10254 int ap, int domain_prot) 10255 { 10256 bool is_user = regime_is_user(env, mmu_idx); 10257 10258 if (domain_prot == 3) { 10259 return PAGE_READ | PAGE_WRITE; 10260 } 10261 10262 switch (ap) { 10263 case 0: 10264 if (arm_feature(env, ARM_FEATURE_V7)) { 10265 return 0; 10266 } 10267 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10268 case SCTLR_S: 10269 return is_user ? 0 : PAGE_READ; 10270 case SCTLR_R: 10271 return PAGE_READ; 10272 default: 10273 return 0; 10274 } 10275 case 1: 10276 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10277 case 2: 10278 if (is_user) { 10279 return PAGE_READ; 10280 } else { 10281 return PAGE_READ | PAGE_WRITE; 10282 } 10283 case 3: 10284 return PAGE_READ | PAGE_WRITE; 10285 case 4: /* Reserved. */ 10286 return 0; 10287 case 5: 10288 return is_user ? 0 : PAGE_READ; 10289 case 6: 10290 return PAGE_READ; 10291 case 7: 10292 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10293 return 0; 10294 } 10295 return PAGE_READ; 10296 default: 10297 g_assert_not_reached(); 10298 } 10299 } 10300 10301 /* Translate section/page access permissions to page 10302 * R/W protection flags. 10303 * 10304 * @ap: The 2-bit simple AP (AP[2:1]) 10305 * @is_user: TRUE if accessing from PL0 10306 */ 10307 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10308 { 10309 switch (ap) { 10310 case 0: 10311 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10312 case 1: 10313 return PAGE_READ | PAGE_WRITE; 10314 case 2: 10315 return is_user ? 0 : PAGE_READ; 10316 case 3: 10317 return PAGE_READ; 10318 default: 10319 g_assert_not_reached(); 10320 } 10321 } 10322 10323 static inline int 10324 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10325 { 10326 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10327 } 10328 10329 /* Translate S2 section/page access permissions to protection flags 10330 * 10331 * @env: CPUARMState 10332 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10333 * @xn: XN (execute-never) bits 10334 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10335 */ 10336 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10337 { 10338 int prot = 0; 10339 10340 if (s2ap & 1) { 10341 prot |= PAGE_READ; 10342 } 10343 if (s2ap & 2) { 10344 prot |= PAGE_WRITE; 10345 } 10346 10347 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10348 switch (xn) { 10349 case 0: 10350 prot |= PAGE_EXEC; 10351 break; 10352 case 1: 10353 if (s1_is_el0) { 10354 prot |= PAGE_EXEC; 10355 } 10356 break; 10357 case 2: 10358 break; 10359 case 3: 10360 if (!s1_is_el0) { 10361 prot |= PAGE_EXEC; 10362 } 10363 break; 10364 default: 10365 g_assert_not_reached(); 10366 } 10367 } else { 10368 if (!extract32(xn, 1, 1)) { 10369 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10370 prot |= PAGE_EXEC; 10371 } 10372 } 10373 } 10374 return prot; 10375 } 10376 10377 /* Translate section/page access permissions to protection flags 10378 * 10379 * @env: CPUARMState 10380 * @mmu_idx: MMU index indicating required translation regime 10381 * @is_aa64: TRUE if AArch64 10382 * @ap: The 2-bit simple AP (AP[2:1]) 10383 * @ns: NS (non-secure) bit 10384 * @xn: XN (execute-never) bit 10385 * @pxn: PXN (privileged execute-never) bit 10386 */ 10387 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10388 int ap, int ns, int xn, int pxn) 10389 { 10390 bool is_user = regime_is_user(env, mmu_idx); 10391 int prot_rw, user_rw; 10392 bool have_wxn; 10393 int wxn = 0; 10394 10395 assert(mmu_idx != ARMMMUIdx_Stage2); 10396 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10397 10398 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10399 if (is_user) { 10400 prot_rw = user_rw; 10401 } else { 10402 if (user_rw && regime_is_pan(env, mmu_idx)) { 10403 /* PAN forbids data accesses but doesn't affect insn fetch */ 10404 prot_rw = 0; 10405 } else { 10406 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10407 } 10408 } 10409 10410 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10411 return prot_rw; 10412 } 10413 10414 /* TODO have_wxn should be replaced with 10415 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10416 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10417 * compatible processors have EL2, which is required for [U]WXN. 10418 */ 10419 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10420 10421 if (have_wxn) { 10422 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10423 } 10424 10425 if (is_aa64) { 10426 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10427 xn = pxn || (user_rw & PAGE_WRITE); 10428 } 10429 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10430 switch (regime_el(env, mmu_idx)) { 10431 case 1: 10432 case 3: 10433 if (is_user) { 10434 xn = xn || !(user_rw & PAGE_READ); 10435 } else { 10436 int uwxn = 0; 10437 if (have_wxn) { 10438 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10439 } 10440 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10441 (uwxn && (user_rw & PAGE_WRITE)); 10442 } 10443 break; 10444 case 2: 10445 break; 10446 } 10447 } else { 10448 xn = wxn = 0; 10449 } 10450 10451 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10452 return prot_rw; 10453 } 10454 return prot_rw | PAGE_EXEC; 10455 } 10456 10457 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10458 uint32_t *table, uint32_t address) 10459 { 10460 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10461 TCR *tcr = regime_tcr(env, mmu_idx); 10462 10463 if (address & tcr->mask) { 10464 if (tcr->raw_tcr & TTBCR_PD1) { 10465 /* Translation table walk disabled for TTBR1 */ 10466 return false; 10467 } 10468 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10469 } else { 10470 if (tcr->raw_tcr & TTBCR_PD0) { 10471 /* Translation table walk disabled for TTBR0 */ 10472 return false; 10473 } 10474 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10475 } 10476 *table |= (address >> 18) & 0x3ffc; 10477 return true; 10478 } 10479 10480 /* Translate a S1 pagetable walk through S2 if needed. */ 10481 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10482 hwaddr addr, bool *is_secure, 10483 ARMMMUFaultInfo *fi) 10484 { 10485 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10486 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10487 target_ulong s2size; 10488 hwaddr s2pa; 10489 int s2prot; 10490 int ret; 10491 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10492 : ARMMMUIdx_Stage2; 10493 ARMCacheAttrs cacheattrs = {}; 10494 MemTxAttrs txattrs = {}; 10495 10496 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10497 &s2pa, &txattrs, &s2prot, &s2size, fi, 10498 &cacheattrs); 10499 if (ret) { 10500 assert(fi->type != ARMFault_None); 10501 fi->s2addr = addr; 10502 fi->stage2 = true; 10503 fi->s1ptw = true; 10504 fi->s1ns = !*is_secure; 10505 return ~0; 10506 } 10507 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10508 (cacheattrs.attrs & 0xf0) == 0) { 10509 /* 10510 * PTW set and S1 walk touched S2 Device memory: 10511 * generate Permission fault. 10512 */ 10513 fi->type = ARMFault_Permission; 10514 fi->s2addr = addr; 10515 fi->stage2 = true; 10516 fi->s1ptw = true; 10517 fi->s1ns = !*is_secure; 10518 return ~0; 10519 } 10520 10521 if (arm_is_secure_below_el3(env)) { 10522 /* Check if page table walk is to secure or non-secure PA space. */ 10523 if (*is_secure) { 10524 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10525 } else { 10526 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10527 } 10528 } else { 10529 assert(!*is_secure); 10530 } 10531 10532 addr = s2pa; 10533 } 10534 return addr; 10535 } 10536 10537 /* All loads done in the course of a page table walk go through here. */ 10538 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10539 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10540 { 10541 ARMCPU *cpu = ARM_CPU(cs); 10542 CPUARMState *env = &cpu->env; 10543 MemTxAttrs attrs = {}; 10544 MemTxResult result = MEMTX_OK; 10545 AddressSpace *as; 10546 uint32_t data; 10547 10548 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10549 attrs.secure = is_secure; 10550 as = arm_addressspace(cs, attrs); 10551 if (fi->s1ptw) { 10552 return 0; 10553 } 10554 if (regime_translation_big_endian(env, mmu_idx)) { 10555 data = address_space_ldl_be(as, addr, attrs, &result); 10556 } else { 10557 data = address_space_ldl_le(as, addr, attrs, &result); 10558 } 10559 if (result == MEMTX_OK) { 10560 return data; 10561 } 10562 fi->type = ARMFault_SyncExternalOnWalk; 10563 fi->ea = arm_extabort_type(result); 10564 return 0; 10565 } 10566 10567 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10568 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10569 { 10570 ARMCPU *cpu = ARM_CPU(cs); 10571 CPUARMState *env = &cpu->env; 10572 MemTxAttrs attrs = {}; 10573 MemTxResult result = MEMTX_OK; 10574 AddressSpace *as; 10575 uint64_t data; 10576 10577 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10578 attrs.secure = is_secure; 10579 as = arm_addressspace(cs, attrs); 10580 if (fi->s1ptw) { 10581 return 0; 10582 } 10583 if (regime_translation_big_endian(env, mmu_idx)) { 10584 data = address_space_ldq_be(as, addr, attrs, &result); 10585 } else { 10586 data = address_space_ldq_le(as, addr, attrs, &result); 10587 } 10588 if (result == MEMTX_OK) { 10589 return data; 10590 } 10591 fi->type = ARMFault_SyncExternalOnWalk; 10592 fi->ea = arm_extabort_type(result); 10593 return 0; 10594 } 10595 10596 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10597 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10598 hwaddr *phys_ptr, int *prot, 10599 target_ulong *page_size, 10600 ARMMMUFaultInfo *fi) 10601 { 10602 CPUState *cs = env_cpu(env); 10603 int level = 1; 10604 uint32_t table; 10605 uint32_t desc; 10606 int type; 10607 int ap; 10608 int domain = 0; 10609 int domain_prot; 10610 hwaddr phys_addr; 10611 uint32_t dacr; 10612 10613 /* Pagetable walk. */ 10614 /* Lookup l1 descriptor. */ 10615 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10616 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10617 fi->type = ARMFault_Translation; 10618 goto do_fault; 10619 } 10620 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10621 mmu_idx, fi); 10622 if (fi->type != ARMFault_None) { 10623 goto do_fault; 10624 } 10625 type = (desc & 3); 10626 domain = (desc >> 5) & 0x0f; 10627 if (regime_el(env, mmu_idx) == 1) { 10628 dacr = env->cp15.dacr_ns; 10629 } else { 10630 dacr = env->cp15.dacr_s; 10631 } 10632 domain_prot = (dacr >> (domain * 2)) & 3; 10633 if (type == 0) { 10634 /* Section translation fault. */ 10635 fi->type = ARMFault_Translation; 10636 goto do_fault; 10637 } 10638 if (type != 2) { 10639 level = 2; 10640 } 10641 if (domain_prot == 0 || domain_prot == 2) { 10642 fi->type = ARMFault_Domain; 10643 goto do_fault; 10644 } 10645 if (type == 2) { 10646 /* 1Mb section. */ 10647 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10648 ap = (desc >> 10) & 3; 10649 *page_size = 1024 * 1024; 10650 } else { 10651 /* Lookup l2 entry. */ 10652 if (type == 1) { 10653 /* Coarse pagetable. */ 10654 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10655 } else { 10656 /* Fine pagetable. */ 10657 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10658 } 10659 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10660 mmu_idx, fi); 10661 if (fi->type != ARMFault_None) { 10662 goto do_fault; 10663 } 10664 switch (desc & 3) { 10665 case 0: /* Page translation fault. */ 10666 fi->type = ARMFault_Translation; 10667 goto do_fault; 10668 case 1: /* 64k page. */ 10669 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10670 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10671 *page_size = 0x10000; 10672 break; 10673 case 2: /* 4k page. */ 10674 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10675 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10676 *page_size = 0x1000; 10677 break; 10678 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10679 if (type == 1) { 10680 /* ARMv6/XScale extended small page format */ 10681 if (arm_feature(env, ARM_FEATURE_XSCALE) 10682 || arm_feature(env, ARM_FEATURE_V6)) { 10683 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10684 *page_size = 0x1000; 10685 } else { 10686 /* UNPREDICTABLE in ARMv5; we choose to take a 10687 * page translation fault. 10688 */ 10689 fi->type = ARMFault_Translation; 10690 goto do_fault; 10691 } 10692 } else { 10693 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10694 *page_size = 0x400; 10695 } 10696 ap = (desc >> 4) & 3; 10697 break; 10698 default: 10699 /* Never happens, but compiler isn't smart enough to tell. */ 10700 abort(); 10701 } 10702 } 10703 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10704 *prot |= *prot ? PAGE_EXEC : 0; 10705 if (!(*prot & (1 << access_type))) { 10706 /* Access permission fault. */ 10707 fi->type = ARMFault_Permission; 10708 goto do_fault; 10709 } 10710 *phys_ptr = phys_addr; 10711 return false; 10712 do_fault: 10713 fi->domain = domain; 10714 fi->level = level; 10715 return true; 10716 } 10717 10718 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10719 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10720 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10721 target_ulong *page_size, ARMMMUFaultInfo *fi) 10722 { 10723 CPUState *cs = env_cpu(env); 10724 ARMCPU *cpu = env_archcpu(env); 10725 int level = 1; 10726 uint32_t table; 10727 uint32_t desc; 10728 uint32_t xn; 10729 uint32_t pxn = 0; 10730 int type; 10731 int ap; 10732 int domain = 0; 10733 int domain_prot; 10734 hwaddr phys_addr; 10735 uint32_t dacr; 10736 bool ns; 10737 10738 /* Pagetable walk. */ 10739 /* Lookup l1 descriptor. */ 10740 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10741 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10742 fi->type = ARMFault_Translation; 10743 goto do_fault; 10744 } 10745 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10746 mmu_idx, fi); 10747 if (fi->type != ARMFault_None) { 10748 goto do_fault; 10749 } 10750 type = (desc & 3); 10751 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10752 /* Section translation fault, or attempt to use the encoding 10753 * which is Reserved on implementations without PXN. 10754 */ 10755 fi->type = ARMFault_Translation; 10756 goto do_fault; 10757 } 10758 if ((type == 1) || !(desc & (1 << 18))) { 10759 /* Page or Section. */ 10760 domain = (desc >> 5) & 0x0f; 10761 } 10762 if (regime_el(env, mmu_idx) == 1) { 10763 dacr = env->cp15.dacr_ns; 10764 } else { 10765 dacr = env->cp15.dacr_s; 10766 } 10767 if (type == 1) { 10768 level = 2; 10769 } 10770 domain_prot = (dacr >> (domain * 2)) & 3; 10771 if (domain_prot == 0 || domain_prot == 2) { 10772 /* Section or Page domain fault */ 10773 fi->type = ARMFault_Domain; 10774 goto do_fault; 10775 } 10776 if (type != 1) { 10777 if (desc & (1 << 18)) { 10778 /* Supersection. */ 10779 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10780 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10781 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10782 *page_size = 0x1000000; 10783 } else { 10784 /* Section. */ 10785 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10786 *page_size = 0x100000; 10787 } 10788 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10789 xn = desc & (1 << 4); 10790 pxn = desc & 1; 10791 ns = extract32(desc, 19, 1); 10792 } else { 10793 if (cpu_isar_feature(aa32_pxn, cpu)) { 10794 pxn = (desc >> 2) & 1; 10795 } 10796 ns = extract32(desc, 3, 1); 10797 /* Lookup l2 entry. */ 10798 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10799 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10800 mmu_idx, fi); 10801 if (fi->type != ARMFault_None) { 10802 goto do_fault; 10803 } 10804 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10805 switch (desc & 3) { 10806 case 0: /* Page translation fault. */ 10807 fi->type = ARMFault_Translation; 10808 goto do_fault; 10809 case 1: /* 64k page. */ 10810 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10811 xn = desc & (1 << 15); 10812 *page_size = 0x10000; 10813 break; 10814 case 2: case 3: /* 4k page. */ 10815 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10816 xn = desc & 1; 10817 *page_size = 0x1000; 10818 break; 10819 default: 10820 /* Never happens, but compiler isn't smart enough to tell. */ 10821 abort(); 10822 } 10823 } 10824 if (domain_prot == 3) { 10825 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10826 } else { 10827 if (pxn && !regime_is_user(env, mmu_idx)) { 10828 xn = 1; 10829 } 10830 if (xn && access_type == MMU_INST_FETCH) { 10831 fi->type = ARMFault_Permission; 10832 goto do_fault; 10833 } 10834 10835 if (arm_feature(env, ARM_FEATURE_V6K) && 10836 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10837 /* The simplified model uses AP[0] as an access control bit. */ 10838 if ((ap & 1) == 0) { 10839 /* Access flag fault. */ 10840 fi->type = ARMFault_AccessFlag; 10841 goto do_fault; 10842 } 10843 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10844 } else { 10845 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10846 } 10847 if (*prot && !xn) { 10848 *prot |= PAGE_EXEC; 10849 } 10850 if (!(*prot & (1 << access_type))) { 10851 /* Access permission fault. */ 10852 fi->type = ARMFault_Permission; 10853 goto do_fault; 10854 } 10855 } 10856 if (ns) { 10857 /* The NS bit will (as required by the architecture) have no effect if 10858 * the CPU doesn't support TZ or this is a non-secure translation 10859 * regime, because the attribute will already be non-secure. 10860 */ 10861 attrs->secure = false; 10862 } 10863 *phys_ptr = phys_addr; 10864 return false; 10865 do_fault: 10866 fi->domain = domain; 10867 fi->level = level; 10868 return true; 10869 } 10870 10871 /* 10872 * check_s2_mmu_setup 10873 * @cpu: ARMCPU 10874 * @is_aa64: True if the translation regime is in AArch64 state 10875 * @startlevel: Suggested starting level 10876 * @inputsize: Bitsize of IPAs 10877 * @stride: Page-table stride (See the ARM ARM) 10878 * 10879 * Returns true if the suggested S2 translation parameters are OK and 10880 * false otherwise. 10881 */ 10882 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10883 int inputsize, int stride) 10884 { 10885 const int grainsize = stride + 3; 10886 int startsizecheck; 10887 10888 /* Negative levels are never allowed. */ 10889 if (level < 0) { 10890 return false; 10891 } 10892 10893 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10894 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10895 return false; 10896 } 10897 10898 if (is_aa64) { 10899 CPUARMState *env = &cpu->env; 10900 unsigned int pamax = arm_pamax(cpu); 10901 10902 switch (stride) { 10903 case 13: /* 64KB Pages. */ 10904 if (level == 0 || (level == 1 && pamax <= 42)) { 10905 return false; 10906 } 10907 break; 10908 case 11: /* 16KB Pages. */ 10909 if (level == 0 || (level == 1 && pamax <= 40)) { 10910 return false; 10911 } 10912 break; 10913 case 9: /* 4KB Pages. */ 10914 if (level == 0 && pamax <= 42) { 10915 return false; 10916 } 10917 break; 10918 default: 10919 g_assert_not_reached(); 10920 } 10921 10922 /* Inputsize checks. */ 10923 if (inputsize > pamax && 10924 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10925 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10926 return false; 10927 } 10928 } else { 10929 /* AArch32 only supports 4KB pages. Assert on that. */ 10930 assert(stride == 9); 10931 10932 if (level == 0) { 10933 return false; 10934 } 10935 } 10936 return true; 10937 } 10938 10939 /* Translate from the 4-bit stage 2 representation of 10940 * memory attributes (without cache-allocation hints) to 10941 * the 8-bit representation of the stage 1 MAIR registers 10942 * (which includes allocation hints). 10943 * 10944 * ref: shared/translation/attrs/S2AttrDecode() 10945 * .../S2ConvertAttrsHints() 10946 */ 10947 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10948 { 10949 uint8_t hiattr = extract32(s2attrs, 2, 2); 10950 uint8_t loattr = extract32(s2attrs, 0, 2); 10951 uint8_t hihint = 0, lohint = 0; 10952 10953 if (hiattr != 0) { /* normal memory */ 10954 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 10955 hiattr = loattr = 1; /* non-cacheable */ 10956 } else { 10957 if (hiattr != 1) { /* Write-through or write-back */ 10958 hihint = 3; /* RW allocate */ 10959 } 10960 if (loattr != 1) { /* Write-through or write-back */ 10961 lohint = 3; /* RW allocate */ 10962 } 10963 } 10964 } 10965 10966 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10967 } 10968 #endif /* !CONFIG_USER_ONLY */ 10969 10970 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10971 { 10972 if (regime_has_2_ranges(mmu_idx)) { 10973 return extract64(tcr, 37, 2); 10974 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10975 return 0; /* VTCR_EL2 */ 10976 } else { 10977 /* Replicate the single TBI bit so we always have 2 bits. */ 10978 return extract32(tcr, 20, 1) * 3; 10979 } 10980 } 10981 10982 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10983 { 10984 if (regime_has_2_ranges(mmu_idx)) { 10985 return extract64(tcr, 51, 2); 10986 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10987 return 0; /* VTCR_EL2 */ 10988 } else { 10989 /* Replicate the single TBID bit so we always have 2 bits. */ 10990 return extract32(tcr, 29, 1) * 3; 10991 } 10992 } 10993 10994 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10995 { 10996 if (regime_has_2_ranges(mmu_idx)) { 10997 return extract64(tcr, 57, 2); 10998 } else { 10999 /* Replicate the single TCMA bit so we always have 2 bits. */ 11000 return extract32(tcr, 30, 1) * 3; 11001 } 11002 } 11003 11004 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11005 ARMMMUIdx mmu_idx, bool data) 11006 { 11007 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11008 bool epd, hpd, using16k, using64k; 11009 int select, tsz, tbi, max_tsz; 11010 11011 if (!regime_has_2_ranges(mmu_idx)) { 11012 select = 0; 11013 tsz = extract32(tcr, 0, 6); 11014 using64k = extract32(tcr, 14, 1); 11015 using16k = extract32(tcr, 15, 1); 11016 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11017 /* VTCR_EL2 */ 11018 hpd = false; 11019 } else { 11020 hpd = extract32(tcr, 24, 1); 11021 } 11022 epd = false; 11023 } else { 11024 /* 11025 * Bit 55 is always between the two regions, and is canonical for 11026 * determining if address tagging is enabled. 11027 */ 11028 select = extract64(va, 55, 1); 11029 if (!select) { 11030 tsz = extract32(tcr, 0, 6); 11031 epd = extract32(tcr, 7, 1); 11032 using64k = extract32(tcr, 14, 1); 11033 using16k = extract32(tcr, 15, 1); 11034 hpd = extract64(tcr, 41, 1); 11035 } else { 11036 int tg = extract32(tcr, 30, 2); 11037 using16k = tg == 1; 11038 using64k = tg == 3; 11039 tsz = extract32(tcr, 16, 6); 11040 epd = extract32(tcr, 23, 1); 11041 hpd = extract64(tcr, 42, 1); 11042 } 11043 } 11044 11045 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11046 max_tsz = 48 - using64k; 11047 } else { 11048 max_tsz = 39; 11049 } 11050 11051 tsz = MIN(tsz, max_tsz); 11052 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11053 11054 /* Present TBI as a composite with TBID. */ 11055 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11056 if (!data) { 11057 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11058 } 11059 tbi = (tbi >> select) & 1; 11060 11061 return (ARMVAParameters) { 11062 .tsz = tsz, 11063 .select = select, 11064 .tbi = tbi, 11065 .epd = epd, 11066 .hpd = hpd, 11067 .using16k = using16k, 11068 .using64k = using64k, 11069 }; 11070 } 11071 11072 #ifndef CONFIG_USER_ONLY 11073 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11074 ARMMMUIdx mmu_idx) 11075 { 11076 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11077 uint32_t el = regime_el(env, mmu_idx); 11078 int select, tsz; 11079 bool epd, hpd; 11080 11081 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11082 11083 if (mmu_idx == ARMMMUIdx_Stage2) { 11084 /* VTCR */ 11085 bool sext = extract32(tcr, 4, 1); 11086 bool sign = extract32(tcr, 3, 1); 11087 11088 /* 11089 * If the sign-extend bit is not the same as t0sz[3], the result 11090 * is unpredictable. Flag this as a guest error. 11091 */ 11092 if (sign != sext) { 11093 qemu_log_mask(LOG_GUEST_ERROR, 11094 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11095 } 11096 tsz = sextract32(tcr, 0, 4) + 8; 11097 select = 0; 11098 hpd = false; 11099 epd = false; 11100 } else if (el == 2) { 11101 /* HTCR */ 11102 tsz = extract32(tcr, 0, 3); 11103 select = 0; 11104 hpd = extract64(tcr, 24, 1); 11105 epd = false; 11106 } else { 11107 int t0sz = extract32(tcr, 0, 3); 11108 int t1sz = extract32(tcr, 16, 3); 11109 11110 if (t1sz == 0) { 11111 select = va > (0xffffffffu >> t0sz); 11112 } else { 11113 /* Note that we will detect errors later. */ 11114 select = va >= ~(0xffffffffu >> t1sz); 11115 } 11116 if (!select) { 11117 tsz = t0sz; 11118 epd = extract32(tcr, 7, 1); 11119 hpd = extract64(tcr, 41, 1); 11120 } else { 11121 tsz = t1sz; 11122 epd = extract32(tcr, 23, 1); 11123 hpd = extract64(tcr, 42, 1); 11124 } 11125 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11126 hpd &= extract32(tcr, 6, 1); 11127 } 11128 11129 return (ARMVAParameters) { 11130 .tsz = tsz, 11131 .select = select, 11132 .epd = epd, 11133 .hpd = hpd, 11134 }; 11135 } 11136 11137 /** 11138 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11139 * 11140 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11141 * prot and page_size may not be filled in, and the populated fsr value provides 11142 * information on why the translation aborted, in the format of a long-format 11143 * DFSR/IFSR fault register, with the following caveats: 11144 * * the WnR bit is never set (the caller must do this). 11145 * 11146 * @env: CPUARMState 11147 * @address: virtual address to get physical address for 11148 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11149 * @mmu_idx: MMU index indicating required translation regime 11150 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11151 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11152 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11153 * @phys_ptr: set to the physical address corresponding to the virtual address 11154 * @attrs: set to the memory transaction attributes to use 11155 * @prot: set to the permissions for the page containing phys_ptr 11156 * @page_size_ptr: set to the size of the page containing phys_ptr 11157 * @fi: set to fault info if the translation fails 11158 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11159 */ 11160 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11161 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11162 bool s1_is_el0, 11163 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11164 target_ulong *page_size_ptr, 11165 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11166 { 11167 ARMCPU *cpu = env_archcpu(env); 11168 CPUState *cs = CPU(cpu); 11169 /* Read an LPAE long-descriptor translation table. */ 11170 ARMFaultType fault_type = ARMFault_Translation; 11171 uint32_t level; 11172 ARMVAParameters param; 11173 uint64_t ttbr; 11174 hwaddr descaddr, indexmask, indexmask_grainsize; 11175 uint32_t tableattrs; 11176 target_ulong page_size; 11177 uint32_t attrs; 11178 int32_t stride; 11179 int addrsize, inputsize; 11180 TCR *tcr = regime_tcr(env, mmu_idx); 11181 int ap, ns, xn, pxn; 11182 uint32_t el = regime_el(env, mmu_idx); 11183 uint64_t descaddrmask; 11184 bool aarch64 = arm_el_is_aa64(env, el); 11185 bool guarded = false; 11186 11187 /* TODO: This code does not support shareability levels. */ 11188 if (aarch64) { 11189 param = aa64_va_parameters(env, address, mmu_idx, 11190 access_type != MMU_INST_FETCH); 11191 level = 0; 11192 addrsize = 64 - 8 * param.tbi; 11193 inputsize = 64 - param.tsz; 11194 } else { 11195 param = aa32_va_parameters(env, address, mmu_idx); 11196 level = 1; 11197 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11198 inputsize = addrsize - param.tsz; 11199 } 11200 11201 /* 11202 * We determined the region when collecting the parameters, but we 11203 * have not yet validated that the address is valid for the region. 11204 * Extract the top bits and verify that they all match select. 11205 * 11206 * For aa32, if inputsize == addrsize, then we have selected the 11207 * region by exclusion in aa32_va_parameters and there is no more 11208 * validation to do here. 11209 */ 11210 if (inputsize < addrsize) { 11211 target_ulong top_bits = sextract64(address, inputsize, 11212 addrsize - inputsize); 11213 if (-top_bits != param.select) { 11214 /* The gap between the two regions is a Translation fault */ 11215 fault_type = ARMFault_Translation; 11216 goto do_fault; 11217 } 11218 } 11219 11220 if (param.using64k) { 11221 stride = 13; 11222 } else if (param.using16k) { 11223 stride = 11; 11224 } else { 11225 stride = 9; 11226 } 11227 11228 /* Note that QEMU ignores shareability and cacheability attributes, 11229 * so we don't need to do anything with the SH, ORGN, IRGN fields 11230 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11231 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11232 * implement any ASID-like capability so we can ignore it (instead 11233 * we will always flush the TLB any time the ASID is changed). 11234 */ 11235 ttbr = regime_ttbr(env, mmu_idx, param.select); 11236 11237 /* Here we should have set up all the parameters for the translation: 11238 * inputsize, ttbr, epd, stride, tbi 11239 */ 11240 11241 if (param.epd) { 11242 /* Translation table walk disabled => Translation fault on TLB miss 11243 * Note: This is always 0 on 64-bit EL2 and EL3. 11244 */ 11245 goto do_fault; 11246 } 11247 11248 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11249 /* The starting level depends on the virtual address size (which can 11250 * be up to 48 bits) and the translation granule size. It indicates 11251 * the number of strides (stride bits at a time) needed to 11252 * consume the bits of the input address. In the pseudocode this is: 11253 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11254 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11255 * our 'stride + 3' and 'stride' is our 'stride'. 11256 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11257 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11258 * = 4 - (inputsize - 4) / stride; 11259 */ 11260 level = 4 - (inputsize - 4) / stride; 11261 } else { 11262 /* For stage 2 translations the starting level is specified by the 11263 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11264 */ 11265 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11266 uint32_t startlevel; 11267 bool ok; 11268 11269 if (!aarch64 || stride == 9) { 11270 /* AArch32 or 4KB pages */ 11271 startlevel = 2 - sl0; 11272 11273 if (cpu_isar_feature(aa64_st, cpu)) { 11274 startlevel &= 3; 11275 } 11276 } else { 11277 /* 16KB or 64KB pages */ 11278 startlevel = 3 - sl0; 11279 } 11280 11281 /* Check that the starting level is valid. */ 11282 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11283 inputsize, stride); 11284 if (!ok) { 11285 fault_type = ARMFault_Translation; 11286 goto do_fault; 11287 } 11288 level = startlevel; 11289 } 11290 11291 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11292 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11293 11294 /* Now we can extract the actual base address from the TTBR */ 11295 descaddr = extract64(ttbr, 0, 48); 11296 /* 11297 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11298 * and also to mask out CnP (bit 0) which could validly be non-zero. 11299 */ 11300 descaddr &= ~indexmask; 11301 11302 /* The address field in the descriptor goes up to bit 39 for ARMv7 11303 * but up to bit 47 for ARMv8, but we use the descaddrmask 11304 * up to bit 39 for AArch32, because we don't need other bits in that case 11305 * to construct next descriptor address (anyway they should be all zeroes). 11306 */ 11307 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11308 ~indexmask_grainsize; 11309 11310 /* Secure accesses start with the page table in secure memory and 11311 * can be downgraded to non-secure at any step. Non-secure accesses 11312 * remain non-secure. We implement this by just ORing in the NSTable/NS 11313 * bits at each step. 11314 */ 11315 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11316 for (;;) { 11317 uint64_t descriptor; 11318 bool nstable; 11319 11320 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11321 descaddr &= ~7ULL; 11322 nstable = extract32(tableattrs, 4, 1); 11323 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11324 if (fi->type != ARMFault_None) { 11325 goto do_fault; 11326 } 11327 11328 if (!(descriptor & 1) || 11329 (!(descriptor & 2) && (level == 3))) { 11330 /* Invalid, or the Reserved level 3 encoding */ 11331 goto do_fault; 11332 } 11333 descaddr = descriptor & descaddrmask; 11334 11335 if ((descriptor & 2) && (level < 3)) { 11336 /* Table entry. The top five bits are attributes which may 11337 * propagate down through lower levels of the table (and 11338 * which are all arranged so that 0 means "no effect", so 11339 * we can gather them up by ORing in the bits at each level). 11340 */ 11341 tableattrs |= extract64(descriptor, 59, 5); 11342 level++; 11343 indexmask = indexmask_grainsize; 11344 continue; 11345 } 11346 /* Block entry at level 1 or 2, or page entry at level 3. 11347 * These are basically the same thing, although the number 11348 * of bits we pull in from the vaddr varies. 11349 */ 11350 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11351 descaddr |= (address & (page_size - 1)); 11352 /* Extract attributes from the descriptor */ 11353 attrs = extract64(descriptor, 2, 10) 11354 | (extract64(descriptor, 52, 12) << 10); 11355 11356 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11357 /* Stage 2 table descriptors do not include any attribute fields */ 11358 break; 11359 } 11360 /* Merge in attributes from table descriptors */ 11361 attrs |= nstable << 3; /* NS */ 11362 guarded = extract64(descriptor, 50, 1); /* GP */ 11363 if (param.hpd) { 11364 /* HPD disables all the table attributes except NSTable. */ 11365 break; 11366 } 11367 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11368 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11369 * means "force PL1 access only", which means forcing AP[1] to 0. 11370 */ 11371 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11372 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11373 break; 11374 } 11375 /* Here descaddr is the final physical address, and attributes 11376 * are all in attrs. 11377 */ 11378 fault_type = ARMFault_AccessFlag; 11379 if ((attrs & (1 << 8)) == 0) { 11380 /* Access flag */ 11381 goto do_fault; 11382 } 11383 11384 ap = extract32(attrs, 4, 2); 11385 11386 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11387 ns = mmu_idx == ARMMMUIdx_Stage2; 11388 xn = extract32(attrs, 11, 2); 11389 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11390 } else { 11391 ns = extract32(attrs, 3, 1); 11392 xn = extract32(attrs, 12, 1); 11393 pxn = extract32(attrs, 11, 1); 11394 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11395 } 11396 11397 fault_type = ARMFault_Permission; 11398 if (!(*prot & (1 << access_type))) { 11399 goto do_fault; 11400 } 11401 11402 if (ns) { 11403 /* The NS bit will (as required by the architecture) have no effect if 11404 * the CPU doesn't support TZ or this is a non-secure translation 11405 * regime, because the attribute will already be non-secure. 11406 */ 11407 txattrs->secure = false; 11408 } 11409 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11410 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11411 arm_tlb_bti_gp(txattrs) = true; 11412 } 11413 11414 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11415 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11416 } else { 11417 /* Index into MAIR registers for cache attributes */ 11418 uint8_t attrindx = extract32(attrs, 0, 3); 11419 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11420 assert(attrindx <= 7); 11421 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11422 } 11423 cacheattrs->shareability = extract32(attrs, 6, 2); 11424 11425 *phys_ptr = descaddr; 11426 *page_size_ptr = page_size; 11427 return false; 11428 11429 do_fault: 11430 fi->type = fault_type; 11431 fi->level = level; 11432 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11433 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11434 mmu_idx == ARMMMUIdx_Stage2_S); 11435 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11436 return true; 11437 } 11438 11439 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11440 ARMMMUIdx mmu_idx, 11441 int32_t address, int *prot) 11442 { 11443 if (!arm_feature(env, ARM_FEATURE_M)) { 11444 *prot = PAGE_READ | PAGE_WRITE; 11445 switch (address) { 11446 case 0xF0000000 ... 0xFFFFFFFF: 11447 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11448 /* hivecs execing is ok */ 11449 *prot |= PAGE_EXEC; 11450 } 11451 break; 11452 case 0x00000000 ... 0x7FFFFFFF: 11453 *prot |= PAGE_EXEC; 11454 break; 11455 } 11456 } else { 11457 /* Default system address map for M profile cores. 11458 * The architecture specifies which regions are execute-never; 11459 * at the MPU level no other checks are defined. 11460 */ 11461 switch (address) { 11462 case 0x00000000 ... 0x1fffffff: /* ROM */ 11463 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11464 case 0x60000000 ... 0x7fffffff: /* RAM */ 11465 case 0x80000000 ... 0x9fffffff: /* RAM */ 11466 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11467 break; 11468 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11469 case 0xa0000000 ... 0xbfffffff: /* Device */ 11470 case 0xc0000000 ... 0xdfffffff: /* Device */ 11471 case 0xe0000000 ... 0xffffffff: /* System */ 11472 *prot = PAGE_READ | PAGE_WRITE; 11473 break; 11474 default: 11475 g_assert_not_reached(); 11476 } 11477 } 11478 } 11479 11480 static bool pmsav7_use_background_region(ARMCPU *cpu, 11481 ARMMMUIdx mmu_idx, bool is_user) 11482 { 11483 /* Return true if we should use the default memory map as a 11484 * "background" region if there are no hits against any MPU regions. 11485 */ 11486 CPUARMState *env = &cpu->env; 11487 11488 if (is_user) { 11489 return false; 11490 } 11491 11492 if (arm_feature(env, ARM_FEATURE_M)) { 11493 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11494 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11495 } else { 11496 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11497 } 11498 } 11499 11500 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11501 { 11502 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11503 return arm_feature(env, ARM_FEATURE_M) && 11504 extract32(address, 20, 12) == 0xe00; 11505 } 11506 11507 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11508 { 11509 /* True if address is in the M profile system region 11510 * 0xe0000000 - 0xffffffff 11511 */ 11512 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11513 } 11514 11515 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11516 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11517 hwaddr *phys_ptr, int *prot, 11518 target_ulong *page_size, 11519 ARMMMUFaultInfo *fi) 11520 { 11521 ARMCPU *cpu = env_archcpu(env); 11522 int n; 11523 bool is_user = regime_is_user(env, mmu_idx); 11524 11525 *phys_ptr = address; 11526 *page_size = TARGET_PAGE_SIZE; 11527 *prot = 0; 11528 11529 if (regime_translation_disabled(env, mmu_idx) || 11530 m_is_ppb_region(env, address)) { 11531 /* MPU disabled or M profile PPB access: use default memory map. 11532 * The other case which uses the default memory map in the 11533 * v7M ARM ARM pseudocode is exception vector reads from the vector 11534 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11535 * which always does a direct read using address_space_ldl(), rather 11536 * than going via this function, so we don't need to check that here. 11537 */ 11538 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11539 } else { /* MPU enabled */ 11540 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11541 /* region search */ 11542 uint32_t base = env->pmsav7.drbar[n]; 11543 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11544 uint32_t rmask; 11545 bool srdis = false; 11546 11547 if (!(env->pmsav7.drsr[n] & 0x1)) { 11548 continue; 11549 } 11550 11551 if (!rsize) { 11552 qemu_log_mask(LOG_GUEST_ERROR, 11553 "DRSR[%d]: Rsize field cannot be 0\n", n); 11554 continue; 11555 } 11556 rsize++; 11557 rmask = (1ull << rsize) - 1; 11558 11559 if (base & rmask) { 11560 qemu_log_mask(LOG_GUEST_ERROR, 11561 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11562 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11563 n, base, rmask); 11564 continue; 11565 } 11566 11567 if (address < base || address > base + rmask) { 11568 /* 11569 * Address not in this region. We must check whether the 11570 * region covers addresses in the same page as our address. 11571 * In that case we must not report a size that covers the 11572 * whole page for a subsequent hit against a different MPU 11573 * region or the background region, because it would result in 11574 * incorrect TLB hits for subsequent accesses to addresses that 11575 * are in this MPU region. 11576 */ 11577 if (ranges_overlap(base, rmask, 11578 address & TARGET_PAGE_MASK, 11579 TARGET_PAGE_SIZE)) { 11580 *page_size = 1; 11581 } 11582 continue; 11583 } 11584 11585 /* Region matched */ 11586 11587 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11588 int i, snd; 11589 uint32_t srdis_mask; 11590 11591 rsize -= 3; /* sub region size (power of 2) */ 11592 snd = ((address - base) >> rsize) & 0x7; 11593 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11594 11595 srdis_mask = srdis ? 0x3 : 0x0; 11596 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11597 /* This will check in groups of 2, 4 and then 8, whether 11598 * the subregion bits are consistent. rsize is incremented 11599 * back up to give the region size, considering consistent 11600 * adjacent subregions as one region. Stop testing if rsize 11601 * is already big enough for an entire QEMU page. 11602 */ 11603 int snd_rounded = snd & ~(i - 1); 11604 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11605 snd_rounded + 8, i); 11606 if (srdis_mask ^ srdis_multi) { 11607 break; 11608 } 11609 srdis_mask = (srdis_mask << i) | srdis_mask; 11610 rsize++; 11611 } 11612 } 11613 if (srdis) { 11614 continue; 11615 } 11616 if (rsize < TARGET_PAGE_BITS) { 11617 *page_size = 1 << rsize; 11618 } 11619 break; 11620 } 11621 11622 if (n == -1) { /* no hits */ 11623 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11624 /* background fault */ 11625 fi->type = ARMFault_Background; 11626 return true; 11627 } 11628 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11629 } else { /* a MPU hit! */ 11630 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11631 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11632 11633 if (m_is_system_region(env, address)) { 11634 /* System space is always execute never */ 11635 xn = 1; 11636 } 11637 11638 if (is_user) { /* User mode AP bit decoding */ 11639 switch (ap) { 11640 case 0: 11641 case 1: 11642 case 5: 11643 break; /* no access */ 11644 case 3: 11645 *prot |= PAGE_WRITE; 11646 /* fall through */ 11647 case 2: 11648 case 6: 11649 *prot |= PAGE_READ | PAGE_EXEC; 11650 break; 11651 case 7: 11652 /* for v7M, same as 6; for R profile a reserved value */ 11653 if (arm_feature(env, ARM_FEATURE_M)) { 11654 *prot |= PAGE_READ | PAGE_EXEC; 11655 break; 11656 } 11657 /* fall through */ 11658 default: 11659 qemu_log_mask(LOG_GUEST_ERROR, 11660 "DRACR[%d]: Bad value for AP bits: 0x%" 11661 PRIx32 "\n", n, ap); 11662 } 11663 } else { /* Priv. mode AP bits decoding */ 11664 switch (ap) { 11665 case 0: 11666 break; /* no access */ 11667 case 1: 11668 case 2: 11669 case 3: 11670 *prot |= PAGE_WRITE; 11671 /* fall through */ 11672 case 5: 11673 case 6: 11674 *prot |= PAGE_READ | PAGE_EXEC; 11675 break; 11676 case 7: 11677 /* for v7M, same as 6; for R profile a reserved value */ 11678 if (arm_feature(env, ARM_FEATURE_M)) { 11679 *prot |= PAGE_READ | PAGE_EXEC; 11680 break; 11681 } 11682 /* fall through */ 11683 default: 11684 qemu_log_mask(LOG_GUEST_ERROR, 11685 "DRACR[%d]: Bad value for AP bits: 0x%" 11686 PRIx32 "\n", n, ap); 11687 } 11688 } 11689 11690 /* execute never */ 11691 if (xn) { 11692 *prot &= ~PAGE_EXEC; 11693 } 11694 } 11695 } 11696 11697 fi->type = ARMFault_Permission; 11698 fi->level = 1; 11699 return !(*prot & (1 << access_type)); 11700 } 11701 11702 static bool v8m_is_sau_exempt(CPUARMState *env, 11703 uint32_t address, MMUAccessType access_type) 11704 { 11705 /* The architecture specifies that certain address ranges are 11706 * exempt from v8M SAU/IDAU checks. 11707 */ 11708 return 11709 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11710 (address >= 0xe0000000 && address <= 0xe0002fff) || 11711 (address >= 0xe000e000 && address <= 0xe000efff) || 11712 (address >= 0xe002e000 && address <= 0xe002efff) || 11713 (address >= 0xe0040000 && address <= 0xe0041fff) || 11714 (address >= 0xe00ff000 && address <= 0xe00fffff); 11715 } 11716 11717 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11718 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11719 V8M_SAttributes *sattrs) 11720 { 11721 /* Look up the security attributes for this address. Compare the 11722 * pseudocode SecurityCheck() function. 11723 * We assume the caller has zero-initialized *sattrs. 11724 */ 11725 ARMCPU *cpu = env_archcpu(env); 11726 int r; 11727 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11728 int idau_region = IREGION_NOTVALID; 11729 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11730 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11731 11732 if (cpu->idau) { 11733 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11734 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11735 11736 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11737 &idau_nsc); 11738 } 11739 11740 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11741 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11742 return; 11743 } 11744 11745 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11746 sattrs->ns = !regime_is_secure(env, mmu_idx); 11747 return; 11748 } 11749 11750 if (idau_region != IREGION_NOTVALID) { 11751 sattrs->irvalid = true; 11752 sattrs->iregion = idau_region; 11753 } 11754 11755 switch (env->sau.ctrl & 3) { 11756 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11757 break; 11758 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11759 sattrs->ns = true; 11760 break; 11761 default: /* SAU.ENABLE == 1 */ 11762 for (r = 0; r < cpu->sau_sregion; r++) { 11763 if (env->sau.rlar[r] & 1) { 11764 uint32_t base = env->sau.rbar[r] & ~0x1f; 11765 uint32_t limit = env->sau.rlar[r] | 0x1f; 11766 11767 if (base <= address && limit >= address) { 11768 if (base > addr_page_base || limit < addr_page_limit) { 11769 sattrs->subpage = true; 11770 } 11771 if (sattrs->srvalid) { 11772 /* If we hit in more than one region then we must report 11773 * as Secure, not NS-Callable, with no valid region 11774 * number info. 11775 */ 11776 sattrs->ns = false; 11777 sattrs->nsc = false; 11778 sattrs->sregion = 0; 11779 sattrs->srvalid = false; 11780 break; 11781 } else { 11782 if (env->sau.rlar[r] & 2) { 11783 sattrs->nsc = true; 11784 } else { 11785 sattrs->ns = true; 11786 } 11787 sattrs->srvalid = true; 11788 sattrs->sregion = r; 11789 } 11790 } else { 11791 /* 11792 * Address not in this region. We must check whether the 11793 * region covers addresses in the same page as our address. 11794 * In that case we must not report a size that covers the 11795 * whole page for a subsequent hit against a different MPU 11796 * region or the background region, because it would result 11797 * in incorrect TLB hits for subsequent accesses to 11798 * addresses that are in this MPU region. 11799 */ 11800 if (limit >= base && 11801 ranges_overlap(base, limit - base + 1, 11802 addr_page_base, 11803 TARGET_PAGE_SIZE)) { 11804 sattrs->subpage = true; 11805 } 11806 } 11807 } 11808 } 11809 break; 11810 } 11811 11812 /* 11813 * The IDAU will override the SAU lookup results if it specifies 11814 * higher security than the SAU does. 11815 */ 11816 if (!idau_ns) { 11817 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11818 sattrs->ns = false; 11819 sattrs->nsc = idau_nsc; 11820 } 11821 } 11822 } 11823 11824 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11825 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11826 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11827 int *prot, bool *is_subpage, 11828 ARMMMUFaultInfo *fi, uint32_t *mregion) 11829 { 11830 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11831 * that a full phys-to-virt translation does). 11832 * mregion is (if not NULL) set to the region number which matched, 11833 * or -1 if no region number is returned (MPU off, address did not 11834 * hit a region, address hit in multiple regions). 11835 * We set is_subpage to true if the region hit doesn't cover the 11836 * entire TARGET_PAGE the address is within. 11837 */ 11838 ARMCPU *cpu = env_archcpu(env); 11839 bool is_user = regime_is_user(env, mmu_idx); 11840 uint32_t secure = regime_is_secure(env, mmu_idx); 11841 int n; 11842 int matchregion = -1; 11843 bool hit = false; 11844 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11845 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11846 11847 *is_subpage = false; 11848 *phys_ptr = address; 11849 *prot = 0; 11850 if (mregion) { 11851 *mregion = -1; 11852 } 11853 11854 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11855 * was an exception vector read from the vector table (which is always 11856 * done using the default system address map), because those accesses 11857 * are done in arm_v7m_load_vector(), which always does a direct 11858 * read using address_space_ldl(), rather than going via this function. 11859 */ 11860 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11861 hit = true; 11862 } else if (m_is_ppb_region(env, address)) { 11863 hit = true; 11864 } else { 11865 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11866 hit = true; 11867 } 11868 11869 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11870 /* region search */ 11871 /* Note that the base address is bits [31:5] from the register 11872 * with bits [4:0] all zeroes, but the limit address is bits 11873 * [31:5] from the register with bits [4:0] all ones. 11874 */ 11875 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11876 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11877 11878 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11879 /* Region disabled */ 11880 continue; 11881 } 11882 11883 if (address < base || address > limit) { 11884 /* 11885 * Address not in this region. We must check whether the 11886 * region covers addresses in the same page as our address. 11887 * In that case we must not report a size that covers the 11888 * whole page for a subsequent hit against a different MPU 11889 * region or the background region, because it would result in 11890 * incorrect TLB hits for subsequent accesses to addresses that 11891 * are in this MPU region. 11892 */ 11893 if (limit >= base && 11894 ranges_overlap(base, limit - base + 1, 11895 addr_page_base, 11896 TARGET_PAGE_SIZE)) { 11897 *is_subpage = true; 11898 } 11899 continue; 11900 } 11901 11902 if (base > addr_page_base || limit < addr_page_limit) { 11903 *is_subpage = true; 11904 } 11905 11906 if (matchregion != -1) { 11907 /* Multiple regions match -- always a failure (unlike 11908 * PMSAv7 where highest-numbered-region wins) 11909 */ 11910 fi->type = ARMFault_Permission; 11911 fi->level = 1; 11912 return true; 11913 } 11914 11915 matchregion = n; 11916 hit = true; 11917 } 11918 } 11919 11920 if (!hit) { 11921 /* background fault */ 11922 fi->type = ARMFault_Background; 11923 return true; 11924 } 11925 11926 if (matchregion == -1) { 11927 /* hit using the background region */ 11928 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11929 } else { 11930 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11931 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11932 bool pxn = false; 11933 11934 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 11935 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 11936 } 11937 11938 if (m_is_system_region(env, address)) { 11939 /* System space is always execute never */ 11940 xn = 1; 11941 } 11942 11943 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11944 if (*prot && !xn && !(pxn && !is_user)) { 11945 *prot |= PAGE_EXEC; 11946 } 11947 /* We don't need to look the attribute up in the MAIR0/MAIR1 11948 * registers because that only tells us about cacheability. 11949 */ 11950 if (mregion) { 11951 *mregion = matchregion; 11952 } 11953 } 11954 11955 fi->type = ARMFault_Permission; 11956 fi->level = 1; 11957 return !(*prot & (1 << access_type)); 11958 } 11959 11960 11961 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11962 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11963 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11964 int *prot, target_ulong *page_size, 11965 ARMMMUFaultInfo *fi) 11966 { 11967 uint32_t secure = regime_is_secure(env, mmu_idx); 11968 V8M_SAttributes sattrs = {}; 11969 bool ret; 11970 bool mpu_is_subpage; 11971 11972 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11973 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11974 if (access_type == MMU_INST_FETCH) { 11975 /* Instruction fetches always use the MMU bank and the 11976 * transaction attribute determined by the fetch address, 11977 * regardless of CPU state. This is painful for QEMU 11978 * to handle, because it would mean we need to encode 11979 * into the mmu_idx not just the (user, negpri) information 11980 * for the current security state but also that for the 11981 * other security state, which would balloon the number 11982 * of mmu_idx values needed alarmingly. 11983 * Fortunately we can avoid this because it's not actually 11984 * possible to arbitrarily execute code from memory with 11985 * the wrong security attribute: it will always generate 11986 * an exception of some kind or another, apart from the 11987 * special case of an NS CPU executing an SG instruction 11988 * in S&NSC memory. So we always just fail the translation 11989 * here and sort things out in the exception handler 11990 * (including possibly emulating an SG instruction). 11991 */ 11992 if (sattrs.ns != !secure) { 11993 if (sattrs.nsc) { 11994 fi->type = ARMFault_QEMU_NSCExec; 11995 } else { 11996 fi->type = ARMFault_QEMU_SFault; 11997 } 11998 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11999 *phys_ptr = address; 12000 *prot = 0; 12001 return true; 12002 } 12003 } else { 12004 /* For data accesses we always use the MMU bank indicated 12005 * by the current CPU state, but the security attributes 12006 * might downgrade a secure access to nonsecure. 12007 */ 12008 if (sattrs.ns) { 12009 txattrs->secure = false; 12010 } else if (!secure) { 12011 /* NS access to S memory must fault. 12012 * Architecturally we should first check whether the 12013 * MPU information for this address indicates that we 12014 * are doing an unaligned access to Device memory, which 12015 * should generate a UsageFault instead. QEMU does not 12016 * currently check for that kind of unaligned access though. 12017 * If we added it we would need to do so as a special case 12018 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12019 */ 12020 fi->type = ARMFault_QEMU_SFault; 12021 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12022 *phys_ptr = address; 12023 *prot = 0; 12024 return true; 12025 } 12026 } 12027 } 12028 12029 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12030 txattrs, prot, &mpu_is_subpage, fi, NULL); 12031 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12032 return ret; 12033 } 12034 12035 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12036 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12037 hwaddr *phys_ptr, int *prot, 12038 ARMMMUFaultInfo *fi) 12039 { 12040 int n; 12041 uint32_t mask; 12042 uint32_t base; 12043 bool is_user = regime_is_user(env, mmu_idx); 12044 12045 if (regime_translation_disabled(env, mmu_idx)) { 12046 /* MPU disabled. */ 12047 *phys_ptr = address; 12048 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12049 return false; 12050 } 12051 12052 *phys_ptr = address; 12053 for (n = 7; n >= 0; n--) { 12054 base = env->cp15.c6_region[n]; 12055 if ((base & 1) == 0) { 12056 continue; 12057 } 12058 mask = 1 << ((base >> 1) & 0x1f); 12059 /* Keep this shift separate from the above to avoid an 12060 (undefined) << 32. */ 12061 mask = (mask << 1) - 1; 12062 if (((base ^ address) & ~mask) == 0) { 12063 break; 12064 } 12065 } 12066 if (n < 0) { 12067 fi->type = ARMFault_Background; 12068 return true; 12069 } 12070 12071 if (access_type == MMU_INST_FETCH) { 12072 mask = env->cp15.pmsav5_insn_ap; 12073 } else { 12074 mask = env->cp15.pmsav5_data_ap; 12075 } 12076 mask = (mask >> (n * 4)) & 0xf; 12077 switch (mask) { 12078 case 0: 12079 fi->type = ARMFault_Permission; 12080 fi->level = 1; 12081 return true; 12082 case 1: 12083 if (is_user) { 12084 fi->type = ARMFault_Permission; 12085 fi->level = 1; 12086 return true; 12087 } 12088 *prot = PAGE_READ | PAGE_WRITE; 12089 break; 12090 case 2: 12091 *prot = PAGE_READ; 12092 if (!is_user) { 12093 *prot |= PAGE_WRITE; 12094 } 12095 break; 12096 case 3: 12097 *prot = PAGE_READ | PAGE_WRITE; 12098 break; 12099 case 5: 12100 if (is_user) { 12101 fi->type = ARMFault_Permission; 12102 fi->level = 1; 12103 return true; 12104 } 12105 *prot = PAGE_READ; 12106 break; 12107 case 6: 12108 *prot = PAGE_READ; 12109 break; 12110 default: 12111 /* Bad permission. */ 12112 fi->type = ARMFault_Permission; 12113 fi->level = 1; 12114 return true; 12115 } 12116 *prot |= PAGE_EXEC; 12117 return false; 12118 } 12119 12120 /* Combine either inner or outer cacheability attributes for normal 12121 * memory, according to table D4-42 and pseudocode procedure 12122 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12123 * 12124 * NB: only stage 1 includes allocation hints (RW bits), leading to 12125 * some asymmetry. 12126 */ 12127 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12128 { 12129 if (s1 == 4 || s2 == 4) { 12130 /* non-cacheable has precedence */ 12131 return 4; 12132 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12133 /* stage 1 write-through takes precedence */ 12134 return s1; 12135 } else if (extract32(s2, 2, 2) == 2) { 12136 /* stage 2 write-through takes precedence, but the allocation hint 12137 * is still taken from stage 1 12138 */ 12139 return (2 << 2) | extract32(s1, 0, 2); 12140 } else { /* write-back */ 12141 return s1; 12142 } 12143 } 12144 12145 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12146 * and CombineS1S2Desc() 12147 * 12148 * @s1: Attributes from stage 1 walk 12149 * @s2: Attributes from stage 2 walk 12150 */ 12151 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12152 { 12153 uint8_t s1lo, s2lo, s1hi, s2hi; 12154 ARMCacheAttrs ret; 12155 bool tagged = false; 12156 12157 if (s1.attrs == 0xf0) { 12158 tagged = true; 12159 s1.attrs = 0xff; 12160 } 12161 12162 s1lo = extract32(s1.attrs, 0, 4); 12163 s2lo = extract32(s2.attrs, 0, 4); 12164 s1hi = extract32(s1.attrs, 4, 4); 12165 s2hi = extract32(s2.attrs, 4, 4); 12166 12167 /* Combine shareability attributes (table D4-43) */ 12168 if (s1.shareability == 2 || s2.shareability == 2) { 12169 /* if either are outer-shareable, the result is outer-shareable */ 12170 ret.shareability = 2; 12171 } else if (s1.shareability == 3 || s2.shareability == 3) { 12172 /* if either are inner-shareable, the result is inner-shareable */ 12173 ret.shareability = 3; 12174 } else { 12175 /* both non-shareable */ 12176 ret.shareability = 0; 12177 } 12178 12179 /* Combine memory type and cacheability attributes */ 12180 if (s1hi == 0 || s2hi == 0) { 12181 /* Device has precedence over normal */ 12182 if (s1lo == 0 || s2lo == 0) { 12183 /* nGnRnE has precedence over anything */ 12184 ret.attrs = 0; 12185 } else if (s1lo == 4 || s2lo == 4) { 12186 /* non-Reordering has precedence over Reordering */ 12187 ret.attrs = 4; /* nGnRE */ 12188 } else if (s1lo == 8 || s2lo == 8) { 12189 /* non-Gathering has precedence over Gathering */ 12190 ret.attrs = 8; /* nGRE */ 12191 } else { 12192 ret.attrs = 0xc; /* GRE */ 12193 } 12194 12195 /* Any location for which the resultant memory type is any 12196 * type of Device memory is always treated as Outer Shareable. 12197 */ 12198 ret.shareability = 2; 12199 } else { /* Normal memory */ 12200 /* Outer/inner cacheability combine independently */ 12201 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12202 | combine_cacheattr_nibble(s1lo, s2lo); 12203 12204 if (ret.attrs == 0x44) { 12205 /* Any location for which the resultant memory type is Normal 12206 * Inner Non-cacheable, Outer Non-cacheable is always treated 12207 * as Outer Shareable. 12208 */ 12209 ret.shareability = 2; 12210 } 12211 } 12212 12213 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12214 if (tagged && ret.attrs == 0xff) { 12215 ret.attrs = 0xf0; 12216 } 12217 12218 return ret; 12219 } 12220 12221 12222 /* get_phys_addr - get the physical address for this virtual address 12223 * 12224 * Find the physical address corresponding to the given virtual address, 12225 * by doing a translation table walk on MMU based systems or using the 12226 * MPU state on MPU based systems. 12227 * 12228 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12229 * prot and page_size may not be filled in, and the populated fsr value provides 12230 * information on why the translation aborted, in the format of a 12231 * DFSR/IFSR fault register, with the following caveats: 12232 * * we honour the short vs long DFSR format differences. 12233 * * the WnR bit is never set (the caller must do this). 12234 * * for PSMAv5 based systems we don't bother to return a full FSR format 12235 * value. 12236 * 12237 * @env: CPUARMState 12238 * @address: virtual address to get physical address for 12239 * @access_type: 0 for read, 1 for write, 2 for execute 12240 * @mmu_idx: MMU index indicating required translation regime 12241 * @phys_ptr: set to the physical address corresponding to the virtual address 12242 * @attrs: set to the memory transaction attributes to use 12243 * @prot: set to the permissions for the page containing phys_ptr 12244 * @page_size: set to the size of the page containing phys_ptr 12245 * @fi: set to fault info if the translation fails 12246 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12247 */ 12248 bool get_phys_addr(CPUARMState *env, target_ulong address, 12249 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12250 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12251 target_ulong *page_size, 12252 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12253 { 12254 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12255 12256 if (mmu_idx != s1_mmu_idx) { 12257 /* Call ourselves recursively to do the stage 1 and then stage 2 12258 * translations if mmu_idx is a two-stage regime. 12259 */ 12260 if (arm_feature(env, ARM_FEATURE_EL2)) { 12261 hwaddr ipa; 12262 int s2_prot; 12263 int ret; 12264 ARMCacheAttrs cacheattrs2 = {}; 12265 ARMMMUIdx s2_mmu_idx; 12266 bool is_el0; 12267 12268 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12269 attrs, prot, page_size, fi, cacheattrs); 12270 12271 /* If S1 fails or S2 is disabled, return early. */ 12272 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12273 *phys_ptr = ipa; 12274 return ret; 12275 } 12276 12277 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12278 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12279 12280 /* S1 is done. Now do S2 translation. */ 12281 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12282 phys_ptr, attrs, &s2_prot, 12283 page_size, fi, &cacheattrs2); 12284 fi->s2addr = ipa; 12285 /* Combine the S1 and S2 perms. */ 12286 *prot &= s2_prot; 12287 12288 /* If S2 fails, return early. */ 12289 if (ret) { 12290 return ret; 12291 } 12292 12293 /* Combine the S1 and S2 cache attributes. */ 12294 if (arm_hcr_el2_eff(env) & HCR_DC) { 12295 /* 12296 * HCR.DC forces the first stage attributes to 12297 * Normal Non-Shareable, 12298 * Inner Write-Back Read-Allocate Write-Allocate, 12299 * Outer Write-Back Read-Allocate Write-Allocate. 12300 * Do not overwrite Tagged within attrs. 12301 */ 12302 if (cacheattrs->attrs != 0xf0) { 12303 cacheattrs->attrs = 0xff; 12304 } 12305 cacheattrs->shareability = 0; 12306 } 12307 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12308 12309 /* Check if IPA translates to secure or non-secure PA space. */ 12310 if (arm_is_secure_below_el3(env)) { 12311 if (attrs->secure) { 12312 attrs->secure = 12313 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12314 } else { 12315 attrs->secure = 12316 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12317 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12318 } 12319 } 12320 return 0; 12321 } else { 12322 /* 12323 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12324 */ 12325 mmu_idx = stage_1_mmu_idx(mmu_idx); 12326 } 12327 } 12328 12329 /* The page table entries may downgrade secure to non-secure, but 12330 * cannot upgrade an non-secure translation regime's attributes 12331 * to secure. 12332 */ 12333 attrs->secure = regime_is_secure(env, mmu_idx); 12334 attrs->user = regime_is_user(env, mmu_idx); 12335 12336 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12337 * In v7 and earlier it affects all stage 1 translations. 12338 */ 12339 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12340 && !arm_feature(env, ARM_FEATURE_V8)) { 12341 if (regime_el(env, mmu_idx) == 3) { 12342 address += env->cp15.fcseidr_s; 12343 } else { 12344 address += env->cp15.fcseidr_ns; 12345 } 12346 } 12347 12348 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12349 bool ret; 12350 *page_size = TARGET_PAGE_SIZE; 12351 12352 if (arm_feature(env, ARM_FEATURE_V8)) { 12353 /* PMSAv8 */ 12354 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12355 phys_ptr, attrs, prot, page_size, fi); 12356 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12357 /* PMSAv7 */ 12358 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12359 phys_ptr, prot, page_size, fi); 12360 } else { 12361 /* Pre-v7 MPU */ 12362 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12363 phys_ptr, prot, fi); 12364 } 12365 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12366 " mmu_idx %u -> %s (prot %c%c%c)\n", 12367 access_type == MMU_DATA_LOAD ? "reading" : 12368 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12369 (uint32_t)address, mmu_idx, 12370 ret ? "Miss" : "Hit", 12371 *prot & PAGE_READ ? 'r' : '-', 12372 *prot & PAGE_WRITE ? 'w' : '-', 12373 *prot & PAGE_EXEC ? 'x' : '-'); 12374 12375 return ret; 12376 } 12377 12378 /* Definitely a real MMU, not an MPU */ 12379 12380 if (regime_translation_disabled(env, mmu_idx)) { 12381 uint64_t hcr; 12382 uint8_t memattr; 12383 12384 /* 12385 * MMU disabled. S1 addresses within aa64 translation regimes are 12386 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12387 */ 12388 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12389 int r_el = regime_el(env, mmu_idx); 12390 if (arm_el_is_aa64(env, r_el)) { 12391 int pamax = arm_pamax(env_archcpu(env)); 12392 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12393 int addrtop, tbi; 12394 12395 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12396 if (access_type == MMU_INST_FETCH) { 12397 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12398 } 12399 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12400 addrtop = (tbi ? 55 : 63); 12401 12402 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12403 fi->type = ARMFault_AddressSize; 12404 fi->level = 0; 12405 fi->stage2 = false; 12406 return 1; 12407 } 12408 12409 /* 12410 * When TBI is disabled, we've just validated that all of the 12411 * bits above PAMax are zero, so logically we only need to 12412 * clear the top byte for TBI. But it's clearer to follow 12413 * the pseudocode set of addrdesc.paddress. 12414 */ 12415 address = extract64(address, 0, 52); 12416 } 12417 } 12418 *phys_ptr = address; 12419 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12420 *page_size = TARGET_PAGE_SIZE; 12421 12422 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12423 hcr = arm_hcr_el2_eff(env); 12424 cacheattrs->shareability = 0; 12425 if (hcr & HCR_DC) { 12426 if (hcr & HCR_DCT) { 12427 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12428 } else { 12429 memattr = 0xff; /* Normal, WB, RWA */ 12430 } 12431 } else if (access_type == MMU_INST_FETCH) { 12432 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12433 memattr = 0xee; /* Normal, WT, RA, NT */ 12434 } else { 12435 memattr = 0x44; /* Normal, NC, No */ 12436 } 12437 cacheattrs->shareability = 2; /* outer sharable */ 12438 } else { 12439 memattr = 0x00; /* Device, nGnRnE */ 12440 } 12441 cacheattrs->attrs = memattr; 12442 return 0; 12443 } 12444 12445 if (regime_using_lpae_format(env, mmu_idx)) { 12446 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12447 phys_ptr, attrs, prot, page_size, 12448 fi, cacheattrs); 12449 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12450 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12451 phys_ptr, attrs, prot, page_size, fi); 12452 } else { 12453 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12454 phys_ptr, prot, page_size, fi); 12455 } 12456 } 12457 12458 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12459 MemTxAttrs *attrs) 12460 { 12461 ARMCPU *cpu = ARM_CPU(cs); 12462 CPUARMState *env = &cpu->env; 12463 hwaddr phys_addr; 12464 target_ulong page_size; 12465 int prot; 12466 bool ret; 12467 ARMMMUFaultInfo fi = {}; 12468 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12469 ARMCacheAttrs cacheattrs = {}; 12470 12471 *attrs = (MemTxAttrs) {}; 12472 12473 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12474 attrs, &prot, &page_size, &fi, &cacheattrs); 12475 12476 if (ret) { 12477 return -1; 12478 } 12479 return phys_addr; 12480 } 12481 12482 #endif 12483 12484 /* Note that signed overflow is undefined in C. The following routines are 12485 careful to use unsigned types where modulo arithmetic is required. 12486 Failure to do so _will_ break on newer gcc. */ 12487 12488 /* Signed saturating arithmetic. */ 12489 12490 /* Perform 16-bit signed saturating addition. */ 12491 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12492 { 12493 uint16_t res; 12494 12495 res = a + b; 12496 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12497 if (a & 0x8000) 12498 res = 0x8000; 12499 else 12500 res = 0x7fff; 12501 } 12502 return res; 12503 } 12504 12505 /* Perform 8-bit signed saturating addition. */ 12506 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12507 { 12508 uint8_t res; 12509 12510 res = a + b; 12511 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12512 if (a & 0x80) 12513 res = 0x80; 12514 else 12515 res = 0x7f; 12516 } 12517 return res; 12518 } 12519 12520 /* Perform 16-bit signed saturating subtraction. */ 12521 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12522 { 12523 uint16_t res; 12524 12525 res = a - b; 12526 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12527 if (a & 0x8000) 12528 res = 0x8000; 12529 else 12530 res = 0x7fff; 12531 } 12532 return res; 12533 } 12534 12535 /* Perform 8-bit signed saturating subtraction. */ 12536 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12537 { 12538 uint8_t res; 12539 12540 res = a - b; 12541 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12542 if (a & 0x80) 12543 res = 0x80; 12544 else 12545 res = 0x7f; 12546 } 12547 return res; 12548 } 12549 12550 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12551 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12552 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12553 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12554 #define PFX q 12555 12556 #include "op_addsub.h" 12557 12558 /* Unsigned saturating arithmetic. */ 12559 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12560 { 12561 uint16_t res; 12562 res = a + b; 12563 if (res < a) 12564 res = 0xffff; 12565 return res; 12566 } 12567 12568 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12569 { 12570 if (a > b) 12571 return a - b; 12572 else 12573 return 0; 12574 } 12575 12576 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12577 { 12578 uint8_t res; 12579 res = a + b; 12580 if (res < a) 12581 res = 0xff; 12582 return res; 12583 } 12584 12585 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12586 { 12587 if (a > b) 12588 return a - b; 12589 else 12590 return 0; 12591 } 12592 12593 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12594 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12595 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12596 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12597 #define PFX uq 12598 12599 #include "op_addsub.h" 12600 12601 /* Signed modulo arithmetic. */ 12602 #define SARITH16(a, b, n, op) do { \ 12603 int32_t sum; \ 12604 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12605 RESULT(sum, n, 16); \ 12606 if (sum >= 0) \ 12607 ge |= 3 << (n * 2); \ 12608 } while(0) 12609 12610 #define SARITH8(a, b, n, op) do { \ 12611 int32_t sum; \ 12612 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12613 RESULT(sum, n, 8); \ 12614 if (sum >= 0) \ 12615 ge |= 1 << n; \ 12616 } while(0) 12617 12618 12619 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12620 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12621 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12622 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12623 #define PFX s 12624 #define ARITH_GE 12625 12626 #include "op_addsub.h" 12627 12628 /* Unsigned modulo arithmetic. */ 12629 #define ADD16(a, b, n) do { \ 12630 uint32_t sum; \ 12631 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12632 RESULT(sum, n, 16); \ 12633 if ((sum >> 16) == 1) \ 12634 ge |= 3 << (n * 2); \ 12635 } while(0) 12636 12637 #define ADD8(a, b, n) do { \ 12638 uint32_t sum; \ 12639 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12640 RESULT(sum, n, 8); \ 12641 if ((sum >> 8) == 1) \ 12642 ge |= 1 << n; \ 12643 } while(0) 12644 12645 #define SUB16(a, b, n) do { \ 12646 uint32_t sum; \ 12647 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12648 RESULT(sum, n, 16); \ 12649 if ((sum >> 16) == 0) \ 12650 ge |= 3 << (n * 2); \ 12651 } while(0) 12652 12653 #define SUB8(a, b, n) do { \ 12654 uint32_t sum; \ 12655 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12656 RESULT(sum, n, 8); \ 12657 if ((sum >> 8) == 0) \ 12658 ge |= 1 << n; \ 12659 } while(0) 12660 12661 #define PFX u 12662 #define ARITH_GE 12663 12664 #include "op_addsub.h" 12665 12666 /* Halved signed arithmetic. */ 12667 #define ADD16(a, b, n) \ 12668 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12669 #define SUB16(a, b, n) \ 12670 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12671 #define ADD8(a, b, n) \ 12672 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12673 #define SUB8(a, b, n) \ 12674 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12675 #define PFX sh 12676 12677 #include "op_addsub.h" 12678 12679 /* Halved unsigned arithmetic. */ 12680 #define ADD16(a, b, n) \ 12681 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12682 #define SUB16(a, b, n) \ 12683 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12684 #define ADD8(a, b, n) \ 12685 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12686 #define SUB8(a, b, n) \ 12687 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12688 #define PFX uh 12689 12690 #include "op_addsub.h" 12691 12692 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12693 { 12694 if (a > b) 12695 return a - b; 12696 else 12697 return b - a; 12698 } 12699 12700 /* Unsigned sum of absolute byte differences. */ 12701 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12702 { 12703 uint32_t sum; 12704 sum = do_usad(a, b); 12705 sum += do_usad(a >> 8, b >> 8); 12706 sum += do_usad(a >> 16, b >> 16); 12707 sum += do_usad(a >> 24, b >> 24); 12708 return sum; 12709 } 12710 12711 /* For ARMv6 SEL instruction. */ 12712 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12713 { 12714 uint32_t mask; 12715 12716 mask = 0; 12717 if (flags & 1) 12718 mask |= 0xff; 12719 if (flags & 2) 12720 mask |= 0xff00; 12721 if (flags & 4) 12722 mask |= 0xff0000; 12723 if (flags & 8) 12724 mask |= 0xff000000; 12725 return (a & mask) | (b & ~mask); 12726 } 12727 12728 /* CRC helpers. 12729 * The upper bytes of val (above the number specified by 'bytes') must have 12730 * been zeroed out by the caller. 12731 */ 12732 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12733 { 12734 uint8_t buf[4]; 12735 12736 stl_le_p(buf, val); 12737 12738 /* zlib crc32 converts the accumulator and output to one's complement. */ 12739 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12740 } 12741 12742 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12743 { 12744 uint8_t buf[4]; 12745 12746 stl_le_p(buf, val); 12747 12748 /* Linux crc32c converts the output to one's complement. */ 12749 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12750 } 12751 12752 /* Return the exception level to which FP-disabled exceptions should 12753 * be taken, or 0 if FP is enabled. 12754 */ 12755 int fp_exception_el(CPUARMState *env, int cur_el) 12756 { 12757 #ifndef CONFIG_USER_ONLY 12758 /* CPACR and the CPTR registers don't exist before v6, so FP is 12759 * always accessible 12760 */ 12761 if (!arm_feature(env, ARM_FEATURE_V6)) { 12762 return 0; 12763 } 12764 12765 if (arm_feature(env, ARM_FEATURE_M)) { 12766 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12767 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12768 return 1; 12769 } 12770 12771 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12772 if (!extract32(env->v7m.nsacr, 10, 1)) { 12773 /* FP insns cause a NOCP UsageFault taken to Secure */ 12774 return 3; 12775 } 12776 } 12777 12778 return 0; 12779 } 12780 12781 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12782 * 0, 2 : trap EL0 and EL1/PL1 accesses 12783 * 1 : trap only EL0 accesses 12784 * 3 : trap no accesses 12785 * This register is ignored if E2H+TGE are both set. 12786 */ 12787 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12788 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12789 12790 switch (fpen) { 12791 case 0: 12792 case 2: 12793 if (cur_el == 0 || cur_el == 1) { 12794 /* Trap to PL1, which might be EL1 or EL3 */ 12795 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12796 return 3; 12797 } 12798 return 1; 12799 } 12800 if (cur_el == 3 && !is_a64(env)) { 12801 /* Secure PL1 running at EL3 */ 12802 return 3; 12803 } 12804 break; 12805 case 1: 12806 if (cur_el == 0) { 12807 return 1; 12808 } 12809 break; 12810 case 3: 12811 break; 12812 } 12813 } 12814 12815 /* 12816 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12817 * to control non-secure access to the FPU. It doesn't have any 12818 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12819 */ 12820 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12821 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12822 if (!extract32(env->cp15.nsacr, 10, 1)) { 12823 /* FP insns act as UNDEF */ 12824 return cur_el == 2 ? 2 : 1; 12825 } 12826 } 12827 12828 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12829 * check because zero bits in the registers mean "don't trap". 12830 */ 12831 12832 /* CPTR_EL2 : present in v7VE or v8 */ 12833 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12834 && arm_is_el2_enabled(env)) { 12835 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12836 return 2; 12837 } 12838 12839 /* CPTR_EL3 : present in v8 */ 12840 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12841 /* Trap all FP ops to EL3 */ 12842 return 3; 12843 } 12844 #endif 12845 return 0; 12846 } 12847 12848 /* Return the exception level we're running at if this is our mmu_idx */ 12849 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12850 { 12851 if (mmu_idx & ARM_MMU_IDX_M) { 12852 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12853 } 12854 12855 switch (mmu_idx) { 12856 case ARMMMUIdx_E10_0: 12857 case ARMMMUIdx_E20_0: 12858 case ARMMMUIdx_SE10_0: 12859 case ARMMMUIdx_SE20_0: 12860 return 0; 12861 case ARMMMUIdx_E10_1: 12862 case ARMMMUIdx_E10_1_PAN: 12863 case ARMMMUIdx_SE10_1: 12864 case ARMMMUIdx_SE10_1_PAN: 12865 return 1; 12866 case ARMMMUIdx_E2: 12867 case ARMMMUIdx_E20_2: 12868 case ARMMMUIdx_E20_2_PAN: 12869 case ARMMMUIdx_SE2: 12870 case ARMMMUIdx_SE20_2: 12871 case ARMMMUIdx_SE20_2_PAN: 12872 return 2; 12873 case ARMMMUIdx_SE3: 12874 return 3; 12875 default: 12876 g_assert_not_reached(); 12877 } 12878 } 12879 12880 #ifndef CONFIG_TCG 12881 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12882 { 12883 g_assert_not_reached(); 12884 } 12885 #endif 12886 12887 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12888 { 12889 ARMMMUIdx idx; 12890 uint64_t hcr; 12891 12892 if (arm_feature(env, ARM_FEATURE_M)) { 12893 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12894 } 12895 12896 /* See ARM pseudo-function ELIsInHost. */ 12897 switch (el) { 12898 case 0: 12899 hcr = arm_hcr_el2_eff(env); 12900 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12901 idx = ARMMMUIdx_E20_0; 12902 } else { 12903 idx = ARMMMUIdx_E10_0; 12904 } 12905 break; 12906 case 1: 12907 if (env->pstate & PSTATE_PAN) { 12908 idx = ARMMMUIdx_E10_1_PAN; 12909 } else { 12910 idx = ARMMMUIdx_E10_1; 12911 } 12912 break; 12913 case 2: 12914 /* Note that TGE does not apply at EL2. */ 12915 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12916 if (env->pstate & PSTATE_PAN) { 12917 idx = ARMMMUIdx_E20_2_PAN; 12918 } else { 12919 idx = ARMMMUIdx_E20_2; 12920 } 12921 } else { 12922 idx = ARMMMUIdx_E2; 12923 } 12924 break; 12925 case 3: 12926 return ARMMMUIdx_SE3; 12927 default: 12928 g_assert_not_reached(); 12929 } 12930 12931 if (arm_is_secure_below_el3(env)) { 12932 idx &= ~ARM_MMU_IDX_A_NS; 12933 } 12934 12935 return idx; 12936 } 12937 12938 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12939 { 12940 return arm_mmu_idx_el(env, arm_current_el(env)); 12941 } 12942 12943 #ifndef CONFIG_USER_ONLY 12944 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12945 { 12946 return stage_1_mmu_idx(arm_mmu_idx(env)); 12947 } 12948 #endif 12949 12950 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12951 ARMMMUIdx mmu_idx, uint32_t flags) 12952 { 12953 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12954 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12955 arm_to_core_mmu_idx(mmu_idx)); 12956 12957 if (arm_singlestep_active(env)) { 12958 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12959 } 12960 return flags; 12961 } 12962 12963 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12964 ARMMMUIdx mmu_idx, uint32_t flags) 12965 { 12966 bool sctlr_b = arm_sctlr_b(env); 12967 12968 if (sctlr_b) { 12969 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12970 } 12971 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12972 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12973 } 12974 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12975 12976 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12977 } 12978 12979 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12980 ARMMMUIdx mmu_idx) 12981 { 12982 uint32_t flags = 0; 12983 12984 if (arm_v7m_is_handler_mode(env)) { 12985 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12986 } 12987 12988 /* 12989 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12990 * is suppressing them because the requested execution priority 12991 * is less than 0. 12992 */ 12993 if (arm_feature(env, ARM_FEATURE_V8) && 12994 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12995 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12996 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12997 } 12998 12999 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13000 } 13001 13002 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 13003 { 13004 int flags = 0; 13005 13006 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 13007 arm_debug_target_el(env)); 13008 return flags; 13009 } 13010 13011 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 13012 ARMMMUIdx mmu_idx) 13013 { 13014 uint32_t flags = rebuild_hflags_aprofile(env); 13015 13016 if (arm_el_is_aa64(env, 1)) { 13017 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13018 } 13019 13020 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 13021 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13022 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 13023 } 13024 13025 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13026 } 13027 13028 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13029 ARMMMUIdx mmu_idx) 13030 { 13031 uint32_t flags = rebuild_hflags_aprofile(env); 13032 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13033 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13034 uint64_t sctlr; 13035 int tbii, tbid; 13036 13037 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 13038 13039 /* Get control bits for tagged addresses. */ 13040 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13041 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13042 13043 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 13044 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 13045 13046 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13047 int sve_el = sve_exception_el(env, el); 13048 uint32_t zcr_len; 13049 13050 /* 13051 * If SVE is disabled, but FP is enabled, 13052 * then the effective len is 0. 13053 */ 13054 if (sve_el != 0 && fp_el == 0) { 13055 zcr_len = 0; 13056 } else { 13057 zcr_len = sve_zcr_len_for_el(env, el); 13058 } 13059 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 13060 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 13061 } 13062 13063 sctlr = regime_sctlr(env, stage1); 13064 13065 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13066 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 13067 } 13068 13069 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13070 /* 13071 * In order to save space in flags, we record only whether 13072 * pauth is "inactive", meaning all insns are implemented as 13073 * a nop, or "active" when some action must be performed. 13074 * The decision of which action to take is left to a helper. 13075 */ 13076 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13077 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 13078 } 13079 } 13080 13081 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13082 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13083 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13084 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 13085 } 13086 } 13087 13088 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13089 if (!(env->pstate & PSTATE_UAO)) { 13090 switch (mmu_idx) { 13091 case ARMMMUIdx_E10_1: 13092 case ARMMMUIdx_E10_1_PAN: 13093 case ARMMMUIdx_SE10_1: 13094 case ARMMMUIdx_SE10_1_PAN: 13095 /* TODO: ARMv8.3-NV */ 13096 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 13097 break; 13098 case ARMMMUIdx_E20_2: 13099 case ARMMMUIdx_E20_2_PAN: 13100 case ARMMMUIdx_SE20_2: 13101 case ARMMMUIdx_SE20_2_PAN: 13102 /* 13103 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13104 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13105 */ 13106 if (env->cp15.hcr_el2 & HCR_TGE) { 13107 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 13108 } 13109 break; 13110 default: 13111 break; 13112 } 13113 } 13114 13115 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13116 /* 13117 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13118 * if all accesses must be Unchecked: 13119 * 1) If no TBI, then there are no tags in the address to check, 13120 * 2) If Tag Check Override, then all accesses are Unchecked, 13121 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13122 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13123 */ 13124 if (allocation_tag_access_enabled(env, el, sctlr)) { 13125 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1); 13126 if (tbid 13127 && !(env->pstate & PSTATE_TCO) 13128 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13129 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1); 13130 } 13131 } 13132 /* And again for unprivileged accesses, if required. */ 13133 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV) 13134 && tbid 13135 && !(env->pstate & PSTATE_TCO) 13136 && (sctlr & SCTLR_TCF) 13137 && allocation_tag_access_enabled(env, 0, sctlr)) { 13138 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1); 13139 } 13140 /* Cache TCMA as well as TBI. */ 13141 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA, 13142 aa64_va_parameter_tcma(tcr, mmu_idx)); 13143 } 13144 13145 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13146 } 13147 13148 static uint32_t rebuild_hflags_internal(CPUARMState *env) 13149 { 13150 int el = arm_current_el(env); 13151 int fp_el = fp_exception_el(env, el); 13152 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13153 13154 if (is_a64(env)) { 13155 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13156 } else if (arm_feature(env, ARM_FEATURE_M)) { 13157 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13158 } else { 13159 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13160 } 13161 } 13162 13163 void arm_rebuild_hflags(CPUARMState *env) 13164 { 13165 env->hflags = rebuild_hflags_internal(env); 13166 } 13167 13168 /* 13169 * If we have triggered a EL state change we can't rely on the 13170 * translator having passed it to us, we need to recompute. 13171 */ 13172 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13173 { 13174 int el = arm_current_el(env); 13175 int fp_el = fp_exception_el(env, el); 13176 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13177 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13178 } 13179 13180 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13181 { 13182 int fp_el = fp_exception_el(env, el); 13183 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13184 13185 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13186 } 13187 13188 /* 13189 * If we have triggered a EL state change we can't rely on the 13190 * translator having passed it to us, we need to recompute. 13191 */ 13192 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13193 { 13194 int el = arm_current_el(env); 13195 int fp_el = fp_exception_el(env, el); 13196 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13197 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13198 } 13199 13200 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13201 { 13202 int fp_el = fp_exception_el(env, el); 13203 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13204 13205 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13206 } 13207 13208 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13209 { 13210 int fp_el = fp_exception_el(env, el); 13211 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13212 13213 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13214 } 13215 13216 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13217 { 13218 #ifdef CONFIG_DEBUG_TCG 13219 uint32_t env_flags_current = env->hflags; 13220 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 13221 13222 if (unlikely(env_flags_current != env_flags_rebuilt)) { 13223 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 13224 env_flags_current, env_flags_rebuilt); 13225 abort(); 13226 } 13227 #endif 13228 } 13229 13230 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13231 target_ulong *cs_base, uint32_t *pflags) 13232 { 13233 uint32_t flags = env->hflags; 13234 13235 *cs_base = 0; 13236 assert_hflags_rebuild_correctly(env); 13237 13238 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 13239 *pc = env->pc; 13240 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13241 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13242 } 13243 } else { 13244 *pc = env->regs[15]; 13245 13246 if (arm_feature(env, ARM_FEATURE_M)) { 13247 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13248 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13249 != env->v7m.secure) { 13250 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 13251 } 13252 13253 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13254 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13255 (env->v7m.secure && 13256 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13257 /* 13258 * ASPEN is set, but FPCA/SFPA indicate that there is no 13259 * active FP context; we must create a new FP context before 13260 * executing any FP insn. 13261 */ 13262 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 13263 } 13264 13265 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13266 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13267 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 13268 } 13269 } else { 13270 /* 13271 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13272 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13273 */ 13274 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13275 flags = FIELD_DP32(flags, TBFLAG_A32, 13276 XSCALE_CPAR, env->cp15.c15_cpar); 13277 } else { 13278 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 13279 env->vfp.vec_len); 13280 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 13281 env->vfp.vec_stride); 13282 } 13283 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13284 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13285 } 13286 } 13287 13288 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 13289 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 13290 } 13291 13292 /* 13293 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13294 * states defined in the ARM ARM for software singlestep: 13295 * SS_ACTIVE PSTATE.SS State 13296 * 0 x Inactive (the TB flag for SS is always 0) 13297 * 1 0 Active-pending 13298 * 1 1 Active-not-pending 13299 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 13300 */ 13301 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 13302 (env->pstate & PSTATE_SS)) { 13303 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13304 } 13305 13306 *pflags = flags; 13307 } 13308 13309 #ifdef TARGET_AARCH64 13310 /* 13311 * The manual says that when SVE is enabled and VQ is widened the 13312 * implementation is allowed to zero the previously inaccessible 13313 * portion of the registers. The corollary to that is that when 13314 * SVE is enabled and VQ is narrowed we are also allowed to zero 13315 * the now inaccessible portion of the registers. 13316 * 13317 * The intent of this is that no predicate bit beyond VQ is ever set. 13318 * Which means that some operations on predicate registers themselves 13319 * may operate on full uint64_t or even unrolled across the maximum 13320 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13321 * may well be cheaper than conditionals to restrict the operation 13322 * to the relevant portion of a uint16_t[16]. 13323 */ 13324 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13325 { 13326 int i, j; 13327 uint64_t pmask; 13328 13329 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13330 assert(vq <= env_archcpu(env)->sve_max_vq); 13331 13332 /* Zap the high bits of the zregs. */ 13333 for (i = 0; i < 32; i++) { 13334 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13335 } 13336 13337 /* Zap the high bits of the pregs and ffr. */ 13338 pmask = 0; 13339 if (vq & 3) { 13340 pmask = ~(-1ULL << (16 * (vq & 3))); 13341 } 13342 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13343 for (i = 0; i < 17; ++i) { 13344 env->vfp.pregs[i].p[j] &= pmask; 13345 } 13346 pmask = 0; 13347 } 13348 } 13349 13350 /* 13351 * Notice a change in SVE vector size when changing EL. 13352 */ 13353 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13354 int new_el, bool el0_a64) 13355 { 13356 ARMCPU *cpu = env_archcpu(env); 13357 int old_len, new_len; 13358 bool old_a64, new_a64; 13359 13360 /* Nothing to do if no SVE. */ 13361 if (!cpu_isar_feature(aa64_sve, cpu)) { 13362 return; 13363 } 13364 13365 /* Nothing to do if FP is disabled in either EL. */ 13366 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13367 return; 13368 } 13369 13370 /* 13371 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13372 * at ELx, or not available because the EL is in AArch32 state, then 13373 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13374 * has an effective value of 0". 13375 * 13376 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13377 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13378 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13379 * we already have the correct register contents when encountering the 13380 * vq0->vq0 transition between EL0->EL1. 13381 */ 13382 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13383 old_len = (old_a64 && !sve_exception_el(env, old_el) 13384 ? sve_zcr_len_for_el(env, old_el) : 0); 13385 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13386 new_len = (new_a64 && !sve_exception_el(env, new_el) 13387 ? sve_zcr_len_for_el(env, new_el) : 0); 13388 13389 /* When changing vector length, clear inaccessible state. */ 13390 if (new_len < old_len) { 13391 aarch64_sve_narrow_vq(env, new_len + 1); 13392 } 13393 } 13394 #endif 13395