1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "semihosting/semihost.h" 25 #include "sysemu/cpus.h" 26 #include "sysemu/cpu-timers.h" 27 #include "sysemu/kvm.h" 28 #include "sysemu/tcg.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #include "semihosting/common-semi.h" 37 #endif 38 39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 40 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 41 42 #ifndef CONFIG_USER_ONLY 43 44 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 45 MMUAccessType access_type, ARMMMUIdx mmu_idx, 46 bool s1_is_el0, 47 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 48 target_ulong *page_size_ptr, 49 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 50 __attribute__((nonnull)); 51 #endif 52 53 static void switch_mode(CPUARMState *env, int mode); 54 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 55 56 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 57 { 58 assert(ri->fieldoffset); 59 if (cpreg_field_is_64bit(ri)) { 60 return CPREG_FIELD64(env, ri); 61 } else { 62 return CPREG_FIELD32(env, ri); 63 } 64 } 65 66 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 67 uint64_t value) 68 { 69 assert(ri->fieldoffset); 70 if (cpreg_field_is_64bit(ri)) { 71 CPREG_FIELD64(env, ri) = value; 72 } else { 73 CPREG_FIELD32(env, ri) = value; 74 } 75 } 76 77 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 78 { 79 return (char *)env + ri->fieldoffset; 80 } 81 82 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 83 { 84 /* Raw read of a coprocessor register (as needed for migration, etc). */ 85 if (ri->type & ARM_CP_CONST) { 86 return ri->resetvalue; 87 } else if (ri->raw_readfn) { 88 return ri->raw_readfn(env, ri); 89 } else if (ri->readfn) { 90 return ri->readfn(env, ri); 91 } else { 92 return raw_read(env, ri); 93 } 94 } 95 96 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 97 uint64_t v) 98 { 99 /* Raw write of a coprocessor register (as needed for migration, etc). 100 * Note that constant registers are treated as write-ignored; the 101 * caller should check for success by whether a readback gives the 102 * value written. 103 */ 104 if (ri->type & ARM_CP_CONST) { 105 return; 106 } else if (ri->raw_writefn) { 107 ri->raw_writefn(env, ri, v); 108 } else if (ri->writefn) { 109 ri->writefn(env, ri, v); 110 } else { 111 raw_write(env, ri, v); 112 } 113 } 114 115 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 116 { 117 /* Return true if the regdef would cause an assertion if you called 118 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 119 * program bug for it not to have the NO_RAW flag). 120 * NB that returning false here doesn't necessarily mean that calling 121 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 122 * read/write access functions which are safe for raw use" from "has 123 * read/write access functions which have side effects but has forgotten 124 * to provide raw access functions". 125 * The tests here line up with the conditions in read/write_raw_cp_reg() 126 * and assertions in raw_read()/raw_write(). 127 */ 128 if ((ri->type & ARM_CP_CONST) || 129 ri->fieldoffset || 130 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 131 return false; 132 } 133 return true; 134 } 135 136 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 137 { 138 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 139 int i; 140 bool ok = true; 141 142 for (i = 0; i < cpu->cpreg_array_len; i++) { 143 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 144 const ARMCPRegInfo *ri; 145 uint64_t newval; 146 147 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 148 if (!ri) { 149 ok = false; 150 continue; 151 } 152 if (ri->type & ARM_CP_NO_RAW) { 153 continue; 154 } 155 156 newval = read_raw_cp_reg(&cpu->env, ri); 157 if (kvm_sync) { 158 /* 159 * Only sync if the previous list->cpustate sync succeeded. 160 * Rather than tracking the success/failure state for every 161 * item in the list, we just recheck "does the raw write we must 162 * have made in write_list_to_cpustate() read back OK" here. 163 */ 164 uint64_t oldval = cpu->cpreg_values[i]; 165 166 if (oldval == newval) { 167 continue; 168 } 169 170 write_raw_cp_reg(&cpu->env, ri, oldval); 171 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 172 continue; 173 } 174 175 write_raw_cp_reg(&cpu->env, ri, newval); 176 } 177 cpu->cpreg_values[i] = newval; 178 } 179 return ok; 180 } 181 182 bool write_list_to_cpustate(ARMCPU *cpu) 183 { 184 int i; 185 bool ok = true; 186 187 for (i = 0; i < cpu->cpreg_array_len; i++) { 188 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 189 uint64_t v = cpu->cpreg_values[i]; 190 const ARMCPRegInfo *ri; 191 192 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 193 if (!ri) { 194 ok = false; 195 continue; 196 } 197 if (ri->type & ARM_CP_NO_RAW) { 198 continue; 199 } 200 /* Write value and confirm it reads back as written 201 * (to catch read-only registers and partially read-only 202 * registers where the incoming migration value doesn't match) 203 */ 204 write_raw_cp_reg(&cpu->env, ri, v); 205 if (read_raw_cp_reg(&cpu->env, ri) != v) { 206 ok = false; 207 } 208 } 209 return ok; 210 } 211 212 static void add_cpreg_to_list(gpointer key, gpointer opaque) 213 { 214 ARMCPU *cpu = opaque; 215 uint64_t regidx; 216 const ARMCPRegInfo *ri; 217 218 regidx = *(uint32_t *)key; 219 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 220 221 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 222 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 223 /* The value array need not be initialized at this point */ 224 cpu->cpreg_array_len++; 225 } 226 } 227 228 static void count_cpreg(gpointer key, gpointer opaque) 229 { 230 ARMCPU *cpu = opaque; 231 uint64_t regidx; 232 const ARMCPRegInfo *ri; 233 234 regidx = *(uint32_t *)key; 235 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 236 237 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 238 cpu->cpreg_array_len++; 239 } 240 } 241 242 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 243 { 244 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 245 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 246 247 if (aidx > bidx) { 248 return 1; 249 } 250 if (aidx < bidx) { 251 return -1; 252 } 253 return 0; 254 } 255 256 void init_cpreg_list(ARMCPU *cpu) 257 { 258 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 259 * Note that we require cpreg_tuples[] to be sorted by key ID. 260 */ 261 GList *keys; 262 int arraylen; 263 264 keys = g_hash_table_get_keys(cpu->cp_regs); 265 keys = g_list_sort(keys, cpreg_key_compare); 266 267 cpu->cpreg_array_len = 0; 268 269 g_list_foreach(keys, count_cpreg, cpu); 270 271 arraylen = cpu->cpreg_array_len; 272 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 273 cpu->cpreg_values = g_new(uint64_t, arraylen); 274 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 275 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 276 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 277 cpu->cpreg_array_len = 0; 278 279 g_list_foreach(keys, add_cpreg_to_list, cpu); 280 281 assert(cpu->cpreg_array_len == arraylen); 282 283 g_list_free(keys); 284 } 285 286 /* 287 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 288 */ 289 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 290 const ARMCPRegInfo *ri, 291 bool isread) 292 { 293 if (!is_a64(env) && arm_current_el(env) == 3 && 294 arm_is_secure_below_el3(env)) { 295 return CP_ACCESS_TRAP_UNCATEGORIZED; 296 } 297 return CP_ACCESS_OK; 298 } 299 300 /* Some secure-only AArch32 registers trap to EL3 if used from 301 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 302 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 303 * We assume that the .access field is set to PL1_RW. 304 */ 305 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 306 const ARMCPRegInfo *ri, 307 bool isread) 308 { 309 if (arm_current_el(env) == 3) { 310 return CP_ACCESS_OK; 311 } 312 if (arm_is_secure_below_el3(env)) { 313 if (env->cp15.scr_el3 & SCR_EEL2) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 return CP_ACCESS_TRAP_EL3; 317 } 318 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 319 return CP_ACCESS_TRAP_UNCATEGORIZED; 320 } 321 322 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 323 { 324 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 325 } 326 327 /* Check for traps to "powerdown debug" registers, which are controlled 328 * by MDCR.TDOSA 329 */ 330 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 331 bool isread) 332 { 333 int el = arm_current_el(env); 334 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 335 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 336 (arm_hcr_el2_eff(env) & HCR_TGE); 337 338 if (el < 2 && mdcr_el2_tdosa) { 339 return CP_ACCESS_TRAP_EL2; 340 } 341 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 342 return CP_ACCESS_TRAP_EL3; 343 } 344 return CP_ACCESS_OK; 345 } 346 347 /* Check for traps to "debug ROM" registers, which are controlled 348 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 349 */ 350 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 351 bool isread) 352 { 353 int el = arm_current_el(env); 354 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 355 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 356 (arm_hcr_el2_eff(env) & HCR_TGE); 357 358 if (el < 2 && mdcr_el2_tdra) { 359 return CP_ACCESS_TRAP_EL2; 360 } 361 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 362 return CP_ACCESS_TRAP_EL3; 363 } 364 return CP_ACCESS_OK; 365 } 366 367 /* Check for traps to general debug registers, which are controlled 368 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 369 */ 370 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 371 bool isread) 372 { 373 int el = arm_current_el(env); 374 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 375 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 376 (arm_hcr_el2_eff(env) & HCR_TGE); 377 378 if (el < 2 && mdcr_el2_tda) { 379 return CP_ACCESS_TRAP_EL2; 380 } 381 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 382 return CP_ACCESS_TRAP_EL3; 383 } 384 return CP_ACCESS_OK; 385 } 386 387 /* Check for traps to performance monitor registers, which are controlled 388 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 389 */ 390 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 391 bool isread) 392 { 393 int el = arm_current_el(env); 394 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 395 396 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 397 return CP_ACCESS_TRAP_EL2; 398 } 399 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 400 return CP_ACCESS_TRAP_EL3; 401 } 402 return CP_ACCESS_OK; 403 } 404 405 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 406 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 407 bool isread) 408 { 409 if (arm_current_el(env) == 1) { 410 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 411 if (arm_hcr_el2_eff(env) & trap) { 412 return CP_ACCESS_TRAP_EL2; 413 } 414 } 415 return CP_ACCESS_OK; 416 } 417 418 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 419 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 420 bool isread) 421 { 422 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 423 return CP_ACCESS_TRAP_EL2; 424 } 425 return CP_ACCESS_OK; 426 } 427 428 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 429 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 430 bool isread) 431 { 432 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 433 return CP_ACCESS_TRAP_EL2; 434 } 435 return CP_ACCESS_OK; 436 } 437 438 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 439 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 440 bool isread) 441 { 442 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 443 return CP_ACCESS_TRAP_EL2; 444 } 445 return CP_ACCESS_OK; 446 } 447 448 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 449 { 450 ARMCPU *cpu = env_archcpu(env); 451 452 raw_write(env, ri, value); 453 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 454 } 455 456 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 457 { 458 ARMCPU *cpu = env_archcpu(env); 459 460 if (raw_read(env, ri) != value) { 461 /* Unlike real hardware the qemu TLB uses virtual addresses, 462 * not modified virtual addresses, so this causes a TLB flush. 463 */ 464 tlb_flush(CPU(cpu)); 465 raw_write(env, ri, value); 466 } 467 } 468 469 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 470 uint64_t value) 471 { 472 ARMCPU *cpu = env_archcpu(env); 473 474 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 475 && !extended_addresses_enabled(env)) { 476 /* For VMSA (when not using the LPAE long descriptor page table 477 * format) this register includes the ASID, so do a TLB flush. 478 * For PMSA it is purely a process ID and no action is needed. 479 */ 480 tlb_flush(CPU(cpu)); 481 } 482 raw_write(env, ri, value); 483 } 484 485 /* IS variants of TLB operations must affect all cores */ 486 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 487 uint64_t value) 488 { 489 CPUState *cs = env_cpu(env); 490 491 tlb_flush_all_cpus_synced(cs); 492 } 493 494 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 495 uint64_t value) 496 { 497 CPUState *cs = env_cpu(env); 498 499 tlb_flush_all_cpus_synced(cs); 500 } 501 502 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 503 uint64_t value) 504 { 505 CPUState *cs = env_cpu(env); 506 507 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 508 } 509 510 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 511 uint64_t value) 512 { 513 CPUState *cs = env_cpu(env); 514 515 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 516 } 517 518 /* 519 * Non-IS variants of TLB operations are upgraded to 520 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 521 * force broadcast of these operations. 522 */ 523 static bool tlb_force_broadcast(CPUARMState *env) 524 { 525 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 526 } 527 528 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 529 uint64_t value) 530 { 531 /* Invalidate all (TLBIALL) */ 532 CPUState *cs = env_cpu(env); 533 534 if (tlb_force_broadcast(env)) { 535 tlb_flush_all_cpus_synced(cs); 536 } else { 537 tlb_flush(cs); 538 } 539 } 540 541 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 542 uint64_t value) 543 { 544 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 545 CPUState *cs = env_cpu(env); 546 547 value &= TARGET_PAGE_MASK; 548 if (tlb_force_broadcast(env)) { 549 tlb_flush_page_all_cpus_synced(cs, value); 550 } else { 551 tlb_flush_page(cs, value); 552 } 553 } 554 555 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 556 uint64_t value) 557 { 558 /* Invalidate by ASID (TLBIASID) */ 559 CPUState *cs = env_cpu(env); 560 561 if (tlb_force_broadcast(env)) { 562 tlb_flush_all_cpus_synced(cs); 563 } else { 564 tlb_flush(cs); 565 } 566 } 567 568 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 569 uint64_t value) 570 { 571 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 572 CPUState *cs = env_cpu(env); 573 574 value &= TARGET_PAGE_MASK; 575 if (tlb_force_broadcast(env)) { 576 tlb_flush_page_all_cpus_synced(cs, value); 577 } else { 578 tlb_flush_page(cs, value); 579 } 580 } 581 582 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = env_cpu(env); 586 587 tlb_flush_by_mmuidx(cs, 588 ARMMMUIdxBit_E10_1 | 589 ARMMMUIdxBit_E10_1_PAN | 590 ARMMMUIdxBit_E10_0); 591 } 592 593 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 594 uint64_t value) 595 { 596 CPUState *cs = env_cpu(env); 597 598 tlb_flush_by_mmuidx_all_cpus_synced(cs, 599 ARMMMUIdxBit_E10_1 | 600 ARMMMUIdxBit_E10_1_PAN | 601 ARMMMUIdxBit_E10_0); 602 } 603 604 605 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 606 uint64_t value) 607 { 608 CPUState *cs = env_cpu(env); 609 610 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 611 } 612 613 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 CPUState *cs = env_cpu(env); 617 618 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 619 } 620 621 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 622 uint64_t value) 623 { 624 CPUState *cs = env_cpu(env); 625 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 626 627 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 628 } 629 630 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 631 uint64_t value) 632 { 633 CPUState *cs = env_cpu(env); 634 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 635 636 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 637 ARMMMUIdxBit_E2); 638 } 639 640 static const ARMCPRegInfo cp_reginfo[] = { 641 /* Define the secure and non-secure FCSE identifier CP registers 642 * separately because there is no secure bank in V8 (no _EL3). This allows 643 * the secure register to be properly reset and migrated. There is also no 644 * v8 EL1 version of the register so the non-secure instance stands alone. 645 */ 646 { .name = "FCSEIDR", 647 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 648 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 649 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 650 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 651 { .name = "FCSEIDR_S", 652 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 653 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 654 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 655 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 656 /* Define the secure and non-secure context identifier CP registers 657 * separately because there is no secure bank in V8 (no _EL3). This allows 658 * the secure register to be properly reset and migrated. In the 659 * non-secure case, the 32-bit register will have reset and migration 660 * disabled during registration as it is handled by the 64-bit instance. 661 */ 662 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 663 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 664 .access = PL1_RW, .accessfn = access_tvm_trvm, 665 .secure = ARM_CP_SECSTATE_NS, 666 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 667 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 668 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 670 .access = PL1_RW, .accessfn = access_tvm_trvm, 671 .secure = ARM_CP_SECSTATE_S, 672 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 673 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 674 REGINFO_SENTINEL 675 }; 676 677 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 678 /* NB: Some of these registers exist in v8 but with more precise 679 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 680 */ 681 /* MMU Domain access control / MPU write buffer control */ 682 { .name = "DACR", 683 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 684 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 685 .writefn = dacr_write, .raw_writefn = raw_write, 686 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 687 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 688 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 689 * For v6 and v5, these mappings are overly broad. 690 */ 691 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 692 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 696 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 697 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 698 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 699 /* Cache maintenance ops; some of this space may be overridden later. */ 700 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 701 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 702 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 703 REGINFO_SENTINEL 704 }; 705 706 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 707 /* Not all pre-v6 cores implemented this WFI, so this is slightly 708 * over-broad. 709 */ 710 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 711 .access = PL1_W, .type = ARM_CP_WFI }, 712 REGINFO_SENTINEL 713 }; 714 715 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 716 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 717 * is UNPREDICTABLE; we choose to NOP as most implementations do). 718 */ 719 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 720 .access = PL1_W, .type = ARM_CP_WFI }, 721 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 722 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 723 * OMAPCP will override this space. 724 */ 725 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 726 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 727 .resetvalue = 0 }, 728 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 729 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 730 .resetvalue = 0 }, 731 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 732 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 733 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 734 .resetvalue = 0 }, 735 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 736 * implementing it as RAZ means the "debug architecture version" bits 737 * will read as a reserved value, which should cause Linux to not try 738 * to use the debug hardware. 739 */ 740 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 741 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 742 /* MMU TLB control. Note that the wildcarding means we cover not just 743 * the unified TLB ops but also the dside/iside/inner-shareable variants. 744 */ 745 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 749 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 750 .type = ARM_CP_NO_RAW }, 751 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 752 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 753 .type = ARM_CP_NO_RAW }, 754 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 755 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 756 .type = ARM_CP_NO_RAW }, 757 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 758 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 759 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 760 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 761 REGINFO_SENTINEL 762 }; 763 764 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 765 uint64_t value) 766 { 767 uint32_t mask = 0; 768 769 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 770 if (!arm_feature(env, ARM_FEATURE_V8)) { 771 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 772 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 773 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 774 */ 775 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 776 /* VFP coprocessor: cp10 & cp11 [23:20] */ 777 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 778 779 if (!arm_feature(env, ARM_FEATURE_NEON)) { 780 /* ASEDIS [31] bit is RAO/WI */ 781 value |= (1 << 31); 782 } 783 784 /* VFPv3 and upwards with NEON implement 32 double precision 785 * registers (D0-D31). 786 */ 787 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 788 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 789 value |= (1 << 30); 790 } 791 } 792 value &= mask; 793 } 794 795 /* 796 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 797 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 798 */ 799 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 800 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 801 value &= ~(0xf << 20); 802 value |= env->cp15.cpacr_el1 & (0xf << 20); 803 } 804 805 env->cp15.cpacr_el1 = value; 806 } 807 808 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 809 { 810 /* 811 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 812 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 813 */ 814 uint64_t value = env->cp15.cpacr_el1; 815 816 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 817 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 818 value &= ~(0xf << 20); 819 } 820 return value; 821 } 822 823 824 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 825 { 826 /* Call cpacr_write() so that we reset with the correct RAO bits set 827 * for our CPU features. 828 */ 829 cpacr_write(env, ri, 0); 830 } 831 832 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 833 bool isread) 834 { 835 if (arm_feature(env, ARM_FEATURE_V8)) { 836 /* Check if CPACR accesses are to be trapped to EL2 */ 837 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 838 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 839 return CP_ACCESS_TRAP_EL2; 840 /* Check if CPACR accesses are to be trapped to EL3 */ 841 } else if (arm_current_el(env) < 3 && 842 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 843 return CP_ACCESS_TRAP_EL3; 844 } 845 } 846 847 return CP_ACCESS_OK; 848 } 849 850 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 851 bool isread) 852 { 853 /* Check if CPTR accesses are set to trap to EL3 */ 854 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 855 return CP_ACCESS_TRAP_EL3; 856 } 857 858 return CP_ACCESS_OK; 859 } 860 861 static const ARMCPRegInfo v6_cp_reginfo[] = { 862 /* prefetch by MVA in v6, NOP in v7 */ 863 { .name = "MVA_prefetch", 864 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 865 .access = PL1_W, .type = ARM_CP_NOP }, 866 /* We need to break the TB after ISB to execute self-modifying code 867 * correctly and also to take any pending interrupts immediately. 868 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 869 */ 870 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 871 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 872 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 873 .access = PL0_W, .type = ARM_CP_NOP }, 874 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 875 .access = PL0_W, .type = ARM_CP_NOP }, 876 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 877 .access = PL1_RW, .accessfn = access_tvm_trvm, 878 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 879 offsetof(CPUARMState, cp15.ifar_ns) }, 880 .resetvalue = 0, }, 881 /* Watchpoint Fault Address Register : should actually only be present 882 * for 1136, 1176, 11MPCore. 883 */ 884 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 885 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 886 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 887 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 888 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 889 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 890 REGINFO_SENTINEL 891 }; 892 893 typedef struct pm_event { 894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 896 bool (*supported)(CPUARMState *); 897 /* 898 * Retrieve the current count of the underlying event. The programmed 899 * counters hold a difference from the return value from this function 900 */ 901 uint64_t (*get_count)(CPUARMState *); 902 /* 903 * Return how many nanoseconds it will take (at a minimum) for count events 904 * to occur. A negative value indicates the counter will never overflow, or 905 * that the counter has otherwise arranged for the overflow bit to be set 906 * and the PMU interrupt to be raised on overflow. 907 */ 908 int64_t (*ns_per_count)(uint64_t); 909 } pm_event; 910 911 static bool event_always_supported(CPUARMState *env) 912 { 913 return true; 914 } 915 916 static uint64_t swinc_get_count(CPUARMState *env) 917 { 918 /* 919 * SW_INCR events are written directly to the pmevcntr's by writes to 920 * PMSWINC, so there is no underlying count maintained by the PMU itself 921 */ 922 return 0; 923 } 924 925 static int64_t swinc_ns_per(uint64_t ignored) 926 { 927 return -1; 928 } 929 930 /* 931 * Return the underlying cycle count for the PMU cycle counters. If we're in 932 * usermode, simply return 0. 933 */ 934 static uint64_t cycles_get_count(CPUARMState *env) 935 { 936 #ifndef CONFIG_USER_ONLY 937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 939 #else 940 return cpu_get_host_ticks(); 941 #endif 942 } 943 944 #ifndef CONFIG_USER_ONLY 945 static int64_t cycles_ns_per(uint64_t cycles) 946 { 947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 948 } 949 950 static bool instructions_supported(CPUARMState *env) 951 { 952 return icount_enabled() == 1; /* Precise instruction counting */ 953 } 954 955 static uint64_t instructions_get_count(CPUARMState *env) 956 { 957 return (uint64_t)icount_get_raw(); 958 } 959 960 static int64_t instructions_ns_per(uint64_t icount) 961 { 962 return icount_to_ns((int64_t)icount); 963 } 964 #endif 965 966 static bool pmu_8_1_events_supported(CPUARMState *env) 967 { 968 /* For events which are supported in any v8.1 PMU */ 969 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 970 } 971 972 static bool pmu_8_4_events_supported(CPUARMState *env) 973 { 974 /* For events which are supported in any v8.1 PMU */ 975 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 976 } 977 978 static uint64_t zero_event_get_count(CPUARMState *env) 979 { 980 /* For events which on QEMU never fire, so their count is always zero */ 981 return 0; 982 } 983 984 static int64_t zero_event_ns_per(uint64_t cycles) 985 { 986 /* An event which never fires can never overflow */ 987 return -1; 988 } 989 990 static const pm_event pm_events[] = { 991 { .number = 0x000, /* SW_INCR */ 992 .supported = event_always_supported, 993 .get_count = swinc_get_count, 994 .ns_per_count = swinc_ns_per, 995 }, 996 #ifndef CONFIG_USER_ONLY 997 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 998 .supported = instructions_supported, 999 .get_count = instructions_get_count, 1000 .ns_per_count = instructions_ns_per, 1001 }, 1002 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1003 .supported = event_always_supported, 1004 .get_count = cycles_get_count, 1005 .ns_per_count = cycles_ns_per, 1006 }, 1007 #endif 1008 { .number = 0x023, /* STALL_FRONTEND */ 1009 .supported = pmu_8_1_events_supported, 1010 .get_count = zero_event_get_count, 1011 .ns_per_count = zero_event_ns_per, 1012 }, 1013 { .number = 0x024, /* STALL_BACKEND */ 1014 .supported = pmu_8_1_events_supported, 1015 .get_count = zero_event_get_count, 1016 .ns_per_count = zero_event_ns_per, 1017 }, 1018 { .number = 0x03c, /* STALL */ 1019 .supported = pmu_8_4_events_supported, 1020 .get_count = zero_event_get_count, 1021 .ns_per_count = zero_event_ns_per, 1022 }, 1023 }; 1024 1025 /* 1026 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1027 * events (i.e. the statistical profiling extension), this implementation 1028 * should first be updated to something sparse instead of the current 1029 * supported_event_map[] array. 1030 */ 1031 #define MAX_EVENT_ID 0x3c 1032 #define UNSUPPORTED_EVENT UINT16_MAX 1033 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1034 1035 /* 1036 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1037 * of ARM event numbers to indices in our pm_events array. 1038 * 1039 * Note: Events in the 0x40XX range are not currently supported. 1040 */ 1041 void pmu_init(ARMCPU *cpu) 1042 { 1043 unsigned int i; 1044 1045 /* 1046 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1047 * events to them 1048 */ 1049 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1050 supported_event_map[i] = UNSUPPORTED_EVENT; 1051 } 1052 cpu->pmceid0 = 0; 1053 cpu->pmceid1 = 0; 1054 1055 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1056 const pm_event *cnt = &pm_events[i]; 1057 assert(cnt->number <= MAX_EVENT_ID); 1058 /* We do not currently support events in the 0x40xx range */ 1059 assert(cnt->number <= 0x3f); 1060 1061 if (cnt->supported(&cpu->env)) { 1062 supported_event_map[cnt->number] = i; 1063 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1064 if (cnt->number & 0x20) { 1065 cpu->pmceid1 |= event_mask; 1066 } else { 1067 cpu->pmceid0 |= event_mask; 1068 } 1069 } 1070 } 1071 } 1072 1073 /* 1074 * Check at runtime whether a PMU event is supported for the current machine 1075 */ 1076 static bool event_supported(uint16_t number) 1077 { 1078 if (number > MAX_EVENT_ID) { 1079 return false; 1080 } 1081 return supported_event_map[number] != UNSUPPORTED_EVENT; 1082 } 1083 1084 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1085 bool isread) 1086 { 1087 /* Performance monitor registers user accessibility is controlled 1088 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1089 * trapping to EL2 or EL3 for other accesses. 1090 */ 1091 int el = arm_current_el(env); 1092 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1093 1094 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1095 return CP_ACCESS_TRAP; 1096 } 1097 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1098 return CP_ACCESS_TRAP_EL2; 1099 } 1100 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1101 return CP_ACCESS_TRAP_EL3; 1102 } 1103 1104 return CP_ACCESS_OK; 1105 } 1106 1107 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1108 const ARMCPRegInfo *ri, 1109 bool isread) 1110 { 1111 /* ER: event counter read trap control */ 1112 if (arm_feature(env, ARM_FEATURE_V8) 1113 && arm_current_el(env) == 0 1114 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1115 && isread) { 1116 return CP_ACCESS_OK; 1117 } 1118 1119 return pmreg_access(env, ri, isread); 1120 } 1121 1122 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1123 const ARMCPRegInfo *ri, 1124 bool isread) 1125 { 1126 /* SW: software increment write trap control */ 1127 if (arm_feature(env, ARM_FEATURE_V8) 1128 && arm_current_el(env) == 0 1129 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1130 && !isread) { 1131 return CP_ACCESS_OK; 1132 } 1133 1134 return pmreg_access(env, ri, isread); 1135 } 1136 1137 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1138 const ARMCPRegInfo *ri, 1139 bool isread) 1140 { 1141 /* ER: event counter read trap control */ 1142 if (arm_feature(env, ARM_FEATURE_V8) 1143 && arm_current_el(env) == 0 1144 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1145 return CP_ACCESS_OK; 1146 } 1147 1148 return pmreg_access(env, ri, isread); 1149 } 1150 1151 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1152 const ARMCPRegInfo *ri, 1153 bool isread) 1154 { 1155 /* CR: cycle counter read trap control */ 1156 if (arm_feature(env, ARM_FEATURE_V8) 1157 && arm_current_el(env) == 0 1158 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1159 && isread) { 1160 return CP_ACCESS_OK; 1161 } 1162 1163 return pmreg_access(env, ri, isread); 1164 } 1165 1166 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1167 * the current EL, security state, and register configuration. 1168 */ 1169 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1170 { 1171 uint64_t filter; 1172 bool e, p, u, nsk, nsu, nsh, m; 1173 bool enabled, prohibited, filtered; 1174 bool secure = arm_is_secure(env); 1175 int el = arm_current_el(env); 1176 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1177 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1178 1179 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1180 return false; 1181 } 1182 1183 if (!arm_feature(env, ARM_FEATURE_EL2) || 1184 (counter < hpmn || counter == 31)) { 1185 e = env->cp15.c9_pmcr & PMCRE; 1186 } else { 1187 e = mdcr_el2 & MDCR_HPME; 1188 } 1189 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1190 1191 if (!secure) { 1192 if (el == 2 && (counter < hpmn || counter == 31)) { 1193 prohibited = mdcr_el2 & MDCR_HPMD; 1194 } else { 1195 prohibited = false; 1196 } 1197 } else { 1198 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1199 !(env->cp15.mdcr_el3 & MDCR_SPME); 1200 } 1201 1202 if (prohibited && counter == 31) { 1203 prohibited = env->cp15.c9_pmcr & PMCRDP; 1204 } 1205 1206 if (counter == 31) { 1207 filter = env->cp15.pmccfiltr_el0; 1208 } else { 1209 filter = env->cp15.c14_pmevtyper[counter]; 1210 } 1211 1212 p = filter & PMXEVTYPER_P; 1213 u = filter & PMXEVTYPER_U; 1214 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1215 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1216 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1217 m = arm_el_is_aa64(env, 1) && 1218 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1219 1220 if (el == 0) { 1221 filtered = secure ? u : u != nsu; 1222 } else if (el == 1) { 1223 filtered = secure ? p : p != nsk; 1224 } else if (el == 2) { 1225 filtered = !nsh; 1226 } else { /* EL3 */ 1227 filtered = m != p; 1228 } 1229 1230 if (counter != 31) { 1231 /* 1232 * If not checking PMCCNTR, ensure the counter is setup to an event we 1233 * support 1234 */ 1235 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1236 if (!event_supported(event)) { 1237 return false; 1238 } 1239 } 1240 1241 return enabled && !prohibited && !filtered; 1242 } 1243 1244 static void pmu_update_irq(CPUARMState *env) 1245 { 1246 ARMCPU *cpu = env_archcpu(env); 1247 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1248 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1249 } 1250 1251 /* 1252 * Ensure c15_ccnt is the guest-visible count so that operations such as 1253 * enabling/disabling the counter or filtering, modifying the count itself, 1254 * etc. can be done logically. This is essentially a no-op if the counter is 1255 * not enabled at the time of the call. 1256 */ 1257 static void pmccntr_op_start(CPUARMState *env) 1258 { 1259 uint64_t cycles = cycles_get_count(env); 1260 1261 if (pmu_counter_enabled(env, 31)) { 1262 uint64_t eff_cycles = cycles; 1263 if (env->cp15.c9_pmcr & PMCRD) { 1264 /* Increment once every 64 processor clock cycles */ 1265 eff_cycles /= 64; 1266 } 1267 1268 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1269 1270 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1271 1ull << 63 : 1ull << 31; 1272 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1273 env->cp15.c9_pmovsr |= (1 << 31); 1274 pmu_update_irq(env); 1275 } 1276 1277 env->cp15.c15_ccnt = new_pmccntr; 1278 } 1279 env->cp15.c15_ccnt_delta = cycles; 1280 } 1281 1282 /* 1283 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1284 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1285 * pmccntr_op_start. 1286 */ 1287 static void pmccntr_op_finish(CPUARMState *env) 1288 { 1289 if (pmu_counter_enabled(env, 31)) { 1290 #ifndef CONFIG_USER_ONLY 1291 /* Calculate when the counter will next overflow */ 1292 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1293 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1294 remaining_cycles = (uint32_t)remaining_cycles; 1295 } 1296 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1297 1298 if (overflow_in > 0) { 1299 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1300 overflow_in; 1301 ARMCPU *cpu = env_archcpu(env); 1302 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1303 } 1304 #endif 1305 1306 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1307 if (env->cp15.c9_pmcr & PMCRD) { 1308 /* Increment once every 64 processor clock cycles */ 1309 prev_cycles /= 64; 1310 } 1311 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1312 } 1313 } 1314 1315 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1316 { 1317 1318 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1319 uint64_t count = 0; 1320 if (event_supported(event)) { 1321 uint16_t event_idx = supported_event_map[event]; 1322 count = pm_events[event_idx].get_count(env); 1323 } 1324 1325 if (pmu_counter_enabled(env, counter)) { 1326 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1327 1328 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1329 env->cp15.c9_pmovsr |= (1 << counter); 1330 pmu_update_irq(env); 1331 } 1332 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1333 } 1334 env->cp15.c14_pmevcntr_delta[counter] = count; 1335 } 1336 1337 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1338 { 1339 if (pmu_counter_enabled(env, counter)) { 1340 #ifndef CONFIG_USER_ONLY 1341 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1342 uint16_t event_idx = supported_event_map[event]; 1343 uint64_t delta = UINT32_MAX - 1344 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1345 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1346 1347 if (overflow_in > 0) { 1348 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1349 overflow_in; 1350 ARMCPU *cpu = env_archcpu(env); 1351 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1352 } 1353 #endif 1354 1355 env->cp15.c14_pmevcntr_delta[counter] -= 1356 env->cp15.c14_pmevcntr[counter]; 1357 } 1358 } 1359 1360 void pmu_op_start(CPUARMState *env) 1361 { 1362 unsigned int i; 1363 pmccntr_op_start(env); 1364 for (i = 0; i < pmu_num_counters(env); i++) { 1365 pmevcntr_op_start(env, i); 1366 } 1367 } 1368 1369 void pmu_op_finish(CPUARMState *env) 1370 { 1371 unsigned int i; 1372 pmccntr_op_finish(env); 1373 for (i = 0; i < pmu_num_counters(env); i++) { 1374 pmevcntr_op_finish(env, i); 1375 } 1376 } 1377 1378 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1379 { 1380 pmu_op_start(&cpu->env); 1381 } 1382 1383 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1384 { 1385 pmu_op_finish(&cpu->env); 1386 } 1387 1388 void arm_pmu_timer_cb(void *opaque) 1389 { 1390 ARMCPU *cpu = opaque; 1391 1392 /* 1393 * Update all the counter values based on the current underlying counts, 1394 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1395 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1396 * counter may expire. 1397 */ 1398 pmu_op_start(&cpu->env); 1399 pmu_op_finish(&cpu->env); 1400 } 1401 1402 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1403 uint64_t value) 1404 { 1405 pmu_op_start(env); 1406 1407 if (value & PMCRC) { 1408 /* The counter has been reset */ 1409 env->cp15.c15_ccnt = 0; 1410 } 1411 1412 if (value & PMCRP) { 1413 unsigned int i; 1414 for (i = 0; i < pmu_num_counters(env); i++) { 1415 env->cp15.c14_pmevcntr[i] = 0; 1416 } 1417 } 1418 1419 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1420 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1421 1422 pmu_op_finish(env); 1423 } 1424 1425 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1426 uint64_t value) 1427 { 1428 unsigned int i; 1429 for (i = 0; i < pmu_num_counters(env); i++) { 1430 /* Increment a counter's count iff: */ 1431 if ((value & (1 << i)) && /* counter's bit is set */ 1432 /* counter is enabled and not filtered */ 1433 pmu_counter_enabled(env, i) && 1434 /* counter is SW_INCR */ 1435 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1436 pmevcntr_op_start(env, i); 1437 1438 /* 1439 * Detect if this write causes an overflow since we can't predict 1440 * PMSWINC overflows like we can for other events 1441 */ 1442 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1443 1444 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1445 env->cp15.c9_pmovsr |= (1 << i); 1446 pmu_update_irq(env); 1447 } 1448 1449 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1450 1451 pmevcntr_op_finish(env, i); 1452 } 1453 } 1454 } 1455 1456 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1457 { 1458 uint64_t ret; 1459 pmccntr_op_start(env); 1460 ret = env->cp15.c15_ccnt; 1461 pmccntr_op_finish(env); 1462 return ret; 1463 } 1464 1465 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1466 uint64_t value) 1467 { 1468 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1469 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1470 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1471 * accessed. 1472 */ 1473 env->cp15.c9_pmselr = value & 0x1f; 1474 } 1475 1476 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1477 uint64_t value) 1478 { 1479 pmccntr_op_start(env); 1480 env->cp15.c15_ccnt = value; 1481 pmccntr_op_finish(env); 1482 } 1483 1484 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1485 uint64_t value) 1486 { 1487 uint64_t cur_val = pmccntr_read(env, NULL); 1488 1489 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1490 } 1491 1492 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1493 uint64_t value) 1494 { 1495 pmccntr_op_start(env); 1496 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1497 pmccntr_op_finish(env); 1498 } 1499 1500 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1501 uint64_t value) 1502 { 1503 pmccntr_op_start(env); 1504 /* M is not accessible from AArch32 */ 1505 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1506 (value & PMCCFILTR); 1507 pmccntr_op_finish(env); 1508 } 1509 1510 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1511 { 1512 /* M is not visible in AArch32 */ 1513 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1514 } 1515 1516 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1517 uint64_t value) 1518 { 1519 value &= pmu_counter_mask(env); 1520 env->cp15.c9_pmcnten |= value; 1521 } 1522 1523 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1524 uint64_t value) 1525 { 1526 value &= pmu_counter_mask(env); 1527 env->cp15.c9_pmcnten &= ~value; 1528 } 1529 1530 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1531 uint64_t value) 1532 { 1533 value &= pmu_counter_mask(env); 1534 env->cp15.c9_pmovsr &= ~value; 1535 pmu_update_irq(env); 1536 } 1537 1538 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1539 uint64_t value) 1540 { 1541 value &= pmu_counter_mask(env); 1542 env->cp15.c9_pmovsr |= value; 1543 pmu_update_irq(env); 1544 } 1545 1546 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1547 uint64_t value, const uint8_t counter) 1548 { 1549 if (counter == 31) { 1550 pmccfiltr_write(env, ri, value); 1551 } else if (counter < pmu_num_counters(env)) { 1552 pmevcntr_op_start(env, counter); 1553 1554 /* 1555 * If this counter's event type is changing, store the current 1556 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1557 * pmevcntr_op_finish has the correct baseline when it converts back to 1558 * a delta. 1559 */ 1560 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1561 PMXEVTYPER_EVTCOUNT; 1562 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1563 if (old_event != new_event) { 1564 uint64_t count = 0; 1565 if (event_supported(new_event)) { 1566 uint16_t event_idx = supported_event_map[new_event]; 1567 count = pm_events[event_idx].get_count(env); 1568 } 1569 env->cp15.c14_pmevcntr_delta[counter] = count; 1570 } 1571 1572 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1573 pmevcntr_op_finish(env, counter); 1574 } 1575 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1576 * PMSELR value is equal to or greater than the number of implemented 1577 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1578 */ 1579 } 1580 1581 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1582 const uint8_t counter) 1583 { 1584 if (counter == 31) { 1585 return env->cp15.pmccfiltr_el0; 1586 } else if (counter < pmu_num_counters(env)) { 1587 return env->cp15.c14_pmevtyper[counter]; 1588 } else { 1589 /* 1590 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1591 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1592 */ 1593 return 0; 1594 } 1595 } 1596 1597 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1598 uint64_t value) 1599 { 1600 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1601 pmevtyper_write(env, ri, value, counter); 1602 } 1603 1604 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1605 uint64_t value) 1606 { 1607 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1608 env->cp15.c14_pmevtyper[counter] = value; 1609 1610 /* 1611 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1612 * pmu_op_finish calls when loading saved state for a migration. Because 1613 * we're potentially updating the type of event here, the value written to 1614 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1615 * different counter type. Therefore, we need to set this value to the 1616 * current count for the counter type we're writing so that pmu_op_finish 1617 * has the correct count for its calculation. 1618 */ 1619 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1620 if (event_supported(event)) { 1621 uint16_t event_idx = supported_event_map[event]; 1622 env->cp15.c14_pmevcntr_delta[counter] = 1623 pm_events[event_idx].get_count(env); 1624 } 1625 } 1626 1627 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1628 { 1629 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1630 return pmevtyper_read(env, ri, counter); 1631 } 1632 1633 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1634 uint64_t value) 1635 { 1636 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1637 } 1638 1639 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1640 { 1641 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1642 } 1643 1644 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1645 uint64_t value, uint8_t counter) 1646 { 1647 if (counter < pmu_num_counters(env)) { 1648 pmevcntr_op_start(env, counter); 1649 env->cp15.c14_pmevcntr[counter] = value; 1650 pmevcntr_op_finish(env, counter); 1651 } 1652 /* 1653 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1654 * are CONSTRAINED UNPREDICTABLE. 1655 */ 1656 } 1657 1658 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1659 uint8_t counter) 1660 { 1661 if (counter < pmu_num_counters(env)) { 1662 uint64_t ret; 1663 pmevcntr_op_start(env, counter); 1664 ret = env->cp15.c14_pmevcntr[counter]; 1665 pmevcntr_op_finish(env, counter); 1666 return ret; 1667 } else { 1668 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1669 * are CONSTRAINED UNPREDICTABLE. */ 1670 return 0; 1671 } 1672 } 1673 1674 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1675 uint64_t value) 1676 { 1677 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1678 pmevcntr_write(env, ri, value, counter); 1679 } 1680 1681 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1682 { 1683 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1684 return pmevcntr_read(env, ri, counter); 1685 } 1686 1687 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1688 uint64_t value) 1689 { 1690 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1691 assert(counter < pmu_num_counters(env)); 1692 env->cp15.c14_pmevcntr[counter] = value; 1693 pmevcntr_write(env, ri, value, counter); 1694 } 1695 1696 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1697 { 1698 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1699 assert(counter < pmu_num_counters(env)); 1700 return env->cp15.c14_pmevcntr[counter]; 1701 } 1702 1703 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1704 uint64_t value) 1705 { 1706 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1707 } 1708 1709 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1710 { 1711 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1712 } 1713 1714 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1715 uint64_t value) 1716 { 1717 if (arm_feature(env, ARM_FEATURE_V8)) { 1718 env->cp15.c9_pmuserenr = value & 0xf; 1719 } else { 1720 env->cp15.c9_pmuserenr = value & 1; 1721 } 1722 } 1723 1724 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1725 uint64_t value) 1726 { 1727 /* We have no event counters so only the C bit can be changed */ 1728 value &= pmu_counter_mask(env); 1729 env->cp15.c9_pminten |= value; 1730 pmu_update_irq(env); 1731 } 1732 1733 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 value &= pmu_counter_mask(env); 1737 env->cp15.c9_pminten &= ~value; 1738 pmu_update_irq(env); 1739 } 1740 1741 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1742 uint64_t value) 1743 { 1744 /* Note that even though the AArch64 view of this register has bits 1745 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1746 * architectural requirements for bits which are RES0 only in some 1747 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1748 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1749 */ 1750 raw_write(env, ri, value & ~0x1FULL); 1751 } 1752 1753 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1754 { 1755 /* Begin with base v8.0 state. */ 1756 uint32_t valid_mask = 0x3fff; 1757 ARMCPU *cpu = env_archcpu(env); 1758 1759 if (ri->state == ARM_CP_STATE_AA64) { 1760 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1761 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1762 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1763 } 1764 valid_mask &= ~SCR_NET; 1765 1766 if (cpu_isar_feature(aa64_lor, cpu)) { 1767 valid_mask |= SCR_TLOR; 1768 } 1769 if (cpu_isar_feature(aa64_pauth, cpu)) { 1770 valid_mask |= SCR_API | SCR_APK; 1771 } 1772 if (cpu_isar_feature(aa64_sel2, cpu)) { 1773 valid_mask |= SCR_EEL2; 1774 } 1775 if (cpu_isar_feature(aa64_mte, cpu)) { 1776 valid_mask |= SCR_ATA; 1777 } 1778 } else { 1779 valid_mask &= ~(SCR_RW | SCR_ST); 1780 } 1781 1782 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1783 valid_mask &= ~SCR_HCE; 1784 1785 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1786 * supported if EL2 exists. The bit is UNK/SBZP when 1787 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1788 * when EL2 is unavailable. 1789 * On ARMv8, this bit is always available. 1790 */ 1791 if (arm_feature(env, ARM_FEATURE_V7) && 1792 !arm_feature(env, ARM_FEATURE_V8)) { 1793 valid_mask &= ~SCR_SMD; 1794 } 1795 } 1796 1797 /* Clear all-context RES0 bits. */ 1798 value &= valid_mask; 1799 raw_write(env, ri, value); 1800 } 1801 1802 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1803 { 1804 /* 1805 * scr_write will set the RES1 bits on an AArch64-only CPU. 1806 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1807 */ 1808 scr_write(env, ri, 0); 1809 } 1810 1811 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1812 const ARMCPRegInfo *ri, 1813 bool isread) 1814 { 1815 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1816 return CP_ACCESS_TRAP_EL2; 1817 } 1818 1819 return CP_ACCESS_OK; 1820 } 1821 1822 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1823 { 1824 ARMCPU *cpu = env_archcpu(env); 1825 1826 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1827 * bank 1828 */ 1829 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1830 ri->secure & ARM_CP_SECSTATE_S); 1831 1832 return cpu->ccsidr[index]; 1833 } 1834 1835 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 raw_write(env, ri, value & 0xf); 1839 } 1840 1841 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1842 { 1843 CPUState *cs = env_cpu(env); 1844 bool el1 = arm_current_el(env) == 1; 1845 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1846 uint64_t ret = 0; 1847 1848 if (hcr_el2 & HCR_IMO) { 1849 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1850 ret |= CPSR_I; 1851 } 1852 } else { 1853 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1854 ret |= CPSR_I; 1855 } 1856 } 1857 1858 if (hcr_el2 & HCR_FMO) { 1859 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1860 ret |= CPSR_F; 1861 } 1862 } else { 1863 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1864 ret |= CPSR_F; 1865 } 1866 } 1867 1868 /* External aborts are not possible in QEMU so A bit is always clear */ 1869 return ret; 1870 } 1871 1872 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1873 bool isread) 1874 { 1875 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1876 return CP_ACCESS_TRAP_EL2; 1877 } 1878 1879 return CP_ACCESS_OK; 1880 } 1881 1882 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1883 bool isread) 1884 { 1885 if (arm_feature(env, ARM_FEATURE_V8)) { 1886 return access_aa64_tid1(env, ri, isread); 1887 } 1888 1889 return CP_ACCESS_OK; 1890 } 1891 1892 static const ARMCPRegInfo v7_cp_reginfo[] = { 1893 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1894 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1895 .access = PL1_W, .type = ARM_CP_NOP }, 1896 /* Performance monitors are implementation defined in v7, 1897 * but with an ARM recommended set of registers, which we 1898 * follow. 1899 * 1900 * Performance registers fall into three categories: 1901 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1902 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1903 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1904 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1905 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1906 */ 1907 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1908 .access = PL0_RW, .type = ARM_CP_ALIAS, 1909 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1910 .writefn = pmcntenset_write, 1911 .accessfn = pmreg_access, 1912 .raw_writefn = raw_write }, 1913 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1914 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1915 .access = PL0_RW, .accessfn = pmreg_access, 1916 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1917 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1918 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1919 .access = PL0_RW, 1920 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1921 .accessfn = pmreg_access, 1922 .writefn = pmcntenclr_write, 1923 .type = ARM_CP_ALIAS }, 1924 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1925 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1926 .access = PL0_RW, .accessfn = pmreg_access, 1927 .type = ARM_CP_ALIAS, 1928 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1929 .writefn = pmcntenclr_write }, 1930 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1931 .access = PL0_RW, .type = ARM_CP_IO, 1932 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1933 .accessfn = pmreg_access, 1934 .writefn = pmovsr_write, 1935 .raw_writefn = raw_write }, 1936 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1937 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1938 .access = PL0_RW, .accessfn = pmreg_access, 1939 .type = ARM_CP_ALIAS | ARM_CP_IO, 1940 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1941 .writefn = pmovsr_write, 1942 .raw_writefn = raw_write }, 1943 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1944 .access = PL0_W, .accessfn = pmreg_access_swinc, 1945 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1946 .writefn = pmswinc_write }, 1947 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1948 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1949 .access = PL0_W, .accessfn = pmreg_access_swinc, 1950 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1951 .writefn = pmswinc_write }, 1952 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1953 .access = PL0_RW, .type = ARM_CP_ALIAS, 1954 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1955 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1956 .raw_writefn = raw_write}, 1957 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1958 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1959 .access = PL0_RW, .accessfn = pmreg_access_selr, 1960 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1961 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1962 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1963 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1964 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1965 .accessfn = pmreg_access_ccntr }, 1966 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1967 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1968 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1969 .type = ARM_CP_IO, 1970 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1971 .readfn = pmccntr_read, .writefn = pmccntr_write, 1972 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1973 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1974 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1975 .access = PL0_RW, .accessfn = pmreg_access, 1976 .type = ARM_CP_ALIAS | ARM_CP_IO, 1977 .resetvalue = 0, }, 1978 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1979 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1980 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1981 .access = PL0_RW, .accessfn = pmreg_access, 1982 .type = ARM_CP_IO, 1983 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1984 .resetvalue = 0, }, 1985 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1986 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1987 .accessfn = pmreg_access, 1988 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1989 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1990 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1991 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1992 .accessfn = pmreg_access, 1993 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1994 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1995 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1996 .accessfn = pmreg_access_xevcntr, 1997 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1998 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1999 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2000 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2001 .accessfn = pmreg_access_xevcntr, 2002 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2003 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2004 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2005 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2006 .resetvalue = 0, 2007 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2008 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2009 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2010 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2011 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2012 .resetvalue = 0, 2013 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2014 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2015 .access = PL1_RW, .accessfn = access_tpm, 2016 .type = ARM_CP_ALIAS | ARM_CP_IO, 2017 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2018 .resetvalue = 0, 2019 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2020 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2021 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2022 .access = PL1_RW, .accessfn = access_tpm, 2023 .type = ARM_CP_IO, 2024 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2025 .writefn = pmintenset_write, .raw_writefn = raw_write, 2026 .resetvalue = 0x0 }, 2027 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2028 .access = PL1_RW, .accessfn = access_tpm, 2029 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2031 .writefn = pmintenclr_write, }, 2032 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2033 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2034 .access = PL1_RW, .accessfn = access_tpm, 2035 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2036 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2037 .writefn = pmintenclr_write }, 2038 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2039 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2040 .access = PL1_R, 2041 .accessfn = access_aa64_tid2, 2042 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2043 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2044 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2045 .access = PL1_RW, 2046 .accessfn = access_aa64_tid2, 2047 .writefn = csselr_write, .resetvalue = 0, 2048 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2049 offsetof(CPUARMState, cp15.csselr_ns) } }, 2050 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2051 * just RAZ for all cores: 2052 */ 2053 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2054 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2055 .access = PL1_R, .type = ARM_CP_CONST, 2056 .accessfn = access_aa64_tid1, 2057 .resetvalue = 0 }, 2058 /* Auxiliary fault status registers: these also are IMPDEF, and we 2059 * choose to RAZ/WI for all cores. 2060 */ 2061 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2062 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2063 .access = PL1_RW, .accessfn = access_tvm_trvm, 2064 .type = ARM_CP_CONST, .resetvalue = 0 }, 2065 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2066 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2067 .access = PL1_RW, .accessfn = access_tvm_trvm, 2068 .type = ARM_CP_CONST, .resetvalue = 0 }, 2069 /* MAIR can just read-as-written because we don't implement caches 2070 * and so don't need to care about memory attributes. 2071 */ 2072 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2073 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2074 .access = PL1_RW, .accessfn = access_tvm_trvm, 2075 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2076 .resetvalue = 0 }, 2077 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2078 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2079 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2080 .resetvalue = 0 }, 2081 /* For non-long-descriptor page tables these are PRRR and NMRR; 2082 * regardless they still act as reads-as-written for QEMU. 2083 */ 2084 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2085 * allows them to assign the correct fieldoffset based on the endianness 2086 * handled in the field definitions. 2087 */ 2088 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2089 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2090 .access = PL1_RW, .accessfn = access_tvm_trvm, 2091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2092 offsetof(CPUARMState, cp15.mair0_ns) }, 2093 .resetfn = arm_cp_reset_ignore }, 2094 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2095 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2096 .access = PL1_RW, .accessfn = access_tvm_trvm, 2097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2098 offsetof(CPUARMState, cp15.mair1_ns) }, 2099 .resetfn = arm_cp_reset_ignore }, 2100 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2101 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2102 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2103 /* 32 bit ITLB invalidates */ 2104 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2105 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2106 .writefn = tlbiall_write }, 2107 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2108 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2109 .writefn = tlbimva_write }, 2110 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2111 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2112 .writefn = tlbiasid_write }, 2113 /* 32 bit DTLB invalidates */ 2114 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2115 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2116 .writefn = tlbiall_write }, 2117 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2118 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2119 .writefn = tlbimva_write }, 2120 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2121 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2122 .writefn = tlbiasid_write }, 2123 /* 32 bit TLB invalidates */ 2124 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2125 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2126 .writefn = tlbiall_write }, 2127 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2128 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2129 .writefn = tlbimva_write }, 2130 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2131 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2132 .writefn = tlbiasid_write }, 2133 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2134 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2135 .writefn = tlbimvaa_write }, 2136 REGINFO_SENTINEL 2137 }; 2138 2139 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2140 /* 32 bit TLB invalidates, Inner Shareable */ 2141 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2142 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2143 .writefn = tlbiall_is_write }, 2144 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2145 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2146 .writefn = tlbimva_is_write }, 2147 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2148 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2149 .writefn = tlbiasid_is_write }, 2150 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2151 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2152 .writefn = tlbimvaa_is_write }, 2153 REGINFO_SENTINEL 2154 }; 2155 2156 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2157 /* PMOVSSET is not implemented in v7 before v7ve */ 2158 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2159 .access = PL0_RW, .accessfn = pmreg_access, 2160 .type = ARM_CP_ALIAS | ARM_CP_IO, 2161 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2162 .writefn = pmovsset_write, 2163 .raw_writefn = raw_write }, 2164 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2165 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2166 .access = PL0_RW, .accessfn = pmreg_access, 2167 .type = ARM_CP_ALIAS | ARM_CP_IO, 2168 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2169 .writefn = pmovsset_write, 2170 .raw_writefn = raw_write }, 2171 REGINFO_SENTINEL 2172 }; 2173 2174 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2175 uint64_t value) 2176 { 2177 value &= 1; 2178 env->teecr = value; 2179 } 2180 2181 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2182 bool isread) 2183 { 2184 /* 2185 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2186 * at all, so we don't need to check whether we're v8A. 2187 */ 2188 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2189 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2190 return CP_ACCESS_TRAP_EL2; 2191 } 2192 return CP_ACCESS_OK; 2193 } 2194 2195 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2196 bool isread) 2197 { 2198 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2199 return CP_ACCESS_TRAP; 2200 } 2201 return teecr_access(env, ri, isread); 2202 } 2203 2204 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2205 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2206 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2207 .resetvalue = 0, 2208 .writefn = teecr_write, .accessfn = teecr_access }, 2209 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2210 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2211 .accessfn = teehbr_access, .resetvalue = 0 }, 2212 REGINFO_SENTINEL 2213 }; 2214 2215 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2216 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2217 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2218 .access = PL0_RW, 2219 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2220 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2221 .access = PL0_RW, 2222 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2223 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2224 .resetfn = arm_cp_reset_ignore }, 2225 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2226 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2227 .access = PL0_R|PL1_W, 2228 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2229 .resetvalue = 0}, 2230 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2231 .access = PL0_R|PL1_W, 2232 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2233 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2234 .resetfn = arm_cp_reset_ignore }, 2235 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2236 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2237 .access = PL1_RW, 2238 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2239 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2240 .access = PL1_RW, 2241 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2242 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2243 .resetvalue = 0 }, 2244 REGINFO_SENTINEL 2245 }; 2246 2247 #ifndef CONFIG_USER_ONLY 2248 2249 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2250 bool isread) 2251 { 2252 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2253 * Writable only at the highest implemented exception level. 2254 */ 2255 int el = arm_current_el(env); 2256 uint64_t hcr; 2257 uint32_t cntkctl; 2258 2259 switch (el) { 2260 case 0: 2261 hcr = arm_hcr_el2_eff(env); 2262 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2263 cntkctl = env->cp15.cnthctl_el2; 2264 } else { 2265 cntkctl = env->cp15.c14_cntkctl; 2266 } 2267 if (!extract32(cntkctl, 0, 2)) { 2268 return CP_ACCESS_TRAP; 2269 } 2270 break; 2271 case 1: 2272 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2273 arm_is_secure_below_el3(env)) { 2274 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2275 return CP_ACCESS_TRAP_UNCATEGORIZED; 2276 } 2277 break; 2278 case 2: 2279 case 3: 2280 break; 2281 } 2282 2283 if (!isread && el < arm_highest_el(env)) { 2284 return CP_ACCESS_TRAP_UNCATEGORIZED; 2285 } 2286 2287 return CP_ACCESS_OK; 2288 } 2289 2290 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2291 bool isread) 2292 { 2293 unsigned int cur_el = arm_current_el(env); 2294 bool has_el2 = arm_is_el2_enabled(env); 2295 uint64_t hcr = arm_hcr_el2_eff(env); 2296 2297 switch (cur_el) { 2298 case 0: 2299 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2300 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2301 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2302 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2303 } 2304 2305 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2306 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2307 return CP_ACCESS_TRAP; 2308 } 2309 2310 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2311 if (hcr & HCR_E2H) { 2312 if (timeridx == GTIMER_PHYS && 2313 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2314 return CP_ACCESS_TRAP_EL2; 2315 } 2316 } else { 2317 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2318 if (has_el2 && timeridx == GTIMER_PHYS && 2319 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2320 return CP_ACCESS_TRAP_EL2; 2321 } 2322 } 2323 break; 2324 2325 case 1: 2326 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2327 if (has_el2 && timeridx == GTIMER_PHYS && 2328 (hcr & HCR_E2H 2329 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2330 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2331 return CP_ACCESS_TRAP_EL2; 2332 } 2333 break; 2334 } 2335 return CP_ACCESS_OK; 2336 } 2337 2338 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2339 bool isread) 2340 { 2341 unsigned int cur_el = arm_current_el(env); 2342 bool has_el2 = arm_is_el2_enabled(env); 2343 uint64_t hcr = arm_hcr_el2_eff(env); 2344 2345 switch (cur_el) { 2346 case 0: 2347 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2348 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2349 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2350 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2351 } 2352 2353 /* 2354 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2355 * EL0 if EL0[PV]TEN is zero. 2356 */ 2357 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2358 return CP_ACCESS_TRAP; 2359 } 2360 /* fall through */ 2361 2362 case 1: 2363 if (has_el2 && timeridx == GTIMER_PHYS) { 2364 if (hcr & HCR_E2H) { 2365 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2366 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2367 return CP_ACCESS_TRAP_EL2; 2368 } 2369 } else { 2370 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2371 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2372 return CP_ACCESS_TRAP_EL2; 2373 } 2374 } 2375 } 2376 break; 2377 } 2378 return CP_ACCESS_OK; 2379 } 2380 2381 static CPAccessResult gt_pct_access(CPUARMState *env, 2382 const ARMCPRegInfo *ri, 2383 bool isread) 2384 { 2385 return gt_counter_access(env, GTIMER_PHYS, isread); 2386 } 2387 2388 static CPAccessResult gt_vct_access(CPUARMState *env, 2389 const ARMCPRegInfo *ri, 2390 bool isread) 2391 { 2392 return gt_counter_access(env, GTIMER_VIRT, isread); 2393 } 2394 2395 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2396 bool isread) 2397 { 2398 return gt_timer_access(env, GTIMER_PHYS, isread); 2399 } 2400 2401 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2402 bool isread) 2403 { 2404 return gt_timer_access(env, GTIMER_VIRT, isread); 2405 } 2406 2407 static CPAccessResult gt_stimer_access(CPUARMState *env, 2408 const ARMCPRegInfo *ri, 2409 bool isread) 2410 { 2411 /* The AArch64 register view of the secure physical timer is 2412 * always accessible from EL3, and configurably accessible from 2413 * Secure EL1. 2414 */ 2415 switch (arm_current_el(env)) { 2416 case 1: 2417 if (!arm_is_secure(env)) { 2418 return CP_ACCESS_TRAP; 2419 } 2420 if (!(env->cp15.scr_el3 & SCR_ST)) { 2421 return CP_ACCESS_TRAP_EL3; 2422 } 2423 return CP_ACCESS_OK; 2424 case 0: 2425 case 2: 2426 return CP_ACCESS_TRAP; 2427 case 3: 2428 return CP_ACCESS_OK; 2429 default: 2430 g_assert_not_reached(); 2431 } 2432 } 2433 2434 static uint64_t gt_get_countervalue(CPUARMState *env) 2435 { 2436 ARMCPU *cpu = env_archcpu(env); 2437 2438 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2439 } 2440 2441 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2442 { 2443 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2444 2445 if (gt->ctl & 1) { 2446 /* Timer enabled: calculate and set current ISTATUS, irq, and 2447 * reset timer to when ISTATUS next has to change 2448 */ 2449 uint64_t offset = timeridx == GTIMER_VIRT ? 2450 cpu->env.cp15.cntvoff_el2 : 0; 2451 uint64_t count = gt_get_countervalue(&cpu->env); 2452 /* Note that this must be unsigned 64 bit arithmetic: */ 2453 int istatus = count - offset >= gt->cval; 2454 uint64_t nexttick; 2455 int irqstate; 2456 2457 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2458 2459 irqstate = (istatus && !(gt->ctl & 2)); 2460 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2461 2462 if (istatus) { 2463 /* Next transition is when count rolls back over to zero */ 2464 nexttick = UINT64_MAX; 2465 } else { 2466 /* Next transition is when we hit cval */ 2467 nexttick = gt->cval + offset; 2468 } 2469 /* Note that the desired next expiry time might be beyond the 2470 * signed-64-bit range of a QEMUTimer -- in this case we just 2471 * set the timer for as far in the future as possible. When the 2472 * timer expires we will reset the timer for any remaining period. 2473 */ 2474 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2475 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2476 } else { 2477 timer_mod(cpu->gt_timer[timeridx], nexttick); 2478 } 2479 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2480 } else { 2481 /* Timer disabled: ISTATUS and timer output always clear */ 2482 gt->ctl &= ~4; 2483 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2484 timer_del(cpu->gt_timer[timeridx]); 2485 trace_arm_gt_recalc_disabled(timeridx); 2486 } 2487 } 2488 2489 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2490 int timeridx) 2491 { 2492 ARMCPU *cpu = env_archcpu(env); 2493 2494 timer_del(cpu->gt_timer[timeridx]); 2495 } 2496 2497 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2498 { 2499 return gt_get_countervalue(env); 2500 } 2501 2502 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2503 { 2504 uint64_t hcr; 2505 2506 switch (arm_current_el(env)) { 2507 case 2: 2508 hcr = arm_hcr_el2_eff(env); 2509 if (hcr & HCR_E2H) { 2510 return 0; 2511 } 2512 break; 2513 case 0: 2514 hcr = arm_hcr_el2_eff(env); 2515 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2516 return 0; 2517 } 2518 break; 2519 } 2520 2521 return env->cp15.cntvoff_el2; 2522 } 2523 2524 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2525 { 2526 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2527 } 2528 2529 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2530 int timeridx, 2531 uint64_t value) 2532 { 2533 trace_arm_gt_cval_write(timeridx, value); 2534 env->cp15.c14_timer[timeridx].cval = value; 2535 gt_recalc_timer(env_archcpu(env), timeridx); 2536 } 2537 2538 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2539 int timeridx) 2540 { 2541 uint64_t offset = 0; 2542 2543 switch (timeridx) { 2544 case GTIMER_VIRT: 2545 case GTIMER_HYPVIRT: 2546 offset = gt_virt_cnt_offset(env); 2547 break; 2548 } 2549 2550 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2551 (gt_get_countervalue(env) - offset)); 2552 } 2553 2554 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2555 int timeridx, 2556 uint64_t value) 2557 { 2558 uint64_t offset = 0; 2559 2560 switch (timeridx) { 2561 case GTIMER_VIRT: 2562 case GTIMER_HYPVIRT: 2563 offset = gt_virt_cnt_offset(env); 2564 break; 2565 } 2566 2567 trace_arm_gt_tval_write(timeridx, value); 2568 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2569 sextract64(value, 0, 32); 2570 gt_recalc_timer(env_archcpu(env), timeridx); 2571 } 2572 2573 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2574 int timeridx, 2575 uint64_t value) 2576 { 2577 ARMCPU *cpu = env_archcpu(env); 2578 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2579 2580 trace_arm_gt_ctl_write(timeridx, value); 2581 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2582 if ((oldval ^ value) & 1) { 2583 /* Enable toggled */ 2584 gt_recalc_timer(cpu, timeridx); 2585 } else if ((oldval ^ value) & 2) { 2586 /* IMASK toggled: don't need to recalculate, 2587 * just set the interrupt line based on ISTATUS 2588 */ 2589 int irqstate = (oldval & 4) && !(value & 2); 2590 2591 trace_arm_gt_imask_toggle(timeridx, irqstate); 2592 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2593 } 2594 } 2595 2596 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2597 { 2598 gt_timer_reset(env, ri, GTIMER_PHYS); 2599 } 2600 2601 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2602 uint64_t value) 2603 { 2604 gt_cval_write(env, ri, GTIMER_PHYS, value); 2605 } 2606 2607 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2608 { 2609 return gt_tval_read(env, ri, GTIMER_PHYS); 2610 } 2611 2612 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2613 uint64_t value) 2614 { 2615 gt_tval_write(env, ri, GTIMER_PHYS, value); 2616 } 2617 2618 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2619 uint64_t value) 2620 { 2621 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2622 } 2623 2624 static int gt_phys_redir_timeridx(CPUARMState *env) 2625 { 2626 switch (arm_mmu_idx(env)) { 2627 case ARMMMUIdx_E20_0: 2628 case ARMMMUIdx_E20_2: 2629 case ARMMMUIdx_E20_2_PAN: 2630 case ARMMMUIdx_SE20_0: 2631 case ARMMMUIdx_SE20_2: 2632 case ARMMMUIdx_SE20_2_PAN: 2633 return GTIMER_HYP; 2634 default: 2635 return GTIMER_PHYS; 2636 } 2637 } 2638 2639 static int gt_virt_redir_timeridx(CPUARMState *env) 2640 { 2641 switch (arm_mmu_idx(env)) { 2642 case ARMMMUIdx_E20_0: 2643 case ARMMMUIdx_E20_2: 2644 case ARMMMUIdx_E20_2_PAN: 2645 case ARMMMUIdx_SE20_0: 2646 case ARMMMUIdx_SE20_2: 2647 case ARMMMUIdx_SE20_2_PAN: 2648 return GTIMER_HYPVIRT; 2649 default: 2650 return GTIMER_VIRT; 2651 } 2652 } 2653 2654 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2655 const ARMCPRegInfo *ri) 2656 { 2657 int timeridx = gt_phys_redir_timeridx(env); 2658 return env->cp15.c14_timer[timeridx].cval; 2659 } 2660 2661 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2662 uint64_t value) 2663 { 2664 int timeridx = gt_phys_redir_timeridx(env); 2665 gt_cval_write(env, ri, timeridx, value); 2666 } 2667 2668 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2669 const ARMCPRegInfo *ri) 2670 { 2671 int timeridx = gt_phys_redir_timeridx(env); 2672 return gt_tval_read(env, ri, timeridx); 2673 } 2674 2675 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2676 uint64_t value) 2677 { 2678 int timeridx = gt_phys_redir_timeridx(env); 2679 gt_tval_write(env, ri, timeridx, value); 2680 } 2681 2682 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2683 const ARMCPRegInfo *ri) 2684 { 2685 int timeridx = gt_phys_redir_timeridx(env); 2686 return env->cp15.c14_timer[timeridx].ctl; 2687 } 2688 2689 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2690 uint64_t value) 2691 { 2692 int timeridx = gt_phys_redir_timeridx(env); 2693 gt_ctl_write(env, ri, timeridx, value); 2694 } 2695 2696 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2697 { 2698 gt_timer_reset(env, ri, GTIMER_VIRT); 2699 } 2700 2701 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2702 uint64_t value) 2703 { 2704 gt_cval_write(env, ri, GTIMER_VIRT, value); 2705 } 2706 2707 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2708 { 2709 return gt_tval_read(env, ri, GTIMER_VIRT); 2710 } 2711 2712 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2713 uint64_t value) 2714 { 2715 gt_tval_write(env, ri, GTIMER_VIRT, value); 2716 } 2717 2718 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2719 uint64_t value) 2720 { 2721 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2722 } 2723 2724 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2725 uint64_t value) 2726 { 2727 ARMCPU *cpu = env_archcpu(env); 2728 2729 trace_arm_gt_cntvoff_write(value); 2730 raw_write(env, ri, value); 2731 gt_recalc_timer(cpu, GTIMER_VIRT); 2732 } 2733 2734 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2735 const ARMCPRegInfo *ri) 2736 { 2737 int timeridx = gt_virt_redir_timeridx(env); 2738 return env->cp15.c14_timer[timeridx].cval; 2739 } 2740 2741 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2742 uint64_t value) 2743 { 2744 int timeridx = gt_virt_redir_timeridx(env); 2745 gt_cval_write(env, ri, timeridx, value); 2746 } 2747 2748 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2749 const ARMCPRegInfo *ri) 2750 { 2751 int timeridx = gt_virt_redir_timeridx(env); 2752 return gt_tval_read(env, ri, timeridx); 2753 } 2754 2755 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2756 uint64_t value) 2757 { 2758 int timeridx = gt_virt_redir_timeridx(env); 2759 gt_tval_write(env, ri, timeridx, value); 2760 } 2761 2762 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2763 const ARMCPRegInfo *ri) 2764 { 2765 int timeridx = gt_virt_redir_timeridx(env); 2766 return env->cp15.c14_timer[timeridx].ctl; 2767 } 2768 2769 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2770 uint64_t value) 2771 { 2772 int timeridx = gt_virt_redir_timeridx(env); 2773 gt_ctl_write(env, ri, timeridx, value); 2774 } 2775 2776 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2777 { 2778 gt_timer_reset(env, ri, GTIMER_HYP); 2779 } 2780 2781 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2782 uint64_t value) 2783 { 2784 gt_cval_write(env, ri, GTIMER_HYP, value); 2785 } 2786 2787 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2788 { 2789 return gt_tval_read(env, ri, GTIMER_HYP); 2790 } 2791 2792 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2793 uint64_t value) 2794 { 2795 gt_tval_write(env, ri, GTIMER_HYP, value); 2796 } 2797 2798 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2799 uint64_t value) 2800 { 2801 gt_ctl_write(env, ri, GTIMER_HYP, value); 2802 } 2803 2804 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2805 { 2806 gt_timer_reset(env, ri, GTIMER_SEC); 2807 } 2808 2809 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2810 uint64_t value) 2811 { 2812 gt_cval_write(env, ri, GTIMER_SEC, value); 2813 } 2814 2815 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2816 { 2817 return gt_tval_read(env, ri, GTIMER_SEC); 2818 } 2819 2820 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2821 uint64_t value) 2822 { 2823 gt_tval_write(env, ri, GTIMER_SEC, value); 2824 } 2825 2826 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2827 uint64_t value) 2828 { 2829 gt_ctl_write(env, ri, GTIMER_SEC, value); 2830 } 2831 2832 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2833 { 2834 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2835 } 2836 2837 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2841 } 2842 2843 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2844 { 2845 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2846 } 2847 2848 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2849 uint64_t value) 2850 { 2851 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2852 } 2853 2854 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2855 uint64_t value) 2856 { 2857 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2858 } 2859 2860 void arm_gt_ptimer_cb(void *opaque) 2861 { 2862 ARMCPU *cpu = opaque; 2863 2864 gt_recalc_timer(cpu, GTIMER_PHYS); 2865 } 2866 2867 void arm_gt_vtimer_cb(void *opaque) 2868 { 2869 ARMCPU *cpu = opaque; 2870 2871 gt_recalc_timer(cpu, GTIMER_VIRT); 2872 } 2873 2874 void arm_gt_htimer_cb(void *opaque) 2875 { 2876 ARMCPU *cpu = opaque; 2877 2878 gt_recalc_timer(cpu, GTIMER_HYP); 2879 } 2880 2881 void arm_gt_stimer_cb(void *opaque) 2882 { 2883 ARMCPU *cpu = opaque; 2884 2885 gt_recalc_timer(cpu, GTIMER_SEC); 2886 } 2887 2888 void arm_gt_hvtimer_cb(void *opaque) 2889 { 2890 ARMCPU *cpu = opaque; 2891 2892 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2893 } 2894 2895 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2896 { 2897 ARMCPU *cpu = env_archcpu(env); 2898 2899 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2900 } 2901 2902 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2903 /* Note that CNTFRQ is purely reads-as-written for the benefit 2904 * of software; writing it doesn't actually change the timer frequency. 2905 * Our reset value matches the fixed frequency we implement the timer at. 2906 */ 2907 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2908 .type = ARM_CP_ALIAS, 2909 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2910 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2911 }, 2912 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2913 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2914 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2915 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2916 .resetfn = arm_gt_cntfrq_reset, 2917 }, 2918 /* overall control: mostly access permissions */ 2919 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2920 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2921 .access = PL1_RW, 2922 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2923 .resetvalue = 0, 2924 }, 2925 /* per-timer control */ 2926 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2927 .secure = ARM_CP_SECSTATE_NS, 2928 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2929 .accessfn = gt_ptimer_access, 2930 .fieldoffset = offsetoflow32(CPUARMState, 2931 cp15.c14_timer[GTIMER_PHYS].ctl), 2932 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2933 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2934 }, 2935 { .name = "CNTP_CTL_S", 2936 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2937 .secure = ARM_CP_SECSTATE_S, 2938 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2939 .accessfn = gt_ptimer_access, 2940 .fieldoffset = offsetoflow32(CPUARMState, 2941 cp15.c14_timer[GTIMER_SEC].ctl), 2942 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2943 }, 2944 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2945 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2946 .type = ARM_CP_IO, .access = PL0_RW, 2947 .accessfn = gt_ptimer_access, 2948 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2949 .resetvalue = 0, 2950 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2951 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2952 }, 2953 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2954 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2955 .accessfn = gt_vtimer_access, 2956 .fieldoffset = offsetoflow32(CPUARMState, 2957 cp15.c14_timer[GTIMER_VIRT].ctl), 2958 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2959 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2960 }, 2961 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2962 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2963 .type = ARM_CP_IO, .access = PL0_RW, 2964 .accessfn = gt_vtimer_access, 2965 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2966 .resetvalue = 0, 2967 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2968 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2969 }, 2970 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2971 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2972 .secure = ARM_CP_SECSTATE_NS, 2973 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2974 .accessfn = gt_ptimer_access, 2975 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2976 }, 2977 { .name = "CNTP_TVAL_S", 2978 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2979 .secure = ARM_CP_SECSTATE_S, 2980 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2981 .accessfn = gt_ptimer_access, 2982 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2983 }, 2984 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2986 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2987 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2988 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2989 }, 2990 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2991 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2992 .accessfn = gt_vtimer_access, 2993 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2994 }, 2995 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2996 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2997 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2998 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2999 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3000 }, 3001 /* The counter itself */ 3002 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3003 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3004 .accessfn = gt_pct_access, 3005 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3006 }, 3007 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3008 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3009 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3010 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3011 }, 3012 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3013 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3014 .accessfn = gt_vct_access, 3015 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3016 }, 3017 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3019 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3020 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3021 }, 3022 /* Comparison value, indicating when the timer goes off */ 3023 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3024 .secure = ARM_CP_SECSTATE_NS, 3025 .access = PL0_RW, 3026 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3027 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3028 .accessfn = gt_ptimer_access, 3029 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3030 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3031 }, 3032 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3033 .secure = ARM_CP_SECSTATE_S, 3034 .access = PL0_RW, 3035 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3036 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3037 .accessfn = gt_ptimer_access, 3038 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3039 }, 3040 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3041 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3042 .access = PL0_RW, 3043 .type = ARM_CP_IO, 3044 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3045 .resetvalue = 0, .accessfn = gt_ptimer_access, 3046 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3047 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3048 }, 3049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3050 .access = PL0_RW, 3051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3053 .accessfn = gt_vtimer_access, 3054 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3055 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3056 }, 3057 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3058 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3059 .access = PL0_RW, 3060 .type = ARM_CP_IO, 3061 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3062 .resetvalue = 0, .accessfn = gt_vtimer_access, 3063 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3064 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3065 }, 3066 /* Secure timer -- this is actually restricted to only EL3 3067 * and configurably Secure-EL1 via the accessfn. 3068 */ 3069 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3070 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3071 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3072 .accessfn = gt_stimer_access, 3073 .readfn = gt_sec_tval_read, 3074 .writefn = gt_sec_tval_write, 3075 .resetfn = gt_sec_timer_reset, 3076 }, 3077 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3078 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3079 .type = ARM_CP_IO, .access = PL1_RW, 3080 .accessfn = gt_stimer_access, 3081 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3082 .resetvalue = 0, 3083 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3084 }, 3085 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3086 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3087 .type = ARM_CP_IO, .access = PL1_RW, 3088 .accessfn = gt_stimer_access, 3089 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3090 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3091 }, 3092 REGINFO_SENTINEL 3093 }; 3094 3095 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3096 bool isread) 3097 { 3098 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3099 return CP_ACCESS_TRAP; 3100 } 3101 return CP_ACCESS_OK; 3102 } 3103 3104 #else 3105 3106 /* In user-mode most of the generic timer registers are inaccessible 3107 * however modern kernels (4.12+) allow access to cntvct_el0 3108 */ 3109 3110 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3111 { 3112 ARMCPU *cpu = env_archcpu(env); 3113 3114 /* Currently we have no support for QEMUTimer in linux-user so we 3115 * can't call gt_get_countervalue(env), instead we directly 3116 * call the lower level functions. 3117 */ 3118 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3119 } 3120 3121 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3122 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3123 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3124 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3125 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3126 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3127 }, 3128 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3129 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3130 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3131 .readfn = gt_virt_cnt_read, 3132 }, 3133 REGINFO_SENTINEL 3134 }; 3135 3136 #endif 3137 3138 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3139 { 3140 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3141 raw_write(env, ri, value); 3142 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3143 raw_write(env, ri, value & 0xfffff6ff); 3144 } else { 3145 raw_write(env, ri, value & 0xfffff1ff); 3146 } 3147 } 3148 3149 #ifndef CONFIG_USER_ONLY 3150 /* get_phys_addr() isn't present for user-mode-only targets */ 3151 3152 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3153 bool isread) 3154 { 3155 if (ri->opc2 & 4) { 3156 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3157 * Secure EL1 (which can only happen if EL3 is AArch64). 3158 * They are simply UNDEF if executed from NS EL1. 3159 * They function normally from EL2 or EL3. 3160 */ 3161 if (arm_current_el(env) == 1) { 3162 if (arm_is_secure_below_el3(env)) { 3163 if (env->cp15.scr_el3 & SCR_EEL2) { 3164 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3165 } 3166 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3167 } 3168 return CP_ACCESS_TRAP_UNCATEGORIZED; 3169 } 3170 } 3171 return CP_ACCESS_OK; 3172 } 3173 3174 #ifdef CONFIG_TCG 3175 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3176 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3177 { 3178 hwaddr phys_addr; 3179 target_ulong page_size; 3180 int prot; 3181 bool ret; 3182 uint64_t par64; 3183 bool format64 = false; 3184 MemTxAttrs attrs = {}; 3185 ARMMMUFaultInfo fi = {}; 3186 ARMCacheAttrs cacheattrs = {}; 3187 3188 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3189 &prot, &page_size, &fi, &cacheattrs); 3190 3191 if (ret) { 3192 /* 3193 * Some kinds of translation fault must cause exceptions rather 3194 * than being reported in the PAR. 3195 */ 3196 int current_el = arm_current_el(env); 3197 int target_el; 3198 uint32_t syn, fsr, fsc; 3199 bool take_exc = false; 3200 3201 if (fi.s1ptw && current_el == 1 3202 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3203 /* 3204 * Synchronous stage 2 fault on an access made as part of the 3205 * translation table walk for AT S1E0* or AT S1E1* insn 3206 * executed from NS EL1. If this is a synchronous external abort 3207 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3208 * to EL3. Otherwise the fault is taken as an exception to EL2, 3209 * and HPFAR_EL2 holds the faulting IPA. 3210 */ 3211 if (fi.type == ARMFault_SyncExternalOnWalk && 3212 (env->cp15.scr_el3 & SCR_EA)) { 3213 target_el = 3; 3214 } else { 3215 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3216 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3217 env->cp15.hpfar_el2 |= HPFAR_NS; 3218 } 3219 target_el = 2; 3220 } 3221 take_exc = true; 3222 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3223 /* 3224 * Synchronous external aborts during a translation table walk 3225 * are taken as Data Abort exceptions. 3226 */ 3227 if (fi.stage2) { 3228 if (current_el == 3) { 3229 target_el = 3; 3230 } else { 3231 target_el = 2; 3232 } 3233 } else { 3234 target_el = exception_target_el(env); 3235 } 3236 take_exc = true; 3237 } 3238 3239 if (take_exc) { 3240 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3241 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3242 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3243 fsr = arm_fi_to_lfsc(&fi); 3244 fsc = extract32(fsr, 0, 6); 3245 } else { 3246 fsr = arm_fi_to_sfsc(&fi); 3247 fsc = 0x3f; 3248 } 3249 /* 3250 * Report exception with ESR indicating a fault due to a 3251 * translation table walk for a cache maintenance instruction. 3252 */ 3253 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3254 fi.ea, 1, fi.s1ptw, 1, fsc); 3255 env->exception.vaddress = value; 3256 env->exception.fsr = fsr; 3257 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3258 } 3259 } 3260 3261 if (is_a64(env)) { 3262 format64 = true; 3263 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3264 /* 3265 * ATS1Cxx: 3266 * * TTBCR.EAE determines whether the result is returned using the 3267 * 32-bit or the 64-bit PAR format 3268 * * Instructions executed in Hyp mode always use the 64bit format 3269 * 3270 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3271 * * The Non-secure TTBCR.EAE bit is set to 1 3272 * * The implementation includes EL2, and the value of HCR.VM is 1 3273 * 3274 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3275 * 3276 * ATS1Hx always uses the 64bit format. 3277 */ 3278 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3279 3280 if (arm_feature(env, ARM_FEATURE_EL2)) { 3281 if (mmu_idx == ARMMMUIdx_E10_0 || 3282 mmu_idx == ARMMMUIdx_E10_1 || 3283 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3284 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3285 } else { 3286 format64 |= arm_current_el(env) == 2; 3287 } 3288 } 3289 } 3290 3291 if (format64) { 3292 /* Create a 64-bit PAR */ 3293 par64 = (1 << 11); /* LPAE bit always set */ 3294 if (!ret) { 3295 par64 |= phys_addr & ~0xfffULL; 3296 if (!attrs.secure) { 3297 par64 |= (1 << 9); /* NS */ 3298 } 3299 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3300 par64 |= cacheattrs.shareability << 7; /* SH */ 3301 } else { 3302 uint32_t fsr = arm_fi_to_lfsc(&fi); 3303 3304 par64 |= 1; /* F */ 3305 par64 |= (fsr & 0x3f) << 1; /* FS */ 3306 if (fi.stage2) { 3307 par64 |= (1 << 9); /* S */ 3308 } 3309 if (fi.s1ptw) { 3310 par64 |= (1 << 8); /* PTW */ 3311 } 3312 } 3313 } else { 3314 /* fsr is a DFSR/IFSR value for the short descriptor 3315 * translation table format (with WnR always clear). 3316 * Convert it to a 32-bit PAR. 3317 */ 3318 if (!ret) { 3319 /* We do not set any attribute bits in the PAR */ 3320 if (page_size == (1 << 24) 3321 && arm_feature(env, ARM_FEATURE_V7)) { 3322 par64 = (phys_addr & 0xff000000) | (1 << 1); 3323 } else { 3324 par64 = phys_addr & 0xfffff000; 3325 } 3326 if (!attrs.secure) { 3327 par64 |= (1 << 9); /* NS */ 3328 } 3329 } else { 3330 uint32_t fsr = arm_fi_to_sfsc(&fi); 3331 3332 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3333 ((fsr & 0xf) << 1) | 1; 3334 } 3335 } 3336 return par64; 3337 } 3338 #endif /* CONFIG_TCG */ 3339 3340 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3341 { 3342 #ifdef CONFIG_TCG 3343 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3344 uint64_t par64; 3345 ARMMMUIdx mmu_idx; 3346 int el = arm_current_el(env); 3347 bool secure = arm_is_secure_below_el3(env); 3348 3349 switch (ri->opc2 & 6) { 3350 case 0: 3351 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3352 switch (el) { 3353 case 3: 3354 mmu_idx = ARMMMUIdx_SE3; 3355 break; 3356 case 2: 3357 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3358 /* fall through */ 3359 case 1: 3360 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3361 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3362 : ARMMMUIdx_Stage1_E1_PAN); 3363 } else { 3364 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3365 } 3366 break; 3367 default: 3368 g_assert_not_reached(); 3369 } 3370 break; 3371 case 2: 3372 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3373 switch (el) { 3374 case 3: 3375 mmu_idx = ARMMMUIdx_SE10_0; 3376 break; 3377 case 2: 3378 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3379 mmu_idx = ARMMMUIdx_Stage1_E0; 3380 break; 3381 case 1: 3382 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3383 break; 3384 default: 3385 g_assert_not_reached(); 3386 } 3387 break; 3388 case 4: 3389 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3390 mmu_idx = ARMMMUIdx_E10_1; 3391 break; 3392 case 6: 3393 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3394 mmu_idx = ARMMMUIdx_E10_0; 3395 break; 3396 default: 3397 g_assert_not_reached(); 3398 } 3399 3400 par64 = do_ats_write(env, value, access_type, mmu_idx); 3401 3402 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3403 #else 3404 /* Handled by hardware accelerator. */ 3405 g_assert_not_reached(); 3406 #endif /* CONFIG_TCG */ 3407 } 3408 3409 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3410 uint64_t value) 3411 { 3412 #ifdef CONFIG_TCG 3413 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3414 uint64_t par64; 3415 3416 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3417 3418 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3419 #else 3420 /* Handled by hardware accelerator. */ 3421 g_assert_not_reached(); 3422 #endif /* CONFIG_TCG */ 3423 } 3424 3425 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3426 bool isread) 3427 { 3428 if (arm_current_el(env) == 3 && 3429 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3430 return CP_ACCESS_TRAP; 3431 } 3432 return CP_ACCESS_OK; 3433 } 3434 3435 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3436 uint64_t value) 3437 { 3438 #ifdef CONFIG_TCG 3439 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3440 ARMMMUIdx mmu_idx; 3441 int secure = arm_is_secure_below_el3(env); 3442 3443 switch (ri->opc2 & 6) { 3444 case 0: 3445 switch (ri->opc1) { 3446 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3447 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3448 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3449 : ARMMMUIdx_Stage1_E1_PAN); 3450 } else { 3451 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3452 } 3453 break; 3454 case 4: /* AT S1E2R, AT S1E2W */ 3455 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3456 break; 3457 case 6: /* AT S1E3R, AT S1E3W */ 3458 mmu_idx = ARMMMUIdx_SE3; 3459 break; 3460 default: 3461 g_assert_not_reached(); 3462 } 3463 break; 3464 case 2: /* AT S1E0R, AT S1E0W */ 3465 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3466 break; 3467 case 4: /* AT S12E1R, AT S12E1W */ 3468 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3469 break; 3470 case 6: /* AT S12E0R, AT S12E0W */ 3471 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3472 break; 3473 default: 3474 g_assert_not_reached(); 3475 } 3476 3477 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3478 #else 3479 /* Handled by hardware accelerator. */ 3480 g_assert_not_reached(); 3481 #endif /* CONFIG_TCG */ 3482 } 3483 #endif 3484 3485 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3486 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3487 .access = PL1_RW, .resetvalue = 0, 3488 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3489 offsetoflow32(CPUARMState, cp15.par_ns) }, 3490 .writefn = par_write }, 3491 #ifndef CONFIG_USER_ONLY 3492 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3493 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3494 .access = PL1_W, .accessfn = ats_access, 3495 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3496 #endif 3497 REGINFO_SENTINEL 3498 }; 3499 3500 /* Return basic MPU access permission bits. */ 3501 static uint32_t simple_mpu_ap_bits(uint32_t val) 3502 { 3503 uint32_t ret; 3504 uint32_t mask; 3505 int i; 3506 ret = 0; 3507 mask = 3; 3508 for (i = 0; i < 16; i += 2) { 3509 ret |= (val >> i) & mask; 3510 mask <<= 2; 3511 } 3512 return ret; 3513 } 3514 3515 /* Pad basic MPU access permission bits to extended format. */ 3516 static uint32_t extended_mpu_ap_bits(uint32_t val) 3517 { 3518 uint32_t ret; 3519 uint32_t mask; 3520 int i; 3521 ret = 0; 3522 mask = 3; 3523 for (i = 0; i < 16; i += 2) { 3524 ret |= (val & mask) << i; 3525 mask <<= 2; 3526 } 3527 return ret; 3528 } 3529 3530 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3531 uint64_t value) 3532 { 3533 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3534 } 3535 3536 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3537 { 3538 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3539 } 3540 3541 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3542 uint64_t value) 3543 { 3544 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3545 } 3546 3547 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3548 { 3549 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3550 } 3551 3552 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3553 { 3554 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3555 3556 if (!u32p) { 3557 return 0; 3558 } 3559 3560 u32p += env->pmsav7.rnr[M_REG_NS]; 3561 return *u32p; 3562 } 3563 3564 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3565 uint64_t value) 3566 { 3567 ARMCPU *cpu = env_archcpu(env); 3568 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3569 3570 if (!u32p) { 3571 return; 3572 } 3573 3574 u32p += env->pmsav7.rnr[M_REG_NS]; 3575 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3576 *u32p = value; 3577 } 3578 3579 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3580 uint64_t value) 3581 { 3582 ARMCPU *cpu = env_archcpu(env); 3583 uint32_t nrgs = cpu->pmsav7_dregion; 3584 3585 if (value >= nrgs) { 3586 qemu_log_mask(LOG_GUEST_ERROR, 3587 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3588 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3589 return; 3590 } 3591 3592 raw_write(env, ri, value); 3593 } 3594 3595 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3596 /* Reset for all these registers is handled in arm_cpu_reset(), 3597 * because the PMSAv7 is also used by M-profile CPUs, which do 3598 * not register cpregs but still need the state to be reset. 3599 */ 3600 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3601 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3602 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3603 .readfn = pmsav7_read, .writefn = pmsav7_write, 3604 .resetfn = arm_cp_reset_ignore }, 3605 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3606 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3607 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3608 .readfn = pmsav7_read, .writefn = pmsav7_write, 3609 .resetfn = arm_cp_reset_ignore }, 3610 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3611 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3612 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3613 .readfn = pmsav7_read, .writefn = pmsav7_write, 3614 .resetfn = arm_cp_reset_ignore }, 3615 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3616 .access = PL1_RW, 3617 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3618 .writefn = pmsav7_rgnr_write, 3619 .resetfn = arm_cp_reset_ignore }, 3620 REGINFO_SENTINEL 3621 }; 3622 3623 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3624 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3625 .access = PL1_RW, .type = ARM_CP_ALIAS, 3626 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3627 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3628 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3629 .access = PL1_RW, .type = ARM_CP_ALIAS, 3630 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3631 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3632 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3633 .access = PL1_RW, 3634 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3635 .resetvalue = 0, }, 3636 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3637 .access = PL1_RW, 3638 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3639 .resetvalue = 0, }, 3640 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3641 .access = PL1_RW, 3642 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3643 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3644 .access = PL1_RW, 3645 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3646 /* Protection region base and size registers */ 3647 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3648 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3649 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3650 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3651 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3652 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3653 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3654 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3655 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3656 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3657 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3658 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3659 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3660 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3661 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3662 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3663 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3664 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3665 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3666 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3667 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3668 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3669 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3670 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3671 REGINFO_SENTINEL 3672 }; 3673 3674 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3675 uint64_t value) 3676 { 3677 TCR *tcr = raw_ptr(env, ri); 3678 int maskshift = extract32(value, 0, 3); 3679 3680 if (!arm_feature(env, ARM_FEATURE_V8)) { 3681 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3682 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3683 * using Long-desciptor translation table format */ 3684 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3685 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3686 /* In an implementation that includes the Security Extensions 3687 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3688 * Short-descriptor translation table format. 3689 */ 3690 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3691 } else { 3692 value &= TTBCR_N; 3693 } 3694 } 3695 3696 /* Update the masks corresponding to the TCR bank being written 3697 * Note that we always calculate mask and base_mask, but 3698 * they are only used for short-descriptor tables (ie if EAE is 0); 3699 * for long-descriptor tables the TCR fields are used differently 3700 * and the mask and base_mask values are meaningless. 3701 */ 3702 tcr->raw_tcr = value; 3703 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3704 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3705 } 3706 3707 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3708 uint64_t value) 3709 { 3710 ARMCPU *cpu = env_archcpu(env); 3711 TCR *tcr = raw_ptr(env, ri); 3712 3713 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3714 /* With LPAE the TTBCR could result in a change of ASID 3715 * via the TTBCR.A1 bit, so do a TLB flush. 3716 */ 3717 tlb_flush(CPU(cpu)); 3718 } 3719 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3720 value = deposit64(tcr->raw_tcr, 0, 32, value); 3721 vmsa_ttbcr_raw_write(env, ri, value); 3722 } 3723 3724 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3725 { 3726 TCR *tcr = raw_ptr(env, ri); 3727 3728 /* Reset both the TCR as well as the masks corresponding to the bank of 3729 * the TCR being reset. 3730 */ 3731 tcr->raw_tcr = 0; 3732 tcr->mask = 0; 3733 tcr->base_mask = 0xffffc000u; 3734 } 3735 3736 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3737 uint64_t value) 3738 { 3739 ARMCPU *cpu = env_archcpu(env); 3740 TCR *tcr = raw_ptr(env, ri); 3741 3742 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3743 tlb_flush(CPU(cpu)); 3744 tcr->raw_tcr = value; 3745 } 3746 3747 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3748 uint64_t value) 3749 { 3750 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3751 if (cpreg_field_is_64bit(ri) && 3752 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3753 ARMCPU *cpu = env_archcpu(env); 3754 tlb_flush(CPU(cpu)); 3755 } 3756 raw_write(env, ri, value); 3757 } 3758 3759 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3760 uint64_t value) 3761 { 3762 /* 3763 * If we are running with E2&0 regime, then an ASID is active. 3764 * Flush if that might be changing. Note we're not checking 3765 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3766 * holds the active ASID, only checking the field that might. 3767 */ 3768 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3769 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3770 uint16_t mask = ARMMMUIdxBit_E20_2 | 3771 ARMMMUIdxBit_E20_2_PAN | 3772 ARMMMUIdxBit_E20_0; 3773 3774 if (arm_is_secure_below_el3(env)) { 3775 mask >>= ARM_MMU_IDX_A_NS; 3776 } 3777 3778 tlb_flush_by_mmuidx(env_cpu(env), mask); 3779 } 3780 raw_write(env, ri, value); 3781 } 3782 3783 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3784 uint64_t value) 3785 { 3786 ARMCPU *cpu = env_archcpu(env); 3787 CPUState *cs = CPU(cpu); 3788 3789 /* 3790 * A change in VMID to the stage2 page table (Stage2) invalidates 3791 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3792 */ 3793 if (raw_read(env, ri) != value) { 3794 uint16_t mask = ARMMMUIdxBit_E10_1 | 3795 ARMMMUIdxBit_E10_1_PAN | 3796 ARMMMUIdxBit_E10_0; 3797 3798 if (arm_is_secure_below_el3(env)) { 3799 mask >>= ARM_MMU_IDX_A_NS; 3800 } 3801 3802 tlb_flush_by_mmuidx(cs, mask); 3803 raw_write(env, ri, value); 3804 } 3805 } 3806 3807 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3808 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3809 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3810 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3811 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3812 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3813 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3814 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3815 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3816 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3817 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3818 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3819 offsetof(CPUARMState, cp15.dfar_ns) } }, 3820 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3821 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3822 .access = PL1_RW, .accessfn = access_tvm_trvm, 3823 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3824 .resetvalue = 0, }, 3825 REGINFO_SENTINEL 3826 }; 3827 3828 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3829 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3830 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3831 .access = PL1_RW, .accessfn = access_tvm_trvm, 3832 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3833 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3834 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3835 .access = PL1_RW, .accessfn = access_tvm_trvm, 3836 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3837 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3838 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3839 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3840 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3841 .access = PL1_RW, .accessfn = access_tvm_trvm, 3842 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3843 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3844 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3845 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3846 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3847 .access = PL1_RW, .accessfn = access_tvm_trvm, 3848 .writefn = vmsa_tcr_el12_write, 3849 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3850 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3851 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3852 .access = PL1_RW, .accessfn = access_tvm_trvm, 3853 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3854 .raw_writefn = vmsa_ttbcr_raw_write, 3855 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3856 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3857 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3858 REGINFO_SENTINEL 3859 }; 3860 3861 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3862 * qemu tlbs nor adjusting cached masks. 3863 */ 3864 static const ARMCPRegInfo ttbcr2_reginfo = { 3865 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3866 .access = PL1_RW, .accessfn = access_tvm_trvm, 3867 .type = ARM_CP_ALIAS, 3868 .bank_fieldoffsets = { 3869 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3870 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3871 }, 3872 }; 3873 3874 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3875 uint64_t value) 3876 { 3877 env->cp15.c15_ticonfig = value & 0xe7; 3878 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3879 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3880 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3881 } 3882 3883 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3884 uint64_t value) 3885 { 3886 env->cp15.c15_threadid = value & 0xffff; 3887 } 3888 3889 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3890 uint64_t value) 3891 { 3892 /* Wait-for-interrupt (deprecated) */ 3893 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3894 } 3895 3896 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3897 uint64_t value) 3898 { 3899 /* On OMAP there are registers indicating the max/min index of dcache lines 3900 * containing a dirty line; cache flush operations have to reset these. 3901 */ 3902 env->cp15.c15_i_max = 0x000; 3903 env->cp15.c15_i_min = 0xff0; 3904 } 3905 3906 static const ARMCPRegInfo omap_cp_reginfo[] = { 3907 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3908 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3909 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3910 .resetvalue = 0, }, 3911 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3912 .access = PL1_RW, .type = ARM_CP_NOP }, 3913 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3914 .access = PL1_RW, 3915 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3916 .writefn = omap_ticonfig_write }, 3917 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3918 .access = PL1_RW, 3919 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3920 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3921 .access = PL1_RW, .resetvalue = 0xff0, 3922 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3923 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3924 .access = PL1_RW, 3925 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3926 .writefn = omap_threadid_write }, 3927 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3928 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3929 .type = ARM_CP_NO_RAW, 3930 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3931 /* TODO: Peripheral port remap register: 3932 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3933 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3934 * when MMU is off. 3935 */ 3936 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3937 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3938 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3939 .writefn = omap_cachemaint_write }, 3940 { .name = "C9", .cp = 15, .crn = 9, 3941 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3942 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3943 REGINFO_SENTINEL 3944 }; 3945 3946 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3947 uint64_t value) 3948 { 3949 env->cp15.c15_cpar = value & 0x3fff; 3950 } 3951 3952 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3953 { .name = "XSCALE_CPAR", 3954 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3955 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3956 .writefn = xscale_cpar_write, }, 3957 { .name = "XSCALE_AUXCR", 3958 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3959 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3960 .resetvalue = 0, }, 3961 /* XScale specific cache-lockdown: since we have no cache we NOP these 3962 * and hope the guest does not really rely on cache behaviour. 3963 */ 3964 { .name = "XSCALE_LOCK_ICACHE_LINE", 3965 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3966 .access = PL1_W, .type = ARM_CP_NOP }, 3967 { .name = "XSCALE_UNLOCK_ICACHE", 3968 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3969 .access = PL1_W, .type = ARM_CP_NOP }, 3970 { .name = "XSCALE_DCACHE_LOCK", 3971 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3972 .access = PL1_RW, .type = ARM_CP_NOP }, 3973 { .name = "XSCALE_UNLOCK_DCACHE", 3974 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3975 .access = PL1_W, .type = ARM_CP_NOP }, 3976 REGINFO_SENTINEL 3977 }; 3978 3979 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3980 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3981 * implementation of this implementation-defined space. 3982 * Ideally this should eventually disappear in favour of actually 3983 * implementing the correct behaviour for all cores. 3984 */ 3985 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3986 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3987 .access = PL1_RW, 3988 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3989 .resetvalue = 0 }, 3990 REGINFO_SENTINEL 3991 }; 3992 3993 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3994 /* Cache status: RAZ because we have no cache so it's always clean */ 3995 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3996 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3997 .resetvalue = 0 }, 3998 REGINFO_SENTINEL 3999 }; 4000 4001 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4002 /* We never have a a block transfer operation in progress */ 4003 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4004 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4005 .resetvalue = 0 }, 4006 /* The cache ops themselves: these all NOP for QEMU */ 4007 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4008 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4009 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4010 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4011 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4012 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4013 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4014 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4015 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4016 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4017 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4018 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4019 REGINFO_SENTINEL 4020 }; 4021 4022 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4023 /* The cache test-and-clean instructions always return (1 << 30) 4024 * to indicate that there are no dirty cache lines. 4025 */ 4026 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4027 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4028 .resetvalue = (1 << 30) }, 4029 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4030 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4031 .resetvalue = (1 << 30) }, 4032 REGINFO_SENTINEL 4033 }; 4034 4035 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4036 /* Ignore ReadBuffer accesses */ 4037 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4038 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4039 .access = PL1_RW, .resetvalue = 0, 4040 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4041 REGINFO_SENTINEL 4042 }; 4043 4044 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4045 { 4046 unsigned int cur_el = arm_current_el(env); 4047 4048 if (arm_is_el2_enabled(env) && cur_el == 1) { 4049 return env->cp15.vpidr_el2; 4050 } 4051 return raw_read(env, ri); 4052 } 4053 4054 static uint64_t mpidr_read_val(CPUARMState *env) 4055 { 4056 ARMCPU *cpu = env_archcpu(env); 4057 uint64_t mpidr = cpu->mp_affinity; 4058 4059 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4060 mpidr |= (1U << 31); 4061 /* Cores which are uniprocessor (non-coherent) 4062 * but still implement the MP extensions set 4063 * bit 30. (For instance, Cortex-R5). 4064 */ 4065 if (cpu->mp_is_up) { 4066 mpidr |= (1u << 30); 4067 } 4068 } 4069 return mpidr; 4070 } 4071 4072 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4073 { 4074 unsigned int cur_el = arm_current_el(env); 4075 4076 if (arm_is_el2_enabled(env) && cur_el == 1) { 4077 return env->cp15.vmpidr_el2; 4078 } 4079 return mpidr_read_val(env); 4080 } 4081 4082 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4083 /* NOP AMAIR0/1 */ 4084 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4085 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4086 .access = PL1_RW, .accessfn = access_tvm_trvm, 4087 .type = ARM_CP_CONST, .resetvalue = 0 }, 4088 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4089 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4090 .access = PL1_RW, .accessfn = access_tvm_trvm, 4091 .type = ARM_CP_CONST, .resetvalue = 0 }, 4092 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4093 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4094 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4095 offsetof(CPUARMState, cp15.par_ns)} }, 4096 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4097 .access = PL1_RW, .accessfn = access_tvm_trvm, 4098 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4099 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4100 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4101 .writefn = vmsa_ttbr_write, }, 4102 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4103 .access = PL1_RW, .accessfn = access_tvm_trvm, 4104 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4105 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4106 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4107 .writefn = vmsa_ttbr_write, }, 4108 REGINFO_SENTINEL 4109 }; 4110 4111 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4112 { 4113 return vfp_get_fpcr(env); 4114 } 4115 4116 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4117 uint64_t value) 4118 { 4119 vfp_set_fpcr(env, value); 4120 } 4121 4122 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4123 { 4124 return vfp_get_fpsr(env); 4125 } 4126 4127 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4128 uint64_t value) 4129 { 4130 vfp_set_fpsr(env, value); 4131 } 4132 4133 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4134 bool isread) 4135 { 4136 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4137 return CP_ACCESS_TRAP; 4138 } 4139 return CP_ACCESS_OK; 4140 } 4141 4142 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4143 uint64_t value) 4144 { 4145 env->daif = value & PSTATE_DAIF; 4146 } 4147 4148 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4149 { 4150 return env->pstate & PSTATE_PAN; 4151 } 4152 4153 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4154 uint64_t value) 4155 { 4156 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4157 } 4158 4159 static const ARMCPRegInfo pan_reginfo = { 4160 .name = "PAN", .state = ARM_CP_STATE_AA64, 4161 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4162 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4163 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4164 }; 4165 4166 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4167 { 4168 return env->pstate & PSTATE_UAO; 4169 } 4170 4171 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4172 uint64_t value) 4173 { 4174 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4175 } 4176 4177 static const ARMCPRegInfo uao_reginfo = { 4178 .name = "UAO", .state = ARM_CP_STATE_AA64, 4179 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4180 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4181 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4182 }; 4183 4184 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4185 { 4186 return env->pstate & PSTATE_DIT; 4187 } 4188 4189 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4190 uint64_t value) 4191 { 4192 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4193 } 4194 4195 static const ARMCPRegInfo dit_reginfo = { 4196 .name = "DIT", .state = ARM_CP_STATE_AA64, 4197 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4198 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4199 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4200 }; 4201 4202 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4203 { 4204 return env->pstate & PSTATE_SSBS; 4205 } 4206 4207 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4208 uint64_t value) 4209 { 4210 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4211 } 4212 4213 static const ARMCPRegInfo ssbs_reginfo = { 4214 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4215 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4216 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4217 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4218 }; 4219 4220 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4221 const ARMCPRegInfo *ri, 4222 bool isread) 4223 { 4224 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4225 switch (arm_current_el(env)) { 4226 case 0: 4227 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4228 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4229 return CP_ACCESS_TRAP; 4230 } 4231 /* fall through */ 4232 case 1: 4233 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4234 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4235 return CP_ACCESS_TRAP_EL2; 4236 } 4237 break; 4238 } 4239 return CP_ACCESS_OK; 4240 } 4241 4242 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4243 const ARMCPRegInfo *ri, 4244 bool isread) 4245 { 4246 /* Cache invalidate/clean to Point of Unification... */ 4247 switch (arm_current_el(env)) { 4248 case 0: 4249 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4250 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4251 return CP_ACCESS_TRAP; 4252 } 4253 /* fall through */ 4254 case 1: 4255 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4256 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4257 return CP_ACCESS_TRAP_EL2; 4258 } 4259 break; 4260 } 4261 return CP_ACCESS_OK; 4262 } 4263 4264 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4265 * Page D4-1736 (DDI0487A.b) 4266 */ 4267 4268 static int vae1_tlbmask(CPUARMState *env) 4269 { 4270 uint64_t hcr = arm_hcr_el2_eff(env); 4271 uint16_t mask; 4272 4273 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4274 mask = ARMMMUIdxBit_E20_2 | 4275 ARMMMUIdxBit_E20_2_PAN | 4276 ARMMMUIdxBit_E20_0; 4277 } else { 4278 mask = ARMMMUIdxBit_E10_1 | 4279 ARMMMUIdxBit_E10_1_PAN | 4280 ARMMMUIdxBit_E10_0; 4281 } 4282 4283 if (arm_is_secure_below_el3(env)) { 4284 mask >>= ARM_MMU_IDX_A_NS; 4285 } 4286 4287 return mask; 4288 } 4289 4290 /* Return 56 if TBI is enabled, 64 otherwise. */ 4291 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4292 uint64_t addr) 4293 { 4294 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4295 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4296 int select = extract64(addr, 55, 1); 4297 4298 return (tbi >> select) & 1 ? 56 : 64; 4299 } 4300 4301 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4302 { 4303 uint64_t hcr = arm_hcr_el2_eff(env); 4304 ARMMMUIdx mmu_idx; 4305 4306 /* Only the regime of the mmu_idx below is significant. */ 4307 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4308 mmu_idx = ARMMMUIdx_E20_0; 4309 } else { 4310 mmu_idx = ARMMMUIdx_E10_0; 4311 } 4312 4313 if (arm_is_secure_below_el3(env)) { 4314 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4315 } 4316 4317 return tlbbits_for_regime(env, mmu_idx, addr); 4318 } 4319 4320 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4321 uint64_t value) 4322 { 4323 CPUState *cs = env_cpu(env); 4324 int mask = vae1_tlbmask(env); 4325 4326 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4327 } 4328 4329 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4330 uint64_t value) 4331 { 4332 CPUState *cs = env_cpu(env); 4333 int mask = vae1_tlbmask(env); 4334 4335 if (tlb_force_broadcast(env)) { 4336 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4337 } else { 4338 tlb_flush_by_mmuidx(cs, mask); 4339 } 4340 } 4341 4342 static int alle1_tlbmask(CPUARMState *env) 4343 { 4344 /* 4345 * Note that the 'ALL' scope must invalidate both stage 1 and 4346 * stage 2 translations, whereas most other scopes only invalidate 4347 * stage 1 translations. 4348 */ 4349 if (arm_is_secure_below_el3(env)) { 4350 return ARMMMUIdxBit_SE10_1 | 4351 ARMMMUIdxBit_SE10_1_PAN | 4352 ARMMMUIdxBit_SE10_0; 4353 } else { 4354 return ARMMMUIdxBit_E10_1 | 4355 ARMMMUIdxBit_E10_1_PAN | 4356 ARMMMUIdxBit_E10_0; 4357 } 4358 } 4359 4360 static int e2_tlbmask(CPUARMState *env) 4361 { 4362 if (arm_is_secure_below_el3(env)) { 4363 return ARMMMUIdxBit_SE20_0 | 4364 ARMMMUIdxBit_SE20_2 | 4365 ARMMMUIdxBit_SE20_2_PAN | 4366 ARMMMUIdxBit_SE2; 4367 } else { 4368 return ARMMMUIdxBit_E20_0 | 4369 ARMMMUIdxBit_E20_2 | 4370 ARMMMUIdxBit_E20_2_PAN | 4371 ARMMMUIdxBit_E2; 4372 } 4373 } 4374 4375 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4376 uint64_t value) 4377 { 4378 CPUState *cs = env_cpu(env); 4379 int mask = alle1_tlbmask(env); 4380 4381 tlb_flush_by_mmuidx(cs, mask); 4382 } 4383 4384 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4385 uint64_t value) 4386 { 4387 CPUState *cs = env_cpu(env); 4388 int mask = e2_tlbmask(env); 4389 4390 tlb_flush_by_mmuidx(cs, mask); 4391 } 4392 4393 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4394 uint64_t value) 4395 { 4396 ARMCPU *cpu = env_archcpu(env); 4397 CPUState *cs = CPU(cpu); 4398 4399 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4400 } 4401 4402 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4403 uint64_t value) 4404 { 4405 CPUState *cs = env_cpu(env); 4406 int mask = alle1_tlbmask(env); 4407 4408 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4409 } 4410 4411 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4412 uint64_t value) 4413 { 4414 CPUState *cs = env_cpu(env); 4415 int mask = e2_tlbmask(env); 4416 4417 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4418 } 4419 4420 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4421 uint64_t value) 4422 { 4423 CPUState *cs = env_cpu(env); 4424 4425 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4426 } 4427 4428 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4429 uint64_t value) 4430 { 4431 /* Invalidate by VA, EL2 4432 * Currently handles both VAE2 and VALE2, since we don't support 4433 * flush-last-level-only. 4434 */ 4435 CPUState *cs = env_cpu(env); 4436 int mask = e2_tlbmask(env); 4437 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4438 4439 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4440 } 4441 4442 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4443 uint64_t value) 4444 { 4445 /* Invalidate by VA, EL3 4446 * Currently handles both VAE3 and VALE3, since we don't support 4447 * flush-last-level-only. 4448 */ 4449 ARMCPU *cpu = env_archcpu(env); 4450 CPUState *cs = CPU(cpu); 4451 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4452 4453 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4454 } 4455 4456 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4457 uint64_t value) 4458 { 4459 CPUState *cs = env_cpu(env); 4460 int mask = vae1_tlbmask(env); 4461 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4462 int bits = vae1_tlbbits(env, pageaddr); 4463 4464 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4465 } 4466 4467 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4468 uint64_t value) 4469 { 4470 /* Invalidate by VA, EL1&0 (AArch64 version). 4471 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4472 * since we don't support flush-for-specific-ASID-only or 4473 * flush-last-level-only. 4474 */ 4475 CPUState *cs = env_cpu(env); 4476 int mask = vae1_tlbmask(env); 4477 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4478 int bits = vae1_tlbbits(env, pageaddr); 4479 4480 if (tlb_force_broadcast(env)) { 4481 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4482 } else { 4483 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4484 } 4485 } 4486 4487 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4488 uint64_t value) 4489 { 4490 CPUState *cs = env_cpu(env); 4491 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4492 bool secure = arm_is_secure_below_el3(env); 4493 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4494 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4495 pageaddr); 4496 4497 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4498 } 4499 4500 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4501 uint64_t value) 4502 { 4503 CPUState *cs = env_cpu(env); 4504 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4505 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4506 4507 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4508 ARMMMUIdxBit_SE3, bits); 4509 } 4510 4511 #ifdef TARGET_AARCH64 4512 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env, 4513 uint64_t value) 4514 { 4515 unsigned int page_shift; 4516 unsigned int page_size_granule; 4517 uint64_t num; 4518 uint64_t scale; 4519 uint64_t exponent; 4520 uint64_t length; 4521 4522 num = extract64(value, 39, 5); 4523 scale = extract64(value, 44, 2); 4524 page_size_granule = extract64(value, 46, 2); 4525 4526 if (page_size_granule == 0) { 4527 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n", 4528 page_size_granule); 4529 return 0; 4530 } 4531 4532 page_shift = (page_size_granule - 1) * 2 + 12; 4533 4534 exponent = (5 * scale) + 1; 4535 length = (num + 1) << (exponent + page_shift); 4536 4537 return length; 4538 } 4539 4540 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value, 4541 bool two_ranges) 4542 { 4543 /* TODO: ARMv8.7 FEAT_LPA2 */ 4544 uint64_t pageaddr; 4545 4546 if (two_ranges) { 4547 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS; 4548 } else { 4549 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS; 4550 } 4551 4552 return pageaddr; 4553 } 4554 4555 static void do_rvae_write(CPUARMState *env, uint64_t value, 4556 int idxmap, bool synced) 4557 { 4558 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4559 bool two_ranges = regime_has_2_ranges(one_idx); 4560 uint64_t baseaddr, length; 4561 int bits; 4562 4563 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges); 4564 length = tlbi_aa64_range_get_length(env, value); 4565 bits = tlbbits_for_regime(env, one_idx, baseaddr); 4566 4567 if (synced) { 4568 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4569 baseaddr, 4570 length, 4571 idxmap, 4572 bits); 4573 } else { 4574 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr, 4575 length, idxmap, bits); 4576 } 4577 } 4578 4579 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4580 const ARMCPRegInfo *ri, 4581 uint64_t value) 4582 { 4583 /* 4584 * Invalidate by VA range, EL1&0. 4585 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4586 * since we don't support flush-for-specific-ASID-only or 4587 * flush-last-level-only. 4588 */ 4589 4590 do_rvae_write(env, value, vae1_tlbmask(env), 4591 tlb_force_broadcast(env)); 4592 } 4593 4594 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4595 const ARMCPRegInfo *ri, 4596 uint64_t value) 4597 { 4598 /* 4599 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4600 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4601 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4602 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4603 * shareable specific flushes. 4604 */ 4605 4606 do_rvae_write(env, value, vae1_tlbmask(env), true); 4607 } 4608 4609 static int vae2_tlbmask(CPUARMState *env) 4610 { 4611 return (arm_is_secure_below_el3(env) 4612 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4613 } 4614 4615 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4616 const ARMCPRegInfo *ri, 4617 uint64_t value) 4618 { 4619 /* 4620 * Invalidate by VA range, EL2. 4621 * Currently handles all of RVAE2 and RVALE2, 4622 * since we don't support flush-for-specific-ASID-only or 4623 * flush-last-level-only. 4624 */ 4625 4626 do_rvae_write(env, value, vae2_tlbmask(env), 4627 tlb_force_broadcast(env)); 4628 4629 4630 } 4631 4632 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4633 const ARMCPRegInfo *ri, 4634 uint64_t value) 4635 { 4636 /* 4637 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4638 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4639 * since we don't support flush-for-specific-ASID-only, 4640 * flush-last-level-only or inner/outer shareable specific flushes. 4641 */ 4642 4643 do_rvae_write(env, value, vae2_tlbmask(env), true); 4644 4645 } 4646 4647 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4648 const ARMCPRegInfo *ri, 4649 uint64_t value) 4650 { 4651 /* 4652 * Invalidate by VA range, EL3. 4653 * Currently handles all of RVAE3 and RVALE3, 4654 * since we don't support flush-for-specific-ASID-only or 4655 * flush-last-level-only. 4656 */ 4657 4658 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4659 tlb_force_broadcast(env)); 4660 } 4661 4662 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4663 const ARMCPRegInfo *ri, 4664 uint64_t value) 4665 { 4666 /* 4667 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4668 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4669 * since we don't support flush-for-specific-ASID-only, 4670 * flush-last-level-only or inner/outer specific flushes. 4671 */ 4672 4673 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4674 } 4675 #endif 4676 4677 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4678 bool isread) 4679 { 4680 int cur_el = arm_current_el(env); 4681 4682 if (cur_el < 2) { 4683 uint64_t hcr = arm_hcr_el2_eff(env); 4684 4685 if (cur_el == 0) { 4686 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4687 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4688 return CP_ACCESS_TRAP_EL2; 4689 } 4690 } else { 4691 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4692 return CP_ACCESS_TRAP; 4693 } 4694 if (hcr & HCR_TDZ) { 4695 return CP_ACCESS_TRAP_EL2; 4696 } 4697 } 4698 } else if (hcr & HCR_TDZ) { 4699 return CP_ACCESS_TRAP_EL2; 4700 } 4701 } 4702 return CP_ACCESS_OK; 4703 } 4704 4705 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4706 { 4707 ARMCPU *cpu = env_archcpu(env); 4708 int dzp_bit = 1 << 4; 4709 4710 /* DZP indicates whether DC ZVA access is allowed */ 4711 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4712 dzp_bit = 0; 4713 } 4714 return cpu->dcz_blocksize | dzp_bit; 4715 } 4716 4717 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4718 bool isread) 4719 { 4720 if (!(env->pstate & PSTATE_SP)) { 4721 /* Access to SP_EL0 is undefined if it's being used as 4722 * the stack pointer. 4723 */ 4724 return CP_ACCESS_TRAP_UNCATEGORIZED; 4725 } 4726 return CP_ACCESS_OK; 4727 } 4728 4729 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4730 { 4731 return env->pstate & PSTATE_SP; 4732 } 4733 4734 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4735 { 4736 update_spsel(env, val); 4737 } 4738 4739 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4740 uint64_t value) 4741 { 4742 ARMCPU *cpu = env_archcpu(env); 4743 4744 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4745 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4746 value &= ~SCTLR_M; 4747 } 4748 4749 /* ??? Lots of these bits are not implemented. */ 4750 4751 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4752 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4753 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4754 } else { 4755 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4756 SCTLR_ATA0 | SCTLR_ATA); 4757 } 4758 } 4759 4760 if (raw_read(env, ri) == value) { 4761 /* Skip the TLB flush if nothing actually changed; Linux likes 4762 * to do a lot of pointless SCTLR writes. 4763 */ 4764 return; 4765 } 4766 4767 raw_write(env, ri, value); 4768 4769 /* This may enable/disable the MMU, so do a TLB flush. */ 4770 tlb_flush(CPU(cpu)); 4771 4772 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4773 /* 4774 * Normally we would always end the TB on an SCTLR write; see the 4775 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4776 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4777 * of hflags from the translator, so do it here. 4778 */ 4779 arm_rebuild_hflags(env); 4780 } 4781 } 4782 4783 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4784 bool isread) 4785 { 4786 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4787 return CP_ACCESS_TRAP_FP_EL2; 4788 } 4789 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4790 return CP_ACCESS_TRAP_FP_EL3; 4791 } 4792 return CP_ACCESS_OK; 4793 } 4794 4795 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4796 uint64_t value) 4797 { 4798 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4799 } 4800 4801 static const ARMCPRegInfo v8_cp_reginfo[] = { 4802 /* Minimal set of EL0-visible registers. This will need to be expanded 4803 * significantly for system emulation of AArch64 CPUs. 4804 */ 4805 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4806 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4807 .access = PL0_RW, .type = ARM_CP_NZCV }, 4808 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4809 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4810 .type = ARM_CP_NO_RAW, 4811 .access = PL0_RW, .accessfn = aa64_daif_access, 4812 .fieldoffset = offsetof(CPUARMState, daif), 4813 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4814 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4815 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4816 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4817 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4818 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4820 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4821 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4822 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4823 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4824 .access = PL0_R, .type = ARM_CP_NO_RAW, 4825 .readfn = aa64_dczid_read }, 4826 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4827 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4828 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4829 #ifndef CONFIG_USER_ONLY 4830 /* Avoid overhead of an access check that always passes in user-mode */ 4831 .accessfn = aa64_zva_access, 4832 #endif 4833 }, 4834 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4835 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4836 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4837 /* Cache ops: all NOPs since we don't emulate caches */ 4838 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4839 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4840 .access = PL1_W, .type = ARM_CP_NOP, 4841 .accessfn = aa64_cacheop_pou_access }, 4842 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4843 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4844 .access = PL1_W, .type = ARM_CP_NOP, 4845 .accessfn = aa64_cacheop_pou_access }, 4846 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4847 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4848 .access = PL0_W, .type = ARM_CP_NOP, 4849 .accessfn = aa64_cacheop_pou_access }, 4850 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4852 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4853 .type = ARM_CP_NOP }, 4854 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4855 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4856 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4857 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4859 .access = PL0_W, .type = ARM_CP_NOP, 4860 .accessfn = aa64_cacheop_poc_access }, 4861 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4863 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4864 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4865 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4866 .access = PL0_W, .type = ARM_CP_NOP, 4867 .accessfn = aa64_cacheop_pou_access }, 4868 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4869 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4870 .access = PL0_W, .type = ARM_CP_NOP, 4871 .accessfn = aa64_cacheop_poc_access }, 4872 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4873 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4874 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4875 /* TLBI operations */ 4876 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4878 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4879 .writefn = tlbi_aa64_vmalle1is_write }, 4880 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4882 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4883 .writefn = tlbi_aa64_vae1is_write }, 4884 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4886 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4887 .writefn = tlbi_aa64_vmalle1is_write }, 4888 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4890 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4891 .writefn = tlbi_aa64_vae1is_write }, 4892 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4894 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4895 .writefn = tlbi_aa64_vae1is_write }, 4896 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4898 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4899 .writefn = tlbi_aa64_vae1is_write }, 4900 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4902 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4903 .writefn = tlbi_aa64_vmalle1_write }, 4904 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4906 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4907 .writefn = tlbi_aa64_vae1_write }, 4908 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4910 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4911 .writefn = tlbi_aa64_vmalle1_write }, 4912 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4914 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4915 .writefn = tlbi_aa64_vae1_write }, 4916 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4918 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4919 .writefn = tlbi_aa64_vae1_write }, 4920 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4922 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4923 .writefn = tlbi_aa64_vae1_write }, 4924 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4926 .access = PL2_W, .type = ARM_CP_NOP }, 4927 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4929 .access = PL2_W, .type = ARM_CP_NOP }, 4930 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4932 .access = PL2_W, .type = ARM_CP_NO_RAW, 4933 .writefn = tlbi_aa64_alle1is_write }, 4934 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4936 .access = PL2_W, .type = ARM_CP_NO_RAW, 4937 .writefn = tlbi_aa64_alle1is_write }, 4938 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4940 .access = PL2_W, .type = ARM_CP_NOP }, 4941 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4943 .access = PL2_W, .type = ARM_CP_NOP }, 4944 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4946 .access = PL2_W, .type = ARM_CP_NO_RAW, 4947 .writefn = tlbi_aa64_alle1_write }, 4948 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4950 .access = PL2_W, .type = ARM_CP_NO_RAW, 4951 .writefn = tlbi_aa64_alle1is_write }, 4952 #ifndef CONFIG_USER_ONLY 4953 /* 64 bit address translation operations */ 4954 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4956 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4957 .writefn = ats_write64 }, 4958 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4960 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4961 .writefn = ats_write64 }, 4962 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4964 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4965 .writefn = ats_write64 }, 4966 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4968 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4969 .writefn = ats_write64 }, 4970 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4972 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4973 .writefn = ats_write64 }, 4974 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4976 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4977 .writefn = ats_write64 }, 4978 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4979 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4980 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4981 .writefn = ats_write64 }, 4982 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4983 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4984 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4985 .writefn = ats_write64 }, 4986 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4987 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4988 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4989 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4990 .writefn = ats_write64 }, 4991 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4992 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4993 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4994 .writefn = ats_write64 }, 4995 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4996 .type = ARM_CP_ALIAS, 4997 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4998 .access = PL1_RW, .resetvalue = 0, 4999 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5000 .writefn = par_write }, 5001 #endif 5002 /* TLB invalidate last level of translation table walk */ 5003 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5004 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5005 .writefn = tlbimva_is_write }, 5006 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5007 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5008 .writefn = tlbimvaa_is_write }, 5009 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5010 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5011 .writefn = tlbimva_write }, 5012 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5013 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5014 .writefn = tlbimvaa_write }, 5015 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5016 .type = ARM_CP_NO_RAW, .access = PL2_W, 5017 .writefn = tlbimva_hyp_write }, 5018 { .name = "TLBIMVALHIS", 5019 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5020 .type = ARM_CP_NO_RAW, .access = PL2_W, 5021 .writefn = tlbimva_hyp_is_write }, 5022 { .name = "TLBIIPAS2", 5023 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5024 .type = ARM_CP_NOP, .access = PL2_W }, 5025 { .name = "TLBIIPAS2IS", 5026 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5027 .type = ARM_CP_NOP, .access = PL2_W }, 5028 { .name = "TLBIIPAS2L", 5029 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5030 .type = ARM_CP_NOP, .access = PL2_W }, 5031 { .name = "TLBIIPAS2LIS", 5032 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5033 .type = ARM_CP_NOP, .access = PL2_W }, 5034 /* 32 bit cache operations */ 5035 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5037 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5038 .type = ARM_CP_NOP, .access = PL1_W }, 5039 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5040 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5041 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5043 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5044 .type = ARM_CP_NOP, .access = PL1_W }, 5045 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5046 .type = ARM_CP_NOP, .access = PL1_W }, 5047 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5048 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5049 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5050 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5051 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5052 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5053 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5054 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5055 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5056 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5057 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5058 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5059 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5060 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5061 /* MMU Domain access control / MPU write buffer control */ 5062 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5063 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5064 .writefn = dacr_write, .raw_writefn = raw_write, 5065 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5066 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5067 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5068 .type = ARM_CP_ALIAS, 5069 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5070 .access = PL1_RW, 5071 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5072 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5073 .type = ARM_CP_ALIAS, 5074 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5075 .access = PL1_RW, 5076 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5077 /* We rely on the access checks not allowing the guest to write to the 5078 * state field when SPSel indicates that it's being used as the stack 5079 * pointer. 5080 */ 5081 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5082 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5083 .access = PL1_RW, .accessfn = sp_el0_access, 5084 .type = ARM_CP_ALIAS, 5085 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5086 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5087 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5088 .access = PL2_RW, .type = ARM_CP_ALIAS, 5089 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5090 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5091 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5092 .type = ARM_CP_NO_RAW, 5093 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5094 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5095 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5096 .type = ARM_CP_ALIAS, 5097 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5098 .access = PL2_RW, .accessfn = fpexc32_access }, 5099 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5100 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5101 .access = PL2_RW, .resetvalue = 0, 5102 .writefn = dacr_write, .raw_writefn = raw_write, 5103 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5104 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5105 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5106 .access = PL2_RW, .resetvalue = 0, 5107 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5108 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5109 .type = ARM_CP_ALIAS, 5110 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5111 .access = PL2_RW, 5112 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5113 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5114 .type = ARM_CP_ALIAS, 5115 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5116 .access = PL2_RW, 5117 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5118 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5119 .type = ARM_CP_ALIAS, 5120 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5121 .access = PL2_RW, 5122 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5123 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5124 .type = ARM_CP_ALIAS, 5125 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5126 .access = PL2_RW, 5127 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5128 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5129 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5130 .resetvalue = 0, 5131 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5132 { .name = "SDCR", .type = ARM_CP_ALIAS, 5133 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5134 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5135 .writefn = sdcr_write, 5136 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5137 REGINFO_SENTINEL 5138 }; 5139 5140 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5141 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5142 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5143 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5144 .access = PL2_RW, 5145 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5146 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5147 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5148 .access = PL2_RW, 5149 .type = ARM_CP_CONST, .resetvalue = 0 }, 5150 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5151 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5152 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5153 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5154 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5155 .access = PL2_RW, 5156 .type = ARM_CP_CONST, .resetvalue = 0 }, 5157 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5158 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5159 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5160 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5161 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5162 .access = PL2_RW, .type = ARM_CP_CONST, 5163 .resetvalue = 0 }, 5164 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5165 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5166 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5167 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5168 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5169 .access = PL2_RW, .type = ARM_CP_CONST, 5170 .resetvalue = 0 }, 5171 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5172 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5173 .access = PL2_RW, .type = ARM_CP_CONST, 5174 .resetvalue = 0 }, 5175 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5176 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5177 .access = PL2_RW, .type = ARM_CP_CONST, 5178 .resetvalue = 0 }, 5179 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5180 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5181 .access = PL2_RW, .type = ARM_CP_CONST, 5182 .resetvalue = 0 }, 5183 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5184 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5185 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5186 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5187 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5188 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5189 .type = ARM_CP_CONST, .resetvalue = 0 }, 5190 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5191 .cp = 15, .opc1 = 6, .crm = 2, 5192 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5193 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5194 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5195 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5196 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5197 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5198 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5199 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5200 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5201 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5202 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5203 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5204 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5205 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5206 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5207 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5208 .resetvalue = 0 }, 5209 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5210 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5211 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5212 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5213 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5214 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5215 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5216 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5217 .resetvalue = 0 }, 5218 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5219 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5220 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5221 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5222 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5223 .resetvalue = 0 }, 5224 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5225 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5226 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5227 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5228 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5229 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5230 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5231 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5232 .access = PL2_RW, .accessfn = access_tda, 5233 .type = ARM_CP_CONST, .resetvalue = 0 }, 5234 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5235 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5236 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5237 .type = ARM_CP_CONST, .resetvalue = 0 }, 5238 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5239 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5240 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5241 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5242 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5243 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5244 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5245 .type = ARM_CP_CONST, 5246 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5247 .access = PL2_RW, .resetvalue = 0 }, 5248 REGINFO_SENTINEL 5249 }; 5250 5251 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5252 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5253 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5254 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5255 .access = PL2_RW, 5256 .type = ARM_CP_CONST, .resetvalue = 0 }, 5257 REGINFO_SENTINEL 5258 }; 5259 5260 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5261 { 5262 ARMCPU *cpu = env_archcpu(env); 5263 5264 if (arm_feature(env, ARM_FEATURE_V8)) { 5265 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5266 } else { 5267 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5268 } 5269 5270 if (arm_feature(env, ARM_FEATURE_EL3)) { 5271 valid_mask &= ~HCR_HCD; 5272 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5273 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5274 * However, if we're using the SMC PSCI conduit then QEMU is 5275 * effectively acting like EL3 firmware and so the guest at 5276 * EL2 should retain the ability to prevent EL1 from being 5277 * able to make SMC calls into the ersatz firmware, so in 5278 * that case HCR.TSC should be read/write. 5279 */ 5280 valid_mask &= ~HCR_TSC; 5281 } 5282 5283 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5284 if (cpu_isar_feature(aa64_vh, cpu)) { 5285 valid_mask |= HCR_E2H; 5286 } 5287 if (cpu_isar_feature(aa64_lor, cpu)) { 5288 valid_mask |= HCR_TLOR; 5289 } 5290 if (cpu_isar_feature(aa64_pauth, cpu)) { 5291 valid_mask |= HCR_API | HCR_APK; 5292 } 5293 if (cpu_isar_feature(aa64_mte, cpu)) { 5294 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5295 } 5296 } 5297 5298 /* Clear RES0 bits. */ 5299 value &= valid_mask; 5300 5301 /* 5302 * These bits change the MMU setup: 5303 * HCR_VM enables stage 2 translation 5304 * HCR_PTW forbids certain page-table setups 5305 * HCR_DC disables stage1 and enables stage2 translation 5306 * HCR_DCT enables tagging on (disabled) stage1 translation 5307 */ 5308 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5309 tlb_flush(CPU(cpu)); 5310 } 5311 env->cp15.hcr_el2 = value; 5312 5313 /* 5314 * Updates to VI and VF require us to update the status of 5315 * virtual interrupts, which are the logical OR of these bits 5316 * and the state of the input lines from the GIC. (This requires 5317 * that we have the iothread lock, which is done by marking the 5318 * reginfo structs as ARM_CP_IO.) 5319 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5320 * possible for it to be taken immediately, because VIRQ and 5321 * VFIQ are masked unless running at EL0 or EL1, and HCR 5322 * can only be written at EL2. 5323 */ 5324 g_assert(qemu_mutex_iothread_locked()); 5325 arm_cpu_update_virq(cpu); 5326 arm_cpu_update_vfiq(cpu); 5327 } 5328 5329 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5330 { 5331 do_hcr_write(env, value, 0); 5332 } 5333 5334 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5335 uint64_t value) 5336 { 5337 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5338 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5339 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5340 } 5341 5342 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5343 uint64_t value) 5344 { 5345 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5346 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5347 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5348 } 5349 5350 /* 5351 * Return the effective value of HCR_EL2. 5352 * Bits that are not included here: 5353 * RW (read from SCR_EL3.RW as needed) 5354 */ 5355 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5356 { 5357 uint64_t ret = env->cp15.hcr_el2; 5358 5359 if (!arm_is_el2_enabled(env)) { 5360 /* 5361 * "This register has no effect if EL2 is not enabled in the 5362 * current Security state". This is ARMv8.4-SecEL2 speak for 5363 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5364 * 5365 * Prior to that, the language was "In an implementation that 5366 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5367 * as if this field is 0 for all purposes other than a direct 5368 * read or write access of HCR_EL2". With lots of enumeration 5369 * on a per-field basis. In current QEMU, this is condition 5370 * is arm_is_secure_below_el3. 5371 * 5372 * Since the v8.4 language applies to the entire register, and 5373 * appears to be backward compatible, use that. 5374 */ 5375 return 0; 5376 } 5377 5378 /* 5379 * For a cpu that supports both aarch64 and aarch32, we can set bits 5380 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5381 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5382 */ 5383 if (!arm_el_is_aa64(env, 2)) { 5384 uint64_t aa32_valid; 5385 5386 /* 5387 * These bits are up-to-date as of ARMv8.6. 5388 * For HCR, it's easiest to list just the 2 bits that are invalid. 5389 * For HCR2, list those that are valid. 5390 */ 5391 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5392 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5393 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5394 ret &= aa32_valid; 5395 } 5396 5397 if (ret & HCR_TGE) { 5398 /* These bits are up-to-date as of ARMv8.6. */ 5399 if (ret & HCR_E2H) { 5400 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5401 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5402 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5403 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5404 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5405 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5406 } else { 5407 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5408 } 5409 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5410 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5411 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5412 HCR_TLOR); 5413 } 5414 5415 return ret; 5416 } 5417 5418 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5419 uint64_t value) 5420 { 5421 /* 5422 * For A-profile AArch32 EL3, if NSACR.CP10 5423 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5424 */ 5425 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5426 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5427 value &= ~(0x3 << 10); 5428 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5429 } 5430 env->cp15.cptr_el[2] = value; 5431 } 5432 5433 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5434 { 5435 /* 5436 * For A-profile AArch32 EL3, if NSACR.CP10 5437 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5438 */ 5439 uint64_t value = env->cp15.cptr_el[2]; 5440 5441 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5442 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5443 value |= 0x3 << 10; 5444 } 5445 return value; 5446 } 5447 5448 static const ARMCPRegInfo el2_cp_reginfo[] = { 5449 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5450 .type = ARM_CP_IO, 5451 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5452 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5453 .writefn = hcr_write }, 5454 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5455 .type = ARM_CP_ALIAS | ARM_CP_IO, 5456 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5457 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5458 .writefn = hcr_writelow }, 5459 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5460 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5461 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5462 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5463 .type = ARM_CP_ALIAS, 5464 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5465 .access = PL2_RW, 5466 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5467 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5468 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5469 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5470 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5471 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5472 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5473 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5474 .type = ARM_CP_ALIAS, 5475 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5476 .access = PL2_RW, 5477 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5478 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5479 .type = ARM_CP_ALIAS, 5480 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5481 .access = PL2_RW, 5482 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5483 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5484 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5485 .access = PL2_RW, .writefn = vbar_write, 5486 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5487 .resetvalue = 0 }, 5488 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5489 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5490 .access = PL3_RW, .type = ARM_CP_ALIAS, 5491 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5492 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5493 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5494 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5495 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5496 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5497 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5498 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5499 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5500 .resetvalue = 0 }, 5501 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5502 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5503 .access = PL2_RW, .type = ARM_CP_ALIAS, 5504 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5505 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5506 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5507 .access = PL2_RW, .type = ARM_CP_CONST, 5508 .resetvalue = 0 }, 5509 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5510 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5511 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5512 .access = PL2_RW, .type = ARM_CP_CONST, 5513 .resetvalue = 0 }, 5514 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5515 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5516 .access = PL2_RW, .type = ARM_CP_CONST, 5517 .resetvalue = 0 }, 5518 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5519 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5520 .access = PL2_RW, .type = ARM_CP_CONST, 5521 .resetvalue = 0 }, 5522 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5523 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5524 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5525 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5526 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5527 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5528 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5529 .type = ARM_CP_ALIAS, 5530 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5531 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5532 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5533 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5534 .access = PL2_RW, 5535 /* no .writefn needed as this can't cause an ASID change; 5536 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5537 */ 5538 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5539 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5540 .cp = 15, .opc1 = 6, .crm = 2, 5541 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5542 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5543 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5544 .writefn = vttbr_write }, 5545 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5546 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5547 .access = PL2_RW, .writefn = vttbr_write, 5548 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5549 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5550 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5551 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5552 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5553 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5554 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5555 .access = PL2_RW, .resetvalue = 0, 5556 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5557 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5558 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5559 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5560 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5561 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5562 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5563 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5564 { .name = "TLBIALLNSNH", 5565 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5566 .type = ARM_CP_NO_RAW, .access = PL2_W, 5567 .writefn = tlbiall_nsnh_write }, 5568 { .name = "TLBIALLNSNHIS", 5569 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5570 .type = ARM_CP_NO_RAW, .access = PL2_W, 5571 .writefn = tlbiall_nsnh_is_write }, 5572 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5573 .type = ARM_CP_NO_RAW, .access = PL2_W, 5574 .writefn = tlbiall_hyp_write }, 5575 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5576 .type = ARM_CP_NO_RAW, .access = PL2_W, 5577 .writefn = tlbiall_hyp_is_write }, 5578 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5579 .type = ARM_CP_NO_RAW, .access = PL2_W, 5580 .writefn = tlbimva_hyp_write }, 5581 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5582 .type = ARM_CP_NO_RAW, .access = PL2_W, 5583 .writefn = tlbimva_hyp_is_write }, 5584 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5585 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5586 .type = ARM_CP_NO_RAW, .access = PL2_W, 5587 .writefn = tlbi_aa64_alle2_write }, 5588 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5589 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5590 .type = ARM_CP_NO_RAW, .access = PL2_W, 5591 .writefn = tlbi_aa64_vae2_write }, 5592 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5593 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5594 .access = PL2_W, .type = ARM_CP_NO_RAW, 5595 .writefn = tlbi_aa64_vae2_write }, 5596 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5597 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5598 .access = PL2_W, .type = ARM_CP_NO_RAW, 5599 .writefn = tlbi_aa64_alle2is_write }, 5600 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5601 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5602 .type = ARM_CP_NO_RAW, .access = PL2_W, 5603 .writefn = tlbi_aa64_vae2is_write }, 5604 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5605 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5606 .access = PL2_W, .type = ARM_CP_NO_RAW, 5607 .writefn = tlbi_aa64_vae2is_write }, 5608 #ifndef CONFIG_USER_ONLY 5609 /* Unlike the other EL2-related AT operations, these must 5610 * UNDEF from EL3 if EL2 is not implemented, which is why we 5611 * define them here rather than with the rest of the AT ops. 5612 */ 5613 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5614 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5615 .access = PL2_W, .accessfn = at_s1e2_access, 5616 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5617 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5618 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5619 .access = PL2_W, .accessfn = at_s1e2_access, 5620 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5621 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5622 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5623 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5624 * to behave as if SCR.NS was 1. 5625 */ 5626 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5627 .access = PL2_W, 5628 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5629 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5630 .access = PL2_W, 5631 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5632 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5633 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5634 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5635 * reset values as IMPDEF. We choose to reset to 3 to comply with 5636 * both ARMv7 and ARMv8. 5637 */ 5638 .access = PL2_RW, .resetvalue = 3, 5639 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5640 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5641 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5642 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5643 .writefn = gt_cntvoff_write, 5644 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5645 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5646 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5647 .writefn = gt_cntvoff_write, 5648 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5649 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5650 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5651 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5652 .type = ARM_CP_IO, .access = PL2_RW, 5653 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5654 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5655 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5656 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5657 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5658 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5659 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5660 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5661 .resetfn = gt_hyp_timer_reset, 5662 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5663 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5664 .type = ARM_CP_IO, 5665 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5666 .access = PL2_RW, 5667 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5668 .resetvalue = 0, 5669 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5670 #endif 5671 /* The only field of MDCR_EL2 that has a defined architectural reset value 5672 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5673 */ 5674 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5675 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5676 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5677 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5678 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5679 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5680 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5681 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5682 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5683 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5684 .access = PL2_RW, 5685 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5686 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5687 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5688 .access = PL2_RW, 5689 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5690 REGINFO_SENTINEL 5691 }; 5692 5693 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5694 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5695 .type = ARM_CP_ALIAS | ARM_CP_IO, 5696 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5697 .access = PL2_RW, 5698 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5699 .writefn = hcr_writehigh }, 5700 REGINFO_SENTINEL 5701 }; 5702 5703 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5704 bool isread) 5705 { 5706 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5707 return CP_ACCESS_OK; 5708 } 5709 return CP_ACCESS_TRAP_UNCATEGORIZED; 5710 } 5711 5712 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5713 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5714 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5715 .access = PL2_RW, .accessfn = sel2_access, 5716 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5717 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5718 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5719 .access = PL2_RW, .accessfn = sel2_access, 5720 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5721 REGINFO_SENTINEL 5722 }; 5723 5724 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5725 bool isread) 5726 { 5727 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5728 * At Secure EL1 it traps to EL3 or EL2. 5729 */ 5730 if (arm_current_el(env) == 3) { 5731 return CP_ACCESS_OK; 5732 } 5733 if (arm_is_secure_below_el3(env)) { 5734 if (env->cp15.scr_el3 & SCR_EEL2) { 5735 return CP_ACCESS_TRAP_EL2; 5736 } 5737 return CP_ACCESS_TRAP_EL3; 5738 } 5739 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5740 if (isread) { 5741 return CP_ACCESS_OK; 5742 } 5743 return CP_ACCESS_TRAP_UNCATEGORIZED; 5744 } 5745 5746 static const ARMCPRegInfo el3_cp_reginfo[] = { 5747 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5748 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5749 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5750 .resetfn = scr_reset, .writefn = scr_write }, 5751 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5752 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5753 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5754 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5755 .writefn = scr_write }, 5756 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5757 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5758 .access = PL3_RW, .resetvalue = 0, 5759 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5760 { .name = "SDER", 5761 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5762 .access = PL3_RW, .resetvalue = 0, 5763 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5764 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5765 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5766 .writefn = vbar_write, .resetvalue = 0, 5767 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5768 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5769 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5770 .access = PL3_RW, .resetvalue = 0, 5771 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5772 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5773 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5774 .access = PL3_RW, 5775 /* no .writefn needed as this can't cause an ASID change; 5776 * we must provide a .raw_writefn and .resetfn because we handle 5777 * reset and migration for the AArch32 TTBCR(S), which might be 5778 * using mask and base_mask. 5779 */ 5780 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5781 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5782 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5783 .type = ARM_CP_ALIAS, 5784 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5785 .access = PL3_RW, 5786 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5787 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5788 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5789 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5790 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5791 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5792 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5793 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5794 .type = ARM_CP_ALIAS, 5795 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5796 .access = PL3_RW, 5797 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5798 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5799 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5800 .access = PL3_RW, .writefn = vbar_write, 5801 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5802 .resetvalue = 0 }, 5803 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5804 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5805 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5806 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5807 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5808 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5809 .access = PL3_RW, .resetvalue = 0, 5810 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5811 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5812 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5813 .access = PL3_RW, .type = ARM_CP_CONST, 5814 .resetvalue = 0 }, 5815 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5816 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5817 .access = PL3_RW, .type = ARM_CP_CONST, 5818 .resetvalue = 0 }, 5819 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5820 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5821 .access = PL3_RW, .type = ARM_CP_CONST, 5822 .resetvalue = 0 }, 5823 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5824 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5825 .access = PL3_W, .type = ARM_CP_NO_RAW, 5826 .writefn = tlbi_aa64_alle3is_write }, 5827 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5828 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5829 .access = PL3_W, .type = ARM_CP_NO_RAW, 5830 .writefn = tlbi_aa64_vae3is_write }, 5831 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5832 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5833 .access = PL3_W, .type = ARM_CP_NO_RAW, 5834 .writefn = tlbi_aa64_vae3is_write }, 5835 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5836 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5837 .access = PL3_W, .type = ARM_CP_NO_RAW, 5838 .writefn = tlbi_aa64_alle3_write }, 5839 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5840 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5841 .access = PL3_W, .type = ARM_CP_NO_RAW, 5842 .writefn = tlbi_aa64_vae3_write }, 5843 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5844 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5845 .access = PL3_W, .type = ARM_CP_NO_RAW, 5846 .writefn = tlbi_aa64_vae3_write }, 5847 REGINFO_SENTINEL 5848 }; 5849 5850 #ifndef CONFIG_USER_ONLY 5851 /* Test if system register redirection is to occur in the current state. */ 5852 static bool redirect_for_e2h(CPUARMState *env) 5853 { 5854 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5855 } 5856 5857 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5858 { 5859 CPReadFn *readfn; 5860 5861 if (redirect_for_e2h(env)) { 5862 /* Switch to the saved EL2 version of the register. */ 5863 ri = ri->opaque; 5864 readfn = ri->readfn; 5865 } else { 5866 readfn = ri->orig_readfn; 5867 } 5868 if (readfn == NULL) { 5869 readfn = raw_read; 5870 } 5871 return readfn(env, ri); 5872 } 5873 5874 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5875 uint64_t value) 5876 { 5877 CPWriteFn *writefn; 5878 5879 if (redirect_for_e2h(env)) { 5880 /* Switch to the saved EL2 version of the register. */ 5881 ri = ri->opaque; 5882 writefn = ri->writefn; 5883 } else { 5884 writefn = ri->orig_writefn; 5885 } 5886 if (writefn == NULL) { 5887 writefn = raw_write; 5888 } 5889 writefn(env, ri, value); 5890 } 5891 5892 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5893 { 5894 struct E2HAlias { 5895 uint32_t src_key, dst_key, new_key; 5896 const char *src_name, *dst_name, *new_name; 5897 bool (*feature)(const ARMISARegisters *id); 5898 }; 5899 5900 #define K(op0, op1, crn, crm, op2) \ 5901 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5902 5903 static const struct E2HAlias aliases[] = { 5904 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5905 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5906 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5907 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5908 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5909 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5910 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5911 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5912 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5913 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5914 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5915 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5916 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5917 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5918 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5919 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5920 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5921 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5922 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5923 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5924 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5925 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5926 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5927 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5928 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5929 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5930 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5931 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5932 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5933 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5934 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5935 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5936 5937 /* 5938 * Note that redirection of ZCR is mentioned in the description 5939 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5940 * not in the summary table. 5941 */ 5942 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5943 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5944 5945 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5946 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5947 5948 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5949 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5950 }; 5951 #undef K 5952 5953 size_t i; 5954 5955 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5956 const struct E2HAlias *a = &aliases[i]; 5957 ARMCPRegInfo *src_reg, *dst_reg; 5958 5959 if (a->feature && !a->feature(&cpu->isar)) { 5960 continue; 5961 } 5962 5963 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5964 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5965 g_assert(src_reg != NULL); 5966 g_assert(dst_reg != NULL); 5967 5968 /* Cross-compare names to detect typos in the keys. */ 5969 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5970 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5971 5972 /* None of the core system registers use opaque; we will. */ 5973 g_assert(src_reg->opaque == NULL); 5974 5975 /* Create alias before redirection so we dup the right data. */ 5976 if (a->new_key) { 5977 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5978 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5979 bool ok; 5980 5981 new_reg->name = a->new_name; 5982 new_reg->type |= ARM_CP_ALIAS; 5983 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5984 new_reg->access &= PL2_RW | PL3_RW; 5985 5986 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5987 g_assert(ok); 5988 } 5989 5990 src_reg->opaque = dst_reg; 5991 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5992 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5993 if (!src_reg->raw_readfn) { 5994 src_reg->raw_readfn = raw_read; 5995 } 5996 if (!src_reg->raw_writefn) { 5997 src_reg->raw_writefn = raw_write; 5998 } 5999 src_reg->readfn = el2_e2h_read; 6000 src_reg->writefn = el2_e2h_write; 6001 } 6002 } 6003 #endif 6004 6005 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6006 bool isread) 6007 { 6008 int cur_el = arm_current_el(env); 6009 6010 if (cur_el < 2) { 6011 uint64_t hcr = arm_hcr_el2_eff(env); 6012 6013 if (cur_el == 0) { 6014 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6015 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6016 return CP_ACCESS_TRAP_EL2; 6017 } 6018 } else { 6019 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6020 return CP_ACCESS_TRAP; 6021 } 6022 if (hcr & HCR_TID2) { 6023 return CP_ACCESS_TRAP_EL2; 6024 } 6025 } 6026 } else if (hcr & HCR_TID2) { 6027 return CP_ACCESS_TRAP_EL2; 6028 } 6029 } 6030 6031 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6032 return CP_ACCESS_TRAP_EL2; 6033 } 6034 6035 return CP_ACCESS_OK; 6036 } 6037 6038 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6039 uint64_t value) 6040 { 6041 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6042 * read via a bit in OSLSR_EL1. 6043 */ 6044 int oslock; 6045 6046 if (ri->state == ARM_CP_STATE_AA32) { 6047 oslock = (value == 0xC5ACCE55); 6048 } else { 6049 oslock = value & 1; 6050 } 6051 6052 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6053 } 6054 6055 static const ARMCPRegInfo debug_cp_reginfo[] = { 6056 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6057 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6058 * unlike DBGDRAR it is never accessible from EL0. 6059 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6060 * accessor. 6061 */ 6062 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6063 .access = PL0_R, .accessfn = access_tdra, 6064 .type = ARM_CP_CONST, .resetvalue = 0 }, 6065 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6066 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6067 .access = PL1_R, .accessfn = access_tdra, 6068 .type = ARM_CP_CONST, .resetvalue = 0 }, 6069 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6070 .access = PL0_R, .accessfn = access_tdra, 6071 .type = ARM_CP_CONST, .resetvalue = 0 }, 6072 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6073 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6074 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6075 .access = PL1_RW, .accessfn = access_tda, 6076 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6077 .resetvalue = 0 }, 6078 /* 6079 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6080 * Debug Communication Channel is not implemented. 6081 */ 6082 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6083 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6084 .access = PL0_R, .accessfn = access_tda, 6085 .type = ARM_CP_CONST, .resetvalue = 0 }, 6086 /* 6087 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6088 * it is unlikely a guest will care. 6089 * We don't implement the configurable EL0 access. 6090 */ 6091 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6092 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6093 .type = ARM_CP_ALIAS, 6094 .access = PL1_R, .accessfn = access_tda, 6095 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6096 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6097 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6098 .access = PL1_W, .type = ARM_CP_NO_RAW, 6099 .accessfn = access_tdosa, 6100 .writefn = oslar_write }, 6101 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6102 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6103 .access = PL1_R, .resetvalue = 10, 6104 .accessfn = access_tdosa, 6105 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6106 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6107 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6108 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6109 .access = PL1_RW, .accessfn = access_tdosa, 6110 .type = ARM_CP_NOP }, 6111 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6112 * implement vector catch debug events yet. 6113 */ 6114 { .name = "DBGVCR", 6115 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6116 .access = PL1_RW, .accessfn = access_tda, 6117 .type = ARM_CP_NOP }, 6118 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6119 * to save and restore a 32-bit guest's DBGVCR) 6120 */ 6121 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6122 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6123 .access = PL2_RW, .accessfn = access_tda, 6124 .type = ARM_CP_NOP }, 6125 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6126 * Channel but Linux may try to access this register. The 32-bit 6127 * alias is DBGDCCINT. 6128 */ 6129 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6130 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6131 .access = PL1_RW, .accessfn = access_tda, 6132 .type = ARM_CP_NOP }, 6133 REGINFO_SENTINEL 6134 }; 6135 6136 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6137 /* 64 bit access versions of the (dummy) debug registers */ 6138 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6139 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6140 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6141 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6142 REGINFO_SENTINEL 6143 }; 6144 6145 /* Return the exception level to which exceptions should be taken 6146 * via SVEAccessTrap. If an exception should be routed through 6147 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6148 * take care of raising that exception. 6149 * C.f. the ARM pseudocode function CheckSVEEnabled. 6150 */ 6151 int sve_exception_el(CPUARMState *env, int el) 6152 { 6153 #ifndef CONFIG_USER_ONLY 6154 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6155 6156 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6157 /* Check CPACR.ZEN. */ 6158 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6159 case 1: 6160 if (el != 0) { 6161 break; 6162 } 6163 /* fall through */ 6164 case 0: 6165 case 2: 6166 /* route_to_el2 */ 6167 return hcr_el2 & HCR_TGE ? 2 : 1; 6168 } 6169 6170 /* Check CPACR.FPEN. */ 6171 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6172 case 1: 6173 if (el != 0) { 6174 break; 6175 } 6176 /* fall through */ 6177 case 0: 6178 case 2: 6179 return 0; 6180 } 6181 } 6182 6183 /* 6184 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6185 */ 6186 if (el <= 2) { 6187 if (hcr_el2 & HCR_E2H) { 6188 /* Check CPTR_EL2.ZEN. */ 6189 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6190 case 1: 6191 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6192 break; 6193 } 6194 /* fall through */ 6195 case 0: 6196 case 2: 6197 return 2; 6198 } 6199 6200 /* Check CPTR_EL2.FPEN. */ 6201 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6202 case 1: 6203 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6204 break; 6205 } 6206 /* fall through */ 6207 case 0: 6208 case 2: 6209 return 0; 6210 } 6211 } else if (arm_is_el2_enabled(env)) { 6212 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6213 return 2; 6214 } 6215 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6216 return 0; 6217 } 6218 } 6219 } 6220 6221 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6222 if (arm_feature(env, ARM_FEATURE_EL3) 6223 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6224 return 3; 6225 } 6226 #endif 6227 return 0; 6228 } 6229 6230 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6231 { 6232 uint32_t end_len; 6233 6234 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6235 end_len = start_len; 6236 6237 if (!test_bit(start_len, cpu->sve_vq_map)) { 6238 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6239 assert(end_len < start_len); 6240 } 6241 return end_len; 6242 } 6243 6244 /* 6245 * Given that SVE is enabled, return the vector length for EL. 6246 */ 6247 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6248 { 6249 ARMCPU *cpu = env_archcpu(env); 6250 uint32_t zcr_len = cpu->sve_max_vq - 1; 6251 6252 if (el <= 1 && 6253 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6254 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6255 } 6256 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6257 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6258 } 6259 if (arm_feature(env, ARM_FEATURE_EL3)) { 6260 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6261 } 6262 6263 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6264 } 6265 6266 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6267 uint64_t value) 6268 { 6269 int cur_el = arm_current_el(env); 6270 int old_len = sve_zcr_len_for_el(env, cur_el); 6271 int new_len; 6272 6273 /* Bits other than [3:0] are RAZ/WI. */ 6274 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6275 raw_write(env, ri, value & 0xf); 6276 6277 /* 6278 * Because we arrived here, we know both FP and SVE are enabled; 6279 * otherwise we would have trapped access to the ZCR_ELn register. 6280 */ 6281 new_len = sve_zcr_len_for_el(env, cur_el); 6282 if (new_len < old_len) { 6283 aarch64_sve_narrow_vq(env, new_len + 1); 6284 } 6285 } 6286 6287 static const ARMCPRegInfo zcr_el1_reginfo = { 6288 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6289 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6290 .access = PL1_RW, .type = ARM_CP_SVE, 6291 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6292 .writefn = zcr_write, .raw_writefn = raw_write 6293 }; 6294 6295 static const ARMCPRegInfo zcr_el2_reginfo = { 6296 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6297 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6298 .access = PL2_RW, .type = ARM_CP_SVE, 6299 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6300 .writefn = zcr_write, .raw_writefn = raw_write 6301 }; 6302 6303 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6304 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6305 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6306 .access = PL2_RW, .type = ARM_CP_SVE, 6307 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6308 }; 6309 6310 static const ARMCPRegInfo zcr_el3_reginfo = { 6311 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6312 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6313 .access = PL3_RW, .type = ARM_CP_SVE, 6314 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6315 .writefn = zcr_write, .raw_writefn = raw_write 6316 }; 6317 6318 void hw_watchpoint_update(ARMCPU *cpu, int n) 6319 { 6320 CPUARMState *env = &cpu->env; 6321 vaddr len = 0; 6322 vaddr wvr = env->cp15.dbgwvr[n]; 6323 uint64_t wcr = env->cp15.dbgwcr[n]; 6324 int mask; 6325 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6326 6327 if (env->cpu_watchpoint[n]) { 6328 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6329 env->cpu_watchpoint[n] = NULL; 6330 } 6331 6332 if (!extract64(wcr, 0, 1)) { 6333 /* E bit clear : watchpoint disabled */ 6334 return; 6335 } 6336 6337 switch (extract64(wcr, 3, 2)) { 6338 case 0: 6339 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6340 return; 6341 case 1: 6342 flags |= BP_MEM_READ; 6343 break; 6344 case 2: 6345 flags |= BP_MEM_WRITE; 6346 break; 6347 case 3: 6348 flags |= BP_MEM_ACCESS; 6349 break; 6350 } 6351 6352 /* Attempts to use both MASK and BAS fields simultaneously are 6353 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6354 * thus generating a watchpoint for every byte in the masked region. 6355 */ 6356 mask = extract64(wcr, 24, 4); 6357 if (mask == 1 || mask == 2) { 6358 /* Reserved values of MASK; we must act as if the mask value was 6359 * some non-reserved value, or as if the watchpoint were disabled. 6360 * We choose the latter. 6361 */ 6362 return; 6363 } else if (mask) { 6364 /* Watchpoint covers an aligned area up to 2GB in size */ 6365 len = 1ULL << mask; 6366 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6367 * whether the watchpoint fires when the unmasked bits match; we opt 6368 * to generate the exceptions. 6369 */ 6370 wvr &= ~(len - 1); 6371 } else { 6372 /* Watchpoint covers bytes defined by the byte address select bits */ 6373 int bas = extract64(wcr, 5, 8); 6374 int basstart; 6375 6376 if (extract64(wvr, 2, 1)) { 6377 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6378 * ignored, and BAS[3:0] define which bytes to watch. 6379 */ 6380 bas &= 0xf; 6381 } 6382 6383 if (bas == 0) { 6384 /* This must act as if the watchpoint is disabled */ 6385 return; 6386 } 6387 6388 /* The BAS bits are supposed to be programmed to indicate a contiguous 6389 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6390 * we fire for each byte in the word/doubleword addressed by the WVR. 6391 * We choose to ignore any non-zero bits after the first range of 1s. 6392 */ 6393 basstart = ctz32(bas); 6394 len = cto32(bas >> basstart); 6395 wvr += basstart; 6396 } 6397 6398 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6399 &env->cpu_watchpoint[n]); 6400 } 6401 6402 void hw_watchpoint_update_all(ARMCPU *cpu) 6403 { 6404 int i; 6405 CPUARMState *env = &cpu->env; 6406 6407 /* Completely clear out existing QEMU watchpoints and our array, to 6408 * avoid possible stale entries following migration load. 6409 */ 6410 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6411 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6412 6413 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6414 hw_watchpoint_update(cpu, i); 6415 } 6416 } 6417 6418 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6419 uint64_t value) 6420 { 6421 ARMCPU *cpu = env_archcpu(env); 6422 int i = ri->crm; 6423 6424 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6425 * register reads and behaves as if values written are sign extended. 6426 * Bits [1:0] are RES0. 6427 */ 6428 value = sextract64(value, 0, 49) & ~3ULL; 6429 6430 raw_write(env, ri, value); 6431 hw_watchpoint_update(cpu, i); 6432 } 6433 6434 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6435 uint64_t value) 6436 { 6437 ARMCPU *cpu = env_archcpu(env); 6438 int i = ri->crm; 6439 6440 raw_write(env, ri, value); 6441 hw_watchpoint_update(cpu, i); 6442 } 6443 6444 void hw_breakpoint_update(ARMCPU *cpu, int n) 6445 { 6446 CPUARMState *env = &cpu->env; 6447 uint64_t bvr = env->cp15.dbgbvr[n]; 6448 uint64_t bcr = env->cp15.dbgbcr[n]; 6449 vaddr addr; 6450 int bt; 6451 int flags = BP_CPU; 6452 6453 if (env->cpu_breakpoint[n]) { 6454 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6455 env->cpu_breakpoint[n] = NULL; 6456 } 6457 6458 if (!extract64(bcr, 0, 1)) { 6459 /* E bit clear : watchpoint disabled */ 6460 return; 6461 } 6462 6463 bt = extract64(bcr, 20, 4); 6464 6465 switch (bt) { 6466 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6467 case 5: /* linked address mismatch (reserved if AArch64) */ 6468 qemu_log_mask(LOG_UNIMP, 6469 "arm: address mismatch breakpoint types not implemented\n"); 6470 return; 6471 case 0: /* unlinked address match */ 6472 case 1: /* linked address match */ 6473 { 6474 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6475 * we behave as if the register was sign extended. Bits [1:0] are 6476 * RES0. The BAS field is used to allow setting breakpoints on 16 6477 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6478 * a bp will fire if the addresses covered by the bp and the addresses 6479 * covered by the insn overlap but the insn doesn't start at the 6480 * start of the bp address range. We choose to require the insn and 6481 * the bp to have the same address. The constraints on writing to 6482 * BAS enforced in dbgbcr_write mean we have only four cases: 6483 * 0b0000 => no breakpoint 6484 * 0b0011 => breakpoint on addr 6485 * 0b1100 => breakpoint on addr + 2 6486 * 0b1111 => breakpoint on addr 6487 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6488 */ 6489 int bas = extract64(bcr, 5, 4); 6490 addr = sextract64(bvr, 0, 49) & ~3ULL; 6491 if (bas == 0) { 6492 return; 6493 } 6494 if (bas == 0xc) { 6495 addr += 2; 6496 } 6497 break; 6498 } 6499 case 2: /* unlinked context ID match */ 6500 case 8: /* unlinked VMID match (reserved if no EL2) */ 6501 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6502 qemu_log_mask(LOG_UNIMP, 6503 "arm: unlinked context breakpoint types not implemented\n"); 6504 return; 6505 case 9: /* linked VMID match (reserved if no EL2) */ 6506 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6507 case 3: /* linked context ID match */ 6508 default: 6509 /* We must generate no events for Linked context matches (unless 6510 * they are linked to by some other bp/wp, which is handled in 6511 * updates for the linking bp/wp). We choose to also generate no events 6512 * for reserved values. 6513 */ 6514 return; 6515 } 6516 6517 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6518 } 6519 6520 void hw_breakpoint_update_all(ARMCPU *cpu) 6521 { 6522 int i; 6523 CPUARMState *env = &cpu->env; 6524 6525 /* Completely clear out existing QEMU breakpoints and our array, to 6526 * avoid possible stale entries following migration load. 6527 */ 6528 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6529 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6530 6531 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6532 hw_breakpoint_update(cpu, i); 6533 } 6534 } 6535 6536 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6537 uint64_t value) 6538 { 6539 ARMCPU *cpu = env_archcpu(env); 6540 int i = ri->crm; 6541 6542 raw_write(env, ri, value); 6543 hw_breakpoint_update(cpu, i); 6544 } 6545 6546 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6547 uint64_t value) 6548 { 6549 ARMCPU *cpu = env_archcpu(env); 6550 int i = ri->crm; 6551 6552 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6553 * copy of BAS[0]. 6554 */ 6555 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6556 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6557 6558 raw_write(env, ri, value); 6559 hw_breakpoint_update(cpu, i); 6560 } 6561 6562 static void define_debug_regs(ARMCPU *cpu) 6563 { 6564 /* Define v7 and v8 architectural debug registers. 6565 * These are just dummy implementations for now. 6566 */ 6567 int i; 6568 int wrps, brps, ctx_cmps; 6569 6570 /* 6571 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6572 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6573 * the register must not exist for this cpu. 6574 */ 6575 if (cpu->isar.dbgdidr != 0) { 6576 ARMCPRegInfo dbgdidr = { 6577 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6578 .opc1 = 0, .opc2 = 0, 6579 .access = PL0_R, .accessfn = access_tda, 6580 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6581 }; 6582 define_one_arm_cp_reg(cpu, &dbgdidr); 6583 } 6584 6585 /* Note that all these register fields hold "number of Xs minus 1". */ 6586 brps = arm_num_brps(cpu); 6587 wrps = arm_num_wrps(cpu); 6588 ctx_cmps = arm_num_ctx_cmps(cpu); 6589 6590 assert(ctx_cmps <= brps); 6591 6592 define_arm_cp_regs(cpu, debug_cp_reginfo); 6593 6594 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6595 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6596 } 6597 6598 for (i = 0; i < brps; i++) { 6599 ARMCPRegInfo dbgregs[] = { 6600 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6601 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6602 .access = PL1_RW, .accessfn = access_tda, 6603 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6604 .writefn = dbgbvr_write, .raw_writefn = raw_write 6605 }, 6606 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6607 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6608 .access = PL1_RW, .accessfn = access_tda, 6609 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6610 .writefn = dbgbcr_write, .raw_writefn = raw_write 6611 }, 6612 REGINFO_SENTINEL 6613 }; 6614 define_arm_cp_regs(cpu, dbgregs); 6615 } 6616 6617 for (i = 0; i < wrps; i++) { 6618 ARMCPRegInfo dbgregs[] = { 6619 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6620 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6621 .access = PL1_RW, .accessfn = access_tda, 6622 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6623 .writefn = dbgwvr_write, .raw_writefn = raw_write 6624 }, 6625 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6626 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6627 .access = PL1_RW, .accessfn = access_tda, 6628 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6629 .writefn = dbgwcr_write, .raw_writefn = raw_write 6630 }, 6631 REGINFO_SENTINEL 6632 }; 6633 define_arm_cp_regs(cpu, dbgregs); 6634 } 6635 } 6636 6637 static void define_pmu_regs(ARMCPU *cpu) 6638 { 6639 /* 6640 * v7 performance monitor control register: same implementor 6641 * field as main ID register, and we implement four counters in 6642 * addition to the cycle count register. 6643 */ 6644 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6645 ARMCPRegInfo pmcr = { 6646 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6647 .access = PL0_RW, 6648 .type = ARM_CP_IO | ARM_CP_ALIAS, 6649 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6650 .accessfn = pmreg_access, .writefn = pmcr_write, 6651 .raw_writefn = raw_write, 6652 }; 6653 ARMCPRegInfo pmcr64 = { 6654 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6655 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6656 .access = PL0_RW, .accessfn = pmreg_access, 6657 .type = ARM_CP_IO, 6658 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6659 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6660 PMCRLC, 6661 .writefn = pmcr_write, .raw_writefn = raw_write, 6662 }; 6663 define_one_arm_cp_reg(cpu, &pmcr); 6664 define_one_arm_cp_reg(cpu, &pmcr64); 6665 for (i = 0; i < pmcrn; i++) { 6666 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6667 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6668 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6669 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6670 ARMCPRegInfo pmev_regs[] = { 6671 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6672 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6673 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6674 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6675 .accessfn = pmreg_access }, 6676 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6677 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6678 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6679 .type = ARM_CP_IO, 6680 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6681 .raw_readfn = pmevcntr_rawread, 6682 .raw_writefn = pmevcntr_rawwrite }, 6683 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6684 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6685 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6686 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6687 .accessfn = pmreg_access }, 6688 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6689 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6690 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6691 .type = ARM_CP_IO, 6692 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6693 .raw_writefn = pmevtyper_rawwrite }, 6694 REGINFO_SENTINEL 6695 }; 6696 define_arm_cp_regs(cpu, pmev_regs); 6697 g_free(pmevcntr_name); 6698 g_free(pmevcntr_el0_name); 6699 g_free(pmevtyper_name); 6700 g_free(pmevtyper_el0_name); 6701 } 6702 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6703 ARMCPRegInfo v81_pmu_regs[] = { 6704 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6705 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6706 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6707 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6708 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6709 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6710 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6711 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6712 REGINFO_SENTINEL 6713 }; 6714 define_arm_cp_regs(cpu, v81_pmu_regs); 6715 } 6716 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6717 static const ARMCPRegInfo v84_pmmir = { 6718 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6719 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6720 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6721 .resetvalue = 0 6722 }; 6723 define_one_arm_cp_reg(cpu, &v84_pmmir); 6724 } 6725 } 6726 6727 /* We don't know until after realize whether there's a GICv3 6728 * attached, and that is what registers the gicv3 sysregs. 6729 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6730 * at runtime. 6731 */ 6732 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6733 { 6734 ARMCPU *cpu = env_archcpu(env); 6735 uint64_t pfr1 = cpu->isar.id_pfr1; 6736 6737 if (env->gicv3state) { 6738 pfr1 |= 1 << 28; 6739 } 6740 return pfr1; 6741 } 6742 6743 #ifndef CONFIG_USER_ONLY 6744 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6745 { 6746 ARMCPU *cpu = env_archcpu(env); 6747 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6748 6749 if (env->gicv3state) { 6750 pfr0 |= 1 << 24; 6751 } 6752 return pfr0; 6753 } 6754 #endif 6755 6756 /* Shared logic between LORID and the rest of the LOR* registers. 6757 * Secure state exclusion has already been dealt with. 6758 */ 6759 static CPAccessResult access_lor_ns(CPUARMState *env, 6760 const ARMCPRegInfo *ri, bool isread) 6761 { 6762 int el = arm_current_el(env); 6763 6764 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6765 return CP_ACCESS_TRAP_EL2; 6766 } 6767 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6768 return CP_ACCESS_TRAP_EL3; 6769 } 6770 return CP_ACCESS_OK; 6771 } 6772 6773 static CPAccessResult access_lor_other(CPUARMState *env, 6774 const ARMCPRegInfo *ri, bool isread) 6775 { 6776 if (arm_is_secure_below_el3(env)) { 6777 /* Access denied in secure mode. */ 6778 return CP_ACCESS_TRAP; 6779 } 6780 return access_lor_ns(env, ri, isread); 6781 } 6782 6783 /* 6784 * A trivial implementation of ARMv8.1-LOR leaves all of these 6785 * registers fixed at 0, which indicates that there are zero 6786 * supported Limited Ordering regions. 6787 */ 6788 static const ARMCPRegInfo lor_reginfo[] = { 6789 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6790 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6791 .access = PL1_RW, .accessfn = access_lor_other, 6792 .type = ARM_CP_CONST, .resetvalue = 0 }, 6793 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6794 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6795 .access = PL1_RW, .accessfn = access_lor_other, 6796 .type = ARM_CP_CONST, .resetvalue = 0 }, 6797 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6798 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6799 .access = PL1_RW, .accessfn = access_lor_other, 6800 .type = ARM_CP_CONST, .resetvalue = 0 }, 6801 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6802 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6803 .access = PL1_RW, .accessfn = access_lor_other, 6804 .type = ARM_CP_CONST, .resetvalue = 0 }, 6805 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6806 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6807 .access = PL1_R, .accessfn = access_lor_ns, 6808 .type = ARM_CP_CONST, .resetvalue = 0 }, 6809 REGINFO_SENTINEL 6810 }; 6811 6812 #ifdef TARGET_AARCH64 6813 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6814 bool isread) 6815 { 6816 int el = arm_current_el(env); 6817 6818 if (el < 2 && 6819 arm_feature(env, ARM_FEATURE_EL2) && 6820 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6821 return CP_ACCESS_TRAP_EL2; 6822 } 6823 if (el < 3 && 6824 arm_feature(env, ARM_FEATURE_EL3) && 6825 !(env->cp15.scr_el3 & SCR_APK)) { 6826 return CP_ACCESS_TRAP_EL3; 6827 } 6828 return CP_ACCESS_OK; 6829 } 6830 6831 static const ARMCPRegInfo pauth_reginfo[] = { 6832 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6833 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6834 .access = PL1_RW, .accessfn = access_pauth, 6835 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6836 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6837 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6838 .access = PL1_RW, .accessfn = access_pauth, 6839 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6840 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6842 .access = PL1_RW, .accessfn = access_pauth, 6843 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6844 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6845 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6846 .access = PL1_RW, .accessfn = access_pauth, 6847 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6848 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6849 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6850 .access = PL1_RW, .accessfn = access_pauth, 6851 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6852 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6853 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6854 .access = PL1_RW, .accessfn = access_pauth, 6855 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6856 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6857 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6858 .access = PL1_RW, .accessfn = access_pauth, 6859 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6860 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6861 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6862 .access = PL1_RW, .accessfn = access_pauth, 6863 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6864 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6865 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6866 .access = PL1_RW, .accessfn = access_pauth, 6867 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6868 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6869 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6870 .access = PL1_RW, .accessfn = access_pauth, 6871 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6872 REGINFO_SENTINEL 6873 }; 6874 6875 static const ARMCPRegInfo tlbirange_reginfo[] = { 6876 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6878 .access = PL1_W, .type = ARM_CP_NO_RAW, 6879 .writefn = tlbi_aa64_rvae1is_write }, 6880 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6882 .access = PL1_W, .type = ARM_CP_NO_RAW, 6883 .writefn = tlbi_aa64_rvae1is_write }, 6884 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6886 .access = PL1_W, .type = ARM_CP_NO_RAW, 6887 .writefn = tlbi_aa64_rvae1is_write }, 6888 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6890 .access = PL1_W, .type = ARM_CP_NO_RAW, 6891 .writefn = tlbi_aa64_rvae1is_write }, 6892 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6893 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6894 .access = PL1_W, .type = ARM_CP_NO_RAW, 6895 .writefn = tlbi_aa64_rvae1is_write }, 6896 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6898 .access = PL1_W, .type = ARM_CP_NO_RAW, 6899 .writefn = tlbi_aa64_rvae1is_write }, 6900 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6902 .access = PL1_W, .type = ARM_CP_NO_RAW, 6903 .writefn = tlbi_aa64_rvae1is_write }, 6904 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6906 .access = PL1_W, .type = ARM_CP_NO_RAW, 6907 .writefn = tlbi_aa64_rvae1is_write }, 6908 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6909 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6910 .access = PL1_W, .type = ARM_CP_NO_RAW, 6911 .writefn = tlbi_aa64_rvae1_write }, 6912 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6914 .access = PL1_W, .type = ARM_CP_NO_RAW, 6915 .writefn = tlbi_aa64_rvae1_write }, 6916 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6918 .access = PL1_W, .type = ARM_CP_NO_RAW, 6919 .writefn = tlbi_aa64_rvae1_write }, 6920 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6921 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6922 .access = PL1_W, .type = ARM_CP_NO_RAW, 6923 .writefn = tlbi_aa64_rvae1_write }, 6924 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6926 .access = PL2_W, .type = ARM_CP_NOP }, 6927 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6929 .access = PL2_W, .type = ARM_CP_NOP }, 6930 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6932 .access = PL2_W, .type = ARM_CP_NO_RAW, 6933 .writefn = tlbi_aa64_rvae2is_write }, 6934 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6936 .access = PL2_W, .type = ARM_CP_NO_RAW, 6937 .writefn = tlbi_aa64_rvae2is_write }, 6938 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6940 .access = PL2_W, .type = ARM_CP_NOP }, 6941 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6942 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6943 .access = PL2_W, .type = ARM_CP_NOP }, 6944 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6946 .access = PL2_W, .type = ARM_CP_NO_RAW, 6947 .writefn = tlbi_aa64_rvae2is_write }, 6948 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6950 .access = PL2_W, .type = ARM_CP_NO_RAW, 6951 .writefn = tlbi_aa64_rvae2is_write }, 6952 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6953 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6954 .access = PL2_W, .type = ARM_CP_NO_RAW, 6955 .writefn = tlbi_aa64_rvae2_write }, 6956 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6957 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6958 .access = PL2_W, .type = ARM_CP_NO_RAW, 6959 .writefn = tlbi_aa64_rvae2_write }, 6960 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6961 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6962 .access = PL3_W, .type = ARM_CP_NO_RAW, 6963 .writefn = tlbi_aa64_rvae3is_write }, 6964 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6965 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6966 .access = PL3_W, .type = ARM_CP_NO_RAW, 6967 .writefn = tlbi_aa64_rvae3is_write }, 6968 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6969 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6970 .access = PL3_W, .type = ARM_CP_NO_RAW, 6971 .writefn = tlbi_aa64_rvae3is_write }, 6972 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6973 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6974 .access = PL3_W, .type = ARM_CP_NO_RAW, 6975 .writefn = tlbi_aa64_rvae3is_write }, 6976 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6977 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6978 .access = PL3_W, .type = ARM_CP_NO_RAW, 6979 .writefn = tlbi_aa64_rvae3_write }, 6980 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6981 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6982 .access = PL3_W, .type = ARM_CP_NO_RAW, 6983 .writefn = tlbi_aa64_rvae3_write }, 6984 REGINFO_SENTINEL 6985 }; 6986 6987 static const ARMCPRegInfo tlbios_reginfo[] = { 6988 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6989 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6990 .access = PL1_W, .type = ARM_CP_NO_RAW, 6991 .writefn = tlbi_aa64_vmalle1is_write }, 6992 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6993 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6994 .access = PL1_W, .type = ARM_CP_NO_RAW, 6995 .writefn = tlbi_aa64_vae1is_write }, 6996 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6997 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6998 .access = PL1_W, .type = ARM_CP_NO_RAW, 6999 .writefn = tlbi_aa64_vmalle1is_write }, 7000 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7001 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7002 .access = PL1_W, .type = ARM_CP_NO_RAW, 7003 .writefn = tlbi_aa64_vae1is_write }, 7004 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7005 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7006 .access = PL1_W, .type = ARM_CP_NO_RAW, 7007 .writefn = tlbi_aa64_vae1is_write }, 7008 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7009 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7010 .access = PL1_W, .type = ARM_CP_NO_RAW, 7011 .writefn = tlbi_aa64_vae1is_write }, 7012 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7013 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7014 .access = PL2_W, .type = ARM_CP_NO_RAW, 7015 .writefn = tlbi_aa64_alle2is_write }, 7016 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7017 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7018 .access = PL2_W, .type = ARM_CP_NO_RAW, 7019 .writefn = tlbi_aa64_vae2is_write }, 7020 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7021 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7022 .access = PL2_W, .type = ARM_CP_NO_RAW, 7023 .writefn = tlbi_aa64_alle1is_write }, 7024 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7025 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7026 .access = PL2_W, .type = ARM_CP_NO_RAW, 7027 .writefn = tlbi_aa64_vae2is_write }, 7028 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7030 .access = PL2_W, .type = ARM_CP_NO_RAW, 7031 .writefn = tlbi_aa64_alle1is_write }, 7032 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7034 .access = PL2_W, .type = ARM_CP_NOP }, 7035 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7036 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7037 .access = PL2_W, .type = ARM_CP_NOP }, 7038 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7039 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7040 .access = PL2_W, .type = ARM_CP_NOP }, 7041 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7042 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7043 .access = PL2_W, .type = ARM_CP_NOP }, 7044 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7045 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7046 .access = PL3_W, .type = ARM_CP_NO_RAW, 7047 .writefn = tlbi_aa64_alle3is_write }, 7048 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7049 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7050 .access = PL3_W, .type = ARM_CP_NO_RAW, 7051 .writefn = tlbi_aa64_vae3is_write }, 7052 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7053 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7054 .access = PL3_W, .type = ARM_CP_NO_RAW, 7055 .writefn = tlbi_aa64_vae3is_write }, 7056 REGINFO_SENTINEL 7057 }; 7058 7059 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7060 { 7061 Error *err = NULL; 7062 uint64_t ret; 7063 7064 /* Success sets NZCV = 0000. */ 7065 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7066 7067 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7068 /* 7069 * ??? Failed, for unknown reasons in the crypto subsystem. 7070 * The best we can do is log the reason and return the 7071 * timed-out indication to the guest. There is no reason 7072 * we know to expect this failure to be transitory, so the 7073 * guest may well hang retrying the operation. 7074 */ 7075 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7076 ri->name, error_get_pretty(err)); 7077 error_free(err); 7078 7079 env->ZF = 0; /* NZCF = 0100 */ 7080 return 0; 7081 } 7082 return ret; 7083 } 7084 7085 /* We do not support re-seeding, so the two registers operate the same. */ 7086 static const ARMCPRegInfo rndr_reginfo[] = { 7087 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7088 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7089 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7090 .access = PL0_R, .readfn = rndr_readfn }, 7091 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7092 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7093 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7094 .access = PL0_R, .readfn = rndr_readfn }, 7095 REGINFO_SENTINEL 7096 }; 7097 7098 #ifndef CONFIG_USER_ONLY 7099 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7100 uint64_t value) 7101 { 7102 ARMCPU *cpu = env_archcpu(env); 7103 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7104 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7105 uint64_t vaddr_in = (uint64_t) value; 7106 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7107 void *haddr; 7108 int mem_idx = cpu_mmu_index(env, false); 7109 7110 /* This won't be crossing page boundaries */ 7111 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7112 if (haddr) { 7113 7114 ram_addr_t offset; 7115 MemoryRegion *mr; 7116 7117 /* RCU lock is already being held */ 7118 mr = memory_region_from_host(haddr, &offset); 7119 7120 if (mr) { 7121 memory_region_writeback(mr, offset, dline_size); 7122 } 7123 } 7124 } 7125 7126 static const ARMCPRegInfo dcpop_reg[] = { 7127 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7128 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7129 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7130 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7131 REGINFO_SENTINEL 7132 }; 7133 7134 static const ARMCPRegInfo dcpodp_reg[] = { 7135 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7136 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7137 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7138 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7139 REGINFO_SENTINEL 7140 }; 7141 #endif /*CONFIG_USER_ONLY*/ 7142 7143 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7144 bool isread) 7145 { 7146 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7147 return CP_ACCESS_TRAP_EL2; 7148 } 7149 7150 return CP_ACCESS_OK; 7151 } 7152 7153 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7154 bool isread) 7155 { 7156 int el = arm_current_el(env); 7157 7158 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7159 uint64_t hcr = arm_hcr_el2_eff(env); 7160 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7161 return CP_ACCESS_TRAP_EL2; 7162 } 7163 } 7164 if (el < 3 && 7165 arm_feature(env, ARM_FEATURE_EL3) && 7166 !(env->cp15.scr_el3 & SCR_ATA)) { 7167 return CP_ACCESS_TRAP_EL3; 7168 } 7169 return CP_ACCESS_OK; 7170 } 7171 7172 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7173 { 7174 return env->pstate & PSTATE_TCO; 7175 } 7176 7177 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7178 { 7179 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7180 } 7181 7182 static const ARMCPRegInfo mte_reginfo[] = { 7183 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7184 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7185 .access = PL1_RW, .accessfn = access_mte, 7186 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7187 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7188 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7189 .access = PL1_RW, .accessfn = access_mte, 7190 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7191 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7192 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7193 .access = PL2_RW, .accessfn = access_mte, 7194 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7195 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7196 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7197 .access = PL3_RW, 7198 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7199 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7200 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7201 .access = PL1_RW, .accessfn = access_mte, 7202 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7203 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7204 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7205 .access = PL1_RW, .accessfn = access_mte, 7206 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7207 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7208 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7209 .access = PL1_R, .accessfn = access_aa64_tid5, 7210 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7211 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7212 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7213 .type = ARM_CP_NO_RAW, 7214 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7215 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7216 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7217 .type = ARM_CP_NOP, .access = PL1_W, 7218 .accessfn = aa64_cacheop_poc_access }, 7219 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7220 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7221 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7222 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7223 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7224 .type = ARM_CP_NOP, .access = PL1_W, 7225 .accessfn = aa64_cacheop_poc_access }, 7226 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7227 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7228 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7229 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7230 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7231 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7232 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7233 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7234 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7235 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7236 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7237 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7238 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7239 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7240 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7241 REGINFO_SENTINEL 7242 }; 7243 7244 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7245 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7246 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7247 .type = ARM_CP_CONST, .access = PL0_RW, }, 7248 REGINFO_SENTINEL 7249 }; 7250 7251 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7252 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7253 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7254 .type = ARM_CP_NOP, .access = PL0_W, 7255 .accessfn = aa64_cacheop_poc_access }, 7256 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7257 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7258 .type = ARM_CP_NOP, .access = PL0_W, 7259 .accessfn = aa64_cacheop_poc_access }, 7260 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7261 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7262 .type = ARM_CP_NOP, .access = PL0_W, 7263 .accessfn = aa64_cacheop_poc_access }, 7264 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7265 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7266 .type = ARM_CP_NOP, .access = PL0_W, 7267 .accessfn = aa64_cacheop_poc_access }, 7268 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7269 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7270 .type = ARM_CP_NOP, .access = PL0_W, 7271 .accessfn = aa64_cacheop_poc_access }, 7272 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7273 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7274 .type = ARM_CP_NOP, .access = PL0_W, 7275 .accessfn = aa64_cacheop_poc_access }, 7276 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7277 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7278 .type = ARM_CP_NOP, .access = PL0_W, 7279 .accessfn = aa64_cacheop_poc_access }, 7280 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7281 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7282 .type = ARM_CP_NOP, .access = PL0_W, 7283 .accessfn = aa64_cacheop_poc_access }, 7284 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7285 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7286 .access = PL0_W, .type = ARM_CP_DC_GVA, 7287 #ifndef CONFIG_USER_ONLY 7288 /* Avoid overhead of an access check that always passes in user-mode */ 7289 .accessfn = aa64_zva_access, 7290 #endif 7291 }, 7292 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7293 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7294 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7295 #ifndef CONFIG_USER_ONLY 7296 /* Avoid overhead of an access check that always passes in user-mode */ 7297 .accessfn = aa64_zva_access, 7298 #endif 7299 }, 7300 REGINFO_SENTINEL 7301 }; 7302 7303 #endif 7304 7305 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7306 bool isread) 7307 { 7308 int el = arm_current_el(env); 7309 7310 if (el == 0) { 7311 uint64_t sctlr = arm_sctlr(env, el); 7312 if (!(sctlr & SCTLR_EnRCTX)) { 7313 return CP_ACCESS_TRAP; 7314 } 7315 } else if (el == 1) { 7316 uint64_t hcr = arm_hcr_el2_eff(env); 7317 if (hcr & HCR_NV) { 7318 return CP_ACCESS_TRAP_EL2; 7319 } 7320 } 7321 return CP_ACCESS_OK; 7322 } 7323 7324 static const ARMCPRegInfo predinv_reginfo[] = { 7325 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7326 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7327 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7328 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7329 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7330 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7331 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7332 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7333 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7334 /* 7335 * Note the AArch32 opcodes have a different OPC1. 7336 */ 7337 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7338 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7339 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7340 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7341 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7342 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7343 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7344 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7345 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7346 REGINFO_SENTINEL 7347 }; 7348 7349 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7350 { 7351 /* Read the high 32 bits of the current CCSIDR */ 7352 return extract64(ccsidr_read(env, ri), 32, 32); 7353 } 7354 7355 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7356 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7357 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7358 .access = PL1_R, 7359 .accessfn = access_aa64_tid2, 7360 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7361 REGINFO_SENTINEL 7362 }; 7363 7364 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7365 bool isread) 7366 { 7367 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7368 return CP_ACCESS_TRAP_EL2; 7369 } 7370 7371 return CP_ACCESS_OK; 7372 } 7373 7374 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7375 bool isread) 7376 { 7377 if (arm_feature(env, ARM_FEATURE_V8)) { 7378 return access_aa64_tid3(env, ri, isread); 7379 } 7380 7381 return CP_ACCESS_OK; 7382 } 7383 7384 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7385 bool isread) 7386 { 7387 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7388 return CP_ACCESS_TRAP_EL2; 7389 } 7390 7391 return CP_ACCESS_OK; 7392 } 7393 7394 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7395 const ARMCPRegInfo *ri, bool isread) 7396 { 7397 /* 7398 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7399 * in v7A, not in v8A. 7400 */ 7401 if (!arm_feature(env, ARM_FEATURE_V8) && 7402 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7403 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7404 return CP_ACCESS_TRAP_EL2; 7405 } 7406 return CP_ACCESS_OK; 7407 } 7408 7409 static const ARMCPRegInfo jazelle_regs[] = { 7410 { .name = "JIDR", 7411 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7412 .access = PL1_R, .accessfn = access_jazelle, 7413 .type = ARM_CP_CONST, .resetvalue = 0 }, 7414 { .name = "JOSCR", 7415 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7416 .accessfn = access_joscr_jmcr, 7417 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7418 { .name = "JMCR", 7419 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7420 .accessfn = access_joscr_jmcr, 7421 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7422 REGINFO_SENTINEL 7423 }; 7424 7425 static const ARMCPRegInfo vhe_reginfo[] = { 7426 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7427 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7428 .access = PL2_RW, 7429 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7430 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7432 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7433 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7434 #ifndef CONFIG_USER_ONLY 7435 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7437 .fieldoffset = 7438 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7439 .type = ARM_CP_IO, .access = PL2_RW, 7440 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7441 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7442 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7443 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7444 .resetfn = gt_hv_timer_reset, 7445 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7446 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7447 .type = ARM_CP_IO, 7448 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7449 .access = PL2_RW, 7450 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7451 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7452 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7453 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7454 .type = ARM_CP_IO | ARM_CP_ALIAS, 7455 .access = PL2_RW, .accessfn = e2h_access, 7456 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7457 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7458 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7459 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7460 .type = ARM_CP_IO | ARM_CP_ALIAS, 7461 .access = PL2_RW, .accessfn = e2h_access, 7462 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7463 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7464 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7465 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7466 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7467 .access = PL2_RW, .accessfn = e2h_access, 7468 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7469 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7470 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7471 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7472 .access = PL2_RW, .accessfn = e2h_access, 7473 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7474 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7475 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7476 .type = ARM_CP_IO | ARM_CP_ALIAS, 7477 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7478 .access = PL2_RW, .accessfn = e2h_access, 7479 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7480 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7481 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7482 .type = ARM_CP_IO | ARM_CP_ALIAS, 7483 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7484 .access = PL2_RW, .accessfn = e2h_access, 7485 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7486 #endif 7487 REGINFO_SENTINEL 7488 }; 7489 7490 #ifndef CONFIG_USER_ONLY 7491 static const ARMCPRegInfo ats1e1_reginfo[] = { 7492 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7494 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7495 .writefn = ats_write64 }, 7496 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7497 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7498 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7499 .writefn = ats_write64 }, 7500 REGINFO_SENTINEL 7501 }; 7502 7503 static const ARMCPRegInfo ats1cp_reginfo[] = { 7504 { .name = "ATS1CPRP", 7505 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7506 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7507 .writefn = ats_write }, 7508 { .name = "ATS1CPWP", 7509 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7510 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7511 .writefn = ats_write }, 7512 REGINFO_SENTINEL 7513 }; 7514 #endif 7515 7516 /* 7517 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7518 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7519 * is non-zero, which is never for ARMv7, optionally in ARMv8 7520 * and mandatorily for ARMv8.2 and up. 7521 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7522 * implementation is RAZ/WI we can ignore this detail, as we 7523 * do for ACTLR. 7524 */ 7525 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7526 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7527 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7528 .access = PL1_RW, .accessfn = access_tacr, 7529 .type = ARM_CP_CONST, .resetvalue = 0 }, 7530 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7531 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7532 .access = PL2_RW, .type = ARM_CP_CONST, 7533 .resetvalue = 0 }, 7534 REGINFO_SENTINEL 7535 }; 7536 7537 void register_cp_regs_for_features(ARMCPU *cpu) 7538 { 7539 /* Register all the coprocessor registers based on feature bits */ 7540 CPUARMState *env = &cpu->env; 7541 if (arm_feature(env, ARM_FEATURE_M)) { 7542 /* M profile has no coprocessor registers */ 7543 return; 7544 } 7545 7546 define_arm_cp_regs(cpu, cp_reginfo); 7547 if (!arm_feature(env, ARM_FEATURE_V8)) { 7548 /* Must go early as it is full of wildcards that may be 7549 * overridden by later definitions. 7550 */ 7551 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7552 } 7553 7554 if (arm_feature(env, ARM_FEATURE_V6)) { 7555 /* The ID registers all have impdef reset values */ 7556 ARMCPRegInfo v6_idregs[] = { 7557 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7559 .access = PL1_R, .type = ARM_CP_CONST, 7560 .accessfn = access_aa32_tid3, 7561 .resetvalue = cpu->isar.id_pfr0 }, 7562 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7563 * the value of the GIC field until after we define these regs. 7564 */ 7565 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7567 .access = PL1_R, .type = ARM_CP_NO_RAW, 7568 .accessfn = access_aa32_tid3, 7569 .readfn = id_pfr1_read, 7570 .writefn = arm_cp_write_ignore }, 7571 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7573 .access = PL1_R, .type = ARM_CP_CONST, 7574 .accessfn = access_aa32_tid3, 7575 .resetvalue = cpu->isar.id_dfr0 }, 7576 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7577 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7578 .access = PL1_R, .type = ARM_CP_CONST, 7579 .accessfn = access_aa32_tid3, 7580 .resetvalue = cpu->id_afr0 }, 7581 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7582 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7583 .access = PL1_R, .type = ARM_CP_CONST, 7584 .accessfn = access_aa32_tid3, 7585 .resetvalue = cpu->isar.id_mmfr0 }, 7586 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7588 .access = PL1_R, .type = ARM_CP_CONST, 7589 .accessfn = access_aa32_tid3, 7590 .resetvalue = cpu->isar.id_mmfr1 }, 7591 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7593 .access = PL1_R, .type = ARM_CP_CONST, 7594 .accessfn = access_aa32_tid3, 7595 .resetvalue = cpu->isar.id_mmfr2 }, 7596 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7598 .access = PL1_R, .type = ARM_CP_CONST, 7599 .accessfn = access_aa32_tid3, 7600 .resetvalue = cpu->isar.id_mmfr3 }, 7601 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7602 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7603 .access = PL1_R, .type = ARM_CP_CONST, 7604 .accessfn = access_aa32_tid3, 7605 .resetvalue = cpu->isar.id_isar0 }, 7606 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7608 .access = PL1_R, .type = ARM_CP_CONST, 7609 .accessfn = access_aa32_tid3, 7610 .resetvalue = cpu->isar.id_isar1 }, 7611 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7613 .access = PL1_R, .type = ARM_CP_CONST, 7614 .accessfn = access_aa32_tid3, 7615 .resetvalue = cpu->isar.id_isar2 }, 7616 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7618 .access = PL1_R, .type = ARM_CP_CONST, 7619 .accessfn = access_aa32_tid3, 7620 .resetvalue = cpu->isar.id_isar3 }, 7621 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7623 .access = PL1_R, .type = ARM_CP_CONST, 7624 .accessfn = access_aa32_tid3, 7625 .resetvalue = cpu->isar.id_isar4 }, 7626 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7628 .access = PL1_R, .type = ARM_CP_CONST, 7629 .accessfn = access_aa32_tid3, 7630 .resetvalue = cpu->isar.id_isar5 }, 7631 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7633 .access = PL1_R, .type = ARM_CP_CONST, 7634 .accessfn = access_aa32_tid3, 7635 .resetvalue = cpu->isar.id_mmfr4 }, 7636 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7638 .access = PL1_R, .type = ARM_CP_CONST, 7639 .accessfn = access_aa32_tid3, 7640 .resetvalue = cpu->isar.id_isar6 }, 7641 REGINFO_SENTINEL 7642 }; 7643 define_arm_cp_regs(cpu, v6_idregs); 7644 define_arm_cp_regs(cpu, v6_cp_reginfo); 7645 } else { 7646 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7647 } 7648 if (arm_feature(env, ARM_FEATURE_V6K)) { 7649 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7650 } 7651 if (arm_feature(env, ARM_FEATURE_V7MP) && 7652 !arm_feature(env, ARM_FEATURE_PMSA)) { 7653 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7654 } 7655 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7656 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7657 } 7658 if (arm_feature(env, ARM_FEATURE_V7)) { 7659 ARMCPRegInfo clidr = { 7660 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7661 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7662 .access = PL1_R, .type = ARM_CP_CONST, 7663 .accessfn = access_aa64_tid2, 7664 .resetvalue = cpu->clidr 7665 }; 7666 define_one_arm_cp_reg(cpu, &clidr); 7667 define_arm_cp_regs(cpu, v7_cp_reginfo); 7668 define_debug_regs(cpu); 7669 define_pmu_regs(cpu); 7670 } else { 7671 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7672 } 7673 if (arm_feature(env, ARM_FEATURE_V8)) { 7674 /* AArch64 ID registers, which all have impdef reset values. 7675 * Note that within the ID register ranges the unused slots 7676 * must all RAZ, not UNDEF; future architecture versions may 7677 * define new registers here. 7678 */ 7679 ARMCPRegInfo v8_idregs[] = { 7680 /* 7681 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7682 * emulation because we don't know the right value for the 7683 * GIC field until after we define these regs. 7684 */ 7685 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7687 .access = PL1_R, 7688 #ifdef CONFIG_USER_ONLY 7689 .type = ARM_CP_CONST, 7690 .resetvalue = cpu->isar.id_aa64pfr0 7691 #else 7692 .type = ARM_CP_NO_RAW, 7693 .accessfn = access_aa64_tid3, 7694 .readfn = id_aa64pfr0_read, 7695 .writefn = arm_cp_write_ignore 7696 #endif 7697 }, 7698 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7700 .access = PL1_R, .type = ARM_CP_CONST, 7701 .accessfn = access_aa64_tid3, 7702 .resetvalue = cpu->isar.id_aa64pfr1}, 7703 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7705 .access = PL1_R, .type = ARM_CP_CONST, 7706 .accessfn = access_aa64_tid3, 7707 .resetvalue = 0 }, 7708 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7709 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7710 .access = PL1_R, .type = ARM_CP_CONST, 7711 .accessfn = access_aa64_tid3, 7712 .resetvalue = 0 }, 7713 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7715 .access = PL1_R, .type = ARM_CP_CONST, 7716 .accessfn = access_aa64_tid3, 7717 .resetvalue = cpu->isar.id_aa64zfr0 }, 7718 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7720 .access = PL1_R, .type = ARM_CP_CONST, 7721 .accessfn = access_aa64_tid3, 7722 .resetvalue = 0 }, 7723 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7724 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7725 .access = PL1_R, .type = ARM_CP_CONST, 7726 .accessfn = access_aa64_tid3, 7727 .resetvalue = 0 }, 7728 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7729 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7730 .access = PL1_R, .type = ARM_CP_CONST, 7731 .accessfn = access_aa64_tid3, 7732 .resetvalue = 0 }, 7733 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7735 .access = PL1_R, .type = ARM_CP_CONST, 7736 .accessfn = access_aa64_tid3, 7737 .resetvalue = cpu->isar.id_aa64dfr0 }, 7738 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7740 .access = PL1_R, .type = ARM_CP_CONST, 7741 .accessfn = access_aa64_tid3, 7742 .resetvalue = cpu->isar.id_aa64dfr1 }, 7743 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7745 .access = PL1_R, .type = ARM_CP_CONST, 7746 .accessfn = access_aa64_tid3, 7747 .resetvalue = 0 }, 7748 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7749 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7750 .access = PL1_R, .type = ARM_CP_CONST, 7751 .accessfn = access_aa64_tid3, 7752 .resetvalue = 0 }, 7753 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7755 .access = PL1_R, .type = ARM_CP_CONST, 7756 .accessfn = access_aa64_tid3, 7757 .resetvalue = cpu->id_aa64afr0 }, 7758 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7760 .access = PL1_R, .type = ARM_CP_CONST, 7761 .accessfn = access_aa64_tid3, 7762 .resetvalue = cpu->id_aa64afr1 }, 7763 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7765 .access = PL1_R, .type = ARM_CP_CONST, 7766 .accessfn = access_aa64_tid3, 7767 .resetvalue = 0 }, 7768 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7770 .access = PL1_R, .type = ARM_CP_CONST, 7771 .accessfn = access_aa64_tid3, 7772 .resetvalue = 0 }, 7773 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7775 .access = PL1_R, .type = ARM_CP_CONST, 7776 .accessfn = access_aa64_tid3, 7777 .resetvalue = cpu->isar.id_aa64isar0 }, 7778 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7780 .access = PL1_R, .type = ARM_CP_CONST, 7781 .accessfn = access_aa64_tid3, 7782 .resetvalue = cpu->isar.id_aa64isar1 }, 7783 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7785 .access = PL1_R, .type = ARM_CP_CONST, 7786 .accessfn = access_aa64_tid3, 7787 .resetvalue = 0 }, 7788 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7790 .access = PL1_R, .type = ARM_CP_CONST, 7791 .accessfn = access_aa64_tid3, 7792 .resetvalue = 0 }, 7793 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7795 .access = PL1_R, .type = ARM_CP_CONST, 7796 .accessfn = access_aa64_tid3, 7797 .resetvalue = 0 }, 7798 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7800 .access = PL1_R, .type = ARM_CP_CONST, 7801 .accessfn = access_aa64_tid3, 7802 .resetvalue = 0 }, 7803 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7805 .access = PL1_R, .type = ARM_CP_CONST, 7806 .accessfn = access_aa64_tid3, 7807 .resetvalue = 0 }, 7808 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7810 .access = PL1_R, .type = ARM_CP_CONST, 7811 .accessfn = access_aa64_tid3, 7812 .resetvalue = 0 }, 7813 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7815 .access = PL1_R, .type = ARM_CP_CONST, 7816 .accessfn = access_aa64_tid3, 7817 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7818 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7820 .access = PL1_R, .type = ARM_CP_CONST, 7821 .accessfn = access_aa64_tid3, 7822 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7823 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7825 .access = PL1_R, .type = ARM_CP_CONST, 7826 .accessfn = access_aa64_tid3, 7827 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7828 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7830 .access = PL1_R, .type = ARM_CP_CONST, 7831 .accessfn = access_aa64_tid3, 7832 .resetvalue = 0 }, 7833 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7834 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7835 .access = PL1_R, .type = ARM_CP_CONST, 7836 .accessfn = access_aa64_tid3, 7837 .resetvalue = 0 }, 7838 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7840 .access = PL1_R, .type = ARM_CP_CONST, 7841 .accessfn = access_aa64_tid3, 7842 .resetvalue = 0 }, 7843 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7845 .access = PL1_R, .type = ARM_CP_CONST, 7846 .accessfn = access_aa64_tid3, 7847 .resetvalue = 0 }, 7848 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7849 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7850 .access = PL1_R, .type = ARM_CP_CONST, 7851 .accessfn = access_aa64_tid3, 7852 .resetvalue = 0 }, 7853 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7854 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7855 .access = PL1_R, .type = ARM_CP_CONST, 7856 .accessfn = access_aa64_tid3, 7857 .resetvalue = cpu->isar.mvfr0 }, 7858 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7859 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7860 .access = PL1_R, .type = ARM_CP_CONST, 7861 .accessfn = access_aa64_tid3, 7862 .resetvalue = cpu->isar.mvfr1 }, 7863 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7865 .access = PL1_R, .type = ARM_CP_CONST, 7866 .accessfn = access_aa64_tid3, 7867 .resetvalue = cpu->isar.mvfr2 }, 7868 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7869 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7870 .access = PL1_R, .type = ARM_CP_CONST, 7871 .accessfn = access_aa64_tid3, 7872 .resetvalue = 0 }, 7873 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7874 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7875 .access = PL1_R, .type = ARM_CP_CONST, 7876 .accessfn = access_aa64_tid3, 7877 .resetvalue = cpu->isar.id_pfr2 }, 7878 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7879 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7880 .access = PL1_R, .type = ARM_CP_CONST, 7881 .accessfn = access_aa64_tid3, 7882 .resetvalue = 0 }, 7883 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7885 .access = PL1_R, .type = ARM_CP_CONST, 7886 .accessfn = access_aa64_tid3, 7887 .resetvalue = 0 }, 7888 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7890 .access = PL1_R, .type = ARM_CP_CONST, 7891 .accessfn = access_aa64_tid3, 7892 .resetvalue = 0 }, 7893 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7894 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7895 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7896 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7897 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7898 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7899 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7900 .resetvalue = cpu->pmceid0 }, 7901 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7902 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7903 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7904 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7905 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7906 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7907 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7908 .resetvalue = cpu->pmceid1 }, 7909 REGINFO_SENTINEL 7910 }; 7911 #ifdef CONFIG_USER_ONLY 7912 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7913 { .name = "ID_AA64PFR0_EL1", 7914 .exported_bits = 0x000f000f00ff0000, 7915 .fixed_bits = 0x0000000000000011 }, 7916 { .name = "ID_AA64PFR1_EL1", 7917 .exported_bits = 0x00000000000000f0 }, 7918 { .name = "ID_AA64PFR*_EL1_RESERVED", 7919 .is_glob = true }, 7920 { .name = "ID_AA64ZFR0_EL1" }, 7921 { .name = "ID_AA64MMFR0_EL1", 7922 .fixed_bits = 0x00000000ff000000 }, 7923 { .name = "ID_AA64MMFR1_EL1" }, 7924 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7925 .is_glob = true }, 7926 { .name = "ID_AA64DFR0_EL1", 7927 .fixed_bits = 0x0000000000000006 }, 7928 { .name = "ID_AA64DFR1_EL1" }, 7929 { .name = "ID_AA64DFR*_EL1_RESERVED", 7930 .is_glob = true }, 7931 { .name = "ID_AA64AFR*", 7932 .is_glob = true }, 7933 { .name = "ID_AA64ISAR0_EL1", 7934 .exported_bits = 0x00fffffff0fffff0 }, 7935 { .name = "ID_AA64ISAR1_EL1", 7936 .exported_bits = 0x000000f0ffffffff }, 7937 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7938 .is_glob = true }, 7939 REGUSERINFO_SENTINEL 7940 }; 7941 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7942 #endif 7943 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7944 if (!arm_feature(env, ARM_FEATURE_EL3) && 7945 !arm_feature(env, ARM_FEATURE_EL2)) { 7946 ARMCPRegInfo rvbar = { 7947 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7948 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7949 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7950 }; 7951 define_one_arm_cp_reg(cpu, &rvbar); 7952 } 7953 define_arm_cp_regs(cpu, v8_idregs); 7954 define_arm_cp_regs(cpu, v8_cp_reginfo); 7955 } 7956 if (arm_feature(env, ARM_FEATURE_EL2)) { 7957 uint64_t vmpidr_def = mpidr_read_val(env); 7958 ARMCPRegInfo vpidr_regs[] = { 7959 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7960 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7961 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7962 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7963 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7964 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7965 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7966 .access = PL2_RW, .resetvalue = cpu->midr, 7967 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7968 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7969 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7970 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7971 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7972 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7973 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7974 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7975 .access = PL2_RW, 7976 .resetvalue = vmpidr_def, 7977 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7978 REGINFO_SENTINEL 7979 }; 7980 define_arm_cp_regs(cpu, vpidr_regs); 7981 define_arm_cp_regs(cpu, el2_cp_reginfo); 7982 if (arm_feature(env, ARM_FEATURE_V8)) { 7983 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7984 } 7985 if (cpu_isar_feature(aa64_sel2, cpu)) { 7986 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7987 } 7988 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7989 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7990 ARMCPRegInfo rvbar = { 7991 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7992 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7993 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7994 }; 7995 define_one_arm_cp_reg(cpu, &rvbar); 7996 } 7997 } else { 7998 /* If EL2 is missing but higher ELs are enabled, we need to 7999 * register the no_el2 reginfos. 8000 */ 8001 if (arm_feature(env, ARM_FEATURE_EL3)) { 8002 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8003 * of MIDR_EL1 and MPIDR_EL1. 8004 */ 8005 ARMCPRegInfo vpidr_regs[] = { 8006 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8007 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8008 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8009 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8010 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8011 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8012 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8013 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8014 .type = ARM_CP_NO_RAW, 8015 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8016 REGINFO_SENTINEL 8017 }; 8018 define_arm_cp_regs(cpu, vpidr_regs); 8019 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8020 if (arm_feature(env, ARM_FEATURE_V8)) { 8021 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8022 } 8023 } 8024 } 8025 if (arm_feature(env, ARM_FEATURE_EL3)) { 8026 define_arm_cp_regs(cpu, el3_cp_reginfo); 8027 ARMCPRegInfo el3_regs[] = { 8028 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8029 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8030 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 8031 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8032 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8033 .access = PL3_RW, 8034 .raw_writefn = raw_write, .writefn = sctlr_write, 8035 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8036 .resetvalue = cpu->reset_sctlr }, 8037 REGINFO_SENTINEL 8038 }; 8039 8040 define_arm_cp_regs(cpu, el3_regs); 8041 } 8042 /* The behaviour of NSACR is sufficiently various that we don't 8043 * try to describe it in a single reginfo: 8044 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8045 * reads as constant 0xc00 from NS EL1 and NS EL2 8046 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8047 * if v7 without EL3, register doesn't exist 8048 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8049 */ 8050 if (arm_feature(env, ARM_FEATURE_EL3)) { 8051 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8052 ARMCPRegInfo nsacr = { 8053 .name = "NSACR", .type = ARM_CP_CONST, 8054 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8055 .access = PL1_RW, .accessfn = nsacr_access, 8056 .resetvalue = 0xc00 8057 }; 8058 define_one_arm_cp_reg(cpu, &nsacr); 8059 } else { 8060 ARMCPRegInfo nsacr = { 8061 .name = "NSACR", 8062 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8063 .access = PL3_RW | PL1_R, 8064 .resetvalue = 0, 8065 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8066 }; 8067 define_one_arm_cp_reg(cpu, &nsacr); 8068 } 8069 } else { 8070 if (arm_feature(env, ARM_FEATURE_V8)) { 8071 ARMCPRegInfo nsacr = { 8072 .name = "NSACR", .type = ARM_CP_CONST, 8073 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8074 .access = PL1_R, 8075 .resetvalue = 0xc00 8076 }; 8077 define_one_arm_cp_reg(cpu, &nsacr); 8078 } 8079 } 8080 8081 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8082 if (arm_feature(env, ARM_FEATURE_V6)) { 8083 /* PMSAv6 not implemented */ 8084 assert(arm_feature(env, ARM_FEATURE_V7)); 8085 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8086 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8087 } else { 8088 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8089 } 8090 } else { 8091 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8092 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8093 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8094 if (cpu_isar_feature(aa32_hpd, cpu)) { 8095 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8096 } 8097 } 8098 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8099 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8100 } 8101 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8102 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8103 } 8104 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8105 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8106 } 8107 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8108 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8109 } 8110 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8111 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8112 } 8113 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8114 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8115 } 8116 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8117 define_arm_cp_regs(cpu, omap_cp_reginfo); 8118 } 8119 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8120 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8121 } 8122 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8123 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8124 } 8125 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8126 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8127 } 8128 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8129 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8130 } 8131 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8132 define_arm_cp_regs(cpu, jazelle_regs); 8133 } 8134 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8135 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8136 * be read-only (ie write causes UNDEF exception). 8137 */ 8138 { 8139 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8140 /* Pre-v8 MIDR space. 8141 * Note that the MIDR isn't a simple constant register because 8142 * of the TI925 behaviour where writes to another register can 8143 * cause the MIDR value to change. 8144 * 8145 * Unimplemented registers in the c15 0 0 0 space default to 8146 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8147 * and friends override accordingly. 8148 */ 8149 { .name = "MIDR", 8150 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8151 .access = PL1_R, .resetvalue = cpu->midr, 8152 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8153 .readfn = midr_read, 8154 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8155 .type = ARM_CP_OVERRIDE }, 8156 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8157 { .name = "DUMMY", 8158 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8159 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8160 { .name = "DUMMY", 8161 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8162 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8163 { .name = "DUMMY", 8164 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8165 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8166 { .name = "DUMMY", 8167 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8168 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8169 { .name = "DUMMY", 8170 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8171 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8172 REGINFO_SENTINEL 8173 }; 8174 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8175 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8176 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8177 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8178 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8179 .readfn = midr_read }, 8180 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8181 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8182 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8183 .access = PL1_R, .resetvalue = cpu->midr }, 8184 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8185 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8186 .access = PL1_R, .resetvalue = cpu->midr }, 8187 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8188 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8189 .access = PL1_R, 8190 .accessfn = access_aa64_tid1, 8191 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8192 REGINFO_SENTINEL 8193 }; 8194 ARMCPRegInfo id_cp_reginfo[] = { 8195 /* These are common to v8 and pre-v8 */ 8196 { .name = "CTR", 8197 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8198 .access = PL1_R, .accessfn = ctr_el0_access, 8199 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8200 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8201 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8202 .access = PL0_R, .accessfn = ctr_el0_access, 8203 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8204 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8205 { .name = "TCMTR", 8206 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8207 .access = PL1_R, 8208 .accessfn = access_aa32_tid1, 8209 .type = ARM_CP_CONST, .resetvalue = 0 }, 8210 REGINFO_SENTINEL 8211 }; 8212 /* TLBTR is specific to VMSA */ 8213 ARMCPRegInfo id_tlbtr_reginfo = { 8214 .name = "TLBTR", 8215 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8216 .access = PL1_R, 8217 .accessfn = access_aa32_tid1, 8218 .type = ARM_CP_CONST, .resetvalue = 0, 8219 }; 8220 /* MPUIR is specific to PMSA V6+ */ 8221 ARMCPRegInfo id_mpuir_reginfo = { 8222 .name = "MPUIR", 8223 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8224 .access = PL1_R, .type = ARM_CP_CONST, 8225 .resetvalue = cpu->pmsav7_dregion << 8 8226 }; 8227 ARMCPRegInfo crn0_wi_reginfo = { 8228 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8229 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8230 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8231 }; 8232 #ifdef CONFIG_USER_ONLY 8233 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8234 { .name = "MIDR_EL1", 8235 .exported_bits = 0x00000000ffffffff }, 8236 { .name = "REVIDR_EL1" }, 8237 REGUSERINFO_SENTINEL 8238 }; 8239 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8240 #endif 8241 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8242 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8243 ARMCPRegInfo *r; 8244 /* Register the blanket "writes ignored" value first to cover the 8245 * whole space. Then update the specific ID registers to allow write 8246 * access, so that they ignore writes rather than causing them to 8247 * UNDEF. 8248 */ 8249 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8250 for (r = id_pre_v8_midr_cp_reginfo; 8251 r->type != ARM_CP_SENTINEL; r++) { 8252 r->access = PL1_RW; 8253 } 8254 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8255 r->access = PL1_RW; 8256 } 8257 id_mpuir_reginfo.access = PL1_RW; 8258 id_tlbtr_reginfo.access = PL1_RW; 8259 } 8260 if (arm_feature(env, ARM_FEATURE_V8)) { 8261 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8262 } else { 8263 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8264 } 8265 define_arm_cp_regs(cpu, id_cp_reginfo); 8266 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8267 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8268 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8269 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8270 } 8271 } 8272 8273 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8274 ARMCPRegInfo mpidr_cp_reginfo[] = { 8275 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8276 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8277 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8278 REGINFO_SENTINEL 8279 }; 8280 #ifdef CONFIG_USER_ONLY 8281 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8282 { .name = "MPIDR_EL1", 8283 .fixed_bits = 0x0000000080000000 }, 8284 REGUSERINFO_SENTINEL 8285 }; 8286 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8287 #endif 8288 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8289 } 8290 8291 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8292 ARMCPRegInfo auxcr_reginfo[] = { 8293 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8294 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8295 .access = PL1_RW, .accessfn = access_tacr, 8296 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8297 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8298 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8299 .access = PL2_RW, .type = ARM_CP_CONST, 8300 .resetvalue = 0 }, 8301 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8302 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8303 .access = PL3_RW, .type = ARM_CP_CONST, 8304 .resetvalue = 0 }, 8305 REGINFO_SENTINEL 8306 }; 8307 define_arm_cp_regs(cpu, auxcr_reginfo); 8308 if (cpu_isar_feature(aa32_ac2, cpu)) { 8309 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8310 } 8311 } 8312 8313 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8314 /* 8315 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8316 * There are two flavours: 8317 * (1) older 32-bit only cores have a simple 32-bit CBAR 8318 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8319 * 32-bit register visible to AArch32 at a different encoding 8320 * to the "flavour 1" register and with the bits rearranged to 8321 * be able to squash a 64-bit address into the 32-bit view. 8322 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8323 * in future if we support AArch32-only configs of some of the 8324 * AArch64 cores we might need to add a specific feature flag 8325 * to indicate cores with "flavour 2" CBAR. 8326 */ 8327 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8328 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8329 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8330 | extract64(cpu->reset_cbar, 32, 12); 8331 ARMCPRegInfo cbar_reginfo[] = { 8332 { .name = "CBAR", 8333 .type = ARM_CP_CONST, 8334 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8335 .access = PL1_R, .resetvalue = cbar32 }, 8336 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8337 .type = ARM_CP_CONST, 8338 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8339 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8340 REGINFO_SENTINEL 8341 }; 8342 /* We don't implement a r/w 64 bit CBAR currently */ 8343 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8344 define_arm_cp_regs(cpu, cbar_reginfo); 8345 } else { 8346 ARMCPRegInfo cbar = { 8347 .name = "CBAR", 8348 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8349 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8350 .fieldoffset = offsetof(CPUARMState, 8351 cp15.c15_config_base_address) 8352 }; 8353 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8354 cbar.access = PL1_R; 8355 cbar.fieldoffset = 0; 8356 cbar.type = ARM_CP_CONST; 8357 } 8358 define_one_arm_cp_reg(cpu, &cbar); 8359 } 8360 } 8361 8362 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8363 ARMCPRegInfo vbar_cp_reginfo[] = { 8364 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8365 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8366 .access = PL1_RW, .writefn = vbar_write, 8367 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8368 offsetof(CPUARMState, cp15.vbar_ns) }, 8369 .resetvalue = 0 }, 8370 REGINFO_SENTINEL 8371 }; 8372 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8373 } 8374 8375 /* Generic registers whose values depend on the implementation */ 8376 { 8377 ARMCPRegInfo sctlr = { 8378 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8379 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8380 .access = PL1_RW, .accessfn = access_tvm_trvm, 8381 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8382 offsetof(CPUARMState, cp15.sctlr_ns) }, 8383 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8384 .raw_writefn = raw_write, 8385 }; 8386 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8387 /* Normally we would always end the TB on an SCTLR write, but Linux 8388 * arch/arm/mach-pxa/sleep.S expects two instructions following 8389 * an MMU enable to execute from cache. Imitate this behaviour. 8390 */ 8391 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8392 } 8393 define_one_arm_cp_reg(cpu, &sctlr); 8394 } 8395 8396 if (cpu_isar_feature(aa64_lor, cpu)) { 8397 define_arm_cp_regs(cpu, lor_reginfo); 8398 } 8399 if (cpu_isar_feature(aa64_pan, cpu)) { 8400 define_one_arm_cp_reg(cpu, &pan_reginfo); 8401 } 8402 #ifndef CONFIG_USER_ONLY 8403 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8404 define_arm_cp_regs(cpu, ats1e1_reginfo); 8405 } 8406 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8407 define_arm_cp_regs(cpu, ats1cp_reginfo); 8408 } 8409 #endif 8410 if (cpu_isar_feature(aa64_uao, cpu)) { 8411 define_one_arm_cp_reg(cpu, &uao_reginfo); 8412 } 8413 8414 if (cpu_isar_feature(aa64_dit, cpu)) { 8415 define_one_arm_cp_reg(cpu, &dit_reginfo); 8416 } 8417 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8418 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8419 } 8420 8421 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8422 define_arm_cp_regs(cpu, vhe_reginfo); 8423 } 8424 8425 if (cpu_isar_feature(aa64_sve, cpu)) { 8426 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8427 if (arm_feature(env, ARM_FEATURE_EL2)) { 8428 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8429 } else { 8430 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8431 } 8432 if (arm_feature(env, ARM_FEATURE_EL3)) { 8433 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8434 } 8435 } 8436 8437 #ifdef TARGET_AARCH64 8438 if (cpu_isar_feature(aa64_pauth, cpu)) { 8439 define_arm_cp_regs(cpu, pauth_reginfo); 8440 } 8441 if (cpu_isar_feature(aa64_rndr, cpu)) { 8442 define_arm_cp_regs(cpu, rndr_reginfo); 8443 } 8444 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8445 define_arm_cp_regs(cpu, tlbirange_reginfo); 8446 } 8447 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8448 define_arm_cp_regs(cpu, tlbios_reginfo); 8449 } 8450 #ifndef CONFIG_USER_ONLY 8451 /* Data Cache clean instructions up to PoP */ 8452 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8453 define_one_arm_cp_reg(cpu, dcpop_reg); 8454 8455 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8456 define_one_arm_cp_reg(cpu, dcpodp_reg); 8457 } 8458 } 8459 #endif /*CONFIG_USER_ONLY*/ 8460 8461 /* 8462 * If full MTE is enabled, add all of the system registers. 8463 * If only "instructions available at EL0" are enabled, 8464 * then define only a RAZ/WI version of PSTATE.TCO. 8465 */ 8466 if (cpu_isar_feature(aa64_mte, cpu)) { 8467 define_arm_cp_regs(cpu, mte_reginfo); 8468 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8469 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8470 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8471 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8472 } 8473 #endif 8474 8475 if (cpu_isar_feature(any_predinv, cpu)) { 8476 define_arm_cp_regs(cpu, predinv_reginfo); 8477 } 8478 8479 if (cpu_isar_feature(any_ccidx, cpu)) { 8480 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8481 } 8482 8483 #ifndef CONFIG_USER_ONLY 8484 /* 8485 * Register redirections and aliases must be done last, 8486 * after the registers from the other extensions have been defined. 8487 */ 8488 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8489 define_arm_vh_e2h_redirects_aliases(cpu); 8490 } 8491 #endif 8492 } 8493 8494 /* Sort alphabetically by type name, except for "any". */ 8495 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8496 { 8497 ObjectClass *class_a = (ObjectClass *)a; 8498 ObjectClass *class_b = (ObjectClass *)b; 8499 const char *name_a, *name_b; 8500 8501 name_a = object_class_get_name(class_a); 8502 name_b = object_class_get_name(class_b); 8503 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8504 return 1; 8505 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8506 return -1; 8507 } else { 8508 return strcmp(name_a, name_b); 8509 } 8510 } 8511 8512 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8513 { 8514 ObjectClass *oc = data; 8515 const char *typename; 8516 char *name; 8517 8518 typename = object_class_get_name(oc); 8519 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8520 qemu_printf(" %s\n", name); 8521 g_free(name); 8522 } 8523 8524 void arm_cpu_list(void) 8525 { 8526 GSList *list; 8527 8528 list = object_class_get_list(TYPE_ARM_CPU, false); 8529 list = g_slist_sort(list, arm_cpu_list_compare); 8530 qemu_printf("Available CPUs:\n"); 8531 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8532 g_slist_free(list); 8533 } 8534 8535 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8536 { 8537 ObjectClass *oc = data; 8538 CpuDefinitionInfoList **cpu_list = user_data; 8539 CpuDefinitionInfo *info; 8540 const char *typename; 8541 8542 typename = object_class_get_name(oc); 8543 info = g_malloc0(sizeof(*info)); 8544 info->name = g_strndup(typename, 8545 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8546 info->q_typename = g_strdup(typename); 8547 8548 QAPI_LIST_PREPEND(*cpu_list, info); 8549 } 8550 8551 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8552 { 8553 CpuDefinitionInfoList *cpu_list = NULL; 8554 GSList *list; 8555 8556 list = object_class_get_list(TYPE_ARM_CPU, false); 8557 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8558 g_slist_free(list); 8559 8560 return cpu_list; 8561 } 8562 8563 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8564 void *opaque, int state, int secstate, 8565 int crm, int opc1, int opc2, 8566 const char *name) 8567 { 8568 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8569 * add a single reginfo struct to the hash table. 8570 */ 8571 uint32_t *key = g_new(uint32_t, 1); 8572 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8573 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8574 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8575 8576 r2->name = g_strdup(name); 8577 /* Reset the secure state to the specific incoming state. This is 8578 * necessary as the register may have been defined with both states. 8579 */ 8580 r2->secure = secstate; 8581 8582 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8583 /* Register is banked (using both entries in array). 8584 * Overwriting fieldoffset as the array is only used to define 8585 * banked registers but later only fieldoffset is used. 8586 */ 8587 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8588 } 8589 8590 if (state == ARM_CP_STATE_AA32) { 8591 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8592 /* If the register is banked then we don't need to migrate or 8593 * reset the 32-bit instance in certain cases: 8594 * 8595 * 1) If the register has both 32-bit and 64-bit instances then we 8596 * can count on the 64-bit instance taking care of the 8597 * non-secure bank. 8598 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8599 * taking care of the secure bank. This requires that separate 8600 * 32 and 64-bit definitions are provided. 8601 */ 8602 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8603 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8604 r2->type |= ARM_CP_ALIAS; 8605 } 8606 } else if ((secstate != r->secure) && !ns) { 8607 /* The register is not banked so we only want to allow migration of 8608 * the non-secure instance. 8609 */ 8610 r2->type |= ARM_CP_ALIAS; 8611 } 8612 8613 if (r->state == ARM_CP_STATE_BOTH) { 8614 /* We assume it is a cp15 register if the .cp field is left unset. 8615 */ 8616 if (r2->cp == 0) { 8617 r2->cp = 15; 8618 } 8619 8620 #ifdef HOST_WORDS_BIGENDIAN 8621 if (r2->fieldoffset) { 8622 r2->fieldoffset += sizeof(uint32_t); 8623 } 8624 #endif 8625 } 8626 } 8627 if (state == ARM_CP_STATE_AA64) { 8628 /* To allow abbreviation of ARMCPRegInfo 8629 * definitions, we treat cp == 0 as equivalent to 8630 * the value for "standard guest-visible sysreg". 8631 * STATE_BOTH definitions are also always "standard 8632 * sysreg" in their AArch64 view (the .cp value may 8633 * be non-zero for the benefit of the AArch32 view). 8634 */ 8635 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8636 r2->cp = CP_REG_ARM64_SYSREG_CP; 8637 } 8638 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8639 r2->opc0, opc1, opc2); 8640 } else { 8641 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8642 } 8643 if (opaque) { 8644 r2->opaque = opaque; 8645 } 8646 /* reginfo passed to helpers is correct for the actual access, 8647 * and is never ARM_CP_STATE_BOTH: 8648 */ 8649 r2->state = state; 8650 /* Make sure reginfo passed to helpers for wildcarded regs 8651 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8652 */ 8653 r2->crm = crm; 8654 r2->opc1 = opc1; 8655 r2->opc2 = opc2; 8656 /* By convention, for wildcarded registers only the first 8657 * entry is used for migration; the others are marked as 8658 * ALIAS so we don't try to transfer the register 8659 * multiple times. Special registers (ie NOP/WFI) are 8660 * never migratable and not even raw-accessible. 8661 */ 8662 if ((r->type & ARM_CP_SPECIAL)) { 8663 r2->type |= ARM_CP_NO_RAW; 8664 } 8665 if (((r->crm == CP_ANY) && crm != 0) || 8666 ((r->opc1 == CP_ANY) && opc1 != 0) || 8667 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8668 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8669 } 8670 8671 /* Check that raw accesses are either forbidden or handled. Note that 8672 * we can't assert this earlier because the setup of fieldoffset for 8673 * banked registers has to be done first. 8674 */ 8675 if (!(r2->type & ARM_CP_NO_RAW)) { 8676 assert(!raw_accessors_invalid(r2)); 8677 } 8678 8679 /* Overriding of an existing definition must be explicitly 8680 * requested. 8681 */ 8682 if (!(r->type & ARM_CP_OVERRIDE)) { 8683 ARMCPRegInfo *oldreg; 8684 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8685 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8686 fprintf(stderr, "Register redefined: cp=%d %d bit " 8687 "crn=%d crm=%d opc1=%d opc2=%d, " 8688 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8689 r2->crn, r2->crm, r2->opc1, r2->opc2, 8690 oldreg->name, r2->name); 8691 g_assert_not_reached(); 8692 } 8693 } 8694 g_hash_table_insert(cpu->cp_regs, key, r2); 8695 } 8696 8697 8698 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8699 const ARMCPRegInfo *r, void *opaque) 8700 { 8701 /* Define implementations of coprocessor registers. 8702 * We store these in a hashtable because typically 8703 * there are less than 150 registers in a space which 8704 * is 16*16*16*8*8 = 262144 in size. 8705 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8706 * If a register is defined twice then the second definition is 8707 * used, so this can be used to define some generic registers and 8708 * then override them with implementation specific variations. 8709 * At least one of the original and the second definition should 8710 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8711 * against accidental use. 8712 * 8713 * The state field defines whether the register is to be 8714 * visible in the AArch32 or AArch64 execution state. If the 8715 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8716 * reginfo structure for the AArch32 view, which sees the lower 8717 * 32 bits of the 64 bit register. 8718 * 8719 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8720 * be wildcarded. AArch64 registers are always considered to be 64 8721 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8722 * the register, if any. 8723 */ 8724 int crm, opc1, opc2, state; 8725 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8726 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8727 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8728 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8729 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8730 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8731 /* 64 bit registers have only CRm and Opc1 fields */ 8732 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8733 /* op0 only exists in the AArch64 encodings */ 8734 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8735 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8736 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8737 /* 8738 * This API is only for Arm's system coprocessors (14 and 15) or 8739 * (M-profile or v7A-and-earlier only) for implementation defined 8740 * coprocessors in the range 0..7. Our decode assumes this, since 8741 * 8..13 can be used for other insns including VFP and Neon. See 8742 * valid_cp() in translate.c. Assert here that we haven't tried 8743 * to use an invalid coprocessor number. 8744 */ 8745 switch (r->state) { 8746 case ARM_CP_STATE_BOTH: 8747 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8748 if (r->cp == 0) { 8749 break; 8750 } 8751 /* fall through */ 8752 case ARM_CP_STATE_AA32: 8753 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8754 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8755 assert(r->cp >= 14 && r->cp <= 15); 8756 } else { 8757 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8758 } 8759 break; 8760 case ARM_CP_STATE_AA64: 8761 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8762 break; 8763 default: 8764 g_assert_not_reached(); 8765 } 8766 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8767 * encodes a minimum access level for the register. We roll this 8768 * runtime check into our general permission check code, so check 8769 * here that the reginfo's specified permissions are strict enough 8770 * to encompass the generic architectural permission check. 8771 */ 8772 if (r->state != ARM_CP_STATE_AA32) { 8773 int mask = 0; 8774 switch (r->opc1) { 8775 case 0: 8776 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8777 mask = PL0U_R | PL1_RW; 8778 break; 8779 case 1: case 2: 8780 /* min_EL EL1 */ 8781 mask = PL1_RW; 8782 break; 8783 case 3: 8784 /* min_EL EL0 */ 8785 mask = PL0_RW; 8786 break; 8787 case 4: 8788 case 5: 8789 /* min_EL EL2 */ 8790 mask = PL2_RW; 8791 break; 8792 case 6: 8793 /* min_EL EL3 */ 8794 mask = PL3_RW; 8795 break; 8796 case 7: 8797 /* min_EL EL1, secure mode only (we don't check the latter) */ 8798 mask = PL1_RW; 8799 break; 8800 default: 8801 /* broken reginfo with out-of-range opc1 */ 8802 assert(false); 8803 break; 8804 } 8805 /* assert our permissions are not too lax (stricter is fine) */ 8806 assert((r->access & ~mask) == 0); 8807 } 8808 8809 /* Check that the register definition has enough info to handle 8810 * reads and writes if they are permitted. 8811 */ 8812 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8813 if (r->access & PL3_R) { 8814 assert((r->fieldoffset || 8815 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8816 r->readfn); 8817 } 8818 if (r->access & PL3_W) { 8819 assert((r->fieldoffset || 8820 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8821 r->writefn); 8822 } 8823 } 8824 /* Bad type field probably means missing sentinel at end of reg list */ 8825 assert(cptype_valid(r->type)); 8826 for (crm = crmmin; crm <= crmmax; crm++) { 8827 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8828 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8829 for (state = ARM_CP_STATE_AA32; 8830 state <= ARM_CP_STATE_AA64; state++) { 8831 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8832 continue; 8833 } 8834 if (state == ARM_CP_STATE_AA32) { 8835 /* Under AArch32 CP registers can be common 8836 * (same for secure and non-secure world) or banked. 8837 */ 8838 char *name; 8839 8840 switch (r->secure) { 8841 case ARM_CP_SECSTATE_S: 8842 case ARM_CP_SECSTATE_NS: 8843 add_cpreg_to_hashtable(cpu, r, opaque, state, 8844 r->secure, crm, opc1, opc2, 8845 r->name); 8846 break; 8847 default: 8848 name = g_strdup_printf("%s_S", r->name); 8849 add_cpreg_to_hashtable(cpu, r, opaque, state, 8850 ARM_CP_SECSTATE_S, 8851 crm, opc1, opc2, name); 8852 g_free(name); 8853 add_cpreg_to_hashtable(cpu, r, opaque, state, 8854 ARM_CP_SECSTATE_NS, 8855 crm, opc1, opc2, r->name); 8856 break; 8857 } 8858 } else { 8859 /* AArch64 registers get mapped to non-secure instance 8860 * of AArch32 */ 8861 add_cpreg_to_hashtable(cpu, r, opaque, state, 8862 ARM_CP_SECSTATE_NS, 8863 crm, opc1, opc2, r->name); 8864 } 8865 } 8866 } 8867 } 8868 } 8869 } 8870 8871 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8872 const ARMCPRegInfo *regs, void *opaque) 8873 { 8874 /* Define a whole list of registers */ 8875 const ARMCPRegInfo *r; 8876 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8877 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8878 } 8879 } 8880 8881 /* 8882 * Modify ARMCPRegInfo for access from userspace. 8883 * 8884 * This is a data driven modification directed by 8885 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8886 * user-space cannot alter any values and dynamic values pertaining to 8887 * execution state are hidden from user space view anyway. 8888 */ 8889 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8890 { 8891 const ARMCPRegUserSpaceInfo *m; 8892 ARMCPRegInfo *r; 8893 8894 for (m = mods; m->name; m++) { 8895 GPatternSpec *pat = NULL; 8896 if (m->is_glob) { 8897 pat = g_pattern_spec_new(m->name); 8898 } 8899 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8900 if (pat && g_pattern_match_string(pat, r->name)) { 8901 r->type = ARM_CP_CONST; 8902 r->access = PL0U_R; 8903 r->resetvalue = 0; 8904 /* continue */ 8905 } else if (strcmp(r->name, m->name) == 0) { 8906 r->type = ARM_CP_CONST; 8907 r->access = PL0U_R; 8908 r->resetvalue &= m->exported_bits; 8909 r->resetvalue |= m->fixed_bits; 8910 break; 8911 } 8912 } 8913 if (pat) { 8914 g_pattern_spec_free(pat); 8915 } 8916 } 8917 } 8918 8919 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8920 { 8921 return g_hash_table_lookup(cpregs, &encoded_cp); 8922 } 8923 8924 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8925 uint64_t value) 8926 { 8927 /* Helper coprocessor write function for write-ignore registers */ 8928 } 8929 8930 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8931 { 8932 /* Helper coprocessor write function for read-as-zero registers */ 8933 return 0; 8934 } 8935 8936 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8937 { 8938 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8939 } 8940 8941 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8942 { 8943 /* Return true if it is not valid for us to switch to 8944 * this CPU mode (ie all the UNPREDICTABLE cases in 8945 * the ARM ARM CPSRWriteByInstr pseudocode). 8946 */ 8947 8948 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8949 if (write_type == CPSRWriteByInstr && 8950 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8951 mode == ARM_CPU_MODE_HYP)) { 8952 return 1; 8953 } 8954 8955 switch (mode) { 8956 case ARM_CPU_MODE_USR: 8957 return 0; 8958 case ARM_CPU_MODE_SYS: 8959 case ARM_CPU_MODE_SVC: 8960 case ARM_CPU_MODE_ABT: 8961 case ARM_CPU_MODE_UND: 8962 case ARM_CPU_MODE_IRQ: 8963 case ARM_CPU_MODE_FIQ: 8964 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8965 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8966 */ 8967 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8968 * and CPS are treated as illegal mode changes. 8969 */ 8970 if (write_type == CPSRWriteByInstr && 8971 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8972 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8973 return 1; 8974 } 8975 return 0; 8976 case ARM_CPU_MODE_HYP: 8977 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8978 case ARM_CPU_MODE_MON: 8979 return arm_current_el(env) < 3; 8980 default: 8981 return 1; 8982 } 8983 } 8984 8985 uint32_t cpsr_read(CPUARMState *env) 8986 { 8987 int ZF; 8988 ZF = (env->ZF == 0); 8989 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8990 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8991 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8992 | ((env->condexec_bits & 0xfc) << 8) 8993 | (env->GE << 16) | (env->daif & CPSR_AIF); 8994 } 8995 8996 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8997 CPSRWriteType write_type) 8998 { 8999 uint32_t changed_daif; 9000 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9001 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9002 9003 if (mask & CPSR_NZCV) { 9004 env->ZF = (~val) & CPSR_Z; 9005 env->NF = val; 9006 env->CF = (val >> 29) & 1; 9007 env->VF = (val << 3) & 0x80000000; 9008 } 9009 if (mask & CPSR_Q) 9010 env->QF = ((val & CPSR_Q) != 0); 9011 if (mask & CPSR_T) 9012 env->thumb = ((val & CPSR_T) != 0); 9013 if (mask & CPSR_IT_0_1) { 9014 env->condexec_bits &= ~3; 9015 env->condexec_bits |= (val >> 25) & 3; 9016 } 9017 if (mask & CPSR_IT_2_7) { 9018 env->condexec_bits &= 3; 9019 env->condexec_bits |= (val >> 8) & 0xfc; 9020 } 9021 if (mask & CPSR_GE) { 9022 env->GE = (val >> 16) & 0xf; 9023 } 9024 9025 /* In a V7 implementation that includes the security extensions but does 9026 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9027 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9028 * bits respectively. 9029 * 9030 * In a V8 implementation, it is permitted for privileged software to 9031 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9032 */ 9033 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9034 arm_feature(env, ARM_FEATURE_EL3) && 9035 !arm_feature(env, ARM_FEATURE_EL2) && 9036 !arm_is_secure(env)) { 9037 9038 changed_daif = (env->daif ^ val) & mask; 9039 9040 if (changed_daif & CPSR_A) { 9041 /* Check to see if we are allowed to change the masking of async 9042 * abort exceptions from a non-secure state. 9043 */ 9044 if (!(env->cp15.scr_el3 & SCR_AW)) { 9045 qemu_log_mask(LOG_GUEST_ERROR, 9046 "Ignoring attempt to switch CPSR_A flag from " 9047 "non-secure world with SCR.AW bit clear\n"); 9048 mask &= ~CPSR_A; 9049 } 9050 } 9051 9052 if (changed_daif & CPSR_F) { 9053 /* Check to see if we are allowed to change the masking of FIQ 9054 * exceptions from a non-secure state. 9055 */ 9056 if (!(env->cp15.scr_el3 & SCR_FW)) { 9057 qemu_log_mask(LOG_GUEST_ERROR, 9058 "Ignoring attempt to switch CPSR_F flag from " 9059 "non-secure world with SCR.FW bit clear\n"); 9060 mask &= ~CPSR_F; 9061 } 9062 9063 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9064 * If this bit is set software is not allowed to mask 9065 * FIQs, but is allowed to set CPSR_F to 0. 9066 */ 9067 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9068 (val & CPSR_F)) { 9069 qemu_log_mask(LOG_GUEST_ERROR, 9070 "Ignoring attempt to enable CPSR_F flag " 9071 "(non-maskable FIQ [NMFI] support enabled)\n"); 9072 mask &= ~CPSR_F; 9073 } 9074 } 9075 } 9076 9077 env->daif &= ~(CPSR_AIF & mask); 9078 env->daif |= val & CPSR_AIF & mask; 9079 9080 if (write_type != CPSRWriteRaw && 9081 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9082 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9083 /* Note that we can only get here in USR mode if this is a 9084 * gdb stub write; for this case we follow the architectural 9085 * behaviour for guest writes in USR mode of ignoring an attempt 9086 * to switch mode. (Those are caught by translate.c for writes 9087 * triggered by guest instructions.) 9088 */ 9089 mask &= ~CPSR_M; 9090 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9091 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9092 * v7, and has defined behaviour in v8: 9093 * + leave CPSR.M untouched 9094 * + allow changes to the other CPSR fields 9095 * + set PSTATE.IL 9096 * For user changes via the GDB stub, we don't set PSTATE.IL, 9097 * as this would be unnecessarily harsh for a user error. 9098 */ 9099 mask &= ~CPSR_M; 9100 if (write_type != CPSRWriteByGDBStub && 9101 arm_feature(env, ARM_FEATURE_V8)) { 9102 mask |= CPSR_IL; 9103 val |= CPSR_IL; 9104 } 9105 qemu_log_mask(LOG_GUEST_ERROR, 9106 "Illegal AArch32 mode switch attempt from %s to %s\n", 9107 aarch32_mode_name(env->uncached_cpsr), 9108 aarch32_mode_name(val)); 9109 } else { 9110 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9111 write_type == CPSRWriteExceptionReturn ? 9112 "Exception return from AArch32" : 9113 "AArch32 mode switch from", 9114 aarch32_mode_name(env->uncached_cpsr), 9115 aarch32_mode_name(val), env->regs[15]); 9116 switch_mode(env, val & CPSR_M); 9117 } 9118 } 9119 mask &= ~CACHED_CPSR_BITS; 9120 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9121 if (rebuild_hflags) { 9122 arm_rebuild_hflags(env); 9123 } 9124 } 9125 9126 /* Sign/zero extend */ 9127 uint32_t HELPER(sxtb16)(uint32_t x) 9128 { 9129 uint32_t res; 9130 res = (uint16_t)(int8_t)x; 9131 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9132 return res; 9133 } 9134 9135 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9136 { 9137 /* 9138 * Take a division-by-zero exception if necessary; otherwise return 9139 * to get the usual non-trapping division behaviour (result of 0) 9140 */ 9141 if (arm_feature(env, ARM_FEATURE_M) 9142 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9143 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9144 } 9145 } 9146 9147 uint32_t HELPER(uxtb16)(uint32_t x) 9148 { 9149 uint32_t res; 9150 res = (uint16_t)(uint8_t)x; 9151 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9152 return res; 9153 } 9154 9155 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9156 { 9157 if (den == 0) { 9158 handle_possible_div0_trap(env, GETPC()); 9159 return 0; 9160 } 9161 if (num == INT_MIN && den == -1) { 9162 return INT_MIN; 9163 } 9164 return num / den; 9165 } 9166 9167 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9168 { 9169 if (den == 0) { 9170 handle_possible_div0_trap(env, GETPC()); 9171 return 0; 9172 } 9173 return num / den; 9174 } 9175 9176 uint32_t HELPER(rbit)(uint32_t x) 9177 { 9178 return revbit32(x); 9179 } 9180 9181 #ifdef CONFIG_USER_ONLY 9182 9183 static void switch_mode(CPUARMState *env, int mode) 9184 { 9185 ARMCPU *cpu = env_archcpu(env); 9186 9187 if (mode != ARM_CPU_MODE_USR) { 9188 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9189 } 9190 } 9191 9192 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9193 uint32_t cur_el, bool secure) 9194 { 9195 return 1; 9196 } 9197 9198 void aarch64_sync_64_to_32(CPUARMState *env) 9199 { 9200 g_assert_not_reached(); 9201 } 9202 9203 #else 9204 9205 static void switch_mode(CPUARMState *env, int mode) 9206 { 9207 int old_mode; 9208 int i; 9209 9210 old_mode = env->uncached_cpsr & CPSR_M; 9211 if (mode == old_mode) 9212 return; 9213 9214 if (old_mode == ARM_CPU_MODE_FIQ) { 9215 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9216 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9217 } else if (mode == ARM_CPU_MODE_FIQ) { 9218 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9219 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9220 } 9221 9222 i = bank_number(old_mode); 9223 env->banked_r13[i] = env->regs[13]; 9224 env->banked_spsr[i] = env->spsr; 9225 9226 i = bank_number(mode); 9227 env->regs[13] = env->banked_r13[i]; 9228 env->spsr = env->banked_spsr[i]; 9229 9230 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9231 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9232 } 9233 9234 /* Physical Interrupt Target EL Lookup Table 9235 * 9236 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9237 * 9238 * The below multi-dimensional table is used for looking up the target 9239 * exception level given numerous condition criteria. Specifically, the 9240 * target EL is based on SCR and HCR routing controls as well as the 9241 * currently executing EL and secure state. 9242 * 9243 * Dimensions: 9244 * target_el_table[2][2][2][2][2][4] 9245 * | | | | | +--- Current EL 9246 * | | | | +------ Non-secure(0)/Secure(1) 9247 * | | | +--------- HCR mask override 9248 * | | +------------ SCR exec state control 9249 * | +--------------- SCR mask override 9250 * +------------------ 32-bit(0)/64-bit(1) EL3 9251 * 9252 * The table values are as such: 9253 * 0-3 = EL0-EL3 9254 * -1 = Cannot occur 9255 * 9256 * The ARM ARM target EL table includes entries indicating that an "exception 9257 * is not taken". The two cases where this is applicable are: 9258 * 1) An exception is taken from EL3 but the SCR does not have the exception 9259 * routed to EL3. 9260 * 2) An exception is taken from EL2 but the HCR does not have the exception 9261 * routed to EL2. 9262 * In these two cases, the below table contain a target of EL1. This value is 9263 * returned as it is expected that the consumer of the table data will check 9264 * for "target EL >= current EL" to ensure the exception is not taken. 9265 * 9266 * SCR HCR 9267 * 64 EA AMO From 9268 * BIT IRQ IMO Non-secure Secure 9269 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9270 */ 9271 static const int8_t target_el_table[2][2][2][2][2][4] = { 9272 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9273 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9274 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9275 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9276 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9277 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9278 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9279 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9280 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9281 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9282 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9283 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9284 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9285 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9286 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9287 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9288 }; 9289 9290 /* 9291 * Determine the target EL for physical exceptions 9292 */ 9293 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9294 uint32_t cur_el, bool secure) 9295 { 9296 CPUARMState *env = cs->env_ptr; 9297 bool rw; 9298 bool scr; 9299 bool hcr; 9300 int target_el; 9301 /* Is the highest EL AArch64? */ 9302 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9303 uint64_t hcr_el2; 9304 9305 if (arm_feature(env, ARM_FEATURE_EL3)) { 9306 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9307 } else { 9308 /* Either EL2 is the highest EL (and so the EL2 register width 9309 * is given by is64); or there is no EL2 or EL3, in which case 9310 * the value of 'rw' does not affect the table lookup anyway. 9311 */ 9312 rw = is64; 9313 } 9314 9315 hcr_el2 = arm_hcr_el2_eff(env); 9316 switch (excp_idx) { 9317 case EXCP_IRQ: 9318 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9319 hcr = hcr_el2 & HCR_IMO; 9320 break; 9321 case EXCP_FIQ: 9322 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9323 hcr = hcr_el2 & HCR_FMO; 9324 break; 9325 default: 9326 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9327 hcr = hcr_el2 & HCR_AMO; 9328 break; 9329 }; 9330 9331 /* 9332 * For these purposes, TGE and AMO/IMO/FMO both force the 9333 * interrupt to EL2. Fold TGE into the bit extracted above. 9334 */ 9335 hcr |= (hcr_el2 & HCR_TGE) != 0; 9336 9337 /* Perform a table-lookup for the target EL given the current state */ 9338 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9339 9340 assert(target_el > 0); 9341 9342 return target_el; 9343 } 9344 9345 void arm_log_exception(CPUState *cs) 9346 { 9347 int idx = cs->exception_index; 9348 9349 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9350 const char *exc = NULL; 9351 static const char * const excnames[] = { 9352 [EXCP_UDEF] = "Undefined Instruction", 9353 [EXCP_SWI] = "SVC", 9354 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9355 [EXCP_DATA_ABORT] = "Data Abort", 9356 [EXCP_IRQ] = "IRQ", 9357 [EXCP_FIQ] = "FIQ", 9358 [EXCP_BKPT] = "Breakpoint", 9359 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9360 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9361 [EXCP_HVC] = "Hypervisor Call", 9362 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9363 [EXCP_SMC] = "Secure Monitor Call", 9364 [EXCP_VIRQ] = "Virtual IRQ", 9365 [EXCP_VFIQ] = "Virtual FIQ", 9366 [EXCP_SEMIHOST] = "Semihosting call", 9367 [EXCP_NOCP] = "v7M NOCP UsageFault", 9368 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9369 [EXCP_STKOF] = "v8M STKOF UsageFault", 9370 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9371 [EXCP_LSERR] = "v8M LSERR UsageFault", 9372 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9373 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9374 }; 9375 9376 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9377 exc = excnames[idx]; 9378 } 9379 if (!exc) { 9380 exc = "unknown"; 9381 } 9382 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9383 idx, exc, cs->cpu_index); 9384 } 9385 } 9386 9387 /* 9388 * Function used to synchronize QEMU's AArch64 register set with AArch32 9389 * register set. This is necessary when switching between AArch32 and AArch64 9390 * execution state. 9391 */ 9392 void aarch64_sync_32_to_64(CPUARMState *env) 9393 { 9394 int i; 9395 uint32_t mode = env->uncached_cpsr & CPSR_M; 9396 9397 /* We can blanket copy R[0:7] to X[0:7] */ 9398 for (i = 0; i < 8; i++) { 9399 env->xregs[i] = env->regs[i]; 9400 } 9401 9402 /* 9403 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9404 * Otherwise, they come from the banked user regs. 9405 */ 9406 if (mode == ARM_CPU_MODE_FIQ) { 9407 for (i = 8; i < 13; i++) { 9408 env->xregs[i] = env->usr_regs[i - 8]; 9409 } 9410 } else { 9411 for (i = 8; i < 13; i++) { 9412 env->xregs[i] = env->regs[i]; 9413 } 9414 } 9415 9416 /* 9417 * Registers x13-x23 are the various mode SP and FP registers. Registers 9418 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9419 * from the mode banked register. 9420 */ 9421 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9422 env->xregs[13] = env->regs[13]; 9423 env->xregs[14] = env->regs[14]; 9424 } else { 9425 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9426 /* HYP is an exception in that it is copied from r14 */ 9427 if (mode == ARM_CPU_MODE_HYP) { 9428 env->xregs[14] = env->regs[14]; 9429 } else { 9430 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9431 } 9432 } 9433 9434 if (mode == ARM_CPU_MODE_HYP) { 9435 env->xregs[15] = env->regs[13]; 9436 } else { 9437 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9438 } 9439 9440 if (mode == ARM_CPU_MODE_IRQ) { 9441 env->xregs[16] = env->regs[14]; 9442 env->xregs[17] = env->regs[13]; 9443 } else { 9444 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9445 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9446 } 9447 9448 if (mode == ARM_CPU_MODE_SVC) { 9449 env->xregs[18] = env->regs[14]; 9450 env->xregs[19] = env->regs[13]; 9451 } else { 9452 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9453 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9454 } 9455 9456 if (mode == ARM_CPU_MODE_ABT) { 9457 env->xregs[20] = env->regs[14]; 9458 env->xregs[21] = env->regs[13]; 9459 } else { 9460 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9461 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9462 } 9463 9464 if (mode == ARM_CPU_MODE_UND) { 9465 env->xregs[22] = env->regs[14]; 9466 env->xregs[23] = env->regs[13]; 9467 } else { 9468 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9469 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9470 } 9471 9472 /* 9473 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9474 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9475 * FIQ bank for r8-r14. 9476 */ 9477 if (mode == ARM_CPU_MODE_FIQ) { 9478 for (i = 24; i < 31; i++) { 9479 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9480 } 9481 } else { 9482 for (i = 24; i < 29; i++) { 9483 env->xregs[i] = env->fiq_regs[i - 24]; 9484 } 9485 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9486 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9487 } 9488 9489 env->pc = env->regs[15]; 9490 } 9491 9492 /* 9493 * Function used to synchronize QEMU's AArch32 register set with AArch64 9494 * register set. This is necessary when switching between AArch32 and AArch64 9495 * execution state. 9496 */ 9497 void aarch64_sync_64_to_32(CPUARMState *env) 9498 { 9499 int i; 9500 uint32_t mode = env->uncached_cpsr & CPSR_M; 9501 9502 /* We can blanket copy X[0:7] to R[0:7] */ 9503 for (i = 0; i < 8; i++) { 9504 env->regs[i] = env->xregs[i]; 9505 } 9506 9507 /* 9508 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9509 * Otherwise, we copy x8-x12 into the banked user regs. 9510 */ 9511 if (mode == ARM_CPU_MODE_FIQ) { 9512 for (i = 8; i < 13; i++) { 9513 env->usr_regs[i - 8] = env->xregs[i]; 9514 } 9515 } else { 9516 for (i = 8; i < 13; i++) { 9517 env->regs[i] = env->xregs[i]; 9518 } 9519 } 9520 9521 /* 9522 * Registers r13 & r14 depend on the current mode. 9523 * If we are in a given mode, we copy the corresponding x registers to r13 9524 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9525 * for the mode. 9526 */ 9527 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9528 env->regs[13] = env->xregs[13]; 9529 env->regs[14] = env->xregs[14]; 9530 } else { 9531 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9532 9533 /* 9534 * HYP is an exception in that it does not have its own banked r14 but 9535 * shares the USR r14 9536 */ 9537 if (mode == ARM_CPU_MODE_HYP) { 9538 env->regs[14] = env->xregs[14]; 9539 } else { 9540 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9541 } 9542 } 9543 9544 if (mode == ARM_CPU_MODE_HYP) { 9545 env->regs[13] = env->xregs[15]; 9546 } else { 9547 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9548 } 9549 9550 if (mode == ARM_CPU_MODE_IRQ) { 9551 env->regs[14] = env->xregs[16]; 9552 env->regs[13] = env->xregs[17]; 9553 } else { 9554 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9555 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9556 } 9557 9558 if (mode == ARM_CPU_MODE_SVC) { 9559 env->regs[14] = env->xregs[18]; 9560 env->regs[13] = env->xregs[19]; 9561 } else { 9562 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9563 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9564 } 9565 9566 if (mode == ARM_CPU_MODE_ABT) { 9567 env->regs[14] = env->xregs[20]; 9568 env->regs[13] = env->xregs[21]; 9569 } else { 9570 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9571 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9572 } 9573 9574 if (mode == ARM_CPU_MODE_UND) { 9575 env->regs[14] = env->xregs[22]; 9576 env->regs[13] = env->xregs[23]; 9577 } else { 9578 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9579 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9580 } 9581 9582 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9583 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9584 * FIQ bank for r8-r14. 9585 */ 9586 if (mode == ARM_CPU_MODE_FIQ) { 9587 for (i = 24; i < 31; i++) { 9588 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9589 } 9590 } else { 9591 for (i = 24; i < 29; i++) { 9592 env->fiq_regs[i - 24] = env->xregs[i]; 9593 } 9594 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9595 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9596 } 9597 9598 env->regs[15] = env->pc; 9599 } 9600 9601 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9602 uint32_t mask, uint32_t offset, 9603 uint32_t newpc) 9604 { 9605 int new_el; 9606 9607 /* Change the CPU state so as to actually take the exception. */ 9608 switch_mode(env, new_mode); 9609 9610 /* 9611 * For exceptions taken to AArch32 we must clear the SS bit in both 9612 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9613 */ 9614 env->pstate &= ~PSTATE_SS; 9615 env->spsr = cpsr_read(env); 9616 /* Clear IT bits. */ 9617 env->condexec_bits = 0; 9618 /* Switch to the new mode, and to the correct instruction set. */ 9619 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9620 9621 /* This must be after mode switching. */ 9622 new_el = arm_current_el(env); 9623 9624 /* Set new mode endianness */ 9625 env->uncached_cpsr &= ~CPSR_E; 9626 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9627 env->uncached_cpsr |= CPSR_E; 9628 } 9629 /* J and IL must always be cleared for exception entry */ 9630 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9631 env->daif |= mask; 9632 9633 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9634 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9635 env->uncached_cpsr |= CPSR_SSBS; 9636 } else { 9637 env->uncached_cpsr &= ~CPSR_SSBS; 9638 } 9639 } 9640 9641 if (new_mode == ARM_CPU_MODE_HYP) { 9642 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9643 env->elr_el[2] = env->regs[15]; 9644 } else { 9645 /* CPSR.PAN is normally preserved preserved unless... */ 9646 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9647 switch (new_el) { 9648 case 3: 9649 if (!arm_is_secure_below_el3(env)) { 9650 /* ... the target is EL3, from non-secure state. */ 9651 env->uncached_cpsr &= ~CPSR_PAN; 9652 break; 9653 } 9654 /* ... the target is EL3, from secure state ... */ 9655 /* fall through */ 9656 case 1: 9657 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9658 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9659 env->uncached_cpsr |= CPSR_PAN; 9660 } 9661 break; 9662 } 9663 } 9664 /* 9665 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9666 * and we should just guard the thumb mode on V4 9667 */ 9668 if (arm_feature(env, ARM_FEATURE_V4T)) { 9669 env->thumb = 9670 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9671 } 9672 env->regs[14] = env->regs[15] + offset; 9673 } 9674 env->regs[15] = newpc; 9675 arm_rebuild_hflags(env); 9676 } 9677 9678 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9679 { 9680 /* 9681 * Handle exception entry to Hyp mode; this is sufficiently 9682 * different to entry to other AArch32 modes that we handle it 9683 * separately here. 9684 * 9685 * The vector table entry used is always the 0x14 Hyp mode entry point, 9686 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9687 * The offset applied to the preferred return address is always zero 9688 * (see DDI0487C.a section G1.12.3). 9689 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9690 */ 9691 uint32_t addr, mask; 9692 ARMCPU *cpu = ARM_CPU(cs); 9693 CPUARMState *env = &cpu->env; 9694 9695 switch (cs->exception_index) { 9696 case EXCP_UDEF: 9697 addr = 0x04; 9698 break; 9699 case EXCP_SWI: 9700 addr = 0x08; 9701 break; 9702 case EXCP_BKPT: 9703 /* Fall through to prefetch abort. */ 9704 case EXCP_PREFETCH_ABORT: 9705 env->cp15.ifar_s = env->exception.vaddress; 9706 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9707 (uint32_t)env->exception.vaddress); 9708 addr = 0x0c; 9709 break; 9710 case EXCP_DATA_ABORT: 9711 env->cp15.dfar_s = env->exception.vaddress; 9712 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9713 (uint32_t)env->exception.vaddress); 9714 addr = 0x10; 9715 break; 9716 case EXCP_IRQ: 9717 addr = 0x18; 9718 break; 9719 case EXCP_FIQ: 9720 addr = 0x1c; 9721 break; 9722 case EXCP_HVC: 9723 addr = 0x08; 9724 break; 9725 case EXCP_HYP_TRAP: 9726 addr = 0x14; 9727 break; 9728 default: 9729 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9730 } 9731 9732 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9733 if (!arm_feature(env, ARM_FEATURE_V8)) { 9734 /* 9735 * QEMU syndrome values are v8-style. v7 has the IL bit 9736 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9737 * If this is a v7 CPU, squash the IL bit in those cases. 9738 */ 9739 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9740 (cs->exception_index == EXCP_DATA_ABORT && 9741 !(env->exception.syndrome & ARM_EL_ISV)) || 9742 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9743 env->exception.syndrome &= ~ARM_EL_IL; 9744 } 9745 } 9746 env->cp15.esr_el[2] = env->exception.syndrome; 9747 } 9748 9749 if (arm_current_el(env) != 2 && addr < 0x14) { 9750 addr = 0x14; 9751 } 9752 9753 mask = 0; 9754 if (!(env->cp15.scr_el3 & SCR_EA)) { 9755 mask |= CPSR_A; 9756 } 9757 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9758 mask |= CPSR_I; 9759 } 9760 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9761 mask |= CPSR_F; 9762 } 9763 9764 addr += env->cp15.hvbar; 9765 9766 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9767 } 9768 9769 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9770 { 9771 ARMCPU *cpu = ARM_CPU(cs); 9772 CPUARMState *env = &cpu->env; 9773 uint32_t addr; 9774 uint32_t mask; 9775 int new_mode; 9776 uint32_t offset; 9777 uint32_t moe; 9778 9779 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9780 switch (syn_get_ec(env->exception.syndrome)) { 9781 case EC_BREAKPOINT: 9782 case EC_BREAKPOINT_SAME_EL: 9783 moe = 1; 9784 break; 9785 case EC_WATCHPOINT: 9786 case EC_WATCHPOINT_SAME_EL: 9787 moe = 10; 9788 break; 9789 case EC_AA32_BKPT: 9790 moe = 3; 9791 break; 9792 case EC_VECTORCATCH: 9793 moe = 5; 9794 break; 9795 default: 9796 moe = 0; 9797 break; 9798 } 9799 9800 if (moe) { 9801 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9802 } 9803 9804 if (env->exception.target_el == 2) { 9805 arm_cpu_do_interrupt_aarch32_hyp(cs); 9806 return; 9807 } 9808 9809 switch (cs->exception_index) { 9810 case EXCP_UDEF: 9811 new_mode = ARM_CPU_MODE_UND; 9812 addr = 0x04; 9813 mask = CPSR_I; 9814 if (env->thumb) 9815 offset = 2; 9816 else 9817 offset = 4; 9818 break; 9819 case EXCP_SWI: 9820 new_mode = ARM_CPU_MODE_SVC; 9821 addr = 0x08; 9822 mask = CPSR_I; 9823 /* The PC already points to the next instruction. */ 9824 offset = 0; 9825 break; 9826 case EXCP_BKPT: 9827 /* Fall through to prefetch abort. */ 9828 case EXCP_PREFETCH_ABORT: 9829 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9830 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9831 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9832 env->exception.fsr, (uint32_t)env->exception.vaddress); 9833 new_mode = ARM_CPU_MODE_ABT; 9834 addr = 0x0c; 9835 mask = CPSR_A | CPSR_I; 9836 offset = 4; 9837 break; 9838 case EXCP_DATA_ABORT: 9839 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9840 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9841 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9842 env->exception.fsr, 9843 (uint32_t)env->exception.vaddress); 9844 new_mode = ARM_CPU_MODE_ABT; 9845 addr = 0x10; 9846 mask = CPSR_A | CPSR_I; 9847 offset = 8; 9848 break; 9849 case EXCP_IRQ: 9850 new_mode = ARM_CPU_MODE_IRQ; 9851 addr = 0x18; 9852 /* Disable IRQ and imprecise data aborts. */ 9853 mask = CPSR_A | CPSR_I; 9854 offset = 4; 9855 if (env->cp15.scr_el3 & SCR_IRQ) { 9856 /* IRQ routed to monitor mode */ 9857 new_mode = ARM_CPU_MODE_MON; 9858 mask |= CPSR_F; 9859 } 9860 break; 9861 case EXCP_FIQ: 9862 new_mode = ARM_CPU_MODE_FIQ; 9863 addr = 0x1c; 9864 /* Disable FIQ, IRQ and imprecise data aborts. */ 9865 mask = CPSR_A | CPSR_I | CPSR_F; 9866 if (env->cp15.scr_el3 & SCR_FIQ) { 9867 /* FIQ routed to monitor mode */ 9868 new_mode = ARM_CPU_MODE_MON; 9869 } 9870 offset = 4; 9871 break; 9872 case EXCP_VIRQ: 9873 new_mode = ARM_CPU_MODE_IRQ; 9874 addr = 0x18; 9875 /* Disable IRQ and imprecise data aborts. */ 9876 mask = CPSR_A | CPSR_I; 9877 offset = 4; 9878 break; 9879 case EXCP_VFIQ: 9880 new_mode = ARM_CPU_MODE_FIQ; 9881 addr = 0x1c; 9882 /* Disable FIQ, IRQ and imprecise data aborts. */ 9883 mask = CPSR_A | CPSR_I | CPSR_F; 9884 offset = 4; 9885 break; 9886 case EXCP_SMC: 9887 new_mode = ARM_CPU_MODE_MON; 9888 addr = 0x08; 9889 mask = CPSR_A | CPSR_I | CPSR_F; 9890 offset = 0; 9891 break; 9892 default: 9893 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9894 return; /* Never happens. Keep compiler happy. */ 9895 } 9896 9897 if (new_mode == ARM_CPU_MODE_MON) { 9898 addr += env->cp15.mvbar; 9899 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9900 /* High vectors. When enabled, base address cannot be remapped. */ 9901 addr += 0xffff0000; 9902 } else { 9903 /* ARM v7 architectures provide a vector base address register to remap 9904 * the interrupt vector table. 9905 * This register is only followed in non-monitor mode, and is banked. 9906 * Note: only bits 31:5 are valid. 9907 */ 9908 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9909 } 9910 9911 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9912 env->cp15.scr_el3 &= ~SCR_NS; 9913 } 9914 9915 take_aarch32_exception(env, new_mode, mask, offset, addr); 9916 } 9917 9918 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9919 { 9920 /* 9921 * Return the register number of the AArch64 view of the AArch32 9922 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9923 * be that of the AArch32 mode the exception came from. 9924 */ 9925 int mode = env->uncached_cpsr & CPSR_M; 9926 9927 switch (aarch32_reg) { 9928 case 0 ... 7: 9929 return aarch32_reg; 9930 case 8 ... 12: 9931 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9932 case 13: 9933 switch (mode) { 9934 case ARM_CPU_MODE_USR: 9935 case ARM_CPU_MODE_SYS: 9936 return 13; 9937 case ARM_CPU_MODE_HYP: 9938 return 15; 9939 case ARM_CPU_MODE_IRQ: 9940 return 17; 9941 case ARM_CPU_MODE_SVC: 9942 return 19; 9943 case ARM_CPU_MODE_ABT: 9944 return 21; 9945 case ARM_CPU_MODE_UND: 9946 return 23; 9947 case ARM_CPU_MODE_FIQ: 9948 return 29; 9949 default: 9950 g_assert_not_reached(); 9951 } 9952 case 14: 9953 switch (mode) { 9954 case ARM_CPU_MODE_USR: 9955 case ARM_CPU_MODE_SYS: 9956 case ARM_CPU_MODE_HYP: 9957 return 14; 9958 case ARM_CPU_MODE_IRQ: 9959 return 16; 9960 case ARM_CPU_MODE_SVC: 9961 return 18; 9962 case ARM_CPU_MODE_ABT: 9963 return 20; 9964 case ARM_CPU_MODE_UND: 9965 return 22; 9966 case ARM_CPU_MODE_FIQ: 9967 return 30; 9968 default: 9969 g_assert_not_reached(); 9970 } 9971 case 15: 9972 return 31; 9973 default: 9974 g_assert_not_reached(); 9975 } 9976 } 9977 9978 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9979 { 9980 uint32_t ret = cpsr_read(env); 9981 9982 /* Move DIT to the correct location for SPSR_ELx */ 9983 if (ret & CPSR_DIT) { 9984 ret &= ~CPSR_DIT; 9985 ret |= PSTATE_DIT; 9986 } 9987 /* Merge PSTATE.SS into SPSR_ELx */ 9988 ret |= env->pstate & PSTATE_SS; 9989 9990 return ret; 9991 } 9992 9993 /* Handle exception entry to a target EL which is using AArch64 */ 9994 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9995 { 9996 ARMCPU *cpu = ARM_CPU(cs); 9997 CPUARMState *env = &cpu->env; 9998 unsigned int new_el = env->exception.target_el; 9999 target_ulong addr = env->cp15.vbar_el[new_el]; 10000 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10001 unsigned int old_mode; 10002 unsigned int cur_el = arm_current_el(env); 10003 int rt; 10004 10005 /* 10006 * Note that new_el can never be 0. If cur_el is 0, then 10007 * el0_a64 is is_a64(), else el0_a64 is ignored. 10008 */ 10009 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10010 10011 if (cur_el < new_el) { 10012 /* Entry vector offset depends on whether the implemented EL 10013 * immediately lower than the target level is using AArch32 or AArch64 10014 */ 10015 bool is_aa64; 10016 uint64_t hcr; 10017 10018 switch (new_el) { 10019 case 3: 10020 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10021 break; 10022 case 2: 10023 hcr = arm_hcr_el2_eff(env); 10024 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10025 is_aa64 = (hcr & HCR_RW) != 0; 10026 break; 10027 } 10028 /* fall through */ 10029 case 1: 10030 is_aa64 = is_a64(env); 10031 break; 10032 default: 10033 g_assert_not_reached(); 10034 } 10035 10036 if (is_aa64) { 10037 addr += 0x400; 10038 } else { 10039 addr += 0x600; 10040 } 10041 } else if (pstate_read(env) & PSTATE_SP) { 10042 addr += 0x200; 10043 } 10044 10045 switch (cs->exception_index) { 10046 case EXCP_PREFETCH_ABORT: 10047 case EXCP_DATA_ABORT: 10048 env->cp15.far_el[new_el] = env->exception.vaddress; 10049 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10050 env->cp15.far_el[new_el]); 10051 /* fall through */ 10052 case EXCP_BKPT: 10053 case EXCP_UDEF: 10054 case EXCP_SWI: 10055 case EXCP_HVC: 10056 case EXCP_HYP_TRAP: 10057 case EXCP_SMC: 10058 switch (syn_get_ec(env->exception.syndrome)) { 10059 case EC_ADVSIMDFPACCESSTRAP: 10060 /* 10061 * QEMU internal FP/SIMD syndromes from AArch32 include the 10062 * TA and coproc fields which are only exposed if the exception 10063 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10064 * AArch64 format syndrome. 10065 */ 10066 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10067 break; 10068 case EC_CP14RTTRAP: 10069 case EC_CP15RTTRAP: 10070 case EC_CP14DTTRAP: 10071 /* 10072 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10073 * the raw register field from the insn; when taking this to 10074 * AArch64 we must convert it to the AArch64 view of the register 10075 * number. Notice that we read a 4-bit AArch32 register number and 10076 * write back a 5-bit AArch64 one. 10077 */ 10078 rt = extract32(env->exception.syndrome, 5, 4); 10079 rt = aarch64_regnum(env, rt); 10080 env->exception.syndrome = deposit32(env->exception.syndrome, 10081 5, 5, rt); 10082 break; 10083 case EC_CP15RRTTRAP: 10084 case EC_CP14RRTTRAP: 10085 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10086 rt = extract32(env->exception.syndrome, 5, 4); 10087 rt = aarch64_regnum(env, rt); 10088 env->exception.syndrome = deposit32(env->exception.syndrome, 10089 5, 5, rt); 10090 rt = extract32(env->exception.syndrome, 10, 4); 10091 rt = aarch64_regnum(env, rt); 10092 env->exception.syndrome = deposit32(env->exception.syndrome, 10093 10, 5, rt); 10094 break; 10095 } 10096 env->cp15.esr_el[new_el] = env->exception.syndrome; 10097 break; 10098 case EXCP_IRQ: 10099 case EXCP_VIRQ: 10100 addr += 0x80; 10101 break; 10102 case EXCP_FIQ: 10103 case EXCP_VFIQ: 10104 addr += 0x100; 10105 break; 10106 default: 10107 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10108 } 10109 10110 if (is_a64(env)) { 10111 old_mode = pstate_read(env); 10112 aarch64_save_sp(env, arm_current_el(env)); 10113 env->elr_el[new_el] = env->pc; 10114 } else { 10115 old_mode = cpsr_read_for_spsr_elx(env); 10116 env->elr_el[new_el] = env->regs[15]; 10117 10118 aarch64_sync_32_to_64(env); 10119 10120 env->condexec_bits = 0; 10121 } 10122 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10123 10124 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10125 env->elr_el[new_el]); 10126 10127 if (cpu_isar_feature(aa64_pan, cpu)) { 10128 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10129 new_mode |= old_mode & PSTATE_PAN; 10130 switch (new_el) { 10131 case 2: 10132 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10133 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10134 != (HCR_E2H | HCR_TGE)) { 10135 break; 10136 } 10137 /* fall through */ 10138 case 1: 10139 /* ... the target is EL1 ... */ 10140 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10141 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10142 new_mode |= PSTATE_PAN; 10143 } 10144 break; 10145 } 10146 } 10147 if (cpu_isar_feature(aa64_mte, cpu)) { 10148 new_mode |= PSTATE_TCO; 10149 } 10150 10151 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10152 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10153 new_mode |= PSTATE_SSBS; 10154 } else { 10155 new_mode &= ~PSTATE_SSBS; 10156 } 10157 } 10158 10159 pstate_write(env, PSTATE_DAIF | new_mode); 10160 env->aarch64 = 1; 10161 aarch64_restore_sp(env, new_el); 10162 helper_rebuild_hflags_a64(env, new_el); 10163 10164 env->pc = addr; 10165 10166 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10167 new_el, env->pc, pstate_read(env)); 10168 } 10169 10170 /* 10171 * Do semihosting call and set the appropriate return value. All the 10172 * permission and validity checks have been done at translate time. 10173 * 10174 * We only see semihosting exceptions in TCG only as they are not 10175 * trapped to the hypervisor in KVM. 10176 */ 10177 #ifdef CONFIG_TCG 10178 static void handle_semihosting(CPUState *cs) 10179 { 10180 ARMCPU *cpu = ARM_CPU(cs); 10181 CPUARMState *env = &cpu->env; 10182 10183 if (is_a64(env)) { 10184 qemu_log_mask(CPU_LOG_INT, 10185 "...handling as semihosting call 0x%" PRIx64 "\n", 10186 env->xregs[0]); 10187 env->xregs[0] = do_common_semihosting(cs); 10188 env->pc += 4; 10189 } else { 10190 qemu_log_mask(CPU_LOG_INT, 10191 "...handling as semihosting call 0x%x\n", 10192 env->regs[0]); 10193 env->regs[0] = do_common_semihosting(cs); 10194 env->regs[15] += env->thumb ? 2 : 4; 10195 } 10196 } 10197 #endif 10198 10199 /* Handle a CPU exception for A and R profile CPUs. 10200 * Do any appropriate logging, handle PSCI calls, and then hand off 10201 * to the AArch64-entry or AArch32-entry function depending on the 10202 * target exception level's register width. 10203 * 10204 * Note: this is used for both TCG (as the do_interrupt tcg op), 10205 * and KVM to re-inject guest debug exceptions, and to 10206 * inject a Synchronous-External-Abort. 10207 */ 10208 void arm_cpu_do_interrupt(CPUState *cs) 10209 { 10210 ARMCPU *cpu = ARM_CPU(cs); 10211 CPUARMState *env = &cpu->env; 10212 unsigned int new_el = env->exception.target_el; 10213 10214 assert(!arm_feature(env, ARM_FEATURE_M)); 10215 10216 arm_log_exception(cs); 10217 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10218 new_el); 10219 if (qemu_loglevel_mask(CPU_LOG_INT) 10220 && !excp_is_internal(cs->exception_index)) { 10221 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10222 syn_get_ec(env->exception.syndrome), 10223 env->exception.syndrome); 10224 } 10225 10226 if (arm_is_psci_call(cpu, cs->exception_index)) { 10227 arm_handle_psci_call(cpu); 10228 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10229 return; 10230 } 10231 10232 /* 10233 * Semihosting semantics depend on the register width of the code 10234 * that caused the exception, not the target exception level, so 10235 * must be handled here. 10236 */ 10237 #ifdef CONFIG_TCG 10238 if (cs->exception_index == EXCP_SEMIHOST) { 10239 handle_semihosting(cs); 10240 return; 10241 } 10242 #endif 10243 10244 /* Hooks may change global state so BQL should be held, also the 10245 * BQL needs to be held for any modification of 10246 * cs->interrupt_request. 10247 */ 10248 g_assert(qemu_mutex_iothread_locked()); 10249 10250 arm_call_pre_el_change_hook(cpu); 10251 10252 assert(!excp_is_internal(cs->exception_index)); 10253 if (arm_el_is_aa64(env, new_el)) { 10254 arm_cpu_do_interrupt_aarch64(cs); 10255 } else { 10256 arm_cpu_do_interrupt_aarch32(cs); 10257 } 10258 10259 arm_call_el_change_hook(cpu); 10260 10261 if (!kvm_enabled()) { 10262 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10263 } 10264 } 10265 #endif /* !CONFIG_USER_ONLY */ 10266 10267 uint64_t arm_sctlr(CPUARMState *env, int el) 10268 { 10269 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10270 if (el == 0) { 10271 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10272 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10273 ? 2 : 1; 10274 } 10275 return env->cp15.sctlr_el[el]; 10276 } 10277 10278 /* Return the SCTLR value which controls this address translation regime */ 10279 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10280 { 10281 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10282 } 10283 10284 #ifndef CONFIG_USER_ONLY 10285 10286 /* Return true if the specified stage of address translation is disabled */ 10287 static inline bool regime_translation_disabled(CPUARMState *env, 10288 ARMMMUIdx mmu_idx) 10289 { 10290 uint64_t hcr_el2; 10291 10292 if (arm_feature(env, ARM_FEATURE_M)) { 10293 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10294 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10295 case R_V7M_MPU_CTRL_ENABLE_MASK: 10296 /* Enabled, but not for HardFault and NMI */ 10297 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10298 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10299 /* Enabled for all cases */ 10300 return false; 10301 case 0: 10302 default: 10303 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10304 * we warned about that in armv7m_nvic.c when the guest set it. 10305 */ 10306 return true; 10307 } 10308 } 10309 10310 hcr_el2 = arm_hcr_el2_eff(env); 10311 10312 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10313 /* HCR.DC means HCR.VM behaves as 1 */ 10314 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10315 } 10316 10317 if (hcr_el2 & HCR_TGE) { 10318 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10319 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10320 return true; 10321 } 10322 } 10323 10324 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10325 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10326 return true; 10327 } 10328 10329 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10330 } 10331 10332 static inline bool regime_translation_big_endian(CPUARMState *env, 10333 ARMMMUIdx mmu_idx) 10334 { 10335 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10336 } 10337 10338 /* Return the TTBR associated with this translation regime */ 10339 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10340 int ttbrn) 10341 { 10342 if (mmu_idx == ARMMMUIdx_Stage2) { 10343 return env->cp15.vttbr_el2; 10344 } 10345 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10346 return env->cp15.vsttbr_el2; 10347 } 10348 if (ttbrn == 0) { 10349 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10350 } else { 10351 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10352 } 10353 } 10354 10355 #endif /* !CONFIG_USER_ONLY */ 10356 10357 /* Convert a possible stage1+2 MMU index into the appropriate 10358 * stage 1 MMU index 10359 */ 10360 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10361 { 10362 switch (mmu_idx) { 10363 case ARMMMUIdx_SE10_0: 10364 return ARMMMUIdx_Stage1_SE0; 10365 case ARMMMUIdx_SE10_1: 10366 return ARMMMUIdx_Stage1_SE1; 10367 case ARMMMUIdx_SE10_1_PAN: 10368 return ARMMMUIdx_Stage1_SE1_PAN; 10369 case ARMMMUIdx_E10_0: 10370 return ARMMMUIdx_Stage1_E0; 10371 case ARMMMUIdx_E10_1: 10372 return ARMMMUIdx_Stage1_E1; 10373 case ARMMMUIdx_E10_1_PAN: 10374 return ARMMMUIdx_Stage1_E1_PAN; 10375 default: 10376 return mmu_idx; 10377 } 10378 } 10379 10380 /* Return true if the translation regime is using LPAE format page tables */ 10381 static inline bool regime_using_lpae_format(CPUARMState *env, 10382 ARMMMUIdx mmu_idx) 10383 { 10384 int el = regime_el(env, mmu_idx); 10385 if (el == 2 || arm_el_is_aa64(env, el)) { 10386 return true; 10387 } 10388 if (arm_feature(env, ARM_FEATURE_LPAE) 10389 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10390 return true; 10391 } 10392 return false; 10393 } 10394 10395 /* Returns true if the stage 1 translation regime is using LPAE format page 10396 * tables. Used when raising alignment exceptions, whose FSR changes depending 10397 * on whether the long or short descriptor format is in use. */ 10398 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10399 { 10400 mmu_idx = stage_1_mmu_idx(mmu_idx); 10401 10402 return regime_using_lpae_format(env, mmu_idx); 10403 } 10404 10405 #ifndef CONFIG_USER_ONLY 10406 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10407 { 10408 switch (mmu_idx) { 10409 case ARMMMUIdx_SE10_0: 10410 case ARMMMUIdx_E20_0: 10411 case ARMMMUIdx_SE20_0: 10412 case ARMMMUIdx_Stage1_E0: 10413 case ARMMMUIdx_Stage1_SE0: 10414 case ARMMMUIdx_MUser: 10415 case ARMMMUIdx_MSUser: 10416 case ARMMMUIdx_MUserNegPri: 10417 case ARMMMUIdx_MSUserNegPri: 10418 return true; 10419 default: 10420 return false; 10421 case ARMMMUIdx_E10_0: 10422 case ARMMMUIdx_E10_1: 10423 case ARMMMUIdx_E10_1_PAN: 10424 g_assert_not_reached(); 10425 } 10426 } 10427 10428 /* Translate section/page access permissions to page 10429 * R/W protection flags 10430 * 10431 * @env: CPUARMState 10432 * @mmu_idx: MMU index indicating required translation regime 10433 * @ap: The 3-bit access permissions (AP[2:0]) 10434 * @domain_prot: The 2-bit domain access permissions 10435 */ 10436 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10437 int ap, int domain_prot) 10438 { 10439 bool is_user = regime_is_user(env, mmu_idx); 10440 10441 if (domain_prot == 3) { 10442 return PAGE_READ | PAGE_WRITE; 10443 } 10444 10445 switch (ap) { 10446 case 0: 10447 if (arm_feature(env, ARM_FEATURE_V7)) { 10448 return 0; 10449 } 10450 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10451 case SCTLR_S: 10452 return is_user ? 0 : PAGE_READ; 10453 case SCTLR_R: 10454 return PAGE_READ; 10455 default: 10456 return 0; 10457 } 10458 case 1: 10459 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10460 case 2: 10461 if (is_user) { 10462 return PAGE_READ; 10463 } else { 10464 return PAGE_READ | PAGE_WRITE; 10465 } 10466 case 3: 10467 return PAGE_READ | PAGE_WRITE; 10468 case 4: /* Reserved. */ 10469 return 0; 10470 case 5: 10471 return is_user ? 0 : PAGE_READ; 10472 case 6: 10473 return PAGE_READ; 10474 case 7: 10475 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10476 return 0; 10477 } 10478 return PAGE_READ; 10479 default: 10480 g_assert_not_reached(); 10481 } 10482 } 10483 10484 /* Translate section/page access permissions to page 10485 * R/W protection flags. 10486 * 10487 * @ap: The 2-bit simple AP (AP[2:1]) 10488 * @is_user: TRUE if accessing from PL0 10489 */ 10490 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10491 { 10492 switch (ap) { 10493 case 0: 10494 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10495 case 1: 10496 return PAGE_READ | PAGE_WRITE; 10497 case 2: 10498 return is_user ? 0 : PAGE_READ; 10499 case 3: 10500 return PAGE_READ; 10501 default: 10502 g_assert_not_reached(); 10503 } 10504 } 10505 10506 static inline int 10507 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10508 { 10509 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10510 } 10511 10512 /* Translate S2 section/page access permissions to protection flags 10513 * 10514 * @env: CPUARMState 10515 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10516 * @xn: XN (execute-never) bits 10517 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10518 */ 10519 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10520 { 10521 int prot = 0; 10522 10523 if (s2ap & 1) { 10524 prot |= PAGE_READ; 10525 } 10526 if (s2ap & 2) { 10527 prot |= PAGE_WRITE; 10528 } 10529 10530 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10531 switch (xn) { 10532 case 0: 10533 prot |= PAGE_EXEC; 10534 break; 10535 case 1: 10536 if (s1_is_el0) { 10537 prot |= PAGE_EXEC; 10538 } 10539 break; 10540 case 2: 10541 break; 10542 case 3: 10543 if (!s1_is_el0) { 10544 prot |= PAGE_EXEC; 10545 } 10546 break; 10547 default: 10548 g_assert_not_reached(); 10549 } 10550 } else { 10551 if (!extract32(xn, 1, 1)) { 10552 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10553 prot |= PAGE_EXEC; 10554 } 10555 } 10556 } 10557 return prot; 10558 } 10559 10560 /* Translate section/page access permissions to protection flags 10561 * 10562 * @env: CPUARMState 10563 * @mmu_idx: MMU index indicating required translation regime 10564 * @is_aa64: TRUE if AArch64 10565 * @ap: The 2-bit simple AP (AP[2:1]) 10566 * @ns: NS (non-secure) bit 10567 * @xn: XN (execute-never) bit 10568 * @pxn: PXN (privileged execute-never) bit 10569 */ 10570 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10571 int ap, int ns, int xn, int pxn) 10572 { 10573 bool is_user = regime_is_user(env, mmu_idx); 10574 int prot_rw, user_rw; 10575 bool have_wxn; 10576 int wxn = 0; 10577 10578 assert(mmu_idx != ARMMMUIdx_Stage2); 10579 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10580 10581 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10582 if (is_user) { 10583 prot_rw = user_rw; 10584 } else { 10585 if (user_rw && regime_is_pan(env, mmu_idx)) { 10586 /* PAN forbids data accesses but doesn't affect insn fetch */ 10587 prot_rw = 0; 10588 } else { 10589 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10590 } 10591 } 10592 10593 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10594 return prot_rw; 10595 } 10596 10597 /* TODO have_wxn should be replaced with 10598 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10599 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10600 * compatible processors have EL2, which is required for [U]WXN. 10601 */ 10602 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10603 10604 if (have_wxn) { 10605 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10606 } 10607 10608 if (is_aa64) { 10609 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10610 xn = pxn || (user_rw & PAGE_WRITE); 10611 } 10612 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10613 switch (regime_el(env, mmu_idx)) { 10614 case 1: 10615 case 3: 10616 if (is_user) { 10617 xn = xn || !(user_rw & PAGE_READ); 10618 } else { 10619 int uwxn = 0; 10620 if (have_wxn) { 10621 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10622 } 10623 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10624 (uwxn && (user_rw & PAGE_WRITE)); 10625 } 10626 break; 10627 case 2: 10628 break; 10629 } 10630 } else { 10631 xn = wxn = 0; 10632 } 10633 10634 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10635 return prot_rw; 10636 } 10637 return prot_rw | PAGE_EXEC; 10638 } 10639 10640 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10641 uint32_t *table, uint32_t address) 10642 { 10643 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10644 TCR *tcr = regime_tcr(env, mmu_idx); 10645 10646 if (address & tcr->mask) { 10647 if (tcr->raw_tcr & TTBCR_PD1) { 10648 /* Translation table walk disabled for TTBR1 */ 10649 return false; 10650 } 10651 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10652 } else { 10653 if (tcr->raw_tcr & TTBCR_PD0) { 10654 /* Translation table walk disabled for TTBR0 */ 10655 return false; 10656 } 10657 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10658 } 10659 *table |= (address >> 18) & 0x3ffc; 10660 return true; 10661 } 10662 10663 /* Translate a S1 pagetable walk through S2 if needed. */ 10664 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10665 hwaddr addr, bool *is_secure, 10666 ARMMMUFaultInfo *fi) 10667 { 10668 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10669 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10670 target_ulong s2size; 10671 hwaddr s2pa; 10672 int s2prot; 10673 int ret; 10674 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10675 : ARMMMUIdx_Stage2; 10676 ARMCacheAttrs cacheattrs = {}; 10677 MemTxAttrs txattrs = {}; 10678 10679 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10680 &s2pa, &txattrs, &s2prot, &s2size, fi, 10681 &cacheattrs); 10682 if (ret) { 10683 assert(fi->type != ARMFault_None); 10684 fi->s2addr = addr; 10685 fi->stage2 = true; 10686 fi->s1ptw = true; 10687 fi->s1ns = !*is_secure; 10688 return ~0; 10689 } 10690 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10691 (cacheattrs.attrs & 0xf0) == 0) { 10692 /* 10693 * PTW set and S1 walk touched S2 Device memory: 10694 * generate Permission fault. 10695 */ 10696 fi->type = ARMFault_Permission; 10697 fi->s2addr = addr; 10698 fi->stage2 = true; 10699 fi->s1ptw = true; 10700 fi->s1ns = !*is_secure; 10701 return ~0; 10702 } 10703 10704 if (arm_is_secure_below_el3(env)) { 10705 /* Check if page table walk is to secure or non-secure PA space. */ 10706 if (*is_secure) { 10707 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10708 } else { 10709 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10710 } 10711 } else { 10712 assert(!*is_secure); 10713 } 10714 10715 addr = s2pa; 10716 } 10717 return addr; 10718 } 10719 10720 /* All loads done in the course of a page table walk go through here. */ 10721 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10722 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10723 { 10724 ARMCPU *cpu = ARM_CPU(cs); 10725 CPUARMState *env = &cpu->env; 10726 MemTxAttrs attrs = {}; 10727 MemTxResult result = MEMTX_OK; 10728 AddressSpace *as; 10729 uint32_t data; 10730 10731 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10732 attrs.secure = is_secure; 10733 as = arm_addressspace(cs, attrs); 10734 if (fi->s1ptw) { 10735 return 0; 10736 } 10737 if (regime_translation_big_endian(env, mmu_idx)) { 10738 data = address_space_ldl_be(as, addr, attrs, &result); 10739 } else { 10740 data = address_space_ldl_le(as, addr, attrs, &result); 10741 } 10742 if (result == MEMTX_OK) { 10743 return data; 10744 } 10745 fi->type = ARMFault_SyncExternalOnWalk; 10746 fi->ea = arm_extabort_type(result); 10747 return 0; 10748 } 10749 10750 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10751 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10752 { 10753 ARMCPU *cpu = ARM_CPU(cs); 10754 CPUARMState *env = &cpu->env; 10755 MemTxAttrs attrs = {}; 10756 MemTxResult result = MEMTX_OK; 10757 AddressSpace *as; 10758 uint64_t data; 10759 10760 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10761 attrs.secure = is_secure; 10762 as = arm_addressspace(cs, attrs); 10763 if (fi->s1ptw) { 10764 return 0; 10765 } 10766 if (regime_translation_big_endian(env, mmu_idx)) { 10767 data = address_space_ldq_be(as, addr, attrs, &result); 10768 } else { 10769 data = address_space_ldq_le(as, addr, attrs, &result); 10770 } 10771 if (result == MEMTX_OK) { 10772 return data; 10773 } 10774 fi->type = ARMFault_SyncExternalOnWalk; 10775 fi->ea = arm_extabort_type(result); 10776 return 0; 10777 } 10778 10779 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10780 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10781 hwaddr *phys_ptr, int *prot, 10782 target_ulong *page_size, 10783 ARMMMUFaultInfo *fi) 10784 { 10785 CPUState *cs = env_cpu(env); 10786 int level = 1; 10787 uint32_t table; 10788 uint32_t desc; 10789 int type; 10790 int ap; 10791 int domain = 0; 10792 int domain_prot; 10793 hwaddr phys_addr; 10794 uint32_t dacr; 10795 10796 /* Pagetable walk. */ 10797 /* Lookup l1 descriptor. */ 10798 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10799 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10800 fi->type = ARMFault_Translation; 10801 goto do_fault; 10802 } 10803 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10804 mmu_idx, fi); 10805 if (fi->type != ARMFault_None) { 10806 goto do_fault; 10807 } 10808 type = (desc & 3); 10809 domain = (desc >> 5) & 0x0f; 10810 if (regime_el(env, mmu_idx) == 1) { 10811 dacr = env->cp15.dacr_ns; 10812 } else { 10813 dacr = env->cp15.dacr_s; 10814 } 10815 domain_prot = (dacr >> (domain * 2)) & 3; 10816 if (type == 0) { 10817 /* Section translation fault. */ 10818 fi->type = ARMFault_Translation; 10819 goto do_fault; 10820 } 10821 if (type != 2) { 10822 level = 2; 10823 } 10824 if (domain_prot == 0 || domain_prot == 2) { 10825 fi->type = ARMFault_Domain; 10826 goto do_fault; 10827 } 10828 if (type == 2) { 10829 /* 1Mb section. */ 10830 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10831 ap = (desc >> 10) & 3; 10832 *page_size = 1024 * 1024; 10833 } else { 10834 /* Lookup l2 entry. */ 10835 if (type == 1) { 10836 /* Coarse pagetable. */ 10837 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10838 } else { 10839 /* Fine pagetable. */ 10840 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10841 } 10842 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10843 mmu_idx, fi); 10844 if (fi->type != ARMFault_None) { 10845 goto do_fault; 10846 } 10847 switch (desc & 3) { 10848 case 0: /* Page translation fault. */ 10849 fi->type = ARMFault_Translation; 10850 goto do_fault; 10851 case 1: /* 64k page. */ 10852 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10853 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10854 *page_size = 0x10000; 10855 break; 10856 case 2: /* 4k page. */ 10857 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10858 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10859 *page_size = 0x1000; 10860 break; 10861 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10862 if (type == 1) { 10863 /* ARMv6/XScale extended small page format */ 10864 if (arm_feature(env, ARM_FEATURE_XSCALE) 10865 || arm_feature(env, ARM_FEATURE_V6)) { 10866 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10867 *page_size = 0x1000; 10868 } else { 10869 /* UNPREDICTABLE in ARMv5; we choose to take a 10870 * page translation fault. 10871 */ 10872 fi->type = ARMFault_Translation; 10873 goto do_fault; 10874 } 10875 } else { 10876 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10877 *page_size = 0x400; 10878 } 10879 ap = (desc >> 4) & 3; 10880 break; 10881 default: 10882 /* Never happens, but compiler isn't smart enough to tell. */ 10883 abort(); 10884 } 10885 } 10886 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10887 *prot |= *prot ? PAGE_EXEC : 0; 10888 if (!(*prot & (1 << access_type))) { 10889 /* Access permission fault. */ 10890 fi->type = ARMFault_Permission; 10891 goto do_fault; 10892 } 10893 *phys_ptr = phys_addr; 10894 return false; 10895 do_fault: 10896 fi->domain = domain; 10897 fi->level = level; 10898 return true; 10899 } 10900 10901 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10902 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10903 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10904 target_ulong *page_size, ARMMMUFaultInfo *fi) 10905 { 10906 CPUState *cs = env_cpu(env); 10907 ARMCPU *cpu = env_archcpu(env); 10908 int level = 1; 10909 uint32_t table; 10910 uint32_t desc; 10911 uint32_t xn; 10912 uint32_t pxn = 0; 10913 int type; 10914 int ap; 10915 int domain = 0; 10916 int domain_prot; 10917 hwaddr phys_addr; 10918 uint32_t dacr; 10919 bool ns; 10920 10921 /* Pagetable walk. */ 10922 /* Lookup l1 descriptor. */ 10923 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10924 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10925 fi->type = ARMFault_Translation; 10926 goto do_fault; 10927 } 10928 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10929 mmu_idx, fi); 10930 if (fi->type != ARMFault_None) { 10931 goto do_fault; 10932 } 10933 type = (desc & 3); 10934 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10935 /* Section translation fault, or attempt to use the encoding 10936 * which is Reserved on implementations without PXN. 10937 */ 10938 fi->type = ARMFault_Translation; 10939 goto do_fault; 10940 } 10941 if ((type == 1) || !(desc & (1 << 18))) { 10942 /* Page or Section. */ 10943 domain = (desc >> 5) & 0x0f; 10944 } 10945 if (regime_el(env, mmu_idx) == 1) { 10946 dacr = env->cp15.dacr_ns; 10947 } else { 10948 dacr = env->cp15.dacr_s; 10949 } 10950 if (type == 1) { 10951 level = 2; 10952 } 10953 domain_prot = (dacr >> (domain * 2)) & 3; 10954 if (domain_prot == 0 || domain_prot == 2) { 10955 /* Section or Page domain fault */ 10956 fi->type = ARMFault_Domain; 10957 goto do_fault; 10958 } 10959 if (type != 1) { 10960 if (desc & (1 << 18)) { 10961 /* Supersection. */ 10962 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10963 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10964 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10965 *page_size = 0x1000000; 10966 } else { 10967 /* Section. */ 10968 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10969 *page_size = 0x100000; 10970 } 10971 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10972 xn = desc & (1 << 4); 10973 pxn = desc & 1; 10974 ns = extract32(desc, 19, 1); 10975 } else { 10976 if (cpu_isar_feature(aa32_pxn, cpu)) { 10977 pxn = (desc >> 2) & 1; 10978 } 10979 ns = extract32(desc, 3, 1); 10980 /* Lookup l2 entry. */ 10981 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10982 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10983 mmu_idx, fi); 10984 if (fi->type != ARMFault_None) { 10985 goto do_fault; 10986 } 10987 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10988 switch (desc & 3) { 10989 case 0: /* Page translation fault. */ 10990 fi->type = ARMFault_Translation; 10991 goto do_fault; 10992 case 1: /* 64k page. */ 10993 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10994 xn = desc & (1 << 15); 10995 *page_size = 0x10000; 10996 break; 10997 case 2: case 3: /* 4k page. */ 10998 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10999 xn = desc & 1; 11000 *page_size = 0x1000; 11001 break; 11002 default: 11003 /* Never happens, but compiler isn't smart enough to tell. */ 11004 abort(); 11005 } 11006 } 11007 if (domain_prot == 3) { 11008 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11009 } else { 11010 if (pxn && !regime_is_user(env, mmu_idx)) { 11011 xn = 1; 11012 } 11013 if (xn && access_type == MMU_INST_FETCH) { 11014 fi->type = ARMFault_Permission; 11015 goto do_fault; 11016 } 11017 11018 if (arm_feature(env, ARM_FEATURE_V6K) && 11019 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11020 /* The simplified model uses AP[0] as an access control bit. */ 11021 if ((ap & 1) == 0) { 11022 /* Access flag fault. */ 11023 fi->type = ARMFault_AccessFlag; 11024 goto do_fault; 11025 } 11026 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11027 } else { 11028 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11029 } 11030 if (*prot && !xn) { 11031 *prot |= PAGE_EXEC; 11032 } 11033 if (!(*prot & (1 << access_type))) { 11034 /* Access permission fault. */ 11035 fi->type = ARMFault_Permission; 11036 goto do_fault; 11037 } 11038 } 11039 if (ns) { 11040 /* The NS bit will (as required by the architecture) have no effect if 11041 * the CPU doesn't support TZ or this is a non-secure translation 11042 * regime, because the attribute will already be non-secure. 11043 */ 11044 attrs->secure = false; 11045 } 11046 *phys_ptr = phys_addr; 11047 return false; 11048 do_fault: 11049 fi->domain = domain; 11050 fi->level = level; 11051 return true; 11052 } 11053 11054 /* 11055 * check_s2_mmu_setup 11056 * @cpu: ARMCPU 11057 * @is_aa64: True if the translation regime is in AArch64 state 11058 * @startlevel: Suggested starting level 11059 * @inputsize: Bitsize of IPAs 11060 * @stride: Page-table stride (See the ARM ARM) 11061 * 11062 * Returns true if the suggested S2 translation parameters are OK and 11063 * false otherwise. 11064 */ 11065 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11066 int inputsize, int stride) 11067 { 11068 const int grainsize = stride + 3; 11069 int startsizecheck; 11070 11071 /* Negative levels are never allowed. */ 11072 if (level < 0) { 11073 return false; 11074 } 11075 11076 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11077 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11078 return false; 11079 } 11080 11081 if (is_aa64) { 11082 CPUARMState *env = &cpu->env; 11083 unsigned int pamax = arm_pamax(cpu); 11084 11085 switch (stride) { 11086 case 13: /* 64KB Pages. */ 11087 if (level == 0 || (level == 1 && pamax <= 42)) { 11088 return false; 11089 } 11090 break; 11091 case 11: /* 16KB Pages. */ 11092 if (level == 0 || (level == 1 && pamax <= 40)) { 11093 return false; 11094 } 11095 break; 11096 case 9: /* 4KB Pages. */ 11097 if (level == 0 && pamax <= 42) { 11098 return false; 11099 } 11100 break; 11101 default: 11102 g_assert_not_reached(); 11103 } 11104 11105 /* Inputsize checks. */ 11106 if (inputsize > pamax && 11107 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 11108 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11109 return false; 11110 } 11111 } else { 11112 /* AArch32 only supports 4KB pages. Assert on that. */ 11113 assert(stride == 9); 11114 11115 if (level == 0) { 11116 return false; 11117 } 11118 } 11119 return true; 11120 } 11121 11122 /* Translate from the 4-bit stage 2 representation of 11123 * memory attributes (without cache-allocation hints) to 11124 * the 8-bit representation of the stage 1 MAIR registers 11125 * (which includes allocation hints). 11126 * 11127 * ref: shared/translation/attrs/S2AttrDecode() 11128 * .../S2ConvertAttrsHints() 11129 */ 11130 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11131 { 11132 uint8_t hiattr = extract32(s2attrs, 2, 2); 11133 uint8_t loattr = extract32(s2attrs, 0, 2); 11134 uint8_t hihint = 0, lohint = 0; 11135 11136 if (hiattr != 0) { /* normal memory */ 11137 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11138 hiattr = loattr = 1; /* non-cacheable */ 11139 } else { 11140 if (hiattr != 1) { /* Write-through or write-back */ 11141 hihint = 3; /* RW allocate */ 11142 } 11143 if (loattr != 1) { /* Write-through or write-back */ 11144 lohint = 3; /* RW allocate */ 11145 } 11146 } 11147 } 11148 11149 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11150 } 11151 #endif /* !CONFIG_USER_ONLY */ 11152 11153 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11154 { 11155 if (regime_has_2_ranges(mmu_idx)) { 11156 return extract64(tcr, 37, 2); 11157 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11158 return 0; /* VTCR_EL2 */ 11159 } else { 11160 /* Replicate the single TBI bit so we always have 2 bits. */ 11161 return extract32(tcr, 20, 1) * 3; 11162 } 11163 } 11164 11165 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11166 { 11167 if (regime_has_2_ranges(mmu_idx)) { 11168 return extract64(tcr, 51, 2); 11169 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11170 return 0; /* VTCR_EL2 */ 11171 } else { 11172 /* Replicate the single TBID bit so we always have 2 bits. */ 11173 return extract32(tcr, 29, 1) * 3; 11174 } 11175 } 11176 11177 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11178 { 11179 if (regime_has_2_ranges(mmu_idx)) { 11180 return extract64(tcr, 57, 2); 11181 } else { 11182 /* Replicate the single TCMA bit so we always have 2 bits. */ 11183 return extract32(tcr, 30, 1) * 3; 11184 } 11185 } 11186 11187 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11188 ARMMMUIdx mmu_idx, bool data) 11189 { 11190 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11191 bool epd, hpd, using16k, using64k; 11192 int select, tsz, tbi, max_tsz; 11193 11194 if (!regime_has_2_ranges(mmu_idx)) { 11195 select = 0; 11196 tsz = extract32(tcr, 0, 6); 11197 using64k = extract32(tcr, 14, 1); 11198 using16k = extract32(tcr, 15, 1); 11199 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11200 /* VTCR_EL2 */ 11201 hpd = false; 11202 } else { 11203 hpd = extract32(tcr, 24, 1); 11204 } 11205 epd = false; 11206 } else { 11207 /* 11208 * Bit 55 is always between the two regions, and is canonical for 11209 * determining if address tagging is enabled. 11210 */ 11211 select = extract64(va, 55, 1); 11212 if (!select) { 11213 tsz = extract32(tcr, 0, 6); 11214 epd = extract32(tcr, 7, 1); 11215 using64k = extract32(tcr, 14, 1); 11216 using16k = extract32(tcr, 15, 1); 11217 hpd = extract64(tcr, 41, 1); 11218 } else { 11219 int tg = extract32(tcr, 30, 2); 11220 using16k = tg == 1; 11221 using64k = tg == 3; 11222 tsz = extract32(tcr, 16, 6); 11223 epd = extract32(tcr, 23, 1); 11224 hpd = extract64(tcr, 42, 1); 11225 } 11226 } 11227 11228 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11229 max_tsz = 48 - using64k; 11230 } else { 11231 max_tsz = 39; 11232 } 11233 11234 tsz = MIN(tsz, max_tsz); 11235 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11236 11237 /* Present TBI as a composite with TBID. */ 11238 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11239 if (!data) { 11240 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11241 } 11242 tbi = (tbi >> select) & 1; 11243 11244 return (ARMVAParameters) { 11245 .tsz = tsz, 11246 .select = select, 11247 .tbi = tbi, 11248 .epd = epd, 11249 .hpd = hpd, 11250 .using16k = using16k, 11251 .using64k = using64k, 11252 }; 11253 } 11254 11255 #ifndef CONFIG_USER_ONLY 11256 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11257 ARMMMUIdx mmu_idx) 11258 { 11259 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11260 uint32_t el = regime_el(env, mmu_idx); 11261 int select, tsz; 11262 bool epd, hpd; 11263 11264 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11265 11266 if (mmu_idx == ARMMMUIdx_Stage2) { 11267 /* VTCR */ 11268 bool sext = extract32(tcr, 4, 1); 11269 bool sign = extract32(tcr, 3, 1); 11270 11271 /* 11272 * If the sign-extend bit is not the same as t0sz[3], the result 11273 * is unpredictable. Flag this as a guest error. 11274 */ 11275 if (sign != sext) { 11276 qemu_log_mask(LOG_GUEST_ERROR, 11277 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11278 } 11279 tsz = sextract32(tcr, 0, 4) + 8; 11280 select = 0; 11281 hpd = false; 11282 epd = false; 11283 } else if (el == 2) { 11284 /* HTCR */ 11285 tsz = extract32(tcr, 0, 3); 11286 select = 0; 11287 hpd = extract64(tcr, 24, 1); 11288 epd = false; 11289 } else { 11290 int t0sz = extract32(tcr, 0, 3); 11291 int t1sz = extract32(tcr, 16, 3); 11292 11293 if (t1sz == 0) { 11294 select = va > (0xffffffffu >> t0sz); 11295 } else { 11296 /* Note that we will detect errors later. */ 11297 select = va >= ~(0xffffffffu >> t1sz); 11298 } 11299 if (!select) { 11300 tsz = t0sz; 11301 epd = extract32(tcr, 7, 1); 11302 hpd = extract64(tcr, 41, 1); 11303 } else { 11304 tsz = t1sz; 11305 epd = extract32(tcr, 23, 1); 11306 hpd = extract64(tcr, 42, 1); 11307 } 11308 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11309 hpd &= extract32(tcr, 6, 1); 11310 } 11311 11312 return (ARMVAParameters) { 11313 .tsz = tsz, 11314 .select = select, 11315 .epd = epd, 11316 .hpd = hpd, 11317 }; 11318 } 11319 11320 /** 11321 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11322 * 11323 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11324 * prot and page_size may not be filled in, and the populated fsr value provides 11325 * information on why the translation aborted, in the format of a long-format 11326 * DFSR/IFSR fault register, with the following caveats: 11327 * * the WnR bit is never set (the caller must do this). 11328 * 11329 * @env: CPUARMState 11330 * @address: virtual address to get physical address for 11331 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11332 * @mmu_idx: MMU index indicating required translation regime 11333 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11334 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11335 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11336 * @phys_ptr: set to the physical address corresponding to the virtual address 11337 * @attrs: set to the memory transaction attributes to use 11338 * @prot: set to the permissions for the page containing phys_ptr 11339 * @page_size_ptr: set to the size of the page containing phys_ptr 11340 * @fi: set to fault info if the translation fails 11341 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11342 */ 11343 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11344 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11345 bool s1_is_el0, 11346 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11347 target_ulong *page_size_ptr, 11348 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11349 { 11350 ARMCPU *cpu = env_archcpu(env); 11351 CPUState *cs = CPU(cpu); 11352 /* Read an LPAE long-descriptor translation table. */ 11353 ARMFaultType fault_type = ARMFault_Translation; 11354 uint32_t level; 11355 ARMVAParameters param; 11356 uint64_t ttbr; 11357 hwaddr descaddr, indexmask, indexmask_grainsize; 11358 uint32_t tableattrs; 11359 target_ulong page_size; 11360 uint32_t attrs; 11361 int32_t stride; 11362 int addrsize, inputsize; 11363 TCR *tcr = regime_tcr(env, mmu_idx); 11364 int ap, ns, xn, pxn; 11365 uint32_t el = regime_el(env, mmu_idx); 11366 uint64_t descaddrmask; 11367 bool aarch64 = arm_el_is_aa64(env, el); 11368 bool guarded = false; 11369 11370 /* TODO: This code does not support shareability levels. */ 11371 if (aarch64) { 11372 param = aa64_va_parameters(env, address, mmu_idx, 11373 access_type != MMU_INST_FETCH); 11374 level = 0; 11375 addrsize = 64 - 8 * param.tbi; 11376 inputsize = 64 - param.tsz; 11377 } else { 11378 param = aa32_va_parameters(env, address, mmu_idx); 11379 level = 1; 11380 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11381 inputsize = addrsize - param.tsz; 11382 } 11383 11384 /* 11385 * We determined the region when collecting the parameters, but we 11386 * have not yet validated that the address is valid for the region. 11387 * Extract the top bits and verify that they all match select. 11388 * 11389 * For aa32, if inputsize == addrsize, then we have selected the 11390 * region by exclusion in aa32_va_parameters and there is no more 11391 * validation to do here. 11392 */ 11393 if (inputsize < addrsize) { 11394 target_ulong top_bits = sextract64(address, inputsize, 11395 addrsize - inputsize); 11396 if (-top_bits != param.select) { 11397 /* The gap between the two regions is a Translation fault */ 11398 fault_type = ARMFault_Translation; 11399 goto do_fault; 11400 } 11401 } 11402 11403 if (param.using64k) { 11404 stride = 13; 11405 } else if (param.using16k) { 11406 stride = 11; 11407 } else { 11408 stride = 9; 11409 } 11410 11411 /* Note that QEMU ignores shareability and cacheability attributes, 11412 * so we don't need to do anything with the SH, ORGN, IRGN fields 11413 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11414 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11415 * implement any ASID-like capability so we can ignore it (instead 11416 * we will always flush the TLB any time the ASID is changed). 11417 */ 11418 ttbr = regime_ttbr(env, mmu_idx, param.select); 11419 11420 /* Here we should have set up all the parameters for the translation: 11421 * inputsize, ttbr, epd, stride, tbi 11422 */ 11423 11424 if (param.epd) { 11425 /* Translation table walk disabled => Translation fault on TLB miss 11426 * Note: This is always 0 on 64-bit EL2 and EL3. 11427 */ 11428 goto do_fault; 11429 } 11430 11431 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11432 /* The starting level depends on the virtual address size (which can 11433 * be up to 48 bits) and the translation granule size. It indicates 11434 * the number of strides (stride bits at a time) needed to 11435 * consume the bits of the input address. In the pseudocode this is: 11436 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11437 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11438 * our 'stride + 3' and 'stride' is our 'stride'. 11439 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11440 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11441 * = 4 - (inputsize - 4) / stride; 11442 */ 11443 level = 4 - (inputsize - 4) / stride; 11444 } else { 11445 /* For stage 2 translations the starting level is specified by the 11446 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11447 */ 11448 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11449 uint32_t startlevel; 11450 bool ok; 11451 11452 if (!aarch64 || stride == 9) { 11453 /* AArch32 or 4KB pages */ 11454 startlevel = 2 - sl0; 11455 11456 if (cpu_isar_feature(aa64_st, cpu)) { 11457 startlevel &= 3; 11458 } 11459 } else { 11460 /* 16KB or 64KB pages */ 11461 startlevel = 3 - sl0; 11462 } 11463 11464 /* Check that the starting level is valid. */ 11465 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11466 inputsize, stride); 11467 if (!ok) { 11468 fault_type = ARMFault_Translation; 11469 goto do_fault; 11470 } 11471 level = startlevel; 11472 } 11473 11474 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11475 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11476 11477 /* Now we can extract the actual base address from the TTBR */ 11478 descaddr = extract64(ttbr, 0, 48); 11479 /* 11480 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11481 * and also to mask out CnP (bit 0) which could validly be non-zero. 11482 */ 11483 descaddr &= ~indexmask; 11484 11485 /* The address field in the descriptor goes up to bit 39 for ARMv7 11486 * but up to bit 47 for ARMv8, but we use the descaddrmask 11487 * up to bit 39 for AArch32, because we don't need other bits in that case 11488 * to construct next descriptor address (anyway they should be all zeroes). 11489 */ 11490 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11491 ~indexmask_grainsize; 11492 11493 /* Secure accesses start with the page table in secure memory and 11494 * can be downgraded to non-secure at any step. Non-secure accesses 11495 * remain non-secure. We implement this by just ORing in the NSTable/NS 11496 * bits at each step. 11497 */ 11498 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11499 for (;;) { 11500 uint64_t descriptor; 11501 bool nstable; 11502 11503 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11504 descaddr &= ~7ULL; 11505 nstable = extract32(tableattrs, 4, 1); 11506 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11507 if (fi->type != ARMFault_None) { 11508 goto do_fault; 11509 } 11510 11511 if (!(descriptor & 1) || 11512 (!(descriptor & 2) && (level == 3))) { 11513 /* Invalid, or the Reserved level 3 encoding */ 11514 goto do_fault; 11515 } 11516 descaddr = descriptor & descaddrmask; 11517 11518 if ((descriptor & 2) && (level < 3)) { 11519 /* Table entry. The top five bits are attributes which may 11520 * propagate down through lower levels of the table (and 11521 * which are all arranged so that 0 means "no effect", so 11522 * we can gather them up by ORing in the bits at each level). 11523 */ 11524 tableattrs |= extract64(descriptor, 59, 5); 11525 level++; 11526 indexmask = indexmask_grainsize; 11527 continue; 11528 } 11529 /* Block entry at level 1 or 2, or page entry at level 3. 11530 * These are basically the same thing, although the number 11531 * of bits we pull in from the vaddr varies. 11532 */ 11533 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11534 descaddr |= (address & (page_size - 1)); 11535 /* Extract attributes from the descriptor */ 11536 attrs = extract64(descriptor, 2, 10) 11537 | (extract64(descriptor, 52, 12) << 10); 11538 11539 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11540 /* Stage 2 table descriptors do not include any attribute fields */ 11541 break; 11542 } 11543 /* Merge in attributes from table descriptors */ 11544 attrs |= nstable << 3; /* NS */ 11545 guarded = extract64(descriptor, 50, 1); /* GP */ 11546 if (param.hpd) { 11547 /* HPD disables all the table attributes except NSTable. */ 11548 break; 11549 } 11550 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11551 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11552 * means "force PL1 access only", which means forcing AP[1] to 0. 11553 */ 11554 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11555 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11556 break; 11557 } 11558 /* Here descaddr is the final physical address, and attributes 11559 * are all in attrs. 11560 */ 11561 fault_type = ARMFault_AccessFlag; 11562 if ((attrs & (1 << 8)) == 0) { 11563 /* Access flag */ 11564 goto do_fault; 11565 } 11566 11567 ap = extract32(attrs, 4, 2); 11568 11569 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11570 ns = mmu_idx == ARMMMUIdx_Stage2; 11571 xn = extract32(attrs, 11, 2); 11572 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11573 } else { 11574 ns = extract32(attrs, 3, 1); 11575 xn = extract32(attrs, 12, 1); 11576 pxn = extract32(attrs, 11, 1); 11577 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11578 } 11579 11580 fault_type = ARMFault_Permission; 11581 if (!(*prot & (1 << access_type))) { 11582 goto do_fault; 11583 } 11584 11585 if (ns) { 11586 /* The NS bit will (as required by the architecture) have no effect if 11587 * the CPU doesn't support TZ or this is a non-secure translation 11588 * regime, because the attribute will already be non-secure. 11589 */ 11590 txattrs->secure = false; 11591 } 11592 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11593 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11594 arm_tlb_bti_gp(txattrs) = true; 11595 } 11596 11597 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11598 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11599 } else { 11600 /* Index into MAIR registers for cache attributes */ 11601 uint8_t attrindx = extract32(attrs, 0, 3); 11602 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11603 assert(attrindx <= 7); 11604 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11605 } 11606 cacheattrs->shareability = extract32(attrs, 6, 2); 11607 11608 *phys_ptr = descaddr; 11609 *page_size_ptr = page_size; 11610 return false; 11611 11612 do_fault: 11613 fi->type = fault_type; 11614 fi->level = level; 11615 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11616 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11617 mmu_idx == ARMMMUIdx_Stage2_S); 11618 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11619 return true; 11620 } 11621 11622 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11623 ARMMMUIdx mmu_idx, 11624 int32_t address, int *prot) 11625 { 11626 if (!arm_feature(env, ARM_FEATURE_M)) { 11627 *prot = PAGE_READ | PAGE_WRITE; 11628 switch (address) { 11629 case 0xF0000000 ... 0xFFFFFFFF: 11630 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11631 /* hivecs execing is ok */ 11632 *prot |= PAGE_EXEC; 11633 } 11634 break; 11635 case 0x00000000 ... 0x7FFFFFFF: 11636 *prot |= PAGE_EXEC; 11637 break; 11638 } 11639 } else { 11640 /* Default system address map for M profile cores. 11641 * The architecture specifies which regions are execute-never; 11642 * at the MPU level no other checks are defined. 11643 */ 11644 switch (address) { 11645 case 0x00000000 ... 0x1fffffff: /* ROM */ 11646 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11647 case 0x60000000 ... 0x7fffffff: /* RAM */ 11648 case 0x80000000 ... 0x9fffffff: /* RAM */ 11649 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11650 break; 11651 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11652 case 0xa0000000 ... 0xbfffffff: /* Device */ 11653 case 0xc0000000 ... 0xdfffffff: /* Device */ 11654 case 0xe0000000 ... 0xffffffff: /* System */ 11655 *prot = PAGE_READ | PAGE_WRITE; 11656 break; 11657 default: 11658 g_assert_not_reached(); 11659 } 11660 } 11661 } 11662 11663 static bool pmsav7_use_background_region(ARMCPU *cpu, 11664 ARMMMUIdx mmu_idx, bool is_user) 11665 { 11666 /* Return true if we should use the default memory map as a 11667 * "background" region if there are no hits against any MPU regions. 11668 */ 11669 CPUARMState *env = &cpu->env; 11670 11671 if (is_user) { 11672 return false; 11673 } 11674 11675 if (arm_feature(env, ARM_FEATURE_M)) { 11676 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11677 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11678 } else { 11679 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11680 } 11681 } 11682 11683 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11684 { 11685 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11686 return arm_feature(env, ARM_FEATURE_M) && 11687 extract32(address, 20, 12) == 0xe00; 11688 } 11689 11690 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11691 { 11692 /* True if address is in the M profile system region 11693 * 0xe0000000 - 0xffffffff 11694 */ 11695 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11696 } 11697 11698 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11699 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11700 hwaddr *phys_ptr, int *prot, 11701 target_ulong *page_size, 11702 ARMMMUFaultInfo *fi) 11703 { 11704 ARMCPU *cpu = env_archcpu(env); 11705 int n; 11706 bool is_user = regime_is_user(env, mmu_idx); 11707 11708 *phys_ptr = address; 11709 *page_size = TARGET_PAGE_SIZE; 11710 *prot = 0; 11711 11712 if (regime_translation_disabled(env, mmu_idx) || 11713 m_is_ppb_region(env, address)) { 11714 /* MPU disabled or M profile PPB access: use default memory map. 11715 * The other case which uses the default memory map in the 11716 * v7M ARM ARM pseudocode is exception vector reads from the vector 11717 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11718 * which always does a direct read using address_space_ldl(), rather 11719 * than going via this function, so we don't need to check that here. 11720 */ 11721 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11722 } else { /* MPU enabled */ 11723 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11724 /* region search */ 11725 uint32_t base = env->pmsav7.drbar[n]; 11726 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11727 uint32_t rmask; 11728 bool srdis = false; 11729 11730 if (!(env->pmsav7.drsr[n] & 0x1)) { 11731 continue; 11732 } 11733 11734 if (!rsize) { 11735 qemu_log_mask(LOG_GUEST_ERROR, 11736 "DRSR[%d]: Rsize field cannot be 0\n", n); 11737 continue; 11738 } 11739 rsize++; 11740 rmask = (1ull << rsize) - 1; 11741 11742 if (base & rmask) { 11743 qemu_log_mask(LOG_GUEST_ERROR, 11744 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11745 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11746 n, base, rmask); 11747 continue; 11748 } 11749 11750 if (address < base || address > base + rmask) { 11751 /* 11752 * Address not in this region. We must check whether the 11753 * region covers addresses in the same page as our address. 11754 * In that case we must not report a size that covers the 11755 * whole page for a subsequent hit against a different MPU 11756 * region or the background region, because it would result in 11757 * incorrect TLB hits for subsequent accesses to addresses that 11758 * are in this MPU region. 11759 */ 11760 if (ranges_overlap(base, rmask, 11761 address & TARGET_PAGE_MASK, 11762 TARGET_PAGE_SIZE)) { 11763 *page_size = 1; 11764 } 11765 continue; 11766 } 11767 11768 /* Region matched */ 11769 11770 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11771 int i, snd; 11772 uint32_t srdis_mask; 11773 11774 rsize -= 3; /* sub region size (power of 2) */ 11775 snd = ((address - base) >> rsize) & 0x7; 11776 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11777 11778 srdis_mask = srdis ? 0x3 : 0x0; 11779 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11780 /* This will check in groups of 2, 4 and then 8, whether 11781 * the subregion bits are consistent. rsize is incremented 11782 * back up to give the region size, considering consistent 11783 * adjacent subregions as one region. Stop testing if rsize 11784 * is already big enough for an entire QEMU page. 11785 */ 11786 int snd_rounded = snd & ~(i - 1); 11787 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11788 snd_rounded + 8, i); 11789 if (srdis_mask ^ srdis_multi) { 11790 break; 11791 } 11792 srdis_mask = (srdis_mask << i) | srdis_mask; 11793 rsize++; 11794 } 11795 } 11796 if (srdis) { 11797 continue; 11798 } 11799 if (rsize < TARGET_PAGE_BITS) { 11800 *page_size = 1 << rsize; 11801 } 11802 break; 11803 } 11804 11805 if (n == -1) { /* no hits */ 11806 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11807 /* background fault */ 11808 fi->type = ARMFault_Background; 11809 return true; 11810 } 11811 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11812 } else { /* a MPU hit! */ 11813 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11814 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11815 11816 if (m_is_system_region(env, address)) { 11817 /* System space is always execute never */ 11818 xn = 1; 11819 } 11820 11821 if (is_user) { /* User mode AP bit decoding */ 11822 switch (ap) { 11823 case 0: 11824 case 1: 11825 case 5: 11826 break; /* no access */ 11827 case 3: 11828 *prot |= PAGE_WRITE; 11829 /* fall through */ 11830 case 2: 11831 case 6: 11832 *prot |= PAGE_READ | PAGE_EXEC; 11833 break; 11834 case 7: 11835 /* for v7M, same as 6; for R profile a reserved value */ 11836 if (arm_feature(env, ARM_FEATURE_M)) { 11837 *prot |= PAGE_READ | PAGE_EXEC; 11838 break; 11839 } 11840 /* fall through */ 11841 default: 11842 qemu_log_mask(LOG_GUEST_ERROR, 11843 "DRACR[%d]: Bad value for AP bits: 0x%" 11844 PRIx32 "\n", n, ap); 11845 } 11846 } else { /* Priv. mode AP bits decoding */ 11847 switch (ap) { 11848 case 0: 11849 break; /* no access */ 11850 case 1: 11851 case 2: 11852 case 3: 11853 *prot |= PAGE_WRITE; 11854 /* fall through */ 11855 case 5: 11856 case 6: 11857 *prot |= PAGE_READ | PAGE_EXEC; 11858 break; 11859 case 7: 11860 /* for v7M, same as 6; for R profile a reserved value */ 11861 if (arm_feature(env, ARM_FEATURE_M)) { 11862 *prot |= PAGE_READ | PAGE_EXEC; 11863 break; 11864 } 11865 /* fall through */ 11866 default: 11867 qemu_log_mask(LOG_GUEST_ERROR, 11868 "DRACR[%d]: Bad value for AP bits: 0x%" 11869 PRIx32 "\n", n, ap); 11870 } 11871 } 11872 11873 /* execute never */ 11874 if (xn) { 11875 *prot &= ~PAGE_EXEC; 11876 } 11877 } 11878 } 11879 11880 fi->type = ARMFault_Permission; 11881 fi->level = 1; 11882 return !(*prot & (1 << access_type)); 11883 } 11884 11885 static bool v8m_is_sau_exempt(CPUARMState *env, 11886 uint32_t address, MMUAccessType access_type) 11887 { 11888 /* The architecture specifies that certain address ranges are 11889 * exempt from v8M SAU/IDAU checks. 11890 */ 11891 return 11892 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11893 (address >= 0xe0000000 && address <= 0xe0002fff) || 11894 (address >= 0xe000e000 && address <= 0xe000efff) || 11895 (address >= 0xe002e000 && address <= 0xe002efff) || 11896 (address >= 0xe0040000 && address <= 0xe0041fff) || 11897 (address >= 0xe00ff000 && address <= 0xe00fffff); 11898 } 11899 11900 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11901 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11902 V8M_SAttributes *sattrs) 11903 { 11904 /* Look up the security attributes for this address. Compare the 11905 * pseudocode SecurityCheck() function. 11906 * We assume the caller has zero-initialized *sattrs. 11907 */ 11908 ARMCPU *cpu = env_archcpu(env); 11909 int r; 11910 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11911 int idau_region = IREGION_NOTVALID; 11912 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11913 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11914 11915 if (cpu->idau) { 11916 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11917 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11918 11919 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11920 &idau_nsc); 11921 } 11922 11923 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11924 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11925 return; 11926 } 11927 11928 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11929 sattrs->ns = !regime_is_secure(env, mmu_idx); 11930 return; 11931 } 11932 11933 if (idau_region != IREGION_NOTVALID) { 11934 sattrs->irvalid = true; 11935 sattrs->iregion = idau_region; 11936 } 11937 11938 switch (env->sau.ctrl & 3) { 11939 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11940 break; 11941 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11942 sattrs->ns = true; 11943 break; 11944 default: /* SAU.ENABLE == 1 */ 11945 for (r = 0; r < cpu->sau_sregion; r++) { 11946 if (env->sau.rlar[r] & 1) { 11947 uint32_t base = env->sau.rbar[r] & ~0x1f; 11948 uint32_t limit = env->sau.rlar[r] | 0x1f; 11949 11950 if (base <= address && limit >= address) { 11951 if (base > addr_page_base || limit < addr_page_limit) { 11952 sattrs->subpage = true; 11953 } 11954 if (sattrs->srvalid) { 11955 /* If we hit in more than one region then we must report 11956 * as Secure, not NS-Callable, with no valid region 11957 * number info. 11958 */ 11959 sattrs->ns = false; 11960 sattrs->nsc = false; 11961 sattrs->sregion = 0; 11962 sattrs->srvalid = false; 11963 break; 11964 } else { 11965 if (env->sau.rlar[r] & 2) { 11966 sattrs->nsc = true; 11967 } else { 11968 sattrs->ns = true; 11969 } 11970 sattrs->srvalid = true; 11971 sattrs->sregion = r; 11972 } 11973 } else { 11974 /* 11975 * Address not in this region. We must check whether the 11976 * region covers addresses in the same page as our address. 11977 * In that case we must not report a size that covers the 11978 * whole page for a subsequent hit against a different MPU 11979 * region or the background region, because it would result 11980 * in incorrect TLB hits for subsequent accesses to 11981 * addresses that are in this MPU region. 11982 */ 11983 if (limit >= base && 11984 ranges_overlap(base, limit - base + 1, 11985 addr_page_base, 11986 TARGET_PAGE_SIZE)) { 11987 sattrs->subpage = true; 11988 } 11989 } 11990 } 11991 } 11992 break; 11993 } 11994 11995 /* 11996 * The IDAU will override the SAU lookup results if it specifies 11997 * higher security than the SAU does. 11998 */ 11999 if (!idau_ns) { 12000 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12001 sattrs->ns = false; 12002 sattrs->nsc = idau_nsc; 12003 } 12004 } 12005 } 12006 12007 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12008 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12009 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12010 int *prot, bool *is_subpage, 12011 ARMMMUFaultInfo *fi, uint32_t *mregion) 12012 { 12013 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12014 * that a full phys-to-virt translation does). 12015 * mregion is (if not NULL) set to the region number which matched, 12016 * or -1 if no region number is returned (MPU off, address did not 12017 * hit a region, address hit in multiple regions). 12018 * We set is_subpage to true if the region hit doesn't cover the 12019 * entire TARGET_PAGE the address is within. 12020 */ 12021 ARMCPU *cpu = env_archcpu(env); 12022 bool is_user = regime_is_user(env, mmu_idx); 12023 uint32_t secure = regime_is_secure(env, mmu_idx); 12024 int n; 12025 int matchregion = -1; 12026 bool hit = false; 12027 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12028 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12029 12030 *is_subpage = false; 12031 *phys_ptr = address; 12032 *prot = 0; 12033 if (mregion) { 12034 *mregion = -1; 12035 } 12036 12037 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12038 * was an exception vector read from the vector table (which is always 12039 * done using the default system address map), because those accesses 12040 * are done in arm_v7m_load_vector(), which always does a direct 12041 * read using address_space_ldl(), rather than going via this function. 12042 */ 12043 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12044 hit = true; 12045 } else if (m_is_ppb_region(env, address)) { 12046 hit = true; 12047 } else { 12048 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12049 hit = true; 12050 } 12051 12052 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12053 /* region search */ 12054 /* Note that the base address is bits [31:5] from the register 12055 * with bits [4:0] all zeroes, but the limit address is bits 12056 * [31:5] from the register with bits [4:0] all ones. 12057 */ 12058 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12059 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12060 12061 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12062 /* Region disabled */ 12063 continue; 12064 } 12065 12066 if (address < base || address > limit) { 12067 /* 12068 * Address not in this region. We must check whether the 12069 * region covers addresses in the same page as our address. 12070 * In that case we must not report a size that covers the 12071 * whole page for a subsequent hit against a different MPU 12072 * region or the background region, because it would result in 12073 * incorrect TLB hits for subsequent accesses to addresses that 12074 * are in this MPU region. 12075 */ 12076 if (limit >= base && 12077 ranges_overlap(base, limit - base + 1, 12078 addr_page_base, 12079 TARGET_PAGE_SIZE)) { 12080 *is_subpage = true; 12081 } 12082 continue; 12083 } 12084 12085 if (base > addr_page_base || limit < addr_page_limit) { 12086 *is_subpage = true; 12087 } 12088 12089 if (matchregion != -1) { 12090 /* Multiple regions match -- always a failure (unlike 12091 * PMSAv7 where highest-numbered-region wins) 12092 */ 12093 fi->type = ARMFault_Permission; 12094 fi->level = 1; 12095 return true; 12096 } 12097 12098 matchregion = n; 12099 hit = true; 12100 } 12101 } 12102 12103 if (!hit) { 12104 /* background fault */ 12105 fi->type = ARMFault_Background; 12106 return true; 12107 } 12108 12109 if (matchregion == -1) { 12110 /* hit using the background region */ 12111 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12112 } else { 12113 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12114 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12115 bool pxn = false; 12116 12117 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12118 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12119 } 12120 12121 if (m_is_system_region(env, address)) { 12122 /* System space is always execute never */ 12123 xn = 1; 12124 } 12125 12126 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12127 if (*prot && !xn && !(pxn && !is_user)) { 12128 *prot |= PAGE_EXEC; 12129 } 12130 /* We don't need to look the attribute up in the MAIR0/MAIR1 12131 * registers because that only tells us about cacheability. 12132 */ 12133 if (mregion) { 12134 *mregion = matchregion; 12135 } 12136 } 12137 12138 fi->type = ARMFault_Permission; 12139 fi->level = 1; 12140 return !(*prot & (1 << access_type)); 12141 } 12142 12143 12144 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12145 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12146 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12147 int *prot, target_ulong *page_size, 12148 ARMMMUFaultInfo *fi) 12149 { 12150 uint32_t secure = regime_is_secure(env, mmu_idx); 12151 V8M_SAttributes sattrs = {}; 12152 bool ret; 12153 bool mpu_is_subpage; 12154 12155 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12156 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12157 if (access_type == MMU_INST_FETCH) { 12158 /* Instruction fetches always use the MMU bank and the 12159 * transaction attribute determined by the fetch address, 12160 * regardless of CPU state. This is painful for QEMU 12161 * to handle, because it would mean we need to encode 12162 * into the mmu_idx not just the (user, negpri) information 12163 * for the current security state but also that for the 12164 * other security state, which would balloon the number 12165 * of mmu_idx values needed alarmingly. 12166 * Fortunately we can avoid this because it's not actually 12167 * possible to arbitrarily execute code from memory with 12168 * the wrong security attribute: it will always generate 12169 * an exception of some kind or another, apart from the 12170 * special case of an NS CPU executing an SG instruction 12171 * in S&NSC memory. So we always just fail the translation 12172 * here and sort things out in the exception handler 12173 * (including possibly emulating an SG instruction). 12174 */ 12175 if (sattrs.ns != !secure) { 12176 if (sattrs.nsc) { 12177 fi->type = ARMFault_QEMU_NSCExec; 12178 } else { 12179 fi->type = ARMFault_QEMU_SFault; 12180 } 12181 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12182 *phys_ptr = address; 12183 *prot = 0; 12184 return true; 12185 } 12186 } else { 12187 /* For data accesses we always use the MMU bank indicated 12188 * by the current CPU state, but the security attributes 12189 * might downgrade a secure access to nonsecure. 12190 */ 12191 if (sattrs.ns) { 12192 txattrs->secure = false; 12193 } else if (!secure) { 12194 /* NS access to S memory must fault. 12195 * Architecturally we should first check whether the 12196 * MPU information for this address indicates that we 12197 * are doing an unaligned access to Device memory, which 12198 * should generate a UsageFault instead. QEMU does not 12199 * currently check for that kind of unaligned access though. 12200 * If we added it we would need to do so as a special case 12201 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12202 */ 12203 fi->type = ARMFault_QEMU_SFault; 12204 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12205 *phys_ptr = address; 12206 *prot = 0; 12207 return true; 12208 } 12209 } 12210 } 12211 12212 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12213 txattrs, prot, &mpu_is_subpage, fi, NULL); 12214 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12215 return ret; 12216 } 12217 12218 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12219 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12220 hwaddr *phys_ptr, int *prot, 12221 ARMMMUFaultInfo *fi) 12222 { 12223 int n; 12224 uint32_t mask; 12225 uint32_t base; 12226 bool is_user = regime_is_user(env, mmu_idx); 12227 12228 if (regime_translation_disabled(env, mmu_idx)) { 12229 /* MPU disabled. */ 12230 *phys_ptr = address; 12231 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12232 return false; 12233 } 12234 12235 *phys_ptr = address; 12236 for (n = 7; n >= 0; n--) { 12237 base = env->cp15.c6_region[n]; 12238 if ((base & 1) == 0) { 12239 continue; 12240 } 12241 mask = 1 << ((base >> 1) & 0x1f); 12242 /* Keep this shift separate from the above to avoid an 12243 (undefined) << 32. */ 12244 mask = (mask << 1) - 1; 12245 if (((base ^ address) & ~mask) == 0) { 12246 break; 12247 } 12248 } 12249 if (n < 0) { 12250 fi->type = ARMFault_Background; 12251 return true; 12252 } 12253 12254 if (access_type == MMU_INST_FETCH) { 12255 mask = env->cp15.pmsav5_insn_ap; 12256 } else { 12257 mask = env->cp15.pmsav5_data_ap; 12258 } 12259 mask = (mask >> (n * 4)) & 0xf; 12260 switch (mask) { 12261 case 0: 12262 fi->type = ARMFault_Permission; 12263 fi->level = 1; 12264 return true; 12265 case 1: 12266 if (is_user) { 12267 fi->type = ARMFault_Permission; 12268 fi->level = 1; 12269 return true; 12270 } 12271 *prot = PAGE_READ | PAGE_WRITE; 12272 break; 12273 case 2: 12274 *prot = PAGE_READ; 12275 if (!is_user) { 12276 *prot |= PAGE_WRITE; 12277 } 12278 break; 12279 case 3: 12280 *prot = PAGE_READ | PAGE_WRITE; 12281 break; 12282 case 5: 12283 if (is_user) { 12284 fi->type = ARMFault_Permission; 12285 fi->level = 1; 12286 return true; 12287 } 12288 *prot = PAGE_READ; 12289 break; 12290 case 6: 12291 *prot = PAGE_READ; 12292 break; 12293 default: 12294 /* Bad permission. */ 12295 fi->type = ARMFault_Permission; 12296 fi->level = 1; 12297 return true; 12298 } 12299 *prot |= PAGE_EXEC; 12300 return false; 12301 } 12302 12303 /* Combine either inner or outer cacheability attributes for normal 12304 * memory, according to table D4-42 and pseudocode procedure 12305 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12306 * 12307 * NB: only stage 1 includes allocation hints (RW bits), leading to 12308 * some asymmetry. 12309 */ 12310 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12311 { 12312 if (s1 == 4 || s2 == 4) { 12313 /* non-cacheable has precedence */ 12314 return 4; 12315 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12316 /* stage 1 write-through takes precedence */ 12317 return s1; 12318 } else if (extract32(s2, 2, 2) == 2) { 12319 /* stage 2 write-through takes precedence, but the allocation hint 12320 * is still taken from stage 1 12321 */ 12322 return (2 << 2) | extract32(s1, 0, 2); 12323 } else { /* write-back */ 12324 return s1; 12325 } 12326 } 12327 12328 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12329 * and CombineS1S2Desc() 12330 * 12331 * @s1: Attributes from stage 1 walk 12332 * @s2: Attributes from stage 2 walk 12333 */ 12334 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12335 { 12336 uint8_t s1lo, s2lo, s1hi, s2hi; 12337 ARMCacheAttrs ret; 12338 bool tagged = false; 12339 12340 if (s1.attrs == 0xf0) { 12341 tagged = true; 12342 s1.attrs = 0xff; 12343 } 12344 12345 s1lo = extract32(s1.attrs, 0, 4); 12346 s2lo = extract32(s2.attrs, 0, 4); 12347 s1hi = extract32(s1.attrs, 4, 4); 12348 s2hi = extract32(s2.attrs, 4, 4); 12349 12350 /* Combine shareability attributes (table D4-43) */ 12351 if (s1.shareability == 2 || s2.shareability == 2) { 12352 /* if either are outer-shareable, the result is outer-shareable */ 12353 ret.shareability = 2; 12354 } else if (s1.shareability == 3 || s2.shareability == 3) { 12355 /* if either are inner-shareable, the result is inner-shareable */ 12356 ret.shareability = 3; 12357 } else { 12358 /* both non-shareable */ 12359 ret.shareability = 0; 12360 } 12361 12362 /* Combine memory type and cacheability attributes */ 12363 if (s1hi == 0 || s2hi == 0) { 12364 /* Device has precedence over normal */ 12365 if (s1lo == 0 || s2lo == 0) { 12366 /* nGnRnE has precedence over anything */ 12367 ret.attrs = 0; 12368 } else if (s1lo == 4 || s2lo == 4) { 12369 /* non-Reordering has precedence over Reordering */ 12370 ret.attrs = 4; /* nGnRE */ 12371 } else if (s1lo == 8 || s2lo == 8) { 12372 /* non-Gathering has precedence over Gathering */ 12373 ret.attrs = 8; /* nGRE */ 12374 } else { 12375 ret.attrs = 0xc; /* GRE */ 12376 } 12377 12378 /* Any location for which the resultant memory type is any 12379 * type of Device memory is always treated as Outer Shareable. 12380 */ 12381 ret.shareability = 2; 12382 } else { /* Normal memory */ 12383 /* Outer/inner cacheability combine independently */ 12384 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12385 | combine_cacheattr_nibble(s1lo, s2lo); 12386 12387 if (ret.attrs == 0x44) { 12388 /* Any location for which the resultant memory type is Normal 12389 * Inner Non-cacheable, Outer Non-cacheable is always treated 12390 * as Outer Shareable. 12391 */ 12392 ret.shareability = 2; 12393 } 12394 } 12395 12396 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12397 if (tagged && ret.attrs == 0xff) { 12398 ret.attrs = 0xf0; 12399 } 12400 12401 return ret; 12402 } 12403 12404 12405 /* get_phys_addr - get the physical address for this virtual address 12406 * 12407 * Find the physical address corresponding to the given virtual address, 12408 * by doing a translation table walk on MMU based systems or using the 12409 * MPU state on MPU based systems. 12410 * 12411 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12412 * prot and page_size may not be filled in, and the populated fsr value provides 12413 * information on why the translation aborted, in the format of a 12414 * DFSR/IFSR fault register, with the following caveats: 12415 * * we honour the short vs long DFSR format differences. 12416 * * the WnR bit is never set (the caller must do this). 12417 * * for PSMAv5 based systems we don't bother to return a full FSR format 12418 * value. 12419 * 12420 * @env: CPUARMState 12421 * @address: virtual address to get physical address for 12422 * @access_type: 0 for read, 1 for write, 2 for execute 12423 * @mmu_idx: MMU index indicating required translation regime 12424 * @phys_ptr: set to the physical address corresponding to the virtual address 12425 * @attrs: set to the memory transaction attributes to use 12426 * @prot: set to the permissions for the page containing phys_ptr 12427 * @page_size: set to the size of the page containing phys_ptr 12428 * @fi: set to fault info if the translation fails 12429 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12430 */ 12431 bool get_phys_addr(CPUARMState *env, target_ulong address, 12432 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12433 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12434 target_ulong *page_size, 12435 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12436 { 12437 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12438 12439 if (mmu_idx != s1_mmu_idx) { 12440 /* Call ourselves recursively to do the stage 1 and then stage 2 12441 * translations if mmu_idx is a two-stage regime. 12442 */ 12443 if (arm_feature(env, ARM_FEATURE_EL2)) { 12444 hwaddr ipa; 12445 int s2_prot; 12446 int ret; 12447 ARMCacheAttrs cacheattrs2 = {}; 12448 ARMMMUIdx s2_mmu_idx; 12449 bool is_el0; 12450 12451 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12452 attrs, prot, page_size, fi, cacheattrs); 12453 12454 /* If S1 fails or S2 is disabled, return early. */ 12455 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12456 *phys_ptr = ipa; 12457 return ret; 12458 } 12459 12460 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12461 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12462 12463 /* S1 is done. Now do S2 translation. */ 12464 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12465 phys_ptr, attrs, &s2_prot, 12466 page_size, fi, &cacheattrs2); 12467 fi->s2addr = ipa; 12468 /* Combine the S1 and S2 perms. */ 12469 *prot &= s2_prot; 12470 12471 /* If S2 fails, return early. */ 12472 if (ret) { 12473 return ret; 12474 } 12475 12476 /* Combine the S1 and S2 cache attributes. */ 12477 if (arm_hcr_el2_eff(env) & HCR_DC) { 12478 /* 12479 * HCR.DC forces the first stage attributes to 12480 * Normal Non-Shareable, 12481 * Inner Write-Back Read-Allocate Write-Allocate, 12482 * Outer Write-Back Read-Allocate Write-Allocate. 12483 * Do not overwrite Tagged within attrs. 12484 */ 12485 if (cacheattrs->attrs != 0xf0) { 12486 cacheattrs->attrs = 0xff; 12487 } 12488 cacheattrs->shareability = 0; 12489 } 12490 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12491 12492 /* Check if IPA translates to secure or non-secure PA space. */ 12493 if (arm_is_secure_below_el3(env)) { 12494 if (attrs->secure) { 12495 attrs->secure = 12496 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12497 } else { 12498 attrs->secure = 12499 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12500 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12501 } 12502 } 12503 return 0; 12504 } else { 12505 /* 12506 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12507 */ 12508 mmu_idx = stage_1_mmu_idx(mmu_idx); 12509 } 12510 } 12511 12512 /* The page table entries may downgrade secure to non-secure, but 12513 * cannot upgrade an non-secure translation regime's attributes 12514 * to secure. 12515 */ 12516 attrs->secure = regime_is_secure(env, mmu_idx); 12517 attrs->user = regime_is_user(env, mmu_idx); 12518 12519 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12520 * In v7 and earlier it affects all stage 1 translations. 12521 */ 12522 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12523 && !arm_feature(env, ARM_FEATURE_V8)) { 12524 if (regime_el(env, mmu_idx) == 3) { 12525 address += env->cp15.fcseidr_s; 12526 } else { 12527 address += env->cp15.fcseidr_ns; 12528 } 12529 } 12530 12531 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12532 bool ret; 12533 *page_size = TARGET_PAGE_SIZE; 12534 12535 if (arm_feature(env, ARM_FEATURE_V8)) { 12536 /* PMSAv8 */ 12537 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12538 phys_ptr, attrs, prot, page_size, fi); 12539 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12540 /* PMSAv7 */ 12541 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12542 phys_ptr, prot, page_size, fi); 12543 } else { 12544 /* Pre-v7 MPU */ 12545 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12546 phys_ptr, prot, fi); 12547 } 12548 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12549 " mmu_idx %u -> %s (prot %c%c%c)\n", 12550 access_type == MMU_DATA_LOAD ? "reading" : 12551 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12552 (uint32_t)address, mmu_idx, 12553 ret ? "Miss" : "Hit", 12554 *prot & PAGE_READ ? 'r' : '-', 12555 *prot & PAGE_WRITE ? 'w' : '-', 12556 *prot & PAGE_EXEC ? 'x' : '-'); 12557 12558 return ret; 12559 } 12560 12561 /* Definitely a real MMU, not an MPU */ 12562 12563 if (regime_translation_disabled(env, mmu_idx)) { 12564 uint64_t hcr; 12565 uint8_t memattr; 12566 12567 /* 12568 * MMU disabled. S1 addresses within aa64 translation regimes are 12569 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12570 */ 12571 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12572 int r_el = regime_el(env, mmu_idx); 12573 if (arm_el_is_aa64(env, r_el)) { 12574 int pamax = arm_pamax(env_archcpu(env)); 12575 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12576 int addrtop, tbi; 12577 12578 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12579 if (access_type == MMU_INST_FETCH) { 12580 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12581 } 12582 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12583 addrtop = (tbi ? 55 : 63); 12584 12585 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12586 fi->type = ARMFault_AddressSize; 12587 fi->level = 0; 12588 fi->stage2 = false; 12589 return 1; 12590 } 12591 12592 /* 12593 * When TBI is disabled, we've just validated that all of the 12594 * bits above PAMax are zero, so logically we only need to 12595 * clear the top byte for TBI. But it's clearer to follow 12596 * the pseudocode set of addrdesc.paddress. 12597 */ 12598 address = extract64(address, 0, 52); 12599 } 12600 } 12601 *phys_ptr = address; 12602 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12603 *page_size = TARGET_PAGE_SIZE; 12604 12605 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12606 hcr = arm_hcr_el2_eff(env); 12607 cacheattrs->shareability = 0; 12608 if (hcr & HCR_DC) { 12609 if (hcr & HCR_DCT) { 12610 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12611 } else { 12612 memattr = 0xff; /* Normal, WB, RWA */ 12613 } 12614 } else if (access_type == MMU_INST_FETCH) { 12615 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12616 memattr = 0xee; /* Normal, WT, RA, NT */ 12617 } else { 12618 memattr = 0x44; /* Normal, NC, No */ 12619 } 12620 cacheattrs->shareability = 2; /* outer sharable */ 12621 } else { 12622 memattr = 0x00; /* Device, nGnRnE */ 12623 } 12624 cacheattrs->attrs = memattr; 12625 return 0; 12626 } 12627 12628 if (regime_using_lpae_format(env, mmu_idx)) { 12629 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12630 phys_ptr, attrs, prot, page_size, 12631 fi, cacheattrs); 12632 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12633 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12634 phys_ptr, attrs, prot, page_size, fi); 12635 } else { 12636 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12637 phys_ptr, prot, page_size, fi); 12638 } 12639 } 12640 12641 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12642 MemTxAttrs *attrs) 12643 { 12644 ARMCPU *cpu = ARM_CPU(cs); 12645 CPUARMState *env = &cpu->env; 12646 hwaddr phys_addr; 12647 target_ulong page_size; 12648 int prot; 12649 bool ret; 12650 ARMMMUFaultInfo fi = {}; 12651 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12652 ARMCacheAttrs cacheattrs = {}; 12653 12654 *attrs = (MemTxAttrs) {}; 12655 12656 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12657 attrs, &prot, &page_size, &fi, &cacheattrs); 12658 12659 if (ret) { 12660 return -1; 12661 } 12662 return phys_addr; 12663 } 12664 12665 #endif 12666 12667 /* Note that signed overflow is undefined in C. The following routines are 12668 careful to use unsigned types where modulo arithmetic is required. 12669 Failure to do so _will_ break on newer gcc. */ 12670 12671 /* Signed saturating arithmetic. */ 12672 12673 /* Perform 16-bit signed saturating addition. */ 12674 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12675 { 12676 uint16_t res; 12677 12678 res = a + b; 12679 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12680 if (a & 0x8000) 12681 res = 0x8000; 12682 else 12683 res = 0x7fff; 12684 } 12685 return res; 12686 } 12687 12688 /* Perform 8-bit signed saturating addition. */ 12689 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12690 { 12691 uint8_t res; 12692 12693 res = a + b; 12694 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12695 if (a & 0x80) 12696 res = 0x80; 12697 else 12698 res = 0x7f; 12699 } 12700 return res; 12701 } 12702 12703 /* Perform 16-bit signed saturating subtraction. */ 12704 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12705 { 12706 uint16_t res; 12707 12708 res = a - b; 12709 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12710 if (a & 0x8000) 12711 res = 0x8000; 12712 else 12713 res = 0x7fff; 12714 } 12715 return res; 12716 } 12717 12718 /* Perform 8-bit signed saturating subtraction. */ 12719 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12720 { 12721 uint8_t res; 12722 12723 res = a - b; 12724 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12725 if (a & 0x80) 12726 res = 0x80; 12727 else 12728 res = 0x7f; 12729 } 12730 return res; 12731 } 12732 12733 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12734 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12735 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12736 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12737 #define PFX q 12738 12739 #include "op_addsub.h" 12740 12741 /* Unsigned saturating arithmetic. */ 12742 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12743 { 12744 uint16_t res; 12745 res = a + b; 12746 if (res < a) 12747 res = 0xffff; 12748 return res; 12749 } 12750 12751 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12752 { 12753 if (a > b) 12754 return a - b; 12755 else 12756 return 0; 12757 } 12758 12759 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12760 { 12761 uint8_t res; 12762 res = a + b; 12763 if (res < a) 12764 res = 0xff; 12765 return res; 12766 } 12767 12768 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12769 { 12770 if (a > b) 12771 return a - b; 12772 else 12773 return 0; 12774 } 12775 12776 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12777 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12778 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12779 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12780 #define PFX uq 12781 12782 #include "op_addsub.h" 12783 12784 /* Signed modulo arithmetic. */ 12785 #define SARITH16(a, b, n, op) do { \ 12786 int32_t sum; \ 12787 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12788 RESULT(sum, n, 16); \ 12789 if (sum >= 0) \ 12790 ge |= 3 << (n * 2); \ 12791 } while(0) 12792 12793 #define SARITH8(a, b, n, op) do { \ 12794 int32_t sum; \ 12795 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12796 RESULT(sum, n, 8); \ 12797 if (sum >= 0) \ 12798 ge |= 1 << n; \ 12799 } while(0) 12800 12801 12802 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12803 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12804 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12805 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12806 #define PFX s 12807 #define ARITH_GE 12808 12809 #include "op_addsub.h" 12810 12811 /* Unsigned modulo arithmetic. */ 12812 #define ADD16(a, b, n) do { \ 12813 uint32_t sum; \ 12814 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12815 RESULT(sum, n, 16); \ 12816 if ((sum >> 16) == 1) \ 12817 ge |= 3 << (n * 2); \ 12818 } while(0) 12819 12820 #define ADD8(a, b, n) do { \ 12821 uint32_t sum; \ 12822 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12823 RESULT(sum, n, 8); \ 12824 if ((sum >> 8) == 1) \ 12825 ge |= 1 << n; \ 12826 } while(0) 12827 12828 #define SUB16(a, b, n) do { \ 12829 uint32_t sum; \ 12830 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12831 RESULT(sum, n, 16); \ 12832 if ((sum >> 16) == 0) \ 12833 ge |= 3 << (n * 2); \ 12834 } while(0) 12835 12836 #define SUB8(a, b, n) do { \ 12837 uint32_t sum; \ 12838 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12839 RESULT(sum, n, 8); \ 12840 if ((sum >> 8) == 0) \ 12841 ge |= 1 << n; \ 12842 } while(0) 12843 12844 #define PFX u 12845 #define ARITH_GE 12846 12847 #include "op_addsub.h" 12848 12849 /* Halved signed arithmetic. */ 12850 #define ADD16(a, b, n) \ 12851 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12852 #define SUB16(a, b, n) \ 12853 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12854 #define ADD8(a, b, n) \ 12855 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12856 #define SUB8(a, b, n) \ 12857 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12858 #define PFX sh 12859 12860 #include "op_addsub.h" 12861 12862 /* Halved unsigned arithmetic. */ 12863 #define ADD16(a, b, n) \ 12864 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12865 #define SUB16(a, b, n) \ 12866 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12867 #define ADD8(a, b, n) \ 12868 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12869 #define SUB8(a, b, n) \ 12870 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12871 #define PFX uh 12872 12873 #include "op_addsub.h" 12874 12875 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12876 { 12877 if (a > b) 12878 return a - b; 12879 else 12880 return b - a; 12881 } 12882 12883 /* Unsigned sum of absolute byte differences. */ 12884 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12885 { 12886 uint32_t sum; 12887 sum = do_usad(a, b); 12888 sum += do_usad(a >> 8, b >> 8); 12889 sum += do_usad(a >> 16, b >> 16); 12890 sum += do_usad(a >> 24, b >> 24); 12891 return sum; 12892 } 12893 12894 /* For ARMv6 SEL instruction. */ 12895 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12896 { 12897 uint32_t mask; 12898 12899 mask = 0; 12900 if (flags & 1) 12901 mask |= 0xff; 12902 if (flags & 2) 12903 mask |= 0xff00; 12904 if (flags & 4) 12905 mask |= 0xff0000; 12906 if (flags & 8) 12907 mask |= 0xff000000; 12908 return (a & mask) | (b & ~mask); 12909 } 12910 12911 /* CRC helpers. 12912 * The upper bytes of val (above the number specified by 'bytes') must have 12913 * been zeroed out by the caller. 12914 */ 12915 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12916 { 12917 uint8_t buf[4]; 12918 12919 stl_le_p(buf, val); 12920 12921 /* zlib crc32 converts the accumulator and output to one's complement. */ 12922 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12923 } 12924 12925 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12926 { 12927 uint8_t buf[4]; 12928 12929 stl_le_p(buf, val); 12930 12931 /* Linux crc32c converts the output to one's complement. */ 12932 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12933 } 12934 12935 /* Return the exception level to which FP-disabled exceptions should 12936 * be taken, or 0 if FP is enabled. 12937 */ 12938 int fp_exception_el(CPUARMState *env, int cur_el) 12939 { 12940 #ifndef CONFIG_USER_ONLY 12941 uint64_t hcr_el2; 12942 12943 /* CPACR and the CPTR registers don't exist before v6, so FP is 12944 * always accessible 12945 */ 12946 if (!arm_feature(env, ARM_FEATURE_V6)) { 12947 return 0; 12948 } 12949 12950 if (arm_feature(env, ARM_FEATURE_M)) { 12951 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12952 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12953 return 1; 12954 } 12955 12956 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12957 if (!extract32(env->v7m.nsacr, 10, 1)) { 12958 /* FP insns cause a NOCP UsageFault taken to Secure */ 12959 return 3; 12960 } 12961 } 12962 12963 return 0; 12964 } 12965 12966 hcr_el2 = arm_hcr_el2_eff(env); 12967 12968 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12969 * 0, 2 : trap EL0 and EL1/PL1 accesses 12970 * 1 : trap only EL0 accesses 12971 * 3 : trap no accesses 12972 * This register is ignored if E2H+TGE are both set. 12973 */ 12974 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12975 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12976 12977 switch (fpen) { 12978 case 0: 12979 case 2: 12980 if (cur_el == 0 || cur_el == 1) { 12981 /* Trap to PL1, which might be EL1 or EL3 */ 12982 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12983 return 3; 12984 } 12985 return 1; 12986 } 12987 if (cur_el == 3 && !is_a64(env)) { 12988 /* Secure PL1 running at EL3 */ 12989 return 3; 12990 } 12991 break; 12992 case 1: 12993 if (cur_el == 0) { 12994 return 1; 12995 } 12996 break; 12997 case 3: 12998 break; 12999 } 13000 } 13001 13002 /* 13003 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13004 * to control non-secure access to the FPU. It doesn't have any 13005 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13006 */ 13007 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13008 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13009 if (!extract32(env->cp15.nsacr, 10, 1)) { 13010 /* FP insns act as UNDEF */ 13011 return cur_el == 2 ? 2 : 1; 13012 } 13013 } 13014 13015 /* 13016 * CPTR_EL2 is present in v7VE or v8, and changes format 13017 * with HCR_EL2.E2H (regardless of TGE). 13018 */ 13019 if (cur_el <= 2) { 13020 if (hcr_el2 & HCR_E2H) { 13021 /* Check CPTR_EL2.FPEN. */ 13022 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13023 case 1: 13024 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13025 break; 13026 } 13027 /* fall through */ 13028 case 0: 13029 case 2: 13030 return 2; 13031 } 13032 } else if (arm_is_el2_enabled(env)) { 13033 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13034 return 2; 13035 } 13036 } 13037 } 13038 13039 /* CPTR_EL3 : present in v8 */ 13040 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13041 /* Trap all FP ops to EL3 */ 13042 return 3; 13043 } 13044 #endif 13045 return 0; 13046 } 13047 13048 /* Return the exception level we're running at if this is our mmu_idx */ 13049 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13050 { 13051 if (mmu_idx & ARM_MMU_IDX_M) { 13052 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13053 } 13054 13055 switch (mmu_idx) { 13056 case ARMMMUIdx_E10_0: 13057 case ARMMMUIdx_E20_0: 13058 case ARMMMUIdx_SE10_0: 13059 case ARMMMUIdx_SE20_0: 13060 return 0; 13061 case ARMMMUIdx_E10_1: 13062 case ARMMMUIdx_E10_1_PAN: 13063 case ARMMMUIdx_SE10_1: 13064 case ARMMMUIdx_SE10_1_PAN: 13065 return 1; 13066 case ARMMMUIdx_E2: 13067 case ARMMMUIdx_E20_2: 13068 case ARMMMUIdx_E20_2_PAN: 13069 case ARMMMUIdx_SE2: 13070 case ARMMMUIdx_SE20_2: 13071 case ARMMMUIdx_SE20_2_PAN: 13072 return 2; 13073 case ARMMMUIdx_SE3: 13074 return 3; 13075 default: 13076 g_assert_not_reached(); 13077 } 13078 } 13079 13080 #ifndef CONFIG_TCG 13081 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13082 { 13083 g_assert_not_reached(); 13084 } 13085 #endif 13086 13087 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13088 { 13089 ARMMMUIdx idx; 13090 uint64_t hcr; 13091 13092 if (arm_feature(env, ARM_FEATURE_M)) { 13093 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13094 } 13095 13096 /* See ARM pseudo-function ELIsInHost. */ 13097 switch (el) { 13098 case 0: 13099 hcr = arm_hcr_el2_eff(env); 13100 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13101 idx = ARMMMUIdx_E20_0; 13102 } else { 13103 idx = ARMMMUIdx_E10_0; 13104 } 13105 break; 13106 case 1: 13107 if (env->pstate & PSTATE_PAN) { 13108 idx = ARMMMUIdx_E10_1_PAN; 13109 } else { 13110 idx = ARMMMUIdx_E10_1; 13111 } 13112 break; 13113 case 2: 13114 /* Note that TGE does not apply at EL2. */ 13115 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13116 if (env->pstate & PSTATE_PAN) { 13117 idx = ARMMMUIdx_E20_2_PAN; 13118 } else { 13119 idx = ARMMMUIdx_E20_2; 13120 } 13121 } else { 13122 idx = ARMMMUIdx_E2; 13123 } 13124 break; 13125 case 3: 13126 return ARMMMUIdx_SE3; 13127 default: 13128 g_assert_not_reached(); 13129 } 13130 13131 if (arm_is_secure_below_el3(env)) { 13132 idx &= ~ARM_MMU_IDX_A_NS; 13133 } 13134 13135 return idx; 13136 } 13137 13138 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13139 { 13140 return arm_mmu_idx_el(env, arm_current_el(env)); 13141 } 13142 13143 #ifndef CONFIG_USER_ONLY 13144 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13145 { 13146 return stage_1_mmu_idx(arm_mmu_idx(env)); 13147 } 13148 #endif 13149 13150 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13151 ARMMMUIdx mmu_idx, 13152 CPUARMTBFlags flags) 13153 { 13154 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13155 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13156 13157 if (arm_singlestep_active(env)) { 13158 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13159 } 13160 return flags; 13161 } 13162 13163 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13164 ARMMMUIdx mmu_idx, 13165 CPUARMTBFlags flags) 13166 { 13167 bool sctlr_b = arm_sctlr_b(env); 13168 13169 if (sctlr_b) { 13170 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13171 } 13172 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13173 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13174 } 13175 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13176 13177 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13178 } 13179 13180 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13181 ARMMMUIdx mmu_idx) 13182 { 13183 CPUARMTBFlags flags = {}; 13184 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13185 13186 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13187 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13188 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13189 } 13190 13191 if (arm_v7m_is_handler_mode(env)) { 13192 DP_TBFLAG_M32(flags, HANDLER, 1); 13193 } 13194 13195 /* 13196 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13197 * is suppressing them because the requested execution priority 13198 * is less than 0. 13199 */ 13200 if (arm_feature(env, ARM_FEATURE_V8) && 13201 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13202 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13203 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13204 } 13205 13206 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13207 } 13208 13209 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13210 { 13211 CPUARMTBFlags flags = {}; 13212 13213 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13214 return flags; 13215 } 13216 13217 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13218 ARMMMUIdx mmu_idx) 13219 { 13220 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13221 int el = arm_current_el(env); 13222 13223 if (arm_sctlr(env, el) & SCTLR_A) { 13224 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13225 } 13226 13227 if (arm_el_is_aa64(env, 1)) { 13228 DP_TBFLAG_A32(flags, VFPEN, 1); 13229 } 13230 13231 if (el < 2 && env->cp15.hstr_el2 && 13232 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13233 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13234 } 13235 13236 if (env->uncached_cpsr & CPSR_IL) { 13237 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13238 } 13239 13240 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13241 } 13242 13243 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13244 ARMMMUIdx mmu_idx) 13245 { 13246 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13247 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13248 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13249 uint64_t sctlr; 13250 int tbii, tbid; 13251 13252 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13253 13254 /* Get control bits for tagged addresses. */ 13255 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13256 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13257 13258 DP_TBFLAG_A64(flags, TBII, tbii); 13259 DP_TBFLAG_A64(flags, TBID, tbid); 13260 13261 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13262 int sve_el = sve_exception_el(env, el); 13263 uint32_t zcr_len; 13264 13265 /* 13266 * If SVE is disabled, but FP is enabled, 13267 * then the effective len is 0. 13268 */ 13269 if (sve_el != 0 && fp_el == 0) { 13270 zcr_len = 0; 13271 } else { 13272 zcr_len = sve_zcr_len_for_el(env, el); 13273 } 13274 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13275 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13276 } 13277 13278 sctlr = regime_sctlr(env, stage1); 13279 13280 if (sctlr & SCTLR_A) { 13281 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13282 } 13283 13284 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13285 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13286 } 13287 13288 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13289 /* 13290 * In order to save space in flags, we record only whether 13291 * pauth is "inactive", meaning all insns are implemented as 13292 * a nop, or "active" when some action must be performed. 13293 * The decision of which action to take is left to a helper. 13294 */ 13295 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13296 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13297 } 13298 } 13299 13300 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13301 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13302 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13303 DP_TBFLAG_A64(flags, BT, 1); 13304 } 13305 } 13306 13307 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13308 if (!(env->pstate & PSTATE_UAO)) { 13309 switch (mmu_idx) { 13310 case ARMMMUIdx_E10_1: 13311 case ARMMMUIdx_E10_1_PAN: 13312 case ARMMMUIdx_SE10_1: 13313 case ARMMMUIdx_SE10_1_PAN: 13314 /* TODO: ARMv8.3-NV */ 13315 DP_TBFLAG_A64(flags, UNPRIV, 1); 13316 break; 13317 case ARMMMUIdx_E20_2: 13318 case ARMMMUIdx_E20_2_PAN: 13319 case ARMMMUIdx_SE20_2: 13320 case ARMMMUIdx_SE20_2_PAN: 13321 /* 13322 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13323 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13324 */ 13325 if (env->cp15.hcr_el2 & HCR_TGE) { 13326 DP_TBFLAG_A64(flags, UNPRIV, 1); 13327 } 13328 break; 13329 default: 13330 break; 13331 } 13332 } 13333 13334 if (env->pstate & PSTATE_IL) { 13335 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13336 } 13337 13338 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13339 /* 13340 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13341 * if all accesses must be Unchecked: 13342 * 1) If no TBI, then there are no tags in the address to check, 13343 * 2) If Tag Check Override, then all accesses are Unchecked, 13344 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13345 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13346 */ 13347 if (allocation_tag_access_enabled(env, el, sctlr)) { 13348 DP_TBFLAG_A64(flags, ATA, 1); 13349 if (tbid 13350 && !(env->pstate & PSTATE_TCO) 13351 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13352 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13353 } 13354 } 13355 /* And again for unprivileged accesses, if required. */ 13356 if (EX_TBFLAG_A64(flags, UNPRIV) 13357 && tbid 13358 && !(env->pstate & PSTATE_TCO) 13359 && (sctlr & SCTLR_TCF0) 13360 && allocation_tag_access_enabled(env, 0, sctlr)) { 13361 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13362 } 13363 /* Cache TCMA as well as TBI. */ 13364 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13365 } 13366 13367 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13368 } 13369 13370 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13371 { 13372 int el = arm_current_el(env); 13373 int fp_el = fp_exception_el(env, el); 13374 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13375 13376 if (is_a64(env)) { 13377 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13378 } else if (arm_feature(env, ARM_FEATURE_M)) { 13379 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13380 } else { 13381 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13382 } 13383 } 13384 13385 void arm_rebuild_hflags(CPUARMState *env) 13386 { 13387 env->hflags = rebuild_hflags_internal(env); 13388 } 13389 13390 /* 13391 * If we have triggered a EL state change we can't rely on the 13392 * translator having passed it to us, we need to recompute. 13393 */ 13394 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13395 { 13396 int el = arm_current_el(env); 13397 int fp_el = fp_exception_el(env, el); 13398 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13399 13400 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13401 } 13402 13403 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13404 { 13405 int fp_el = fp_exception_el(env, el); 13406 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13407 13408 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13409 } 13410 13411 /* 13412 * If we have triggered a EL state change we can't rely on the 13413 * translator having passed it to us, we need to recompute. 13414 */ 13415 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13416 { 13417 int el = arm_current_el(env); 13418 int fp_el = fp_exception_el(env, el); 13419 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13420 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13421 } 13422 13423 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13424 { 13425 int fp_el = fp_exception_el(env, el); 13426 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13427 13428 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13429 } 13430 13431 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13432 { 13433 int fp_el = fp_exception_el(env, el); 13434 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13435 13436 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13437 } 13438 13439 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13440 { 13441 #ifdef CONFIG_DEBUG_TCG 13442 CPUARMTBFlags c = env->hflags; 13443 CPUARMTBFlags r = rebuild_hflags_internal(env); 13444 13445 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13446 fprintf(stderr, "TCG hflags mismatch " 13447 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13448 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13449 c.flags, c.flags2, r.flags, r.flags2); 13450 abort(); 13451 } 13452 #endif 13453 } 13454 13455 static bool mve_no_pred(CPUARMState *env) 13456 { 13457 /* 13458 * Return true if there is definitely no predication of MVE 13459 * instructions by VPR or LTPSIZE. (Returning false even if there 13460 * isn't any predication is OK; generated code will just be 13461 * a little worse.) 13462 * If the CPU does not implement MVE then this TB flag is always 0. 13463 * 13464 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13465 * logic in gen_update_fp_context() needs to be updated to match. 13466 * 13467 * We do not include the effect of the ECI bits here -- they are 13468 * tracked in other TB flags. This simplifies the logic for 13469 * "when did we emit code that changes the MVE_NO_PRED TB flag 13470 * and thus need to end the TB?". 13471 */ 13472 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13473 return false; 13474 } 13475 if (env->v7m.vpr) { 13476 return false; 13477 } 13478 if (env->v7m.ltpsize < 4) { 13479 return false; 13480 } 13481 return true; 13482 } 13483 13484 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13485 target_ulong *cs_base, uint32_t *pflags) 13486 { 13487 CPUARMTBFlags flags; 13488 13489 assert_hflags_rebuild_correctly(env); 13490 flags = env->hflags; 13491 13492 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13493 *pc = env->pc; 13494 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13495 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13496 } 13497 } else { 13498 *pc = env->regs[15]; 13499 13500 if (arm_feature(env, ARM_FEATURE_M)) { 13501 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13502 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13503 != env->v7m.secure) { 13504 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13505 } 13506 13507 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13508 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13509 (env->v7m.secure && 13510 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13511 /* 13512 * ASPEN is set, but FPCA/SFPA indicate that there is no 13513 * active FP context; we must create a new FP context before 13514 * executing any FP insn. 13515 */ 13516 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13517 } 13518 13519 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13520 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13521 DP_TBFLAG_M32(flags, LSPACT, 1); 13522 } 13523 13524 if (mve_no_pred(env)) { 13525 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13526 } 13527 } else { 13528 /* 13529 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13530 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13531 */ 13532 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13533 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13534 } else { 13535 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13536 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13537 } 13538 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13539 DP_TBFLAG_A32(flags, VFPEN, 1); 13540 } 13541 } 13542 13543 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13544 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13545 } 13546 13547 /* 13548 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13549 * states defined in the ARM ARM for software singlestep: 13550 * SS_ACTIVE PSTATE.SS State 13551 * 0 x Inactive (the TB flag for SS is always 0) 13552 * 1 0 Active-pending 13553 * 1 1 Active-not-pending 13554 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13555 */ 13556 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13557 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13558 } 13559 13560 *pflags = flags.flags; 13561 *cs_base = flags.flags2; 13562 } 13563 13564 #ifdef TARGET_AARCH64 13565 /* 13566 * The manual says that when SVE is enabled and VQ is widened the 13567 * implementation is allowed to zero the previously inaccessible 13568 * portion of the registers. The corollary to that is that when 13569 * SVE is enabled and VQ is narrowed we are also allowed to zero 13570 * the now inaccessible portion of the registers. 13571 * 13572 * The intent of this is that no predicate bit beyond VQ is ever set. 13573 * Which means that some operations on predicate registers themselves 13574 * may operate on full uint64_t or even unrolled across the maximum 13575 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13576 * may well be cheaper than conditionals to restrict the operation 13577 * to the relevant portion of a uint16_t[16]. 13578 */ 13579 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13580 { 13581 int i, j; 13582 uint64_t pmask; 13583 13584 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13585 assert(vq <= env_archcpu(env)->sve_max_vq); 13586 13587 /* Zap the high bits of the zregs. */ 13588 for (i = 0; i < 32; i++) { 13589 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13590 } 13591 13592 /* Zap the high bits of the pregs and ffr. */ 13593 pmask = 0; 13594 if (vq & 3) { 13595 pmask = ~(-1ULL << (16 * (vq & 3))); 13596 } 13597 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13598 for (i = 0; i < 17; ++i) { 13599 env->vfp.pregs[i].p[j] &= pmask; 13600 } 13601 pmask = 0; 13602 } 13603 } 13604 13605 /* 13606 * Notice a change in SVE vector size when changing EL. 13607 */ 13608 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13609 int new_el, bool el0_a64) 13610 { 13611 ARMCPU *cpu = env_archcpu(env); 13612 int old_len, new_len; 13613 bool old_a64, new_a64; 13614 13615 /* Nothing to do if no SVE. */ 13616 if (!cpu_isar_feature(aa64_sve, cpu)) { 13617 return; 13618 } 13619 13620 /* Nothing to do if FP is disabled in either EL. */ 13621 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13622 return; 13623 } 13624 13625 /* 13626 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13627 * at ELx, or not available because the EL is in AArch32 state, then 13628 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13629 * has an effective value of 0". 13630 * 13631 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13632 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13633 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13634 * we already have the correct register contents when encountering the 13635 * vq0->vq0 transition between EL0->EL1. 13636 */ 13637 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13638 old_len = (old_a64 && !sve_exception_el(env, old_el) 13639 ? sve_zcr_len_for_el(env, old_el) : 0); 13640 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13641 new_len = (new_a64 && !sve_exception_el(env, new_el) 13642 ? sve_zcr_len_for_el(env, new_el) : 0); 13643 13644 /* When changing vector length, clear inaccessible state. */ 13645 if (new_len < old_len) { 13646 aarch64_sve_narrow_vq(env, new_len + 1); 13647 } 13648 } 13649 #endif 13650